This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13091.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9794.51 1775.79 13792.94 4494.96 4788.36 2895.01 6190.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11591.97 6594.89 4988.38 2795.45 4689.27 397.87 5093.27 129
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8491.29 7593.97 9187.93 3895.87 1888.65 497.96 4594.12 96
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11584.07 4292.00 6494.40 7186.63 5195.28 5388.59 598.31 2392.30 166
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9790.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10789.16 11892.25 14372.03 20696.36 288.21 790.93 24892.98 140
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5088.06 898.15 3495.95 41
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9488.35 2995.56 3787.74 1097.74 5792.85 143
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1097.76 5593.99 99
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16169.87 21395.06 1196.14 2184.28 7293.07 13487.68 1296.34 10597.09 21
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10492.49 2491.19 13167.85 23686.63 16394.84 5179.58 12695.96 1287.62 1394.50 17594.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9188.19 3196.29 487.61 1498.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8694.21 7987.75 3995.87 1887.60 1597.71 5893.83 107
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1597.98 4292.98 140
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
No_MVS88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
DVP-MVS++90.07 3891.09 3287.00 9191.55 12772.64 13496.19 294.10 3485.33 3293.49 3694.64 6081.12 11295.88 1687.41 1995.94 12492.48 157
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 1998.21 2992.98 140
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9894.03 8886.57 5295.80 2487.35 2197.62 6294.20 90
X-MVStestdata85.04 11482.70 16092.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9816.05 37486.57 5295.80 2487.35 2197.62 6294.20 90
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3387.35 2198.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8094.00 9088.26 3095.71 3187.28 2498.39 2092.55 155
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4287.21 2598.11 3593.12 136
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4287.16 2697.60 6492.73 146
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2697.60 6492.73 146
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7591.38 7393.80 10187.20 4695.80 2487.10 2897.69 5993.93 103
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 8990.15 1695.67 3286.82 2997.34 7492.19 173
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 5986.67 3097.60 6494.18 92
DVP-MVScopyleft90.06 3991.32 2886.29 10494.16 4972.56 13890.54 4891.01 13583.61 4893.75 3094.65 5789.76 1895.78 2786.42 3197.97 4390.55 215
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 9594.25 4572.45 14290.54 4894.10 3495.88 1686.42 3197.97 4392.02 177
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8191.74 6994.41 7088.17 3295.98 1086.37 3397.99 4093.96 102
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12794.37 7386.74 5095.41 4886.32 3498.21 2993.19 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVSFormer82.23 16881.57 17884.19 15085.54 25169.26 17491.98 3190.08 16471.54 19376.23 30185.07 28358.69 27594.27 8286.26 3588.77 27289.03 243
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16471.54 19394.28 2096.54 1381.57 10794.27 8286.26 3596.49 9997.09 21
v7n90.13 3690.96 3887.65 8791.95 11071.06 15889.99 5993.05 7786.53 2694.29 1896.27 1782.69 8694.08 9386.25 3797.63 6197.82 8
SD-MVS88.96 6389.88 4986.22 10791.63 12177.07 10189.82 6493.77 4778.90 10092.88 4592.29 14186.11 5890.22 21286.24 3897.24 7791.36 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12878.20 10986.69 16292.28 14280.36 12095.06 6086.17 3996.49 9990.22 221
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9086.07 4098.48 1797.22 19
SED-MVS90.46 3391.64 1786.93 9294.18 4672.65 13290.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4197.92 4692.29 167
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4197.82 5192.04 176
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12697.64 283.45 8094.55 7686.02 4398.60 1296.67 27
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10891.09 4291.87 11172.61 18092.16 6095.23 4166.01 23295.59 3586.02 4397.78 5397.24 17
IU-MVS94.18 4672.64 13490.82 14056.98 30989.67 10785.78 4597.92 4693.28 128
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10091.19 4095.74 581.38 7092.28 5993.80 10186.89 4994.64 7185.52 4697.51 7194.30 89
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
bld_raw_dy_0_6484.85 11884.44 13386.07 11293.73 6074.93 11988.57 9281.90 27270.44 20491.28 7695.18 4256.62 28989.28 23885.15 4997.09 8193.99 99
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5099.27 199.54 1
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7395.32 1097.24 572.94 19494.85 6585.07 5097.78 5397.26 16
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9693.83 2793.60 10890.81 792.96 13685.02 5298.45 1892.41 160
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11592.36 2689.06 18377.34 11893.63 3595.83 2565.40 23695.90 1485.01 5398.23 2797.49 13
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12294.26 7777.55 14295.86 2184.88 5495.87 12895.24 58
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 11992.78 8978.78 10292.51 5593.64 10788.13 3493.84 10284.83 5597.55 6794.10 97
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 9985.25 13791.23 12977.31 12087.07 15391.47 16182.94 8494.71 6884.67 5696.27 10992.62 153
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11593.91 4180.07 8586.75 15993.26 11193.64 290.93 19184.60 5790.75 25393.97 101
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8688.13 3496.30 384.51 5897.81 5291.70 187
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14570.00 21294.55 1596.67 1187.94 3793.59 11384.27 5995.97 12195.52 49
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16189.71 10594.82 5285.09 6395.77 2984.17 6098.03 3893.26 130
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 15869.27 21694.39 1696.38 1586.02 6093.52 11783.96 6195.92 12695.34 53
v1086.54 9387.10 8884.84 13188.16 20063.28 23186.64 12292.20 10175.42 14392.81 5094.50 6374.05 17994.06 9483.88 6296.28 10797.17 20
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12893.60 5580.16 8389.13 11993.44 10983.82 7590.98 18983.86 6395.30 14993.60 120
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 7992.89 12287.27 4493.78 10383.69 6497.55 67
ACMH76.49 1489.34 5591.14 3183.96 15392.50 9270.36 16489.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25283.33 6598.30 2493.20 132
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v886.22 9886.83 9584.36 14387.82 20462.35 24586.42 12591.33 12676.78 12492.73 5294.48 6573.41 18893.72 10583.10 6695.41 14297.01 23
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10091.97 10770.73 20294.19 2196.67 1176.94 15194.57 7483.07 6796.28 10796.15 33
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 9979.74 8787.50 14492.38 13781.42 10993.28 12683.07 6797.24 7791.67 188
SixPastTwentyTwo87.20 8587.45 8386.45 10192.52 9169.19 17787.84 10288.05 19981.66 6794.64 1496.53 1465.94 23394.75 6783.02 6996.83 8895.41 51
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 9992.87 4693.74 10490.60 1195.21 5682.87 7098.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v124084.30 13084.51 13283.65 16087.65 20961.26 25682.85 19191.54 11967.94 23490.68 8990.65 18771.71 20893.64 10782.84 7194.78 16896.07 36
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8892.09 6293.89 9983.80 7693.10 13382.67 7298.04 3693.64 118
DROMVSNet88.01 7588.32 7287.09 9089.28 17572.03 14890.31 5496.31 380.88 7685.12 18989.67 20684.47 7095.46 4582.56 7396.26 11093.77 112
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9484.32 20589.33 21283.87 7494.53 7782.45 7494.89 16394.90 65
v119284.57 12384.69 12884.21 14887.75 20662.88 23583.02 18691.43 12269.08 21989.98 10090.89 17872.70 19893.62 11182.41 7594.97 16096.13 34
v192192084.23 13484.37 13783.79 15687.64 21061.71 25182.91 18991.20 13067.94 23490.06 9590.34 19272.04 20593.59 11382.32 7694.91 16196.07 36
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7791.13 7893.19 11286.22 5795.97 1182.23 7797.18 7990.45 217
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
tt080588.09 7489.79 5182.98 17693.26 7363.94 22591.10 4189.64 17385.07 3590.91 8491.09 17089.16 2291.87 16782.03 7895.87 12893.13 134
EI-MVSNet-Vis-set85.12 11384.53 13186.88 9384.01 27172.76 13183.91 16285.18 23980.44 7888.75 12385.49 27280.08 12291.92 16482.02 7990.85 25195.97 39
ZD-MVS92.22 10280.48 6791.85 11271.22 19890.38 9092.98 11786.06 5996.11 581.99 8096.75 91
EI-MVSNet-UG-set85.04 11484.44 13386.85 9483.87 27472.52 14083.82 16485.15 24080.27 8288.75 12385.45 27479.95 12491.90 16581.92 8190.80 25296.13 34
v14419284.24 13384.41 13583.71 15987.59 21161.57 25282.95 18891.03 13467.82 23789.80 10390.49 19073.28 19193.51 11881.88 8294.89 16396.04 38
v114484.54 12584.72 12684.00 15187.67 20862.55 24182.97 18790.93 13870.32 20889.80 10390.99 17373.50 18593.48 11981.69 8394.65 17395.97 39
train_agg85.98 10285.28 11788.07 8292.34 9679.70 7483.94 15990.32 15365.79 24984.49 20090.97 17481.93 10193.63 10881.21 8496.54 9790.88 203
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12391.09 13378.77 10384.85 19690.89 17880.85 11495.29 5181.14 8595.32 14692.34 164
v2v48284.09 13784.24 13983.62 16187.13 21961.40 25382.71 19489.71 17172.19 18989.55 11391.41 16270.70 21293.20 12881.02 8693.76 19096.25 32
WR-MVS_H89.91 4691.31 2985.71 11996.32 962.39 24389.54 7493.31 6490.21 1095.57 995.66 2981.42 10995.90 1480.94 8798.80 298.84 5
LS3D90.60 3090.34 4791.38 2489.03 18084.23 4593.58 694.68 1690.65 790.33 9293.95 9684.50 6995.37 4980.87 8895.50 14194.53 79
test9_res80.83 8996.45 10290.57 213
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 10989.45 7793.61 5379.44 9286.55 16492.95 12074.84 16995.22 5480.78 9095.83 13094.46 80
plane_prior593.61 5395.22 5480.78 9095.83 13094.46 80
PHI-MVS86.38 9585.81 10988.08 8188.44 19477.34 9789.35 8093.05 7773.15 17284.76 19787.70 23878.87 13094.18 8880.67 9296.29 10692.73 146
K. test v385.14 11284.73 12486.37 10291.13 14169.63 17085.45 13576.68 30284.06 4392.44 5796.99 862.03 25494.65 7080.58 9393.24 20194.83 72
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9687.35 10792.09 10378.87 10184.27 21094.05 8778.35 13493.65 10680.54 9491.58 23692.08 175
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14387.09 22365.22 21284.16 15394.23 2277.89 11291.28 7693.66 10684.35 7192.71 14280.07 9594.87 16695.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 15283.37 15083.75 15883.16 28063.33 23081.31 22290.23 16069.51 21590.91 8490.81 18174.16 17792.29 15680.06 9690.22 25995.62 47
MVS_Test82.47 16583.22 15180.22 22682.62 28657.75 29582.54 20091.96 10871.16 19982.89 22892.52 13577.41 14390.50 20680.04 9787.84 28692.40 161
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6379.95 9898.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_040288.65 6589.58 5685.88 11692.55 9072.22 14684.01 15789.44 17888.63 1694.38 1795.77 2686.38 5693.59 11379.84 9995.21 15091.82 183
iter_conf_final80.36 19778.88 20984.79 13286.29 23966.36 20386.95 11386.25 22468.16 23082.09 24089.48 20836.59 36694.51 7979.83 10094.30 18093.50 125
EGC-MVSNET74.79 26169.99 29889.19 6394.89 3787.00 1191.89 3486.28 2231.09 3752.23 37795.98 2381.87 10489.48 22979.76 10195.96 12291.10 198
nrg03087.85 8088.49 7085.91 11490.07 16369.73 16887.86 10194.20 2574.04 15592.70 5394.66 5685.88 6191.50 17379.72 10297.32 7596.50 31
agg_prior279.68 10396.16 11290.22 221
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17592.38 9870.25 20989.35 11790.68 18582.85 8594.57 7479.55 10495.95 12392.00 178
test_prior283.37 17675.43 14284.58 19991.57 15881.92 10379.54 10596.97 84
lessismore_v085.95 11391.10 14270.99 15970.91 34191.79 6794.42 6961.76 25592.93 13879.52 10693.03 20693.93 103
PS-CasMVS90.06 3991.92 1184.47 14096.56 658.83 28889.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3679.42 10798.74 599.00 2
tttt051781.07 18379.58 20385.52 12288.99 18266.45 20187.03 11275.51 31073.76 15988.32 13390.20 19637.96 36394.16 9279.36 10895.13 15395.93 42
DTE-MVSNet89.98 4391.91 1384.21 14896.51 757.84 29388.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 10998.57 1498.80 6
CP-MVSNet89.27 5890.91 4084.37 14196.34 858.61 29088.66 9192.06 10490.78 695.67 795.17 4381.80 10595.54 3979.00 11098.69 998.95 4
ambc82.98 17690.55 15464.86 21588.20 9589.15 18189.40 11693.96 9471.67 20991.38 18078.83 11196.55 9692.71 149
PEN-MVS90.03 4191.88 1484.48 13996.57 558.88 28588.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3478.69 11298.72 898.97 3
baseline85.20 11185.93 10683.02 17586.30 23862.37 24484.55 14693.96 3974.48 15287.12 14892.03 14682.30 9391.94 16378.39 11394.21 18294.74 73
DeepC-MVS_fast80.27 886.23 9785.65 11387.96 8491.30 13476.92 10287.19 10891.99 10670.56 20384.96 19290.69 18480.01 12395.14 5778.37 11495.78 13591.82 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11189.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12178.35 11598.76 395.61 48
MCST-MVS84.36 12783.93 14485.63 12091.59 12271.58 15583.52 17292.13 10261.82 27683.96 21589.75 20579.93 12593.46 12078.33 11694.34 17991.87 182
3Dnovator80.37 784.80 11984.71 12785.06 12986.36 23674.71 12088.77 8990.00 16675.65 13984.96 19293.17 11374.06 17891.19 18378.28 11791.09 24289.29 237
h-mvs3384.25 13282.76 15988.72 7091.82 11982.60 5684.00 15884.98 24671.27 19586.70 16090.55 18963.04 25093.92 9878.26 11894.20 18389.63 229
hse-mvs283.47 15281.81 17388.47 7491.03 14382.27 5782.61 19583.69 25671.27 19586.70 16086.05 26663.04 25092.41 15078.26 11893.62 19690.71 208
c3_l81.64 17781.59 17781.79 20280.86 30259.15 28278.61 26290.18 16268.36 22687.20 14687.11 25169.39 21491.62 17178.16 12094.43 17894.60 75
IterMVS-LS84.73 12084.98 12183.96 15387.35 21463.66 22683.25 17989.88 16876.06 12989.62 10992.37 14073.40 19092.52 14778.16 12094.77 17095.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet82.61 16282.42 16783.20 17283.25 27863.66 22683.50 17385.07 24176.06 12986.55 16485.10 28073.41 18890.25 20978.15 12290.67 25595.68 45
GeoE85.45 10885.81 10984.37 14190.08 16167.07 19385.86 13091.39 12572.33 18687.59 14290.25 19584.85 6692.37 15278.00 12391.94 23093.66 115
diffmvspermissive80.40 19580.48 19180.17 22779.02 32260.04 27177.54 27690.28 15966.65 24582.40 23487.33 24673.50 18587.35 26177.98 12489.62 26393.13 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10693.17 7076.02 13188.64 12591.22 16684.24 7393.37 12477.97 12597.03 8395.52 49
casdiffmvspermissive85.21 11085.85 10883.31 16986.17 24462.77 23783.03 18593.93 4074.69 15088.21 13492.68 13082.29 9491.89 16677.87 12693.75 19295.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9489.42 7995.73 677.87 11381.64 25187.25 24782.43 9094.53 7777.65 12796.46 10194.14 95
DP-MVS88.60 6689.01 6387.36 8991.30 13477.50 9387.55 10492.97 8387.95 2089.62 10992.87 12384.56 6893.89 9977.65 12796.62 9490.70 209
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17688.51 1790.11 9495.12 4590.98 688.92 24277.55 12997.07 8283.13 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSLP-MVS++85.00 11686.03 10581.90 19691.84 11771.56 15686.75 12093.02 8175.95 13487.12 14889.39 21077.98 13689.40 23677.46 13094.78 16884.75 290
IterMVS-SCA-FT80.64 19079.41 20484.34 14583.93 27269.66 16976.28 29481.09 27872.43 18186.47 17090.19 19760.46 26093.15 13177.45 13186.39 30090.22 221
CDPH-MVS86.17 10085.54 11488.05 8392.25 10075.45 11683.85 16392.01 10565.91 24886.19 17191.75 15683.77 7794.98 6277.43 13296.71 9293.73 113
test_fmvs375.72 25075.20 25077.27 26975.01 35069.47 17178.93 25584.88 24846.67 34887.08 15287.84 23650.44 31471.62 33877.42 13388.53 27590.72 207
BP-MVS77.30 134
HQP-MVS84.61 12284.06 14186.27 10591.19 13770.66 16084.77 14092.68 9173.30 16780.55 26490.17 19972.10 20294.61 7277.30 13494.47 17693.56 122
MVS_111021_LR84.28 13183.76 14685.83 11889.23 17783.07 5180.99 22883.56 25872.71 17886.07 17489.07 21881.75 10686.19 27977.11 13693.36 19788.24 250
CANet83.79 14582.85 15886.63 9786.17 24472.21 14783.76 16791.43 12277.24 12174.39 31887.45 24375.36 16395.42 4777.03 13792.83 21192.25 171
dcpmvs_284.23 13485.14 11881.50 20488.61 18961.98 25082.90 19093.11 7368.66 22592.77 5192.39 13678.50 13287.63 25876.99 13892.30 21894.90 65
Anonymous2023121188.40 6789.62 5584.73 13590.46 15565.27 21188.86 8693.02 8187.15 2393.05 4397.10 682.28 9592.02 16276.70 13997.99 4096.88 25
iter_conf0578.81 21577.35 22883.21 17182.98 28460.75 26684.09 15588.34 19363.12 26784.25 21289.48 20831.41 37194.51 7976.64 14095.83 13094.38 87
MVS_111021_HR84.63 12184.34 13885.49 12490.18 16075.86 11479.23 25387.13 21173.35 16485.56 18489.34 21183.60 7990.50 20676.64 14094.05 18690.09 226
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13279.26 9589.68 10694.81 5582.44 8987.74 25676.54 14288.74 27496.61 29
DIV-MVS_self_test80.43 19380.23 19481.02 21379.99 31059.25 27977.07 28287.02 21667.38 23886.19 17189.22 21363.09 24890.16 21476.32 14395.80 13393.66 115
cl____80.42 19480.23 19481.02 21379.99 31059.25 27977.07 28287.02 21667.37 23986.18 17389.21 21463.08 24990.16 21476.31 14495.80 13393.65 117
AUN-MVS81.18 18278.78 21288.39 7690.93 14582.14 5882.51 20183.67 25764.69 26280.29 26785.91 26951.07 31092.38 15176.29 14593.63 19590.65 212
Gipumacopyleft84.44 12686.33 10078.78 24384.20 26973.57 12689.55 7290.44 14984.24 4184.38 20294.89 4976.35 16080.40 31676.14 14696.80 9082.36 321
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
miper_ehance_all_eth80.34 19880.04 20181.24 20979.82 31258.95 28477.66 27389.66 17265.75 25285.99 17885.11 27968.29 22191.42 17876.03 14792.03 22693.33 126
alignmvs83.94 14383.98 14383.80 15587.80 20567.88 18984.54 14891.42 12473.27 17088.41 13087.96 23272.33 20190.83 19676.02 14894.11 18492.69 150
PC_three_145258.96 29590.06 9591.33 16480.66 11793.03 13575.78 14995.94 12492.48 157
canonicalmvs85.50 10686.14 10483.58 16287.97 20167.13 19287.55 10494.32 1873.44 16388.47 12887.54 24186.45 5491.06 18875.76 15093.76 19092.54 156
CSCG86.26 9686.47 9885.60 12190.87 14774.26 12387.98 9991.85 11280.35 8089.54 11588.01 23179.09 12892.13 15875.51 15195.06 15790.41 218
thisisatest053079.07 21077.33 22984.26 14787.13 21964.58 21783.66 17075.95 30568.86 22285.22 18887.36 24538.10 36193.57 11675.47 15294.28 18194.62 74
TSAR-MVS + GP.83.95 14282.69 16187.72 8589.27 17681.45 6383.72 16881.58 27674.73 14985.66 18186.06 26572.56 20092.69 14475.44 15395.21 15089.01 245
cl2278.97 21178.21 22181.24 20977.74 32659.01 28377.46 27987.13 21165.79 24984.32 20585.10 28058.96 27490.88 19575.36 15492.03 22693.84 106
eth_miper_zixun_eth80.84 18680.22 19682.71 18481.41 29460.98 26277.81 27190.14 16367.31 24086.95 15687.24 24864.26 24092.31 15475.23 15591.61 23494.85 71
v14882.31 16682.48 16681.81 20185.59 25059.66 27581.47 22086.02 22872.85 17588.05 13690.65 18770.73 21190.91 19375.15 15691.79 23194.87 67
FC-MVSNet-test85.93 10387.05 9082.58 18792.25 10056.44 30485.75 13193.09 7577.33 11991.94 6694.65 5774.78 17193.41 12375.11 15798.58 1397.88 7
UniMVSNet (Re)86.87 8786.98 9286.55 9993.11 7768.48 18283.80 16692.87 8580.37 7989.61 11191.81 15477.72 13994.18 8875.00 15898.53 1596.99 24
FA-MVS(test-final)83.13 15883.02 15683.43 16586.16 24666.08 20588.00 9888.36 19275.55 14085.02 19192.75 12865.12 23792.50 14874.94 15991.30 24091.72 185
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16681.12 11294.68 6974.48 16095.35 14492.29 167
DELS-MVS81.44 17981.25 18082.03 19484.27 26862.87 23676.47 29292.49 9570.97 20081.64 25183.83 29575.03 16692.70 14374.29 16192.22 22490.51 216
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 14484.01 14283.57 16387.22 21765.61 21086.55 12492.40 9678.64 10581.34 25684.18 29383.65 7892.93 13874.22 16287.87 28592.17 174
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11092.86 8467.02 19482.55 19991.56 11883.08 5490.92 8291.82 15378.25 13593.99 9574.16 16398.35 2197.49 13
DU-MVS86.80 9086.99 9186.21 10893.24 7467.02 19483.16 18392.21 10081.73 6690.92 8291.97 14777.20 14593.99 9574.16 16398.35 2197.61 10
testf189.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
APD_test289.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
LF4IMVS82.75 16181.93 17285.19 12682.08 28780.15 7085.53 13488.76 18668.01 23185.58 18387.75 23771.80 20786.85 26874.02 16793.87 18988.58 248
FIs85.35 10986.27 10182.60 18691.86 11457.31 29785.10 13993.05 7775.83 13691.02 8193.97 9173.57 18492.91 14073.97 16898.02 3997.58 12
IS-MVSNet86.66 9286.82 9686.17 11092.05 10866.87 19791.21 3988.64 18886.30 2889.60 11292.59 13169.22 21694.91 6473.89 16997.89 4996.72 26
EU-MVSNet75.12 25574.43 25777.18 27083.11 28259.48 27785.71 13382.43 26739.76 36785.64 18288.76 22144.71 34687.88 25573.86 17085.88 30484.16 296
ETV-MVS84.31 12983.91 14585.52 12288.58 19070.40 16384.50 15093.37 5878.76 10484.07 21478.72 34180.39 11995.13 5873.82 17192.98 20891.04 199
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11084.26 4090.87 8793.92 9882.18 9689.29 23773.75 17294.81 16793.70 114
Anonymous2024052180.18 20381.25 18076.95 27283.15 28160.84 26482.46 20285.99 22968.76 22386.78 15793.73 10559.13 27277.44 32373.71 17397.55 6792.56 154
MVSTER77.09 23475.70 24581.25 20775.27 34761.08 25877.49 27885.07 24160.78 28786.55 16488.68 22343.14 35390.25 20973.69 17490.67 25592.42 159
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15681.56 6890.02 9791.20 16882.40 9190.81 19773.58 17594.66 17294.56 76
RPMNet78.88 21378.28 22080.68 22079.58 31362.64 23982.58 19794.16 2774.80 14875.72 30792.59 13148.69 31895.56 3773.48 17682.91 32983.85 300
EG-PatchMatch MVS84.08 13884.11 14083.98 15292.22 10272.61 13782.20 21387.02 21672.63 17988.86 12091.02 17278.52 13191.11 18673.41 17791.09 24288.21 251
test_fmvs273.57 27072.80 27275.90 28672.74 36168.84 18177.07 28284.32 25445.14 35382.89 22884.22 29248.37 31970.36 34173.40 17887.03 29388.52 249
patch_mono-278.89 21279.39 20577.41 26884.78 25868.11 18675.60 30083.11 26160.96 28579.36 27789.89 20375.18 16572.97 33473.32 17992.30 21891.15 197
miper_lstm_enhance76.45 24476.10 24177.51 26676.72 33460.97 26364.69 34885.04 24363.98 26483.20 22488.22 22856.67 28878.79 32173.22 18093.12 20492.78 145
xiu_mvs_v1_base_debu80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base_debi80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12794.02 5464.13 22284.38 15191.29 12784.88 3892.06 6393.84 10086.45 5493.73 10473.22 18098.66 1097.69 9
TAPA-MVS77.73 1285.71 10584.83 12388.37 7788.78 18579.72 7387.15 11093.50 5669.17 21785.80 18089.56 20780.76 11592.13 15873.21 18595.51 14093.25 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall77.83 22676.93 23380.51 22176.15 33958.01 29275.47 30488.82 18458.05 30183.59 21980.69 32564.41 23991.20 18273.16 18692.03 22692.33 165
旧先验281.73 21656.88 31086.54 16984.90 29272.81 187
114514_t83.10 15982.54 16584.77 13492.90 8169.10 17986.65 12190.62 14654.66 31781.46 25390.81 18176.98 15094.38 8172.62 18896.18 11190.82 205
UniMVSNet_ETH3D89.12 6190.72 4384.31 14697.00 264.33 22189.67 6988.38 19188.84 1394.29 1897.57 390.48 1391.26 18172.57 18997.65 6097.34 15
NR-MVSNet86.00 10186.22 10285.34 12593.24 7464.56 21882.21 21190.46 14880.99 7488.42 12991.97 14777.56 14193.85 10072.46 19098.65 1197.61 10
Baseline_NR-MVSNet84.00 14185.90 10778.29 25491.47 13253.44 32382.29 20787.00 21979.06 9889.55 11395.72 2877.20 14586.14 28072.30 19198.51 1695.28 56
Effi-MVS+-dtu85.82 10483.38 14993.14 387.13 21991.15 287.70 10388.42 19074.57 15183.56 22085.65 27078.49 13394.21 8672.04 19292.88 21094.05 98
PM-MVS80.20 20279.00 20883.78 15788.17 19986.66 1581.31 22266.81 35569.64 21488.33 13290.19 19764.58 23883.63 30271.99 19390.03 26081.06 338
EIA-MVS82.19 16981.23 18285.10 12887.95 20269.17 17883.22 18293.33 6170.42 20578.58 28479.77 33777.29 14494.20 8771.51 19488.96 27091.93 181
DPM-MVS80.10 20579.18 20782.88 18290.71 15169.74 16778.87 25890.84 13960.29 29175.64 30985.92 26867.28 22493.11 13271.24 19591.79 23185.77 280
OpenMVScopyleft76.72 1381.98 17482.00 17181.93 19584.42 26468.22 18488.50 9489.48 17766.92 24281.80 24891.86 14972.59 19990.16 21471.19 19691.25 24187.40 263
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
TestCases89.68 5391.59 12283.40 4895.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
ET-MVSNet_ETH3D75.28 25272.77 27382.81 18383.03 28368.11 18677.09 28176.51 30360.67 28977.60 29480.52 32938.04 36291.15 18570.78 19990.68 25489.17 238
EPP-MVSNet85.47 10785.04 12086.77 9691.52 13069.37 17291.63 3687.98 20181.51 6987.05 15491.83 15266.18 23195.29 5170.75 20096.89 8595.64 46
jason77.42 23175.75 24482.43 19287.10 22269.27 17377.99 26881.94 27151.47 33577.84 28985.07 28360.32 26289.00 24070.74 20189.27 26789.03 243
jason: jason.
MG-MVS80.32 19980.94 18578.47 25088.18 19852.62 33082.29 20785.01 24572.01 19179.24 28092.54 13469.36 21593.36 12570.65 20289.19 26889.45 231
QAPM82.59 16382.59 16482.58 18786.44 23166.69 19889.94 6290.36 15267.97 23384.94 19492.58 13372.71 19792.18 15770.63 20387.73 28788.85 246
CVMVSNet72.62 27871.41 28776.28 28283.25 27860.34 26983.50 17379.02 29137.77 37076.33 29985.10 28049.60 31787.41 26070.54 20477.54 35481.08 336
pmmvs686.52 9488.06 7481.90 19692.22 10262.28 24684.66 14489.15 18183.54 5089.85 10297.32 488.08 3686.80 26970.43 20597.30 7696.62 28
D2MVS76.84 23775.67 24680.34 22480.48 30862.16 24973.50 31784.80 25057.61 30582.24 23687.54 24151.31 30987.65 25770.40 20693.19 20391.23 196
PAPM_NR83.23 15583.19 15383.33 16890.90 14665.98 20688.19 9690.78 14178.13 11180.87 26087.92 23573.49 18792.42 14970.07 20788.40 27691.60 190
lupinMVS76.37 24574.46 25682.09 19385.54 25169.26 17476.79 28580.77 28250.68 34176.23 30182.82 30858.69 27588.94 24169.85 20888.77 27288.07 252
PVSNet_Blended_VisFu81.55 17880.49 19084.70 13791.58 12573.24 12984.21 15291.67 11762.86 26980.94 25887.16 24967.27 22592.87 14169.82 20988.94 27187.99 255
Patchmatch-RL test74.48 26373.68 26276.89 27584.83 25766.54 19972.29 32369.16 34857.70 30386.76 15886.33 26045.79 33482.59 30569.63 21090.65 25781.54 329
EPNet80.37 19678.41 21986.23 10676.75 33373.28 12787.18 10977.45 29776.24 12868.14 34288.93 22065.41 23593.85 10069.47 21196.12 11591.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS83.18 15682.64 16284.79 13289.05 17967.82 19077.93 26992.52 9468.33 22785.07 19081.54 32182.06 9892.96 13669.35 21297.91 4893.57 121
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
原ACMM184.60 13892.81 8774.01 12491.50 12062.59 27082.73 23190.67 18676.53 15894.25 8469.24 21395.69 13885.55 281
VDD-MVS84.23 13484.58 13083.20 17291.17 14065.16 21483.25 17984.97 24779.79 8687.18 14794.27 7474.77 17290.89 19469.24 21396.54 9793.55 124
CANet_DTU77.81 22877.05 23180.09 22881.37 29559.90 27383.26 17888.29 19569.16 21867.83 34583.72 29660.93 25789.47 23069.22 21589.70 26290.88 203
Anonymous2024052986.20 9987.13 8783.42 16690.19 15964.55 21984.55 14690.71 14285.85 3189.94 10195.24 4082.13 9790.40 20869.19 21696.40 10495.31 55
FMVSNet184.55 12485.45 11581.85 19890.27 15861.05 25986.83 11688.27 19678.57 10689.66 10895.64 3075.43 16290.68 20169.09 21795.33 14593.82 108
test_fmvs1_n70.94 29170.41 29472.53 30673.92 35266.93 19675.99 29784.21 25543.31 36079.40 27679.39 33843.47 34968.55 34869.05 21884.91 31482.10 323
UGNet82.78 16081.64 17586.21 10886.20 24376.24 11286.86 11485.68 23277.07 12273.76 32192.82 12469.64 21391.82 16969.04 21993.69 19390.56 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ANet_high83.17 15785.68 11275.65 28781.24 29645.26 36279.94 23992.91 8483.83 4491.33 7496.88 1080.25 12185.92 28268.89 22095.89 12795.76 43
Fast-Effi-MVS+-dtu82.54 16481.41 17985.90 11585.60 24976.53 10783.07 18489.62 17573.02 17479.11 28183.51 29880.74 11690.24 21168.76 22189.29 26590.94 201
pm-mvs183.69 14684.95 12279.91 22990.04 16559.66 27582.43 20387.44 20475.52 14187.85 13995.26 3981.25 11185.65 28668.74 22296.04 11894.42 85
CR-MVSNet74.00 26773.04 27076.85 27679.58 31362.64 23982.58 19776.90 29950.50 34275.72 30792.38 13748.07 32184.07 29868.72 22382.91 32983.85 300
KD-MVS_self_test81.93 17583.14 15478.30 25384.75 25952.75 32780.37 23489.42 17970.24 21090.26 9393.39 11074.55 17686.77 27068.61 22496.64 9395.38 52
IterMVS76.91 23676.34 23978.64 24680.91 30064.03 22376.30 29379.03 29064.88 26183.11 22589.16 21559.90 26684.46 29568.61 22485.15 31087.42 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testdata79.54 23692.87 8272.34 14380.14 28559.91 29385.47 18691.75 15667.96 22385.24 28868.57 22692.18 22581.06 338
test_fmvs169.57 30469.05 30371.14 31369.15 36865.77 20973.98 31383.32 25942.83 36277.77 29278.27 34443.39 35268.50 34968.39 22784.38 32179.15 345
mvs_anonymous78.13 22478.76 21376.23 28479.24 31950.31 34678.69 26084.82 24961.60 28083.09 22792.82 12473.89 18187.01 26368.33 22886.41 29991.37 194
WR-MVS83.56 14984.40 13681.06 21293.43 6854.88 31578.67 26185.02 24481.24 7190.74 8891.56 15972.85 19591.08 18768.00 22998.04 3697.23 18
TransMVSNet (Re)84.02 14085.74 11178.85 24291.00 14455.20 31482.29 20787.26 20779.65 8988.38 13195.52 3383.00 8386.88 26767.97 23096.60 9594.45 82
无先验82.81 19285.62 23358.09 30091.41 17967.95 23184.48 291
Fast-Effi-MVS+81.04 18480.57 18782.46 19187.50 21263.22 23278.37 26589.63 17468.01 23181.87 24482.08 31682.31 9292.65 14567.10 23288.30 28191.51 193
FMVSNet281.31 18081.61 17680.41 22386.38 23358.75 28983.93 16186.58 22172.43 18187.65 14192.98 11763.78 24490.22 21266.86 23393.92 18892.27 169
GA-MVS75.83 24874.61 25379.48 23781.87 28959.25 27973.42 31882.88 26368.68 22479.75 27281.80 31850.62 31289.46 23166.85 23485.64 30589.72 228
CNLPA83.55 15083.10 15584.90 13089.34 17483.87 4684.54 14888.77 18579.09 9783.54 22188.66 22474.87 16881.73 31066.84 23592.29 22089.11 239
tfpnnormal81.79 17682.95 15778.31 25288.93 18355.40 31080.83 23182.85 26476.81 12385.90 17994.14 8474.58 17586.51 27466.82 23695.68 13993.01 139
test_vis1_n70.29 29569.99 29871.20 31275.97 34166.50 20076.69 28880.81 28044.22 35675.43 31077.23 35050.00 31568.59 34766.71 23782.85 33178.52 347
VPA-MVSNet83.47 15284.73 12479.69 23390.29 15757.52 29681.30 22488.69 18776.29 12687.58 14394.44 6680.60 11887.20 26266.60 23896.82 8994.34 88
VDDNet84.35 12885.39 11681.25 20795.13 3159.32 27885.42 13681.11 27786.41 2787.41 14596.21 1973.61 18390.61 20466.33 23996.85 8693.81 111
DP-MVS Recon84.05 13983.22 15186.52 10091.73 12075.27 11783.23 18192.40 9672.04 19082.04 24188.33 22777.91 13893.95 9766.17 24095.12 15590.34 220
GBi-Net82.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24193.34 19893.82 108
test182.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24193.34 19893.82 108
FMVSNet378.80 21678.55 21679.57 23582.89 28556.89 30281.76 21585.77 23169.04 22086.00 17590.44 19151.75 30890.09 22065.95 24193.34 19891.72 185
新几何182.95 17893.96 5578.56 8480.24 28455.45 31483.93 21691.08 17171.19 21088.33 25165.84 24493.07 20581.95 325
F-COLMAP84.97 11783.42 14889.63 5592.39 9483.40 4888.83 8791.92 10973.19 17180.18 27189.15 21677.04 14993.28 12665.82 24592.28 22192.21 172
ppachtmachnet_test74.73 26274.00 26076.90 27480.71 30556.89 30271.53 32678.42 29258.24 29979.32 27982.92 30757.91 28184.26 29765.60 24691.36 23989.56 230
API-MVS82.28 16782.61 16381.30 20686.29 23969.79 16688.71 9087.67 20378.42 10882.15 23984.15 29477.98 13691.59 17265.39 24792.75 21282.51 320
test111178.53 22078.85 21177.56 26592.22 10247.49 35582.61 19569.24 34772.43 18185.28 18794.20 8051.91 30690.07 22165.36 24896.45 10295.11 62
test_vis3_rt71.42 28870.67 28973.64 29769.66 36770.46 16266.97 34389.73 16942.68 36388.20 13583.04 30343.77 34860.07 36565.35 24986.66 29690.39 219
thisisatest051573.00 27670.52 29180.46 22281.45 29359.90 27373.16 32174.31 31757.86 30276.08 30477.78 34537.60 36492.12 16065.00 25091.45 23889.35 234
cascas76.29 24674.81 25280.72 21984.47 26162.94 23473.89 31587.34 20555.94 31275.16 31576.53 35563.97 24291.16 18465.00 25090.97 24788.06 253
test250674.12 26673.39 26676.28 28291.85 11544.20 36584.06 15648.20 37572.30 18781.90 24394.20 8027.22 37889.77 22664.81 25296.02 11994.87 67
MDA-MVSNet-bldmvs77.47 23076.90 23479.16 24079.03 32164.59 21666.58 34475.67 30873.15 17288.86 12088.99 21966.94 22681.23 31264.71 25388.22 28291.64 189
OpenMVS_ROBcopyleft70.19 1777.77 22977.46 22578.71 24584.39 26561.15 25781.18 22682.52 26562.45 27383.34 22287.37 24466.20 23088.66 24864.69 25485.02 31186.32 273
PS-MVSNAJ77.04 23576.53 23778.56 24787.09 22361.40 25375.26 30587.13 21161.25 28174.38 31977.22 35176.94 15190.94 19064.63 25584.83 31783.35 308
xiu_mvs_v2_base77.19 23376.75 23578.52 24887.01 22561.30 25575.55 30387.12 21461.24 28274.45 31778.79 34077.20 14590.93 19164.62 25684.80 31883.32 309
PatchT70.52 29472.76 27463.79 34079.38 31733.53 37577.63 27465.37 35773.61 16071.77 33092.79 12744.38 34775.65 33064.53 25785.37 30782.18 322
FE-MVS79.98 20778.86 21083.36 16786.47 23066.45 20189.73 6584.74 25172.80 17684.22 21391.38 16344.95 34493.60 11263.93 25891.50 23790.04 227
LFMVS80.15 20480.56 18878.89 24189.19 17855.93 30685.22 13873.78 32282.96 5584.28 20992.72 12957.38 28490.07 22163.80 25995.75 13690.68 210
ECVR-MVScopyleft78.44 22178.63 21577.88 26191.85 11548.95 34983.68 16969.91 34572.30 18784.26 21194.20 8051.89 30789.82 22563.58 26096.02 11994.87 67
131473.22 27372.56 27875.20 28980.41 30957.84 29381.64 21885.36 23551.68 33473.10 32476.65 35461.45 25685.19 28963.54 26179.21 34782.59 316
testdata286.43 27663.52 262
Patchmtry76.56 24277.46 22573.83 29679.37 31846.60 35982.41 20476.90 29973.81 15885.56 18492.38 13748.07 32183.98 29963.36 26395.31 14890.92 202
MSDG80.06 20679.99 20280.25 22583.91 27368.04 18877.51 27789.19 18077.65 11581.94 24283.45 30076.37 15986.31 27763.31 26486.59 29786.41 272
BH-RMVSNet80.53 19180.22 19681.49 20587.19 21866.21 20477.79 27286.23 22574.21 15483.69 21788.50 22573.25 19290.75 19863.18 26587.90 28487.52 261
test_yl78.71 21878.51 21779.32 23884.32 26658.84 28678.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26692.73 21389.10 240
DCV-MVSNet78.71 21878.51 21779.32 23884.32 26658.84 28678.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26692.73 21389.10 240
TinyColmap81.25 18182.34 16877.99 25985.33 25360.68 26782.32 20688.33 19471.26 19786.97 15592.22 14577.10 14886.98 26662.37 26895.17 15286.31 274
Anonymous20240521180.51 19281.19 18378.49 24988.48 19257.26 29876.63 28982.49 26681.21 7284.30 20892.24 14467.99 22286.24 27862.22 26995.13 15391.98 180
our_test_371.85 28471.59 28472.62 30480.71 30553.78 32069.72 33371.71 33858.80 29678.03 28680.51 33056.61 29078.84 32062.20 27086.04 30385.23 284
pmmvs-eth3d78.42 22277.04 23282.57 18987.44 21374.41 12280.86 23079.67 28755.68 31384.69 19890.31 19460.91 25885.42 28762.20 27091.59 23587.88 258
CMPMVSbinary59.41 2075.12 25573.57 26379.77 23075.84 34267.22 19181.21 22582.18 26850.78 33976.50 29787.66 23955.20 29882.99 30462.17 27290.64 25889.09 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f64.31 32465.85 31859.67 34966.54 37262.24 24857.76 36270.96 34040.13 36584.36 20382.09 31546.93 32351.67 37161.99 27381.89 33565.12 363
MIMVSNet183.63 14884.59 12980.74 21794.06 5362.77 23782.72 19384.53 25277.57 11790.34 9195.92 2476.88 15785.83 28461.88 27497.42 7293.62 119
BH-untuned80.96 18580.99 18480.84 21688.55 19168.23 18380.33 23588.46 18972.79 17786.55 16486.76 25574.72 17391.77 17061.79 27588.99 26982.52 319
AdaColmapbinary83.66 14783.69 14783.57 16390.05 16472.26 14586.29 12790.00 16678.19 11081.65 25087.16 24983.40 8194.24 8561.69 27694.76 17184.21 295
VPNet80.25 20081.68 17475.94 28592.46 9347.98 35376.70 28781.67 27473.45 16284.87 19592.82 12474.66 17486.51 27461.66 27796.85 8693.33 126
MAR-MVS80.24 20178.74 21484.73 13586.87 22978.18 8585.75 13187.81 20265.67 25477.84 28978.50 34273.79 18290.53 20561.59 27890.87 25085.49 283
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft73.85 1682.09 17180.31 19287.45 8890.86 14880.29 6985.88 12990.65 14468.17 22976.32 30086.33 26073.12 19392.61 14661.40 27990.02 26189.44 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test-LLR67.21 31166.74 31568.63 32576.45 33755.21 31267.89 33767.14 35262.43 27465.08 35572.39 36043.41 35069.37 34261.00 28084.89 31581.31 331
test-mter65.00 32263.79 32568.63 32576.45 33755.21 31267.89 33767.14 35250.98 33865.08 35572.39 36028.27 37669.37 34261.00 28084.89 31581.31 331
PatchmatchNetpermissive69.71 30368.83 30572.33 30877.66 32853.60 32179.29 24969.99 34457.66 30472.53 32782.93 30646.45 32680.08 31860.91 28272.09 36183.31 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS_030478.17 22377.23 23080.99 21584.13 27069.07 18081.39 22180.81 28076.28 12767.53 34789.11 21762.87 25286.77 27060.90 28392.01 22987.13 266
PVSNet_BlendedMVS78.80 21677.84 22381.65 20384.43 26263.41 22879.49 24790.44 14961.70 27975.43 31087.07 25269.11 21791.44 17660.68 28492.24 22290.11 225
PVSNet_Blended76.49 24375.40 24779.76 23184.43 26263.41 22875.14 30690.44 14957.36 30775.43 31078.30 34369.11 21791.44 17660.68 28487.70 28884.42 293
VNet79.31 20980.27 19376.44 27987.92 20353.95 31975.58 30284.35 25374.39 15382.23 23790.72 18372.84 19684.39 29660.38 28693.98 18790.97 200
LCM-MVSNet-Re83.48 15185.06 11978.75 24485.94 24855.75 30980.05 23794.27 1976.47 12596.09 594.54 6283.31 8289.75 22859.95 28794.89 16390.75 206
YYNet170.06 29970.44 29268.90 32273.76 35453.42 32458.99 36067.20 35158.42 29887.10 15085.39 27659.82 26767.32 35259.79 28883.50 32585.96 276
MDA-MVSNet_test_wron70.05 30070.44 29268.88 32373.84 35353.47 32258.93 36167.28 35058.43 29787.09 15185.40 27559.80 26867.25 35359.66 28983.54 32485.92 278
PAPR78.84 21478.10 22281.07 21185.17 25460.22 27082.21 21190.57 14762.51 27175.32 31384.61 28874.99 16792.30 15559.48 29088.04 28390.68 210
IB-MVS62.13 1971.64 28668.97 30479.66 23480.80 30462.26 24773.94 31476.90 29963.27 26668.63 34176.79 35333.83 36991.84 16859.28 29187.26 29084.88 288
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PCF-MVS74.62 1582.15 17080.92 18685.84 11789.43 17272.30 14480.53 23291.82 11457.36 30787.81 14089.92 20277.67 14093.63 10858.69 29295.08 15691.58 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
1112_ss74.82 26073.74 26178.04 25889.57 16860.04 27176.49 29187.09 21554.31 31873.66 32279.80 33560.25 26386.76 27258.37 29384.15 32287.32 264
tpmvs70.16 29769.56 30171.96 30974.71 35148.13 35179.63 24275.45 31165.02 26070.26 33681.88 31745.34 34085.68 28558.34 29475.39 35782.08 324
UnsupCasMVSNet_eth71.63 28772.30 28069.62 31976.47 33652.70 32970.03 33280.97 27959.18 29479.36 27788.21 22960.50 25969.12 34558.33 29577.62 35387.04 267
tpmrst66.28 31766.69 31665.05 33772.82 36039.33 37078.20 26670.69 34253.16 32467.88 34480.36 33148.18 32074.75 33258.13 29670.79 36381.08 336
test_post178.85 2593.13 37545.19 34280.13 31758.11 297
SCA73.32 27172.57 27775.58 28881.62 29155.86 30778.89 25771.37 33961.73 27774.93 31683.42 30160.46 26087.01 26358.11 29782.63 33483.88 297
pmmvs474.92 25872.98 27180.73 21884.95 25571.71 15476.23 29577.59 29652.83 32577.73 29386.38 25856.35 29284.97 29157.72 29987.05 29285.51 282
Vis-MVSNet (Re-imp)77.82 22777.79 22477.92 26088.82 18451.29 34083.28 17771.97 33474.04 15582.23 23789.78 20457.38 28489.41 23557.22 30095.41 14293.05 138
ab-mvs79.67 20880.56 18876.99 27188.48 19256.93 30084.70 14386.06 22768.95 22180.78 26193.08 11475.30 16484.62 29456.78 30190.90 24989.43 233
baseline173.26 27273.54 26472.43 30784.92 25647.79 35479.89 24074.00 31865.93 24778.81 28386.28 26356.36 29181.63 31156.63 30279.04 34887.87 259
Test_1112_low_res73.90 26873.08 26976.35 28090.35 15655.95 30573.40 31986.17 22650.70 34073.14 32385.94 26758.31 27785.90 28356.51 30383.22 32687.20 265
TESTMET0.1,161.29 33060.32 33564.19 33972.06 36251.30 33967.89 33762.09 36045.27 35260.65 36469.01 36427.93 37764.74 36156.31 30481.65 33876.53 349
test_vis1_rt65.64 32064.09 32470.31 31466.09 37370.20 16561.16 35581.60 27538.65 36872.87 32569.66 36352.84 30360.04 36656.16 30577.77 35180.68 340
XXY-MVS74.44 26576.19 24069.21 32184.61 26052.43 33171.70 32577.18 29860.73 28880.60 26290.96 17675.44 16169.35 34456.13 30688.33 27785.86 279
MDTV_nov1_ep1368.29 30978.03 32543.87 36674.12 31272.22 33252.17 32967.02 34885.54 27145.36 33980.85 31455.73 30784.42 320
E-PMN61.59 32961.62 33161.49 34566.81 37155.40 31053.77 36560.34 36566.80 24458.90 36865.50 36740.48 35866.12 35855.72 30886.25 30162.95 365
MVS73.21 27472.59 27675.06 29180.97 29960.81 26581.64 21885.92 23046.03 35171.68 33177.54 34668.47 22089.77 22655.70 30985.39 30674.60 353
TR-MVS76.77 23975.79 24379.72 23286.10 24765.79 20877.14 28083.02 26265.20 25981.40 25482.10 31466.30 22990.73 20055.57 31085.27 30882.65 315
EPMVS62.47 32562.63 32962.01 34270.63 36538.74 37174.76 30852.86 37253.91 32067.71 34680.01 33339.40 35966.60 35655.54 31168.81 36880.68 340
MS-PatchMatch70.93 29270.22 29573.06 30181.85 29062.50 24273.82 31677.90 29452.44 32875.92 30581.27 32255.67 29581.75 30955.37 31277.70 35274.94 352
CL-MVSNet_self_test76.81 23877.38 22775.12 29086.90 22751.34 33873.20 32080.63 28368.30 22881.80 24888.40 22666.92 22780.90 31355.35 31394.90 16293.12 136
new-patchmatchnet70.10 29873.37 26760.29 34881.23 29716.95 37959.54 35774.62 31362.93 26880.97 25787.93 23462.83 25371.90 33755.24 31495.01 15992.00 178
CostFormer69.98 30168.68 30773.87 29577.14 33050.72 34479.26 25074.51 31551.94 33370.97 33584.75 28645.16 34387.49 25955.16 31579.23 34683.40 307
thres600view775.97 24775.35 24977.85 26387.01 22551.84 33680.45 23373.26 32675.20 14583.10 22686.31 26245.54 33589.05 23955.03 31692.24 22292.66 151
EMVS61.10 33260.81 33361.99 34365.96 37455.86 30753.10 36658.97 36767.06 24156.89 37163.33 36840.98 35667.03 35454.79 31786.18 30263.08 364
USDC76.63 24076.73 23676.34 28183.46 27657.20 29980.02 23888.04 20052.14 33183.65 21891.25 16563.24 24786.65 27354.66 31894.11 18485.17 285
CDS-MVSNet77.32 23275.40 24783.06 17489.00 18172.48 14177.90 27082.17 26960.81 28678.94 28283.49 29959.30 27088.76 24754.64 31992.37 21787.93 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gm-plane-assit75.42 34644.97 36452.17 32972.36 36287.90 25454.10 320
PatchMatch-RL74.48 26373.22 26878.27 25587.70 20785.26 3475.92 29870.09 34364.34 26376.09 30381.25 32365.87 23478.07 32253.86 32183.82 32371.48 356
EPNet_dtu72.87 27771.33 28877.49 26777.72 32760.55 26882.35 20575.79 30666.49 24658.39 37081.06 32453.68 30185.98 28153.55 32292.97 20985.95 277
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM69.41 30566.64 31777.70 26473.19 35671.24 15775.67 29965.56 35670.42 20565.18 35492.97 11933.64 37083.06 30353.52 32369.61 36778.79 346
baseline269.77 30266.89 31378.41 25179.51 31558.09 29176.23 29569.57 34657.50 30664.82 35877.45 34846.02 32988.44 24953.08 32477.83 35088.70 247
KD-MVS_2432*160066.87 31365.81 31970.04 31567.50 36947.49 35562.56 35279.16 28861.21 28377.98 28780.61 32625.29 38082.48 30653.02 32584.92 31280.16 342
miper_refine_blended66.87 31365.81 31970.04 31567.50 36947.49 35562.56 35279.16 28861.21 28377.98 28780.61 32625.29 38082.48 30653.02 32584.92 31280.16 342
BH-w/o76.57 24176.07 24278.10 25786.88 22865.92 20777.63 27486.33 22265.69 25380.89 25979.95 33468.97 21990.74 19953.01 32785.25 30977.62 348
pmmvs570.73 29370.07 29672.72 30377.03 33252.73 32874.14 31175.65 30950.36 34372.17 32985.37 27755.42 29780.67 31552.86 32887.59 28984.77 289
tpm67.95 30968.08 31067.55 32978.74 32443.53 36775.60 30067.10 35454.92 31672.23 32888.10 23042.87 35475.97 32852.21 32980.95 34283.15 312
MVP-Stereo75.81 24973.51 26582.71 18489.35 17373.62 12580.06 23685.20 23860.30 29073.96 32087.94 23357.89 28289.45 23252.02 33074.87 35885.06 287
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres100view90075.45 25175.05 25176.66 27887.27 21551.88 33581.07 22773.26 32675.68 13883.25 22386.37 25945.54 33588.80 24351.98 33190.99 24489.31 235
tfpn200view974.86 25974.23 25876.74 27786.24 24152.12 33279.24 25173.87 32073.34 16581.82 24684.60 28946.02 32988.80 24351.98 33190.99 24489.31 235
thres40075.14 25374.23 25877.86 26286.24 24152.12 33279.24 25173.87 32073.34 16581.82 24684.60 28946.02 32988.80 24351.98 33190.99 24492.66 151
mvsany_test365.48 32162.97 32773.03 30269.99 36676.17 11364.83 34643.71 37743.68 35880.25 27087.05 25352.83 30463.09 36451.92 33472.44 36079.84 344
HyFIR lowres test75.12 25572.66 27582.50 19091.44 13365.19 21372.47 32287.31 20646.79 34780.29 26784.30 29152.70 30592.10 16151.88 33586.73 29590.22 221
TAMVS78.08 22576.36 23883.23 17090.62 15272.87 13079.08 25480.01 28661.72 27881.35 25586.92 25463.96 24388.78 24650.61 33693.01 20788.04 254
sss66.92 31267.26 31265.90 33377.23 32951.10 34364.79 34771.72 33752.12 33270.13 33780.18 33257.96 28065.36 36050.21 33781.01 34181.25 333
FPMVS72.29 28272.00 28173.14 30088.63 18885.00 3674.65 31067.39 34971.94 19277.80 29187.66 23950.48 31375.83 32949.95 33879.51 34358.58 369
tpm cat166.76 31565.21 32271.42 31077.09 33150.62 34578.01 26773.68 32444.89 35468.64 34079.00 33945.51 33782.42 30849.91 33970.15 36481.23 335
CHOSEN 1792x268872.45 27970.56 29078.13 25690.02 16663.08 23368.72 33583.16 26042.99 36175.92 30585.46 27357.22 28685.18 29049.87 34081.67 33686.14 275
HY-MVS64.64 1873.03 27572.47 27974.71 29283.36 27754.19 31782.14 21481.96 27056.76 31169.57 33986.21 26460.03 26484.83 29349.58 34182.65 33285.11 286
MDTV_nov1_ep13_2view27.60 37870.76 32846.47 35061.27 36245.20 34149.18 34283.75 302
PMMVS61.65 32860.38 33465.47 33665.40 37669.26 17463.97 35061.73 36336.80 37160.11 36568.43 36559.42 26966.35 35748.97 34378.57 34960.81 366
WTY-MVS67.91 31068.35 30866.58 33280.82 30348.12 35265.96 34572.60 32953.67 32171.20 33381.68 32058.97 27369.06 34648.57 34481.67 33682.55 317
UnsupCasMVSNet_bld69.21 30669.68 30067.82 32879.42 31651.15 34167.82 34075.79 30654.15 31977.47 29585.36 27859.26 27170.64 34048.46 34579.35 34581.66 327
tpm268.45 30866.83 31473.30 29978.93 32348.50 35079.76 24171.76 33647.50 34669.92 33883.60 29742.07 35588.40 25048.44 34679.51 34383.01 314
Patchmatch-test65.91 31867.38 31161.48 34675.51 34443.21 36868.84 33463.79 35962.48 27272.80 32683.42 30144.89 34559.52 36748.27 34786.45 29881.70 326
FMVSNet572.10 28371.69 28373.32 29881.57 29253.02 32676.77 28678.37 29363.31 26576.37 29891.85 15036.68 36578.98 31947.87 34892.45 21687.95 256
dp60.70 33460.29 33661.92 34472.04 36338.67 37270.83 32764.08 35851.28 33660.75 36377.28 34936.59 36671.58 33947.41 34962.34 37075.52 351
N_pmnet70.20 29668.80 30674.38 29480.91 30084.81 3959.12 35976.45 30455.06 31575.31 31482.36 31355.74 29454.82 36947.02 35087.24 29183.52 304
thres20072.34 28171.55 28674.70 29383.48 27551.60 33775.02 30773.71 32370.14 21178.56 28580.57 32846.20 32788.20 25346.99 35189.29 26584.32 294
test20.0373.75 26974.59 25571.22 31181.11 29851.12 34270.15 33172.10 33370.42 20580.28 26991.50 16064.21 24174.72 33346.96 35294.58 17487.82 260
mvsany_test158.48 33656.47 34164.50 33865.90 37568.21 18556.95 36342.11 37838.30 36965.69 35277.19 35256.96 28759.35 36846.16 35358.96 37165.93 362
pmmvs362.47 32560.02 33769.80 31871.58 36464.00 22470.52 32958.44 36839.77 36666.05 34975.84 35627.10 37972.28 33546.15 35484.77 31973.11 354
testgi72.36 28074.61 25365.59 33480.56 30742.82 36968.29 33673.35 32566.87 24381.84 24589.93 20172.08 20466.92 35546.05 35592.54 21587.01 268
PVSNet58.17 2166.41 31665.63 32168.75 32481.96 28849.88 34862.19 35472.51 33151.03 33768.04 34375.34 35850.84 31174.77 33145.82 35682.96 32781.60 328
gg-mvs-nofinetune68.96 30769.11 30268.52 32776.12 34045.32 36183.59 17155.88 37086.68 2464.62 35997.01 730.36 37383.97 30044.78 35782.94 32876.26 350
Anonymous2023120671.38 28971.88 28269.88 31786.31 23754.37 31670.39 33074.62 31352.57 32776.73 29688.76 22159.94 26572.06 33644.35 35893.23 20283.23 311
CHOSEN 280x42059.08 33556.52 34066.76 33176.51 33564.39 22049.62 36759.00 36643.86 35755.66 37268.41 36635.55 36868.21 35143.25 35976.78 35667.69 361
ADS-MVSNet265.87 31963.64 32672.55 30573.16 35756.92 30167.10 34174.81 31249.74 34466.04 35082.97 30446.71 32477.26 32442.29 36069.96 36583.46 305
ADS-MVSNet61.90 32762.19 33061.03 34773.16 35736.42 37367.10 34161.75 36249.74 34466.04 35082.97 30446.71 32463.21 36242.29 36069.96 36583.46 305
DSMNet-mixed60.98 33361.61 33259.09 35172.88 35945.05 36374.70 30946.61 37626.20 37265.34 35390.32 19355.46 29663.12 36341.72 36281.30 34069.09 360
MIMVSNet71.09 29071.59 28469.57 32087.23 21650.07 34778.91 25671.83 33560.20 29271.26 33291.76 15555.08 29976.09 32741.06 36387.02 29482.54 318
test0.0.03 164.66 32364.36 32365.57 33575.03 34946.89 35864.69 34861.58 36462.43 27471.18 33477.54 34643.41 35068.47 35040.75 36482.65 33281.35 330
PAPM71.77 28570.06 29776.92 27386.39 23253.97 31876.62 29086.62 22053.44 32263.97 36084.73 28757.79 28392.34 15339.65 36581.33 33984.45 292
MVS-HIRNet61.16 33162.92 32855.87 35279.09 32035.34 37471.83 32457.98 36946.56 34959.05 36791.14 16949.95 31676.43 32638.74 36671.92 36255.84 370
GG-mvs-BLEND67.16 33073.36 35546.54 36084.15 15455.04 37158.64 36961.95 37029.93 37483.87 30138.71 36776.92 35571.07 357
new_pmnet55.69 33857.66 33949.76 35475.47 34530.59 37659.56 35651.45 37343.62 35962.49 36175.48 35740.96 35749.15 37337.39 36872.52 35969.55 359
PVSNet_051.08 2256.10 33754.97 34259.48 35075.12 34853.28 32555.16 36461.89 36144.30 35559.16 36662.48 36954.22 30065.91 35935.40 36947.01 37259.25 368
wuyk23d75.13 25479.30 20662.63 34175.56 34375.18 11880.89 22973.10 32875.06 14794.76 1295.32 3587.73 4052.85 37034.16 37097.11 8059.85 367
MVEpermissive40.22 2351.82 34050.47 34355.87 35262.66 37851.91 33431.61 37039.28 37940.65 36450.76 37374.98 35956.24 29344.67 37433.94 37164.11 36971.04 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS255.64 33959.27 33844.74 35564.30 37712.32 38040.60 36849.79 37453.19 32365.06 35784.81 28553.60 30249.76 37232.68 37289.41 26472.15 355
test_method30.46 34129.60 34433.06 35617.99 3803.84 38213.62 37173.92 3192.79 37418.29 37653.41 37128.53 37543.25 37522.56 37335.27 37452.11 371
tmp_tt20.25 34324.50 3467.49 3584.47 3818.70 38134.17 36925.16 3811.00 37632.43 37518.49 37339.37 3609.21 37721.64 37443.75 3734.57 373
DeepMVS_CXcopyleft24.13 35732.95 37929.49 37721.63 38212.07 37337.95 37445.07 37230.84 37219.21 37617.94 37533.06 37523.69 372
test1236.27 3468.08 3490.84 3591.11 3830.57 38362.90 3510.82 3830.54 3771.07 3792.75 3781.26 3820.30 3781.04 3761.26 3771.66 374
testmvs5.91 3477.65 3500.72 3601.20 3820.37 38459.14 3580.67 3840.49 3781.11 3782.76 3770.94 3830.24 3791.02 3771.47 3761.55 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k20.81 34227.75 3450.00 3610.00 3840.00 3850.00 37285.44 2340.00 3790.00 38082.82 30881.46 1080.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas6.41 3458.55 3480.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37976.94 1510.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re6.65 3448.87 3470.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38079.80 3350.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
test_one_060193.85 5873.27 12894.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 384
eth-test0.00 384
test_241102_ONE94.18 4672.65 13293.69 5083.62 4794.11 2293.78 10390.28 1495.50 44
save fliter93.75 5977.44 9586.31 12689.72 17070.80 201
test072694.16 4972.56 13890.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
GSMVS83.88 297
test_part293.86 5777.77 9192.84 48
sam_mvs146.11 32883.88 297
sam_mvs45.92 333
MTGPAbinary91.81 115
test_post3.10 37645.43 33877.22 325
patchmatchnet-post81.71 31945.93 33287.01 263
MTMP90.66 4433.14 380
TEST992.34 9679.70 7483.94 15990.32 15365.41 25884.49 20090.97 17482.03 9993.63 108
test_892.09 10678.87 8183.82 16490.31 15565.79 24984.36 20390.96 17681.93 10193.44 121
agg_prior91.58 12577.69 9290.30 15684.32 20593.18 129
test_prior478.97 8084.59 145
test_prior86.32 10390.59 15371.99 14992.85 8694.17 9092.80 144
新几何281.72 217
旧先验191.97 10971.77 15081.78 27391.84 15173.92 18093.65 19483.61 303
原ACMM282.26 210
test22293.31 7176.54 10579.38 24877.79 29552.59 32682.36 23590.84 18066.83 22891.69 23381.25 333
segment_acmp81.94 100
testdata179.62 24373.95 157
test1286.57 9890.74 14972.63 13690.69 14382.76 23079.20 12794.80 6695.32 14692.27 169
plane_prior793.45 6677.31 98
plane_prior692.61 8876.54 10574.84 169
plane_prior492.95 120
plane_prior376.85 10377.79 11486.55 164
plane_prior289.45 7779.44 92
plane_prior192.83 86
plane_prior76.42 10987.15 11075.94 13595.03 158
n20.00 385
nn0.00 385
door-mid74.45 316
test1191.46 121
door72.57 330
HQP5-MVS70.66 160
HQP-NCC91.19 13784.77 14073.30 16780.55 264
ACMP_Plane91.19 13784.77 14073.30 16780.55 264
HQP4-MVS80.56 26394.61 7293.56 122
HQP3-MVS92.68 9194.47 176
HQP2-MVS72.10 202
NP-MVS91.95 11074.55 12190.17 199
ACMMP++_ref95.74 137
ACMMP++97.35 73
Test By Simon79.09 128