This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
UniMVSNet_ETH3D89.12 6490.72 4684.31 15997.00 264.33 22389.67 6888.38 19988.84 1594.29 1997.57 390.48 1491.26 19472.57 19797.65 6497.34 15
PMVScopyleft80.48 690.08 4190.66 4788.34 8696.71 392.97 190.31 5489.57 18288.51 1990.11 9795.12 4590.98 788.92 25377.55 14297.07 8983.13 320
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1988.94 8491.81 12184.07 4092.00 6694.40 7186.63 5495.28 5788.59 598.31 2492.30 174
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1992.02 3191.81 12184.07 4092.00 6694.40 7186.63 5495.28 5788.59 598.31 2492.30 174
PEN-MVS90.03 4591.88 1684.48 15396.57 658.88 28688.95 8393.19 7791.62 496.01 696.16 2087.02 4995.60 3678.69 12598.72 998.97 3
PS-CasMVS90.06 4391.92 1384.47 15496.56 758.83 28989.04 8292.74 9791.40 596.12 496.06 2287.23 4795.57 3879.42 12098.74 699.00 2
DTE-MVSNet89.98 4791.91 1584.21 16196.51 857.84 29488.93 8592.84 9491.92 396.16 396.23 1886.95 5095.99 1079.05 12298.57 1598.80 6
CP-MVSNet89.27 6190.91 4384.37 15596.34 958.61 29188.66 9292.06 11190.78 695.67 795.17 4381.80 11395.54 4279.00 12398.69 1098.95 4
WR-MVS_H89.91 5091.31 3185.71 13296.32 1062.39 24589.54 7393.31 7090.21 1095.57 995.66 3081.42 11795.90 1580.94 9998.80 398.84 5
MP-MVScopyleft91.14 2790.91 4391.83 2196.18 1186.88 1692.20 2893.03 8682.59 6088.52 13594.37 7486.74 5395.41 5286.32 3798.21 3193.19 137
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FOURS196.08 1287.41 1396.19 295.83 492.95 296.57 2
mPP-MVS91.69 1391.47 2492.37 696.04 1388.48 1092.72 1892.60 10083.09 5491.54 7394.25 7987.67 4395.51 4587.21 2798.11 3793.12 139
MP-MVS-pluss90.81 2991.08 3689.99 5195.97 1479.88 7488.13 9894.51 2175.79 14392.94 4594.96 4788.36 2995.01 6790.70 298.40 2095.09 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement93.52 293.39 393.88 195.94 1590.26 395.70 496.46 290.58 892.86 4896.29 1688.16 3594.17 9986.07 4398.48 1897.22 19
ACMMP_NAP90.65 3191.07 3889.42 6295.93 1679.54 7989.95 6193.68 5677.65 11991.97 6894.89 4988.38 2895.45 5089.27 397.87 5393.27 133
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3292.99 1394.23 2685.21 3492.51 5695.13 4490.65 1095.34 5488.06 998.15 3695.95 42
MSP-MVS89.08 6588.16 7791.83 2195.76 1886.14 2492.75 1793.90 4678.43 11289.16 12492.25 14772.03 21796.36 288.21 890.93 25892.98 144
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R91.44 2091.30 3291.87 1995.75 1985.90 2892.63 2193.30 7281.91 6890.88 8894.21 8087.75 4195.87 1987.60 1697.71 6293.83 109
ACMMPR91.49 1791.35 2891.92 1695.74 2085.88 2992.58 2293.25 7581.99 6691.40 7694.17 8487.51 4495.87 1987.74 1197.76 5893.99 101
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2183.05 5492.18 2994.22 2780.14 8991.29 7993.97 9387.93 4095.87 1988.65 497.96 4894.12 98
TSAR-MVS + MP.88.14 7687.82 8189.09 6895.72 2276.74 11592.49 2591.19 13867.85 24486.63 16994.84 5179.58 13695.96 1387.62 1494.50 18294.56 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS91.20 2590.95 4291.93 1595.67 2385.85 3090.00 5893.90 4680.32 8691.74 7294.41 7088.17 3495.98 1186.37 3697.99 4393.96 104
XVS91.54 1591.36 2692.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 10194.03 9086.57 5695.80 2587.35 2397.62 6694.20 92
X-MVStestdata85.04 12582.70 17092.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 10116.05 37586.57 5695.80 2587.35 2397.62 6694.20 92
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2684.67 4393.51 894.85 1682.88 5791.77 7193.94 10090.55 1395.73 3188.50 798.23 2995.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2785.91 2793.35 1194.16 3182.52 6192.39 5994.14 8689.15 2395.62 3587.35 2398.24 2894.56 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS90.96 2891.01 3990.82 3895.45 2882.73 5791.75 3793.74 5280.98 7991.38 7793.80 10387.20 4895.80 2587.10 3197.69 6393.93 105
HFP-MVS91.30 2191.39 2591.02 3395.43 2984.66 4492.58 2293.29 7381.99 6691.47 7493.96 9688.35 3095.56 3987.74 1197.74 6092.85 148
#test#90.49 3690.31 5191.02 3395.43 2984.66 4490.65 4693.29 7377.00 12791.47 7493.96 9688.35 3095.56 3984.88 5897.74 6092.85 148
SMA-MVScopyleft90.31 3890.48 4989.83 5295.31 3179.52 8090.98 4493.24 7675.37 15092.84 4995.28 3785.58 6696.09 787.92 1097.76 5893.88 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS91.67 1491.58 2191.96 1495.29 3287.62 1293.38 993.36 6583.16 5391.06 8394.00 9288.26 3295.71 3287.28 2698.39 2192.55 162
VDDNet84.35 14085.39 12481.25 21895.13 3359.32 27985.42 14081.11 28186.41 2987.41 15296.21 1973.61 19490.61 21766.33 24696.85 9593.81 114
CPTT-MVS89.39 5988.98 6890.63 4195.09 3486.95 1592.09 3092.30 10679.74 9287.50 15192.38 14081.42 11793.28 13783.07 7597.24 8491.67 198
ACMM79.39 990.65 3190.99 4089.63 5795.03 3583.53 4989.62 7093.35 6679.20 10193.83 2893.60 11090.81 892.96 14985.02 5698.45 1992.41 168
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net91.49 1791.53 2291.39 2694.98 3682.95 5693.52 792.79 9588.22 2088.53 13497.64 283.45 8494.55 8486.02 4698.60 1396.67 28
HPM-MVS++copyleft88.93 6888.45 7590.38 4594.92 3785.85 3089.70 6591.27 13578.20 11486.69 16892.28 14680.36 13095.06 6686.17 4296.49 10990.22 230
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4494.91 3884.50 4689.49 7593.98 4279.68 9392.09 6493.89 10183.80 8093.10 14682.67 8098.04 3893.64 122
EGC-MVSNET74.79 27169.99 30589.19 6694.89 3987.00 1491.89 3686.28 2321.09 3762.23 37895.98 2381.87 11289.48 24379.76 11395.96 13191.10 208
SR-MVS92.23 892.34 991.91 1794.89 3987.85 1192.51 2493.87 4988.20 2193.24 4294.02 9190.15 1795.67 3486.82 3297.34 8192.19 182
OPM-MVS89.80 5189.97 5289.27 6494.76 4179.86 7586.76 12192.78 9678.78 10792.51 5693.64 10988.13 3693.84 11384.83 6097.55 7194.10 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4281.69 6190.00 5894.27 2382.35 6393.67 3494.82 5291.18 595.52 4385.36 5198.73 795.23 60
LGP-MVS_train90.82 3894.75 4281.69 6194.27 2382.35 6393.67 3494.82 5291.18 595.52 4385.36 5198.73 795.23 60
abl_693.02 493.16 492.60 494.73 4488.99 793.26 1294.19 3089.11 1294.43 1695.27 3891.86 395.09 6487.54 1898.02 4193.71 117
test117292.40 792.41 792.37 694.68 4589.04 691.98 3293.62 5790.14 1193.63 3694.16 8588.83 2495.51 4587.11 3097.54 7492.54 163
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4794.47 4685.95 2686.84 11793.91 4580.07 9086.75 16593.26 11393.64 290.93 20484.60 6290.75 26393.97 103
ACMP79.16 1090.54 3490.60 4890.35 4694.36 4780.98 6789.16 8094.05 4079.03 10492.87 4793.74 10790.60 1295.21 6182.87 7898.76 494.87 68
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS89.18 6288.83 7190.23 4894.28 4886.11 2585.91 13193.60 6080.16 8889.13 12593.44 11183.82 7990.98 20283.86 6895.30 15893.60 124
test_0728_SECOND86.79 10594.25 4972.45 15390.54 4894.10 3895.88 1786.42 3497.97 4692.02 186
SED-MVS90.46 3791.64 1986.93 10294.18 5072.65 14390.47 5193.69 5483.77 4494.11 2394.27 7590.28 1595.84 2386.03 4497.92 4992.29 176
IU-MVS94.18 5072.64 14590.82 14756.98 31989.67 11285.78 4897.92 4993.28 132
test_241102_ONE94.18 5072.65 14393.69 5483.62 4694.11 2393.78 10690.28 1595.50 48
DVP-MVScopyleft90.06 4391.32 3086.29 11594.16 5372.56 14990.54 4891.01 14283.61 4793.75 3194.65 5789.76 1995.78 2886.42 3497.97 4690.55 225
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 5372.56 14990.63 4793.90 4683.61 4793.75 3194.49 6489.76 19
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6788.83 2495.51 4587.16 2897.60 6892.73 153
RE-MVS-def92.61 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6790.64 1187.16 2897.60 6892.73 153
MIMVSNet183.63 16084.59 14080.74 22894.06 5762.77 23982.72 20384.53 26077.57 12190.34 9495.92 2476.88 16885.83 29561.88 27897.42 7993.62 123
TranMVSNet+NR-MVSNet87.86 8288.76 7385.18 14094.02 5864.13 22484.38 15691.29 13484.88 3792.06 6593.84 10286.45 5893.73 11673.22 18898.66 1197.69 9
新几何182.95 18993.96 5978.56 8980.24 28755.45 32483.93 22291.08 17571.19 22288.33 26265.84 25193.07 21281.95 332
112180.86 19779.81 21484.02 16493.93 6078.70 8781.64 22880.18 28855.43 32583.67 22491.15 17371.29 22191.41 19167.95 23893.06 21381.96 331
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 6180.97 6891.49 3993.48 6382.82 5892.60 5593.97 9388.19 3396.29 487.61 1598.20 3394.39 87
Skip Steuart: Steuart Systems R&D Blog.
test_part293.86 6277.77 9792.84 49
test_one_060193.85 6373.27 13994.11 3786.57 2793.47 4194.64 6088.42 27
xxxxxxxxxxxxxcwj89.04 6689.13 6488.79 7393.75 6477.44 10386.31 12895.27 1270.80 20892.28 6093.80 10386.89 5194.64 7885.52 4997.51 7694.30 90
save fliter93.75 6477.44 10386.31 12889.72 17770.80 208
bld_raw_dy_0_6484.85 12984.44 14486.07 12493.73 6674.93 12988.57 9381.90 27770.44 21291.28 8095.18 4256.62 30089.28 24985.15 5397.09 8893.99 101
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6685.72 3396.79 195.51 888.86 1495.63 896.99 884.81 7093.16 14291.10 197.53 7596.58 31
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6886.15 2393.37 1095.10 1490.28 992.11 6395.03 4689.75 2194.93 6979.95 11098.27 2795.04 65
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6389.08 6589.37 6393.64 6979.07 8388.54 9494.20 2873.53 16889.71 11094.82 5285.09 6795.77 3084.17 6598.03 4093.26 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RRT_MVS88.30 7487.83 8089.70 5493.62 7075.70 12592.36 2789.06 19077.34 12293.63 3695.83 2565.40 24995.90 1585.01 5798.23 2997.49 13
mvs_tets89.78 5289.27 6391.30 2893.51 7184.79 4189.89 6390.63 15270.00 22094.55 1596.67 1187.94 3993.59 12484.27 6495.97 13095.52 50
HQP_MVS87.75 8687.43 8888.70 7793.45 7276.42 12089.45 7693.61 5879.44 9786.55 17092.95 12274.84 18095.22 5980.78 10295.83 13894.46 83
plane_prior793.45 7277.31 107
WR-MVS83.56 16184.40 14781.06 22393.43 7454.88 31678.67 27185.02 25481.24 7590.74 8991.56 16472.85 20691.08 20068.00 23698.04 3897.23 18
DPE-MVScopyleft90.53 3591.08 3688.88 6993.38 7578.65 8889.15 8194.05 4084.68 3893.90 2594.11 8888.13 3696.30 384.51 6397.81 5591.70 197
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax89.41 5888.81 7291.19 3293.38 7584.72 4289.70 6590.29 16669.27 22494.39 1796.38 1586.02 6493.52 12883.96 6695.92 13595.34 54
PS-MVSNAJss88.31 7387.90 7989.56 6093.31 7777.96 9587.94 10191.97 11470.73 21094.19 2296.67 1176.94 16294.57 8283.07 7596.28 11896.15 34
test22293.31 7776.54 11679.38 25977.79 29952.59 33782.36 24190.84 18566.83 24191.69 24381.25 340
DU-MVS86.80 9586.99 9586.21 12093.24 7967.02 20283.16 19392.21 10781.73 7090.92 8591.97 15177.20 15693.99 10574.16 17598.35 2297.61 10
NR-MVSNet86.00 10886.22 10785.34 13893.24 7964.56 22082.21 22190.46 15580.99 7888.42 13791.97 15177.56 15293.85 11172.46 19898.65 1297.61 10
OurMVSNet-221017-090.01 4689.74 5590.83 3793.16 8180.37 7191.91 3593.11 7981.10 7795.32 1097.24 572.94 20594.85 7285.07 5497.78 5697.26 16
UniMVSNet (Re)86.87 9286.98 9686.55 10993.11 8268.48 19183.80 17292.87 9180.37 8489.61 11691.81 15877.72 15094.18 9775.00 17198.53 1696.99 24
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 8385.17 3692.47 2695.05 1587.65 2493.21 4394.39 7390.09 1895.08 6586.67 3397.60 6894.18 94
ACMH+77.89 1190.73 3091.50 2388.44 8393.00 8476.26 12289.65 6995.55 787.72 2393.89 2794.94 4891.62 493.44 13278.35 12898.76 495.61 49
APDe-MVS91.22 2491.92 1389.14 6792.97 8578.04 9292.84 1694.14 3583.33 5193.90 2595.73 2788.77 2696.41 187.60 1697.98 4592.98 144
114514_t83.10 17082.54 17584.77 14892.90 8669.10 18986.65 12390.62 15354.66 32881.46 25990.81 18676.98 16194.38 8972.62 19696.18 12290.82 216
testdata79.54 24792.87 8772.34 15480.14 28959.91 30385.47 19391.75 16067.96 23585.24 29968.57 23492.18 23581.06 345
CNVR-MVS87.81 8587.68 8388.21 8892.87 8777.30 10885.25 14191.23 13677.31 12487.07 15991.47 16682.94 8994.71 7584.67 6196.27 12092.62 160
SF-MVS90.27 3990.80 4588.68 7892.86 8977.09 11091.19 4295.74 581.38 7492.28 6093.80 10386.89 5194.64 7885.52 4997.51 7694.30 90
UniMVSNet_NR-MVSNet86.84 9487.06 9386.17 12292.86 8967.02 20282.55 20991.56 12583.08 5590.92 8591.82 15778.25 14693.99 10574.16 17598.35 2297.49 13
plane_prior192.83 91
原ACMM184.60 15292.81 9274.01 13491.50 12762.59 28082.73 23790.67 19176.53 16994.25 9269.24 22295.69 14685.55 288
plane_prior692.61 9376.54 11674.84 180
APD-MVScopyleft89.54 5689.63 5789.26 6592.57 9481.34 6690.19 5693.08 8280.87 8191.13 8193.19 11486.22 6195.97 1282.23 8697.18 8690.45 227
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_040288.65 7089.58 5985.88 12892.55 9572.22 15784.01 16389.44 18488.63 1894.38 1895.77 2686.38 6093.59 12479.84 11195.21 15991.82 194
SixPastTwentyTwo87.20 8987.45 8786.45 11192.52 9669.19 18787.84 10388.05 20681.66 7194.64 1496.53 1465.94 24694.75 7483.02 7796.83 9795.41 52
ACMH76.49 1489.34 6091.14 3483.96 16792.50 9770.36 17589.55 7193.84 5081.89 6994.70 1395.44 3590.69 988.31 26383.33 7398.30 2693.20 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet80.25 21281.68 18575.94 29592.46 9847.98 35476.70 29681.67 27973.45 16984.87 20192.82 12674.66 18586.51 28561.66 28196.85 9593.33 130
F-COLMAP84.97 12883.42 15989.63 5792.39 9983.40 5088.83 8791.92 11673.19 17880.18 27789.15 22277.04 16093.28 13765.82 25292.28 23192.21 181
test_djsdf89.62 5489.01 6691.45 2592.36 10082.98 5591.98 3290.08 17271.54 20094.28 2196.54 1381.57 11594.27 9086.26 3896.49 10997.09 21
TEST992.34 10179.70 7783.94 16590.32 16065.41 26884.49 20790.97 17982.03 10693.63 120
train_agg85.98 11085.28 12588.07 9092.34 10179.70 7783.94 16590.32 16065.79 25884.49 20790.97 17981.93 10893.63 12081.21 9596.54 10790.88 214
NCCC87.36 8786.87 9888.83 7092.32 10378.84 8686.58 12591.09 14078.77 10884.85 20290.89 18380.85 12395.29 5581.14 9695.32 15592.34 172
mvsmamba87.87 8187.23 9089.78 5392.31 10476.51 11991.09 4391.87 11772.61 18692.16 6295.23 4166.01 24595.59 3786.02 4697.78 5697.24 17
testtj89.51 5789.48 6089.59 5992.26 10580.80 6990.14 5793.54 6183.37 5090.57 9292.55 13684.99 6896.15 581.26 9496.61 10491.83 193
FC-MVSNet-test85.93 11187.05 9482.58 19892.25 10656.44 30585.75 13593.09 8177.33 12391.94 6994.65 5774.78 18293.41 13475.11 17098.58 1497.88 7
CDPH-MVS86.17 10785.54 12188.05 9192.25 10675.45 12683.85 16992.01 11265.91 25786.19 17791.75 16083.77 8194.98 6877.43 14596.71 10193.73 116
test111178.53 23178.85 22277.56 27692.22 10847.49 35682.61 20569.24 35072.43 18785.28 19494.20 8151.91 31590.07 23565.36 25596.45 11295.11 63
ZD-MVS92.22 10880.48 7091.85 11871.22 20590.38 9392.98 11986.06 6396.11 681.99 8896.75 100
pmmvs686.52 9988.06 7881.90 20792.22 10862.28 24884.66 14989.15 18883.54 4989.85 10697.32 488.08 3886.80 28070.43 21497.30 8396.62 29
EG-PatchMatch MVS84.08 15084.11 15183.98 16692.22 10872.61 14882.20 22387.02 22572.63 18588.86 12791.02 17778.52 14191.11 19973.41 18691.09 25088.21 258
test_892.09 11278.87 8583.82 17090.31 16265.79 25884.36 21090.96 18181.93 10893.44 132
Vis-MVSNetpermissive86.86 9386.58 10187.72 9392.09 11277.43 10587.35 10892.09 11078.87 10684.27 21794.05 8978.35 14593.65 11880.54 10691.58 24692.08 184
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet86.66 9786.82 10086.17 12292.05 11466.87 20491.21 4188.64 19586.30 3089.60 11792.59 13369.22 22894.91 7073.89 17997.89 5296.72 26
旧先验191.97 11571.77 16281.78 27891.84 15573.92 19193.65 20183.61 310
v7n90.13 4090.96 4187.65 9591.95 11671.06 17089.99 6093.05 8386.53 2894.29 1996.27 1782.69 9194.08 10386.25 4097.63 6597.82 8
NP-MVS91.95 11674.55 13190.17 204
ETH3D-3000-0.188.85 6988.96 6988.52 7991.94 11877.27 10988.71 9095.26 1376.08 13490.66 9192.69 13184.48 7393.83 11483.38 7297.48 7894.47 82
OMC-MVS88.19 7587.52 8690.19 4991.94 11881.68 6387.49 10793.17 7876.02 13788.64 13291.22 17084.24 7693.37 13577.97 13897.03 9095.52 50
OPU-MVS88.27 8791.89 12077.83 9690.47 5191.22 17081.12 12094.68 7674.48 17295.35 15392.29 176
FIs85.35 11886.27 10682.60 19791.86 12157.31 29885.10 14393.05 8375.83 14291.02 8493.97 9373.57 19592.91 15373.97 17898.02 4197.58 12
test250674.12 27673.39 27676.28 29291.85 12244.20 36684.06 16248.20 37872.30 19381.90 24994.20 8127.22 37989.77 24064.81 25896.02 12894.87 68
ECVR-MVScopyleft78.44 23278.63 22677.88 27291.85 12248.95 35083.68 17669.91 34872.30 19384.26 21894.20 8151.89 31689.82 23963.58 26596.02 12894.87 68
9.1489.29 6291.84 12488.80 8895.32 1175.14 15291.07 8292.89 12487.27 4693.78 11583.69 7097.55 71
MSLP-MVS++85.00 12786.03 11181.90 20791.84 12471.56 16886.75 12293.02 8775.95 14087.12 15589.39 21677.98 14789.40 24877.46 14394.78 17584.75 297
h-mvs3384.25 14482.76 16988.72 7591.82 12682.60 5884.00 16484.98 25671.27 20286.70 16690.55 19463.04 26293.92 10978.26 13194.20 19089.63 237
DP-MVS Recon84.05 15183.22 16286.52 11091.73 12775.27 12783.23 19192.40 10372.04 19782.04 24788.33 23377.91 14993.95 10866.17 24795.12 16490.34 229
SD-MVS88.96 6789.88 5386.22 11891.63 12877.07 11189.82 6493.77 5178.90 10592.88 4692.29 14586.11 6290.22 22686.24 4197.24 8491.36 205
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
AllTest87.97 8087.40 8989.68 5591.59 12983.40 5089.50 7495.44 979.47 9588.00 14493.03 11782.66 9291.47 18670.81 20696.14 12494.16 95
TestCases89.68 5591.59 12983.40 5095.44 979.47 9588.00 14493.03 11782.66 9291.47 18670.81 20696.14 12494.16 95
MCST-MVS84.36 13983.93 15585.63 13391.59 12971.58 16783.52 17992.13 10961.82 28683.96 22189.75 21179.93 13593.46 13178.33 12994.34 18691.87 192
agg_prior185.72 11385.20 12687.28 9991.58 13277.69 9883.69 17590.30 16366.29 25584.32 21191.07 17682.13 10293.18 14081.02 9796.36 11590.98 210
agg_prior91.58 13277.69 9890.30 16384.32 21193.18 140
PVSNet_Blended_VisFu81.55 18980.49 20184.70 15191.58 13273.24 14084.21 15791.67 12462.86 27980.94 26487.16 25467.27 23892.87 15469.82 21888.94 28287.99 262
DVP-MVS++90.07 4291.09 3587.00 10191.55 13572.64 14596.19 294.10 3885.33 3293.49 3994.64 6081.12 12095.88 1787.41 2195.94 13392.48 165
MSC_two_6792asdad88.81 7191.55 13577.99 9391.01 14296.05 887.45 1998.17 3492.40 169
No_MVS88.81 7191.55 13577.99 9391.01 14296.05 887.45 1998.17 3492.40 169
EPP-MVSNet85.47 11685.04 12986.77 10691.52 13869.37 18191.63 3887.98 20981.51 7387.05 16091.83 15666.18 24495.29 5570.75 20996.89 9395.64 47
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4391.48 13984.90 3983.41 18492.38 10570.25 21789.35 12290.68 19082.85 9094.57 8279.55 11695.95 13292.00 187
Baseline_NR-MVSNet84.00 15385.90 11378.29 26591.47 14053.44 32482.29 21787.00 22879.06 10389.55 11895.72 2977.20 15686.14 29172.30 19998.51 1795.28 57
HyFIR lowres test75.12 26572.66 28482.50 20191.44 14165.19 21572.47 32887.31 21546.79 35880.29 27484.30 29952.70 31492.10 17351.88 33786.73 30490.22 230
DP-MVS88.60 7189.01 6687.36 9891.30 14277.50 10187.55 10592.97 8987.95 2289.62 11492.87 12584.56 7193.89 11077.65 14096.62 10390.70 219
DeepC-MVS_fast80.27 886.23 10485.65 12087.96 9291.30 14276.92 11287.19 11091.99 11370.56 21184.96 19890.69 18980.01 13395.14 6278.37 12795.78 14391.82 194
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+83.92 289.97 4989.66 5690.92 3691.27 14481.66 6491.25 4094.13 3688.89 1388.83 12994.26 7877.55 15395.86 2284.88 5895.87 13795.24 59
ETH3D cwj APD-0.1687.83 8487.62 8588.47 8191.21 14578.20 9087.26 10994.54 2072.05 19688.89 12692.31 14483.86 7894.24 9381.59 9396.87 9492.97 147
HQP-NCC91.19 14684.77 14573.30 17480.55 271
ACMP_Plane91.19 14684.77 14573.30 17480.55 271
HQP-MVS84.61 13384.06 15286.27 11691.19 14670.66 17284.77 14592.68 9873.30 17480.55 27190.17 20472.10 21394.61 8077.30 14694.47 18393.56 126
VDD-MVS84.23 14684.58 14183.20 18491.17 14965.16 21683.25 18984.97 25779.79 9187.18 15494.27 7574.77 18390.89 20769.24 22296.54 10793.55 128
K. test v385.14 12184.73 13486.37 11291.13 15069.63 18085.45 13976.68 30684.06 4292.44 5896.99 862.03 26694.65 7780.58 10593.24 20894.83 74
lessismore_v085.95 12591.10 15170.99 17170.91 34491.79 7094.42 6961.76 26792.93 15179.52 11993.03 21493.93 105
hse-mvs283.47 16481.81 18488.47 8191.03 15282.27 5982.61 20583.69 26271.27 20286.70 16686.05 27063.04 26292.41 16278.26 13193.62 20390.71 218
TransMVSNet (Re)84.02 15285.74 11778.85 25391.00 15355.20 31582.29 21787.26 21679.65 9488.38 13995.52 3483.00 8886.88 27867.97 23796.60 10594.45 85
AUN-MVS81.18 19378.78 22388.39 8490.93 15482.14 6082.51 21183.67 26364.69 27280.29 27485.91 27351.07 31992.38 16376.29 15793.63 20290.65 222
PAPM_NR83.23 16783.19 16483.33 18090.90 15565.98 21088.19 9790.78 14878.13 11680.87 26687.92 24173.49 19892.42 16170.07 21688.40 28691.60 200
CSCG86.26 10386.47 10285.60 13490.87 15674.26 13387.98 9991.85 11880.35 8589.54 12088.01 23779.09 13892.13 17075.51 16495.06 16690.41 228
PLCcopyleft73.85 1682.09 18280.31 20387.45 9790.86 15780.29 7285.88 13390.65 15168.17 23776.32 30486.33 26473.12 20492.61 15961.40 28390.02 27189.44 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETH3 D test640085.09 12384.87 13285.75 13190.80 15869.34 18285.90 13293.31 7065.43 26486.11 18089.95 20680.92 12294.86 7175.90 16195.57 14893.05 141
test1286.57 10890.74 15972.63 14790.69 15082.76 23679.20 13794.80 7395.32 15592.27 178
ITE_SJBPF90.11 5090.72 16084.97 3890.30 16381.56 7290.02 10091.20 17282.40 9690.81 21073.58 18494.66 17994.56 78
DPM-MVS80.10 21779.18 21982.88 19390.71 16169.74 17778.87 26890.84 14660.29 30175.64 31385.92 27267.28 23793.11 14571.24 20491.79 24185.77 287
TAMVS78.08 23676.36 24983.23 18290.62 16272.87 14179.08 26580.01 29061.72 28881.35 26186.92 25863.96 25588.78 25750.61 33893.01 21588.04 261
test_prior386.31 10286.31 10586.32 11390.59 16371.99 16083.37 18592.85 9275.43 14784.58 20591.57 16281.92 11094.17 9979.54 11796.97 9192.80 150
test_prior86.32 11390.59 16371.99 16092.85 9294.17 9992.80 150
ambc82.98 18890.55 16564.86 21788.20 9689.15 18889.40 12193.96 9671.67 22091.38 19378.83 12496.55 10692.71 156
Anonymous2023121188.40 7289.62 5884.73 14990.46 16665.27 21488.86 8693.02 8787.15 2593.05 4497.10 682.28 10092.02 17476.70 15197.99 4396.88 25
Test_1112_low_res73.90 27873.08 27976.35 29090.35 16755.95 30673.40 32586.17 23550.70 35173.14 32685.94 27158.31 28985.90 29456.51 30783.22 33287.20 272
VPA-MVSNet83.47 16484.73 13479.69 24490.29 16857.52 29781.30 23588.69 19476.29 13187.58 15094.44 6680.60 12787.20 27366.60 24596.82 9894.34 89
FMVSNet184.55 13585.45 12381.85 20990.27 16961.05 26086.83 11888.27 20378.57 11189.66 11395.64 3175.43 17390.68 21469.09 22695.33 15493.82 111
Anonymous2024052986.20 10687.13 9183.42 17990.19 17064.55 22184.55 15190.71 14985.85 3189.94 10495.24 4082.13 10290.40 22169.19 22596.40 11495.31 56
MVS_111021_HR84.63 13284.34 14985.49 13790.18 17175.86 12479.23 26487.13 22073.35 17185.56 19189.34 21783.60 8390.50 21976.64 15294.05 19390.09 235
GeoE85.45 11785.81 11584.37 15590.08 17267.07 20185.86 13491.39 13272.33 19287.59 14990.25 20084.85 6992.37 16478.00 13691.94 24093.66 119
RPSCF88.00 7986.93 9791.22 3190.08 17289.30 589.68 6791.11 13979.26 10089.68 11194.81 5582.44 9487.74 26776.54 15488.74 28596.61 30
nrg03087.85 8388.49 7485.91 12690.07 17469.73 17887.86 10294.20 2874.04 16292.70 5494.66 5685.88 6591.50 18579.72 11497.32 8296.50 32
AdaColmapbinary83.66 15983.69 15883.57 17790.05 17572.26 15686.29 13090.00 17478.19 11581.65 25687.16 25483.40 8594.24 9361.69 28094.76 17884.21 302
pm-mvs183.69 15884.95 13179.91 24090.04 17659.66 27682.43 21387.44 21375.52 14687.85 14695.26 3981.25 11985.65 29768.74 23096.04 12794.42 86
CHOSEN 1792x268872.45 28870.56 29878.13 26790.02 17763.08 23468.72 34183.16 26542.99 36775.92 30985.46 27957.22 29885.18 30149.87 34281.67 34086.14 282
anonymousdsp89.73 5388.88 7092.27 989.82 17886.67 1790.51 5090.20 16969.87 22195.06 1196.14 2184.28 7593.07 14787.68 1396.34 11697.09 21
1112_ss74.82 27073.74 27178.04 26989.57 17960.04 27276.49 29987.09 22454.31 32973.66 32579.80 34160.25 27586.76 28358.37 29784.15 32887.32 271
CS-MVS88.14 7687.67 8489.54 6189.56 18079.18 8290.47 5194.77 1879.37 9984.32 21189.33 21883.87 7794.53 8582.45 8294.89 17294.90 66
CS-MVS-test87.00 9186.43 10388.71 7689.46 18177.46 10289.42 7895.73 677.87 11781.64 25787.25 25282.43 9594.53 8577.65 14096.46 11194.14 97
PCF-MVS74.62 1582.15 18180.92 19785.84 12989.43 18272.30 15580.53 24391.82 12057.36 31787.81 14789.92 20877.67 15193.63 12058.69 29695.08 16591.58 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVP-Stereo75.81 26073.51 27582.71 19589.35 18373.62 13580.06 24785.20 24860.30 30073.96 32387.94 23957.89 29489.45 24652.02 33374.87 36185.06 294
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA83.55 16283.10 16684.90 14489.34 18483.87 4884.54 15388.77 19279.09 10283.54 22888.66 23074.87 17981.73 32166.84 24392.29 23089.11 247
DROMVSNet88.01 7888.32 7687.09 10089.28 18572.03 15990.31 5496.31 380.88 8085.12 19689.67 21284.47 7495.46 4982.56 8196.26 12193.77 115
TSAR-MVS + GP.83.95 15482.69 17187.72 9389.27 18681.45 6583.72 17481.58 28074.73 15585.66 18886.06 26972.56 21192.69 15775.44 16695.21 15989.01 253
MVS_111021_LR84.28 14383.76 15785.83 13089.23 18783.07 5380.99 23983.56 26472.71 18486.07 18189.07 22481.75 11486.19 29077.11 14893.36 20488.24 257
LFMVS80.15 21680.56 19978.89 25289.19 18855.93 30785.22 14273.78 32682.96 5684.28 21692.72 13057.38 29690.07 23563.80 26495.75 14490.68 220
CLD-MVS83.18 16882.64 17284.79 14689.05 18967.82 19877.93 27992.52 10168.33 23585.07 19781.54 32782.06 10492.96 14969.35 22197.91 5193.57 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D90.60 3390.34 5091.38 2789.03 19084.23 4793.58 694.68 1990.65 790.33 9593.95 9984.50 7295.37 5380.87 10095.50 15094.53 81
CDS-MVSNet77.32 24375.40 25883.06 18689.00 19172.48 15277.90 28082.17 27460.81 29678.94 28783.49 30659.30 28288.76 25854.64 32292.37 22787.93 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051781.07 19479.58 21585.52 13588.99 19266.45 20787.03 11475.51 31473.76 16688.32 14190.20 20137.96 36494.16 10279.36 12195.13 16295.93 43
tfpnnormal81.79 18782.95 16778.31 26388.93 19355.40 31180.83 24282.85 26976.81 12885.90 18694.14 8674.58 18686.51 28566.82 24495.68 14793.01 143
test_part187.15 9087.82 8185.15 14188.88 19463.04 23587.98 9994.85 1682.52 6193.61 3895.73 2767.51 23695.71 3280.48 10798.83 296.69 27
Vis-MVSNet (Re-imp)77.82 23877.79 23577.92 27188.82 19551.29 34183.28 18771.97 33874.04 16282.23 24389.78 21057.38 29689.41 24757.22 30495.41 15193.05 141
TAPA-MVS77.73 1285.71 11484.83 13388.37 8588.78 19679.72 7687.15 11293.50 6269.17 22585.80 18789.56 21380.76 12492.13 17073.21 19395.51 14993.25 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FPMVS72.29 29172.00 29073.14 30888.63 19785.00 3774.65 31767.39 35271.94 19977.80 29687.66 24450.48 32275.83 34049.95 34079.51 34758.58 370
dcpmvs_284.23 14685.14 12781.50 21588.61 19861.98 25182.90 20093.11 7968.66 23392.77 5292.39 13978.50 14287.63 26976.99 15092.30 22894.90 66
ETV-MVS84.31 14183.91 15685.52 13588.58 19970.40 17484.50 15593.37 6478.76 10984.07 22078.72 34680.39 12995.13 6373.82 18192.98 21691.04 209
BH-untuned80.96 19680.99 19580.84 22788.55 20068.23 19280.33 24688.46 19672.79 18386.55 17086.76 25974.72 18491.77 18261.79 27988.99 28082.52 326
Anonymous20240521180.51 20481.19 19478.49 26088.48 20157.26 29976.63 29782.49 27181.21 7684.30 21592.24 14867.99 23486.24 28962.22 27495.13 16291.98 190
ab-mvs79.67 21980.56 19976.99 28188.48 20156.93 30184.70 14886.06 23668.95 22980.78 26793.08 11675.30 17584.62 30556.78 30590.90 25989.43 241
PHI-MVS86.38 10185.81 11588.08 8988.44 20377.34 10689.35 7993.05 8373.15 17984.76 20387.70 24378.87 14094.18 9780.67 10496.29 11792.73 153
xiu_mvs_v1_base_debu80.84 19880.14 20982.93 19088.31 20471.73 16379.53 25587.17 21765.43 26479.59 27982.73 31776.94 16290.14 23173.22 18888.33 28786.90 276
xiu_mvs_v1_base80.84 19880.14 20982.93 19088.31 20471.73 16379.53 25587.17 21765.43 26479.59 27982.73 31776.94 16290.14 23173.22 18888.33 28786.90 276
xiu_mvs_v1_base_debi80.84 19880.14 20982.93 19088.31 20471.73 16379.53 25587.17 21765.43 26479.59 27982.73 31776.94 16290.14 23173.22 18888.33 28786.90 276
MG-MVS80.32 21180.94 19678.47 26188.18 20752.62 33182.29 21785.01 25572.01 19879.24 28592.54 13769.36 22793.36 13670.65 21189.19 27989.45 239
PM-MVS80.20 21479.00 22083.78 17188.17 20886.66 1881.31 23366.81 35869.64 22288.33 14090.19 20264.58 25083.63 31371.99 20290.03 27081.06 345
v1086.54 9887.10 9284.84 14588.16 20963.28 23286.64 12492.20 10875.42 14992.81 5194.50 6374.05 19094.06 10483.88 6796.28 11897.17 20
canonicalmvs85.50 11586.14 10983.58 17687.97 21067.13 20087.55 10594.32 2273.44 17088.47 13687.54 24686.45 5891.06 20175.76 16393.76 19792.54 163
EIA-MVS82.19 18081.23 19385.10 14287.95 21169.17 18883.22 19293.33 6770.42 21378.58 28979.77 34377.29 15594.20 9671.51 20388.96 28191.93 191
VNet79.31 22080.27 20476.44 28987.92 21253.95 32075.58 30984.35 26174.39 16082.23 24390.72 18872.84 20784.39 30760.38 29093.98 19490.97 211
v886.22 10586.83 9984.36 15787.82 21362.35 24786.42 12791.33 13376.78 12992.73 5394.48 6573.41 19993.72 11783.10 7495.41 15197.01 23
alignmvs83.94 15583.98 15483.80 16987.80 21467.88 19784.54 15391.42 13173.27 17788.41 13887.96 23872.33 21290.83 20976.02 16094.11 19192.69 157
v119284.57 13484.69 13884.21 16187.75 21562.88 23783.02 19691.43 12969.08 22789.98 10390.89 18372.70 20993.62 12382.41 8394.97 16996.13 35
PatchMatch-RL74.48 27373.22 27878.27 26687.70 21685.26 3575.92 30570.09 34664.34 27376.09 30781.25 32965.87 24778.07 33353.86 32483.82 32971.48 359
v114484.54 13784.72 13684.00 16587.67 21762.55 24382.97 19790.93 14570.32 21689.80 10890.99 17873.50 19693.48 13081.69 9294.65 18095.97 40
v124084.30 14284.51 14383.65 17487.65 21861.26 25782.85 20191.54 12667.94 24290.68 9090.65 19271.71 21993.64 11982.84 7994.78 17596.07 37
v192192084.23 14684.37 14883.79 17087.64 21961.71 25282.91 19991.20 13767.94 24290.06 9890.34 19772.04 21693.59 12482.32 8594.91 17096.07 37
v14419284.24 14584.41 14683.71 17387.59 22061.57 25382.95 19891.03 14167.82 24589.80 10890.49 19573.28 20293.51 12981.88 9194.89 17296.04 39
Fast-Effi-MVS+81.04 19580.57 19882.46 20287.50 22163.22 23378.37 27589.63 18068.01 23981.87 25082.08 32282.31 9792.65 15867.10 24088.30 29191.51 203
pmmvs-eth3d78.42 23377.04 24382.57 20087.44 22274.41 13280.86 24179.67 29155.68 32384.69 20490.31 19960.91 27085.42 29862.20 27591.59 24587.88 265
IterMVS-LS84.73 13184.98 13083.96 16787.35 22363.66 22783.25 18989.88 17676.06 13589.62 11492.37 14373.40 20192.52 16078.16 13394.77 17795.69 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres100view90075.45 26175.05 26176.66 28887.27 22451.88 33681.07 23873.26 33075.68 14483.25 23086.37 26345.54 34088.80 25451.98 33490.99 25489.31 243
MIMVSNet71.09 29871.59 29369.57 32387.23 22550.07 34878.91 26671.83 33960.20 30271.26 33491.76 15955.08 31076.09 33841.06 36487.02 30382.54 325
Effi-MVS+83.90 15684.01 15383.57 17787.22 22665.61 21386.55 12692.40 10378.64 11081.34 26284.18 30083.65 8292.93 15174.22 17487.87 29592.17 183
BH-RMVSNet80.53 20380.22 20781.49 21687.19 22766.21 20977.79 28286.23 23474.21 16183.69 22388.50 23173.25 20390.75 21163.18 27087.90 29487.52 268
thisisatest053079.07 22177.33 24084.26 16087.13 22864.58 21983.66 17775.95 30968.86 23085.22 19587.36 25038.10 36293.57 12775.47 16594.28 18894.62 76
Effi-MVS+-dtu85.82 11283.38 16093.14 387.13 22891.15 287.70 10488.42 19774.57 15783.56 22785.65 27478.49 14394.21 9572.04 20092.88 21894.05 100
mvs-test184.55 13582.12 17991.84 2087.13 22889.54 485.05 14488.42 19774.57 15780.60 26882.98 31078.49 14393.98 10772.04 20089.77 27292.00 187
v2v48284.09 14984.24 15083.62 17587.13 22861.40 25482.71 20489.71 17872.19 19589.55 11891.41 16770.70 22493.20 13981.02 9793.76 19796.25 33
jason77.42 24275.75 25582.43 20387.10 23269.27 18377.99 27881.94 27651.47 34677.84 29485.07 28960.32 27489.00 25170.74 21089.27 27889.03 251
jason: jason.
PS-MVSNAJ77.04 24676.53 24878.56 25887.09 23361.40 25475.26 31287.13 22061.25 29174.38 32277.22 35476.94 16290.94 20364.63 26184.83 32483.35 315
xiu_mvs_v2_base77.19 24476.75 24678.52 25987.01 23461.30 25675.55 31087.12 22361.24 29274.45 32078.79 34577.20 15690.93 20464.62 26284.80 32583.32 316
thres600view775.97 25875.35 26077.85 27487.01 23451.84 33780.45 24473.26 33075.20 15183.10 23386.31 26645.54 34089.05 25055.03 31992.24 23292.66 158
CL-MVSNet_self_test76.81 24977.38 23875.12 29986.90 23651.34 33973.20 32680.63 28668.30 23681.80 25488.40 23266.92 24080.90 32455.35 31694.90 17193.12 139
BH-w/o76.57 25276.07 25378.10 26886.88 23765.92 21177.63 28486.33 23165.69 26280.89 26579.95 34068.97 23190.74 21253.01 33085.25 31777.62 351
MAR-MVS80.24 21378.74 22584.73 14986.87 23878.18 9185.75 13587.81 21165.67 26377.84 29478.50 34773.79 19390.53 21861.59 28290.87 26085.49 290
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
QAPM82.59 17482.59 17482.58 19886.44 23966.69 20589.94 6290.36 15967.97 24184.94 20092.58 13572.71 20892.18 16970.63 21287.73 29788.85 254
PAPM71.77 29470.06 30476.92 28386.39 24053.97 31976.62 29886.62 22953.44 33363.97 36184.73 29557.79 29592.34 16539.65 36681.33 34384.45 299
GBi-Net82.02 18382.07 18081.85 20986.38 24161.05 26086.83 11888.27 20372.43 18786.00 18295.64 3163.78 25690.68 21465.95 24893.34 20593.82 111
test182.02 18382.07 18081.85 20986.38 24161.05 26086.83 11888.27 20372.43 18786.00 18295.64 3163.78 25690.68 21465.95 24893.34 20593.82 111
FMVSNet281.31 19181.61 18780.41 23486.38 24158.75 29083.93 16786.58 23072.43 18787.65 14892.98 11963.78 25690.22 22666.86 24193.92 19592.27 178
3Dnovator80.37 784.80 13084.71 13785.06 14386.36 24474.71 13088.77 8990.00 17475.65 14584.96 19893.17 11574.06 18991.19 19678.28 13091.09 25089.29 245
Anonymous2023120671.38 29771.88 29169.88 32086.31 24554.37 31770.39 33674.62 31752.57 33876.73 30088.76 22759.94 27772.06 34744.35 35993.23 20983.23 318
baseline85.20 12085.93 11283.02 18786.30 24662.37 24684.55 15193.96 4374.48 15987.12 15592.03 15082.30 9891.94 17578.39 12694.21 18994.74 75
iter_conf_final80.36 20978.88 22184.79 14686.29 24766.36 20886.95 11586.25 23368.16 23882.09 24689.48 21436.59 36794.51 8779.83 11294.30 18793.50 129
API-MVS82.28 17882.61 17381.30 21786.29 24769.79 17688.71 9087.67 21278.42 11382.15 24584.15 30177.98 14791.59 18465.39 25492.75 22082.51 327
tfpn200view974.86 26974.23 26876.74 28786.24 24952.12 33379.24 26273.87 32473.34 17281.82 25284.60 29746.02 33488.80 25451.98 33490.99 25489.31 243
thres40075.14 26374.23 26877.86 27386.24 24952.12 33379.24 26273.87 32473.34 17281.82 25284.60 29746.02 33488.80 25451.98 33490.99 25492.66 158
UGNet82.78 17181.64 18686.21 12086.20 25176.24 12386.86 11685.68 24177.07 12673.76 32492.82 12669.64 22591.82 18169.04 22793.69 20090.56 224
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet83.79 15782.85 16886.63 10786.17 25272.21 15883.76 17391.43 12977.24 12574.39 32187.45 24875.36 17495.42 5177.03 14992.83 21992.25 180
casdiffmvs85.21 11985.85 11483.31 18186.17 25262.77 23983.03 19593.93 4474.69 15688.21 14292.68 13282.29 9991.89 17877.87 13993.75 19995.27 58
TR-MVS76.77 25075.79 25479.72 24386.10 25465.79 21277.14 29083.02 26765.20 26981.40 26082.10 32166.30 24290.73 21355.57 31385.27 31682.65 322
LCM-MVSNet-Re83.48 16385.06 12878.75 25585.94 25555.75 31080.05 24894.27 2376.47 13096.09 594.54 6283.31 8689.75 24259.95 29194.89 17290.75 217
Fast-Effi-MVS+-dtu82.54 17581.41 19085.90 12785.60 25676.53 11883.07 19489.62 18173.02 18179.11 28683.51 30580.74 12590.24 22568.76 22989.29 27690.94 212
v14882.31 17782.48 17681.81 21285.59 25759.66 27681.47 23186.02 23772.85 18288.05 14390.65 19270.73 22390.91 20675.15 16991.79 24194.87 68
MVSFormer82.23 17981.57 18984.19 16385.54 25869.26 18491.98 3290.08 17271.54 20076.23 30585.07 28958.69 28794.27 9086.26 3888.77 28389.03 251
lupinMVS76.37 25674.46 26682.09 20485.54 25869.26 18476.79 29480.77 28550.68 35276.23 30582.82 31558.69 28788.94 25269.85 21788.77 28388.07 259
TinyColmap81.25 19282.34 17877.99 27085.33 26060.68 26882.32 21688.33 20171.26 20486.97 16192.22 14977.10 15986.98 27762.37 27395.17 16186.31 281
PAPR78.84 22578.10 23381.07 22285.17 26160.22 27182.21 22190.57 15462.51 28175.32 31684.61 29674.99 17892.30 16759.48 29488.04 29390.68 220
pmmvs474.92 26872.98 28180.73 22984.95 26271.71 16676.23 30377.59 30052.83 33677.73 29786.38 26256.35 30384.97 30257.72 30387.05 30285.51 289
baseline173.26 28173.54 27472.43 31384.92 26347.79 35579.89 25174.00 32265.93 25678.81 28886.28 26756.36 30281.63 32256.63 30679.04 35287.87 266
Patchmatch-RL test74.48 27373.68 27276.89 28584.83 26466.54 20672.29 32969.16 35157.70 31386.76 16486.33 26445.79 33982.59 31669.63 21990.65 26781.54 336
patch_mono-278.89 22379.39 21777.41 27984.78 26568.11 19475.60 30783.11 26660.96 29579.36 28289.89 20975.18 17672.97 34573.32 18792.30 22891.15 207
KD-MVS_self_test81.93 18683.14 16578.30 26484.75 26652.75 32880.37 24589.42 18570.24 21890.26 9693.39 11274.55 18786.77 28168.61 23296.64 10295.38 53
XXY-MVS74.44 27576.19 25169.21 32484.61 26752.43 33271.70 33177.18 30260.73 29880.60 26890.96 18175.44 17269.35 35356.13 30988.33 28785.86 286
cascas76.29 25774.81 26280.72 23084.47 26862.94 23673.89 32187.34 21455.94 32275.16 31876.53 35763.97 25491.16 19765.00 25690.97 25788.06 260
PVSNet_BlendedMVS78.80 22777.84 23481.65 21484.43 26963.41 22979.49 25890.44 15661.70 28975.43 31487.07 25769.11 22991.44 18860.68 28892.24 23290.11 234
PVSNet_Blended76.49 25475.40 25879.76 24284.43 26963.41 22975.14 31390.44 15657.36 31775.43 31478.30 34869.11 22991.44 18860.68 28887.70 29884.42 300
OpenMVScopyleft76.72 1381.98 18582.00 18281.93 20684.42 27168.22 19388.50 9589.48 18366.92 25081.80 25491.86 15372.59 21090.16 22871.19 20591.25 24987.40 270
OpenMVS_ROBcopyleft70.19 1777.77 24077.46 23678.71 25684.39 27261.15 25881.18 23782.52 27062.45 28383.34 22987.37 24966.20 24388.66 25964.69 26085.02 31986.32 280
test_yl78.71 22978.51 22879.32 24984.32 27358.84 28778.38 27385.33 24575.99 13882.49 23886.57 26058.01 29090.02 23762.74 27192.73 22189.10 248
DCV-MVSNet78.71 22978.51 22879.32 24984.32 27358.84 28778.38 27385.33 24575.99 13882.49 23886.57 26058.01 29090.02 23762.74 27192.73 22189.10 248
Regformer-385.06 12484.67 13986.22 11884.27 27573.43 13784.07 16085.26 24780.77 8288.62 13385.48 27780.56 12890.39 22281.99 8891.04 25294.85 72
Regformer-486.41 10085.71 11888.52 7984.27 27577.57 10084.07 16088.00 20882.82 5889.84 10785.48 27782.06 10492.77 15583.83 6991.04 25295.22 62
DELS-MVS81.44 19081.25 19182.03 20584.27 27562.87 23876.47 30092.49 10270.97 20781.64 25783.83 30275.03 17792.70 15674.29 17392.22 23490.51 226
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Gipumacopyleft84.44 13886.33 10478.78 25484.20 27873.57 13689.55 7190.44 15684.24 3984.38 20994.89 4976.35 17180.40 32776.14 15896.80 9982.36 328
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Regformer-186.00 10885.50 12287.49 9684.18 27976.90 11383.52 17987.94 21082.18 6589.19 12385.07 28982.28 10091.89 17882.40 8492.72 22393.69 118
Regformer-286.74 9686.08 11088.73 7484.18 27979.20 8183.52 17989.33 18683.33 5189.92 10585.07 28983.23 8793.16 14283.39 7192.72 22393.83 109
MVS_030478.17 23477.23 24180.99 22684.13 28169.07 19081.39 23280.81 28476.28 13267.53 34989.11 22362.87 26486.77 28160.90 28792.01 23987.13 273
EI-MVSNet-Vis-set85.12 12284.53 14286.88 10384.01 28272.76 14283.91 16885.18 24980.44 8388.75 13085.49 27680.08 13291.92 17682.02 8790.85 26195.97 40
IterMVS-SCA-FT80.64 20279.41 21684.34 15883.93 28369.66 17976.28 30281.09 28272.43 18786.47 17690.19 20260.46 27293.15 14477.45 14486.39 30890.22 230
MSDG80.06 21879.99 21380.25 23683.91 28468.04 19677.51 28789.19 18777.65 11981.94 24883.45 30776.37 17086.31 28863.31 26986.59 30586.41 279
EI-MVSNet-UG-set85.04 12584.44 14486.85 10483.87 28572.52 15183.82 17085.15 25080.27 8788.75 13085.45 28079.95 13491.90 17781.92 9090.80 26296.13 35
thres20072.34 29071.55 29574.70 30283.48 28651.60 33875.02 31473.71 32770.14 21978.56 29080.57 33446.20 33288.20 26446.99 35389.29 27684.32 301
USDC76.63 25176.73 24776.34 29183.46 28757.20 30080.02 24988.04 20752.14 34283.65 22591.25 16963.24 25986.65 28454.66 32194.11 19185.17 292
HY-MVS64.64 1873.03 28472.47 28874.71 30183.36 28854.19 31882.14 22481.96 27556.76 32169.57 34186.21 26860.03 27684.83 30449.58 34382.65 33785.11 293
EI-MVSNet82.61 17382.42 17783.20 18483.25 28963.66 22783.50 18285.07 25176.06 13586.55 17085.10 28673.41 19990.25 22378.15 13590.67 26595.68 46
CVMVSNet72.62 28771.41 29676.28 29283.25 28960.34 27083.50 18279.02 29537.77 37176.33 30385.10 28649.60 32487.41 27170.54 21377.54 35781.08 343
V4283.47 16483.37 16183.75 17283.16 29163.33 23181.31 23390.23 16869.51 22390.91 8790.81 18674.16 18892.29 16880.06 10890.22 26995.62 48
Anonymous2024052180.18 21581.25 19176.95 28283.15 29260.84 26582.46 21285.99 23868.76 23186.78 16393.73 10859.13 28477.44 33473.71 18297.55 7192.56 161
EU-MVSNet75.12 26574.43 26777.18 28083.11 29359.48 27885.71 13782.43 27239.76 37085.64 18988.76 22744.71 35087.88 26673.86 18085.88 31284.16 303
ET-MVSNet_ETH3D75.28 26272.77 28282.81 19483.03 29468.11 19477.09 29176.51 30760.67 29977.60 29880.52 33538.04 36391.15 19870.78 20890.68 26489.17 246
iter_conf0578.81 22677.35 23983.21 18382.98 29560.75 26784.09 15988.34 20063.12 27784.25 21989.48 21431.41 37294.51 8776.64 15295.83 13894.38 88
FMVSNet378.80 22778.55 22779.57 24682.89 29656.89 30381.76 22585.77 24069.04 22886.00 18290.44 19651.75 31790.09 23465.95 24893.34 20591.72 196
MVS_Test82.47 17683.22 16280.22 23782.62 29757.75 29682.54 21091.96 11571.16 20682.89 23592.52 13877.41 15490.50 21980.04 10987.84 29692.40 169
LF4IMVS82.75 17281.93 18385.19 13982.08 29880.15 7385.53 13888.76 19368.01 23985.58 19087.75 24271.80 21886.85 27974.02 17793.87 19688.58 256
PVSNet58.17 2166.41 32165.63 32568.75 32781.96 29949.88 34962.19 35872.51 33551.03 34868.04 34575.34 36050.84 32074.77 34245.82 35782.96 33381.60 335
GA-MVS75.83 25974.61 26379.48 24881.87 30059.25 28073.42 32482.88 26868.68 23279.75 27881.80 32450.62 32189.46 24566.85 24285.64 31389.72 236
MS-PatchMatch70.93 29970.22 30273.06 30981.85 30162.50 24473.82 32277.90 29852.44 33975.92 30981.27 32855.67 30681.75 32055.37 31577.70 35574.94 355
SCA73.32 28072.57 28675.58 29781.62 30255.86 30878.89 26771.37 34361.73 28774.93 31983.42 30860.46 27287.01 27458.11 30182.63 33983.88 304
FMVSNet572.10 29271.69 29273.32 30681.57 30353.02 32776.77 29578.37 29763.31 27576.37 30291.85 15436.68 36678.98 33047.87 35092.45 22687.95 263
thisisatest051573.00 28570.52 29980.46 23381.45 30459.90 27473.16 32774.31 32157.86 31276.08 30877.78 34937.60 36592.12 17265.00 25691.45 24789.35 242
eth_miper_zixun_eth80.84 19880.22 20782.71 19581.41 30560.98 26377.81 28190.14 17167.31 24886.95 16287.24 25364.26 25292.31 16675.23 16891.61 24494.85 72
CANet_DTU77.81 23977.05 24280.09 23981.37 30659.90 27483.26 18888.29 20269.16 22667.83 34783.72 30360.93 26989.47 24469.22 22489.70 27390.88 214
ANet_high83.17 16985.68 11975.65 29681.24 30745.26 36379.94 25092.91 9083.83 4391.33 7896.88 1080.25 13185.92 29368.89 22895.89 13695.76 44
new-patchmatchnet70.10 30473.37 27760.29 35081.23 30816.95 38059.54 36074.62 31762.93 27880.97 26387.93 24062.83 26571.90 34855.24 31795.01 16892.00 187
test20.0373.75 27974.59 26571.22 31781.11 30951.12 34370.15 33772.10 33770.42 21380.28 27691.50 16564.21 25374.72 34446.96 35494.58 18187.82 267
MVS73.21 28372.59 28575.06 30080.97 31060.81 26681.64 22885.92 23946.03 36171.68 33377.54 35068.47 23289.77 24055.70 31285.39 31474.60 356
N_pmnet70.20 30268.80 31174.38 30380.91 31184.81 4059.12 36276.45 30855.06 32675.31 31782.36 32055.74 30554.82 37147.02 35287.24 30183.52 311
IterMVS76.91 24776.34 25078.64 25780.91 31164.03 22576.30 30179.03 29464.88 27183.11 23289.16 22159.90 27884.46 30668.61 23285.15 31887.42 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l81.64 18881.59 18881.79 21380.86 31359.15 28378.61 27290.18 17068.36 23487.20 15387.11 25669.39 22691.62 18378.16 13394.43 18594.60 77
WTY-MVS67.91 31568.35 31366.58 33580.82 31448.12 35365.96 35072.60 33353.67 33271.20 33581.68 32658.97 28569.06 35548.57 34681.67 34082.55 324
IB-MVS62.13 1971.64 29568.97 30979.66 24580.80 31562.26 24973.94 32076.90 30363.27 27668.63 34376.79 35533.83 37091.84 18059.28 29587.26 30084.88 295
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_371.85 29371.59 29372.62 31180.71 31653.78 32169.72 33971.71 34258.80 30678.03 29180.51 33656.61 30178.84 33162.20 27586.04 31185.23 291
ppachtmachnet_test74.73 27274.00 27076.90 28480.71 31656.89 30371.53 33278.42 29658.24 30979.32 28482.92 31457.91 29384.26 30865.60 25391.36 24889.56 238
testgi72.36 28974.61 26365.59 33780.56 31842.82 37068.29 34273.35 32966.87 25181.84 25189.93 20772.08 21566.92 36146.05 35692.54 22587.01 275
D2MVS76.84 24875.67 25780.34 23580.48 31962.16 25073.50 32384.80 25957.61 31582.24 24287.54 24651.31 31887.65 26870.40 21593.19 21091.23 206
131473.22 28272.56 28775.20 29880.41 32057.84 29481.64 22885.36 24451.68 34573.10 32776.65 35661.45 26885.19 30063.54 26679.21 35182.59 323
cl____80.42 20680.23 20581.02 22479.99 32159.25 28077.07 29287.02 22567.37 24786.18 17989.21 22063.08 26190.16 22876.31 15695.80 14193.65 121
DIV-MVS_self_test80.43 20580.23 20581.02 22479.99 32159.25 28077.07 29287.02 22567.38 24686.19 17789.22 21963.09 26090.16 22876.32 15595.80 14193.66 119
miper_ehance_all_eth80.34 21080.04 21281.24 22079.82 32358.95 28577.66 28389.66 17965.75 26185.99 18585.11 28568.29 23391.42 19076.03 15992.03 23693.33 130
CR-MVSNet74.00 27773.04 28076.85 28679.58 32462.64 24182.58 20776.90 30350.50 35375.72 31192.38 14048.07 32784.07 30968.72 23182.91 33583.85 307
RPMNet78.88 22478.28 23180.68 23179.58 32462.64 24182.58 20794.16 3174.80 15475.72 31192.59 13348.69 32595.56 3973.48 18582.91 33583.85 307
baseline269.77 30866.89 31878.41 26279.51 32658.09 29276.23 30369.57 34957.50 31664.82 35977.45 35246.02 33488.44 26053.08 32777.83 35488.70 255
UnsupCasMVSNet_bld69.21 31169.68 30667.82 33179.42 32751.15 34267.82 34675.79 31054.15 33077.47 29985.36 28459.26 28370.64 35048.46 34779.35 34981.66 334
PatchT70.52 30172.76 28363.79 34279.38 32833.53 37677.63 28465.37 36073.61 16771.77 33292.79 12944.38 35175.65 34164.53 26385.37 31582.18 329
Patchmtry76.56 25377.46 23673.83 30579.37 32946.60 36082.41 21476.90 30373.81 16585.56 19192.38 14048.07 32783.98 31063.36 26895.31 15790.92 213
mvs_anonymous78.13 23578.76 22476.23 29479.24 33050.31 34778.69 27084.82 25861.60 29083.09 23492.82 12673.89 19287.01 27468.33 23586.41 30791.37 204
MVS-HIRNet61.16 33362.92 33055.87 35379.09 33135.34 37571.83 33057.98 37246.56 35959.05 36891.14 17449.95 32376.43 33738.74 36771.92 36455.84 371
MDA-MVSNet-bldmvs77.47 24176.90 24579.16 25179.03 33264.59 21866.58 34975.67 31273.15 17988.86 12788.99 22566.94 23981.23 32364.71 25988.22 29291.64 199
diffmvs80.40 20780.48 20280.17 23879.02 33360.04 27277.54 28690.28 16766.65 25382.40 24087.33 25173.50 19687.35 27277.98 13789.62 27493.13 138
tpm268.45 31366.83 31973.30 30778.93 33448.50 35179.76 25271.76 34047.50 35769.92 34083.60 30442.07 35688.40 26148.44 34879.51 34783.01 321
tpm67.95 31468.08 31567.55 33278.74 33543.53 36875.60 30767.10 35754.92 32772.23 33088.10 23642.87 35575.97 33952.21 33280.95 34683.15 319
MDTV_nov1_ep1368.29 31478.03 33643.87 36774.12 31972.22 33652.17 34067.02 35085.54 27545.36 34480.85 32555.73 31084.42 327
cl2278.97 22278.21 23281.24 22077.74 33759.01 28477.46 28987.13 22065.79 25884.32 21185.10 28658.96 28690.88 20875.36 16792.03 23693.84 108
EPNet_dtu72.87 28671.33 29777.49 27877.72 33860.55 26982.35 21575.79 31066.49 25458.39 37181.06 33053.68 31285.98 29253.55 32592.97 21785.95 284
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive69.71 30968.83 31072.33 31477.66 33953.60 32279.29 26069.99 34757.66 31472.53 32982.93 31346.45 33180.08 32960.91 28672.09 36383.31 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sss66.92 31767.26 31765.90 33677.23 34051.10 34464.79 35171.72 34152.12 34370.13 33980.18 33857.96 29265.36 36650.21 33981.01 34581.25 340
CostFormer69.98 30768.68 31273.87 30477.14 34150.72 34579.26 26174.51 31951.94 34470.97 33784.75 29445.16 34887.49 27055.16 31879.23 35083.40 314
tpm cat166.76 32065.21 32671.42 31677.09 34250.62 34678.01 27773.68 32844.89 36368.64 34279.00 34445.51 34282.42 31949.91 34170.15 36681.23 342
pmmvs570.73 30070.07 30372.72 31077.03 34352.73 32974.14 31875.65 31350.36 35472.17 33185.37 28355.42 30880.67 32652.86 33187.59 29984.77 296
EPNet80.37 20878.41 23086.23 11776.75 34473.28 13887.18 11177.45 30176.24 13368.14 34488.93 22665.41 24893.85 11169.47 22096.12 12691.55 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance76.45 25576.10 25277.51 27776.72 34560.97 26464.69 35285.04 25363.98 27483.20 23188.22 23456.67 29978.79 33273.22 18893.12 21192.78 152
CHOSEN 280x42059.08 33756.52 34266.76 33476.51 34664.39 22249.62 36859.00 36943.86 36555.66 37368.41 36735.55 36968.21 35743.25 36076.78 35967.69 364
UnsupCasMVSNet_eth71.63 29672.30 28969.62 32276.47 34752.70 33070.03 33880.97 28359.18 30479.36 28288.21 23560.50 27169.12 35458.33 29977.62 35687.04 274
test-LLR67.21 31666.74 32068.63 32876.45 34855.21 31367.89 34367.14 35562.43 28465.08 35672.39 36243.41 35269.37 35161.00 28484.89 32281.31 338
test-mter65.00 32563.79 32868.63 32876.45 34855.21 31367.89 34367.14 35550.98 34965.08 35672.39 36228.27 37769.37 35161.00 28484.89 32281.31 338
miper_enhance_ethall77.83 23776.93 24480.51 23276.15 35058.01 29375.47 31188.82 19158.05 31183.59 22680.69 33164.41 25191.20 19573.16 19492.03 23692.33 173
gg-mvs-nofinetune68.96 31269.11 30868.52 33076.12 35145.32 36283.59 17855.88 37386.68 2664.62 36097.01 730.36 37483.97 31144.78 35882.94 33476.26 353
CMPMVSbinary59.41 2075.12 26573.57 27379.77 24175.84 35267.22 19981.21 23682.18 27350.78 35076.50 30187.66 24455.20 30982.99 31562.17 27790.64 26889.09 250
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
wuyk23d75.13 26479.30 21862.63 34375.56 35375.18 12880.89 24073.10 33275.06 15394.76 1295.32 3687.73 4252.85 37234.16 37197.11 8759.85 368
Patchmatch-test65.91 32367.38 31661.48 34875.51 35443.21 36968.84 34063.79 36262.48 28272.80 32883.42 30844.89 34959.52 37048.27 34986.45 30681.70 333
new_pmnet55.69 33957.66 34149.76 35575.47 35530.59 37759.56 35951.45 37643.62 36662.49 36275.48 35940.96 35849.15 37437.39 36972.52 36269.55 362
gm-plane-assit75.42 35644.97 36552.17 34072.36 36487.90 26554.10 323
MVSTER77.09 24575.70 25681.25 21875.27 35761.08 25977.49 28885.07 25160.78 29786.55 17088.68 22943.14 35490.25 22373.69 18390.67 26592.42 167
PVSNet_051.08 2256.10 33854.97 34359.48 35175.12 35853.28 32655.16 36561.89 36444.30 36459.16 36762.48 37054.22 31165.91 36535.40 37047.01 37359.25 369
test0.0.03 164.66 32664.36 32765.57 33875.03 35946.89 35964.69 35261.58 36762.43 28471.18 33677.54 35043.41 35268.47 35640.75 36582.65 33781.35 337
tpmvs70.16 30369.56 30771.96 31574.71 36048.13 35279.63 25375.45 31565.02 27070.26 33881.88 32345.34 34585.68 29658.34 29875.39 36082.08 330
MDA-MVSNet_test_wron70.05 30670.44 30068.88 32673.84 36153.47 32358.93 36467.28 35358.43 30787.09 15885.40 28159.80 28067.25 35959.66 29383.54 33085.92 285
YYNet170.06 30570.44 30068.90 32573.76 36253.42 32558.99 36367.20 35458.42 30887.10 15785.39 28259.82 27967.32 35859.79 29283.50 33185.96 283
GG-mvs-BLEND67.16 33373.36 36346.54 36184.15 15855.04 37458.64 37061.95 37129.93 37583.87 31238.71 36876.92 35871.07 360
JIA-IIPM69.41 31066.64 32277.70 27573.19 36471.24 16975.67 30665.56 35970.42 21365.18 35592.97 12133.64 37183.06 31453.52 32669.61 36978.79 350
ADS-MVSNet265.87 32463.64 32972.55 31273.16 36556.92 30267.10 34774.81 31649.74 35566.04 35282.97 31146.71 32977.26 33542.29 36169.96 36783.46 312
ADS-MVSNet61.90 32962.19 33261.03 34973.16 36536.42 37467.10 34761.75 36549.74 35566.04 35282.97 31146.71 32963.21 36842.29 36169.96 36783.46 312
DSMNet-mixed60.98 33561.61 33459.09 35272.88 36745.05 36474.70 31646.61 37926.20 37365.34 35490.32 19855.46 30763.12 36941.72 36381.30 34469.09 363
tpmrst66.28 32266.69 32165.05 34072.82 36839.33 37178.20 27670.69 34553.16 33567.88 34680.36 33748.18 32674.75 34358.13 30070.79 36581.08 343
TESTMET0.1,161.29 33260.32 33764.19 34172.06 36951.30 34067.89 34362.09 36345.27 36260.65 36569.01 36527.93 37864.74 36756.31 30881.65 34276.53 352
dp60.70 33660.29 33861.92 34672.04 37038.67 37370.83 33364.08 36151.28 34760.75 36477.28 35336.59 36771.58 34947.41 35162.34 37275.52 354
pmmvs362.47 32760.02 33969.80 32171.58 37164.00 22670.52 33558.44 37139.77 36966.05 35175.84 35827.10 38072.28 34646.15 35584.77 32673.11 357
EPMVS62.47 32762.63 33162.01 34470.63 37238.74 37274.76 31552.86 37553.91 33167.71 34880.01 33939.40 36066.60 36255.54 31468.81 37080.68 347
KD-MVS_2432*160066.87 31865.81 32370.04 31867.50 37347.49 35662.56 35679.16 29261.21 29377.98 29280.61 33225.29 38182.48 31753.02 32884.92 32080.16 348
miper_refine_blended66.87 31865.81 32370.04 31867.50 37347.49 35662.56 35679.16 29261.21 29377.98 29280.61 33225.29 38182.48 31753.02 32884.92 32080.16 348
E-PMN61.59 33161.62 33361.49 34766.81 37555.40 31153.77 36660.34 36866.80 25258.90 36965.50 36840.48 35966.12 36455.72 31186.25 30962.95 366
EMVS61.10 33460.81 33561.99 34565.96 37655.86 30853.10 36758.97 37067.06 24956.89 37263.33 36940.98 35767.03 36054.79 32086.18 31063.08 365
PMMVS61.65 33060.38 33665.47 33965.40 37769.26 18463.97 35461.73 36636.80 37260.11 36668.43 36659.42 28166.35 36348.97 34578.57 35360.81 367
PMMVS255.64 34059.27 34044.74 35664.30 37812.32 38140.60 36949.79 37753.19 33465.06 35884.81 29353.60 31349.76 37332.68 37389.41 27572.15 358
MVEpermissive40.22 2351.82 34150.47 34455.87 35362.66 37951.91 33531.61 37139.28 38040.65 36850.76 37474.98 36156.24 30444.67 37533.94 37264.11 37171.04 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft24.13 35832.95 38029.49 37821.63 38312.07 37437.95 37545.07 37330.84 37319.21 37717.94 37633.06 37623.69 373
test_method30.46 34229.60 34533.06 35717.99 3813.84 38313.62 37273.92 3232.79 37518.29 37753.41 37228.53 37643.25 37622.56 37435.27 37552.11 372
tmp_tt20.25 34424.50 3477.49 3594.47 3828.70 38234.17 37025.16 3821.00 37732.43 37618.49 37439.37 3619.21 37821.64 37543.75 3744.57 374
testmvs5.91 3487.65 3510.72 3611.20 3830.37 38559.14 3610.67 3850.49 3791.11 3792.76 3780.94 3840.24 3801.02 3781.47 3771.55 376
test1236.27 3478.08 3500.84 3601.11 3840.57 38462.90 3550.82 3840.54 3781.07 3802.75 3791.26 3830.30 3791.04 3771.26 3781.66 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
eth-test20.00 385
eth-test0.00 385
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k20.81 34327.75 3460.00 3620.00 3850.00 3860.00 37385.44 2430.00 3800.00 38182.82 31581.46 1160.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.41 3468.55 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38076.94 1620.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re6.65 3458.87 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38179.80 3410.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145258.96 30590.06 9891.33 16880.66 12693.03 14875.78 16295.94 13392.48 165
test_241102_TWO93.71 5383.77 4493.49 3994.27 7589.27 2295.84 2386.03 4497.82 5492.04 185
test_0728_THIRD85.33 3293.75 3194.65 5787.44 4595.78 2887.41 2198.21 3192.98 144
GSMVS83.88 304
sam_mvs146.11 33383.88 304
sam_mvs45.92 338
MTGPAbinary91.81 121
test_post178.85 2693.13 37645.19 34780.13 32858.11 301
test_post3.10 37745.43 34377.22 336
patchmatchnet-post81.71 32545.93 33787.01 274
MTMP90.66 4533.14 381
test9_res80.83 10196.45 11290.57 223
agg_prior279.68 11596.16 12390.22 230
test_prior478.97 8484.59 150
test_prior283.37 18575.43 14784.58 20591.57 16281.92 11079.54 11796.97 91
旧先验281.73 22656.88 32086.54 17584.90 30372.81 195
新几何281.72 227
无先验82.81 20285.62 24258.09 31091.41 19167.95 23884.48 298
原ACMM282.26 220
testdata286.43 28763.52 267
segment_acmp81.94 107
testdata179.62 25473.95 164
plane_prior593.61 5895.22 5980.78 10295.83 13894.46 83
plane_prior492.95 122
plane_prior376.85 11477.79 11886.55 170
plane_prior289.45 7679.44 97
plane_prior76.42 12087.15 11275.94 14195.03 167
n20.00 386
nn0.00 386
door-mid74.45 320
test1191.46 128
door72.57 334
HQP5-MVS70.66 172
BP-MVS77.30 146
HQP4-MVS80.56 27094.61 8093.56 126
HQP3-MVS92.68 9894.47 183
HQP2-MVS72.10 213
MDTV_nov1_ep13_2view27.60 37970.76 33446.47 36061.27 36345.20 34649.18 34483.75 309
ACMMP++_ref95.74 145
ACMMP++97.35 80
Test By Simon79.09 138