UA-Net | | | 89.02 34 | 91.44 40 | 86.20 29 | 94.88 1 | 89.84 34 | 94.76 30 | 77.45 29 | 85.41 73 | 74.79 107 | 88.83 78 | 88.90 139 | 78.67 40 | 96.06 7 | 95.45 4 | 96.66 3 | 95.58 2 |
|
DTE-MVSNet | | | 88.99 36 | 92.77 13 | 84.59 44 | 93.31 2 | 88.10 49 | 90.96 53 | 83.09 2 | 91.38 15 | 76.21 96 | 96.03 3 | 98.04 9 | 70.78 108 | 95.65 14 | 92.32 33 | 93.18 59 | 87.84 73 |
|
zzz-MVS | | | 90.38 12 | 91.35 42 | 89.25 5 | 93.08 3 | 86.59 65 | 96.45 11 | 79.00 16 | 90.23 29 | 89.30 10 | 85.87 108 | 94.97 66 | 82.54 18 | 95.05 23 | 94.83 7 | 95.14 27 | 91.94 37 |
|
mPP-MVS | | | | | | 93.05 4 | | | | | | | 95.77 45 | | | | | |
|
MP-MVS |  | | 90.84 6 | 91.95 35 | 89.55 3 | 92.92 5 | 90.90 19 | 96.56 6 | 79.60 11 | 86.83 61 | 88.75 13 | 89.00 74 | 94.38 79 | 84.01 9 | 94.94 25 | 94.34 11 | 95.45 24 | 93.24 23 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PEN-MVS | | | 88.86 40 | 92.92 10 | 84.11 54 | 92.92 5 | 88.05 51 | 90.83 56 | 82.67 5 | 91.04 19 | 74.83 106 | 95.97 4 | 98.47 4 | 70.38 109 | 95.70 13 | 92.43 31 | 93.05 63 | 88.78 65 |
|
HPM-MVS++ |  | | 88.74 41 | 89.54 55 | 87.80 16 | 92.58 7 | 85.69 73 | 95.10 27 | 78.01 23 | 87.08 58 | 87.66 20 | 87.89 86 | 92.07 109 | 80.28 30 | 90.97 72 | 91.41 44 | 93.17 60 | 91.69 39 |
|
DVP-MVS++. | | | 90.50 10 | 94.18 4 | 86.21 28 | 92.52 8 | 90.29 28 | 95.29 23 | 76.02 42 | 94.24 6 | 82.82 57 | 95.84 6 | 97.56 17 | 76.82 57 | 93.13 39 | 91.20 45 | 93.78 49 | 97.01 1 |
|
PS-CasMVS | | | 89.07 33 | 93.23 8 | 84.21 52 | 92.44 9 | 88.23 48 | 90.54 64 | 82.95 3 | 90.50 26 | 75.31 104 | 95.80 7 | 98.37 7 | 71.16 102 | 96.30 5 | 93.32 22 | 92.88 64 | 90.11 53 |
|
CP-MVSNet | | | 88.71 42 | 92.63 16 | 84.13 53 | 92.39 10 | 88.09 50 | 90.47 69 | 82.86 4 | 88.79 44 | 75.16 105 | 94.87 10 | 97.68 15 | 71.05 104 | 96.16 6 | 93.18 24 | 92.85 65 | 89.64 57 |
|
CP-MVS | | | 91.09 5 | 92.33 26 | 89.65 2 | 92.16 11 | 90.41 27 | 96.46 10 | 80.38 8 | 88.26 47 | 89.17 11 | 87.00 97 | 96.34 32 | 83.95 10 | 95.77 11 | 94.72 8 | 95.81 17 | 93.78 10 |
|
ACMMPR | | | 91.30 4 | 92.88 12 | 89.46 4 | 91.92 12 | 91.61 5 | 96.60 5 | 79.46 14 | 90.08 32 | 88.53 14 | 89.54 66 | 95.57 49 | 84.25 7 | 95.24 20 | 94.27 13 | 95.97 11 | 93.85 8 |
|
WR-MVS_H | | | 88.99 36 | 93.28 6 | 83.99 55 | 91.92 12 | 89.13 40 | 91.95 47 | 83.23 1 | 90.14 31 | 71.92 126 | 95.85 5 | 98.01 11 | 71.83 99 | 95.82 9 | 93.19 23 | 93.07 62 | 90.83 49 |
|
SR-MVS | | | | | | 91.82 14 | | | 80.80 7 | | | | 95.53 51 | | | | | |
|
PGM-MVS | | | 90.42 11 | 91.58 38 | 89.05 6 | 91.77 15 | 91.06 13 | 96.51 7 | 78.94 17 | 85.41 73 | 87.67 19 | 87.02 96 | 95.26 57 | 83.62 12 | 95.01 24 | 93.94 16 | 95.79 19 | 93.40 20 |
|
APD-MVS |  | | 89.14 30 | 91.25 45 | 86.67 25 | 91.73 16 | 91.02 15 | 95.50 21 | 77.74 25 | 84.04 85 | 79.47 84 | 91.48 45 | 94.85 68 | 81.14 26 | 92.94 42 | 92.20 36 | 94.47 41 | 92.24 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SMA-MVS |  | | 90.13 16 | 92.26 28 | 87.64 18 | 91.68 17 | 90.44 26 | 95.22 25 | 77.34 33 | 90.79 23 | 87.80 17 | 90.42 56 | 92.05 111 | 79.05 35 | 93.89 33 | 93.59 19 | 94.77 34 | 94.62 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ambc | | | | 88.38 63 | | 91.62 18 | 87.97 52 | 84.48 125 | | 88.64 46 | 87.93 16 | 87.38 91 | 94.82 70 | 74.53 78 | 89.14 89 | 83.86 116 | 85.94 150 | 86.84 78 |
|
TSAR-MVS + MP. | | | 89.67 25 | 92.25 29 | 86.65 26 | 91.53 19 | 90.98 17 | 96.15 14 | 73.30 57 | 87.88 51 | 81.83 69 | 92.92 30 | 95.15 61 | 82.23 19 | 93.58 35 | 92.25 34 | 94.87 31 | 93.01 25 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
train_agg | | | 86.67 56 | 87.73 72 | 85.43 36 | 91.51 20 | 82.72 91 | 94.47 32 | 74.22 54 | 81.71 100 | 81.54 73 | 89.20 72 | 92.87 95 | 78.33 42 | 90.12 81 | 88.47 72 | 92.51 72 | 89.04 62 |
|
X-MVS | | | 89.36 29 | 90.73 48 | 87.77 17 | 91.50 21 | 91.23 8 | 96.76 4 | 78.88 18 | 87.29 56 | 87.14 26 | 78.98 146 | 94.53 73 | 76.47 59 | 95.25 19 | 94.28 12 | 95.85 14 | 93.55 16 |
|
HFP-MVS | | | 90.32 14 | 92.37 23 | 87.94 14 | 91.46 22 | 90.91 18 | 95.69 18 | 79.49 12 | 89.94 35 | 83.50 51 | 89.06 73 | 94.44 77 | 81.68 23 | 94.17 31 | 94.19 14 | 95.81 17 | 93.87 7 |
|
ACMM | | 80.67 7 | 90.67 7 | 92.46 20 | 88.57 8 | 91.35 23 | 89.93 32 | 96.34 12 | 77.36 31 | 90.17 30 | 86.88 30 | 87.32 92 | 96.63 25 | 83.32 13 | 95.79 10 | 94.49 10 | 96.19 9 | 92.91 26 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
WR-MVS | | | 89.79 24 | 93.66 5 | 85.27 38 | 91.32 24 | 88.27 46 | 93.49 39 | 79.86 10 | 92.75 10 | 75.37 103 | 96.86 1 | 98.38 6 | 75.10 73 | 95.93 8 | 94.07 15 | 96.46 5 | 89.39 59 |
|
SD-MVS | | | 89.91 19 | 92.23 31 | 87.19 22 | 91.31 25 | 89.79 35 | 94.31 33 | 75.34 48 | 89.26 39 | 81.79 70 | 92.68 32 | 95.08 63 | 83.88 11 | 93.10 40 | 92.69 26 | 96.54 4 | 93.02 24 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
XVS | | | | | | 91.28 26 | 91.23 8 | 96.89 2 | | | 87.14 26 | | 94.53 73 | | | | 95.84 15 | |
|
X-MVStestdata | | | | | | 91.28 26 | 91.23 8 | 96.89 2 | | | 87.14 26 | | 94.53 73 | | | | 95.84 15 | |
|
DeepC-MVS | | 83.59 4 | 90.37 13 | 92.56 19 | 87.82 15 | 91.26 28 | 92.33 3 | 94.72 31 | 80.04 9 | 90.01 33 | 84.61 43 | 93.33 23 | 94.22 80 | 80.59 28 | 92.90 45 | 92.52 29 | 95.69 21 | 92.57 28 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMMP |  | | 90.63 8 | 92.40 21 | 88.56 9 | 91.24 29 | 91.60 6 | 96.49 9 | 77.53 27 | 87.89 50 | 86.87 31 | 87.24 94 | 96.46 27 | 82.87 16 | 95.59 15 | 94.50 9 | 96.35 6 | 93.51 18 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SteuartSystems-ACMMP | | | 90.00 18 | 91.73 36 | 87.97 13 | 91.21 30 | 90.29 28 | 96.51 7 | 78.00 24 | 86.33 64 | 85.32 41 | 88.23 83 | 94.67 71 | 82.08 21 | 95.13 22 | 93.88 17 | 94.72 36 | 93.59 13 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP_NAP | | | 89.86 20 | 91.96 34 | 87.42 20 | 91.00 31 | 90.08 30 | 96.00 16 | 76.61 37 | 89.28 36 | 87.73 18 | 90.04 58 | 91.80 114 | 78.71 38 | 94.36 29 | 93.82 18 | 94.48 40 | 94.32 6 |
|
CPTT-MVS | | | 89.63 26 | 90.52 50 | 88.59 7 | 90.95 32 | 90.74 21 | 95.71 17 | 79.13 15 | 87.70 52 | 85.68 39 | 80.05 141 | 95.74 47 | 84.77 6 | 94.28 30 | 92.68 27 | 95.28 26 | 92.45 32 |
|
LGP-MVS_train | | | 90.56 9 | 92.38 22 | 88.43 10 | 90.88 33 | 91.15 11 | 95.35 22 | 77.65 26 | 86.26 66 | 87.23 24 | 90.45 55 | 97.35 19 | 83.20 14 | 95.44 16 | 93.41 21 | 96.28 8 | 92.63 27 |
|
OPM-MVS | | | 89.82 22 | 92.24 30 | 86.99 23 | 90.86 34 | 89.35 38 | 95.07 28 | 75.91 44 | 91.16 17 | 86.87 31 | 91.07 51 | 97.29 20 | 79.13 34 | 93.32 36 | 91.99 38 | 94.12 43 | 91.49 42 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
ACMP | | 80.00 8 | 90.12 17 | 92.30 27 | 87.58 19 | 90.83 35 | 91.10 12 | 94.96 29 | 76.06 41 | 87.47 54 | 85.33 40 | 88.91 77 | 97.65 16 | 82.13 20 | 95.31 17 | 93.44 20 | 96.14 10 | 92.22 34 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
NCCC | | | 86.74 55 | 87.97 71 | 85.31 37 | 90.64 36 | 87.25 59 | 93.27 40 | 74.59 50 | 86.50 62 | 83.72 47 | 75.92 171 | 92.39 103 | 77.08 55 | 91.72 55 | 90.68 50 | 92.57 70 | 91.30 44 |
|
MSP-MVS | | | 88.51 43 | 91.36 41 | 85.19 40 | 90.63 37 | 92.01 4 | 95.29 23 | 77.52 28 | 90.48 27 | 80.21 79 | 90.21 57 | 96.08 36 | 76.38 61 | 88.30 97 | 91.42 42 | 91.12 90 | 91.01 46 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
UniMVSNet_ETH3D | | | 85.39 65 | 91.12 46 | 78.71 103 | 90.48 38 | 83.72 83 | 81.76 141 | 82.41 6 | 93.84 7 | 64.43 160 | 95.41 8 | 98.76 1 | 63.72 143 | 93.63 34 | 89.74 60 | 89.47 108 | 82.74 115 |
|
APDe-MVS | | | 89.85 21 | 92.91 11 | 86.29 27 | 90.47 39 | 91.34 7 | 96.04 15 | 76.41 40 | 91.11 18 | 78.50 89 | 93.44 22 | 95.82 44 | 81.55 24 | 93.16 38 | 91.90 39 | 94.77 34 | 93.58 15 |
|
PMVS |  | 79.51 9 | 90.23 15 | 92.67 15 | 87.39 21 | 90.16 40 | 88.75 42 | 93.64 37 | 75.78 45 | 90.00 34 | 83.70 48 | 92.97 29 | 92.22 106 | 86.13 4 | 97.01 3 | 96.79 2 | 94.94 30 | 90.96 47 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CNVR-MVS | | | 86.93 54 | 88.98 59 | 84.54 45 | 90.11 41 | 87.41 58 | 93.23 41 | 73.47 56 | 86.31 65 | 82.25 64 | 82.96 129 | 92.15 107 | 76.04 64 | 91.69 56 | 90.69 49 | 92.17 76 | 91.64 41 |
|
TSAR-MVS + GP. | | | 85.32 67 | 87.41 76 | 82.89 65 | 90.07 42 | 85.69 73 | 89.07 85 | 72.99 59 | 82.45 93 | 74.52 110 | 85.09 116 | 87.67 145 | 79.24 33 | 91.11 67 | 90.41 52 | 91.45 82 | 89.45 58 |
|
DeepC-MVS_fast | | 81.78 5 | 87.38 52 | 89.64 54 | 84.75 42 | 89.89 43 | 90.70 22 | 92.74 44 | 74.45 51 | 86.02 67 | 82.16 67 | 86.05 106 | 91.99 113 | 75.84 67 | 91.16 66 | 90.44 51 | 93.41 54 | 91.09 45 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LS3D | | | 89.02 34 | 91.69 37 | 85.91 31 | 89.72 44 | 90.81 20 | 92.56 45 | 71.69 67 | 90.83 22 | 87.24 23 | 89.71 64 | 92.07 109 | 78.37 41 | 94.43 28 | 92.59 28 | 95.86 13 | 91.35 43 |
|
DPE-MVS |  | | 89.81 23 | 92.34 25 | 86.86 24 | 89.69 45 | 91.00 16 | 95.53 19 | 76.91 34 | 88.18 48 | 83.43 54 | 93.48 21 | 95.19 58 | 81.07 27 | 92.75 47 | 92.07 37 | 94.55 38 | 93.74 11 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
CDPH-MVS | | | 86.66 57 | 88.52 62 | 84.48 46 | 89.61 46 | 88.27 46 | 92.86 43 | 72.69 60 | 80.55 118 | 82.71 58 | 86.92 98 | 93.32 91 | 75.55 69 | 91.00 71 | 89.85 59 | 93.47 52 | 89.71 56 |
|
EPNet | | | 79.36 124 | 79.44 141 | 79.27 102 | 89.51 47 | 77.20 137 | 88.35 91 | 77.35 32 | 68.27 173 | 74.29 111 | 76.31 164 | 79.22 173 | 59.63 156 | 85.02 128 | 85.45 100 | 86.49 142 | 84.61 93 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TSAR-MVS + ACMM | | | 89.14 30 | 92.11 33 | 85.67 32 | 89.27 48 | 90.61 24 | 90.98 52 | 79.48 13 | 88.86 42 | 79.80 81 | 93.01 28 | 93.53 89 | 83.17 15 | 92.75 47 | 92.45 30 | 91.32 85 | 93.59 13 |
|
HQP-MVS | | | 85.02 69 | 86.41 82 | 83.40 56 | 89.19 49 | 86.59 65 | 91.28 50 | 71.60 68 | 82.79 91 | 83.48 52 | 78.65 150 | 93.54 88 | 72.55 91 | 86.49 112 | 85.89 96 | 92.28 75 | 90.95 48 |
|
AdaColmap |  | | 84.15 76 | 85.14 97 | 83.00 62 | 89.08 50 | 87.14 61 | 90.56 63 | 70.90 70 | 82.40 94 | 80.41 76 | 73.82 182 | 84.69 158 | 75.19 72 | 91.58 60 | 89.90 58 | 91.87 79 | 86.48 80 |
|
DVP-MVS |  | | 89.40 28 | 92.69 14 | 85.56 35 | 89.01 51 | 89.85 33 | 93.72 36 | 75.42 46 | 92.28 12 | 80.49 75 | 94.36 14 | 94.87 67 | 81.46 25 | 92.49 51 | 91.42 42 | 93.27 56 | 93.54 17 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
COLMAP_ROB |  | 85.66 2 | 91.85 2 | 95.01 2 | 88.16 12 | 88.98 52 | 92.86 2 | 95.51 20 | 72.17 61 | 94.95 5 | 91.27 3 | 94.11 17 | 97.77 12 | 84.22 8 | 96.49 4 | 95.27 5 | 96.79 2 | 93.60 12 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
TDRefinement | | | 93.16 1 | 95.57 1 | 90.36 1 | 88.79 53 | 93.57 1 | 97.27 1 | 78.23 22 | 95.55 2 | 93.00 1 | 93.98 18 | 96.01 40 | 87.53 1 | 97.69 1 | 96.81 1 | 97.33 1 | 95.34 4 |
|
TranMVSNet+NR-MVSNet | | | 85.23 68 | 89.38 56 | 80.39 93 | 88.78 54 | 83.77 82 | 87.40 99 | 76.75 35 | 85.47 71 | 68.99 142 | 95.18 9 | 97.55 18 | 67.13 128 | 91.61 59 | 89.13 68 | 93.26 57 | 82.95 112 |
|
SED-MVS | | | 88.96 38 | 92.37 23 | 84.99 41 | 88.64 55 | 89.65 37 | 95.11 26 | 75.98 43 | 90.73 24 | 80.15 80 | 94.21 16 | 94.51 76 | 76.59 58 | 92.94 42 | 91.17 46 | 93.46 53 | 93.37 22 |
|
ACMH+ | | 79.05 11 | 89.62 27 | 93.08 9 | 85.58 33 | 88.58 56 | 89.26 39 | 92.18 46 | 74.23 53 | 93.55 9 | 82.66 61 | 92.32 37 | 98.35 8 | 80.29 29 | 95.28 18 | 92.34 32 | 95.52 22 | 90.43 51 |
|
MVS_0304 | | | 84.73 73 | 86.19 84 | 83.02 60 | 88.32 57 | 86.71 64 | 91.55 48 | 70.87 71 | 73.79 147 | 82.88 56 | 85.13 115 | 93.35 90 | 72.55 91 | 88.62 92 | 87.69 79 | 91.93 78 | 88.05 72 |
|
DU-MVS | | | 84.88 71 | 88.27 67 | 80.92 82 | 88.30 58 | 83.59 85 | 87.06 104 | 78.35 20 | 80.64 116 | 70.49 134 | 92.67 33 | 96.91 23 | 68.13 121 | 91.79 53 | 89.29 67 | 93.20 58 | 83.02 109 |
|
Baseline_NR-MVSNet | | | 82.79 94 | 86.51 79 | 78.44 107 | 88.30 58 | 75.62 151 | 87.81 94 | 74.97 49 | 81.53 104 | 66.84 155 | 94.71 13 | 96.46 27 | 66.90 129 | 91.79 53 | 83.37 123 | 85.83 152 | 82.09 120 |
|
UniMVSNet_NR-MVSNet | | | 84.62 74 | 88.00 70 | 80.68 88 | 88.18 60 | 83.83 81 | 87.06 104 | 76.47 39 | 81.46 107 | 70.49 134 | 93.24 24 | 95.56 50 | 68.13 121 | 90.43 76 | 88.47 72 | 93.78 49 | 83.02 109 |
|
xxxxxxxxxxxxxcwj | | | 88.03 48 | 91.29 44 | 84.22 50 | 88.17 61 | 87.90 53 | 90.80 57 | 71.80 65 | 89.28 36 | 82.70 59 | 89.90 60 | 97.72 13 | 77.91 47 | 91.69 56 | 90.04 56 | 93.95 47 | 92.47 29 |
|
SF-MVS | | | 87.85 51 | 90.95 47 | 84.22 50 | 88.17 61 | 87.90 53 | 90.80 57 | 71.80 65 | 89.28 36 | 82.70 59 | 89.90 60 | 95.37 55 | 77.91 47 | 91.69 56 | 90.04 56 | 93.95 47 | 92.47 29 |
|
CSCG | | | 88.12 46 | 91.45 39 | 84.23 49 | 88.12 63 | 90.59 25 | 90.57 62 | 68.60 91 | 91.37 16 | 83.45 53 | 89.94 59 | 95.14 62 | 78.71 38 | 91.45 61 | 88.21 76 | 95.96 12 | 93.44 19 |
|
CLD-MVS | | | 82.75 96 | 87.22 77 | 77.54 113 | 88.01 64 | 85.76 72 | 90.23 72 | 54.52 186 | 82.28 96 | 82.11 68 | 88.48 81 | 95.27 56 | 63.95 141 | 89.41 86 | 88.29 74 | 86.45 143 | 81.01 128 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UniMVSNet (Re) | | | 84.95 70 | 88.53 61 | 80.78 84 | 87.82 65 | 84.21 79 | 88.03 92 | 76.50 38 | 81.18 111 | 69.29 140 | 92.63 35 | 96.83 24 | 69.07 117 | 91.23 65 | 89.60 63 | 93.97 46 | 84.00 101 |
|
DPM-MVS | | | 81.42 106 | 82.11 132 | 80.62 89 | 87.54 66 | 85.30 75 | 90.18 74 | 68.96 86 | 81.00 114 | 79.15 86 | 70.45 199 | 83.29 161 | 67.67 125 | 82.81 142 | 83.46 118 | 90.19 96 | 88.48 67 |
|
DeepPCF-MVS | | 81.61 6 | 87.95 49 | 90.29 52 | 85.22 39 | 87.48 67 | 90.01 31 | 93.79 35 | 73.54 55 | 88.93 41 | 83.89 46 | 89.40 68 | 90.84 123 | 80.26 31 | 90.62 75 | 90.19 55 | 92.36 73 | 92.03 36 |
|
DROMVSNet | | | 83.70 81 | 84.77 105 | 82.46 69 | 87.47 68 | 82.79 90 | 85.50 114 | 72.00 62 | 69.81 164 | 77.66 92 | 85.02 118 | 89.63 130 | 78.14 43 | 90.40 77 | 87.56 80 | 94.00 44 | 88.16 69 |
|
CANet | | | 82.84 93 | 84.60 107 | 80.78 84 | 87.30 69 | 85.20 76 | 90.23 72 | 69.00 85 | 72.16 156 | 78.73 88 | 84.49 123 | 90.70 126 | 69.54 114 | 87.65 100 | 86.17 91 | 89.87 101 | 85.84 86 |
|
MCST-MVS | | | 84.79 72 | 86.48 80 | 82.83 66 | 87.30 69 | 87.03 62 | 90.46 70 | 69.33 83 | 83.14 88 | 82.21 66 | 81.69 137 | 92.14 108 | 75.09 74 | 87.27 104 | 84.78 107 | 92.58 68 | 89.30 60 |
|
EIA-MVS | | | 78.57 129 | 77.90 149 | 79.35 100 | 87.24 71 | 80.71 107 | 86.16 111 | 64.03 133 | 62.63 200 | 73.49 117 | 73.60 183 | 76.12 187 | 73.83 84 | 88.49 94 | 84.93 105 | 91.36 84 | 78.78 145 |
|
test_part1 | | | 87.86 50 | 93.26 7 | 81.56 77 | 87.23 72 | 86.76 63 | 90.91 54 | 70.06 75 | 96.50 1 | 76.74 94 | 96.63 2 | 98.62 2 | 69.45 116 | 92.93 44 | 90.92 47 | 94.98 29 | 90.46 50 |
|
OMC-MVS | | | 88.16 44 | 91.34 43 | 84.46 47 | 86.85 73 | 90.63 23 | 93.01 42 | 67.00 104 | 90.35 28 | 87.40 22 | 86.86 99 | 96.35 31 | 77.66 50 | 92.63 49 | 90.84 48 | 94.84 32 | 91.68 40 |
|
3Dnovator+ | | 83.71 3 | 88.13 45 | 90.00 53 | 85.94 30 | 86.82 74 | 91.06 13 | 94.26 34 | 75.39 47 | 88.85 43 | 85.76 38 | 85.74 110 | 86.92 148 | 78.02 45 | 93.03 41 | 92.21 35 | 95.39 25 | 92.21 35 |
|
ETV-MVS | | | 79.01 128 | 77.98 148 | 80.22 94 | 86.69 75 | 79.73 115 | 88.80 88 | 68.27 96 | 63.22 195 | 71.56 128 | 70.25 201 | 73.63 193 | 73.66 86 | 90.30 80 | 86.77 88 | 92.33 74 | 81.95 122 |
|
PHI-MVS | | | 86.37 59 | 88.14 68 | 84.30 48 | 86.65 76 | 87.56 56 | 90.76 59 | 70.16 74 | 82.55 92 | 89.65 7 | 84.89 119 | 92.40 102 | 75.97 65 | 90.88 73 | 89.70 61 | 92.58 68 | 89.03 63 |
|
ACMH | | 78.40 12 | 88.94 39 | 92.62 17 | 84.65 43 | 86.45 77 | 87.16 60 | 91.47 49 | 68.79 89 | 95.49 3 | 89.74 6 | 93.55 20 | 98.50 3 | 77.96 46 | 94.14 32 | 89.57 64 | 93.49 51 | 89.94 55 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CS-MVS-test | | | 83.73 80 | 84.09 117 | 83.31 57 | 86.38 78 | 80.24 110 | 85.50 114 | 72.00 62 | 65.58 183 | 83.11 55 | 84.64 121 | 92.52 100 | 78.14 43 | 90.40 77 | 88.92 70 | 94.71 37 | 86.34 83 |
|
EG-PatchMatch MVS | | | 84.35 75 | 87.55 73 | 80.62 89 | 86.38 78 | 82.24 96 | 86.75 107 | 64.02 134 | 84.24 81 | 78.17 91 | 89.38 69 | 95.03 65 | 78.78 37 | 89.95 83 | 86.33 90 | 89.59 105 | 85.65 89 |
|
IS_MVSNet | | | 81.72 104 | 85.01 99 | 77.90 109 | 86.19 80 | 82.64 93 | 85.56 113 | 70.02 76 | 80.11 121 | 63.52 162 | 87.28 93 | 81.18 168 | 67.26 126 | 91.08 70 | 89.33 66 | 94.82 33 | 83.42 106 |
|
PCF-MVS | | 76.59 14 | 84.11 77 | 85.27 94 | 82.76 67 | 86.12 81 | 88.30 45 | 91.24 51 | 69.10 84 | 82.36 95 | 84.45 44 | 77.56 156 | 90.40 128 | 72.91 90 | 85.88 117 | 83.88 114 | 92.72 67 | 88.53 66 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
TSAR-MVS + COLMAP | | | 85.51 63 | 88.36 65 | 82.19 70 | 86.05 82 | 87.69 55 | 90.50 67 | 70.60 73 | 86.40 63 | 82.33 62 | 89.69 65 | 92.52 100 | 74.01 83 | 87.53 101 | 86.84 87 | 89.63 104 | 87.80 74 |
|
EPP-MVSNet | | | 82.76 95 | 86.47 81 | 78.45 106 | 86.00 83 | 84.47 78 | 85.39 117 | 68.42 93 | 84.17 82 | 62.97 164 | 89.26 71 | 76.84 183 | 72.13 96 | 92.56 50 | 90.40 53 | 95.76 20 | 87.56 76 |
|
PLC |  | 76.06 15 | 85.38 66 | 87.46 74 | 82.95 64 | 85.79 84 | 88.84 41 | 88.86 87 | 68.70 90 | 87.06 59 | 83.60 49 | 79.02 144 | 90.05 129 | 77.37 53 | 90.88 73 | 89.66 62 | 93.37 55 | 86.74 79 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MSLP-MVS++ | | | 86.29 60 | 89.10 58 | 83.01 61 | 85.71 85 | 89.79 35 | 87.04 106 | 74.39 52 | 85.17 75 | 78.92 87 | 77.59 155 | 93.57 87 | 82.60 17 | 93.23 37 | 91.88 40 | 89.42 109 | 92.46 31 |
|
CS-MVS | | | 83.23 87 | 85.14 97 | 81.00 81 | 85.59 86 | 79.28 119 | 89.80 77 | 63.29 143 | 73.02 149 | 75.70 101 | 85.28 113 | 92.81 96 | 77.09 54 | 91.92 52 | 87.93 77 | 94.53 39 | 85.76 87 |
|
Effi-MVS+-dtu | | | 82.04 101 | 83.39 126 | 80.48 92 | 85.48 87 | 86.57 67 | 88.40 90 | 68.28 95 | 69.04 171 | 73.13 120 | 76.26 166 | 91.11 122 | 74.74 77 | 88.40 95 | 87.76 78 | 92.84 66 | 84.57 95 |
|
ECVR-MVS | | | 79.67 119 | 84.40 109 | 74.16 134 | 85.29 88 | 79.56 117 | 81.16 145 | 73.13 58 | 84.65 80 | 56.08 179 | 88.38 82 | 86.14 151 | 60.49 153 | 89.78 84 | 85.59 98 | 88.79 116 | 76.68 153 |
|
v7n | | | 87.11 53 | 90.46 51 | 83.19 59 | 85.22 89 | 83.69 84 | 90.03 76 | 68.20 97 | 91.01 20 | 86.71 34 | 94.80 11 | 98.46 5 | 77.69 49 | 91.10 68 | 85.98 93 | 91.30 86 | 88.19 68 |
|
MAR-MVS | | | 81.98 102 | 82.92 128 | 80.88 83 | 85.18 90 | 85.85 70 | 89.13 84 | 69.52 78 | 71.21 160 | 82.25 64 | 71.28 193 | 88.89 140 | 69.69 111 | 88.71 90 | 86.96 83 | 89.52 106 | 87.57 75 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
abl_6 | | | | | 79.30 101 | 84.98 91 | 85.78 71 | 90.50 67 | 66.88 105 | 77.08 135 | 74.02 112 | 73.29 186 | 89.34 134 | 68.94 118 | | | 90.49 93 | 85.98 84 |
|
TAPA-MVS | | 78.00 13 | 85.88 61 | 88.37 64 | 82.96 63 | 84.69 92 | 88.62 43 | 90.62 60 | 64.22 129 | 89.15 40 | 88.05 15 | 78.83 148 | 93.71 84 | 76.20 63 | 90.11 82 | 88.22 75 | 94.00 44 | 89.97 54 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
GeoE | | | 81.92 103 | 83.87 119 | 79.66 97 | 84.64 93 | 79.87 112 | 89.75 78 | 65.90 115 | 76.12 139 | 75.87 99 | 84.62 122 | 92.23 105 | 71.96 98 | 86.83 109 | 83.60 117 | 89.83 102 | 83.81 102 |
|
SixPastTwentyTwo | | | 89.14 30 | 92.19 32 | 85.58 33 | 84.62 94 | 82.56 94 | 90.53 65 | 71.93 64 | 91.95 13 | 85.89 36 | 94.22 15 | 97.25 21 | 85.42 5 | 95.73 12 | 91.71 41 | 95.08 28 | 91.89 38 |
|
MVS_111021_HR | | | 83.95 78 | 86.10 86 | 81.44 78 | 84.62 94 | 80.29 109 | 90.51 66 | 68.05 98 | 84.07 84 | 80.38 77 | 84.74 120 | 91.37 119 | 74.23 79 | 90.37 79 | 87.25 82 | 90.86 92 | 84.59 94 |
|
CNLPA | | | 85.50 64 | 88.58 60 | 81.91 72 | 84.55 96 | 87.52 57 | 90.89 55 | 63.56 139 | 88.18 48 | 84.06 45 | 83.85 126 | 91.34 120 | 76.46 60 | 91.27 63 | 89.00 69 | 91.96 77 | 88.88 64 |
|
Effi-MVS+ | | | 82.33 97 | 83.87 119 | 80.52 91 | 84.51 97 | 81.32 102 | 87.53 97 | 68.05 98 | 74.94 145 | 79.67 82 | 82.37 134 | 92.31 104 | 72.21 93 | 85.06 124 | 86.91 85 | 91.18 88 | 84.20 98 |
|
gm-plane-assit | | | 71.56 168 | 69.99 183 | 73.39 138 | 84.43 98 | 73.21 163 | 90.42 71 | 51.36 199 | 84.08 83 | 76.00 98 | 91.30 48 | 37.09 225 | 59.01 158 | 73.65 187 | 70.24 186 | 79.09 179 | 60.37 200 |
|
RPSCF | | | 88.05 47 | 92.61 18 | 82.73 68 | 84.24 99 | 88.40 44 | 90.04 75 | 66.29 108 | 91.46 14 | 82.29 63 | 88.93 76 | 96.01 40 | 79.38 32 | 95.15 21 | 94.90 6 | 94.15 42 | 93.40 20 |
|
FC-MVSNet-train | | | 79.20 126 | 86.29 83 | 70.94 150 | 84.06 100 | 77.67 131 | 85.68 112 | 64.11 131 | 82.90 90 | 52.22 194 | 92.57 36 | 93.69 85 | 49.52 194 | 88.30 97 | 86.93 84 | 90.03 98 | 81.95 122 |
|
v1192 | | | 83.61 82 | 85.23 95 | 81.72 74 | 84.05 101 | 82.15 97 | 89.54 80 | 66.20 109 | 81.38 109 | 86.76 33 | 91.79 42 | 96.03 38 | 74.88 76 | 81.81 150 | 80.92 139 | 88.91 115 | 82.50 117 |
|
v1240 | | | 83.57 83 | 84.94 102 | 81.97 71 | 84.05 101 | 81.27 103 | 89.46 82 | 66.06 111 | 81.31 110 | 87.50 21 | 91.88 41 | 95.46 53 | 76.25 62 | 81.16 155 | 80.51 143 | 88.52 123 | 82.98 111 |
|
test20.03 | | | 69.91 172 | 76.20 163 | 62.58 188 | 84.01 103 | 67.34 183 | 75.67 182 | 65.88 116 | 79.98 122 | 40.28 212 | 82.65 130 | 89.31 135 | 39.63 207 | 77.41 171 | 73.28 176 | 69.98 196 | 63.40 191 |
|
Anonymous202405211 | | | | 84.68 106 | | 83.92 104 | 79.45 118 | 79.03 161 | 67.79 100 | 82.01 98 | | 88.77 80 | 92.58 99 | 55.93 170 | 86.68 110 | 84.26 111 | 88.92 114 | 78.98 143 |
|
NR-MVSNet | | | 82.89 92 | 87.43 75 | 77.59 112 | 83.91 105 | 83.59 85 | 87.10 103 | 78.35 20 | 80.64 116 | 68.85 143 | 92.67 33 | 96.50 26 | 54.19 179 | 87.19 107 | 88.68 71 | 93.16 61 | 82.75 114 |
|
Gipuma |  | | 86.47 58 | 89.25 57 | 83.23 58 | 83.88 106 | 78.78 124 | 85.35 118 | 68.42 93 | 92.69 11 | 89.03 12 | 91.94 38 | 96.32 34 | 81.80 22 | 94.45 27 | 86.86 86 | 90.91 91 | 83.69 103 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
v1921920 | | | 83.49 84 | 84.94 102 | 81.80 73 | 83.78 107 | 81.20 105 | 89.50 81 | 65.91 114 | 81.64 102 | 87.18 25 | 91.70 43 | 95.39 54 | 75.85 66 | 81.56 153 | 80.27 145 | 88.60 120 | 82.80 113 |
|
v1144 | | | 83.22 88 | 85.01 99 | 81.14 79 | 83.76 108 | 81.60 100 | 88.95 86 | 65.58 119 | 81.89 99 | 85.80 37 | 91.68 44 | 95.84 43 | 74.04 82 | 82.12 147 | 80.56 142 | 88.70 119 | 81.41 125 |
|
Vis-MVSNet (Re-imp) | | | 76.15 143 | 80.84 137 | 70.68 151 | 83.66 109 | 74.80 158 | 81.66 143 | 69.59 77 | 80.48 119 | 46.94 203 | 87.44 90 | 80.63 170 | 53.14 184 | 86.87 108 | 84.56 110 | 89.12 111 | 71.12 171 |
|
v144192 | | | 83.43 85 | 84.97 101 | 81.63 76 | 83.43 110 | 81.23 104 | 89.42 83 | 66.04 113 | 81.45 108 | 86.40 35 | 91.46 46 | 95.70 48 | 75.76 68 | 82.14 146 | 80.23 146 | 88.74 117 | 82.57 116 |
|
TinyColmap | | | 83.79 79 | 86.12 85 | 81.07 80 | 83.42 111 | 81.44 101 | 85.42 116 | 68.55 92 | 88.71 45 | 89.46 8 | 87.60 88 | 92.72 97 | 70.34 110 | 89.29 87 | 81.94 132 | 89.20 110 | 81.12 127 |
|
TransMVSNet (Re) | | | 79.05 127 | 86.66 78 | 70.18 156 | 83.32 112 | 75.99 146 | 77.54 166 | 63.98 135 | 90.68 25 | 55.84 181 | 94.80 11 | 96.06 37 | 53.73 182 | 86.27 114 | 83.22 124 | 86.65 138 | 79.61 141 |
|
v10 | | | 83.17 90 | 85.22 96 | 80.78 84 | 83.26 113 | 82.99 89 | 88.66 89 | 66.49 107 | 79.24 127 | 83.60 49 | 91.46 46 | 95.47 52 | 74.12 80 | 82.60 145 | 80.66 140 | 88.53 122 | 84.11 100 |
|
LTVRE_ROB | | 86.82 1 | 91.55 3 | 94.43 3 | 88.19 11 | 83.19 114 | 86.35 68 | 93.60 38 | 78.79 19 | 95.48 4 | 91.79 2 | 93.08 27 | 97.21 22 | 86.34 3 | 97.06 2 | 96.27 3 | 95.46 23 | 95.56 3 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
canonicalmvs | | | 81.22 110 | 86.04 88 | 75.60 121 | 83.17 115 | 83.18 88 | 80.29 151 | 65.82 117 | 85.97 68 | 67.98 150 | 77.74 154 | 91.51 117 | 65.17 137 | 88.62 92 | 86.15 92 | 91.17 89 | 89.09 61 |
|
FPMVS | | | 81.56 105 | 84.04 118 | 78.66 104 | 82.92 116 | 75.96 147 | 86.48 110 | 65.66 118 | 84.67 79 | 71.47 129 | 77.78 153 | 83.22 162 | 77.57 51 | 91.24 64 | 90.21 54 | 87.84 128 | 85.21 91 |
|
DCV-MVSNet | | | 80.04 115 | 85.67 92 | 73.48 137 | 82.91 117 | 81.11 106 | 80.44 150 | 66.06 111 | 85.01 76 | 62.53 167 | 78.84 147 | 94.43 78 | 58.51 160 | 88.66 91 | 85.91 94 | 90.41 94 | 85.73 88 |
|
MVS_111021_LR | | | 83.20 89 | 85.33 93 | 80.73 87 | 82.88 118 | 78.23 128 | 89.61 79 | 65.23 121 | 82.08 97 | 81.19 74 | 85.31 112 | 92.04 112 | 75.22 71 | 89.50 85 | 85.90 95 | 90.24 95 | 84.23 97 |
|
Anonymous20231211 | | | 79.37 123 | 85.78 90 | 71.89 144 | 82.87 119 | 79.66 116 | 78.77 163 | 63.93 137 | 83.36 86 | 59.39 171 | 90.54 53 | 94.66 72 | 56.46 167 | 87.38 102 | 84.12 112 | 89.92 100 | 80.74 129 |
|
v2v482 | | | 82.20 99 | 84.26 112 | 79.81 96 | 82.67 120 | 80.18 111 | 87.67 96 | 63.96 136 | 81.69 101 | 84.73 42 | 91.27 49 | 96.33 33 | 72.05 97 | 81.94 149 | 79.56 149 | 87.79 129 | 78.84 144 |
|
v8 | | | 82.20 99 | 84.56 108 | 79.45 98 | 82.42 121 | 81.65 99 | 87.26 100 | 64.27 128 | 79.36 126 | 81.70 71 | 91.04 52 | 95.75 46 | 73.30 89 | 82.82 141 | 79.18 152 | 87.74 130 | 82.09 120 |
|
MSDG | | | 81.39 108 | 84.23 114 | 78.09 108 | 82.40 122 | 82.47 95 | 85.31 120 | 60.91 161 | 79.73 124 | 80.26 78 | 86.30 102 | 88.27 143 | 69.67 112 | 87.20 106 | 84.98 104 | 89.97 99 | 80.67 130 |
|
Fast-Effi-MVS+ | | | 81.42 106 | 83.82 121 | 78.62 105 | 82.24 123 | 80.62 108 | 87.72 95 | 63.51 140 | 73.01 150 | 74.75 108 | 83.80 127 | 92.70 98 | 73.44 88 | 88.15 99 | 85.26 101 | 90.05 97 | 83.17 107 |
|
PVSNet_Blended_VisFu | | | 83.00 91 | 84.16 115 | 81.65 75 | 82.17 124 | 86.01 69 | 88.03 92 | 71.23 69 | 76.05 140 | 79.54 83 | 83.88 125 | 83.44 159 | 77.49 52 | 87.38 102 | 84.93 105 | 91.41 83 | 87.40 77 |
|
pmmvs6 | | | 80.46 112 | 88.34 66 | 71.26 146 | 81.96 125 | 77.51 132 | 77.54 166 | 68.83 88 | 93.72 8 | 55.92 180 | 93.94 19 | 98.03 10 | 55.94 169 | 89.21 88 | 85.61 97 | 87.36 134 | 80.38 132 |
|
IterMVS-LS | | | 79.79 117 | 82.56 130 | 76.56 118 | 81.83 126 | 77.85 130 | 79.90 155 | 69.42 82 | 78.93 129 | 71.21 130 | 90.47 54 | 85.20 157 | 70.86 107 | 80.54 160 | 80.57 141 | 86.15 145 | 84.36 96 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 73.07 162 | 77.02 155 | 68.46 166 | 81.62 127 | 72.89 164 | 79.56 159 | 70.78 72 | 69.56 166 | 52.52 191 | 77.37 158 | 81.12 169 | 42.60 202 | 84.20 134 | 83.93 113 | 83.65 165 | 70.07 176 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
gg-mvs-nofinetune | | | 72.68 164 | 75.21 170 | 69.73 158 | 81.48 128 | 69.04 178 | 70.48 195 | 76.67 36 | 86.92 60 | 67.80 152 | 88.06 85 | 64.67 201 | 42.12 204 | 77.60 170 | 73.65 175 | 79.81 176 | 66.57 183 |
|
USDC | | | 81.39 108 | 83.07 127 | 79.43 99 | 81.48 128 | 78.95 123 | 82.62 136 | 66.17 110 | 87.45 55 | 90.73 4 | 82.40 133 | 93.65 86 | 66.57 131 | 83.63 137 | 77.97 155 | 89.00 113 | 77.45 152 |
|
casdiffmvs | | | 79.93 116 | 84.11 116 | 75.05 126 | 81.41 130 | 78.99 122 | 82.95 133 | 62.90 148 | 81.53 104 | 68.60 147 | 91.94 38 | 96.03 38 | 65.84 135 | 82.89 140 | 77.07 163 | 88.59 121 | 80.34 136 |
|
tfpnnormal | | | 77.16 135 | 84.26 112 | 68.88 164 | 81.02 131 | 75.02 154 | 76.52 173 | 63.30 142 | 87.29 56 | 52.40 192 | 91.24 50 | 93.97 81 | 54.85 176 | 85.46 121 | 81.08 137 | 85.18 158 | 75.76 158 |
|
thres600view7 | | | 74.34 155 | 78.43 145 | 69.56 160 | 80.47 132 | 76.28 144 | 78.65 164 | 62.56 150 | 77.39 133 | 52.53 190 | 74.03 180 | 76.78 184 | 55.90 171 | 85.06 124 | 85.19 102 | 87.25 135 | 74.29 162 |
|
OpenMVS |  | 75.38 16 | 78.44 130 | 81.39 136 | 74.99 129 | 80.46 133 | 79.85 113 | 79.99 153 | 58.31 175 | 77.34 134 | 73.85 114 | 77.19 159 | 82.33 166 | 68.60 120 | 84.67 131 | 81.95 131 | 88.72 118 | 86.40 82 |
|
pm-mvs1 | | | 78.21 131 | 85.68 91 | 69.50 161 | 80.38 134 | 75.73 149 | 76.25 174 | 65.04 122 | 87.59 53 | 54.47 185 | 93.16 26 | 95.99 42 | 54.20 178 | 86.37 113 | 82.98 127 | 86.64 139 | 77.96 150 |
|
v148 | | | 79.33 125 | 82.32 131 | 75.84 120 | 80.14 135 | 75.74 148 | 81.98 140 | 57.06 178 | 81.51 106 | 79.36 85 | 89.42 67 | 96.42 29 | 71.32 101 | 81.54 154 | 75.29 172 | 85.20 157 | 76.32 154 |
|
pmmvs-eth3d | | | 79.64 120 | 82.06 133 | 76.83 115 | 80.05 136 | 72.64 165 | 87.47 98 | 66.59 106 | 80.83 115 | 73.50 116 | 89.32 70 | 93.20 92 | 67.78 123 | 80.78 158 | 81.64 135 | 85.58 155 | 76.01 155 |
|
testgi | | | 68.20 181 | 76.05 164 | 59.04 194 | 79.99 137 | 67.32 184 | 81.16 145 | 51.78 197 | 84.91 77 | 39.36 213 | 73.42 184 | 95.19 58 | 32.79 213 | 76.54 177 | 70.40 185 | 69.14 199 | 64.55 187 |
|
DI_MVS_plusplus_trai | | | 77.64 133 | 79.64 140 | 75.31 124 | 79.87 138 | 76.89 140 | 81.55 144 | 63.64 138 | 76.21 138 | 72.03 125 | 85.59 111 | 82.97 163 | 66.63 130 | 79.27 166 | 77.78 157 | 88.14 126 | 78.76 146 |
|
Fast-Effi-MVS+-dtu | | | 76.92 136 | 77.18 154 | 76.62 117 | 79.55 139 | 79.17 120 | 84.80 122 | 77.40 30 | 64.46 190 | 68.75 145 | 70.81 197 | 86.57 149 | 63.36 148 | 81.74 151 | 81.76 133 | 85.86 151 | 75.78 157 |
|
thres400 | | | 73.13 161 | 76.99 157 | 68.62 165 | 79.46 140 | 74.93 156 | 77.23 168 | 61.23 159 | 75.54 141 | 52.31 193 | 72.20 188 | 77.10 182 | 54.89 174 | 82.92 139 | 82.62 129 | 86.57 141 | 73.66 167 |
|
QAPM | | | 80.43 113 | 84.34 110 | 75.86 119 | 79.40 141 | 82.06 98 | 79.86 156 | 61.94 154 | 83.28 87 | 74.73 109 | 81.74 136 | 85.44 155 | 70.97 105 | 84.99 129 | 84.71 109 | 88.29 124 | 88.14 70 |
|
DELS-MVS | | | 79.71 118 | 83.74 122 | 75.01 128 | 79.31 142 | 82.68 92 | 84.79 123 | 60.06 167 | 75.43 143 | 69.09 141 | 86.13 104 | 89.38 133 | 67.16 127 | 85.12 123 | 83.87 115 | 89.65 103 | 83.57 104 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
3Dnovator | | 79.41 10 | 82.21 98 | 86.07 87 | 77.71 110 | 79.31 142 | 84.61 77 | 87.18 101 | 61.02 160 | 85.65 69 | 76.11 97 | 85.07 117 | 85.38 156 | 70.96 106 | 87.22 105 | 86.47 89 | 91.66 80 | 88.12 71 |
|
ET-MVSNet_ETH3D | | | 74.71 153 | 74.19 173 | 75.31 124 | 79.22 144 | 75.29 152 | 82.70 135 | 64.05 132 | 65.45 185 | 70.96 133 | 77.15 160 | 57.70 213 | 65.89 134 | 84.40 133 | 81.65 134 | 89.03 112 | 77.67 151 |
|
test-LLR | | | 62.15 197 | 59.46 213 | 65.29 184 | 79.07 145 | 52.66 208 | 69.46 201 | 62.93 146 | 50.76 217 | 53.81 187 | 63.11 211 | 58.91 209 | 52.87 185 | 66.54 206 | 62.34 198 | 73.59 184 | 61.87 196 |
|
test0.0.03 1 | | | 61.79 199 | 65.33 195 | 57.65 197 | 79.07 145 | 64.09 192 | 68.51 204 | 62.93 146 | 61.59 203 | 33.71 216 | 61.58 213 | 71.58 197 | 33.43 212 | 70.95 195 | 68.68 190 | 68.26 201 | 58.82 203 |
|
baseline1 | | | 69.62 174 | 73.55 177 | 65.02 186 | 78.95 147 | 70.39 171 | 71.38 194 | 62.03 153 | 70.97 161 | 47.95 202 | 78.47 151 | 68.19 199 | 47.77 198 | 79.65 165 | 76.94 165 | 82.05 172 | 70.27 174 |
|
MVS_Test | | | 76.72 138 | 79.40 142 | 73.60 136 | 78.85 148 | 74.99 155 | 79.91 154 | 61.56 156 | 69.67 165 | 72.44 121 | 85.98 107 | 90.78 124 | 63.50 146 | 78.30 168 | 75.74 170 | 85.33 156 | 80.31 137 |
|
FMVSNet1 | | | 78.20 132 | 84.83 104 | 70.46 154 | 78.62 149 | 79.03 121 | 77.90 165 | 67.53 103 | 83.02 89 | 55.10 183 | 87.19 95 | 93.18 93 | 55.65 172 | 85.57 118 | 83.39 120 | 87.98 127 | 82.40 118 |
|
GA-MVS | | | 75.01 152 | 76.39 160 | 73.39 138 | 78.37 150 | 75.66 150 | 80.03 152 | 58.40 174 | 70.51 162 | 75.85 100 | 83.24 128 | 76.14 186 | 63.75 142 | 77.28 172 | 76.62 166 | 83.97 164 | 75.30 160 |
|
thres200 | | | 72.41 165 | 76.00 165 | 68.21 168 | 78.28 151 | 76.28 144 | 74.94 184 | 62.56 150 | 72.14 157 | 51.35 198 | 69.59 203 | 76.51 185 | 54.89 174 | 85.06 124 | 80.51 143 | 87.25 135 | 71.92 170 |
|
EPNet_dtu | | | 71.90 167 | 73.03 179 | 70.59 152 | 78.28 151 | 61.64 196 | 82.44 137 | 64.12 130 | 63.26 194 | 69.74 137 | 71.47 191 | 82.41 164 | 51.89 191 | 78.83 167 | 78.01 154 | 77.07 181 | 75.60 159 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
pmmvs4 | | | 75.92 145 | 77.48 153 | 74.10 135 | 78.21 153 | 70.94 169 | 84.06 126 | 64.78 124 | 75.13 144 | 68.47 148 | 84.12 124 | 83.32 160 | 64.74 140 | 75.93 180 | 79.14 153 | 84.31 162 | 73.77 165 |
|
PM-MVS | | | 80.42 114 | 83.63 123 | 76.67 116 | 78.04 154 | 72.37 167 | 87.14 102 | 60.18 166 | 80.13 120 | 71.75 127 | 86.12 105 | 93.92 83 | 77.08 55 | 86.56 111 | 85.12 103 | 85.83 152 | 81.18 126 |
|
thres100view900 | | | 69.86 173 | 72.97 180 | 66.24 177 | 77.97 155 | 72.49 166 | 73.29 188 | 59.12 170 | 66.81 176 | 50.82 199 | 67.30 205 | 75.67 189 | 50.54 193 | 78.24 169 | 79.40 150 | 85.71 154 | 70.88 172 |
|
tfpn200view9 | | | 72.01 166 | 75.40 168 | 68.06 169 | 77.97 155 | 76.44 142 | 77.04 170 | 62.67 149 | 66.81 176 | 50.82 199 | 67.30 205 | 75.67 189 | 52.46 190 | 85.06 124 | 82.64 128 | 87.41 133 | 73.86 164 |
|
Vis-MVSNet |  | | 83.32 86 | 88.12 69 | 77.71 110 | 77.91 157 | 83.44 87 | 90.58 61 | 69.49 80 | 81.11 112 | 67.10 154 | 89.85 62 | 91.48 118 | 71.71 100 | 91.34 62 | 89.37 65 | 89.48 107 | 90.26 52 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PatchMatch-RL | | | 76.05 144 | 76.64 158 | 75.36 123 | 77.84 158 | 69.87 175 | 81.09 147 | 63.43 141 | 71.66 158 | 68.34 149 | 71.70 189 | 81.76 167 | 74.98 75 | 84.83 130 | 83.44 119 | 86.45 143 | 73.22 168 |
|
CANet_DTU | | | 75.04 151 | 78.45 144 | 71.07 147 | 77.27 159 | 77.96 129 | 83.88 128 | 58.00 176 | 64.11 191 | 68.67 146 | 75.65 173 | 88.37 142 | 53.92 181 | 82.05 148 | 81.11 136 | 84.67 160 | 79.88 139 |
|
MS-PatchMatch | | | 71.18 171 | 73.99 175 | 67.89 172 | 77.16 160 | 71.76 168 | 77.18 169 | 56.38 180 | 67.35 174 | 55.04 184 | 74.63 178 | 75.70 188 | 62.38 149 | 76.62 175 | 75.97 169 | 79.22 178 | 75.90 156 |
|
new-patchmatchnet | | | 62.59 196 | 73.79 176 | 49.53 210 | 76.98 161 | 53.57 206 | 53.46 218 | 54.64 185 | 85.43 72 | 28.81 217 | 91.94 38 | 96.41 30 | 25.28 215 | 76.80 173 | 53.66 213 | 57.99 211 | 58.69 204 |
|
GBi-Net | | | 73.17 159 | 77.64 150 | 67.95 170 | 76.76 162 | 77.36 134 | 75.77 178 | 64.57 125 | 62.99 197 | 51.83 195 | 76.05 167 | 77.76 179 | 52.73 187 | 85.57 118 | 83.39 120 | 86.04 147 | 80.37 133 |
|
PVSNet_BlendedMVS | | | 76.45 141 | 78.12 146 | 74.49 132 | 76.76 162 | 78.46 125 | 79.65 157 | 63.26 144 | 65.42 186 | 73.15 118 | 75.05 176 | 88.96 137 | 66.51 132 | 82.73 143 | 77.66 158 | 87.61 131 | 78.60 147 |
|
PVSNet_Blended | | | 76.45 141 | 78.12 146 | 74.49 132 | 76.76 162 | 78.46 125 | 79.65 157 | 63.26 144 | 65.42 186 | 73.15 118 | 75.05 176 | 88.96 137 | 66.51 132 | 82.73 143 | 77.66 158 | 87.61 131 | 78.60 147 |
|
test1 | | | 73.17 159 | 77.64 150 | 67.95 170 | 76.76 162 | 77.36 134 | 75.77 178 | 64.57 125 | 62.99 197 | 51.83 195 | 76.05 167 | 77.76 179 | 52.73 187 | 85.57 118 | 83.39 120 | 86.04 147 | 80.37 133 |
|
FMVSNet2 | | | 74.43 154 | 79.70 139 | 68.27 167 | 76.76 162 | 77.36 134 | 75.77 178 | 65.36 120 | 72.28 154 | 52.97 189 | 81.92 135 | 85.61 154 | 52.73 187 | 80.66 159 | 79.73 148 | 86.04 147 | 80.37 133 |
|
IB-MVS | | 71.28 17 | 75.21 150 | 77.00 156 | 73.12 141 | 76.76 162 | 77.45 133 | 83.05 131 | 58.92 172 | 63.01 196 | 64.31 161 | 59.99 214 | 87.57 146 | 68.64 119 | 86.26 115 | 82.34 130 | 87.05 137 | 82.36 119 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
thisisatest0515 | | | 81.18 111 | 84.32 111 | 77.52 114 | 76.73 168 | 74.84 157 | 85.06 121 | 61.37 157 | 81.05 113 | 73.95 113 | 88.79 79 | 89.25 136 | 75.49 70 | 85.98 116 | 84.78 107 | 92.53 71 | 85.56 90 |
|
IterMVS-SCA-FT | | | 77.23 134 | 79.18 143 | 74.96 130 | 76.67 169 | 79.85 113 | 75.58 183 | 61.34 158 | 73.10 148 | 73.79 115 | 86.23 103 | 79.61 172 | 79.00 36 | 80.28 162 | 75.50 171 | 83.41 169 | 79.70 140 |
|
FC-MVSNet-test | | | 75.91 146 | 83.59 124 | 66.95 175 | 76.63 170 | 69.07 177 | 85.33 119 | 64.97 123 | 84.87 78 | 41.95 208 | 93.17 25 | 87.04 147 | 47.78 197 | 91.09 69 | 85.56 99 | 85.06 159 | 74.34 161 |
|
Anonymous20231206 | | | 67.28 183 | 73.41 178 | 60.12 193 | 76.45 171 | 63.61 194 | 74.21 186 | 56.52 179 | 76.35 136 | 42.23 207 | 75.81 172 | 90.47 127 | 41.51 205 | 74.52 181 | 69.97 187 | 69.83 197 | 63.17 192 |
|
baseline2 | | | 68.71 179 | 68.34 188 | 69.14 162 | 75.69 172 | 69.70 176 | 76.60 172 | 55.53 183 | 60.13 205 | 62.07 169 | 66.76 207 | 60.35 206 | 60.77 152 | 76.53 178 | 74.03 174 | 84.19 163 | 70.88 172 |
|
diffmvs | | | 76.74 137 | 81.61 135 | 71.06 148 | 75.64 173 | 74.45 160 | 80.68 149 | 57.57 177 | 77.48 132 | 67.62 153 | 88.95 75 | 93.94 82 | 61.98 150 | 79.74 163 | 76.18 167 | 82.85 170 | 80.50 131 |
|
tttt0517 | | | 75.86 147 | 76.23 162 | 75.42 122 | 75.55 174 | 74.06 161 | 82.73 134 | 60.31 163 | 69.24 167 | 70.24 136 | 79.18 143 | 58.79 211 | 72.17 94 | 84.49 132 | 83.08 125 | 91.54 81 | 84.80 92 |
|
thisisatest0530 | | | 75.54 149 | 75.95 166 | 75.05 126 | 75.08 175 | 73.56 162 | 82.15 139 | 60.31 163 | 69.17 168 | 69.32 139 | 79.02 144 | 58.78 212 | 72.17 94 | 83.88 135 | 83.08 125 | 91.30 86 | 84.20 98 |
|
FMVSNet3 | | | 71.40 170 | 75.20 171 | 66.97 174 | 75.00 176 | 76.59 141 | 74.29 185 | 64.57 125 | 62.99 197 | 51.83 195 | 76.05 167 | 77.76 179 | 51.49 192 | 76.58 176 | 77.03 164 | 84.62 161 | 79.43 142 |
|
tpm cat1 | | | 64.79 190 | 62.74 204 | 67.17 173 | 74.61 177 | 65.91 188 | 76.18 175 | 59.32 169 | 64.88 189 | 66.41 157 | 71.21 194 | 53.56 221 | 59.17 157 | 61.53 212 | 58.16 206 | 67.33 202 | 63.95 188 |
|
UGNet | | | 79.62 121 | 85.91 89 | 72.28 143 | 73.52 178 | 83.91 80 | 86.64 108 | 69.51 79 | 79.85 123 | 62.57 166 | 85.82 109 | 89.63 130 | 53.18 183 | 88.39 96 | 87.35 81 | 88.28 125 | 86.43 81 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
our_test_3 | | | | | | 73.27 179 | 70.91 170 | 83.26 129 | | | | | | | | | | |
|
HyFIR lowres test | | | 73.29 158 | 74.14 174 | 72.30 142 | 73.08 180 | 78.33 127 | 83.12 130 | 62.41 152 | 63.81 192 | 62.13 168 | 76.67 163 | 78.50 176 | 71.09 103 | 74.13 184 | 77.47 161 | 81.98 173 | 70.10 175 |
|
MIMVSNet1 | | | 73.40 157 | 81.85 134 | 63.55 187 | 72.90 181 | 64.37 191 | 84.58 124 | 53.60 191 | 90.84 21 | 53.92 186 | 87.75 87 | 96.10 35 | 45.31 200 | 85.37 122 | 79.32 151 | 70.98 195 | 69.18 180 |
|
CostFormer | | | 66.81 185 | 66.94 191 | 66.67 176 | 72.79 182 | 68.25 180 | 79.55 160 | 55.57 182 | 65.52 184 | 62.77 165 | 76.98 161 | 60.09 207 | 56.73 166 | 65.69 208 | 62.35 197 | 72.59 187 | 69.71 177 |
|
CR-MVSNet | | | 69.56 175 | 68.34 188 | 70.99 149 | 72.78 183 | 67.63 181 | 64.47 207 | 67.74 101 | 59.93 206 | 72.30 122 | 80.10 139 | 56.77 215 | 65.04 138 | 71.64 192 | 72.91 178 | 83.61 167 | 69.40 178 |
|
CVMVSNet | | | 75.65 148 | 77.62 152 | 73.35 140 | 71.95 184 | 69.89 174 | 83.04 132 | 60.84 162 | 69.12 169 | 68.76 144 | 79.92 142 | 78.93 175 | 73.64 87 | 81.02 156 | 81.01 138 | 81.86 174 | 83.43 105 |
|
IterMVS | | | 73.62 156 | 76.53 159 | 70.23 155 | 71.83 185 | 77.18 138 | 80.69 148 | 53.22 193 | 72.23 155 | 66.62 156 | 85.21 114 | 78.96 174 | 69.54 114 | 76.28 179 | 71.63 182 | 79.45 177 | 74.25 163 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
RPMNet | | | 67.02 184 | 63.99 199 | 70.56 153 | 71.55 186 | 67.63 181 | 75.81 176 | 69.44 81 | 59.93 206 | 63.24 163 | 64.32 209 | 47.51 224 | 59.68 155 | 70.37 197 | 69.64 188 | 83.64 166 | 68.49 181 |
|
dps | | | 65.14 187 | 64.50 197 | 65.89 182 | 71.41 187 | 65.81 189 | 71.44 193 | 61.59 155 | 58.56 209 | 61.43 170 | 75.45 174 | 52.70 222 | 58.06 162 | 69.57 199 | 64.65 195 | 71.39 192 | 64.77 186 |
|
MDTV_nov1_ep13_2view | | | 72.96 163 | 75.59 167 | 69.88 157 | 71.15 188 | 64.86 190 | 82.31 138 | 54.45 187 | 76.30 137 | 78.32 90 | 86.52 100 | 91.58 115 | 61.35 151 | 76.80 173 | 66.83 193 | 71.70 188 | 66.26 184 |
|
TAMVS | | | 63.02 191 | 69.30 185 | 55.70 201 | 70.12 189 | 56.89 202 | 69.63 199 | 45.13 205 | 70.23 163 | 38.00 214 | 77.79 152 | 75.15 191 | 42.60 202 | 74.48 182 | 72.81 180 | 68.70 200 | 57.75 207 |
|
tpm | | | 62.79 193 | 63.25 201 | 62.26 191 | 70.09 190 | 53.78 205 | 71.65 192 | 47.31 203 | 65.72 182 | 76.70 95 | 80.62 138 | 56.40 218 | 48.11 196 | 64.20 210 | 58.54 204 | 59.70 208 | 63.47 190 |
|
V42 | | | 79.59 122 | 83.59 124 | 74.93 131 | 69.61 191 | 77.05 139 | 86.59 109 | 55.84 181 | 78.42 131 | 77.29 93 | 89.84 63 | 95.08 63 | 74.12 80 | 83.05 138 | 80.11 147 | 86.12 146 | 81.59 124 |
|
PatchmatchNet |  | | 64.81 189 | 63.74 200 | 66.06 181 | 69.21 192 | 58.62 200 | 73.16 189 | 60.01 168 | 65.92 180 | 66.19 158 | 76.27 165 | 59.09 208 | 60.45 154 | 66.58 205 | 61.47 203 | 67.33 202 | 58.24 205 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CHOSEN 1792x2688 | | | 68.80 178 | 71.09 181 | 66.13 179 | 69.11 193 | 68.89 179 | 78.98 162 | 54.68 184 | 61.63 202 | 56.69 176 | 71.56 190 | 78.39 177 | 67.69 124 | 72.13 191 | 72.01 181 | 69.63 198 | 73.02 169 |
|
MIMVSNet | | | 63.02 191 | 69.02 186 | 56.01 199 | 68.20 194 | 59.26 199 | 70.01 198 | 53.79 190 | 71.56 159 | 41.26 211 | 71.38 192 | 82.38 165 | 36.38 209 | 71.43 194 | 67.32 192 | 66.45 204 | 59.83 202 |
|
CMPMVS |  | 55.74 18 | 71.56 168 | 76.26 161 | 66.08 180 | 68.11 195 | 63.91 193 | 63.17 209 | 50.52 201 | 68.79 172 | 75.49 102 | 70.78 198 | 85.67 153 | 63.54 145 | 81.58 152 | 77.20 162 | 75.63 182 | 85.86 85 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
SCA | | | 68.54 180 | 67.52 190 | 69.73 158 | 67.79 196 | 75.04 153 | 76.96 171 | 68.94 87 | 66.41 178 | 67.86 151 | 74.03 180 | 60.96 204 | 65.55 136 | 68.99 200 | 65.67 194 | 71.30 193 | 61.54 199 |
|
EU-MVSNet | | | 76.48 140 | 80.53 138 | 71.75 145 | 67.62 197 | 70.30 172 | 81.74 142 | 54.06 189 | 75.47 142 | 71.01 132 | 80.10 139 | 93.17 94 | 73.67 85 | 83.73 136 | 77.85 156 | 82.40 171 | 83.07 108 |
|
tpmrst | | | 59.42 201 | 60.02 211 | 58.71 195 | 67.56 198 | 53.10 207 | 66.99 205 | 51.88 196 | 63.80 193 | 57.68 174 | 76.73 162 | 56.49 217 | 48.73 195 | 56.47 216 | 55.55 209 | 59.43 209 | 58.02 206 |
|
pmmvs5 | | | 68.91 177 | 74.35 172 | 62.56 189 | 67.45 199 | 66.78 185 | 71.70 191 | 51.47 198 | 67.17 175 | 56.25 178 | 82.41 132 | 88.59 141 | 47.21 199 | 73.21 190 | 74.23 173 | 81.30 175 | 68.03 182 |
|
MDTV_nov1_ep13 | | | 64.96 188 | 64.77 196 | 65.18 185 | 67.08 200 | 62.46 195 | 75.80 177 | 51.10 200 | 62.27 201 | 69.74 137 | 74.12 179 | 62.65 202 | 55.64 173 | 68.19 202 | 62.16 201 | 71.70 188 | 61.57 198 |
|
E-PMN | | | 59.07 203 | 62.79 203 | 54.72 202 | 67.01 201 | 47.81 215 | 60.44 213 | 43.40 206 | 72.95 151 | 44.63 205 | 70.42 200 | 73.17 194 | 58.73 159 | 80.97 157 | 51.98 214 | 54.14 214 | 42.26 216 |
|
pmnet_mix02 | | | 62.60 195 | 70.81 182 | 53.02 206 | 66.56 202 | 50.44 212 | 62.81 210 | 46.84 204 | 79.13 128 | 43.76 206 | 87.45 89 | 90.75 125 | 39.85 206 | 70.48 196 | 57.09 207 | 58.27 210 | 60.32 201 |
|
baseline | | | 69.33 176 | 75.37 169 | 62.28 190 | 66.54 203 | 66.67 186 | 73.95 187 | 48.07 202 | 66.10 179 | 59.26 172 | 82.45 131 | 86.30 150 | 54.44 177 | 74.42 183 | 73.25 177 | 71.42 191 | 78.43 149 |
|
N_pmnet | | | 54.95 210 | 65.90 193 | 42.18 211 | 66.37 204 | 43.86 218 | 57.92 215 | 39.79 210 | 79.54 125 | 17.24 222 | 86.31 101 | 87.91 144 | 25.44 214 | 64.68 209 | 51.76 215 | 46.33 217 | 47.23 214 |
|
MVSTER | | | 68.08 182 | 69.73 184 | 66.16 178 | 66.33 205 | 70.06 173 | 75.71 181 | 52.36 195 | 55.18 214 | 58.64 173 | 70.23 202 | 56.72 216 | 57.34 164 | 79.68 164 | 76.03 168 | 86.61 140 | 80.20 138 |
|
EMVS | | | 58.97 204 | 62.63 205 | 54.70 203 | 66.26 206 | 48.71 213 | 61.74 211 | 42.71 207 | 72.80 153 | 46.00 204 | 73.01 187 | 71.66 195 | 57.91 163 | 80.41 161 | 50.68 216 | 53.55 215 | 41.11 217 |
|
anonymousdsp | | | 85.62 62 | 90.53 49 | 79.88 95 | 64.64 207 | 76.35 143 | 96.28 13 | 53.53 192 | 85.63 70 | 81.59 72 | 92.81 31 | 97.71 14 | 86.88 2 | 94.56 26 | 92.83 25 | 96.35 6 | 93.84 9 |
|
EPMVS | | | 56.62 207 | 59.77 212 | 52.94 207 | 62.41 208 | 50.55 211 | 60.66 212 | 52.83 194 | 65.15 188 | 41.80 209 | 77.46 157 | 57.28 214 | 42.68 201 | 59.81 214 | 54.82 210 | 57.23 212 | 53.35 210 |
|
FMVSNet5 | | | 56.37 208 | 60.14 210 | 51.98 209 | 60.83 209 | 59.58 198 | 66.85 206 | 42.37 208 | 52.68 216 | 41.33 210 | 47.09 217 | 54.68 219 | 35.28 210 | 73.88 185 | 70.77 184 | 65.24 205 | 62.26 195 |
|
ADS-MVSNet | | | 56.89 206 | 61.09 207 | 52.00 208 | 59.48 210 | 48.10 214 | 58.02 214 | 54.37 188 | 72.82 152 | 49.19 201 | 75.32 175 | 65.97 200 | 37.96 208 | 59.34 215 | 54.66 211 | 52.99 216 | 51.42 212 |
|
new_pmnet | | | 52.29 211 | 63.16 202 | 39.61 213 | 58.89 211 | 44.70 217 | 48.78 220 | 34.73 213 | 65.88 181 | 17.85 221 | 73.42 184 | 80.00 171 | 23.06 216 | 67.00 204 | 62.28 200 | 54.36 213 | 48.81 213 |
|
MVS-HIRNet | | | 59.74 200 | 58.74 216 | 60.92 192 | 57.74 212 | 45.81 216 | 56.02 216 | 58.69 173 | 55.69 212 | 65.17 159 | 70.86 196 | 71.66 195 | 56.75 165 | 61.11 213 | 53.74 212 | 71.17 194 | 52.28 211 |
|
PatchT | | | 66.25 186 | 66.76 192 | 65.67 183 | 55.87 213 | 60.75 197 | 70.17 196 | 59.00 171 | 59.80 208 | 72.30 122 | 78.68 149 | 54.12 220 | 65.04 138 | 71.64 192 | 72.91 178 | 71.63 190 | 69.40 178 |
|
test-mter | | | 59.39 202 | 61.59 206 | 56.82 198 | 53.21 214 | 54.82 204 | 73.12 190 | 26.57 217 | 53.19 215 | 56.31 177 | 64.71 208 | 60.47 205 | 56.36 168 | 68.69 201 | 64.27 196 | 75.38 183 | 65.00 185 |
|
CHOSEN 280x420 | | | 56.32 209 | 58.85 215 | 53.36 205 | 51.63 215 | 39.91 219 | 69.12 203 | 38.61 211 | 56.29 211 | 36.79 215 | 48.84 216 | 62.59 203 | 63.39 147 | 73.61 188 | 67.66 191 | 60.61 206 | 63.07 193 |
|
TESTMET0.1,1 | | | 57.21 205 | 59.46 213 | 54.60 204 | 50.95 216 | 52.66 208 | 69.46 201 | 26.91 216 | 50.76 217 | 53.81 187 | 63.11 211 | 58.91 209 | 52.87 185 | 66.54 206 | 62.34 198 | 73.59 184 | 61.87 196 |
|
pmmvs3 | | | 62.72 194 | 68.71 187 | 55.74 200 | 50.74 217 | 57.10 201 | 70.05 197 | 28.82 215 | 61.57 204 | 57.39 175 | 71.19 195 | 85.73 152 | 53.96 180 | 73.36 189 | 69.43 189 | 73.47 186 | 62.55 194 |
|
MDA-MVSNet-bldmvs | | | 76.51 139 | 82.87 129 | 69.09 163 | 50.71 218 | 74.72 159 | 84.05 127 | 60.27 165 | 81.62 103 | 71.16 131 | 88.21 84 | 91.58 115 | 69.62 113 | 92.78 46 | 77.48 160 | 78.75 180 | 73.69 166 |
|
PMMVS | | | 61.98 198 | 65.61 194 | 57.74 196 | 45.03 219 | 51.76 210 | 69.54 200 | 35.05 212 | 55.49 213 | 55.32 182 | 68.23 204 | 78.39 177 | 58.09 161 | 70.21 198 | 71.56 183 | 83.42 168 | 63.66 189 |
|
PMMVS2 | | | 48.13 213 | 64.06 198 | 29.55 214 | 44.06 220 | 36.69 220 | 51.95 219 | 29.97 214 | 74.75 146 | 8.90 224 | 76.02 170 | 91.24 121 | 7.53 218 | 73.78 186 | 55.91 208 | 34.87 219 | 40.01 218 |
|
MVE |  | 41.12 19 | 51.80 212 | 60.92 208 | 41.16 212 | 35.21 221 | 34.14 221 | 48.45 221 | 41.39 209 | 69.11 170 | 19.53 220 | 63.33 210 | 73.80 192 | 63.56 144 | 67.19 203 | 61.51 202 | 38.85 218 | 57.38 208 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | | | 13.54 217 | 16.73 222 | 6.42 223 | 8.49 224 | 2.36 220 | 28.69 221 | 27.44 218 | 18.40 220 | 13.51 227 | 3.70 219 | 33.23 217 | 36.26 217 | 22.54 222 | |
|
test_method | | | 22.69 215 | 26.99 217 | 17.67 216 | 2.13 223 | 4.31 224 | 27.50 222 | 4.53 219 | 37.94 219 | 24.52 219 | 36.20 219 | 51.40 223 | 15.26 217 | 29.86 218 | 17.09 218 | 32.07 220 | 12.16 219 |
|
test123 | | | 1.06 216 | 1.41 218 | 0.64 218 | 0.39 224 | 0.48 225 | 0.52 227 | 0.25 222 | 1.11 223 | 1.37 226 | 2.01 222 | 1.98 228 | 0.87 220 | 1.43 220 | 1.27 219 | 0.46 224 | 1.62 221 |
|
testmvs | | | 0.93 217 | 1.37 219 | 0.41 219 | 0.36 225 | 0.36 226 | 0.62 226 | 0.39 221 | 1.48 222 | 0.18 227 | 2.41 221 | 1.31 229 | 0.41 221 | 1.25 221 | 1.08 220 | 0.48 223 | 1.68 220 |
|
GG-mvs-BLEND | | | 41.63 214 | 60.36 209 | 19.78 215 | 0.14 226 | 66.04 187 | 55.66 217 | 0.17 223 | 57.64 210 | 2.42 225 | 51.82 215 | 69.42 198 | 0.28 222 | 64.11 211 | 58.29 205 | 60.02 207 | 55.18 209 |
|
uanet_test | | | 0.00 218 | 0.00 220 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 222 | 0.00 221 | 0.00 225 | 0.00 222 |
|
sosnet-low-res | | | 0.00 218 | 0.00 220 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 222 | 0.00 221 | 0.00 225 | 0.00 222 |
|
sosnet | | | 0.00 218 | 0.00 220 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 224 | 0.00 228 | 0.00 223 | 0.00 230 | 0.00 223 | 0.00 222 | 0.00 221 | 0.00 225 | 0.00 222 |
|
RE-MVS-def | | | | | | | | | | | 87.10 29 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 89.43 132 | | | | | |
|
MTAPA | | | | | | | | | | | 89.37 9 | | 94.85 68 | | | | | |
|
MTMP | | | | | | | | | | | 90.54 5 | | 95.16 60 | | | | | |
|
Patchmatch-RL test | | | | | | | | 4.13 225 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 78.65 130 | | | | | | | | |
|
Patchmtry | | | | | | | 56.88 203 | 64.47 207 | 67.74 101 | | 72.30 122 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 17.78 222 | 20.40 223 | 6.69 218 | 31.41 220 | 9.80 223 | 38.61 218 | 34.88 226 | 33.78 211 | 28.41 219 | | 23.59 221 | 45.77 215 |
|