This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
test_part187.15 9087.82 8185.15 14188.88 19463.04 23587.98 9994.85 1682.52 6193.61 3895.73 2767.51 23695.71 3280.48 10798.83 296.69 27
WR-MVS_H89.91 5091.31 3185.71 13296.32 1062.39 24589.54 7393.31 7090.21 1095.57 995.66 3081.42 11795.90 1580.94 9998.80 398.84 5
ACMP79.16 1090.54 3490.60 4890.35 4694.36 4780.98 6789.16 8094.05 4079.03 10492.87 4793.74 10790.60 1295.21 6182.87 7898.76 494.87 68
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+77.89 1190.73 3091.50 2388.44 8393.00 8476.26 12289.65 6995.55 787.72 2393.89 2794.94 4891.62 493.44 13278.35 12898.76 495.61 49
PS-CasMVS90.06 4391.92 1384.47 15496.56 758.83 28989.04 8292.74 9791.40 596.12 496.06 2287.23 4795.57 3879.42 12098.74 699.00 2
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4281.69 6190.00 5894.27 2382.35 6393.67 3494.82 5291.18 595.52 4385.36 5198.73 795.23 60
LGP-MVS_train90.82 3894.75 4281.69 6194.27 2382.35 6393.67 3494.82 5291.18 595.52 4385.36 5198.73 795.23 60
PEN-MVS90.03 4591.88 1684.48 15396.57 658.88 28688.95 8393.19 7791.62 496.01 696.16 2087.02 4995.60 3678.69 12598.72 998.97 3
CP-MVSNet89.27 6190.91 4384.37 15596.34 958.61 29188.66 9292.06 11190.78 695.67 795.17 4381.80 11395.54 4279.00 12398.69 1098.95 4
TranMVSNet+NR-MVSNet87.86 8288.76 7385.18 14094.02 5864.13 22484.38 15691.29 13484.88 3792.06 6593.84 10286.45 5893.73 11673.22 18898.66 1197.69 9
NR-MVSNet86.00 10886.22 10785.34 13893.24 7964.56 22082.21 22190.46 15580.99 7888.42 13791.97 15177.56 15293.85 11172.46 19898.65 1297.61 10
UA-Net91.49 1791.53 2291.39 2694.98 3682.95 5693.52 792.79 9588.22 2088.53 13497.64 283.45 8494.55 8486.02 4698.60 1396.67 28
FC-MVSNet-test85.93 11187.05 9482.58 19892.25 10656.44 30585.75 13593.09 8177.33 12391.94 6994.65 5774.78 18293.41 13475.11 17098.58 1497.88 7
DTE-MVSNet89.98 4791.91 1584.21 16196.51 857.84 29488.93 8592.84 9491.92 396.16 396.23 1886.95 5095.99 1079.05 12298.57 1598.80 6
UniMVSNet (Re)86.87 9286.98 9686.55 10993.11 8268.48 19183.80 17292.87 9180.37 8489.61 11691.81 15877.72 15094.18 9775.00 17198.53 1696.99 24
Baseline_NR-MVSNet84.00 15385.90 11378.29 26591.47 14053.44 32482.29 21787.00 22879.06 10389.55 11895.72 2977.20 15686.14 29172.30 19998.51 1795.28 57
TDRefinement93.52 293.39 393.88 195.94 1590.26 395.70 496.46 290.58 892.86 4896.29 1688.16 3594.17 9986.07 4398.48 1897.22 19
ACMM79.39 990.65 3190.99 4089.63 5795.03 3583.53 4989.62 7093.35 6679.20 10193.83 2893.60 11090.81 892.96 14985.02 5698.45 1992.41 168
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVS-pluss90.81 2991.08 3689.99 5195.97 1479.88 7488.13 9894.51 2175.79 14392.94 4594.96 4788.36 2995.01 6790.70 298.40 2095.09 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS91.67 1491.58 2191.96 1495.29 3287.62 1293.38 993.36 6583.16 5391.06 8394.00 9288.26 3295.71 3287.28 2698.39 2192.55 162
UniMVSNet_NR-MVSNet86.84 9487.06 9386.17 12292.86 8967.02 20282.55 20991.56 12583.08 5590.92 8591.82 15778.25 14693.99 10574.16 17598.35 2297.49 13
DU-MVS86.80 9586.99 9586.21 12093.24 7967.02 20283.16 19392.21 10781.73 7090.92 8591.97 15177.20 15693.99 10574.16 17598.35 2297.61 10
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1988.94 8491.81 12184.07 4092.00 6694.40 7186.63 5495.28 5788.59 598.31 2492.30 174
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1992.02 3191.81 12184.07 4092.00 6694.40 7186.63 5495.28 5788.59 598.31 2492.30 174
ACMH76.49 1489.34 6091.14 3483.96 16792.50 9770.36 17589.55 7193.84 5081.89 6994.70 1395.44 3590.69 988.31 26383.33 7398.30 2693.20 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6886.15 2393.37 1095.10 1490.28 992.11 6395.03 4689.75 2194.93 6979.95 11098.27 2795.04 65
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2785.91 2793.35 1194.16 3182.52 6192.39 5994.14 8689.15 2395.62 3587.35 2398.24 2894.56 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
RRT_MVS88.30 7487.83 8089.70 5493.62 7075.70 12592.36 2789.06 19077.34 12293.63 3695.83 2565.40 24995.90 1585.01 5798.23 2997.49 13
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2684.67 4393.51 894.85 1682.88 5791.77 7193.94 10090.55 1395.73 3188.50 798.23 2995.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_0728_THIRD85.33 3293.75 3194.65 5787.44 4595.78 2887.41 2198.21 3192.98 144
MP-MVScopyleft91.14 2790.91 4391.83 2196.18 1186.88 1692.20 2893.03 8682.59 6088.52 13594.37 7486.74 5395.41 5286.32 3798.21 3193.19 137
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 6180.97 6891.49 3993.48 6382.82 5892.60 5593.97 9388.19 3396.29 487.61 1598.20 3394.39 87
Skip Steuart: Steuart Systems R&D Blog.
MSC_two_6792asdad88.81 7191.55 13577.99 9391.01 14296.05 887.45 1998.17 3492.40 169
No_MVS88.81 7191.55 13577.99 9391.01 14296.05 887.45 1998.17 3492.40 169
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3292.99 1394.23 2685.21 3492.51 5695.13 4490.65 1095.34 5488.06 998.15 3695.95 42
mPP-MVS91.69 1391.47 2492.37 696.04 1388.48 1092.72 1892.60 10083.09 5491.54 7394.25 7987.67 4395.51 4587.21 2798.11 3793.12 139
WR-MVS83.56 16184.40 14781.06 22393.43 7454.88 31678.67 27185.02 25481.24 7590.74 8991.56 16472.85 20691.08 20068.00 23698.04 3897.23 18
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4494.91 3884.50 4689.49 7593.98 4279.68 9392.09 6493.89 10183.80 8093.10 14682.67 8098.04 3893.64 122
DeepC-MVS82.31 489.15 6389.08 6589.37 6393.64 6979.07 8388.54 9494.20 2873.53 16889.71 11094.82 5285.09 6795.77 3084.17 6598.03 4093.26 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FIs85.35 11886.27 10682.60 19791.86 12157.31 29885.10 14393.05 8375.83 14291.02 8493.97 9373.57 19592.91 15373.97 17898.02 4197.58 12
abl_693.02 493.16 492.60 494.73 4488.99 793.26 1294.19 3089.11 1294.43 1695.27 3891.86 395.09 6487.54 1898.02 4193.71 117
Anonymous2023121188.40 7289.62 5884.73 14990.46 16665.27 21488.86 8693.02 8787.15 2593.05 4497.10 682.28 10092.02 17476.70 15197.99 4396.88 25
PGM-MVS91.20 2590.95 4291.93 1595.67 2385.85 3090.00 5893.90 4680.32 8691.74 7294.41 7088.17 3495.98 1186.37 3697.99 4393.96 104
APDe-MVS91.22 2491.92 1389.14 6792.97 8578.04 9292.84 1694.14 3583.33 5193.90 2595.73 2788.77 2696.41 187.60 1697.98 4592.98 144
DVP-MVScopyleft90.06 4391.32 3086.29 11594.16 5372.56 14990.54 4891.01 14283.61 4793.75 3194.65 5789.76 1995.78 2886.42 3497.97 4690.55 225
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 10594.25 4972.45 15390.54 4894.10 3895.88 1786.42 3497.97 4692.02 186
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2183.05 5492.18 2994.22 2780.14 8991.29 7993.97 9387.93 4095.87 1988.65 497.96 4894.12 98
SED-MVS90.46 3791.64 1986.93 10294.18 5072.65 14390.47 5193.69 5483.77 4494.11 2394.27 7590.28 1595.84 2386.03 4497.92 4992.29 176
IU-MVS94.18 5072.64 14590.82 14756.98 31989.67 11285.78 4897.92 4993.28 132
CLD-MVS83.18 16882.64 17284.79 14689.05 18967.82 19877.93 27992.52 10168.33 23585.07 19781.54 32782.06 10492.96 14969.35 22197.91 5193.57 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IS-MVSNet86.66 9786.82 10086.17 12292.05 11466.87 20491.21 4188.64 19586.30 3089.60 11792.59 13369.22 22894.91 7073.89 17997.89 5296.72 26
ACMMP_NAP90.65 3191.07 3889.42 6295.93 1679.54 7989.95 6193.68 5677.65 11991.97 6894.89 4988.38 2895.45 5089.27 397.87 5393.27 133
test_241102_TWO93.71 5383.77 4493.49 3994.27 7589.27 2295.84 2386.03 4497.82 5492.04 185
DPE-MVScopyleft90.53 3591.08 3688.88 6993.38 7578.65 8889.15 8194.05 4084.68 3893.90 2594.11 8888.13 3696.30 384.51 6397.81 5591.70 197
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mvsmamba87.87 8187.23 9089.78 5392.31 10476.51 11991.09 4391.87 11772.61 18692.16 6295.23 4166.01 24595.59 3786.02 4697.78 5697.24 17
OurMVSNet-221017-090.01 4689.74 5590.83 3793.16 8180.37 7191.91 3593.11 7981.10 7795.32 1097.24 572.94 20594.85 7285.07 5497.78 5697.26 16
SMA-MVScopyleft90.31 3890.48 4989.83 5295.31 3179.52 8090.98 4493.24 7675.37 15092.84 4995.28 3785.58 6696.09 787.92 1097.76 5893.88 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR91.49 1791.35 2891.92 1695.74 2085.88 2992.58 2293.25 7581.99 6691.40 7694.17 8487.51 4495.87 1987.74 1197.76 5893.99 101
HFP-MVS91.30 2191.39 2591.02 3395.43 2984.66 4492.58 2293.29 7381.99 6691.47 7493.96 9688.35 3095.56 3987.74 1197.74 6092.85 148
#test#90.49 3690.31 5191.02 3395.43 2984.66 4490.65 4693.29 7377.00 12791.47 7493.96 9688.35 3095.56 3984.88 5897.74 6092.85 148
region2R91.44 2091.30 3291.87 1995.75 1985.90 2892.63 2193.30 7281.91 6890.88 8894.21 8087.75 4195.87 1987.60 1697.71 6293.83 109
GST-MVS90.96 2891.01 3990.82 3895.45 2882.73 5791.75 3793.74 5280.98 7991.38 7793.80 10387.20 4895.80 2587.10 3197.69 6393.93 105
UniMVSNet_ETH3D89.12 6490.72 4684.31 15997.00 264.33 22389.67 6888.38 19988.84 1594.29 1997.57 390.48 1491.26 19472.57 19797.65 6497.34 15
v7n90.13 4090.96 4187.65 9591.95 11671.06 17089.99 6093.05 8386.53 2894.29 1996.27 1782.69 9194.08 10386.25 4097.63 6597.82 8
XVS91.54 1591.36 2692.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 10194.03 9086.57 5695.80 2587.35 2397.62 6694.20 92
X-MVStestdata85.04 12582.70 17092.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 10116.05 37586.57 5695.80 2587.35 2397.62 6694.20 92
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6788.83 2495.51 4587.16 2897.60 6892.73 153
RE-MVS-def92.61 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6790.64 1187.16 2897.60 6892.73 153
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 8385.17 3692.47 2695.05 1587.65 2493.21 4394.39 7390.09 1895.08 6586.67 3397.60 6894.18 94
Anonymous2024052180.18 21581.25 19176.95 28283.15 29260.84 26582.46 21285.99 23868.76 23186.78 16393.73 10859.13 28477.44 33473.71 18297.55 7192.56 161
9.1489.29 6291.84 12488.80 8895.32 1175.14 15291.07 8292.89 12487.27 4693.78 11583.69 7097.55 71
OPM-MVS89.80 5189.97 5289.27 6494.76 4179.86 7586.76 12192.78 9678.78 10792.51 5693.64 10988.13 3693.84 11384.83 6097.55 7194.10 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test117292.40 792.41 792.37 694.68 4589.04 691.98 3293.62 5790.14 1193.63 3694.16 8588.83 2495.51 4587.11 3097.54 7492.54 163
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6685.72 3396.79 195.51 888.86 1495.63 896.99 884.81 7093.16 14291.10 197.53 7596.58 31
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
xxxxxxxxxxxxxcwj89.04 6689.13 6488.79 7393.75 6477.44 10386.31 12895.27 1270.80 20892.28 6093.80 10386.89 5194.64 7885.52 4997.51 7694.30 90
SF-MVS90.27 3990.80 4588.68 7892.86 8977.09 11091.19 4295.74 581.38 7492.28 6093.80 10386.89 5194.64 7885.52 4997.51 7694.30 90
ETH3D-3000-0.188.85 6988.96 6988.52 7991.94 11877.27 10988.71 9095.26 1376.08 13490.66 9192.69 13184.48 7393.83 11483.38 7297.48 7894.47 82
MIMVSNet183.63 16084.59 14080.74 22894.06 5762.77 23982.72 20384.53 26077.57 12190.34 9495.92 2476.88 16885.83 29561.88 27897.42 7993.62 123
ACMMP++97.35 80
SR-MVS92.23 892.34 991.91 1794.89 3987.85 1192.51 2493.87 4988.20 2193.24 4294.02 9190.15 1795.67 3486.82 3297.34 8192.19 182
nrg03087.85 8388.49 7485.91 12690.07 17469.73 17887.86 10294.20 2874.04 16292.70 5494.66 5685.88 6591.50 18579.72 11497.32 8296.50 32
pmmvs686.52 9988.06 7881.90 20792.22 10862.28 24884.66 14989.15 18883.54 4989.85 10697.32 488.08 3886.80 28070.43 21497.30 8396.62 29
SD-MVS88.96 6789.88 5386.22 11891.63 12877.07 11189.82 6493.77 5178.90 10592.88 4692.29 14586.11 6290.22 22686.24 4197.24 8491.36 205
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CPTT-MVS89.39 5988.98 6890.63 4195.09 3486.95 1592.09 3092.30 10679.74 9287.50 15192.38 14081.42 11793.28 13783.07 7597.24 8491.67 198
APD-MVScopyleft89.54 5689.63 5789.26 6592.57 9481.34 6690.19 5693.08 8280.87 8191.13 8193.19 11486.22 6195.97 1282.23 8697.18 8690.45 227
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
wuyk23d75.13 26479.30 21862.63 34375.56 35375.18 12880.89 24073.10 33275.06 15394.76 1295.32 3687.73 4252.85 37234.16 37197.11 8759.85 368
bld_raw_dy_0_6484.85 12984.44 14486.07 12493.73 6674.93 12988.57 9381.90 27770.44 21291.28 8095.18 4256.62 30089.28 24985.15 5397.09 8893.99 101
PMVScopyleft80.48 690.08 4190.66 4788.34 8696.71 392.97 190.31 5489.57 18288.51 1990.11 9795.12 4590.98 788.92 25377.55 14297.07 8983.13 320
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OMC-MVS88.19 7587.52 8690.19 4991.94 11881.68 6387.49 10793.17 7876.02 13788.64 13291.22 17084.24 7693.37 13577.97 13897.03 9095.52 50
test_prior386.31 10286.31 10586.32 11390.59 16371.99 16083.37 18592.85 9275.43 14784.58 20591.57 16281.92 11094.17 9979.54 11796.97 9192.80 150
test_prior283.37 18575.43 14784.58 20591.57 16281.92 11079.54 11796.97 91
EPP-MVSNet85.47 11685.04 12986.77 10691.52 13869.37 18191.63 3887.98 20981.51 7387.05 16091.83 15666.18 24495.29 5570.75 20996.89 9395.64 47
ETH3D cwj APD-0.1687.83 8487.62 8588.47 8191.21 14578.20 9087.26 10994.54 2072.05 19688.89 12692.31 14483.86 7894.24 9381.59 9396.87 9492.97 147
VDDNet84.35 14085.39 12481.25 21895.13 3359.32 27985.42 14081.11 28186.41 2987.41 15296.21 1973.61 19490.61 21766.33 24696.85 9593.81 114
VPNet80.25 21281.68 18575.94 29592.46 9847.98 35476.70 29681.67 27973.45 16984.87 20192.82 12674.66 18586.51 28561.66 28196.85 9593.33 130
SixPastTwentyTwo87.20 8987.45 8786.45 11192.52 9669.19 18787.84 10388.05 20681.66 7194.64 1496.53 1465.94 24694.75 7483.02 7796.83 9795.41 52
VPA-MVSNet83.47 16484.73 13479.69 24490.29 16857.52 29781.30 23588.69 19476.29 13187.58 15094.44 6680.60 12787.20 27366.60 24596.82 9894.34 89
Gipumacopyleft84.44 13886.33 10478.78 25484.20 27873.57 13689.55 7190.44 15684.24 3984.38 20994.89 4976.35 17180.40 32776.14 15896.80 9982.36 328
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ZD-MVS92.22 10880.48 7091.85 11871.22 20590.38 9392.98 11986.06 6396.11 681.99 8896.75 100
CDPH-MVS86.17 10785.54 12188.05 9192.25 10675.45 12683.85 16992.01 11265.91 25786.19 17791.75 16083.77 8194.98 6877.43 14596.71 10193.73 116
KD-MVS_self_test81.93 18683.14 16578.30 26484.75 26652.75 32880.37 24589.42 18570.24 21890.26 9693.39 11274.55 18786.77 28168.61 23296.64 10295.38 53
DP-MVS88.60 7189.01 6687.36 9891.30 14277.50 10187.55 10592.97 8987.95 2289.62 11492.87 12584.56 7193.89 11077.65 14096.62 10390.70 219
testtj89.51 5789.48 6089.59 5992.26 10580.80 6990.14 5793.54 6183.37 5090.57 9292.55 13684.99 6896.15 581.26 9496.61 10491.83 193
TransMVSNet (Re)84.02 15285.74 11778.85 25391.00 15355.20 31582.29 21787.26 21679.65 9488.38 13995.52 3483.00 8886.88 27867.97 23796.60 10594.45 85
ambc82.98 18890.55 16564.86 21788.20 9689.15 18889.40 12193.96 9671.67 22091.38 19378.83 12496.55 10692.71 156
train_agg85.98 11085.28 12588.07 9092.34 10179.70 7783.94 16590.32 16065.79 25884.49 20790.97 17981.93 10893.63 12081.21 9596.54 10790.88 214
VDD-MVS84.23 14684.58 14183.20 18491.17 14965.16 21683.25 18984.97 25779.79 9187.18 15494.27 7574.77 18390.89 20769.24 22296.54 10793.55 128
HPM-MVS++copyleft88.93 6888.45 7590.38 4594.92 3785.85 3089.70 6591.27 13578.20 11486.69 16892.28 14680.36 13095.06 6686.17 4296.49 10990.22 230
test_djsdf89.62 5489.01 6691.45 2592.36 10082.98 5591.98 3290.08 17271.54 20094.28 2196.54 1381.57 11594.27 9086.26 3896.49 10997.09 21
CS-MVS-test87.00 9186.43 10388.71 7689.46 18177.46 10289.42 7895.73 677.87 11781.64 25787.25 25282.43 9594.53 8577.65 14096.46 11194.14 97
test111178.53 23178.85 22277.56 27692.22 10847.49 35682.61 20569.24 35072.43 18785.28 19494.20 8151.91 31590.07 23565.36 25596.45 11295.11 63
test9_res80.83 10196.45 11290.57 223
Anonymous2024052986.20 10687.13 9183.42 17990.19 17064.55 22184.55 15190.71 14985.85 3189.94 10495.24 4082.13 10290.40 22169.19 22596.40 11495.31 56
agg_prior185.72 11385.20 12687.28 9991.58 13277.69 9883.69 17590.30 16366.29 25584.32 21191.07 17682.13 10293.18 14081.02 9796.36 11590.98 210
anonymousdsp89.73 5388.88 7092.27 989.82 17886.67 1790.51 5090.20 16969.87 22195.06 1196.14 2184.28 7593.07 14787.68 1396.34 11697.09 21
PHI-MVS86.38 10185.81 11588.08 8988.44 20377.34 10689.35 7993.05 8373.15 17984.76 20387.70 24378.87 14094.18 9780.67 10496.29 11792.73 153
PS-MVSNAJss88.31 7387.90 7989.56 6093.31 7777.96 9587.94 10191.97 11470.73 21094.19 2296.67 1176.94 16294.57 8283.07 7596.28 11896.15 34
v1086.54 9887.10 9284.84 14588.16 20963.28 23286.64 12492.20 10875.42 14992.81 5194.50 6374.05 19094.06 10483.88 6796.28 11897.17 20
CNVR-MVS87.81 8587.68 8388.21 8892.87 8777.30 10885.25 14191.23 13677.31 12487.07 15991.47 16682.94 8994.71 7584.67 6196.27 12092.62 160
DROMVSNet88.01 7888.32 7687.09 10089.28 18572.03 15990.31 5496.31 380.88 8085.12 19689.67 21284.47 7495.46 4982.56 8196.26 12193.77 115
114514_t83.10 17082.54 17584.77 14892.90 8669.10 18986.65 12390.62 15354.66 32881.46 25990.81 18676.98 16194.38 8972.62 19696.18 12290.82 216
agg_prior279.68 11596.16 12390.22 230
AllTest87.97 8087.40 8989.68 5591.59 12983.40 5089.50 7495.44 979.47 9588.00 14493.03 11782.66 9291.47 18670.81 20696.14 12494.16 95
TestCases89.68 5591.59 12983.40 5095.44 979.47 9588.00 14493.03 11782.66 9291.47 18670.81 20696.14 12494.16 95
EPNet80.37 20878.41 23086.23 11776.75 34473.28 13887.18 11177.45 30176.24 13368.14 34488.93 22665.41 24893.85 11169.47 22096.12 12691.55 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs183.69 15884.95 13179.91 24090.04 17659.66 27682.43 21387.44 21375.52 14687.85 14695.26 3981.25 11985.65 29768.74 23096.04 12794.42 86
test250674.12 27673.39 27676.28 29291.85 12244.20 36684.06 16248.20 37872.30 19381.90 24994.20 8127.22 37989.77 24064.81 25896.02 12894.87 68
ECVR-MVScopyleft78.44 23278.63 22677.88 27291.85 12248.95 35083.68 17669.91 34872.30 19384.26 21894.20 8151.89 31689.82 23963.58 26596.02 12894.87 68
mvs_tets89.78 5289.27 6391.30 2893.51 7184.79 4189.89 6390.63 15270.00 22094.55 1596.67 1187.94 3993.59 12484.27 6495.97 13095.52 50
EGC-MVSNET74.79 27169.99 30589.19 6694.89 3987.00 1491.89 3686.28 2321.09 3762.23 37895.98 2381.87 11289.48 24379.76 11395.96 13191.10 208
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4391.48 13984.90 3983.41 18492.38 10570.25 21789.35 12290.68 19082.85 9094.57 8279.55 11695.95 13292.00 187
DVP-MVS++90.07 4291.09 3587.00 10191.55 13572.64 14596.19 294.10 3885.33 3293.49 3994.64 6081.12 12095.88 1787.41 2195.94 13392.48 165
PC_three_145258.96 30590.06 9891.33 16880.66 12693.03 14875.78 16295.94 13392.48 165
jajsoiax89.41 5888.81 7291.19 3293.38 7584.72 4289.70 6590.29 16669.27 22494.39 1796.38 1586.02 6493.52 12883.96 6695.92 13595.34 54
ANet_high83.17 16985.68 11975.65 29681.24 30745.26 36379.94 25092.91 9083.83 4391.33 7896.88 1080.25 13185.92 29368.89 22895.89 13695.76 44
3Dnovator+83.92 289.97 4989.66 5690.92 3691.27 14481.66 6491.25 4094.13 3688.89 1388.83 12994.26 7877.55 15395.86 2284.88 5895.87 13795.24 59
iter_conf0578.81 22677.35 23983.21 18382.98 29560.75 26784.09 15988.34 20063.12 27784.25 21989.48 21431.41 37294.51 8776.64 15295.83 13894.38 88
HQP_MVS87.75 8687.43 8888.70 7793.45 7276.42 12089.45 7693.61 5879.44 9786.55 17092.95 12274.84 18095.22 5980.78 10295.83 13894.46 83
plane_prior593.61 5895.22 5980.78 10295.83 13894.46 83
cl____80.42 20680.23 20581.02 22479.99 32159.25 28077.07 29287.02 22567.37 24786.18 17989.21 22063.08 26190.16 22876.31 15695.80 14193.65 121
DIV-MVS_self_test80.43 20580.23 20581.02 22479.99 32159.25 28077.07 29287.02 22567.38 24686.19 17789.22 21963.09 26090.16 22876.32 15595.80 14193.66 119
DeepC-MVS_fast80.27 886.23 10485.65 12087.96 9291.30 14276.92 11287.19 11091.99 11370.56 21184.96 19890.69 18980.01 13395.14 6278.37 12795.78 14391.82 194
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LFMVS80.15 21680.56 19978.89 25289.19 18855.93 30785.22 14273.78 32682.96 5684.28 21692.72 13057.38 29690.07 23563.80 26495.75 14490.68 220
ACMMP++_ref95.74 145
原ACMM184.60 15292.81 9274.01 13491.50 12762.59 28082.73 23790.67 19176.53 16994.25 9269.24 22295.69 14685.55 288
tfpnnormal81.79 18782.95 16778.31 26388.93 19355.40 31180.83 24282.85 26976.81 12885.90 18694.14 8674.58 18686.51 28566.82 24495.68 14793.01 143
ETH3 D test640085.09 12384.87 13285.75 13190.80 15869.34 18285.90 13293.31 7065.43 26486.11 18089.95 20680.92 12294.86 7175.90 16195.57 14893.05 141
TAPA-MVS77.73 1285.71 11484.83 13388.37 8588.78 19679.72 7687.15 11293.50 6269.17 22585.80 18789.56 21380.76 12492.13 17073.21 19395.51 14993.25 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D90.60 3390.34 5091.38 2789.03 19084.23 4793.58 694.68 1990.65 790.33 9593.95 9984.50 7295.37 5380.87 10095.50 15094.53 81
v886.22 10586.83 9984.36 15787.82 21362.35 24786.42 12791.33 13376.78 12992.73 5394.48 6573.41 19993.72 11783.10 7495.41 15197.01 23
Vis-MVSNet (Re-imp)77.82 23877.79 23577.92 27188.82 19551.29 34183.28 18771.97 33874.04 16282.23 24389.78 21057.38 29689.41 24757.22 30495.41 15193.05 141
OPU-MVS88.27 8791.89 12077.83 9690.47 5191.22 17081.12 12094.68 7674.48 17295.35 15392.29 176
FMVSNet184.55 13585.45 12381.85 20990.27 16961.05 26086.83 11888.27 20378.57 11189.66 11395.64 3175.43 17390.68 21469.09 22695.33 15493.82 111
test1286.57 10890.74 15972.63 14790.69 15082.76 23679.20 13794.80 7395.32 15592.27 178
NCCC87.36 8786.87 9888.83 7092.32 10378.84 8686.58 12591.09 14078.77 10884.85 20290.89 18380.85 12395.29 5581.14 9695.32 15592.34 172
Patchmtry76.56 25377.46 23673.83 30579.37 32946.60 36082.41 21476.90 30373.81 16585.56 19192.38 14048.07 32783.98 31063.36 26895.31 15790.92 213
XVG-OURS89.18 6288.83 7190.23 4894.28 4886.11 2585.91 13193.60 6080.16 8889.13 12593.44 11183.82 7990.98 20283.86 6895.30 15893.60 124
TSAR-MVS + GP.83.95 15482.69 17187.72 9389.27 18681.45 6583.72 17481.58 28074.73 15585.66 18886.06 26972.56 21192.69 15775.44 16695.21 15989.01 253
test_040288.65 7089.58 5985.88 12892.55 9572.22 15784.01 16389.44 18488.63 1894.38 1895.77 2686.38 6093.59 12479.84 11195.21 15991.82 194
TinyColmap81.25 19282.34 17877.99 27085.33 26060.68 26882.32 21688.33 20171.26 20486.97 16192.22 14977.10 15986.98 27762.37 27395.17 16186.31 281
Anonymous20240521180.51 20481.19 19478.49 26088.48 20157.26 29976.63 29782.49 27181.21 7684.30 21592.24 14867.99 23486.24 28962.22 27495.13 16291.98 190
tttt051781.07 19479.58 21585.52 13588.99 19266.45 20787.03 11475.51 31473.76 16688.32 14190.20 20137.96 36494.16 10279.36 12195.13 16295.93 43
DP-MVS Recon84.05 15183.22 16286.52 11091.73 12775.27 12783.23 19192.40 10372.04 19782.04 24788.33 23377.91 14993.95 10866.17 24795.12 16490.34 229
PCF-MVS74.62 1582.15 18180.92 19785.84 12989.43 18272.30 15580.53 24391.82 12057.36 31787.81 14789.92 20877.67 15193.63 12058.69 29695.08 16591.58 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CSCG86.26 10386.47 10285.60 13490.87 15674.26 13387.98 9991.85 11880.35 8589.54 12088.01 23779.09 13892.13 17075.51 16495.06 16690.41 228
plane_prior76.42 12087.15 11275.94 14195.03 167
new-patchmatchnet70.10 30473.37 27760.29 35081.23 30816.95 38059.54 36074.62 31762.93 27880.97 26387.93 24062.83 26571.90 34855.24 31795.01 16892.00 187
v119284.57 13484.69 13884.21 16187.75 21562.88 23783.02 19691.43 12969.08 22789.98 10390.89 18372.70 20993.62 12382.41 8394.97 16996.13 35
v192192084.23 14684.37 14883.79 17087.64 21961.71 25282.91 19991.20 13767.94 24290.06 9890.34 19772.04 21693.59 12482.32 8594.91 17096.07 37
CL-MVSNet_self_test76.81 24977.38 23875.12 29986.90 23651.34 33973.20 32680.63 28668.30 23681.80 25488.40 23266.92 24080.90 32455.35 31694.90 17193.12 139
CS-MVS88.14 7687.67 8489.54 6189.56 18079.18 8290.47 5194.77 1879.37 9984.32 21189.33 21883.87 7794.53 8582.45 8294.89 17294.90 66
v14419284.24 14584.41 14683.71 17387.59 22061.57 25382.95 19891.03 14167.82 24589.80 10890.49 19573.28 20293.51 12981.88 9194.89 17296.04 39
LCM-MVSNet-Re83.48 16385.06 12878.75 25585.94 25555.75 31080.05 24894.27 2376.47 13096.09 594.54 6283.31 8689.75 24259.95 29194.89 17290.75 217
v124084.30 14284.51 14383.65 17487.65 21861.26 25782.85 20191.54 12667.94 24290.68 9090.65 19271.71 21993.64 11982.84 7994.78 17596.07 37
MSLP-MVS++85.00 12786.03 11181.90 20791.84 12471.56 16886.75 12293.02 8775.95 14087.12 15589.39 21677.98 14789.40 24877.46 14394.78 17584.75 297
IterMVS-LS84.73 13184.98 13083.96 16787.35 22363.66 22783.25 18989.88 17676.06 13589.62 11492.37 14373.40 20192.52 16078.16 13394.77 17795.69 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary83.66 15983.69 15883.57 17790.05 17572.26 15686.29 13090.00 17478.19 11581.65 25687.16 25483.40 8594.24 9361.69 28094.76 17884.21 302
ITE_SJBPF90.11 5090.72 16084.97 3890.30 16381.56 7290.02 10091.20 17282.40 9690.81 21073.58 18494.66 17994.56 78
v114484.54 13784.72 13684.00 16587.67 21762.55 24382.97 19790.93 14570.32 21689.80 10890.99 17873.50 19693.48 13081.69 9294.65 18095.97 40
test20.0373.75 27974.59 26571.22 31781.11 30951.12 34370.15 33772.10 33770.42 21380.28 27691.50 16564.21 25374.72 34446.96 35494.58 18187.82 267
TSAR-MVS + MP.88.14 7687.82 8189.09 6895.72 2276.74 11592.49 2591.19 13867.85 24486.63 16994.84 5179.58 13695.96 1387.62 1494.50 18294.56 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HQP3-MVS92.68 9894.47 183
HQP-MVS84.61 13384.06 15286.27 11691.19 14670.66 17284.77 14592.68 9873.30 17480.55 27190.17 20472.10 21394.61 8077.30 14694.47 18393.56 126
c3_l81.64 18881.59 18881.79 21380.86 31359.15 28378.61 27290.18 17068.36 23487.20 15387.11 25669.39 22691.62 18378.16 13394.43 18594.60 77
MCST-MVS84.36 13983.93 15585.63 13391.59 12971.58 16783.52 17992.13 10961.82 28683.96 22189.75 21179.93 13593.46 13178.33 12994.34 18691.87 192
iter_conf_final80.36 20978.88 22184.79 14686.29 24766.36 20886.95 11586.25 23368.16 23882.09 24689.48 21436.59 36794.51 8779.83 11294.30 18793.50 129
thisisatest053079.07 22177.33 24084.26 16087.13 22864.58 21983.66 17775.95 30968.86 23085.22 19587.36 25038.10 36293.57 12775.47 16594.28 18894.62 76
baseline85.20 12085.93 11283.02 18786.30 24662.37 24684.55 15193.96 4374.48 15987.12 15592.03 15082.30 9891.94 17578.39 12694.21 18994.74 75
h-mvs3384.25 14482.76 16988.72 7591.82 12682.60 5884.00 16484.98 25671.27 20286.70 16690.55 19463.04 26293.92 10978.26 13194.20 19089.63 237
alignmvs83.94 15583.98 15483.80 16987.80 21467.88 19784.54 15391.42 13173.27 17788.41 13887.96 23872.33 21290.83 20976.02 16094.11 19192.69 157
USDC76.63 25176.73 24776.34 29183.46 28757.20 30080.02 24988.04 20752.14 34283.65 22591.25 16963.24 25986.65 28454.66 32194.11 19185.17 292
MVS_111021_HR84.63 13284.34 14985.49 13790.18 17175.86 12479.23 26487.13 22073.35 17185.56 19189.34 21783.60 8390.50 21976.64 15294.05 19390.09 235
VNet79.31 22080.27 20476.44 28987.92 21253.95 32075.58 30984.35 26174.39 16082.23 24390.72 18872.84 20784.39 30760.38 29093.98 19490.97 211
FMVSNet281.31 19181.61 18780.41 23486.38 24158.75 29083.93 16786.58 23072.43 18787.65 14892.98 11963.78 25690.22 22666.86 24193.92 19592.27 178
LF4IMVS82.75 17281.93 18385.19 13982.08 29880.15 7385.53 13888.76 19368.01 23985.58 19087.75 24271.80 21886.85 27974.02 17793.87 19688.58 256
canonicalmvs85.50 11586.14 10983.58 17687.97 21067.13 20087.55 10594.32 2273.44 17088.47 13687.54 24686.45 5891.06 20175.76 16393.76 19792.54 163
v2v48284.09 14984.24 15083.62 17587.13 22861.40 25482.71 20489.71 17872.19 19589.55 11891.41 16770.70 22493.20 13981.02 9793.76 19796.25 33
casdiffmvs85.21 11985.85 11483.31 18186.17 25262.77 23983.03 19593.93 4474.69 15688.21 14292.68 13282.29 9991.89 17877.87 13993.75 19995.27 58
UGNet82.78 17181.64 18686.21 12086.20 25176.24 12386.86 11685.68 24177.07 12673.76 32492.82 12669.64 22591.82 18169.04 22793.69 20090.56 224
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
旧先验191.97 11571.77 16281.78 27891.84 15573.92 19193.65 20183.61 310
AUN-MVS81.18 19378.78 22388.39 8490.93 15482.14 6082.51 21183.67 26364.69 27280.29 27485.91 27351.07 31992.38 16376.29 15793.63 20290.65 222
hse-mvs283.47 16481.81 18488.47 8191.03 15282.27 5982.61 20583.69 26271.27 20286.70 16686.05 27063.04 26292.41 16278.26 13193.62 20390.71 218
MVS_111021_LR84.28 14383.76 15785.83 13089.23 18783.07 5380.99 23983.56 26472.71 18486.07 18189.07 22481.75 11486.19 29077.11 14893.36 20488.24 257
GBi-Net82.02 18382.07 18081.85 20986.38 24161.05 26086.83 11888.27 20372.43 18786.00 18295.64 3163.78 25690.68 21465.95 24893.34 20593.82 111
test182.02 18382.07 18081.85 20986.38 24161.05 26086.83 11888.27 20372.43 18786.00 18295.64 3163.78 25690.68 21465.95 24893.34 20593.82 111
FMVSNet378.80 22778.55 22779.57 24682.89 29656.89 30381.76 22585.77 24069.04 22886.00 18290.44 19651.75 31790.09 23465.95 24893.34 20591.72 196
K. test v385.14 12184.73 13486.37 11291.13 15069.63 18085.45 13976.68 30684.06 4292.44 5896.99 862.03 26694.65 7780.58 10593.24 20894.83 74
Anonymous2023120671.38 29771.88 29169.88 32086.31 24554.37 31770.39 33674.62 31752.57 33876.73 30088.76 22759.94 27772.06 34744.35 35993.23 20983.23 318
D2MVS76.84 24875.67 25780.34 23580.48 31962.16 25073.50 32384.80 25957.61 31582.24 24287.54 24651.31 31887.65 26870.40 21593.19 21091.23 206
miper_lstm_enhance76.45 25576.10 25277.51 27776.72 34560.97 26464.69 35285.04 25363.98 27483.20 23188.22 23456.67 29978.79 33273.22 18893.12 21192.78 152
新几何182.95 18993.96 5978.56 8980.24 28755.45 32483.93 22291.08 17571.19 22288.33 26265.84 25193.07 21281.95 332
112180.86 19779.81 21484.02 16493.93 6078.70 8781.64 22880.18 28855.43 32583.67 22491.15 17371.29 22191.41 19167.95 23893.06 21381.96 331
lessismore_v085.95 12591.10 15170.99 17170.91 34491.79 7094.42 6961.76 26792.93 15179.52 11993.03 21493.93 105
TAMVS78.08 23676.36 24983.23 18290.62 16272.87 14179.08 26580.01 29061.72 28881.35 26186.92 25863.96 25588.78 25750.61 33893.01 21588.04 261
ETV-MVS84.31 14183.91 15685.52 13588.58 19970.40 17484.50 15593.37 6478.76 10984.07 22078.72 34680.39 12995.13 6373.82 18192.98 21691.04 209
EPNet_dtu72.87 28671.33 29777.49 27877.72 33860.55 26982.35 21575.79 31066.49 25458.39 37181.06 33053.68 31285.98 29253.55 32592.97 21785.95 284
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu85.82 11283.38 16093.14 387.13 22891.15 287.70 10488.42 19774.57 15783.56 22785.65 27478.49 14394.21 9572.04 20092.88 21894.05 100
CANet83.79 15782.85 16886.63 10786.17 25272.21 15883.76 17391.43 12977.24 12574.39 32187.45 24875.36 17495.42 5177.03 14992.83 21992.25 180
API-MVS82.28 17882.61 17381.30 21786.29 24769.79 17688.71 9087.67 21278.42 11382.15 24584.15 30177.98 14791.59 18465.39 25492.75 22082.51 327
test_yl78.71 22978.51 22879.32 24984.32 27358.84 28778.38 27385.33 24575.99 13882.49 23886.57 26058.01 29090.02 23762.74 27192.73 22189.10 248
DCV-MVSNet78.71 22978.51 22879.32 24984.32 27358.84 28778.38 27385.33 24575.99 13882.49 23886.57 26058.01 29090.02 23762.74 27192.73 22189.10 248
Regformer-186.00 10885.50 12287.49 9684.18 27976.90 11383.52 17987.94 21082.18 6589.19 12385.07 28982.28 10091.89 17882.40 8492.72 22393.69 118
Regformer-286.74 9686.08 11088.73 7484.18 27979.20 8183.52 17989.33 18683.33 5189.92 10585.07 28983.23 8793.16 14283.39 7192.72 22393.83 109
testgi72.36 28974.61 26365.59 33780.56 31842.82 37068.29 34273.35 32966.87 25181.84 25189.93 20772.08 21566.92 36146.05 35692.54 22587.01 275
FMVSNet572.10 29271.69 29273.32 30681.57 30353.02 32776.77 29578.37 29763.31 27576.37 30291.85 15436.68 36678.98 33047.87 35092.45 22687.95 263
CDS-MVSNet77.32 24375.40 25883.06 18689.00 19172.48 15277.90 28082.17 27460.81 29678.94 28783.49 30659.30 28288.76 25854.64 32292.37 22787.93 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
patch_mono-278.89 22379.39 21777.41 27984.78 26568.11 19475.60 30783.11 26660.96 29579.36 28289.89 20975.18 17672.97 34573.32 18792.30 22891.15 207
dcpmvs_284.23 14685.14 12781.50 21588.61 19861.98 25182.90 20093.11 7968.66 23392.77 5292.39 13978.50 14287.63 26976.99 15092.30 22894.90 66
CNLPA83.55 16283.10 16684.90 14489.34 18483.87 4884.54 15388.77 19279.09 10283.54 22888.66 23074.87 17981.73 32166.84 24392.29 23089.11 247
F-COLMAP84.97 12883.42 15989.63 5792.39 9983.40 5088.83 8791.92 11673.19 17880.18 27789.15 22277.04 16093.28 13765.82 25292.28 23192.21 181
thres600view775.97 25875.35 26077.85 27487.01 23451.84 33780.45 24473.26 33075.20 15183.10 23386.31 26645.54 34089.05 25055.03 31992.24 23292.66 158
PVSNet_BlendedMVS78.80 22777.84 23481.65 21484.43 26963.41 22979.49 25890.44 15661.70 28975.43 31487.07 25769.11 22991.44 18860.68 28892.24 23290.11 234
DELS-MVS81.44 19081.25 19182.03 20584.27 27562.87 23876.47 30092.49 10270.97 20781.64 25783.83 30275.03 17792.70 15674.29 17392.22 23490.51 226
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testdata79.54 24792.87 8772.34 15480.14 28959.91 30385.47 19391.75 16067.96 23585.24 29968.57 23492.18 23581.06 345
cl2278.97 22278.21 23281.24 22077.74 33759.01 28477.46 28987.13 22065.79 25884.32 21185.10 28658.96 28690.88 20875.36 16792.03 23693.84 108
miper_ehance_all_eth80.34 21080.04 21281.24 22079.82 32358.95 28577.66 28389.66 17965.75 26185.99 18585.11 28568.29 23391.42 19076.03 15992.03 23693.33 130
miper_enhance_ethall77.83 23776.93 24480.51 23276.15 35058.01 29375.47 31188.82 19158.05 31183.59 22680.69 33164.41 25191.20 19573.16 19492.03 23692.33 173
MVS_030478.17 23477.23 24180.99 22684.13 28169.07 19081.39 23280.81 28476.28 13267.53 34989.11 22362.87 26486.77 28160.90 28792.01 23987.13 273
GeoE85.45 11785.81 11584.37 15590.08 17267.07 20185.86 13491.39 13272.33 19287.59 14990.25 20084.85 6992.37 16478.00 13691.94 24093.66 119
DPM-MVS80.10 21779.18 21982.88 19390.71 16169.74 17778.87 26890.84 14660.29 30175.64 31385.92 27267.28 23793.11 14571.24 20491.79 24185.77 287
v14882.31 17782.48 17681.81 21285.59 25759.66 27681.47 23186.02 23772.85 18288.05 14390.65 19270.73 22390.91 20675.15 16991.79 24194.87 68
test22293.31 7776.54 11679.38 25977.79 29952.59 33782.36 24190.84 18566.83 24191.69 24381.25 340
eth_miper_zixun_eth80.84 19880.22 20782.71 19581.41 30560.98 26377.81 28190.14 17167.31 24886.95 16287.24 25364.26 25292.31 16675.23 16891.61 24494.85 72
pmmvs-eth3d78.42 23377.04 24382.57 20087.44 22274.41 13280.86 24179.67 29155.68 32384.69 20490.31 19960.91 27085.42 29862.20 27591.59 24587.88 265
Vis-MVSNetpermissive86.86 9386.58 10187.72 9392.09 11277.43 10587.35 10892.09 11078.87 10684.27 21794.05 8978.35 14593.65 11880.54 10691.58 24692.08 184
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051573.00 28570.52 29980.46 23381.45 30459.90 27473.16 32774.31 32157.86 31276.08 30877.78 34937.60 36592.12 17265.00 25691.45 24789.35 242
ppachtmachnet_test74.73 27274.00 27076.90 28480.71 31656.89 30371.53 33278.42 29658.24 30979.32 28482.92 31457.91 29384.26 30865.60 25391.36 24889.56 238
OpenMVScopyleft76.72 1381.98 18582.00 18281.93 20684.42 27168.22 19388.50 9589.48 18366.92 25081.80 25491.86 15372.59 21090.16 22871.19 20591.25 24987.40 270
EG-PatchMatch MVS84.08 15084.11 15183.98 16692.22 10872.61 14882.20 22387.02 22572.63 18588.86 12791.02 17778.52 14191.11 19973.41 18691.09 25088.21 258
3Dnovator80.37 784.80 13084.71 13785.06 14386.36 24474.71 13088.77 8990.00 17475.65 14584.96 19893.17 11574.06 18991.19 19678.28 13091.09 25089.29 245
Regformer-385.06 12484.67 13986.22 11884.27 27573.43 13784.07 16085.26 24780.77 8288.62 13385.48 27780.56 12890.39 22281.99 8891.04 25294.85 72
Regformer-486.41 10085.71 11888.52 7984.27 27577.57 10084.07 16088.00 20882.82 5889.84 10785.48 27782.06 10492.77 15583.83 6991.04 25295.22 62
thres100view90075.45 26175.05 26176.66 28887.27 22451.88 33681.07 23873.26 33075.68 14483.25 23086.37 26345.54 34088.80 25451.98 33490.99 25489.31 243
tfpn200view974.86 26974.23 26876.74 28786.24 24952.12 33379.24 26273.87 32473.34 17281.82 25284.60 29746.02 33488.80 25451.98 33490.99 25489.31 243
thres40075.14 26374.23 26877.86 27386.24 24952.12 33379.24 26273.87 32473.34 17281.82 25284.60 29746.02 33488.80 25451.98 33490.99 25492.66 158
cascas76.29 25774.81 26280.72 23084.47 26862.94 23673.89 32187.34 21455.94 32275.16 31876.53 35763.97 25491.16 19765.00 25690.97 25788.06 260
MSP-MVS89.08 6588.16 7791.83 2195.76 1886.14 2492.75 1793.90 4678.43 11289.16 12492.25 14772.03 21796.36 288.21 890.93 25892.98 144
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ab-mvs79.67 21980.56 19976.99 28188.48 20156.93 30184.70 14886.06 23668.95 22980.78 26793.08 11675.30 17584.62 30556.78 30590.90 25989.43 241
MAR-MVS80.24 21378.74 22584.73 14986.87 23878.18 9185.75 13587.81 21165.67 26377.84 29478.50 34773.79 19390.53 21861.59 28290.87 26085.49 290
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EI-MVSNet-Vis-set85.12 12284.53 14286.88 10384.01 28272.76 14283.91 16885.18 24980.44 8388.75 13085.49 27680.08 13291.92 17682.02 8790.85 26195.97 40
EI-MVSNet-UG-set85.04 12584.44 14486.85 10483.87 28572.52 15183.82 17085.15 25080.27 8788.75 13085.45 28079.95 13491.90 17781.92 9090.80 26296.13 35
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4794.47 4685.95 2686.84 11793.91 4580.07 9086.75 16593.26 11393.64 290.93 20484.60 6290.75 26393.97 103
ET-MVSNet_ETH3D75.28 26272.77 28282.81 19483.03 29468.11 19477.09 29176.51 30760.67 29977.60 29880.52 33538.04 36391.15 19870.78 20890.68 26489.17 246
EI-MVSNet82.61 17382.42 17783.20 18483.25 28963.66 22783.50 18285.07 25176.06 13586.55 17085.10 28673.41 19990.25 22378.15 13590.67 26595.68 46
MVSTER77.09 24575.70 25681.25 21875.27 35761.08 25977.49 28885.07 25160.78 29786.55 17088.68 22943.14 35490.25 22373.69 18390.67 26592.42 167
Patchmatch-RL test74.48 27373.68 27276.89 28584.83 26466.54 20672.29 32969.16 35157.70 31386.76 16486.33 26445.79 33982.59 31669.63 21990.65 26781.54 336
CMPMVSbinary59.41 2075.12 26573.57 27379.77 24175.84 35267.22 19981.21 23682.18 27350.78 35076.50 30187.66 24455.20 30982.99 31562.17 27790.64 26889.09 250
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
V4283.47 16483.37 16183.75 17283.16 29163.33 23181.31 23390.23 16869.51 22390.91 8790.81 18674.16 18892.29 16880.06 10890.22 26995.62 48
PM-MVS80.20 21479.00 22083.78 17188.17 20886.66 1881.31 23366.81 35869.64 22288.33 14090.19 20264.58 25083.63 31371.99 20290.03 27081.06 345
PLCcopyleft73.85 1682.09 18280.31 20387.45 9790.86 15780.29 7285.88 13390.65 15168.17 23776.32 30486.33 26473.12 20492.61 15961.40 28390.02 27189.44 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mvs-test184.55 13582.12 17991.84 2087.13 22889.54 485.05 14488.42 19774.57 15780.60 26882.98 31078.49 14393.98 10772.04 20089.77 27292.00 187
CANet_DTU77.81 23977.05 24280.09 23981.37 30659.90 27483.26 18888.29 20269.16 22667.83 34783.72 30360.93 26989.47 24469.22 22489.70 27390.88 214
diffmvs80.40 20780.48 20280.17 23879.02 33360.04 27277.54 28690.28 16766.65 25382.40 24087.33 25173.50 19687.35 27277.98 13789.62 27493.13 138
PMMVS255.64 34059.27 34044.74 35664.30 37812.32 38140.60 36949.79 37753.19 33465.06 35884.81 29353.60 31349.76 37332.68 37389.41 27572.15 358
Fast-Effi-MVS+-dtu82.54 17581.41 19085.90 12785.60 25676.53 11883.07 19489.62 18173.02 18179.11 28683.51 30580.74 12590.24 22568.76 22989.29 27690.94 212
thres20072.34 29071.55 29574.70 30283.48 28651.60 33875.02 31473.71 32770.14 21978.56 29080.57 33446.20 33288.20 26446.99 35389.29 27684.32 301
jason77.42 24275.75 25582.43 20387.10 23269.27 18377.99 27881.94 27651.47 34677.84 29485.07 28960.32 27489.00 25170.74 21089.27 27889.03 251
jason: jason.
MG-MVS80.32 21180.94 19678.47 26188.18 20752.62 33182.29 21785.01 25572.01 19879.24 28592.54 13769.36 22793.36 13670.65 21189.19 27989.45 239
BH-untuned80.96 19680.99 19580.84 22788.55 20068.23 19280.33 24688.46 19672.79 18386.55 17086.76 25974.72 18491.77 18261.79 27988.99 28082.52 326
EIA-MVS82.19 18081.23 19385.10 14287.95 21169.17 18883.22 19293.33 6770.42 21378.58 28979.77 34377.29 15594.20 9671.51 20388.96 28191.93 191
PVSNet_Blended_VisFu81.55 18980.49 20184.70 15191.58 13273.24 14084.21 15791.67 12462.86 27980.94 26487.16 25467.27 23892.87 15469.82 21888.94 28287.99 262
MVSFormer82.23 17981.57 18984.19 16385.54 25869.26 18491.98 3290.08 17271.54 20076.23 30585.07 28958.69 28794.27 9086.26 3888.77 28389.03 251
lupinMVS76.37 25674.46 26682.09 20485.54 25869.26 18476.79 29480.77 28550.68 35276.23 30582.82 31558.69 28788.94 25269.85 21788.77 28388.07 259
RPSCF88.00 7986.93 9791.22 3190.08 17289.30 589.68 6791.11 13979.26 10089.68 11194.81 5582.44 9487.74 26776.54 15488.74 28596.61 30
PAPM_NR83.23 16783.19 16483.33 18090.90 15565.98 21088.19 9790.78 14878.13 11680.87 26687.92 24173.49 19892.42 16170.07 21688.40 28691.60 200
xiu_mvs_v1_base_debu80.84 19880.14 20982.93 19088.31 20471.73 16379.53 25587.17 21765.43 26479.59 27982.73 31776.94 16290.14 23173.22 18888.33 28786.90 276
xiu_mvs_v1_base80.84 19880.14 20982.93 19088.31 20471.73 16379.53 25587.17 21765.43 26479.59 27982.73 31776.94 16290.14 23173.22 18888.33 28786.90 276
xiu_mvs_v1_base_debi80.84 19880.14 20982.93 19088.31 20471.73 16379.53 25587.17 21765.43 26479.59 27982.73 31776.94 16290.14 23173.22 18888.33 28786.90 276
XXY-MVS74.44 27576.19 25169.21 32484.61 26752.43 33271.70 33177.18 30260.73 29880.60 26890.96 18175.44 17269.35 35356.13 30988.33 28785.86 286
Fast-Effi-MVS+81.04 19580.57 19882.46 20287.50 22163.22 23378.37 27589.63 18068.01 23981.87 25082.08 32282.31 9792.65 15867.10 24088.30 29191.51 203
MDA-MVSNet-bldmvs77.47 24176.90 24579.16 25179.03 33264.59 21866.58 34975.67 31273.15 17988.86 12788.99 22566.94 23981.23 32364.71 25988.22 29291.64 199
PAPR78.84 22578.10 23381.07 22285.17 26160.22 27182.21 22190.57 15462.51 28175.32 31684.61 29674.99 17892.30 16759.48 29488.04 29390.68 220
BH-RMVSNet80.53 20380.22 20781.49 21687.19 22766.21 20977.79 28286.23 23474.21 16183.69 22388.50 23173.25 20390.75 21163.18 27087.90 29487.52 268
Effi-MVS+83.90 15684.01 15383.57 17787.22 22665.61 21386.55 12692.40 10378.64 11081.34 26284.18 30083.65 8292.93 15174.22 17487.87 29592.17 183
MVS_Test82.47 17683.22 16280.22 23782.62 29757.75 29682.54 21091.96 11571.16 20682.89 23592.52 13877.41 15490.50 21980.04 10987.84 29692.40 169
QAPM82.59 17482.59 17482.58 19886.44 23966.69 20589.94 6290.36 15967.97 24184.94 20092.58 13572.71 20892.18 16970.63 21287.73 29788.85 254
PVSNet_Blended76.49 25475.40 25879.76 24284.43 26963.41 22975.14 31390.44 15657.36 31775.43 31478.30 34869.11 22991.44 18860.68 28887.70 29884.42 300
pmmvs570.73 30070.07 30372.72 31077.03 34352.73 32974.14 31875.65 31350.36 35472.17 33185.37 28355.42 30880.67 32652.86 33187.59 29984.77 296
IB-MVS62.13 1971.64 29568.97 30979.66 24580.80 31562.26 24973.94 32076.90 30363.27 27668.63 34376.79 35533.83 37091.84 18059.28 29587.26 30084.88 295
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
N_pmnet70.20 30268.80 31174.38 30380.91 31184.81 4059.12 36276.45 30855.06 32675.31 31782.36 32055.74 30554.82 37147.02 35287.24 30183.52 311
pmmvs474.92 26872.98 28180.73 22984.95 26271.71 16676.23 30377.59 30052.83 33677.73 29786.38 26256.35 30384.97 30257.72 30387.05 30285.51 289
MIMVSNet71.09 29871.59 29369.57 32387.23 22550.07 34878.91 26671.83 33960.20 30271.26 33491.76 15955.08 31076.09 33841.06 36487.02 30382.54 325
HyFIR lowres test75.12 26572.66 28482.50 20191.44 14165.19 21572.47 32887.31 21546.79 35880.29 27484.30 29952.70 31492.10 17351.88 33786.73 30490.22 230
MSDG80.06 21879.99 21380.25 23683.91 28468.04 19677.51 28789.19 18777.65 11981.94 24883.45 30776.37 17086.31 28863.31 26986.59 30586.41 279
Patchmatch-test65.91 32367.38 31661.48 34875.51 35443.21 36968.84 34063.79 36262.48 28272.80 32883.42 30844.89 34959.52 37048.27 34986.45 30681.70 333
mvs_anonymous78.13 23578.76 22476.23 29479.24 33050.31 34778.69 27084.82 25861.60 29083.09 23492.82 12673.89 19287.01 27468.33 23586.41 30791.37 204
IterMVS-SCA-FT80.64 20279.41 21684.34 15883.93 28369.66 17976.28 30281.09 28272.43 18786.47 17690.19 20260.46 27293.15 14477.45 14486.39 30890.22 230
E-PMN61.59 33161.62 33361.49 34766.81 37555.40 31153.77 36660.34 36866.80 25258.90 36965.50 36840.48 35966.12 36455.72 31186.25 30962.95 366
EMVS61.10 33460.81 33561.99 34565.96 37655.86 30853.10 36758.97 37067.06 24956.89 37263.33 36940.98 35767.03 36054.79 32086.18 31063.08 365
our_test_371.85 29371.59 29372.62 31180.71 31653.78 32169.72 33971.71 34258.80 30678.03 29180.51 33656.61 30178.84 33162.20 27586.04 31185.23 291
EU-MVSNet75.12 26574.43 26777.18 28083.11 29359.48 27885.71 13782.43 27239.76 37085.64 18988.76 22744.71 35087.88 26673.86 18085.88 31284.16 303
GA-MVS75.83 25974.61 26379.48 24881.87 30059.25 28073.42 32482.88 26868.68 23279.75 27881.80 32450.62 32189.46 24566.85 24285.64 31389.72 236
MVS73.21 28372.59 28575.06 30080.97 31060.81 26681.64 22885.92 23946.03 36171.68 33377.54 35068.47 23289.77 24055.70 31285.39 31474.60 356
PatchT70.52 30172.76 28363.79 34279.38 32833.53 37677.63 28465.37 36073.61 16771.77 33292.79 12944.38 35175.65 34164.53 26385.37 31582.18 329
TR-MVS76.77 25075.79 25479.72 24386.10 25465.79 21277.14 29083.02 26765.20 26981.40 26082.10 32166.30 24290.73 21355.57 31385.27 31682.65 322
BH-w/o76.57 25276.07 25378.10 26886.88 23765.92 21177.63 28486.33 23165.69 26280.89 26579.95 34068.97 23190.74 21253.01 33085.25 31777.62 351
IterMVS76.91 24776.34 25078.64 25780.91 31164.03 22576.30 30179.03 29464.88 27183.11 23289.16 22159.90 27884.46 30668.61 23285.15 31887.42 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVS_ROBcopyleft70.19 1777.77 24077.46 23678.71 25684.39 27261.15 25881.18 23782.52 27062.45 28383.34 22987.37 24966.20 24388.66 25964.69 26085.02 31986.32 280
KD-MVS_2432*160066.87 31865.81 32370.04 31867.50 37347.49 35662.56 35679.16 29261.21 29377.98 29280.61 33225.29 38182.48 31753.02 32884.92 32080.16 348
miper_refine_blended66.87 31865.81 32370.04 31867.50 37347.49 35662.56 35679.16 29261.21 29377.98 29280.61 33225.29 38182.48 31753.02 32884.92 32080.16 348
test-LLR67.21 31666.74 32068.63 32876.45 34855.21 31367.89 34367.14 35562.43 28465.08 35672.39 36243.41 35269.37 35161.00 28484.89 32281.31 338
test-mter65.00 32563.79 32868.63 32876.45 34855.21 31367.89 34367.14 35550.98 34965.08 35672.39 36228.27 37769.37 35161.00 28484.89 32281.31 338
PS-MVSNAJ77.04 24676.53 24878.56 25887.09 23361.40 25475.26 31287.13 22061.25 29174.38 32277.22 35476.94 16290.94 20364.63 26184.83 32483.35 315
xiu_mvs_v2_base77.19 24476.75 24678.52 25987.01 23461.30 25675.55 31087.12 22361.24 29274.45 32078.79 34577.20 15690.93 20464.62 26284.80 32583.32 316
pmmvs362.47 32760.02 33969.80 32171.58 37164.00 22670.52 33558.44 37139.77 36966.05 35175.84 35827.10 38072.28 34646.15 35584.77 32673.11 357
MDTV_nov1_ep1368.29 31478.03 33643.87 36774.12 31972.22 33652.17 34067.02 35085.54 27545.36 34480.85 32555.73 31084.42 327
1112_ss74.82 27073.74 27178.04 26989.57 17960.04 27276.49 29987.09 22454.31 32973.66 32579.80 34160.25 27586.76 28358.37 29784.15 32887.32 271
PatchMatch-RL74.48 27373.22 27878.27 26687.70 21685.26 3575.92 30570.09 34664.34 27376.09 30781.25 32965.87 24778.07 33353.86 32483.82 32971.48 359
MDA-MVSNet_test_wron70.05 30670.44 30068.88 32673.84 36153.47 32358.93 36467.28 35358.43 30787.09 15885.40 28159.80 28067.25 35959.66 29383.54 33085.92 285
YYNet170.06 30570.44 30068.90 32573.76 36253.42 32558.99 36367.20 35458.42 30887.10 15785.39 28259.82 27967.32 35859.79 29283.50 33185.96 283
Test_1112_low_res73.90 27873.08 27976.35 29090.35 16755.95 30673.40 32586.17 23550.70 35173.14 32685.94 27158.31 28985.90 29456.51 30783.22 33287.20 272
PVSNet58.17 2166.41 32165.63 32568.75 32781.96 29949.88 34962.19 35872.51 33551.03 34868.04 34575.34 36050.84 32074.77 34245.82 35782.96 33381.60 335
gg-mvs-nofinetune68.96 31269.11 30868.52 33076.12 35145.32 36283.59 17855.88 37386.68 2664.62 36097.01 730.36 37483.97 31144.78 35882.94 33476.26 353
CR-MVSNet74.00 27773.04 28076.85 28679.58 32462.64 24182.58 20776.90 30350.50 35375.72 31192.38 14048.07 32784.07 30968.72 23182.91 33583.85 307
RPMNet78.88 22478.28 23180.68 23179.58 32462.64 24182.58 20794.16 3174.80 15475.72 31192.59 13348.69 32595.56 3973.48 18582.91 33583.85 307
test0.0.03 164.66 32664.36 32765.57 33875.03 35946.89 35964.69 35261.58 36762.43 28471.18 33677.54 35043.41 35268.47 35640.75 36582.65 33781.35 337
HY-MVS64.64 1873.03 28472.47 28874.71 30183.36 28854.19 31882.14 22481.96 27556.76 32169.57 34186.21 26860.03 27684.83 30449.58 34382.65 33785.11 293
SCA73.32 28072.57 28675.58 29781.62 30255.86 30878.89 26771.37 34361.73 28774.93 31983.42 30860.46 27287.01 27458.11 30182.63 33983.88 304
CHOSEN 1792x268872.45 28870.56 29878.13 26790.02 17763.08 23468.72 34183.16 26542.99 36775.92 30985.46 27957.22 29885.18 30149.87 34281.67 34086.14 282
WTY-MVS67.91 31568.35 31366.58 33580.82 31448.12 35365.96 35072.60 33353.67 33271.20 33581.68 32658.97 28569.06 35548.57 34681.67 34082.55 324
TESTMET0.1,161.29 33260.32 33764.19 34172.06 36951.30 34067.89 34362.09 36345.27 36260.65 36569.01 36527.93 37864.74 36756.31 30881.65 34276.53 352
PAPM71.77 29470.06 30476.92 28386.39 24053.97 31976.62 29886.62 22953.44 33363.97 36184.73 29557.79 29592.34 16539.65 36681.33 34384.45 299
DSMNet-mixed60.98 33561.61 33459.09 35272.88 36745.05 36474.70 31646.61 37926.20 37365.34 35490.32 19855.46 30763.12 36941.72 36381.30 34469.09 363
sss66.92 31767.26 31765.90 33677.23 34051.10 34464.79 35171.72 34152.12 34370.13 33980.18 33857.96 29265.36 36650.21 33981.01 34581.25 340
tpm67.95 31468.08 31567.55 33278.74 33543.53 36875.60 30767.10 35754.92 32772.23 33088.10 23642.87 35575.97 33952.21 33280.95 34683.15 319
tpm268.45 31366.83 31973.30 30778.93 33448.50 35179.76 25271.76 34047.50 35769.92 34083.60 30442.07 35688.40 26148.44 34879.51 34783.01 321
FPMVS72.29 29172.00 29073.14 30888.63 19785.00 3774.65 31767.39 35271.94 19977.80 29687.66 24450.48 32275.83 34049.95 34079.51 34758.58 370
UnsupCasMVSNet_bld69.21 31169.68 30667.82 33179.42 32751.15 34267.82 34675.79 31054.15 33077.47 29985.36 28459.26 28370.64 35048.46 34779.35 34981.66 334
CostFormer69.98 30768.68 31273.87 30477.14 34150.72 34579.26 26174.51 31951.94 34470.97 33784.75 29445.16 34887.49 27055.16 31879.23 35083.40 314
131473.22 28272.56 28775.20 29880.41 32057.84 29481.64 22885.36 24451.68 34573.10 32776.65 35661.45 26885.19 30063.54 26679.21 35182.59 323
baseline173.26 28173.54 27472.43 31384.92 26347.79 35579.89 25174.00 32265.93 25678.81 28886.28 26756.36 30281.63 32256.63 30679.04 35287.87 266
PMMVS61.65 33060.38 33665.47 33965.40 37769.26 18463.97 35461.73 36636.80 37260.11 36668.43 36659.42 28166.35 36348.97 34578.57 35360.81 367
baseline269.77 30866.89 31878.41 26279.51 32658.09 29276.23 30369.57 34957.50 31664.82 35977.45 35246.02 33488.44 26053.08 32777.83 35488.70 255
MS-PatchMatch70.93 29970.22 30273.06 30981.85 30162.50 24473.82 32277.90 29852.44 33975.92 30981.27 32855.67 30681.75 32055.37 31577.70 35574.94 355
UnsupCasMVSNet_eth71.63 29672.30 28969.62 32276.47 34752.70 33070.03 33880.97 28359.18 30479.36 28288.21 23560.50 27169.12 35458.33 29977.62 35687.04 274
CVMVSNet72.62 28771.41 29676.28 29283.25 28960.34 27083.50 18279.02 29537.77 37176.33 30385.10 28649.60 32487.41 27170.54 21377.54 35781.08 343
GG-mvs-BLEND67.16 33373.36 36346.54 36184.15 15855.04 37458.64 37061.95 37129.93 37583.87 31238.71 36876.92 35871.07 360
CHOSEN 280x42059.08 33756.52 34266.76 33476.51 34664.39 22249.62 36859.00 36943.86 36555.66 37368.41 36735.55 36968.21 35743.25 36076.78 35967.69 364
tpmvs70.16 30369.56 30771.96 31574.71 36048.13 35279.63 25375.45 31565.02 27070.26 33881.88 32345.34 34585.68 29658.34 29875.39 36082.08 330
MVP-Stereo75.81 26073.51 27582.71 19589.35 18373.62 13580.06 24785.20 24860.30 30073.96 32387.94 23957.89 29489.45 24652.02 33374.87 36185.06 294
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new_pmnet55.69 33957.66 34149.76 35575.47 35530.59 37759.56 35951.45 37643.62 36662.49 36275.48 35940.96 35849.15 37437.39 36972.52 36269.55 362
PatchmatchNetpermissive69.71 30968.83 31072.33 31477.66 33953.60 32279.29 26069.99 34757.66 31472.53 32982.93 31346.45 33180.08 32960.91 28672.09 36383.31 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet61.16 33362.92 33055.87 35379.09 33135.34 37571.83 33057.98 37246.56 35959.05 36891.14 17449.95 32376.43 33738.74 36771.92 36455.84 371
tpmrst66.28 32266.69 32165.05 34072.82 36839.33 37178.20 27670.69 34553.16 33567.88 34680.36 33748.18 32674.75 34358.13 30070.79 36581.08 343
tpm cat166.76 32065.21 32671.42 31677.09 34250.62 34678.01 27773.68 32844.89 36368.64 34279.00 34445.51 34282.42 31949.91 34170.15 36681.23 342
ADS-MVSNet265.87 32463.64 32972.55 31273.16 36556.92 30267.10 34774.81 31649.74 35566.04 35282.97 31146.71 32977.26 33542.29 36169.96 36783.46 312
ADS-MVSNet61.90 32962.19 33261.03 34973.16 36536.42 37467.10 34761.75 36549.74 35566.04 35282.97 31146.71 32963.21 36842.29 36169.96 36783.46 312
JIA-IIPM69.41 31066.64 32277.70 27573.19 36471.24 16975.67 30665.56 35970.42 21365.18 35592.97 12133.64 37183.06 31453.52 32669.61 36978.79 350
EPMVS62.47 32762.63 33162.01 34470.63 37238.74 37274.76 31552.86 37553.91 33167.71 34880.01 33939.40 36066.60 36255.54 31468.81 37080.68 347
MVEpermissive40.22 2351.82 34150.47 34455.87 35362.66 37951.91 33531.61 37139.28 38040.65 36850.76 37474.98 36156.24 30444.67 37533.94 37264.11 37171.04 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dp60.70 33660.29 33861.92 34672.04 37038.67 37370.83 33364.08 36151.28 34760.75 36477.28 35336.59 36771.58 34947.41 35162.34 37275.52 354
PVSNet_051.08 2256.10 33854.97 34359.48 35175.12 35853.28 32655.16 36561.89 36444.30 36459.16 36762.48 37054.22 31165.91 36535.40 37047.01 37359.25 369
tmp_tt20.25 34424.50 3477.49 3594.47 3828.70 38234.17 37025.16 3821.00 37732.43 37618.49 37439.37 3619.21 37821.64 37543.75 3744.57 374
test_method30.46 34229.60 34533.06 35717.99 3813.84 38313.62 37273.92 3232.79 37518.29 37753.41 37228.53 37643.25 37622.56 37435.27 37552.11 372
DeepMVS_CXcopyleft24.13 35832.95 38029.49 37821.63 38312.07 37437.95 37545.07 37330.84 37319.21 37717.94 37633.06 37623.69 373
testmvs5.91 3487.65 3510.72 3611.20 3830.37 38559.14 3610.67 3850.49 3791.11 3792.76 3780.94 3840.24 3801.02 3781.47 3771.55 376
test1236.27 3478.08 3500.84 3601.11 3840.57 38462.90 3550.82 3840.54 3781.07 3802.75 3791.26 3830.30 3791.04 3771.26 3781.66 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k20.81 34327.75 3460.00 3620.00 3850.00 3860.00 37385.44 2430.00 3800.00 38182.82 31581.46 1160.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.41 3468.55 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38076.94 1620.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re6.65 3458.87 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38179.80 3410.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS196.08 1287.41 1396.19 295.83 492.95 296.57 2
test_one_060193.85 6373.27 13994.11 3786.57 2793.47 4194.64 6088.42 27
eth-test20.00 385
eth-test0.00 385
test_241102_ONE94.18 5072.65 14393.69 5483.62 4694.11 2393.78 10690.28 1595.50 48
save fliter93.75 6477.44 10386.31 12889.72 17770.80 208
test072694.16 5372.56 14990.63 4793.90 4683.61 4793.75 3194.49 6489.76 19
GSMVS83.88 304
test_part293.86 6277.77 9792.84 49
sam_mvs146.11 33383.88 304
sam_mvs45.92 338
MTGPAbinary91.81 121
test_post178.85 2693.13 37645.19 34780.13 32858.11 301
test_post3.10 37745.43 34377.22 336
patchmatchnet-post81.71 32545.93 33787.01 274
MTMP90.66 4533.14 381
gm-plane-assit75.42 35644.97 36552.17 34072.36 36487.90 26554.10 323
TEST992.34 10179.70 7783.94 16590.32 16065.41 26884.49 20790.97 17982.03 10693.63 120
test_892.09 11278.87 8583.82 17090.31 16265.79 25884.36 21090.96 18181.93 10893.44 132
agg_prior91.58 13277.69 9890.30 16384.32 21193.18 140
test_prior478.97 8484.59 150
test_prior86.32 11390.59 16371.99 16092.85 9294.17 9992.80 150
旧先验281.73 22656.88 32086.54 17584.90 30372.81 195
新几何281.72 227
无先验82.81 20285.62 24258.09 31091.41 19167.95 23884.48 298
原ACMM282.26 220
testdata286.43 28763.52 267
segment_acmp81.94 107
testdata179.62 25473.95 164
plane_prior793.45 7277.31 107
plane_prior692.61 9376.54 11674.84 180
plane_prior492.95 122
plane_prior376.85 11477.79 11886.55 170
plane_prior289.45 7679.44 97
plane_prior192.83 91
n20.00 386
nn0.00 386
door-mid74.45 320
test1191.46 128
door72.57 334
HQP5-MVS70.66 172
HQP-NCC91.19 14684.77 14573.30 17480.55 271
ACMP_Plane91.19 14684.77 14573.30 17480.55 271
BP-MVS77.30 146
HQP4-MVS80.56 27094.61 8093.56 126
HQP2-MVS72.10 213
NP-MVS91.95 11674.55 13190.17 204
MDTV_nov1_ep13_2view27.60 37970.76 33446.47 36061.27 36345.20 34649.18 34483.75 309
Test By Simon79.09 138