This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13691.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 194
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 139
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 205
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 205
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 100
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12584.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 183
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26392.98 153
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23384.54 4683.58 24393.78 10873.36 21096.48 287.98 1396.21 11294.41 87
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26478.30 8986.93 12092.20 11065.94 26489.16 12193.16 12483.10 8989.89 23487.81 1594.43 18593.35 134
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 156
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 103
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17569.87 22995.06 1596.14 2584.28 7793.07 14087.68 1896.34 10697.09 19
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14267.85 25286.63 17694.84 5579.58 13895.96 1587.62 1994.50 18294.56 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 88
Skip Steuart: Steuart Systems R&D Blog.
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 112
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 153
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 178
No_MVS88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 178
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 172
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 153
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 93
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42086.57 5595.80 2887.35 2797.62 6494.20 93
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 169
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10083.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 147
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 159
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 159
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 106
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27378.25 9085.82 14591.82 12365.33 27888.55 13292.35 15682.62 9689.80 23686.87 3594.32 18893.18 144
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 190
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28178.21 9185.40 15391.39 13565.32 27987.72 15391.81 17082.33 10189.78 23786.68 3794.20 19192.99 152
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 96
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14683.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 241
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 197
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 105
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 143
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVSFormer82.23 18581.57 19884.19 16185.54 26969.26 18991.98 3490.08 17871.54 20876.23 33385.07 31258.69 30294.27 8886.26 4388.77 29689.03 272
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17871.54 20894.28 2496.54 1681.57 11794.27 8886.26 4396.49 10097.09 19
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 9986.25 4597.63 6397.82 8
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22186.24 4697.24 7991.36 217
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 13978.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 247
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9686.07 4898.48 1897.22 17
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 184
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 196
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9488.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
IU-MVS94.18 5072.64 14790.82 15156.98 34789.67 10985.78 5297.92 4993.28 138
MVS_030485.37 11784.58 14287.75 8885.28 27273.36 13686.54 13385.71 24877.56 12981.78 27792.47 15070.29 23696.02 1185.59 5395.96 12593.87 110
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 92
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
BP-MVS182.81 17581.67 19286.23 11387.88 21568.53 19786.06 14084.36 27275.65 14985.14 20690.19 22245.84 36694.42 8685.18 5794.72 17895.75 43
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5899.27 199.54 1
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5897.78 5697.26 15
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14385.02 6098.45 1992.41 176
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6195.87 13295.24 58
MVSMamba_PlusPlus87.53 8688.86 7183.54 18092.03 11062.26 26791.49 4092.62 9988.07 2488.07 14596.17 2372.24 22395.79 3184.85 6294.16 19392.58 167
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9578.78 11192.51 5893.64 11588.13 3693.84 10884.83 6397.55 6994.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15491.23 14077.31 13187.07 16691.47 17982.94 9194.71 7584.67 6496.27 11092.62 166
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 19984.60 6590.75 27093.97 104
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6697.81 5591.70 209
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsmvis_n_192085.22 11985.36 12884.81 14085.80 26676.13 12285.15 15792.32 10761.40 30891.33 7690.85 20283.76 8386.16 29584.31 6793.28 21492.15 192
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15670.00 22894.55 1996.67 1487.94 3993.59 11984.27 6895.97 12495.52 49
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 6998.03 4193.26 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17269.27 23294.39 2096.38 1886.02 6593.52 12383.96 7095.92 13095.34 53
v1086.54 9887.10 9284.84 13988.16 20963.28 24986.64 13092.20 11075.42 15492.81 5394.50 6874.05 19894.06 10083.88 7196.28 10897.17 18
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19783.86 7295.30 15393.60 127
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 10983.69 7397.55 69
ACMH76.49 1489.34 5991.14 3583.96 16492.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26383.33 7498.30 2593.20 142
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n82.17 18881.59 19683.94 16686.87 24371.57 16985.19 15677.42 32062.27 30084.47 22291.33 18276.43 17485.91 30083.14 7587.14 31994.33 91
fmvsm_s_conf0.5_n81.91 19681.30 20383.75 17086.02 26371.56 17084.73 16277.11 32462.44 29784.00 23590.68 20876.42 17585.89 30283.14 7587.11 32093.81 116
v886.22 10386.83 9984.36 15387.82 21662.35 26586.42 13491.33 13776.78 13592.73 5594.48 7073.41 20793.72 11183.10 7795.41 14697.01 21
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11770.73 21994.19 2596.67 1476.94 16694.57 8183.07 7896.28 10896.15 32
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10879.74 9687.50 15792.38 15281.42 11993.28 13283.07 7897.24 7991.67 210
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21281.66 7594.64 1896.53 1765.94 25894.75 7483.02 8096.83 8995.41 51
fmvsm_l_conf0.5_n82.06 19181.54 19983.60 17583.94 29673.90 13383.35 19786.10 24058.97 32983.80 23990.36 21674.23 19586.94 27982.90 8190.22 27889.94 255
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8298.76 494.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v124084.30 14284.51 14683.65 17387.65 22261.26 27882.85 21391.54 12967.94 25090.68 9190.65 21171.71 23093.64 11382.84 8394.78 17496.07 35
fmvsm_s_conf0.1_n_a82.58 18081.93 18884.50 14887.68 22073.35 13786.14 13977.70 31761.64 30685.02 20991.62 17577.75 15186.24 29182.79 8487.07 32193.91 108
fmvsm_s_conf0.5_n_a82.21 18681.51 20084.32 15686.56 24573.35 13785.46 15077.30 32161.81 30284.51 21990.88 20177.36 15886.21 29382.72 8586.97 32693.38 133
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 13982.67 8698.04 3993.64 124
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20789.67 23384.47 7595.46 5082.56 8796.26 11193.77 118
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22689.33 23783.87 7994.53 8482.45 8894.89 16994.90 65
v119284.57 13584.69 14084.21 15987.75 21862.88 25383.02 20791.43 13269.08 23589.98 10290.89 19972.70 21893.62 11782.41 8994.97 16696.13 33
v192192084.23 14684.37 15083.79 16887.64 22361.71 27282.91 21191.20 14167.94 25090.06 9790.34 21772.04 22793.59 11982.32 9094.91 16796.07 35
test_fmvsm_n_192083.60 16282.89 17385.74 12685.22 27477.74 9984.12 17590.48 15959.87 32786.45 18591.12 18975.65 17885.89 30282.28 9190.87 26693.58 128
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9297.18 8190.45 243
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
tt080588.09 7789.79 5582.98 19493.26 7563.94 24291.10 4589.64 18885.07 4190.91 8691.09 19089.16 2491.87 17482.03 9395.87 13293.13 145
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29572.76 14483.91 18285.18 25780.44 8688.75 12785.49 30180.08 13491.92 17182.02 9490.85 26895.97 38
ZD-MVS92.22 10380.48 7191.85 12171.22 21490.38 9292.98 13186.06 6496.11 781.99 9596.75 92
fmvsm_l_conf0.5_n_a81.46 20180.87 21183.25 18683.73 30173.21 14283.00 20885.59 25158.22 33582.96 25490.09 22772.30 22286.65 28581.97 9689.95 28289.88 256
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 29972.52 15383.82 18485.15 25880.27 9088.75 12785.45 30379.95 13691.90 17281.92 9790.80 26996.13 33
v14419284.24 14584.41 14883.71 17287.59 22461.57 27382.95 21091.03 14567.82 25389.80 10590.49 21473.28 21193.51 12481.88 9894.89 16996.04 37
v114484.54 13784.72 13884.00 16287.67 22162.55 26082.97 20990.93 14970.32 22489.80 10590.99 19373.50 20493.48 12581.69 9994.65 18095.97 38
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 17990.32 16765.79 26884.49 22090.97 19481.93 11193.63 11481.21 10096.54 9890.88 229
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14478.77 11284.85 21590.89 19980.85 12595.29 5681.14 10195.32 15092.34 181
v2v48284.09 14984.24 15283.62 17487.13 23361.40 27582.71 21689.71 18672.19 20489.55 11591.41 18070.70 23593.20 13481.02 10293.76 20296.25 31
WR-MVS_H89.91 5091.31 3385.71 12796.32 962.39 26389.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10398.80 398.84 5
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10495.50 14594.53 80
test9_res80.83 10596.45 10390.57 239
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10695.83 13494.46 81
plane_prior593.61 5995.22 5980.78 10695.83 13494.46 81
PHI-MVS86.38 10085.81 11788.08 8488.44 20377.34 10589.35 8593.05 8373.15 18784.76 21687.70 26478.87 14294.18 9480.67 10896.29 10792.73 159
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15176.68 32884.06 5092.44 6096.99 1062.03 28094.65 7780.58 10993.24 21594.83 72
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11378.87 11084.27 23194.05 9278.35 14693.65 11280.54 11091.58 25192.08 194
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15387.09 23765.22 22984.16 17394.23 2777.89 12291.28 7993.66 11484.35 7692.71 14980.07 11194.87 17295.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 16683.37 16483.75 17083.16 31463.33 24881.31 24390.23 17469.51 23190.91 8690.81 20474.16 19692.29 16380.06 11290.22 27895.62 47
MVS_Test82.47 18283.22 16580.22 24682.62 31957.75 32082.54 22291.96 11871.16 21582.89 25592.52 14977.41 15790.50 21580.04 11387.84 31392.40 178
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11498.27 2695.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_040288.65 6989.58 6085.88 12392.55 9272.22 15984.01 17789.44 19388.63 2094.38 2195.77 2986.38 6193.59 11979.84 11595.21 15491.82 203
EGC-MVSNET74.79 28669.99 32889.19 6594.89 3887.00 1591.89 3786.28 2371.09 4212.23 42395.98 2781.87 11489.48 24179.76 11695.96 12591.10 222
nrg03087.85 8288.49 7585.91 12190.07 16669.73 18387.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18079.72 11797.32 7796.50 29
agg_prior279.68 11896.16 11590.22 247
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19592.38 10570.25 22589.35 11990.68 20882.85 9294.57 8179.55 11995.95 12792.00 198
test_prior283.37 19675.43 15384.58 21891.57 17681.92 11379.54 12096.97 85
lessismore_v085.95 12091.10 14470.99 17470.91 37191.79 6994.42 7461.76 28192.93 14579.52 12193.03 22093.93 106
PS-CasMVS90.06 4391.92 1584.47 15096.56 658.83 31089.04 8892.74 9691.40 696.12 596.06 2687.23 4895.57 4179.42 12298.74 699.00 2
tttt051781.07 20679.58 22985.52 13088.99 18766.45 21987.03 11975.51 33673.76 17088.32 14190.20 22137.96 39794.16 9879.36 12395.13 15795.93 41
balanced_conf0384.80 13085.40 12683.00 19388.95 18861.44 27490.42 5892.37 10671.48 21088.72 12993.13 12570.16 23895.15 6379.26 12494.11 19492.41 176
DTE-MVSNet89.98 4791.91 1784.21 15996.51 757.84 31888.93 9092.84 9391.92 496.16 496.23 2186.95 5195.99 1279.05 12598.57 1598.80 6
CP-MVSNet89.27 6290.91 4484.37 15196.34 858.61 31388.66 9792.06 11490.78 795.67 895.17 4781.80 11595.54 4479.00 12698.69 1098.95 4
ambc82.98 19490.55 15664.86 23288.20 10089.15 19689.40 11893.96 9971.67 23191.38 18778.83 12796.55 9792.71 162
PEN-MVS90.03 4591.88 1884.48 14996.57 558.88 30788.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12898.72 998.97 3
mmtdpeth85.13 12385.78 11983.17 19084.65 28374.71 12785.87 14390.35 16677.94 12183.82 23896.96 1277.75 15180.03 34978.44 12996.21 11294.79 73
baseline85.20 12185.93 11383.02 19286.30 25462.37 26484.55 16693.96 4474.48 16387.12 16192.03 16282.30 10391.94 17078.39 13094.21 19094.74 74
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11670.56 22084.96 21190.69 20780.01 13595.14 6478.37 13195.78 13891.82 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12778.35 13298.76 495.61 48
MCST-MVS84.36 13983.93 15785.63 12891.59 12471.58 16883.52 19292.13 11261.82 30183.96 23689.75 23279.93 13793.46 12678.33 13394.34 18791.87 202
3Dnovator80.37 784.80 13084.71 13985.06 13786.36 25274.71 12788.77 9490.00 18075.65 14984.96 21193.17 12374.06 19791.19 19078.28 13491.09 25789.29 266
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17884.98 26471.27 21186.70 17390.55 21363.04 27793.92 10478.26 13594.20 19189.63 258
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21783.69 27771.27 21186.70 17386.05 29463.04 27792.41 15778.26 13593.62 20990.71 234
c3_l81.64 19981.59 19681.79 22180.86 33859.15 30478.61 28390.18 17668.36 24287.20 15987.11 27869.39 24091.62 17878.16 13794.43 18594.60 76
IterMVS-LS84.73 13284.98 13383.96 16487.35 22863.66 24383.25 20089.88 18376.06 13989.62 11192.37 15573.40 20992.52 15478.16 13794.77 17695.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet82.61 17882.42 18383.20 18883.25 31163.66 24383.50 19385.07 25976.06 13986.55 17785.10 30973.41 20790.25 21878.15 13990.67 27295.68 45
GeoE85.45 11685.81 11784.37 15190.08 16467.07 21185.86 14491.39 13572.33 20187.59 15590.25 22084.85 7192.37 15978.00 14091.94 24493.66 121
diffmvspermissive80.40 21880.48 21680.17 24779.02 35960.04 29277.54 29790.28 17366.65 26282.40 26287.33 27373.50 20487.35 27277.98 14189.62 28693.13 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 13077.97 14297.03 8495.52 49
casdiffmvspermissive85.21 12085.85 11683.31 18586.17 25962.77 25683.03 20693.93 4674.69 16188.21 14292.68 14482.29 10491.89 17377.87 14393.75 20595.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 27987.25 27482.43 9894.53 8477.65 14496.46 10294.14 99
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 8987.95 2589.62 11192.87 13784.56 7393.89 10577.65 14496.62 9590.70 235
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19188.51 2190.11 9695.12 4990.98 688.92 25377.55 14697.07 8383.13 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSLP-MVS++85.00 12886.03 11181.90 21591.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23577.98 14889.40 24877.46 14794.78 17484.75 324
IterMVS-SCA-FT80.64 21379.41 23084.34 15583.93 29769.66 18476.28 31981.09 30072.43 19686.47 18390.19 22260.46 28793.15 13777.45 14886.39 33290.22 247
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18392.01 11565.91 26686.19 18691.75 17383.77 8294.98 6977.43 14996.71 9393.73 119
test_fmvs375.72 27575.20 27577.27 29075.01 39169.47 18678.93 27684.88 26646.67 39287.08 16587.84 26150.44 34671.62 37777.42 15088.53 29990.72 233
BP-MVS77.30 151
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 15992.68 9773.30 18280.55 29390.17 22572.10 22494.61 7977.30 15194.47 18393.56 130
MVS_111021_LR84.28 14383.76 15985.83 12589.23 18283.07 5580.99 24983.56 27972.71 19486.07 18989.07 24281.75 11686.19 29477.11 15393.36 21088.24 280
CANet83.79 15882.85 17486.63 10486.17 25972.21 16083.76 18791.43 13277.24 13274.39 35287.45 27075.36 18195.42 5277.03 15492.83 22592.25 188
dcpmvs_284.23 14685.14 13081.50 22588.61 19861.98 27182.90 21293.11 7968.66 24192.77 5492.39 15178.50 14487.63 26976.99 15592.30 23294.90 65
Anonymous2023121188.40 7189.62 5984.73 14390.46 15765.27 22888.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 16976.70 15697.99 4396.88 23
MVS_111021_HR84.63 13384.34 15185.49 13290.18 16375.86 12379.23 27487.13 22473.35 17985.56 20089.34 23683.60 8590.50 21576.64 15794.05 19790.09 253
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14379.26 10489.68 10894.81 5982.44 9787.74 26776.54 15888.74 29896.61 27
RRT-MVS82.97 17483.44 16181.57 22485.06 27658.04 31687.20 11490.37 16477.88 12388.59 13193.70 11363.17 27493.05 14176.49 15988.47 30093.62 125
mvs5depth83.82 15784.54 14481.68 22282.23 32068.65 19686.89 12189.90 18280.02 9487.74 15297.86 264.19 26782.02 33476.37 16095.63 14394.35 89
DIV-MVS_self_test80.43 21680.23 21981.02 23479.99 34659.25 30177.07 30587.02 22967.38 25486.19 18689.22 23863.09 27590.16 22376.32 16195.80 13693.66 121
cl____80.42 21780.23 21981.02 23479.99 34659.25 30177.07 30587.02 22967.37 25586.18 18889.21 23963.08 27690.16 22376.31 16295.80 13693.65 123
AUN-MVS81.18 20578.78 23888.39 7990.93 14782.14 6282.51 22383.67 27864.69 28380.29 29785.91 29751.07 34192.38 15876.29 16393.63 20890.65 238
MGCFI-Net85.04 12585.95 11282.31 21187.52 22563.59 24586.23 13893.96 4473.46 17588.07 14587.83 26286.46 5790.87 20476.17 16493.89 20092.47 174
Gipumacopyleft84.44 13886.33 10578.78 26384.20 29373.57 13589.55 7790.44 16184.24 4884.38 22394.89 5376.35 17780.40 34676.14 16596.80 9182.36 362
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
miper_ehance_all_eth80.34 22080.04 22681.24 23079.82 34958.95 30677.66 29489.66 18765.75 27185.99 19385.11 30868.29 24791.42 18576.03 16692.03 24093.33 135
alignmvs83.94 15583.98 15683.80 16787.80 21767.88 20584.54 16891.42 13473.27 18588.41 13887.96 25772.33 22190.83 20576.02 16794.11 19492.69 163
PC_three_145258.96 33090.06 9791.33 18280.66 12893.03 14275.78 16895.94 12892.48 172
sasdasda85.50 11386.14 10983.58 17687.97 21167.13 20987.55 10994.32 2173.44 17788.47 13587.54 26786.45 5891.06 19575.76 16993.76 20292.54 170
canonicalmvs85.50 11386.14 10983.58 17687.97 21167.13 20987.55 10994.32 2173.44 17788.47 13587.54 26786.45 5891.06 19575.76 16993.76 20292.54 170
CSCG86.26 10186.47 10385.60 12990.87 14974.26 13187.98 10491.85 12180.35 8889.54 11788.01 25679.09 14092.13 16575.51 17195.06 16190.41 244
thisisatest053079.07 23477.33 25484.26 15887.13 23364.58 23483.66 19075.95 33168.86 23885.22 20587.36 27238.10 39493.57 12275.47 17294.28 18994.62 75
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18881.58 29774.73 16085.66 19686.06 29372.56 22092.69 15175.44 17395.21 15489.01 274
cl2278.97 23578.21 24781.24 23077.74 36359.01 30577.46 30187.13 22465.79 26884.32 22685.10 30958.96 30190.88 20375.36 17492.03 24093.84 111
eth_miper_zixun_eth80.84 20980.22 22182.71 20281.41 33060.98 28477.81 29290.14 17767.31 25786.95 16987.24 27564.26 26592.31 16175.23 17591.61 24994.85 71
v14882.31 18382.48 18281.81 22085.59 26859.66 29781.47 24286.02 24472.85 19088.05 14790.65 21170.73 23490.91 20175.15 17691.79 24594.87 67
FC-MVSNet-test85.93 10987.05 9482.58 20592.25 10156.44 32985.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 12975.11 17798.58 1497.88 7
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19883.80 18692.87 9180.37 8789.61 11391.81 17077.72 15394.18 9475.00 17898.53 1696.99 22
FA-MVS(test-final)83.13 17283.02 17183.43 18186.16 26166.08 22288.00 10388.36 20675.55 15185.02 20992.75 14265.12 26292.50 15574.94 17991.30 25591.72 207
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 18095.35 14892.29 184
DELS-MVS81.44 20281.25 20482.03 21384.27 29262.87 25476.47 31792.49 10270.97 21781.64 27983.83 32475.03 18492.70 15074.29 18192.22 23890.51 242
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 15684.01 15583.57 17887.22 23165.61 22786.55 13292.40 10378.64 11481.34 28484.18 32283.65 8492.93 14574.22 18287.87 31292.17 191
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21282.55 22191.56 12883.08 6290.92 8491.82 16978.25 14793.99 10174.16 18398.35 2297.49 13
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21283.16 20492.21 10981.73 7490.92 8491.97 16377.20 16093.99 10174.16 18398.35 2297.61 10
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24574.12 18596.10 11994.45 83
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24574.12 18596.10 11994.45 83
MVStest170.05 32969.26 33272.41 33658.62 42355.59 33676.61 31465.58 39253.44 36489.28 12093.32 12022.91 42371.44 37974.08 18789.52 28790.21 251
LF4IMVS82.75 17781.93 18885.19 13482.08 32180.15 7485.53 14988.76 20068.01 24785.58 19987.75 26371.80 22986.85 28174.02 18893.87 20188.58 277
FIs85.35 11886.27 10682.60 20491.86 11657.31 32285.10 15893.05 8375.83 14691.02 8393.97 9673.57 20392.91 14773.97 18998.02 4297.58 12
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21591.21 4388.64 20286.30 3389.60 11492.59 14569.22 24294.91 7173.89 19097.89 5296.72 24
EU-MVSNet75.12 28074.43 28277.18 29183.11 31659.48 29985.71 14882.43 28939.76 41285.64 19788.76 24544.71 37987.88 26673.86 19185.88 33884.16 335
ETV-MVS84.31 14183.91 15885.52 13088.58 19970.40 17884.50 17093.37 6478.76 11384.07 23478.72 37580.39 13095.13 6573.82 19292.98 22291.04 223
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12084.26 4790.87 8993.92 10382.18 10689.29 24973.75 19394.81 17393.70 120
Anonymous2024052180.18 22681.25 20476.95 29383.15 31560.84 28682.46 22485.99 24568.76 23986.78 17093.73 11259.13 29977.44 36073.71 19497.55 6992.56 168
MVSTER77.09 25775.70 27081.25 22875.27 38861.08 28077.49 30085.07 25960.78 31886.55 17788.68 24743.14 38690.25 21873.69 19590.67 27292.42 175
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17081.56 7690.02 9991.20 18782.40 9990.81 20673.58 19694.66 17994.56 77
RPMNet78.88 23778.28 24680.68 24079.58 35062.64 25882.58 21994.16 3274.80 15975.72 34092.59 14548.69 35095.56 4273.48 19782.91 36883.85 339
EG-PatchMatch MVS84.08 15084.11 15383.98 16392.22 10372.61 15082.20 23587.02 22972.63 19588.86 12491.02 19278.52 14391.11 19373.41 19891.09 25788.21 281
test_fmvs273.57 29672.80 29875.90 30872.74 40468.84 19577.07 30584.32 27445.14 39882.89 25584.22 32148.37 35170.36 38173.40 19987.03 32388.52 278
patch_mono-278.89 23679.39 23177.41 28984.78 28068.11 20275.60 32783.11 28260.96 31679.36 30789.89 23075.18 18372.97 37273.32 20092.30 23291.15 221
miper_lstm_enhance76.45 26876.10 26677.51 28776.72 37460.97 28564.69 39285.04 26163.98 28683.20 25088.22 25356.67 31578.79 35673.22 20193.12 21892.78 158
xiu_mvs_v1_base_debu80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
xiu_mvs_v1_base80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
xiu_mvs_v1_base_debi80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13594.02 5864.13 23984.38 17191.29 13884.88 4492.06 6593.84 10586.45 5893.73 11073.22 20198.66 1197.69 9
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19589.56 23480.76 12692.13 16573.21 20695.51 14493.25 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall77.83 24876.93 25880.51 24176.15 38058.01 31775.47 33188.82 19858.05 33783.59 24280.69 35564.41 26491.20 18973.16 20792.03 24092.33 182
旧先验281.73 23856.88 34886.54 18284.90 31272.81 208
114514_t83.10 17382.54 18184.77 14292.90 8369.10 19486.65 12990.62 15754.66 35981.46 28190.81 20476.98 16594.38 8772.62 20996.18 11490.82 231
UniMVSNet_ETH3D89.12 6590.72 4784.31 15797.00 264.33 23889.67 7488.38 20588.84 1794.29 2297.57 490.48 1391.26 18872.57 21097.65 6297.34 14
NR-MVSNet86.00 10786.22 10785.34 13393.24 7664.56 23582.21 23390.46 16080.99 8288.42 13791.97 16377.56 15593.85 10672.46 21198.65 1297.61 10
Baseline_NR-MVSNet84.00 15385.90 11478.29 27491.47 13453.44 35282.29 22987.00 23279.06 10789.55 11595.72 3277.20 16086.14 29672.30 21298.51 1795.28 56
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23391.15 387.70 10888.42 20474.57 16283.56 24485.65 29878.49 14594.21 9272.04 21392.88 22494.05 102
PM-MVS80.20 22579.00 23483.78 16988.17 20886.66 1981.31 24366.81 39069.64 23088.33 14090.19 22264.58 26383.63 32671.99 21490.03 28081.06 379
EIA-MVS82.19 18781.23 20685.10 13687.95 21369.17 19383.22 20393.33 6770.42 22178.58 31579.77 36777.29 15994.20 9371.51 21588.96 29491.93 201
SSC-MVS77.55 25281.64 19365.29 37890.46 15720.33 42473.56 34768.28 38185.44 3788.18 14494.64 6470.93 23381.33 33871.25 21692.03 24094.20 93
DPM-MVS80.10 22879.18 23382.88 20090.71 15369.74 18278.87 27990.84 15060.29 32375.64 34285.92 29667.28 25093.11 13871.24 21791.79 24585.77 313
OpenMVScopyleft76.72 1381.98 19482.00 18781.93 21484.42 28868.22 20088.50 9989.48 19266.92 25981.80 27591.86 16572.59 21990.16 22371.19 21891.25 25687.40 296
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18170.81 21996.14 11694.16 97
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18170.81 21996.14 11694.16 97
ET-MVSNet_ETH3D75.28 27772.77 29982.81 20183.03 31768.11 20277.09 30476.51 32960.67 32077.60 32580.52 35938.04 39591.15 19270.78 22190.68 27189.17 267
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21481.51 7787.05 16791.83 16866.18 25795.29 5670.75 22296.89 8695.64 46
jason77.42 25475.75 26982.43 21087.10 23669.27 18877.99 28981.94 29351.47 37877.84 32085.07 31260.32 28989.00 25170.74 22389.27 29189.03 272
jason: jason.
MG-MVS80.32 22180.94 20978.47 27088.18 20752.62 35982.29 22985.01 26372.01 20679.24 31092.54 14869.36 24193.36 13170.65 22489.19 29289.45 260
QAPM82.59 17982.59 18082.58 20586.44 24766.69 21689.94 6790.36 16567.97 24984.94 21392.58 14772.71 21792.18 16470.63 22587.73 31488.85 275
CVMVSNet72.62 30471.41 31476.28 30483.25 31160.34 29083.50 19379.02 31237.77 41676.33 33185.10 30949.60 34987.41 27170.54 22677.54 39681.08 377
pmmvs686.52 9988.06 7981.90 21592.22 10362.28 26684.66 16489.15 19683.54 5789.85 10497.32 588.08 3886.80 28270.43 22797.30 7896.62 26
D2MVS76.84 26075.67 27180.34 24480.48 34462.16 27073.50 34884.80 26957.61 34182.24 26487.54 26751.31 34087.65 26870.40 22893.19 21791.23 218
reproduce_monomvs74.09 29273.23 29376.65 30076.52 37554.54 34377.50 29981.40 29865.85 26782.86 25786.67 28327.38 41784.53 31570.24 22990.66 27490.89 228
PAPM_NR83.23 16983.19 16783.33 18490.90 14865.98 22388.19 10190.78 15278.13 12080.87 28987.92 26073.49 20692.42 15670.07 23088.40 30191.60 212
SDMVSNet81.90 19783.17 16878.10 27788.81 19262.45 26276.08 32386.05 24373.67 17183.41 24693.04 12782.35 10080.65 34370.06 23195.03 16291.21 219
lupinMVS76.37 26974.46 28182.09 21285.54 26969.26 18976.79 30880.77 30350.68 38576.23 33382.82 33758.69 30288.94 25269.85 23288.77 29688.07 283
PVSNet_Blended_VisFu81.55 20080.49 21584.70 14591.58 12773.24 14184.21 17291.67 12762.86 29180.94 28787.16 27667.27 25192.87 14869.82 23388.94 29587.99 287
Patchmatch-RL test74.48 28873.68 28776.89 29684.83 27966.54 21772.29 35569.16 38057.70 33986.76 17186.33 28845.79 36782.59 33069.63 23490.65 27581.54 370
EPNet80.37 21978.41 24586.23 11376.75 37373.28 13987.18 11677.45 31976.24 13868.14 38488.93 24465.41 26193.85 10669.47 23596.12 11891.55 214
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS83.18 17082.64 17884.79 14189.05 18467.82 20677.93 29092.52 10168.33 24385.07 20881.54 35182.06 10892.96 14369.35 23697.91 5193.57 129
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
原ACMM184.60 14692.81 8974.01 13291.50 13062.59 29282.73 25990.67 21076.53 17394.25 9069.24 23795.69 14185.55 315
VDD-MVS84.23 14684.58 14283.20 18891.17 14265.16 23183.25 20084.97 26579.79 9587.18 16094.27 7974.77 19090.89 20269.24 23796.54 9893.55 132
CANet_DTU77.81 25077.05 25680.09 24881.37 33159.90 29583.26 19988.29 20869.16 23467.83 38783.72 32560.93 28489.47 24269.22 23989.70 28590.88 229
Anonymous2024052986.20 10487.13 9183.42 18290.19 16264.55 23684.55 16690.71 15385.85 3689.94 10395.24 4682.13 10790.40 21769.19 24096.40 10595.31 55
FMVSNet184.55 13685.45 12581.85 21790.27 16161.05 28186.83 12488.27 20978.57 11589.66 11095.64 3475.43 18090.68 21069.09 24195.33 14993.82 113
test_fmvs1_n70.94 32070.41 32372.53 33473.92 39366.93 21475.99 32484.21 27643.31 40579.40 30679.39 36943.47 38268.55 38969.05 24284.91 35182.10 364
UGNet82.78 17681.64 19386.21 11686.20 25876.24 12086.86 12285.68 24977.07 13373.76 35692.82 13869.64 23991.82 17669.04 24393.69 20690.56 240
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ANet_high83.17 17185.68 12175.65 30981.24 33245.26 39579.94 26092.91 9083.83 5191.33 7696.88 1380.25 13285.92 29968.89 24495.89 13195.76 42
test_vis1_n_192071.30 31871.58 31270.47 34577.58 36659.99 29474.25 33984.22 27551.06 38074.85 35079.10 37155.10 32668.83 38768.86 24579.20 38982.58 357
Fast-Effi-MVS+-dtu82.54 18181.41 20185.90 12285.60 26776.53 11583.07 20589.62 19073.02 18979.11 31183.51 32780.74 12790.24 22068.76 24689.29 28990.94 226
pm-mvs183.69 15984.95 13479.91 24990.04 16859.66 29782.43 22587.44 21775.52 15287.85 15095.26 4581.25 12185.65 30668.74 24796.04 12194.42 86
CR-MVSNet74.00 29373.04 29676.85 29779.58 35062.64 25882.58 21976.90 32550.50 38675.72 34092.38 15248.07 35384.07 32268.72 24882.91 36883.85 339
KD-MVS_self_test81.93 19583.14 16978.30 27384.75 28252.75 35680.37 25589.42 19470.24 22690.26 9593.39 11974.55 19486.77 28368.61 24996.64 9495.38 52
IterMVS76.91 25976.34 26478.64 26680.91 33664.03 24076.30 31879.03 31164.88 28283.11 25189.16 24059.90 29384.46 31668.61 24985.15 34687.42 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testdata79.54 25692.87 8472.34 15680.14 30659.91 32685.47 20291.75 17367.96 24985.24 30868.57 25192.18 23981.06 379
test_fmvs169.57 33569.05 33571.14 34469.15 41265.77 22673.98 34383.32 28042.83 40777.77 32378.27 37843.39 38568.50 39068.39 25284.38 35879.15 387
mvs_anonymous78.13 24678.76 23976.23 30679.24 35650.31 37578.69 28184.82 26861.60 30783.09 25392.82 13873.89 20087.01 27568.33 25386.41 33191.37 216
WR-MVS83.56 16384.40 14981.06 23393.43 7054.88 34278.67 28285.02 26281.24 7990.74 9091.56 17772.85 21591.08 19468.00 25498.04 3997.23 16
TransMVSNet (Re)84.02 15285.74 12078.85 26291.00 14655.20 34182.29 22987.26 22079.65 9888.38 13995.52 3783.00 9086.88 28067.97 25596.60 9694.45 83
无先验82.81 21485.62 25058.09 33691.41 18667.95 25684.48 327
Fast-Effi-MVS+81.04 20780.57 21282.46 20987.50 22663.22 25078.37 28689.63 18968.01 24781.87 27182.08 34582.31 10292.65 15267.10 25788.30 30791.51 215
FMVSNet281.31 20381.61 19580.41 24386.38 24958.75 31183.93 18186.58 23572.43 19687.65 15492.98 13163.78 27090.22 22166.86 25893.92 19992.27 186
GA-MVS75.83 27374.61 27879.48 25781.87 32359.25 30173.42 34982.88 28468.68 24079.75 30281.80 34850.62 34489.46 24366.85 25985.64 33989.72 257
CNLPA83.55 16483.10 17084.90 13889.34 17983.87 5084.54 16888.77 19979.09 10683.54 24588.66 24974.87 18681.73 33666.84 26092.29 23489.11 268
tfpnnormal81.79 19882.95 17278.31 27288.93 18955.40 33780.83 25282.85 28576.81 13485.90 19494.14 8974.58 19386.51 28766.82 26195.68 14293.01 151
test_vis1_n70.29 32469.99 32871.20 34375.97 38266.50 21876.69 31180.81 30244.22 40175.43 34377.23 38650.00 34768.59 38866.71 26282.85 37078.52 389
VPA-MVSNet83.47 16684.73 13679.69 25390.29 16057.52 32181.30 24588.69 20176.29 13787.58 15694.44 7180.60 12987.20 27466.60 26396.82 9094.34 90
mvsmamba80.30 22278.87 23584.58 14788.12 21067.55 20792.35 2984.88 26663.15 28985.33 20390.91 19850.71 34395.20 6266.36 26487.98 31090.99 224
VDDNet84.35 14085.39 12781.25 22895.13 3259.32 30085.42 15281.11 29986.41 3287.41 15896.21 2273.61 20290.61 21366.33 26596.85 8793.81 116
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20292.40 10372.04 20582.04 26888.33 25277.91 15093.95 10366.17 26695.12 15990.34 246
WB-MVS76.06 27180.01 22764.19 38189.96 17020.58 42372.18 35668.19 38283.21 5986.46 18493.49 11770.19 23778.97 35465.96 26790.46 27793.02 150
GBi-Net82.02 19282.07 18581.85 21786.38 24961.05 28186.83 12488.27 20972.43 19686.00 19095.64 3463.78 27090.68 21065.95 26893.34 21193.82 113
test182.02 19282.07 18581.85 21786.38 24961.05 28186.83 12488.27 20972.43 19686.00 19095.64 3463.78 27090.68 21065.95 26893.34 21193.82 113
FMVSNet378.80 23978.55 24279.57 25582.89 31856.89 32781.76 23785.77 24769.04 23686.00 19090.44 21551.75 33990.09 22965.95 26893.34 21191.72 207
新几何182.95 19693.96 5978.56 8880.24 30555.45 35383.93 23791.08 19171.19 23288.33 26265.84 27193.07 21981.95 366
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 11973.19 18680.18 30189.15 24177.04 16493.28 13265.82 27292.28 23592.21 189
test_cas_vis1_n_192069.20 34069.12 33369.43 35473.68 39662.82 25570.38 37177.21 32246.18 39580.46 29678.95 37352.03 33665.53 40265.77 27377.45 39779.95 385
ppachtmachnet_test74.73 28774.00 28576.90 29580.71 34156.89 32771.53 36278.42 31358.24 33479.32 30982.92 33657.91 30884.26 32065.60 27491.36 25489.56 259
API-MVS82.28 18482.61 17981.30 22786.29 25569.79 18188.71 9587.67 21678.42 11782.15 26784.15 32377.98 14891.59 17965.39 27592.75 22682.51 361
test111178.53 24378.85 23777.56 28692.22 10347.49 38482.61 21769.24 37972.43 19685.28 20494.20 8551.91 33790.07 23065.36 27696.45 10395.11 62
test_vis3_rt71.42 31670.67 31773.64 32369.66 41170.46 17766.97 38789.73 18442.68 40888.20 14383.04 33243.77 38160.07 40965.35 27786.66 32890.39 245
testing371.53 31570.79 31673.77 32288.89 19041.86 40576.60 31559.12 40972.83 19180.97 28582.08 34519.80 42587.33 27365.12 27891.68 24892.13 193
thisisatest051573.00 30270.52 32080.46 24281.45 32959.90 29573.16 35274.31 34357.86 33876.08 33777.78 38037.60 39892.12 16765.00 27991.45 25389.35 263
cascas76.29 27074.81 27780.72 23984.47 28562.94 25273.89 34587.34 21855.94 35075.16 34876.53 39263.97 26891.16 19165.00 27990.97 26288.06 285
test250674.12 29173.39 29176.28 30491.85 11744.20 39884.06 17648.20 41972.30 20281.90 27094.20 8527.22 41989.77 23864.81 28196.02 12294.87 67
MDA-MVSNet-bldmvs77.47 25376.90 25979.16 26079.03 35864.59 23366.58 38875.67 33473.15 18788.86 12488.99 24366.94 25281.23 33964.71 28288.22 30891.64 211
OpenMVS_ROBcopyleft70.19 1777.77 25177.46 25178.71 26584.39 28961.15 27981.18 24782.52 28762.45 29683.34 24887.37 27166.20 25688.66 25964.69 28385.02 34886.32 306
PS-MVSNAJ77.04 25876.53 26278.56 26787.09 23761.40 27575.26 33287.13 22461.25 31274.38 35377.22 38776.94 16690.94 19864.63 28484.83 35483.35 347
xiu_mvs_v2_base77.19 25676.75 26078.52 26887.01 23961.30 27775.55 33087.12 22761.24 31374.45 35178.79 37477.20 16090.93 19964.62 28584.80 35583.32 348
PatchT70.52 32372.76 30063.79 38379.38 35433.53 41777.63 29565.37 39473.61 17371.77 36592.79 14144.38 38075.65 36764.53 28685.37 34182.18 363
Syy-MVS69.40 33770.03 32767.49 36781.72 32538.94 41071.00 36461.99 40061.38 30970.81 37172.36 40361.37 28379.30 35164.50 28785.18 34484.22 332
FE-MVS79.98 23078.86 23683.36 18386.47 24666.45 21989.73 7084.74 27072.80 19284.22 23391.38 18144.95 37793.60 11863.93 28891.50 25290.04 254
MonoMVSNet76.66 26377.26 25574.86 31579.86 34854.34 34586.26 13786.08 24171.08 21685.59 19888.68 24753.95 32985.93 29863.86 28980.02 38384.32 330
LFMVS80.15 22780.56 21378.89 26189.19 18355.93 33185.22 15573.78 34882.96 6384.28 23092.72 14357.38 31190.07 23063.80 29095.75 13990.68 236
ECVR-MVScopyleft78.44 24478.63 24177.88 28291.85 11748.95 37883.68 18969.91 37572.30 20284.26 23294.20 8551.89 33889.82 23563.58 29196.02 12294.87 67
131473.22 29972.56 30475.20 31280.41 34557.84 31881.64 24085.36 25351.68 37773.10 35976.65 39161.45 28285.19 30963.54 29279.21 38882.59 356
testdata286.43 28963.52 293
Patchmtry76.56 26677.46 25173.83 32179.37 35546.60 38882.41 22676.90 32573.81 16985.56 20092.38 15248.07 35383.98 32363.36 29495.31 15290.92 227
MSDG80.06 22979.99 22880.25 24583.91 29868.04 20477.51 29889.19 19577.65 12681.94 26983.45 32976.37 17686.31 29063.31 29586.59 32986.41 305
BH-RMVSNet80.53 21480.22 22181.49 22687.19 23266.21 22177.79 29386.23 23874.21 16583.69 24088.50 25073.25 21290.75 20763.18 29687.90 31187.52 294
test_yl78.71 24178.51 24379.32 25884.32 29058.84 30878.38 28485.33 25475.99 14282.49 26086.57 28458.01 30590.02 23262.74 29792.73 22789.10 269
DCV-MVSNet78.71 24178.51 24379.32 25884.32 29058.84 30878.38 28485.33 25475.99 14282.49 26086.57 28458.01 30590.02 23262.74 29792.73 22789.10 269
TinyColmap81.25 20482.34 18477.99 28085.33 27160.68 28882.32 22888.33 20771.26 21386.97 16892.22 16177.10 16386.98 27862.37 29995.17 15686.31 307
Anonymous20240521180.51 21581.19 20778.49 26988.48 20157.26 32376.63 31282.49 28881.21 8084.30 22992.24 16067.99 24886.24 29162.22 30095.13 15791.98 200
our_test_371.85 31071.59 31072.62 33280.71 34153.78 34969.72 37471.71 36758.80 33178.03 31780.51 36056.61 31678.84 35562.20 30186.04 33785.23 318
pmmvs-eth3d78.42 24577.04 25782.57 20787.44 22774.41 13080.86 25179.67 30855.68 35284.69 21790.31 21960.91 28585.42 30762.20 30191.59 25087.88 290
CMPMVSbinary59.41 2075.12 28073.57 28879.77 25075.84 38367.22 20881.21 24682.18 29050.78 38376.50 32987.66 26555.20 32582.99 32962.17 30390.64 27689.09 271
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f64.31 36765.85 35659.67 39266.54 41662.24 26957.76 40870.96 37040.13 41084.36 22482.09 34446.93 35551.67 41661.99 30481.89 37465.12 407
MIMVSNet183.63 16184.59 14180.74 23794.06 5762.77 25682.72 21584.53 27177.57 12890.34 9395.92 2876.88 17285.83 30461.88 30597.42 7493.62 125
BH-untuned80.96 20880.99 20880.84 23688.55 20068.23 19980.33 25688.46 20372.79 19386.55 17786.76 28274.72 19191.77 17761.79 30688.99 29382.52 360
AdaColmapbinary83.66 16083.69 16083.57 17890.05 16772.26 15886.29 13690.00 18078.19 11981.65 27887.16 27683.40 8794.24 9161.69 30794.76 17784.21 334
VPNet80.25 22381.68 19175.94 30792.46 9547.98 38276.70 31081.67 29573.45 17684.87 21492.82 13874.66 19286.51 28761.66 30896.85 8793.33 135
MAR-MVS80.24 22478.74 24084.73 14386.87 24378.18 9285.75 14687.81 21565.67 27377.84 32078.50 37673.79 20190.53 21461.59 30990.87 26685.49 317
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft73.85 1682.09 19080.31 21787.45 9290.86 15080.29 7385.88 14290.65 15568.17 24676.32 33286.33 28873.12 21392.61 15361.40 31090.02 28189.44 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test-LLR67.21 34866.74 35268.63 36176.45 37855.21 33967.89 37967.14 38762.43 29865.08 39972.39 40143.41 38369.37 38261.00 31184.89 35281.31 372
test-mter65.00 36263.79 36668.63 36176.45 37855.21 33967.89 37967.14 38750.98 38265.08 39972.39 40128.27 41569.37 38261.00 31184.89 35281.31 372
PatchmatchNetpermissive69.71 33468.83 33972.33 33777.66 36553.60 35079.29 27069.99 37457.66 34072.53 36282.93 33546.45 35880.08 34860.91 31372.09 40483.31 349
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet_BlendedMVS78.80 23977.84 24981.65 22384.43 28663.41 24679.49 26890.44 16161.70 30575.43 34387.07 27969.11 24391.44 18360.68 31492.24 23690.11 252
PVSNet_Blended76.49 26775.40 27279.76 25184.43 28663.41 24675.14 33390.44 16157.36 34375.43 34378.30 37769.11 24391.44 18360.68 31487.70 31584.42 329
VNet79.31 23380.27 21876.44 30187.92 21453.95 34875.58 32984.35 27374.39 16482.23 26590.72 20672.84 21684.39 31860.38 31693.98 19890.97 225
ttmdpeth71.72 31270.67 31774.86 31573.08 40155.88 33277.41 30269.27 37855.86 35178.66 31493.77 11038.01 39675.39 36860.12 31789.87 28393.31 137
LCM-MVSNet-Re83.48 16585.06 13178.75 26485.94 26455.75 33580.05 25894.27 2476.47 13696.09 694.54 6783.31 8889.75 24059.95 31894.89 16990.75 232
YYNet170.06 32870.44 32168.90 35773.76 39553.42 35358.99 40567.20 38658.42 33387.10 16385.39 30559.82 29467.32 39459.79 31983.50 36485.96 309
MDA-MVSNet_test_wron70.05 32970.44 32168.88 35873.84 39453.47 35158.93 40667.28 38558.43 33287.09 16485.40 30459.80 29567.25 39559.66 32083.54 36385.92 311
PAPR78.84 23878.10 24881.07 23285.17 27560.22 29182.21 23390.57 15862.51 29375.32 34684.61 31774.99 18592.30 16259.48 32188.04 30990.68 236
IB-MVS62.13 1971.64 31368.97 33879.66 25480.80 34062.26 26773.94 34476.90 32563.27 28868.63 38376.79 38933.83 40391.84 17559.28 32287.26 31784.88 322
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PCF-MVS74.62 1582.15 18980.92 21085.84 12489.43 17772.30 15780.53 25391.82 12357.36 34387.81 15189.92 22977.67 15493.63 11458.69 32395.08 16091.58 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
sd_testset79.95 23181.39 20275.64 31088.81 19258.07 31576.16 32282.81 28673.67 17183.41 24693.04 12780.96 12477.65 35958.62 32495.03 16291.21 219
1112_ss74.82 28573.74 28678.04 27989.57 17260.04 29276.49 31687.09 22854.31 36073.66 35779.80 36560.25 29086.76 28458.37 32584.15 35987.32 297
tpmvs70.16 32669.56 33171.96 33874.71 39248.13 38079.63 26375.45 33765.02 28170.26 37581.88 34745.34 37385.68 30558.34 32675.39 40082.08 365
UnsupCasMVSNet_eth71.63 31472.30 30669.62 35276.47 37752.70 35870.03 37380.97 30159.18 32879.36 30788.21 25460.50 28669.12 38558.33 32777.62 39587.04 299
tpmrst66.28 35766.69 35365.05 37972.82 40339.33 40978.20 28770.69 37253.16 36767.88 38680.36 36148.18 35274.75 37058.13 32870.79 40681.08 377
test_post178.85 2803.13 42145.19 37580.13 34758.11 329
SCA73.32 29772.57 30375.58 31181.62 32755.86 33378.89 27871.37 36861.73 30374.93 34983.42 33060.46 28787.01 27558.11 32982.63 37383.88 336
pmmvs474.92 28372.98 29780.73 23884.95 27771.71 16776.23 32077.59 31852.83 36877.73 32486.38 28656.35 31884.97 31157.72 33187.05 32285.51 316
Vis-MVSNet (Re-imp)77.82 24977.79 25077.92 28188.82 19151.29 36983.28 19871.97 36374.04 16682.23 26589.78 23157.38 31189.41 24757.22 33295.41 14693.05 149
ab-mvs79.67 23280.56 21376.99 29288.48 20156.93 32584.70 16386.06 24268.95 23780.78 29093.08 12675.30 18284.62 31456.78 33390.90 26489.43 262
baseline173.26 29873.54 28972.43 33584.92 27847.79 38379.89 26174.00 34465.93 26578.81 31386.28 29156.36 31781.63 33756.63 33479.04 39087.87 291
Test_1112_low_res73.90 29473.08 29576.35 30290.35 15955.95 33073.40 35086.17 23950.70 38473.14 35885.94 29558.31 30485.90 30156.51 33583.22 36587.20 298
TESTMET0.1,161.29 37360.32 37964.19 38172.06 40551.30 36867.89 37962.09 39945.27 39760.65 40869.01 40727.93 41664.74 40456.31 33681.65 37776.53 391
test_vis1_rt65.64 36064.09 36470.31 34666.09 41770.20 18061.16 39981.60 29638.65 41372.87 36069.66 40652.84 33260.04 41056.16 33777.77 39380.68 381
XXY-MVS74.44 29076.19 26569.21 35584.61 28452.43 36071.70 35977.18 32360.73 31980.60 29190.96 19675.44 17969.35 38456.13 33888.33 30385.86 312
MDTV_nov1_ep1368.29 34478.03 36243.87 40074.12 34172.22 36052.17 37267.02 39085.54 29945.36 37280.85 34155.73 33984.42 357
E-PMN61.59 37261.62 37561.49 38866.81 41555.40 33753.77 41160.34 40866.80 26158.90 41265.50 41140.48 39166.12 40055.72 34086.25 33462.95 409
MVS73.21 30072.59 30275.06 31480.97 33560.81 28781.64 24085.92 24646.03 39671.68 36677.54 38268.47 24689.77 23855.70 34185.39 34074.60 396
TR-MVS76.77 26275.79 26879.72 25286.10 26265.79 22577.14 30383.02 28365.20 28081.40 28282.10 34366.30 25590.73 20955.57 34285.27 34282.65 355
EPMVS62.47 36862.63 37262.01 38570.63 40938.74 41174.76 33652.86 41653.91 36267.71 38880.01 36339.40 39266.60 39855.54 34368.81 41280.68 381
MS-PatchMatch70.93 32170.22 32473.06 32781.85 32462.50 26173.82 34677.90 31552.44 37175.92 33881.27 35255.67 32281.75 33555.37 34477.70 39474.94 395
CL-MVSNet_self_test76.81 26177.38 25375.12 31386.90 24151.34 36773.20 35180.63 30468.30 24481.80 27588.40 25166.92 25380.90 34055.35 34594.90 16893.12 147
new-patchmatchnet70.10 32773.37 29260.29 39181.23 33316.95 42659.54 40274.62 33962.93 29080.97 28587.93 25962.83 27971.90 37555.24 34695.01 16592.00 198
CostFormer69.98 33168.68 34173.87 32077.14 36950.72 37379.26 27174.51 34151.94 37670.97 37084.75 31545.16 37687.49 27055.16 34779.23 38783.40 346
thres600view775.97 27275.35 27477.85 28487.01 23951.84 36580.45 25473.26 35375.20 15683.10 25286.31 29045.54 36889.05 25055.03 34892.24 23692.66 164
EMVS61.10 37560.81 37761.99 38665.96 41855.86 33353.10 41258.97 41167.06 25856.89 41663.33 41240.98 38967.03 39654.79 34986.18 33563.08 408
USDC76.63 26476.73 26176.34 30383.46 30457.20 32480.02 25988.04 21352.14 37483.65 24191.25 18463.24 27386.65 28554.66 35094.11 19485.17 319
CDS-MVSNet77.32 25575.40 27283.06 19189.00 18672.48 15477.90 29182.17 29160.81 31778.94 31283.49 32859.30 29788.76 25854.64 35192.37 23187.93 289
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gm-plane-assit75.42 38744.97 39752.17 37272.36 40387.90 26554.10 352
PatchMatch-RL74.48 28873.22 29478.27 27587.70 21985.26 3875.92 32570.09 37364.34 28476.09 33681.25 35365.87 25978.07 35853.86 35383.82 36171.48 399
testing9969.27 33868.15 34572.63 33183.29 30945.45 39371.15 36371.08 36967.34 25670.43 37477.77 38132.24 40784.35 31953.72 35486.33 33388.10 282
testing9169.94 33268.99 33772.80 32983.81 30045.89 39171.57 36173.64 35168.24 24570.77 37377.82 37934.37 40284.44 31753.64 35587.00 32588.07 283
EPNet_dtu72.87 30371.33 31577.49 28877.72 36460.55 28982.35 22775.79 33266.49 26358.39 41481.06 35453.68 33085.98 29753.55 35692.97 22385.95 310
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM69.41 33666.64 35477.70 28573.19 39871.24 17275.67 32665.56 39370.42 22165.18 39892.97 13333.64 40583.06 32753.52 35769.61 41078.79 388
baseline269.77 33366.89 35078.41 27179.51 35258.09 31476.23 32069.57 37657.50 34264.82 40277.45 38446.02 36188.44 26053.08 35877.83 39288.70 276
KD-MVS_2432*160066.87 35165.81 35770.04 34767.50 41347.49 38462.56 39679.16 30961.21 31477.98 31880.61 35625.29 42182.48 33153.02 35984.92 34980.16 383
miper_refine_blended66.87 35165.81 35770.04 34767.50 41347.49 38462.56 39679.16 30961.21 31477.98 31880.61 35625.29 42182.48 33153.02 35984.92 34980.16 383
BH-w/o76.57 26576.07 26778.10 27786.88 24265.92 22477.63 29586.33 23665.69 27280.89 28879.95 36468.97 24590.74 20853.01 36185.25 34377.62 390
pmmvs570.73 32270.07 32572.72 33077.03 37152.73 35774.14 34075.65 33550.36 38772.17 36485.37 30655.42 32480.67 34252.86 36287.59 31684.77 323
WAC-MVS37.39 41352.61 363
tpm67.95 34568.08 34667.55 36678.74 36143.53 40175.60 32767.10 38954.92 35672.23 36388.10 25542.87 38775.97 36552.21 36480.95 38283.15 351
MVP-Stereo75.81 27473.51 29082.71 20289.35 17873.62 13480.06 25785.20 25660.30 32273.96 35487.94 25857.89 30989.45 24452.02 36574.87 40185.06 321
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres100view90075.45 27675.05 27676.66 29987.27 22951.88 36481.07 24873.26 35375.68 14883.25 24986.37 28745.54 36888.80 25451.98 36690.99 25989.31 264
tfpn200view974.86 28474.23 28376.74 29886.24 25652.12 36179.24 27273.87 34673.34 18081.82 27384.60 31846.02 36188.80 25451.98 36690.99 25989.31 264
thres40075.14 27874.23 28377.86 28386.24 25652.12 36179.24 27273.87 34673.34 18081.82 27384.60 31846.02 36188.80 25451.98 36690.99 25992.66 164
mvsany_test365.48 36162.97 37073.03 32869.99 41076.17 12164.83 39043.71 42143.68 40380.25 30087.05 28052.83 33363.09 40851.92 36972.44 40379.84 386
HyFIR lowres test75.12 28072.66 30182.50 20891.44 13565.19 23072.47 35487.31 21946.79 39180.29 29784.30 32052.70 33492.10 16851.88 37086.73 32790.22 247
TAMVS78.08 24776.36 26383.23 18790.62 15472.87 14379.08 27580.01 30761.72 30481.35 28386.92 28163.96 26988.78 25750.61 37193.01 22188.04 286
sss66.92 35067.26 34865.90 37477.23 36851.10 37264.79 39171.72 36652.12 37570.13 37680.18 36257.96 30765.36 40350.21 37281.01 38181.25 374
FPMVS72.29 30872.00 30773.14 32688.63 19785.00 4074.65 33867.39 38471.94 20777.80 32287.66 26550.48 34575.83 36649.95 37379.51 38458.58 413
tpm cat166.76 35465.21 36271.42 34177.09 37050.62 37478.01 28873.68 35044.89 39968.64 38279.00 37245.51 37082.42 33349.91 37470.15 40781.23 376
CHOSEN 1792x268872.45 30570.56 31978.13 27690.02 16963.08 25168.72 37783.16 28142.99 40675.92 33885.46 30257.22 31385.18 31049.87 37581.67 37586.14 308
myMVS_eth3d64.66 36463.89 36566.97 37081.72 32537.39 41371.00 36461.99 40061.38 30970.81 37172.36 40320.96 42479.30 35149.59 37685.18 34484.22 332
HY-MVS64.64 1873.03 30172.47 30574.71 31783.36 30854.19 34682.14 23681.96 29256.76 34969.57 37986.21 29260.03 29184.83 31349.58 37782.65 37185.11 320
MDTV_nov1_ep13_2view27.60 42170.76 36846.47 39461.27 40645.20 37449.18 37883.75 341
testing1167.38 34765.93 35571.73 34083.37 30746.60 38870.95 36669.40 37762.47 29566.14 39176.66 39031.22 40884.10 32149.10 37984.10 36084.49 326
PMMVS61.65 37160.38 37865.47 37765.40 42069.26 18963.97 39461.73 40436.80 41760.11 40968.43 40859.42 29666.35 39948.97 38078.57 39160.81 410
WBMVS68.76 34268.43 34269.75 35183.29 30940.30 40867.36 38472.21 36157.09 34677.05 32785.53 30033.68 40480.51 34448.79 38190.90 26488.45 279
WTY-MVS67.91 34668.35 34366.58 37280.82 33948.12 38165.96 38972.60 35653.67 36371.20 36881.68 35058.97 30069.06 38648.57 38281.67 37582.55 358
UnsupCasMVSNet_bld69.21 33969.68 33067.82 36579.42 35351.15 37067.82 38275.79 33254.15 36177.47 32685.36 30759.26 29870.64 38048.46 38379.35 38681.66 368
tpm268.45 34466.83 35173.30 32578.93 36048.50 37979.76 26271.76 36547.50 39069.92 37783.60 32642.07 38888.40 26148.44 38479.51 38483.01 353
Patchmatch-test65.91 35867.38 34761.48 38975.51 38543.21 40268.84 37663.79 39862.48 29472.80 36183.42 33044.89 37859.52 41148.27 38586.45 33081.70 367
FMVSNet572.10 30971.69 30973.32 32481.57 32853.02 35576.77 30978.37 31463.31 28776.37 33091.85 16636.68 39978.98 35347.87 38692.45 23087.95 288
dp60.70 37760.29 38061.92 38772.04 40638.67 41270.83 36764.08 39751.28 37960.75 40777.28 38536.59 40071.58 37847.41 38762.34 41475.52 394
N_pmnet70.20 32568.80 34074.38 31980.91 33684.81 4359.12 40476.45 33055.06 35575.31 34782.36 34255.74 32154.82 41447.02 38887.24 31883.52 343
thres20072.34 30771.55 31374.70 31883.48 30351.60 36675.02 33473.71 34970.14 22778.56 31680.57 35846.20 35988.20 26446.99 38989.29 28984.32 330
test20.0373.75 29574.59 28071.22 34281.11 33451.12 37170.15 37272.10 36270.42 22180.28 29991.50 17864.21 26674.72 37146.96 39094.58 18187.82 292
mvsany_test158.48 38056.47 38564.50 38065.90 41968.21 20156.95 40942.11 42238.30 41465.69 39577.19 38856.96 31459.35 41246.16 39158.96 41565.93 406
pmmvs362.47 36860.02 38169.80 35071.58 40764.00 24170.52 36958.44 41239.77 41166.05 39275.84 39427.10 42072.28 37346.15 39284.77 35673.11 397
testgi72.36 30674.61 27865.59 37580.56 34342.82 40368.29 37873.35 35266.87 26081.84 27289.93 22872.08 22666.92 39746.05 39392.54 22987.01 300
PVSNet58.17 2166.41 35665.63 35968.75 35981.96 32249.88 37762.19 39872.51 35851.03 38168.04 38575.34 39750.84 34274.77 36945.82 39482.96 36681.60 369
dmvs_re66.81 35366.98 34966.28 37376.87 37258.68 31271.66 36072.24 35960.29 32369.52 38073.53 40052.38 33564.40 40544.90 39581.44 37875.76 393
gg-mvs-nofinetune68.96 34169.11 33468.52 36376.12 38145.32 39483.59 19155.88 41486.68 2964.62 40397.01 930.36 41083.97 32444.78 39682.94 36776.26 392
Anonymous2023120671.38 31771.88 30869.88 34986.31 25354.37 34470.39 37074.62 33952.57 37076.73 32888.76 24559.94 29272.06 37444.35 39793.23 21683.23 350
CHOSEN 280x42059.08 37956.52 38466.76 37176.51 37664.39 23749.62 41359.00 41043.86 40255.66 41768.41 40935.55 40168.21 39343.25 39876.78 39967.69 405
ADS-MVSNet265.87 35963.64 36772.55 33373.16 39956.92 32667.10 38574.81 33849.74 38866.04 39382.97 33346.71 35677.26 36142.29 39969.96 40883.46 344
ADS-MVSNet61.90 37062.19 37461.03 39073.16 39936.42 41567.10 38561.75 40349.74 38866.04 39382.97 33346.71 35663.21 40642.29 39969.96 40883.46 344
DSMNet-mixed60.98 37661.61 37659.09 39472.88 40245.05 39674.70 33746.61 42026.20 41865.34 39790.32 21855.46 32363.12 40741.72 40181.30 38069.09 403
MIMVSNet71.09 31971.59 31069.57 35387.23 23050.07 37678.91 27771.83 36460.20 32571.26 36791.76 17255.08 32776.09 36441.06 40287.02 32482.54 359
UBG64.34 36663.35 36867.30 36883.50 30240.53 40767.46 38365.02 39554.77 35867.54 38974.47 39932.99 40678.50 35740.82 40383.58 36282.88 354
test0.0.03 164.66 36464.36 36365.57 37675.03 39046.89 38764.69 39261.58 40662.43 29871.18 36977.54 38243.41 38368.47 39140.75 40482.65 37181.35 371
PAPM71.77 31170.06 32676.92 29486.39 24853.97 34776.62 31386.62 23453.44 36463.97 40484.73 31657.79 31092.34 16039.65 40581.33 37984.45 328
testing22266.93 34965.30 36171.81 33983.38 30645.83 39272.06 35767.50 38364.12 28569.68 37876.37 39327.34 41883.00 32838.88 40688.38 30286.62 304
MVS-HIRNet61.16 37462.92 37155.87 39579.09 35735.34 41671.83 35857.98 41346.56 39359.05 41191.14 18849.95 34876.43 36338.74 40771.92 40555.84 414
GG-mvs-BLEND67.16 36973.36 39746.54 39084.15 17455.04 41558.64 41361.95 41429.93 41183.87 32538.71 40876.92 39871.07 400
UWE-MVS66.43 35565.56 36069.05 35684.15 29440.98 40673.06 35364.71 39654.84 35776.18 33579.62 36829.21 41280.50 34538.54 40989.75 28485.66 314
WB-MVSnew68.72 34369.01 33667.85 36483.22 31343.98 39974.93 33565.98 39155.09 35473.83 35579.11 37065.63 26071.89 37638.21 41085.04 34787.69 293
new_pmnet55.69 38257.66 38349.76 39875.47 38630.59 41859.56 40151.45 41743.62 40462.49 40575.48 39640.96 39049.15 41837.39 41172.52 40269.55 402
PVSNet_051.08 2256.10 38154.97 38659.48 39375.12 38953.28 35455.16 41061.89 40244.30 40059.16 41062.48 41354.22 32865.91 40135.40 41247.01 41659.25 412
ETVMVS64.67 36363.34 36968.64 36083.44 30541.89 40469.56 37561.70 40561.33 31168.74 38175.76 39528.76 41379.35 35034.65 41386.16 33684.67 325
wuyk23d75.13 27979.30 23262.63 38475.56 38475.18 12680.89 25073.10 35575.06 15894.76 1695.32 4187.73 4352.85 41534.16 41497.11 8259.85 411
MVEpermissive40.22 2351.82 38450.47 38755.87 39562.66 42251.91 36331.61 41639.28 42340.65 40950.76 41874.98 39856.24 31944.67 41933.94 41564.11 41371.04 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS255.64 38359.27 38244.74 39964.30 42112.32 42740.60 41449.79 41853.19 36665.06 40184.81 31453.60 33149.76 41732.68 41689.41 28872.15 398
dmvs_testset60.59 37862.54 37354.72 39777.26 36727.74 42074.05 34261.00 40760.48 32165.62 39667.03 41055.93 32068.23 39232.07 41769.46 41168.17 404
test_method30.46 38729.60 39033.06 40117.99 4263.84 42913.62 41773.92 3452.79 42018.29 42253.41 41528.53 41443.25 42022.56 41835.27 41852.11 415
tmp_tt20.25 38924.50 3927.49 4044.47 4278.70 42834.17 41525.16 4251.00 42232.43 42118.49 41939.37 3939.21 42321.64 41943.75 4174.57 419
dongtai41.90 38542.65 38839.67 40070.86 40821.11 42261.01 40021.42 42757.36 34357.97 41550.06 41616.40 42658.73 41321.03 42027.69 42039.17 416
DeepMVS_CXcopyleft24.13 40332.95 42529.49 41921.63 42612.07 41937.95 42045.07 41730.84 40919.21 42217.94 42133.06 41923.69 418
kuosan30.83 38632.17 38926.83 40253.36 42419.02 42557.90 40720.44 42838.29 41538.01 41937.82 41815.18 42733.45 4217.74 42220.76 42128.03 417
test1236.27 3928.08 3950.84 4051.11 4290.57 43062.90 3950.82 4290.54 4231.07 4252.75 4241.26 4280.30 4241.04 4231.26 4231.66 420
testmvs5.91 3937.65 3960.72 4061.20 4280.37 43159.14 4030.67 4300.49 4241.11 4242.76 4230.94 4290.24 4251.02 4241.47 4221.55 421
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
cdsmvs_eth3d_5k20.81 38827.75 3910.00 4070.00 4300.00 4320.00 41885.44 2520.00 4250.00 42682.82 33781.46 1180.00 4260.00 4250.00 4240.00 422
pcd_1.5k_mvsjas6.41 3918.55 3940.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42576.94 1660.00 4260.00 4250.00 4240.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
ab-mvs-re6.65 3908.87 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42679.80 3650.00 4300.00 4260.00 4250.00 4240.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 430
eth-test0.00 430
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
save fliter93.75 6377.44 10386.31 13589.72 18570.80 218
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
GSMVS83.88 336
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 336
sam_mvs45.92 365
MTGPAbinary91.81 125
test_post3.10 42245.43 37177.22 362
patchmatchnet-post81.71 34945.93 36487.01 275
MTMP90.66 4833.14 424
TEST992.34 9879.70 7883.94 17990.32 16765.41 27784.49 22090.97 19482.03 10993.63 114
test_892.09 10778.87 8583.82 18490.31 16965.79 26884.36 22490.96 19681.93 11193.44 127
agg_prior91.58 12777.69 10090.30 17084.32 22693.18 135
test_prior478.97 8484.59 165
test_prior86.32 11090.59 15571.99 16292.85 9294.17 9692.80 157
新几何281.72 239
旧先验191.97 11171.77 16381.78 29491.84 16773.92 19993.65 20783.61 342
原ACMM282.26 232
test22293.31 7376.54 11379.38 26977.79 31652.59 36982.36 26390.84 20366.83 25491.69 24781.25 374
segment_acmp81.94 110
testdata179.62 26473.95 168
test1286.57 10590.74 15172.63 14990.69 15482.76 25879.20 13994.80 7395.32 15092.27 186
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 431
nn0.00 431
door-mid74.45 342
test1191.46 131
door72.57 357
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 15973.30 18280.55 293
ACMP_Plane91.19 13984.77 15973.30 18280.55 293
HQP4-MVS80.56 29294.61 7993.56 130
HQP3-MVS92.68 9794.47 183
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 225
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140