This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 6099.27 199.54 1
UniMVSNet_ETH3D89.12 6590.72 4784.31 16097.00 264.33 24189.67 7488.38 20688.84 1794.29 2297.57 490.48 1391.26 18972.57 21397.65 6297.34 14
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19288.51 2190.11 9695.12 4990.98 688.92 25477.55 14997.07 8383.13 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12684.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 186
PEN-MVS90.03 4591.88 1884.48 15296.57 558.88 31088.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 13198.72 998.97 3
PS-CasMVS90.06 4391.92 1584.47 15396.56 658.83 31389.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12598.74 699.00 2
DTE-MVSNet89.98 4791.91 1784.21 16296.51 757.84 32188.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12898.57 1598.80 6
CP-MVSNet89.27 6290.91 4484.37 15496.34 858.61 31688.66 9792.06 11590.78 795.67 895.17 4781.80 11595.54 4479.00 12998.69 1098.95 4
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26689.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10598.80 398.84 5
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 146
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10183.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 150
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4898.48 1897.22 17
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 142
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 41
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 16072.03 22896.36 488.21 1190.93 26692.98 156
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 115
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 106
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 103
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14367.85 25386.63 17894.84 5579.58 13895.96 1587.62 1994.50 18294.56 80
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 108
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 96
X-MVStestdata85.04 12582.70 17892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42386.57 5595.80 2887.35 2797.62 6494.20 96
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 109
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 159
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 112
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 172
VDDNet84.35 14085.39 12781.25 23195.13 3259.32 30385.42 15381.11 30286.41 3287.41 16096.21 2273.61 20290.61 21466.33 26896.85 8793.81 119
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10979.74 9687.50 15992.38 15281.42 11993.28 13383.07 8097.24 7991.67 213
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6298.45 1992.41 179
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5298.60 1396.67 25
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14078.20 11886.69 17792.28 15980.36 13195.06 6786.17 4796.49 10090.22 250
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8898.04 3993.64 127
EGC-MVSNET74.79 28969.99 33189.19 6594.89 3887.00 1591.89 3786.28 2401.09 4242.23 42695.98 2781.87 11489.48 24279.76 11895.96 12591.10 225
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 193
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6597.55 6994.10 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5798.73 795.23 61
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5798.73 795.23 61
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17493.26 12193.64 290.93 20084.60 6790.75 27393.97 107
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8498.76 494.87 70
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7495.30 15393.60 130
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 200
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 197
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 187
IU-MVS94.18 5072.64 14790.82 15256.98 35089.67 10985.78 5497.92 4993.28 141
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14783.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 244
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 162
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 162
MIMVSNet183.63 16284.59 14180.74 24094.06 5762.77 25982.72 21684.53 27477.57 12890.34 9395.92 2876.88 17285.83 30761.88 30897.42 7493.62 128
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24284.38 17291.29 13984.88 4492.06 6593.84 10586.45 5893.73 11173.22 20498.66 1197.69 9
新几何182.95 19993.96 5978.56 8880.24 30855.45 35683.93 23991.08 19371.19 23488.33 26365.84 27493.07 22081.95 369
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 91
Skip Steuart: Steuart Systems R&D Blog.
test_part293.86 6177.77 9892.84 51
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
save fliter93.75 6377.44 10386.31 13589.72 18670.80 218
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11698.27 2695.04 67
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 7198.03 4193.26 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15770.00 22894.55 1996.67 1487.94 3993.59 12084.27 7095.97 12495.52 51
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17992.95 13474.84 18795.22 5980.78 10895.83 13494.46 84
plane_prior793.45 6877.31 106
WR-MVS83.56 16584.40 14981.06 23693.43 7054.88 34578.67 28585.02 26581.24 7990.74 9091.56 17972.85 21591.08 19568.00 25798.04 3997.23 16
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6897.81 5591.70 212
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17369.27 23294.39 2096.38 1886.02 6593.52 12483.96 7295.92 13095.34 55
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11870.73 21994.19 2596.67 1476.94 16694.57 8183.07 8096.28 10896.15 33
test22293.31 7376.54 11379.38 27277.79 31952.59 37282.36 26690.84 20566.83 25691.69 25081.25 377
tt080588.09 7789.79 5582.98 19793.26 7563.94 24591.10 4589.64 18985.07 4190.91 8691.09 19289.16 2491.87 17582.03 9595.87 13293.13 148
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21583.16 20592.21 11081.73 7490.92 8491.97 16477.20 16093.99 10274.16 18698.35 2297.61 10
NR-MVSNet86.00 10786.22 10785.34 13493.24 7664.56 23882.21 23490.46 16180.99 8288.42 13791.97 16477.56 15593.85 10772.46 21498.65 1297.61 10
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 6097.78 5697.26 15
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 20183.80 18792.87 9280.37 8789.61 11391.81 17277.72 15394.18 9575.00 18198.53 1696.99 22
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 99
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13598.76 495.61 50
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 156
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
114514_t83.10 17582.54 18384.77 14492.90 8369.10 19686.65 12990.62 15854.66 36281.46 28490.81 20676.98 16594.38 8772.62 21296.18 11490.82 234
testdata79.54 25992.87 8472.34 15680.14 30959.91 32985.47 20491.75 17567.96 25185.24 31168.57 25492.18 24081.06 382
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15591.23 14177.31 13187.07 16891.47 18182.94 9194.71 7584.67 6696.27 11092.62 169
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5697.51 7394.30 95
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21582.55 22291.56 12983.08 6290.92 8491.82 17178.25 14793.99 10274.16 18698.35 2297.49 13
plane_prior192.83 88
原ACMM184.60 14992.81 8974.01 13291.50 13162.59 29582.73 26290.67 21276.53 17394.25 9169.24 24095.69 14185.55 318
plane_prior692.61 9076.54 11374.84 187
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9497.18 8190.45 246
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17889.44 19488.63 2094.38 2195.77 2986.38 6193.59 12079.84 11795.21 15491.82 206
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19487.84 10788.05 21381.66 7594.64 1896.53 1765.94 26094.75 7483.02 8296.83 8995.41 53
ACMH76.49 1489.34 5991.14 3583.96 16792.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26483.33 7698.30 2593.20 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet80.25 22681.68 19375.94 31092.46 9547.98 38576.70 31381.67 29873.45 17684.87 21692.82 13874.66 19286.51 29061.66 31196.85 8793.33 138
F-COLMAP84.97 12983.42 16389.63 5792.39 9683.40 5288.83 9291.92 12073.19 18680.18 30489.15 24477.04 16493.28 13365.82 27592.28 23692.21 192
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17971.54 20894.28 2496.54 1681.57 11794.27 8986.26 4396.49 10097.09 19
TEST992.34 9879.70 7883.94 18090.32 16865.41 28084.49 22290.97 19682.03 10993.63 115
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 18090.32 16865.79 27184.49 22290.97 19681.93 11193.63 11581.21 10296.54 9890.88 232
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14578.77 11284.85 21790.89 20180.85 12595.29 5681.14 10395.32 15092.34 184
FC-MVSNet-test85.93 10987.05 9482.58 20892.25 10156.44 33285.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 13075.11 18098.58 1497.88 7
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18492.01 11665.91 26986.19 18891.75 17583.77 8294.98 6977.43 15296.71 9393.73 122
test111178.53 24678.85 24077.56 28992.22 10347.49 38782.61 21869.24 38272.43 19685.28 20694.20 8551.91 33990.07 23165.36 27996.45 10395.11 65
ZD-MVS92.22 10380.48 7191.85 12271.22 21490.38 9292.98 13186.06 6496.11 781.99 9796.75 92
pmmvs686.52 9988.06 7981.90 21892.22 10362.28 26984.66 16589.15 19783.54 5789.85 10497.32 588.08 3886.80 28570.43 23097.30 7896.62 26
EG-PatchMatch MVS84.08 15084.11 15383.98 16692.22 10372.61 15082.20 23687.02 23272.63 19588.86 12491.02 19478.52 14391.11 19473.41 20191.09 26088.21 284
test_892.09 10778.87 8583.82 18590.31 17065.79 27184.36 22690.96 19881.93 11193.44 128
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11478.87 11084.27 23394.05 9278.35 14693.65 11380.54 11291.58 25492.08 197
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21891.21 4388.64 20386.30 3389.60 11492.59 14569.22 24494.91 7173.89 19397.89 5296.72 24
MVSMamba_PlusPlus87.53 8688.86 7183.54 18392.03 11062.26 27091.49 4092.62 10088.07 2488.07 14596.17 2372.24 22395.79 3184.85 6494.16 19392.58 170
旧先验191.97 11171.77 16381.78 29791.84 16973.92 19993.65 20883.61 345
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4597.63 6397.82 8
NP-MVS91.95 11274.55 12990.17 227
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18784.24 7893.37 13177.97 14597.03 8495.52 51
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18781.12 12294.68 7674.48 18395.35 14892.29 187
FIs85.35 11886.27 10682.60 20791.86 11657.31 32585.10 15993.05 8375.83 14691.02 8393.97 9673.57 20392.91 14873.97 19298.02 4297.58 12
test250674.12 29473.39 29476.28 30791.85 11744.20 40184.06 17748.20 42272.30 20281.90 27394.20 8527.22 42289.77 23964.81 28496.02 12294.87 70
ECVR-MVScopyleft78.44 24778.63 24477.88 28591.85 11748.95 38183.68 19069.91 37872.30 20284.26 23494.20 8551.89 34089.82 23663.58 29496.02 12294.87 70
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 11083.69 7597.55 69
MSLP-MVS++85.00 12886.03 11181.90 21891.84 11971.56 17086.75 12893.02 8775.95 14487.12 16389.39 23877.98 14889.40 24977.46 15094.78 17484.75 327
h-mvs3384.25 14482.76 17788.72 7391.82 12182.60 6084.00 17984.98 26771.27 21186.70 17590.55 21563.04 27993.92 10578.26 13894.20 19189.63 261
DP-MVS Recon84.05 15183.22 16786.52 10791.73 12275.27 12583.23 20392.40 10472.04 20582.04 27188.33 25577.91 15093.95 10466.17 26995.12 15990.34 249
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15886.11 6390.22 22286.24 4697.24 7991.36 220
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22296.14 11694.16 100
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22296.14 11694.16 100
MCST-MVS84.36 13983.93 15785.63 12991.59 12471.58 16883.52 19392.13 11361.82 30483.96 23889.75 23479.93 13793.46 12778.33 13694.34 18791.87 205
agg_prior91.58 12777.69 10090.30 17184.32 22893.18 136
PVSNet_Blended_VisFu81.55 20380.49 21884.70 14791.58 12773.24 14184.21 17391.67 12862.86 29480.94 29087.16 27967.27 25392.87 14969.82 23688.94 29887.99 290
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 175
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 181
No_MVS88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 181
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18991.63 3987.98 21581.51 7787.05 16991.83 17066.18 25995.29 5670.75 22596.89 8695.64 48
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19692.38 10670.25 22589.35 11990.68 21082.85 9294.57 8179.55 12295.95 12792.00 201
Baseline_NR-MVSNet84.00 15385.90 11478.29 27791.47 13453.44 35582.29 23087.00 23579.06 10789.55 11595.72 3277.20 16086.14 29972.30 21598.51 1795.28 58
HyFIR lowres test75.12 28372.66 30482.50 21191.44 13565.19 23372.47 35787.31 22146.79 39480.29 30084.30 32352.70 33692.10 16951.88 37386.73 33090.22 250
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14796.62 9590.70 238
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11770.56 22084.96 21390.69 20980.01 13595.14 6478.37 13495.78 13891.82 206
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6395.87 13295.24 60
HQP-NCC91.19 13984.77 16073.30 18280.55 296
ACMP_Plane91.19 13984.77 16073.30 18280.55 296
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 16092.68 9873.30 18280.55 29690.17 22772.10 22494.61 7977.30 15494.47 18393.56 133
VDD-MVS84.23 14684.58 14283.20 19191.17 14265.16 23483.25 20184.97 26879.79 9587.18 16294.27 7974.77 19090.89 20369.24 24096.54 9893.55 135
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18785.45 15276.68 33184.06 5092.44 6096.99 1062.03 28294.65 7780.58 11193.24 21694.83 75
lessismore_v085.95 12191.10 14470.99 17470.91 37491.79 6994.42 7461.76 28392.93 14679.52 12493.03 22193.93 109
hse-mvs283.47 16881.81 19288.47 7791.03 14582.27 6182.61 21883.69 28071.27 21186.70 17586.05 29763.04 27992.41 15878.26 13893.62 21090.71 237
TransMVSNet (Re)84.02 15285.74 12078.85 26591.00 14655.20 34482.29 23087.26 22279.65 9888.38 13995.52 3783.00 9086.88 28367.97 25896.60 9694.45 86
AUN-MVS81.18 20878.78 24188.39 7990.93 14782.14 6282.51 22483.67 28164.69 28680.29 30085.91 30051.07 34392.38 15976.29 16693.63 20990.65 241
PAPM_NR83.23 17183.19 16983.33 18790.90 14865.98 22688.19 10190.78 15378.13 12080.87 29287.92 26373.49 20692.42 15770.07 23388.40 30491.60 215
CSCG86.26 10186.47 10385.60 13090.87 14974.26 13187.98 10491.85 12280.35 8889.54 11788.01 25979.09 14092.13 16675.51 17495.06 16190.41 247
PLCcopyleft73.85 1682.09 19380.31 22087.45 9290.86 15080.29 7385.88 14290.65 15668.17 24776.32 33586.33 29173.12 21392.61 15461.40 31390.02 28489.44 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test1286.57 10590.74 15172.63 14990.69 15582.76 26179.20 13994.80 7395.32 15092.27 189
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17181.56 7690.02 9991.20 18982.40 9990.81 20773.58 19994.66 17994.56 80
DPM-MVS80.10 23179.18 23682.88 20390.71 15369.74 18478.87 28290.84 15160.29 32675.64 34585.92 29967.28 25293.11 13971.24 22091.79 24785.77 316
TAMVS78.08 25076.36 26683.23 19090.62 15472.87 14379.08 27880.01 31061.72 30781.35 28686.92 28463.96 27188.78 25850.61 37493.01 22288.04 289
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 160
ambc82.98 19790.55 15664.86 23588.20 10089.15 19789.40 11893.96 9971.67 23291.38 18878.83 13096.55 9792.71 165
SSC-MVS77.55 25581.64 19565.29 38190.46 15720.33 42773.56 35068.28 38485.44 3788.18 14494.64 6470.93 23581.33 34171.25 21992.03 24194.20 96
Anonymous2023121188.40 7189.62 5984.73 14590.46 15765.27 23188.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 15997.99 4396.88 23
Test_1112_low_res73.90 29773.08 29876.35 30590.35 15955.95 33373.40 35386.17 24250.70 38773.14 36185.94 29858.31 30685.90 30456.51 33883.22 36887.20 301
VPA-MVSNet83.47 16884.73 13679.69 25690.29 16057.52 32481.30 24688.69 20276.29 13787.58 15894.44 7180.60 12987.20 27766.60 26696.82 9094.34 93
FMVSNet184.55 13685.45 12581.85 22090.27 16161.05 28486.83 12488.27 21078.57 11589.66 11095.64 3475.43 18090.68 21169.09 24495.33 14993.82 116
Anonymous2024052986.20 10487.13 9183.42 18590.19 16264.55 23984.55 16790.71 15485.85 3689.94 10395.24 4682.13 10790.40 21869.19 24396.40 10595.31 57
MVS_111021_HR84.63 13384.34 15185.49 13390.18 16375.86 12379.23 27787.13 22773.35 17985.56 20289.34 23983.60 8590.50 21676.64 16094.05 19790.09 256
GeoE85.45 11685.81 11784.37 15490.08 16467.07 21485.86 14491.39 13672.33 20187.59 15790.25 22284.85 7192.37 16078.00 14391.94 24593.66 124
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14479.26 10489.68 10894.81 5982.44 9787.74 27076.54 16188.74 30196.61 27
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18587.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18179.72 11997.32 7796.50 29
AdaColmapbinary83.66 16183.69 16083.57 18190.05 16772.26 15886.29 13690.00 18178.19 11981.65 28187.16 27983.40 8794.24 9261.69 31094.76 17784.21 337
pm-mvs183.69 16084.95 13479.91 25290.04 16859.66 30082.43 22687.44 21975.52 15287.85 15195.26 4581.25 12185.65 30968.74 25096.04 12194.42 89
CHOSEN 1792x268872.45 30870.56 32278.13 27990.02 16963.08 25468.72 38083.16 28442.99 40975.92 34185.46 30557.22 31585.18 31349.87 37881.67 37886.14 311
WB-MVS76.06 27480.01 23064.19 38489.96 17020.58 42672.18 35968.19 38583.21 5986.46 18693.49 11770.19 23978.97 35765.96 27090.46 28093.02 153
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17669.87 22995.06 1596.14 2584.28 7793.07 14187.68 1896.34 10697.09 19
1112_ss74.82 28873.74 28978.04 28289.57 17260.04 29576.49 31987.09 23154.31 36373.66 36079.80 36860.25 29286.76 28758.37 32884.15 36287.32 300
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22889.33 24083.87 7994.53 8482.45 9094.89 16994.90 68
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23684.54 4683.58 24693.78 10873.36 21096.48 287.98 1396.21 11294.41 90
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12184.26 4790.87 8993.92 10382.18 10689.29 25073.75 19694.81 17393.70 123
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28287.25 27782.43 9894.53 8477.65 14796.46 10294.14 102
PCF-MVS74.62 1582.15 19280.92 21285.84 12589.43 17772.30 15780.53 25691.82 12457.36 34687.81 15289.92 23177.67 15493.63 11558.69 32695.08 16091.58 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVP-Stereo75.81 27773.51 29382.71 20589.35 17873.62 13480.06 26085.20 25960.30 32573.96 35787.94 26157.89 31189.45 24552.02 36874.87 40485.06 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA83.55 16683.10 17284.90 13989.34 17983.87 5084.54 16988.77 20079.09 10683.54 24888.66 25274.87 18681.73 33966.84 26392.29 23589.11 271
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20989.67 23584.47 7595.46 5082.56 8996.26 11193.77 121
TSAR-MVS + GP.83.95 15482.69 17987.72 8989.27 18181.45 6783.72 18981.58 30074.73 16085.66 19886.06 29672.56 22092.69 15275.44 17695.21 15489.01 277
MVS_111021_LR84.28 14383.76 15985.83 12689.23 18283.07 5580.99 25083.56 28272.71 19486.07 19189.07 24581.75 11686.19 29777.11 15693.36 21188.24 283
LFMVS80.15 23080.56 21678.89 26489.19 18355.93 33485.22 15673.78 35182.96 6384.28 23292.72 14357.38 31390.07 23163.80 29395.75 13990.68 239
CLD-MVS83.18 17282.64 18084.79 14389.05 18467.82 20977.93 29392.52 10268.33 24485.07 21081.54 35482.06 10892.96 14469.35 23997.91 5193.57 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10695.50 14594.53 83
CDS-MVSNet77.32 25875.40 27583.06 19489.00 18672.48 15477.90 29482.17 29460.81 32078.94 31583.49 33159.30 29988.76 25954.64 35492.37 23287.93 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051781.07 20979.58 23285.52 13188.99 18766.45 22287.03 11975.51 33973.76 17088.32 14190.20 22337.96 40094.16 9979.36 12695.13 15795.93 42
balanced_conf0384.80 13085.40 12683.00 19688.95 18861.44 27790.42 5892.37 10771.48 21088.72 12993.13 12570.16 24095.15 6379.26 12794.11 19492.41 179
tfpnnormal81.79 20182.95 17478.31 27588.93 18955.40 34080.83 25482.85 28876.81 13485.90 19694.14 8974.58 19386.51 29066.82 26495.68 14293.01 154
testing371.53 31870.79 31973.77 32588.89 19041.86 40876.60 31859.12 41272.83 19180.97 28882.08 34819.80 42887.33 27665.12 28191.68 25192.13 196
Vis-MVSNet (Re-imp)77.82 25277.79 25377.92 28488.82 19151.29 37283.28 19971.97 36674.04 16682.23 26889.78 23357.38 31389.41 24857.22 33595.41 14693.05 152
SDMVSNet81.90 20083.17 17078.10 28088.81 19262.45 26576.08 32686.05 24673.67 17183.41 24993.04 12782.35 10080.65 34670.06 23495.03 16291.21 222
sd_testset79.95 23481.39 20475.64 31388.81 19258.07 31876.16 32582.81 28973.67 17183.41 24993.04 12780.96 12477.65 36258.62 32795.03 16291.21 222
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19789.56 23680.76 12692.13 16673.21 20995.51 14493.25 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18896.10 11994.45 86
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18896.10 11994.45 86
GDP-MVS82.17 19080.85 21486.15 12088.65 19768.95 19785.65 14993.02 8768.42 24283.73 24289.54 23745.07 37994.31 8879.66 12193.87 20195.19 63
FPMVS72.29 31172.00 31073.14 32988.63 19885.00 4074.65 34167.39 38771.94 20777.80 32587.66 26850.48 34775.83 36949.95 37679.51 38758.58 416
dcpmvs_284.23 14685.14 13081.50 22888.61 19961.98 27482.90 21393.11 7968.66 24192.77 5492.39 15178.50 14487.63 27276.99 15892.30 23394.90 68
ETV-MVS84.31 14183.91 15885.52 13188.58 20070.40 17884.50 17193.37 6478.76 11384.07 23678.72 37880.39 13095.13 6573.82 19592.98 22391.04 226
BH-untuned80.96 21180.99 21080.84 23988.55 20168.23 20280.33 25988.46 20472.79 19386.55 17986.76 28574.72 19191.77 17861.79 30988.99 29682.52 363
Anonymous20240521180.51 21881.19 20978.49 27288.48 20257.26 32676.63 31582.49 29181.21 8084.30 23192.24 16167.99 25086.24 29462.22 30395.13 15791.98 203
ab-mvs79.67 23580.56 21676.99 29588.48 20256.93 32884.70 16486.06 24568.95 23780.78 29393.08 12675.30 18284.62 31756.78 33690.90 26789.43 265
PHI-MVS86.38 10085.81 11788.08 8488.44 20477.34 10589.35 8593.05 8373.15 18784.76 21887.70 26778.87 14294.18 9580.67 11096.29 10792.73 162
xiu_mvs_v1_base_debu80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
xiu_mvs_v1_base80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
xiu_mvs_v1_base_debi80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
MG-MVS80.32 22480.94 21178.47 27388.18 20852.62 36282.29 23085.01 26672.01 20679.24 31392.54 14869.36 24393.36 13270.65 22789.19 29589.45 263
PM-MVS80.20 22879.00 23783.78 17288.17 20986.66 1981.31 24466.81 39369.64 23088.33 14090.19 22464.58 26583.63 32971.99 21790.03 28381.06 382
v1086.54 9887.10 9284.84 14088.16 21063.28 25286.64 13092.20 11175.42 15492.81 5394.50 6874.05 19894.06 10183.88 7396.28 10897.17 18
mvsmamba80.30 22578.87 23884.58 15088.12 21167.55 21092.35 2984.88 26963.15 29285.33 20590.91 20050.71 34595.20 6266.36 26787.98 31390.99 227
sasdasda85.50 11386.14 10983.58 17987.97 21267.13 21287.55 10994.32 2173.44 17788.47 13587.54 27086.45 5891.06 19675.76 17293.76 20392.54 173
canonicalmvs85.50 11386.14 10983.58 17987.97 21267.13 21287.55 10994.32 2173.44 17788.47 13587.54 27086.45 5891.06 19675.76 17293.76 20392.54 173
EIA-MVS82.19 18981.23 20885.10 13787.95 21469.17 19583.22 20493.33 6770.42 22178.58 31879.77 37077.29 15994.20 9471.51 21888.96 29791.93 204
VNet79.31 23680.27 22176.44 30487.92 21553.95 35175.58 33284.35 27674.39 16482.23 26890.72 20872.84 21684.39 32160.38 31993.98 19890.97 228
BP-MVS182.81 17781.67 19486.23 11387.88 21668.53 20086.06 14084.36 27575.65 14985.14 20890.19 22445.84 36894.42 8685.18 5994.72 17895.75 44
v886.22 10386.83 9984.36 15687.82 21762.35 26886.42 13491.33 13876.78 13592.73 5594.48 7073.41 20793.72 11283.10 7995.41 14697.01 21
alignmvs83.94 15583.98 15683.80 17087.80 21867.88 20884.54 16991.42 13573.27 18588.41 13887.96 26072.33 22190.83 20676.02 17094.11 19492.69 166
v119284.57 13584.69 14084.21 16287.75 21962.88 25683.02 20891.43 13369.08 23589.98 10290.89 20172.70 21893.62 11882.41 9194.97 16696.13 34
PatchMatch-RL74.48 29173.22 29778.27 27887.70 22085.26 3875.92 32870.09 37664.34 28776.09 33981.25 35665.87 26178.07 36153.86 35683.82 36471.48 402
fmvsm_s_conf0.1_n_a82.58 18281.93 19084.50 15187.68 22173.35 13786.14 13977.70 32061.64 30985.02 21191.62 17777.75 15186.24 29482.79 8687.07 32493.91 111
v114484.54 13784.72 13884.00 16587.67 22262.55 26382.97 21090.93 15070.32 22489.80 10590.99 19573.50 20493.48 12681.69 10194.65 18095.97 39
v124084.30 14284.51 14683.65 17687.65 22361.26 28182.85 21491.54 13067.94 25190.68 9190.65 21371.71 23193.64 11482.84 8594.78 17496.07 36
v192192084.23 14684.37 15083.79 17187.64 22461.71 27582.91 21291.20 14267.94 25190.06 9790.34 21972.04 22793.59 12082.32 9294.91 16796.07 36
v14419284.24 14584.41 14883.71 17587.59 22561.57 27682.95 21191.03 14667.82 25489.80 10590.49 21673.28 21193.51 12581.88 10094.89 16996.04 38
MGCFI-Net85.04 12585.95 11282.31 21487.52 22663.59 24886.23 13893.96 4473.46 17588.07 14587.83 26586.46 5790.87 20576.17 16793.89 20092.47 177
Fast-Effi-MVS+81.04 21080.57 21582.46 21287.50 22763.22 25378.37 28989.63 19068.01 24881.87 27482.08 34882.31 10292.65 15367.10 26088.30 31091.51 218
pmmvs-eth3d78.42 24877.04 26082.57 21087.44 22874.41 13080.86 25379.67 31155.68 35584.69 21990.31 22160.91 28785.42 31062.20 30491.59 25387.88 293
IterMVS-LS84.73 13284.98 13383.96 16787.35 22963.66 24683.25 20189.88 18476.06 13989.62 11192.37 15573.40 20992.52 15578.16 14094.77 17695.69 46
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres100view90075.45 27975.05 27976.66 30287.27 23051.88 36781.07 24973.26 35675.68 14883.25 25286.37 29045.54 37088.80 25551.98 36990.99 26289.31 267
MIMVSNet71.09 32271.59 31369.57 35687.23 23150.07 37978.91 28071.83 36760.20 32871.26 37091.76 17455.08 32976.09 36741.06 40587.02 32782.54 362
Effi-MVS+83.90 15684.01 15583.57 18187.22 23265.61 23086.55 13292.40 10478.64 11481.34 28784.18 32583.65 8492.93 14674.22 18587.87 31592.17 194
BH-RMVSNet80.53 21780.22 22481.49 22987.19 23366.21 22477.79 29686.23 24174.21 16583.69 24388.50 25373.25 21290.75 20863.18 29987.90 31487.52 297
thisisatest053079.07 23777.33 25784.26 16187.13 23464.58 23783.66 19175.95 33468.86 23885.22 20787.36 27538.10 39793.57 12375.47 17594.28 18994.62 78
Effi-MVS+-dtu85.82 11183.38 16493.14 487.13 23491.15 387.70 10888.42 20574.57 16283.56 24785.65 30178.49 14594.21 9372.04 21692.88 22594.05 105
v2v48284.09 14984.24 15283.62 17787.13 23461.40 27882.71 21789.71 18772.19 20489.55 11591.41 18270.70 23793.20 13581.02 10493.76 20396.25 32
jason77.42 25775.75 27282.43 21387.10 23769.27 19077.99 29281.94 29651.47 38177.84 32385.07 31560.32 29189.00 25270.74 22689.27 29489.03 275
jason: jason.
PS-MVSNAJ77.04 26176.53 26578.56 27087.09 23861.40 27875.26 33587.13 22761.25 31574.38 35677.22 39076.94 16690.94 19964.63 28784.83 35783.35 350
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15687.09 23865.22 23284.16 17494.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11394.87 17295.16 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v2_base77.19 25976.75 26378.52 27187.01 24061.30 28075.55 33387.12 23061.24 31674.45 35478.79 37777.20 16090.93 20064.62 28884.80 35883.32 351
thres600view775.97 27575.35 27777.85 28787.01 24051.84 36880.45 25773.26 35675.20 15683.10 25586.31 29345.54 37089.05 25155.03 35192.24 23792.66 167
CL-MVSNet_self_test76.81 26477.38 25675.12 31686.90 24251.34 37073.20 35480.63 30768.30 24581.80 27888.40 25466.92 25580.90 34355.35 34894.90 16893.12 150
BH-w/o76.57 26876.07 27078.10 28086.88 24365.92 22777.63 29886.33 23965.69 27580.89 29179.95 36768.97 24790.74 20953.01 36485.25 34677.62 393
fmvsm_s_conf0.1_n82.17 19081.59 19883.94 16986.87 24471.57 16985.19 15777.42 32362.27 30384.47 22491.33 18476.43 17485.91 30383.14 7787.14 32294.33 94
MAR-MVS80.24 22778.74 24384.73 14586.87 24478.18 9285.75 14687.81 21665.67 27677.84 32378.50 37973.79 20190.53 21561.59 31290.87 26985.49 320
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_s_conf0.5_n_a82.21 18881.51 20284.32 15986.56 24673.35 13785.46 15177.30 32461.81 30584.51 22190.88 20377.36 15886.21 29682.72 8786.97 32993.38 136
FE-MVS79.98 23378.86 23983.36 18686.47 24766.45 22289.73 7084.74 27372.80 19284.22 23591.38 18344.95 38093.60 11963.93 29191.50 25590.04 257
QAPM82.59 18182.59 18282.58 20886.44 24866.69 21989.94 6790.36 16667.97 25084.94 21592.58 14772.71 21792.18 16570.63 22887.73 31788.85 278
PAPM71.77 31470.06 32976.92 29786.39 24953.97 35076.62 31686.62 23753.44 36763.97 40784.73 31957.79 31292.34 16139.65 40881.33 38284.45 331
GBi-Net82.02 19582.07 18781.85 22086.38 25061.05 28486.83 12488.27 21072.43 19686.00 19295.64 3463.78 27290.68 21165.95 27193.34 21293.82 116
test182.02 19582.07 18781.85 22086.38 25061.05 28486.83 12488.27 21072.43 19686.00 19295.64 3463.78 27290.68 21165.95 27193.34 21293.82 116
FMVSNet281.31 20681.61 19780.41 24686.38 25058.75 31483.93 18286.58 23872.43 19687.65 15692.98 13163.78 27290.22 22266.86 26193.92 19992.27 189
3Dnovator80.37 784.80 13084.71 13985.06 13886.36 25374.71 12788.77 9490.00 18175.65 14984.96 21393.17 12374.06 19791.19 19178.28 13791.09 26089.29 269
Anonymous2023120671.38 32071.88 31169.88 35286.31 25454.37 34770.39 37374.62 34252.57 37376.73 33188.76 24859.94 29472.06 37744.35 40093.23 21783.23 353
baseline85.20 12185.93 11383.02 19586.30 25562.37 26784.55 16793.96 4474.48 16387.12 16392.03 16382.30 10391.94 17178.39 13394.21 19094.74 77
API-MVS82.28 18682.61 18181.30 23086.29 25669.79 18388.71 9587.67 21778.42 11782.15 27084.15 32677.98 14891.59 18065.39 27892.75 22782.51 364
tfpn200view974.86 28774.23 28676.74 30186.24 25752.12 36479.24 27573.87 34973.34 18081.82 27684.60 32146.02 36388.80 25551.98 36990.99 26289.31 267
thres40075.14 28174.23 28677.86 28686.24 25752.12 36479.24 27573.87 34973.34 18081.82 27684.60 32146.02 36388.80 25551.98 36990.99 26292.66 167
UGNet82.78 17881.64 19586.21 11686.20 25976.24 12086.86 12285.68 25277.07 13373.76 35992.82 13869.64 24191.82 17769.04 24693.69 20790.56 243
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet83.79 15982.85 17686.63 10486.17 26072.21 16083.76 18891.43 13377.24 13274.39 35587.45 27375.36 18195.42 5277.03 15792.83 22692.25 191
casdiffmvspermissive85.21 12085.85 11683.31 18886.17 26062.77 25983.03 20793.93 4674.69 16188.21 14292.68 14482.29 10491.89 17477.87 14693.75 20695.27 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FA-MVS(test-final)83.13 17483.02 17383.43 18486.16 26266.08 22588.00 10388.36 20775.55 15185.02 21192.75 14265.12 26492.50 15674.94 18291.30 25891.72 210
TR-MVS76.77 26575.79 27179.72 25586.10 26365.79 22877.14 30683.02 28665.20 28381.40 28582.10 34666.30 25790.73 21055.57 34585.27 34582.65 358
fmvsm_s_conf0.5_n81.91 19981.30 20583.75 17386.02 26471.56 17084.73 16377.11 32762.44 30084.00 23790.68 21076.42 17585.89 30583.14 7787.11 32393.81 119
fmvsm_s_conf0.1_n_283.82 15783.49 16184.84 14085.99 26570.19 18180.93 25187.58 21867.26 25987.94 15092.37 15571.40 23388.01 26686.03 4991.87 24696.31 31
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26678.30 8986.93 12092.20 11165.94 26789.16 12193.16 12483.10 8989.89 23587.81 1594.43 18593.35 137
LCM-MVSNet-Re83.48 16785.06 13178.75 26785.94 26655.75 33880.05 26194.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 32194.89 16990.75 235
test_fmvsmvis_n_192085.22 11985.36 12884.81 14285.80 26876.13 12285.15 15892.32 10861.40 31191.33 7690.85 20483.76 8386.16 29884.31 6993.28 21592.15 195
Fast-Effi-MVS+-dtu82.54 18381.41 20385.90 12385.60 26976.53 11583.07 20689.62 19173.02 18979.11 31483.51 33080.74 12790.24 22168.76 24989.29 29290.94 229
v14882.31 18582.48 18481.81 22385.59 27059.66 30081.47 24386.02 24772.85 19088.05 14790.65 21370.73 23690.91 20275.15 17991.79 24794.87 70
MVSFormer82.23 18781.57 20084.19 16485.54 27169.26 19191.98 3490.08 17971.54 20876.23 33685.07 31558.69 30494.27 8986.26 4388.77 29989.03 275
lupinMVS76.37 27274.46 28482.09 21585.54 27169.26 19176.79 31180.77 30650.68 38876.23 33682.82 34058.69 30488.94 25369.85 23588.77 29988.07 286
fmvsm_s_conf0.5_n_283.62 16383.29 16684.62 14885.43 27370.18 18280.61 25587.24 22367.14 26087.79 15391.87 16671.79 23087.98 26786.00 5391.77 24995.71 45
TinyColmap81.25 20782.34 18677.99 28385.33 27460.68 29182.32 22988.33 20871.26 21386.97 17092.22 16277.10 16386.98 28162.37 30295.17 15686.31 310
MVS_030485.37 11784.58 14287.75 8885.28 27573.36 13686.54 13385.71 25177.56 12981.78 28092.47 15070.29 23896.02 1185.59 5595.96 12593.87 113
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27678.25 9085.82 14591.82 12465.33 28188.55 13292.35 15782.62 9689.80 23786.87 3594.32 18893.18 147
test_fmvsm_n_192083.60 16482.89 17585.74 12785.22 27777.74 9984.12 17690.48 16059.87 33086.45 18791.12 19175.65 17885.89 30582.28 9390.87 26993.58 131
PAPR78.84 24178.10 25181.07 23585.17 27860.22 29482.21 23490.57 15962.51 29675.32 34984.61 32074.99 18592.30 16359.48 32488.04 31290.68 239
RRT-MVS82.97 17683.44 16281.57 22785.06 27958.04 31987.20 11490.37 16577.88 12388.59 13193.70 11363.17 27693.05 14276.49 16288.47 30393.62 128
pmmvs474.92 28672.98 30080.73 24184.95 28071.71 16776.23 32377.59 32152.83 37177.73 32786.38 28956.35 32084.97 31457.72 33487.05 32585.51 319
baseline173.26 30173.54 29272.43 33884.92 28147.79 38679.89 26474.00 34765.93 26878.81 31686.28 29456.36 31981.63 34056.63 33779.04 39387.87 294
Patchmatch-RL test74.48 29173.68 29076.89 29984.83 28266.54 22072.29 35869.16 38357.70 34286.76 17386.33 29145.79 36982.59 33369.63 23790.65 27881.54 373
patch_mono-278.89 23979.39 23477.41 29284.78 28368.11 20575.60 33083.11 28560.96 31979.36 31089.89 23275.18 18372.97 37573.32 20392.30 23391.15 224
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28478.21 9185.40 15491.39 13665.32 28287.72 15591.81 17282.33 10189.78 23886.68 3794.20 19192.99 155
KD-MVS_self_test81.93 19883.14 17178.30 27684.75 28552.75 35980.37 25889.42 19570.24 22690.26 9593.39 11974.55 19486.77 28668.61 25296.64 9495.38 54
mmtdpeth85.13 12385.78 11983.17 19384.65 28674.71 12785.87 14390.35 16777.94 12183.82 24096.96 1277.75 15180.03 35278.44 13296.21 11294.79 76
XXY-MVS74.44 29376.19 26869.21 35884.61 28752.43 36371.70 36277.18 32660.73 32280.60 29490.96 19875.44 17969.35 38756.13 34188.33 30685.86 315
cascas76.29 27374.81 28080.72 24284.47 28862.94 25573.89 34887.34 22055.94 35375.16 35176.53 39563.97 27091.16 19265.00 28290.97 26588.06 288
PVSNet_BlendedMVS78.80 24277.84 25281.65 22684.43 28963.41 24979.49 27190.44 16261.70 30875.43 34687.07 28269.11 24591.44 18460.68 31792.24 23790.11 255
PVSNet_Blended76.49 27075.40 27579.76 25484.43 28963.41 24975.14 33690.44 16257.36 34675.43 34678.30 38069.11 24591.44 18460.68 31787.70 31884.42 332
OpenMVScopyleft76.72 1381.98 19782.00 18981.93 21784.42 29168.22 20388.50 9989.48 19366.92 26281.80 27891.86 16772.59 21990.16 22471.19 22191.25 25987.40 299
OpenMVS_ROBcopyleft70.19 1777.77 25477.46 25478.71 26884.39 29261.15 28281.18 24882.52 29062.45 29983.34 25187.37 27466.20 25888.66 26064.69 28685.02 35186.32 309
test_yl78.71 24478.51 24679.32 26184.32 29358.84 31178.38 28785.33 25775.99 14282.49 26386.57 28758.01 30790.02 23362.74 30092.73 22889.10 272
DCV-MVSNet78.71 24478.51 24679.32 26184.32 29358.84 31178.38 28785.33 25775.99 14282.49 26386.57 28758.01 30790.02 23362.74 30092.73 22889.10 272
DELS-MVS81.44 20581.25 20682.03 21684.27 29562.87 25776.47 32092.49 10370.97 21781.64 28283.83 32775.03 18492.70 15174.29 18492.22 23990.51 245
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Gipumacopyleft84.44 13886.33 10578.78 26684.20 29673.57 13589.55 7790.44 16284.24 4884.38 22594.89 5376.35 17780.40 34976.14 16896.80 9182.36 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UWE-MVS66.43 35865.56 36369.05 35984.15 29740.98 40973.06 35664.71 39954.84 36076.18 33879.62 37129.21 41580.50 34838.54 41289.75 28785.66 317
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29872.76 14483.91 18385.18 26080.44 8688.75 12785.49 30480.08 13491.92 17282.02 9690.85 27195.97 39
fmvsm_l_conf0.5_n82.06 19481.54 20183.60 17883.94 29973.90 13383.35 19886.10 24358.97 33283.80 24190.36 21874.23 19586.94 28282.90 8390.22 28189.94 258
IterMVS-SCA-FT80.64 21679.41 23384.34 15883.93 30069.66 18676.28 32281.09 30372.43 19686.47 18590.19 22460.46 28993.15 13877.45 15186.39 33590.22 250
MSDG80.06 23279.99 23180.25 24883.91 30168.04 20777.51 30189.19 19677.65 12681.94 27283.45 33276.37 17686.31 29363.31 29886.59 33286.41 308
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 30272.52 15383.82 18585.15 26180.27 9088.75 12785.45 30679.95 13691.90 17381.92 9990.80 27296.13 34
testing9169.94 33568.99 34072.80 33283.81 30345.89 39471.57 36473.64 35468.24 24670.77 37677.82 38234.37 40584.44 32053.64 35887.00 32888.07 286
fmvsm_l_conf0.5_n_a81.46 20480.87 21383.25 18983.73 30473.21 14283.00 20985.59 25458.22 33882.96 25790.09 22972.30 22286.65 28881.97 9889.95 28589.88 259
UBG64.34 36963.35 37167.30 37183.50 30540.53 41067.46 38665.02 39854.77 36167.54 39274.47 40232.99 40978.50 36040.82 40683.58 36582.88 357
thres20072.34 31071.55 31674.70 32183.48 30651.60 36975.02 33773.71 35270.14 22778.56 31980.57 36146.20 36188.20 26546.99 39289.29 29284.32 333
USDC76.63 26776.73 26476.34 30683.46 30757.20 32780.02 26288.04 21452.14 37783.65 24491.25 18663.24 27586.65 28854.66 35394.11 19485.17 322
ETVMVS64.67 36663.34 37268.64 36383.44 30841.89 40769.56 37861.70 40861.33 31468.74 38475.76 39828.76 41679.35 35334.65 41686.16 33984.67 328
testing22266.93 35265.30 36471.81 34283.38 30945.83 39572.06 36067.50 38664.12 28869.68 38176.37 39627.34 42183.00 33138.88 40988.38 30586.62 307
testing1167.38 35065.93 35871.73 34383.37 31046.60 39170.95 36969.40 38062.47 29866.14 39476.66 39331.22 41184.10 32449.10 38284.10 36384.49 329
HY-MVS64.64 1873.03 30472.47 30874.71 32083.36 31154.19 34982.14 23781.96 29556.76 35269.57 38286.21 29560.03 29384.83 31649.58 38082.65 37485.11 323
WBMVS68.76 34568.43 34569.75 35483.29 31240.30 41167.36 38772.21 36457.09 34977.05 33085.53 30333.68 40780.51 34748.79 38490.90 26788.45 282
testing9969.27 34168.15 34872.63 33483.29 31245.45 39671.15 36671.08 37267.34 25770.43 37777.77 38432.24 41084.35 32253.72 35786.33 33688.10 285
EI-MVSNet82.61 18082.42 18583.20 19183.25 31463.66 24683.50 19485.07 26276.06 13986.55 17985.10 31273.41 20790.25 21978.15 14290.67 27595.68 47
CVMVSNet72.62 30771.41 31776.28 30783.25 31460.34 29383.50 19479.02 31537.77 41976.33 33485.10 31249.60 35187.41 27470.54 22977.54 39981.08 380
WB-MVSnew68.72 34669.01 33967.85 36783.22 31643.98 40274.93 33865.98 39455.09 35773.83 35879.11 37365.63 26271.89 37938.21 41385.04 35087.69 296
V4283.47 16883.37 16583.75 17383.16 31763.33 25181.31 24490.23 17569.51 23190.91 8690.81 20674.16 19692.29 16480.06 11490.22 28195.62 49
Anonymous2024052180.18 22981.25 20676.95 29683.15 31860.84 28982.46 22585.99 24868.76 23986.78 17293.73 11259.13 30177.44 36373.71 19797.55 6992.56 171
EU-MVSNet75.12 28374.43 28577.18 29483.11 31959.48 30285.71 14882.43 29239.76 41585.64 19988.76 24844.71 38287.88 26973.86 19485.88 34184.16 338
ET-MVSNet_ETH3D75.28 28072.77 30282.81 20483.03 32068.11 20577.09 30776.51 33260.67 32377.60 32880.52 36238.04 39891.15 19370.78 22490.68 27489.17 270
FMVSNet378.80 24278.55 24579.57 25882.89 32156.89 33081.76 23885.77 25069.04 23686.00 19290.44 21751.75 34190.09 23065.95 27193.34 21291.72 210
MVS_Test82.47 18483.22 16780.22 24982.62 32257.75 32382.54 22391.96 11971.16 21582.89 25892.52 14977.41 15790.50 21680.04 11587.84 31692.40 181
mvs5depth83.82 15784.54 14481.68 22582.23 32368.65 19986.89 12189.90 18380.02 9487.74 15497.86 264.19 26982.02 33776.37 16395.63 14394.35 92
LF4IMVS82.75 17981.93 19085.19 13582.08 32480.15 7485.53 15088.76 20168.01 24885.58 20187.75 26671.80 22986.85 28474.02 19193.87 20188.58 280
PVSNet58.17 2166.41 35965.63 36268.75 36281.96 32549.88 38062.19 40172.51 36151.03 38468.04 38875.34 40050.84 34474.77 37245.82 39782.96 36981.60 372
GA-MVS75.83 27674.61 28179.48 26081.87 32659.25 30473.42 35282.88 28768.68 24079.75 30581.80 35150.62 34689.46 24466.85 26285.64 34289.72 260
MS-PatchMatch70.93 32470.22 32773.06 33081.85 32762.50 26473.82 34977.90 31852.44 37475.92 34181.27 35555.67 32481.75 33855.37 34777.70 39774.94 398
Syy-MVS69.40 34070.03 33067.49 37081.72 32838.94 41371.00 36761.99 40361.38 31270.81 37472.36 40661.37 28579.30 35464.50 29085.18 34784.22 335
myMVS_eth3d64.66 36763.89 36866.97 37381.72 32837.39 41671.00 36761.99 40361.38 31270.81 37472.36 40620.96 42779.30 35449.59 37985.18 34784.22 335
SCA73.32 30072.57 30675.58 31481.62 33055.86 33678.89 28171.37 37161.73 30674.93 35283.42 33360.46 28987.01 27858.11 33282.63 37683.88 339
FMVSNet572.10 31271.69 31273.32 32781.57 33153.02 35876.77 31278.37 31763.31 29076.37 33391.85 16836.68 40278.98 35647.87 38992.45 23187.95 291
thisisatest051573.00 30570.52 32380.46 24581.45 33259.90 29873.16 35574.31 34657.86 34176.08 34077.78 38337.60 40192.12 16865.00 28291.45 25689.35 266
eth_miper_zixun_eth80.84 21280.22 22482.71 20581.41 33360.98 28777.81 29590.14 17867.31 25886.95 17187.24 27864.26 26792.31 16275.23 17891.61 25294.85 74
CANet_DTU77.81 25377.05 25980.09 25181.37 33459.90 29883.26 20088.29 20969.16 23467.83 39083.72 32860.93 28689.47 24369.22 24289.70 28890.88 232
ANet_high83.17 17385.68 12175.65 31281.24 33545.26 39879.94 26392.91 9183.83 5191.33 7696.88 1380.25 13285.92 30268.89 24795.89 13195.76 43
new-patchmatchnet70.10 33073.37 29560.29 39481.23 33616.95 42959.54 40574.62 34262.93 29380.97 28887.93 26262.83 28171.90 37855.24 34995.01 16592.00 201
test20.0373.75 29874.59 28371.22 34581.11 33751.12 37470.15 37572.10 36570.42 22180.28 30291.50 18064.21 26874.72 37446.96 39394.58 18187.82 295
MVS73.21 30372.59 30575.06 31780.97 33860.81 29081.64 24185.92 24946.03 39971.68 36977.54 38568.47 24889.77 23955.70 34485.39 34374.60 399
N_pmnet70.20 32868.80 34374.38 32280.91 33984.81 4359.12 40776.45 33355.06 35875.31 35082.36 34555.74 32354.82 41747.02 39187.24 32183.52 346
IterMVS76.91 26276.34 26778.64 26980.91 33964.03 24376.30 32179.03 31464.88 28583.11 25489.16 24359.90 29584.46 31968.61 25285.15 34987.42 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l81.64 20281.59 19881.79 22480.86 34159.15 30778.61 28690.18 17768.36 24387.20 16187.11 28169.39 24291.62 17978.16 14094.43 18594.60 79
WTY-MVS67.91 34968.35 34666.58 37580.82 34248.12 38465.96 39272.60 35953.67 36671.20 37181.68 35358.97 30269.06 38948.57 38581.67 37882.55 361
IB-MVS62.13 1971.64 31668.97 34179.66 25780.80 34362.26 27073.94 34776.90 32863.27 29168.63 38676.79 39233.83 40691.84 17659.28 32587.26 32084.88 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_371.85 31371.59 31372.62 33580.71 34453.78 35269.72 37771.71 37058.80 33478.03 32080.51 36356.61 31878.84 35862.20 30486.04 34085.23 321
ppachtmachnet_test74.73 29074.00 28876.90 29880.71 34456.89 33071.53 36578.42 31658.24 33779.32 31282.92 33957.91 31084.26 32365.60 27791.36 25789.56 262
testgi72.36 30974.61 28165.59 37880.56 34642.82 40668.29 38173.35 35566.87 26381.84 27589.93 23072.08 22666.92 40046.05 39692.54 23087.01 303
D2MVS76.84 26375.67 27480.34 24780.48 34762.16 27373.50 35184.80 27257.61 34482.24 26787.54 27051.31 34287.65 27170.40 23193.19 21891.23 221
131473.22 30272.56 30775.20 31580.41 34857.84 32181.64 24185.36 25651.68 38073.10 36276.65 39461.45 28485.19 31263.54 29579.21 39182.59 359
cl____80.42 22080.23 22281.02 23779.99 34959.25 30477.07 30887.02 23267.37 25686.18 19089.21 24263.08 27890.16 22476.31 16595.80 13693.65 126
DIV-MVS_self_test80.43 21980.23 22281.02 23779.99 34959.25 30477.07 30887.02 23267.38 25586.19 18889.22 24163.09 27790.16 22476.32 16495.80 13693.66 124
MonoMVSNet76.66 26677.26 25874.86 31879.86 35154.34 34886.26 13786.08 24471.08 21685.59 20088.68 25053.95 33185.93 30163.86 29280.02 38684.32 333
miper_ehance_all_eth80.34 22380.04 22981.24 23379.82 35258.95 30977.66 29789.66 18865.75 27485.99 19585.11 31168.29 24991.42 18676.03 16992.03 24193.33 138
CR-MVSNet74.00 29673.04 29976.85 30079.58 35362.64 26182.58 22076.90 32850.50 38975.72 34392.38 15248.07 35584.07 32568.72 25182.91 37183.85 342
RPMNet78.88 24078.28 24980.68 24379.58 35362.64 26182.58 22094.16 3274.80 15975.72 34392.59 14548.69 35295.56 4273.48 20082.91 37183.85 342
baseline269.77 33666.89 35378.41 27479.51 35558.09 31776.23 32369.57 37957.50 34564.82 40577.45 38746.02 36388.44 26153.08 36177.83 39588.70 279
UnsupCasMVSNet_bld69.21 34269.68 33367.82 36879.42 35651.15 37367.82 38575.79 33554.15 36477.47 32985.36 31059.26 30070.64 38348.46 38679.35 38981.66 371
PatchT70.52 32672.76 30363.79 38679.38 35733.53 42077.63 29865.37 39773.61 17371.77 36892.79 14144.38 38375.65 37064.53 28985.37 34482.18 366
Patchmtry76.56 26977.46 25473.83 32479.37 35846.60 39182.41 22776.90 32873.81 16985.56 20292.38 15248.07 35583.98 32663.36 29795.31 15290.92 230
mvs_anonymous78.13 24978.76 24276.23 30979.24 35950.31 37878.69 28484.82 27161.60 31083.09 25692.82 13873.89 20087.01 27868.33 25686.41 33491.37 219
MVS-HIRNet61.16 37762.92 37455.87 39879.09 36035.34 41971.83 36157.98 41646.56 39659.05 41491.14 19049.95 35076.43 36638.74 41071.92 40855.84 417
MDA-MVSNet-bldmvs77.47 25676.90 26279.16 26379.03 36164.59 23666.58 39175.67 33773.15 18788.86 12488.99 24666.94 25481.23 34264.71 28588.22 31191.64 214
diffmvspermissive80.40 22180.48 21980.17 25079.02 36260.04 29577.54 30090.28 17466.65 26582.40 26587.33 27673.50 20487.35 27577.98 14489.62 28993.13 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm268.45 34766.83 35473.30 32878.93 36348.50 38279.76 26571.76 36847.50 39369.92 38083.60 32942.07 39188.40 26248.44 38779.51 38783.01 356
tpm67.95 34868.08 34967.55 36978.74 36443.53 40475.60 33067.10 39254.92 35972.23 36688.10 25842.87 39075.97 36852.21 36780.95 38583.15 354
MDTV_nov1_ep1368.29 34778.03 36543.87 40374.12 34472.22 36352.17 37567.02 39385.54 30245.36 37480.85 34455.73 34284.42 360
cl2278.97 23878.21 25081.24 23377.74 36659.01 30877.46 30487.13 22765.79 27184.32 22885.10 31258.96 30390.88 20475.36 17792.03 24193.84 114
EPNet_dtu72.87 30671.33 31877.49 29177.72 36760.55 29282.35 22875.79 33566.49 26658.39 41781.06 35753.68 33285.98 30053.55 35992.97 22485.95 313
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive69.71 33768.83 34272.33 34077.66 36853.60 35379.29 27369.99 37757.66 34372.53 36582.93 33846.45 36080.08 35160.91 31672.09 40783.31 352
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_n_192071.30 32171.58 31570.47 34877.58 36959.99 29774.25 34284.22 27851.06 38374.85 35379.10 37455.10 32868.83 39068.86 24879.20 39282.58 360
dmvs_testset60.59 38162.54 37654.72 40077.26 37027.74 42374.05 34561.00 41060.48 32465.62 39967.03 41355.93 32268.23 39532.07 42069.46 41468.17 407
sss66.92 35367.26 35165.90 37777.23 37151.10 37564.79 39471.72 36952.12 37870.13 37980.18 36557.96 30965.36 40650.21 37581.01 38481.25 377
CostFormer69.98 33468.68 34473.87 32377.14 37250.72 37679.26 27474.51 34451.94 37970.97 37384.75 31845.16 37887.49 27355.16 35079.23 39083.40 349
tpm cat166.76 35765.21 36571.42 34477.09 37350.62 37778.01 29173.68 35344.89 40268.64 38579.00 37545.51 37282.42 33649.91 37770.15 41081.23 379
pmmvs570.73 32570.07 32872.72 33377.03 37452.73 36074.14 34375.65 33850.36 39072.17 36785.37 30955.42 32680.67 34552.86 36587.59 31984.77 326
dmvs_re66.81 35666.98 35266.28 37676.87 37558.68 31571.66 36372.24 36260.29 32669.52 38373.53 40352.38 33764.40 40844.90 39881.44 38175.76 396
EPNet80.37 22278.41 24886.23 11376.75 37673.28 13987.18 11677.45 32276.24 13868.14 38788.93 24765.41 26393.85 10769.47 23896.12 11891.55 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance76.45 27176.10 26977.51 29076.72 37760.97 28864.69 39585.04 26463.98 28983.20 25388.22 25656.67 31778.79 35973.22 20493.12 21992.78 161
reproduce_monomvs74.09 29573.23 29676.65 30376.52 37854.54 34677.50 30281.40 30165.85 27082.86 26086.67 28627.38 42084.53 31870.24 23290.66 27790.89 231
CHOSEN 280x42059.08 38256.52 38766.76 37476.51 37964.39 24049.62 41659.00 41343.86 40555.66 42068.41 41235.55 40468.21 39643.25 40176.78 40267.69 408
UnsupCasMVSNet_eth71.63 31772.30 30969.62 35576.47 38052.70 36170.03 37680.97 30459.18 33179.36 31088.21 25760.50 28869.12 38858.33 33077.62 39887.04 302
test-LLR67.21 35166.74 35568.63 36476.45 38155.21 34267.89 38267.14 39062.43 30165.08 40272.39 40443.41 38669.37 38561.00 31484.89 35581.31 375
test-mter65.00 36563.79 36968.63 36476.45 38155.21 34267.89 38267.14 39050.98 38565.08 40272.39 40428.27 41869.37 38561.00 31484.89 35581.31 375
miper_enhance_ethall77.83 25176.93 26180.51 24476.15 38358.01 32075.47 33488.82 19958.05 34083.59 24580.69 35864.41 26691.20 19073.16 21092.03 24192.33 185
gg-mvs-nofinetune68.96 34469.11 33768.52 36676.12 38445.32 39783.59 19255.88 41786.68 2964.62 40697.01 930.36 41383.97 32744.78 39982.94 37076.26 395
test_vis1_n70.29 32769.99 33171.20 34675.97 38566.50 22176.69 31480.81 30544.22 40475.43 34677.23 38950.00 34968.59 39166.71 26582.85 37378.52 392
CMPMVSbinary59.41 2075.12 28373.57 29179.77 25375.84 38667.22 21181.21 24782.18 29350.78 38676.50 33287.66 26855.20 32782.99 33262.17 30690.64 27989.09 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
wuyk23d75.13 28279.30 23562.63 38775.56 38775.18 12680.89 25273.10 35875.06 15894.76 1695.32 4187.73 4352.85 41834.16 41797.11 8259.85 414
Patchmatch-test65.91 36167.38 35061.48 39275.51 38843.21 40568.84 37963.79 40162.48 29772.80 36483.42 33344.89 38159.52 41448.27 38886.45 33381.70 370
new_pmnet55.69 38557.66 38649.76 40175.47 38930.59 42159.56 40451.45 42043.62 40762.49 40875.48 39940.96 39349.15 42137.39 41472.52 40569.55 405
gm-plane-assit75.42 39044.97 40052.17 37572.36 40687.90 26854.10 355
MVSTER77.09 26075.70 27381.25 23175.27 39161.08 28377.49 30385.07 26260.78 32186.55 17988.68 25043.14 38990.25 21973.69 19890.67 27592.42 178
PVSNet_051.08 2256.10 38454.97 38959.48 39675.12 39253.28 35755.16 41361.89 40544.30 40359.16 41362.48 41654.22 33065.91 40435.40 41547.01 41959.25 415
test0.0.03 164.66 36764.36 36665.57 37975.03 39346.89 39064.69 39561.58 40962.43 30171.18 37277.54 38543.41 38668.47 39440.75 40782.65 37481.35 374
test_fmvs375.72 27875.20 27877.27 29375.01 39469.47 18878.93 27984.88 26946.67 39587.08 16787.84 26450.44 34871.62 38077.42 15388.53 30290.72 236
tpmvs70.16 32969.56 33471.96 34174.71 39548.13 38379.63 26675.45 34065.02 28470.26 37881.88 35045.34 37585.68 30858.34 32975.39 40382.08 368
test_fmvs1_n70.94 32370.41 32672.53 33773.92 39666.93 21775.99 32784.21 27943.31 40879.40 30979.39 37243.47 38568.55 39269.05 24584.91 35482.10 367
MDA-MVSNet_test_wron70.05 33270.44 32468.88 36173.84 39753.47 35458.93 40967.28 38858.43 33587.09 16685.40 30759.80 29767.25 39859.66 32383.54 36685.92 314
YYNet170.06 33170.44 32468.90 36073.76 39853.42 35658.99 40867.20 38958.42 33687.10 16585.39 30859.82 29667.32 39759.79 32283.50 36785.96 312
test_cas_vis1_n_192069.20 34369.12 33669.43 35773.68 39962.82 25870.38 37477.21 32546.18 39880.46 29978.95 37652.03 33865.53 40565.77 27677.45 40079.95 388
GG-mvs-BLEND67.16 37273.36 40046.54 39384.15 17555.04 41858.64 41661.95 41729.93 41483.87 32838.71 41176.92 40171.07 403
JIA-IIPM69.41 33966.64 35777.70 28873.19 40171.24 17275.67 32965.56 39670.42 22165.18 40192.97 13333.64 40883.06 33053.52 36069.61 41378.79 391
ADS-MVSNet265.87 36263.64 37072.55 33673.16 40256.92 32967.10 38874.81 34149.74 39166.04 39682.97 33646.71 35877.26 36442.29 40269.96 41183.46 347
ADS-MVSNet61.90 37362.19 37761.03 39373.16 40236.42 41867.10 38861.75 40649.74 39166.04 39682.97 33646.71 35863.21 40942.29 40269.96 41183.46 347
ttmdpeth71.72 31570.67 32074.86 31873.08 40455.88 33577.41 30569.27 38155.86 35478.66 31793.77 11038.01 39975.39 37160.12 32089.87 28693.31 140
DSMNet-mixed60.98 37961.61 37959.09 39772.88 40545.05 39974.70 34046.61 42326.20 42165.34 40090.32 22055.46 32563.12 41041.72 40481.30 38369.09 406
tpmrst66.28 36066.69 35665.05 38272.82 40639.33 41278.20 29070.69 37553.16 37067.88 38980.36 36448.18 35474.75 37358.13 33170.79 40981.08 380
test_fmvs273.57 29972.80 30175.90 31172.74 40768.84 19877.07 30884.32 27745.14 40182.89 25884.22 32448.37 35370.36 38473.40 20287.03 32688.52 281
TESTMET0.1,161.29 37660.32 38264.19 38472.06 40851.30 37167.89 38262.09 40245.27 40060.65 41169.01 41027.93 41964.74 40756.31 33981.65 38076.53 394
dp60.70 38060.29 38361.92 39072.04 40938.67 41570.83 37064.08 40051.28 38260.75 41077.28 38836.59 40371.58 38147.41 39062.34 41775.52 397
pmmvs362.47 37160.02 38469.80 35371.58 41064.00 24470.52 37258.44 41539.77 41466.05 39575.84 39727.10 42372.28 37646.15 39584.77 35973.11 400
dongtai41.90 38842.65 39139.67 40370.86 41121.11 42561.01 40321.42 43057.36 34657.97 41850.06 41916.40 42958.73 41621.03 42327.69 42339.17 419
EPMVS62.47 37162.63 37562.01 38870.63 41238.74 41474.76 33952.86 41953.91 36567.71 39180.01 36639.40 39566.60 40155.54 34668.81 41580.68 384
mvsany_test365.48 36462.97 37373.03 33169.99 41376.17 12164.83 39343.71 42443.68 40680.25 30387.05 28352.83 33563.09 41151.92 37272.44 40679.84 389
test_vis3_rt71.42 31970.67 32073.64 32669.66 41470.46 17766.97 39089.73 18542.68 41188.20 14383.04 33543.77 38460.07 41265.35 28086.66 33190.39 248
test_fmvs169.57 33869.05 33871.14 34769.15 41565.77 22973.98 34683.32 28342.83 41077.77 32678.27 38143.39 38868.50 39368.39 25584.38 36179.15 390
KD-MVS_2432*160066.87 35465.81 36070.04 35067.50 41647.49 38762.56 39979.16 31261.21 31777.98 32180.61 35925.29 42482.48 33453.02 36284.92 35280.16 386
miper_refine_blended66.87 35465.81 36070.04 35067.50 41647.49 38762.56 39979.16 31261.21 31777.98 32180.61 35925.29 42482.48 33453.02 36284.92 35280.16 386
E-PMN61.59 37561.62 37861.49 39166.81 41855.40 34053.77 41460.34 41166.80 26458.90 41565.50 41440.48 39466.12 40355.72 34386.25 33762.95 412
test_f64.31 37065.85 35959.67 39566.54 41962.24 27257.76 41170.96 37340.13 41384.36 22682.09 34746.93 35751.67 41961.99 30781.89 37765.12 410
test_vis1_rt65.64 36364.09 36770.31 34966.09 42070.20 18061.16 40281.60 29938.65 41672.87 36369.66 40952.84 33460.04 41356.16 34077.77 39680.68 384
EMVS61.10 37860.81 38061.99 38965.96 42155.86 33653.10 41558.97 41467.06 26156.89 41963.33 41540.98 39267.03 39954.79 35286.18 33863.08 411
mvsany_test158.48 38356.47 38864.50 38365.90 42268.21 20456.95 41242.11 42538.30 41765.69 39877.19 39156.96 31659.35 41546.16 39458.96 41865.93 409
PMMVS61.65 37460.38 38165.47 38065.40 42369.26 19163.97 39761.73 40736.80 42060.11 41268.43 41159.42 29866.35 40248.97 38378.57 39460.81 413
PMMVS255.64 38659.27 38544.74 40264.30 42412.32 43040.60 41749.79 42153.19 36965.06 40484.81 31753.60 33349.76 42032.68 41989.41 29172.15 401
MVEpermissive40.22 2351.82 38750.47 39055.87 39862.66 42551.91 36631.61 41939.28 42640.65 41250.76 42174.98 40156.24 32144.67 42233.94 41864.11 41671.04 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MVStest170.05 33269.26 33572.41 33958.62 42655.59 33976.61 31765.58 39553.44 36789.28 12093.32 12022.91 42671.44 38274.08 19089.52 29090.21 254
kuosan30.83 38932.17 39226.83 40553.36 42719.02 42857.90 41020.44 43138.29 41838.01 42237.82 42115.18 43033.45 4247.74 42520.76 42428.03 420
DeepMVS_CXcopyleft24.13 40632.95 42829.49 42221.63 42912.07 42237.95 42345.07 42030.84 41219.21 42517.94 42433.06 42223.69 421
test_method30.46 39029.60 39333.06 40417.99 4293.84 43213.62 42073.92 3482.79 42318.29 42553.41 41828.53 41743.25 42322.56 42135.27 42152.11 418
tmp_tt20.25 39224.50 3957.49 4074.47 4308.70 43134.17 41825.16 4281.00 42532.43 42418.49 42239.37 3969.21 42621.64 42243.75 4204.57 422
testmvs5.91 3967.65 3990.72 4091.20 4310.37 43459.14 4060.67 4330.49 4271.11 4272.76 4260.94 4320.24 4281.02 4271.47 4251.55 424
test1236.27 3958.08 3980.84 4081.11 4320.57 43362.90 3980.82 4320.54 4261.07 4282.75 4271.26 4310.30 4271.04 4261.26 4261.66 423
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
eth-test20.00 433
eth-test0.00 433
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
cdsmvs_eth3d_5k20.81 39127.75 3940.00 4100.00 4330.00 4350.00 42185.44 2550.00 4280.00 42982.82 34081.46 1180.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas6.41 3948.55 3970.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42876.94 1660.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
ab-mvs-re6.65 3938.87 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42979.80 3680.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS37.39 41652.61 366
PC_three_145258.96 33390.06 9791.33 18480.66 12893.03 14375.78 17195.94 12892.48 175
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 199
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 156
GSMVS83.88 339
sam_mvs146.11 36283.88 339
sam_mvs45.92 367
MTGPAbinary91.81 126
test_post178.85 2833.13 42445.19 37780.13 35058.11 332
test_post3.10 42545.43 37377.22 365
patchmatchnet-post81.71 35245.93 36687.01 278
MTMP90.66 4833.14 427
test9_res80.83 10796.45 10390.57 242
agg_prior279.68 12096.16 11590.22 250
test_prior478.97 8484.59 166
test_prior283.37 19775.43 15384.58 22091.57 17881.92 11379.54 12396.97 85
旧先验281.73 23956.88 35186.54 18484.90 31572.81 211
新几何281.72 240
无先验82.81 21585.62 25358.09 33991.41 18767.95 25984.48 330
原ACMM282.26 233
testdata286.43 29263.52 296
segment_acmp81.94 110
testdata179.62 26773.95 168
plane_prior593.61 5995.22 5980.78 10895.83 13494.46 84
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 179
plane_prior289.45 8279.44 101
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 434
nn0.00 434
door-mid74.45 345
test1191.46 132
door72.57 360
HQP5-MVS70.66 175
BP-MVS77.30 154
HQP4-MVS80.56 29594.61 7993.56 133
HQP3-MVS92.68 9894.47 183
HQP2-MVS72.10 224
MDTV_nov1_ep13_2view27.60 42470.76 37146.47 39761.27 40945.20 37649.18 38183.75 344
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140