This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1590.26 395.70 496.46 290.58 892.86 4896.29 1688.16 3594.17 9986.07 4398.48 1897.22 19
DROMVSNet88.01 7888.32 7687.09 10089.28 18572.03 15990.31 5496.31 380.88 8085.12 19689.67 21284.47 7495.46 4982.56 8196.26 12193.77 115
FOURS196.08 1287.41 1396.19 295.83 492.95 296.57 2
SF-MVS90.27 3990.80 4588.68 7892.86 8977.09 11091.19 4295.74 581.38 7492.28 6093.80 10386.89 5194.64 7885.52 4997.51 7694.30 90
CS-MVS-test87.00 9186.43 10388.71 7689.46 18177.46 10289.42 7895.73 677.87 11781.64 25787.25 25282.43 9594.53 8577.65 14096.46 11194.14 97
ACMH+77.89 1190.73 3091.50 2388.44 8393.00 8476.26 12289.65 6995.55 787.72 2393.89 2794.94 4891.62 493.44 13278.35 12898.76 495.61 49
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6685.72 3396.79 195.51 888.86 1495.63 896.99 884.81 7093.16 14291.10 197.53 7596.58 31
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AllTest87.97 8087.40 8989.68 5591.59 12983.40 5089.50 7495.44 979.47 9588.00 14493.03 11782.66 9291.47 18670.81 20696.14 12494.16 95
TestCases89.68 5591.59 12983.40 5095.44 979.47 9588.00 14493.03 11782.66 9291.47 18670.81 20696.14 12494.16 95
9.1489.29 6291.84 12488.80 8895.32 1175.14 15291.07 8292.89 12487.27 4693.78 11583.69 7097.55 71
xxxxxxxxxxxxxcwj89.04 6689.13 6488.79 7393.75 6477.44 10386.31 12895.27 1270.80 20892.28 6093.80 10386.89 5194.64 7885.52 4997.51 7694.30 90
ETH3D-3000-0.188.85 6988.96 6988.52 7991.94 11877.27 10988.71 9095.26 1376.08 13490.66 9192.69 13184.48 7393.83 11483.38 7297.48 7894.47 82
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6886.15 2393.37 1095.10 1490.28 992.11 6395.03 4689.75 2194.93 6979.95 11098.27 2795.04 65
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 8385.17 3692.47 2695.05 1587.65 2493.21 4394.39 7390.09 1895.08 6586.67 3397.60 6894.18 94
test_part187.15 9087.82 8185.15 14188.88 19463.04 23587.98 9994.85 1682.52 6193.61 3895.73 2767.51 23695.71 3280.48 10798.83 296.69 27
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2684.67 4393.51 894.85 1682.88 5791.77 7193.94 10090.55 1395.73 3188.50 798.23 2995.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS88.14 7687.67 8489.54 6189.56 18079.18 8290.47 5194.77 1879.37 9984.32 21189.33 21883.87 7794.53 8582.45 8294.89 17294.90 66
LS3D90.60 3390.34 5091.38 2789.03 19084.23 4793.58 694.68 1990.65 790.33 9593.95 9984.50 7295.37 5380.87 10095.50 15094.53 81
ETH3D cwj APD-0.1687.83 8487.62 8588.47 8191.21 14578.20 9087.26 10994.54 2072.05 19688.89 12692.31 14483.86 7894.24 9381.59 9396.87 9492.97 147
MP-MVS-pluss90.81 2991.08 3689.99 5195.97 1479.88 7488.13 9894.51 2175.79 14392.94 4594.96 4788.36 2995.01 6790.70 298.40 2095.09 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs85.50 11586.14 10983.58 17687.97 21067.13 20087.55 10594.32 2273.44 17088.47 13687.54 24686.45 5891.06 20175.76 16393.76 19792.54 163
LCM-MVSNet-Re83.48 16385.06 12878.75 25585.94 25555.75 31080.05 24894.27 2376.47 13096.09 594.54 6283.31 8689.75 24259.95 29194.89 17290.75 217
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4281.69 6190.00 5894.27 2382.35 6393.67 3494.82 5291.18 595.52 4385.36 5198.73 795.23 60
LGP-MVS_train90.82 3894.75 4281.69 6194.27 2382.35 6393.67 3494.82 5291.18 595.52 4385.36 5198.73 795.23 60
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3292.99 1394.23 2685.21 3492.51 5695.13 4490.65 1095.34 5488.06 998.15 3695.95 42
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2183.05 5492.18 2994.22 2780.14 8991.29 7993.97 9387.93 4095.87 1988.65 497.96 4894.12 98
nrg03087.85 8388.49 7485.91 12690.07 17469.73 17887.86 10294.20 2874.04 16292.70 5494.66 5685.88 6591.50 18579.72 11497.32 8296.50 32
DeepC-MVS82.31 489.15 6389.08 6589.37 6393.64 6979.07 8388.54 9494.20 2873.53 16889.71 11094.82 5285.09 6795.77 3084.17 6598.03 4093.26 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
abl_693.02 493.16 492.60 494.73 4488.99 793.26 1294.19 3089.11 1294.43 1695.27 3891.86 395.09 6487.54 1898.02 4193.71 117
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6788.83 2495.51 4587.16 2897.60 6892.73 153
RE-MVS-def92.61 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6790.64 1187.16 2897.60 6892.73 153
RPMNet78.88 22478.28 23180.68 23179.58 32462.64 24182.58 20794.16 3174.80 15475.72 31192.59 13348.69 32595.56 3973.48 18582.91 33583.85 307
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2785.91 2793.35 1194.16 3182.52 6192.39 5994.14 8689.15 2395.62 3587.35 2398.24 2894.56 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS91.22 2491.92 1389.14 6792.97 8578.04 9292.84 1694.14 3583.33 5193.90 2595.73 2788.77 2696.41 187.60 1697.98 4592.98 144
3Dnovator+83.92 289.97 4989.66 5690.92 3691.27 14481.66 6491.25 4094.13 3688.89 1388.83 12994.26 7877.55 15395.86 2284.88 5895.87 13795.24 59
test_one_060193.85 6373.27 13994.11 3786.57 2793.47 4194.64 6088.42 27
DVP-MVS++90.07 4291.09 3587.00 10191.55 13572.64 14596.19 294.10 3885.33 3293.49 3994.64 6081.12 12095.88 1787.41 2195.94 13392.48 165
test_0728_SECOND86.79 10594.25 4972.45 15390.54 4894.10 3895.88 1786.42 3497.97 4692.02 186
DPE-MVScopyleft90.53 3591.08 3688.88 6993.38 7578.65 8889.15 8194.05 4084.68 3893.90 2594.11 8888.13 3696.30 384.51 6397.81 5591.70 197
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP79.16 1090.54 3490.60 4890.35 4694.36 4780.98 6789.16 8094.05 4079.03 10492.87 4793.74 10790.60 1295.21 6182.87 7898.76 494.87 68
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4494.91 3884.50 4689.49 7593.98 4279.68 9392.09 6493.89 10183.80 8093.10 14682.67 8098.04 3893.64 122
baseline85.20 12085.93 11283.02 18786.30 24662.37 24684.55 15193.96 4374.48 15987.12 15592.03 15082.30 9891.94 17578.39 12694.21 18994.74 75
casdiffmvs85.21 11985.85 11483.31 18186.17 25262.77 23983.03 19593.93 4474.69 15688.21 14292.68 13282.29 9991.89 17877.87 13993.75 19995.27 58
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4794.47 4685.95 2686.84 11793.91 4580.07 9086.75 16593.26 11393.64 290.93 20484.60 6290.75 26393.97 103
test072694.16 5372.56 14990.63 4793.90 4683.61 4793.75 3194.49 6489.76 19
MSP-MVS89.08 6588.16 7791.83 2195.76 1886.14 2492.75 1793.90 4678.43 11289.16 12492.25 14772.03 21796.36 288.21 890.93 25892.98 144
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS91.20 2590.95 4291.93 1595.67 2385.85 3090.00 5893.90 4680.32 8691.74 7294.41 7088.17 3495.98 1186.37 3697.99 4393.96 104
SR-MVS92.23 892.34 991.91 1794.89 3987.85 1192.51 2493.87 4988.20 2193.24 4294.02 9190.15 1795.67 3486.82 3297.34 8192.19 182
ACMH76.49 1489.34 6091.14 3483.96 16792.50 9770.36 17589.55 7193.84 5081.89 6994.70 1395.44 3590.69 988.31 26383.33 7398.30 2693.20 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS88.96 6789.88 5386.22 11891.63 12877.07 11189.82 6493.77 5178.90 10592.88 4692.29 14586.11 6290.22 22686.24 4197.24 8491.36 205
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS90.96 2891.01 3990.82 3895.45 2882.73 5791.75 3793.74 5280.98 7991.38 7793.80 10387.20 4895.80 2587.10 3197.69 6393.93 105
test_241102_TWO93.71 5383.77 4493.49 3994.27 7589.27 2295.84 2386.03 4497.82 5492.04 185
SED-MVS90.46 3791.64 1986.93 10294.18 5072.65 14390.47 5193.69 5483.77 4494.11 2394.27 7590.28 1595.84 2386.03 4497.92 4992.29 176
test_241102_ONE94.18 5072.65 14393.69 5483.62 4694.11 2393.78 10690.28 1595.50 48
ACMMP_NAP90.65 3191.07 3889.42 6295.93 1679.54 7989.95 6193.68 5677.65 11991.97 6894.89 4988.38 2895.45 5089.27 397.87 5393.27 133
test117292.40 792.41 792.37 694.68 4589.04 691.98 3293.62 5790.14 1193.63 3694.16 8588.83 2495.51 4587.11 3097.54 7492.54 163
HQP_MVS87.75 8687.43 8888.70 7793.45 7276.42 12089.45 7693.61 5879.44 9786.55 17092.95 12274.84 18095.22 5980.78 10295.83 13894.46 83
plane_prior593.61 5895.22 5980.78 10295.83 13894.46 83
XVG-OURS89.18 6288.83 7190.23 4894.28 4886.11 2585.91 13193.60 6080.16 8889.13 12593.44 11183.82 7990.98 20283.86 6895.30 15893.60 124
testtj89.51 5789.48 6089.59 5992.26 10580.80 6990.14 5793.54 6183.37 5090.57 9292.55 13684.99 6896.15 581.26 9496.61 10491.83 193
TAPA-MVS77.73 1285.71 11484.83 13388.37 8588.78 19679.72 7687.15 11293.50 6269.17 22585.80 18789.56 21380.76 12492.13 17073.21 19395.51 14993.25 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 6180.97 6891.49 3993.48 6382.82 5892.60 5593.97 9388.19 3396.29 487.61 1598.20 3394.39 87
Skip Steuart: Steuart Systems R&D Blog.
ETV-MVS84.31 14183.91 15685.52 13588.58 19970.40 17484.50 15593.37 6478.76 10984.07 22078.72 34680.39 12995.13 6373.82 18192.98 21691.04 209
CP-MVS91.67 1491.58 2191.96 1495.29 3287.62 1293.38 993.36 6583.16 5391.06 8394.00 9288.26 3295.71 3287.28 2698.39 2192.55 162
ACMM79.39 990.65 3190.99 4089.63 5795.03 3583.53 4989.62 7093.35 6679.20 10193.83 2893.60 11090.81 892.96 14985.02 5698.45 1992.41 168
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS82.19 18081.23 19385.10 14287.95 21169.17 18883.22 19293.33 6770.42 21378.58 28979.77 34377.29 15594.20 9671.51 20388.96 28191.93 191
XVS91.54 1591.36 2692.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 10194.03 9086.57 5695.80 2587.35 2397.62 6694.20 92
X-MVStestdata85.04 12582.70 17092.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 10116.05 37586.57 5695.80 2587.35 2397.62 6694.20 92
ETH3 D test640085.09 12384.87 13285.75 13190.80 15869.34 18285.90 13293.31 7065.43 26486.11 18089.95 20680.92 12294.86 7175.90 16195.57 14893.05 141
WR-MVS_H89.91 5091.31 3185.71 13296.32 1062.39 24589.54 7393.31 7090.21 1095.57 995.66 3081.42 11795.90 1580.94 9998.80 398.84 5
region2R91.44 2091.30 3291.87 1995.75 1985.90 2892.63 2193.30 7281.91 6890.88 8894.21 8087.75 4195.87 1987.60 1697.71 6293.83 109
HFP-MVS91.30 2191.39 2591.02 3395.43 2984.66 4492.58 2293.29 7381.99 6691.47 7493.96 9688.35 3095.56 3987.74 1197.74 6092.85 148
#test#90.49 3690.31 5191.02 3395.43 2984.66 4490.65 4693.29 7377.00 12791.47 7493.96 9688.35 3095.56 3984.88 5897.74 6092.85 148
ACMMPR91.49 1791.35 2891.92 1695.74 2085.88 2992.58 2293.25 7581.99 6691.40 7694.17 8487.51 4495.87 1987.74 1197.76 5893.99 101
SMA-MVScopyleft90.31 3890.48 4989.83 5295.31 3179.52 8090.98 4493.24 7675.37 15092.84 4995.28 3785.58 6696.09 787.92 1097.76 5893.88 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS90.03 4591.88 1684.48 15396.57 658.88 28688.95 8393.19 7791.62 496.01 696.16 2087.02 4995.60 3678.69 12598.72 998.97 3
OMC-MVS88.19 7587.52 8690.19 4991.94 11881.68 6387.49 10793.17 7876.02 13788.64 13291.22 17084.24 7693.37 13577.97 13897.03 9095.52 50
dcpmvs_284.23 14685.14 12781.50 21588.61 19861.98 25182.90 20093.11 7968.66 23392.77 5292.39 13978.50 14287.63 26976.99 15092.30 22894.90 66
OurMVSNet-221017-090.01 4689.74 5590.83 3793.16 8180.37 7191.91 3593.11 7981.10 7795.32 1097.24 572.94 20594.85 7285.07 5497.78 5697.26 16
FC-MVSNet-test85.93 11187.05 9482.58 19892.25 10656.44 30585.75 13593.09 8177.33 12391.94 6994.65 5774.78 18293.41 13475.11 17098.58 1497.88 7
APD-MVScopyleft89.54 5689.63 5789.26 6592.57 9481.34 6690.19 5693.08 8280.87 8191.13 8193.19 11486.22 6195.97 1282.23 8697.18 8690.45 227
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FIs85.35 11886.27 10682.60 19791.86 12157.31 29885.10 14393.05 8375.83 14291.02 8493.97 9373.57 19592.91 15373.97 17898.02 4197.58 12
v7n90.13 4090.96 4187.65 9591.95 11671.06 17089.99 6093.05 8386.53 2894.29 1996.27 1782.69 9194.08 10386.25 4097.63 6597.82 8
PHI-MVS86.38 10185.81 11588.08 8988.44 20377.34 10689.35 7993.05 8373.15 17984.76 20387.70 24378.87 14094.18 9780.67 10496.29 11792.73 153
MP-MVScopyleft91.14 2790.91 4391.83 2196.18 1186.88 1692.20 2893.03 8682.59 6088.52 13594.37 7486.74 5395.41 5286.32 3798.21 3193.19 137
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Anonymous2023121188.40 7289.62 5884.73 14990.46 16665.27 21488.86 8693.02 8787.15 2593.05 4497.10 682.28 10092.02 17476.70 15197.99 4396.88 25
MSLP-MVS++85.00 12786.03 11181.90 20791.84 12471.56 16886.75 12293.02 8775.95 14087.12 15589.39 21677.98 14789.40 24877.46 14394.78 17584.75 297
DP-MVS88.60 7189.01 6687.36 9891.30 14277.50 10187.55 10592.97 8987.95 2289.62 11492.87 12584.56 7193.89 11077.65 14096.62 10390.70 219
ANet_high83.17 16985.68 11975.65 29681.24 30745.26 36379.94 25092.91 9083.83 4391.33 7896.88 1080.25 13185.92 29368.89 22895.89 13695.76 44
UniMVSNet (Re)86.87 9286.98 9686.55 10993.11 8268.48 19183.80 17292.87 9180.37 8489.61 11691.81 15877.72 15094.18 9775.00 17198.53 1696.99 24
test_prior386.31 10286.31 10586.32 11390.59 16371.99 16083.37 18592.85 9275.43 14784.58 20591.57 16281.92 11094.17 9979.54 11796.97 9192.80 150
test_prior86.32 11390.59 16371.99 16092.85 9294.17 9992.80 150
DTE-MVSNet89.98 4791.91 1584.21 16196.51 857.84 29488.93 8592.84 9491.92 396.16 396.23 1886.95 5095.99 1079.05 12298.57 1598.80 6
UA-Net91.49 1791.53 2291.39 2694.98 3682.95 5693.52 792.79 9588.22 2088.53 13497.64 283.45 8494.55 8486.02 4698.60 1396.67 28
OPM-MVS89.80 5189.97 5289.27 6494.76 4179.86 7586.76 12192.78 9678.78 10792.51 5693.64 10988.13 3693.84 11384.83 6097.55 7194.10 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-CasMVS90.06 4391.92 1384.47 15496.56 758.83 28989.04 8292.74 9791.40 596.12 496.06 2287.23 4795.57 3879.42 12098.74 699.00 2
HQP3-MVS92.68 9894.47 183
HQP-MVS84.61 13384.06 15286.27 11691.19 14670.66 17284.77 14592.68 9873.30 17480.55 27190.17 20472.10 21394.61 8077.30 14694.47 18393.56 126
mPP-MVS91.69 1391.47 2492.37 696.04 1388.48 1092.72 1892.60 10083.09 5491.54 7394.25 7987.67 4395.51 4587.21 2798.11 3793.12 139
CLD-MVS83.18 16882.64 17284.79 14689.05 18967.82 19877.93 27992.52 10168.33 23585.07 19781.54 32782.06 10492.96 14969.35 22197.91 5193.57 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS81.44 19081.25 19182.03 20584.27 27562.87 23876.47 30092.49 10270.97 20781.64 25783.83 30275.03 17792.70 15674.29 17392.22 23490.51 226
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 15684.01 15383.57 17787.22 22665.61 21386.55 12692.40 10378.64 11081.34 26284.18 30083.65 8292.93 15174.22 17487.87 29592.17 183
DP-MVS Recon84.05 15183.22 16286.52 11091.73 12775.27 12783.23 19192.40 10372.04 19782.04 24788.33 23377.91 14993.95 10866.17 24795.12 16490.34 229
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4391.48 13984.90 3983.41 18492.38 10570.25 21789.35 12290.68 19082.85 9094.57 8279.55 11695.95 13292.00 187
CPTT-MVS89.39 5988.98 6890.63 4195.09 3486.95 1592.09 3092.30 10679.74 9287.50 15192.38 14081.42 11793.28 13783.07 7597.24 8491.67 198
DU-MVS86.80 9586.99 9586.21 12093.24 7967.02 20283.16 19392.21 10781.73 7090.92 8591.97 15177.20 15693.99 10574.16 17598.35 2297.61 10
v1086.54 9887.10 9284.84 14588.16 20963.28 23286.64 12492.20 10875.42 14992.81 5194.50 6374.05 19094.06 10483.88 6796.28 11897.17 20
MCST-MVS84.36 13983.93 15585.63 13391.59 12971.58 16783.52 17992.13 10961.82 28683.96 22189.75 21179.93 13593.46 13178.33 12994.34 18691.87 192
Vis-MVSNetpermissive86.86 9386.58 10187.72 9392.09 11277.43 10587.35 10892.09 11078.87 10684.27 21794.05 8978.35 14593.65 11880.54 10691.58 24692.08 184
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CP-MVSNet89.27 6190.91 4384.37 15596.34 958.61 29188.66 9292.06 11190.78 695.67 795.17 4381.80 11395.54 4279.00 12398.69 1098.95 4
CDPH-MVS86.17 10785.54 12188.05 9192.25 10675.45 12683.85 16992.01 11265.91 25786.19 17791.75 16083.77 8194.98 6877.43 14596.71 10193.73 116
DeepC-MVS_fast80.27 886.23 10485.65 12087.96 9291.30 14276.92 11287.19 11091.99 11370.56 21184.96 19890.69 18980.01 13395.14 6278.37 12795.78 14391.82 194
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJss88.31 7387.90 7989.56 6093.31 7777.96 9587.94 10191.97 11470.73 21094.19 2296.67 1176.94 16294.57 8283.07 7596.28 11896.15 34
MVS_Test82.47 17683.22 16280.22 23782.62 29757.75 29682.54 21091.96 11571.16 20682.89 23592.52 13877.41 15490.50 21980.04 10987.84 29692.40 169
F-COLMAP84.97 12883.42 15989.63 5792.39 9983.40 5088.83 8791.92 11673.19 17880.18 27789.15 22277.04 16093.28 13765.82 25292.28 23192.21 181
mvsmamba87.87 8187.23 9089.78 5392.31 10476.51 11991.09 4391.87 11772.61 18692.16 6295.23 4166.01 24595.59 3786.02 4697.78 5697.24 17
ZD-MVS92.22 10880.48 7091.85 11871.22 20590.38 9392.98 11986.06 6396.11 681.99 8896.75 100
CSCG86.26 10386.47 10285.60 13490.87 15674.26 13387.98 9991.85 11880.35 8589.54 12088.01 23779.09 13892.13 17075.51 16495.06 16690.41 228
PCF-MVS74.62 1582.15 18180.92 19785.84 12989.43 18272.30 15580.53 24391.82 12057.36 31787.81 14789.92 20877.67 15193.63 12058.69 29695.08 16591.58 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1988.94 8491.81 12184.07 4092.00 6694.40 7186.63 5495.28 5788.59 598.31 2492.30 174
MTGPAbinary91.81 121
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1992.02 3191.81 12184.07 4092.00 6694.40 7186.63 5495.28 5788.59 598.31 2492.30 174
PVSNet_Blended_VisFu81.55 18980.49 20184.70 15191.58 13273.24 14084.21 15791.67 12462.86 27980.94 26487.16 25467.27 23892.87 15469.82 21888.94 28287.99 262
UniMVSNet_NR-MVSNet86.84 9487.06 9386.17 12292.86 8967.02 20282.55 20991.56 12583.08 5590.92 8591.82 15778.25 14693.99 10574.16 17598.35 2297.49 13
v124084.30 14284.51 14383.65 17487.65 21861.26 25782.85 20191.54 12667.94 24290.68 9090.65 19271.71 21993.64 11982.84 7994.78 17596.07 37
原ACMM184.60 15292.81 9274.01 13491.50 12762.59 28082.73 23790.67 19176.53 16994.25 9269.24 22295.69 14685.55 288
test1191.46 128
CANet83.79 15782.85 16886.63 10786.17 25272.21 15883.76 17391.43 12977.24 12574.39 32187.45 24875.36 17495.42 5177.03 14992.83 21992.25 180
v119284.57 13484.69 13884.21 16187.75 21562.88 23783.02 19691.43 12969.08 22789.98 10390.89 18372.70 20993.62 12382.41 8394.97 16996.13 35
alignmvs83.94 15583.98 15483.80 16987.80 21467.88 19784.54 15391.42 13173.27 17788.41 13887.96 23872.33 21290.83 20976.02 16094.11 19192.69 157
GeoE85.45 11785.81 11584.37 15590.08 17267.07 20185.86 13491.39 13272.33 19287.59 14990.25 20084.85 6992.37 16478.00 13691.94 24093.66 119
v886.22 10586.83 9984.36 15787.82 21362.35 24786.42 12791.33 13376.78 12992.73 5394.48 6573.41 19993.72 11783.10 7495.41 15197.01 23
TranMVSNet+NR-MVSNet87.86 8288.76 7385.18 14094.02 5864.13 22484.38 15691.29 13484.88 3792.06 6593.84 10286.45 5893.73 11673.22 18898.66 1197.69 9
HPM-MVS++copyleft88.93 6888.45 7590.38 4594.92 3785.85 3089.70 6591.27 13578.20 11486.69 16892.28 14680.36 13095.06 6686.17 4296.49 10990.22 230
CNVR-MVS87.81 8587.68 8388.21 8892.87 8777.30 10885.25 14191.23 13677.31 12487.07 15991.47 16682.94 8994.71 7584.67 6196.27 12092.62 160
v192192084.23 14684.37 14883.79 17087.64 21961.71 25282.91 19991.20 13767.94 24290.06 9890.34 19772.04 21693.59 12482.32 8594.91 17096.07 37
TSAR-MVS + MP.88.14 7687.82 8189.09 6895.72 2276.74 11592.49 2591.19 13867.85 24486.63 16994.84 5179.58 13695.96 1387.62 1494.50 18294.56 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPSCF88.00 7986.93 9791.22 3190.08 17289.30 589.68 6791.11 13979.26 10089.68 11194.81 5582.44 9487.74 26776.54 15488.74 28596.61 30
NCCC87.36 8786.87 9888.83 7092.32 10378.84 8686.58 12591.09 14078.77 10884.85 20290.89 18380.85 12395.29 5581.14 9695.32 15592.34 172
v14419284.24 14584.41 14683.71 17387.59 22061.57 25382.95 19891.03 14167.82 24589.80 10890.49 19573.28 20293.51 12981.88 9194.89 17296.04 39
MSC_two_6792asdad88.81 7191.55 13577.99 9391.01 14296.05 887.45 1998.17 3492.40 169
No_MVS88.81 7191.55 13577.99 9391.01 14296.05 887.45 1998.17 3492.40 169
DVP-MVScopyleft90.06 4391.32 3086.29 11594.16 5372.56 14990.54 4891.01 14283.61 4793.75 3194.65 5789.76 1995.78 2886.42 3497.97 4690.55 225
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
v114484.54 13784.72 13684.00 16587.67 21762.55 24382.97 19790.93 14570.32 21689.80 10890.99 17873.50 19693.48 13081.69 9294.65 18095.97 40
DPM-MVS80.10 21779.18 21982.88 19390.71 16169.74 17778.87 26890.84 14660.29 30175.64 31385.92 27267.28 23793.11 14571.24 20491.79 24185.77 287
IU-MVS94.18 5072.64 14590.82 14756.98 31989.67 11285.78 4897.92 4993.28 132
PAPM_NR83.23 16783.19 16483.33 18090.90 15565.98 21088.19 9790.78 14878.13 11680.87 26687.92 24173.49 19892.42 16170.07 21688.40 28691.60 200
Anonymous2024052986.20 10687.13 9183.42 17990.19 17064.55 22184.55 15190.71 14985.85 3189.94 10495.24 4082.13 10290.40 22169.19 22596.40 11495.31 56
test1286.57 10890.74 15972.63 14790.69 15082.76 23679.20 13794.80 7395.32 15592.27 178
PLCcopyleft73.85 1682.09 18280.31 20387.45 9790.86 15780.29 7285.88 13390.65 15168.17 23776.32 30486.33 26473.12 20492.61 15961.40 28390.02 27189.44 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mvs_tets89.78 5289.27 6391.30 2893.51 7184.79 4189.89 6390.63 15270.00 22094.55 1596.67 1187.94 3993.59 12484.27 6495.97 13095.52 50
114514_t83.10 17082.54 17584.77 14892.90 8669.10 18986.65 12390.62 15354.66 32881.46 25990.81 18676.98 16194.38 8972.62 19696.18 12290.82 216
PAPR78.84 22578.10 23381.07 22285.17 26160.22 27182.21 22190.57 15462.51 28175.32 31684.61 29674.99 17892.30 16759.48 29488.04 29390.68 220
NR-MVSNet86.00 10886.22 10785.34 13893.24 7964.56 22082.21 22190.46 15580.99 7888.42 13791.97 15177.56 15293.85 11172.46 19898.65 1297.61 10
PVSNet_BlendedMVS78.80 22777.84 23481.65 21484.43 26963.41 22979.49 25890.44 15661.70 28975.43 31487.07 25769.11 22991.44 18860.68 28892.24 23290.11 234
PVSNet_Blended76.49 25475.40 25879.76 24284.43 26963.41 22975.14 31390.44 15657.36 31775.43 31478.30 34869.11 22991.44 18860.68 28887.70 29884.42 300
Gipumacopyleft84.44 13886.33 10478.78 25484.20 27873.57 13689.55 7190.44 15684.24 3984.38 20994.89 4976.35 17180.40 32776.14 15896.80 9982.36 328
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
QAPM82.59 17482.59 17482.58 19886.44 23966.69 20589.94 6290.36 15967.97 24184.94 20092.58 13572.71 20892.18 16970.63 21287.73 29788.85 254
TEST992.34 10179.70 7783.94 16590.32 16065.41 26884.49 20790.97 17982.03 10693.63 120
train_agg85.98 11085.28 12588.07 9092.34 10179.70 7783.94 16590.32 16065.79 25884.49 20790.97 17981.93 10893.63 12081.21 9596.54 10790.88 214
test_892.09 11278.87 8583.82 17090.31 16265.79 25884.36 21090.96 18181.93 10893.44 132
agg_prior185.72 11385.20 12687.28 9991.58 13277.69 9883.69 17590.30 16366.29 25584.32 21191.07 17682.13 10293.18 14081.02 9796.36 11590.98 210
agg_prior91.58 13277.69 9890.30 16384.32 21193.18 140
ITE_SJBPF90.11 5090.72 16084.97 3890.30 16381.56 7290.02 10091.20 17282.40 9690.81 21073.58 18494.66 17994.56 78
jajsoiax89.41 5888.81 7291.19 3293.38 7584.72 4289.70 6590.29 16669.27 22494.39 1796.38 1586.02 6493.52 12883.96 6695.92 13595.34 54
diffmvs80.40 20780.48 20280.17 23879.02 33360.04 27277.54 28690.28 16766.65 25382.40 24087.33 25173.50 19687.35 27277.98 13789.62 27493.13 138
V4283.47 16483.37 16183.75 17283.16 29163.33 23181.31 23390.23 16869.51 22390.91 8790.81 18674.16 18892.29 16880.06 10890.22 26995.62 48
anonymousdsp89.73 5388.88 7092.27 989.82 17886.67 1790.51 5090.20 16969.87 22195.06 1196.14 2184.28 7593.07 14787.68 1396.34 11697.09 21
c3_l81.64 18881.59 18881.79 21380.86 31359.15 28378.61 27290.18 17068.36 23487.20 15387.11 25669.39 22691.62 18378.16 13394.43 18594.60 77
eth_miper_zixun_eth80.84 19880.22 20782.71 19581.41 30560.98 26377.81 28190.14 17167.31 24886.95 16287.24 25364.26 25292.31 16675.23 16891.61 24494.85 72
MVSFormer82.23 17981.57 18984.19 16385.54 25869.26 18491.98 3290.08 17271.54 20076.23 30585.07 28958.69 28794.27 9086.26 3888.77 28389.03 251
test_djsdf89.62 5489.01 6691.45 2592.36 10082.98 5591.98 3290.08 17271.54 20094.28 2196.54 1381.57 11594.27 9086.26 3896.49 10997.09 21
AdaColmapbinary83.66 15983.69 15883.57 17790.05 17572.26 15686.29 13090.00 17478.19 11581.65 25687.16 25483.40 8594.24 9361.69 28094.76 17884.21 302
3Dnovator80.37 784.80 13084.71 13785.06 14386.36 24474.71 13088.77 8990.00 17475.65 14584.96 19893.17 11574.06 18991.19 19678.28 13091.09 25089.29 245
IterMVS-LS84.73 13184.98 13083.96 16787.35 22363.66 22783.25 18989.88 17676.06 13589.62 11492.37 14373.40 20192.52 16078.16 13394.77 17795.69 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
save fliter93.75 6477.44 10386.31 12889.72 17770.80 208
v2v48284.09 14984.24 15083.62 17587.13 22861.40 25482.71 20489.71 17872.19 19589.55 11891.41 16770.70 22493.20 13981.02 9793.76 19796.25 33
miper_ehance_all_eth80.34 21080.04 21281.24 22079.82 32358.95 28577.66 28389.66 17965.75 26185.99 18585.11 28568.29 23391.42 19076.03 15992.03 23693.33 130
Fast-Effi-MVS+81.04 19580.57 19882.46 20287.50 22163.22 23378.37 27589.63 18068.01 23981.87 25082.08 32282.31 9792.65 15867.10 24088.30 29191.51 203
Fast-Effi-MVS+-dtu82.54 17581.41 19085.90 12785.60 25676.53 11883.07 19489.62 18173.02 18179.11 28683.51 30580.74 12590.24 22568.76 22989.29 27690.94 212
PMVScopyleft80.48 690.08 4190.66 4788.34 8696.71 392.97 190.31 5489.57 18288.51 1990.11 9795.12 4590.98 788.92 25377.55 14297.07 8983.13 320
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft76.72 1381.98 18582.00 18281.93 20684.42 27168.22 19388.50 9589.48 18366.92 25081.80 25491.86 15372.59 21090.16 22871.19 20591.25 24987.40 270
test_040288.65 7089.58 5985.88 12892.55 9572.22 15784.01 16389.44 18488.63 1894.38 1895.77 2686.38 6093.59 12479.84 11195.21 15991.82 194
KD-MVS_self_test81.93 18683.14 16578.30 26484.75 26652.75 32880.37 24589.42 18570.24 21890.26 9693.39 11274.55 18786.77 28168.61 23296.64 10295.38 53
Regformer-286.74 9686.08 11088.73 7484.18 27979.20 8183.52 17989.33 18683.33 5189.92 10585.07 28983.23 8793.16 14283.39 7192.72 22393.83 109
MSDG80.06 21879.99 21380.25 23683.91 28468.04 19677.51 28789.19 18777.65 11981.94 24883.45 30776.37 17086.31 28863.31 26986.59 30586.41 279
ambc82.98 18890.55 16564.86 21788.20 9689.15 18889.40 12193.96 9671.67 22091.38 19378.83 12496.55 10692.71 156
pmmvs686.52 9988.06 7881.90 20792.22 10862.28 24884.66 14989.15 18883.54 4989.85 10697.32 488.08 3886.80 28070.43 21497.30 8396.62 29
RRT_MVS88.30 7487.83 8089.70 5493.62 7075.70 12592.36 2789.06 19077.34 12293.63 3695.83 2565.40 24995.90 1585.01 5798.23 2997.49 13
miper_enhance_ethall77.83 23776.93 24480.51 23276.15 35058.01 29375.47 31188.82 19158.05 31183.59 22680.69 33164.41 25191.20 19573.16 19492.03 23692.33 173
CNLPA83.55 16283.10 16684.90 14489.34 18483.87 4884.54 15388.77 19279.09 10283.54 22888.66 23074.87 17981.73 32166.84 24392.29 23089.11 247
LF4IMVS82.75 17281.93 18385.19 13982.08 29880.15 7385.53 13888.76 19368.01 23985.58 19087.75 24271.80 21886.85 27974.02 17793.87 19688.58 256
VPA-MVSNet83.47 16484.73 13479.69 24490.29 16857.52 29781.30 23588.69 19476.29 13187.58 15094.44 6680.60 12787.20 27366.60 24596.82 9894.34 89
IS-MVSNet86.66 9786.82 10086.17 12292.05 11466.87 20491.21 4188.64 19586.30 3089.60 11792.59 13369.22 22894.91 7073.89 17997.89 5296.72 26
BH-untuned80.96 19680.99 19580.84 22788.55 20068.23 19280.33 24688.46 19672.79 18386.55 17086.76 25974.72 18491.77 18261.79 27988.99 28082.52 326
Effi-MVS+-dtu85.82 11283.38 16093.14 387.13 22891.15 287.70 10488.42 19774.57 15783.56 22785.65 27478.49 14394.21 9572.04 20092.88 21894.05 100
mvs-test184.55 13582.12 17991.84 2087.13 22889.54 485.05 14488.42 19774.57 15780.60 26882.98 31078.49 14393.98 10772.04 20089.77 27292.00 187
UniMVSNet_ETH3D89.12 6490.72 4684.31 15997.00 264.33 22389.67 6888.38 19988.84 1594.29 1997.57 390.48 1491.26 19472.57 19797.65 6497.34 15
iter_conf0578.81 22677.35 23983.21 18382.98 29560.75 26784.09 15988.34 20063.12 27784.25 21989.48 21431.41 37294.51 8776.64 15295.83 13894.38 88
TinyColmap81.25 19282.34 17877.99 27085.33 26060.68 26882.32 21688.33 20171.26 20486.97 16192.22 14977.10 15986.98 27762.37 27395.17 16186.31 281
CANet_DTU77.81 23977.05 24280.09 23981.37 30659.90 27483.26 18888.29 20269.16 22667.83 34783.72 30360.93 26989.47 24469.22 22489.70 27390.88 214
GBi-Net82.02 18382.07 18081.85 20986.38 24161.05 26086.83 11888.27 20372.43 18786.00 18295.64 3163.78 25690.68 21465.95 24893.34 20593.82 111
test182.02 18382.07 18081.85 20986.38 24161.05 26086.83 11888.27 20372.43 18786.00 18295.64 3163.78 25690.68 21465.95 24893.34 20593.82 111
FMVSNet184.55 13585.45 12381.85 20990.27 16961.05 26086.83 11888.27 20378.57 11189.66 11395.64 3175.43 17390.68 21469.09 22695.33 15493.82 111
SixPastTwentyTwo87.20 8987.45 8786.45 11192.52 9669.19 18787.84 10388.05 20681.66 7194.64 1496.53 1465.94 24694.75 7483.02 7796.83 9795.41 52
USDC76.63 25176.73 24776.34 29183.46 28757.20 30080.02 24988.04 20752.14 34283.65 22591.25 16963.24 25986.65 28454.66 32194.11 19185.17 292
Regformer-486.41 10085.71 11888.52 7984.27 27577.57 10084.07 16088.00 20882.82 5889.84 10785.48 27782.06 10492.77 15583.83 6991.04 25295.22 62
EPP-MVSNet85.47 11685.04 12986.77 10691.52 13869.37 18191.63 3887.98 20981.51 7387.05 16091.83 15666.18 24495.29 5570.75 20996.89 9395.64 47
Regformer-186.00 10885.50 12287.49 9684.18 27976.90 11383.52 17987.94 21082.18 6589.19 12385.07 28982.28 10091.89 17882.40 8492.72 22393.69 118
MAR-MVS80.24 21378.74 22584.73 14986.87 23878.18 9185.75 13587.81 21165.67 26377.84 29478.50 34773.79 19390.53 21861.59 28290.87 26085.49 290
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 17882.61 17381.30 21786.29 24769.79 17688.71 9087.67 21278.42 11382.15 24584.15 30177.98 14791.59 18465.39 25492.75 22082.51 327
pm-mvs183.69 15884.95 13179.91 24090.04 17659.66 27682.43 21387.44 21375.52 14687.85 14695.26 3981.25 11985.65 29768.74 23096.04 12794.42 86
cascas76.29 25774.81 26280.72 23084.47 26862.94 23673.89 32187.34 21455.94 32275.16 31876.53 35763.97 25491.16 19765.00 25690.97 25788.06 260
HyFIR lowres test75.12 26572.66 28482.50 20191.44 14165.19 21572.47 32887.31 21546.79 35880.29 27484.30 29952.70 31492.10 17351.88 33786.73 30490.22 230
TransMVSNet (Re)84.02 15285.74 11778.85 25391.00 15355.20 31582.29 21787.26 21679.65 9488.38 13995.52 3483.00 8886.88 27867.97 23796.60 10594.45 85
xiu_mvs_v1_base_debu80.84 19880.14 20982.93 19088.31 20471.73 16379.53 25587.17 21765.43 26479.59 27982.73 31776.94 16290.14 23173.22 18888.33 28786.90 276
xiu_mvs_v1_base80.84 19880.14 20982.93 19088.31 20471.73 16379.53 25587.17 21765.43 26479.59 27982.73 31776.94 16290.14 23173.22 18888.33 28786.90 276
xiu_mvs_v1_base_debi80.84 19880.14 20982.93 19088.31 20471.73 16379.53 25587.17 21765.43 26479.59 27982.73 31776.94 16290.14 23173.22 18888.33 28786.90 276
cl2278.97 22278.21 23281.24 22077.74 33759.01 28477.46 28987.13 22065.79 25884.32 21185.10 28658.96 28690.88 20875.36 16792.03 23693.84 108
PS-MVSNAJ77.04 24676.53 24878.56 25887.09 23361.40 25475.26 31287.13 22061.25 29174.38 32277.22 35476.94 16290.94 20364.63 26184.83 32483.35 315
MVS_111021_HR84.63 13284.34 14985.49 13790.18 17175.86 12479.23 26487.13 22073.35 17185.56 19189.34 21783.60 8390.50 21976.64 15294.05 19390.09 235
xiu_mvs_v2_base77.19 24476.75 24678.52 25987.01 23461.30 25675.55 31087.12 22361.24 29274.45 32078.79 34577.20 15690.93 20464.62 26284.80 32583.32 316
1112_ss74.82 27073.74 27178.04 26989.57 17960.04 27276.49 29987.09 22454.31 32973.66 32579.80 34160.25 27586.76 28358.37 29784.15 32887.32 271
cl____80.42 20680.23 20581.02 22479.99 32159.25 28077.07 29287.02 22567.37 24786.18 17989.21 22063.08 26190.16 22876.31 15695.80 14193.65 121
DIV-MVS_self_test80.43 20580.23 20581.02 22479.99 32159.25 28077.07 29287.02 22567.38 24686.19 17789.22 21963.09 26090.16 22876.32 15595.80 14193.66 119
EG-PatchMatch MVS84.08 15084.11 15183.98 16692.22 10872.61 14882.20 22387.02 22572.63 18588.86 12791.02 17778.52 14191.11 19973.41 18691.09 25088.21 258
Baseline_NR-MVSNet84.00 15385.90 11378.29 26591.47 14053.44 32482.29 21787.00 22879.06 10389.55 11895.72 2977.20 15686.14 29172.30 19998.51 1795.28 57
PAPM71.77 29470.06 30476.92 28386.39 24053.97 31976.62 29886.62 22953.44 33363.97 36184.73 29557.79 29592.34 16539.65 36681.33 34384.45 299
FMVSNet281.31 19181.61 18780.41 23486.38 24158.75 29083.93 16786.58 23072.43 18787.65 14892.98 11963.78 25690.22 22666.86 24193.92 19592.27 178
BH-w/o76.57 25276.07 25378.10 26886.88 23765.92 21177.63 28486.33 23165.69 26280.89 26579.95 34068.97 23190.74 21253.01 33085.25 31777.62 351
EGC-MVSNET74.79 27169.99 30589.19 6694.89 3987.00 1491.89 3686.28 2321.09 3762.23 37895.98 2381.87 11289.48 24379.76 11395.96 13191.10 208
iter_conf_final80.36 20978.88 22184.79 14686.29 24766.36 20886.95 11586.25 23368.16 23882.09 24689.48 21436.59 36794.51 8779.83 11294.30 18793.50 129
BH-RMVSNet80.53 20380.22 20781.49 21687.19 22766.21 20977.79 28286.23 23474.21 16183.69 22388.50 23173.25 20390.75 21163.18 27087.90 29487.52 268
Test_1112_low_res73.90 27873.08 27976.35 29090.35 16755.95 30673.40 32586.17 23550.70 35173.14 32685.94 27158.31 28985.90 29456.51 30783.22 33287.20 272
ab-mvs79.67 21980.56 19976.99 28188.48 20156.93 30184.70 14886.06 23668.95 22980.78 26793.08 11675.30 17584.62 30556.78 30590.90 25989.43 241
v14882.31 17782.48 17681.81 21285.59 25759.66 27681.47 23186.02 23772.85 18288.05 14390.65 19270.73 22390.91 20675.15 16991.79 24194.87 68
Anonymous2024052180.18 21581.25 19176.95 28283.15 29260.84 26582.46 21285.99 23868.76 23186.78 16393.73 10859.13 28477.44 33473.71 18297.55 7192.56 161
MVS73.21 28372.59 28575.06 30080.97 31060.81 26681.64 22885.92 23946.03 36171.68 33377.54 35068.47 23289.77 24055.70 31285.39 31474.60 356
FMVSNet378.80 22778.55 22779.57 24682.89 29656.89 30381.76 22585.77 24069.04 22886.00 18290.44 19651.75 31790.09 23465.95 24893.34 20591.72 196
UGNet82.78 17181.64 18686.21 12086.20 25176.24 12386.86 11685.68 24177.07 12673.76 32492.82 12669.64 22591.82 18169.04 22793.69 20090.56 224
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
无先验82.81 20285.62 24258.09 31091.41 19167.95 23884.48 298
cdsmvs_eth3d_5k20.81 34327.75 3460.00 3620.00 3850.00 3860.00 37385.44 2430.00 3800.00 38182.82 31581.46 1160.00 3810.00 3790.00 3790.00 377
131473.22 28272.56 28775.20 29880.41 32057.84 29481.64 22885.36 24451.68 34573.10 32776.65 35661.45 26885.19 30063.54 26679.21 35182.59 323
test_yl78.71 22978.51 22879.32 24984.32 27358.84 28778.38 27385.33 24575.99 13882.49 23886.57 26058.01 29090.02 23762.74 27192.73 22189.10 248
DCV-MVSNet78.71 22978.51 22879.32 24984.32 27358.84 28778.38 27385.33 24575.99 13882.49 23886.57 26058.01 29090.02 23762.74 27192.73 22189.10 248
Regformer-385.06 12484.67 13986.22 11884.27 27573.43 13784.07 16085.26 24780.77 8288.62 13385.48 27780.56 12890.39 22281.99 8891.04 25294.85 72
MVP-Stereo75.81 26073.51 27582.71 19589.35 18373.62 13580.06 24785.20 24860.30 30073.96 32387.94 23957.89 29489.45 24652.02 33374.87 36185.06 294
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet-Vis-set85.12 12284.53 14286.88 10384.01 28272.76 14283.91 16885.18 24980.44 8388.75 13085.49 27680.08 13291.92 17682.02 8790.85 26195.97 40
EI-MVSNet-UG-set85.04 12584.44 14486.85 10483.87 28572.52 15183.82 17085.15 25080.27 8788.75 13085.45 28079.95 13491.90 17781.92 9090.80 26296.13 35
EI-MVSNet82.61 17382.42 17783.20 18483.25 28963.66 22783.50 18285.07 25176.06 13586.55 17085.10 28673.41 19990.25 22378.15 13590.67 26595.68 46
MVSTER77.09 24575.70 25681.25 21875.27 35761.08 25977.49 28885.07 25160.78 29786.55 17088.68 22943.14 35490.25 22373.69 18390.67 26592.42 167
miper_lstm_enhance76.45 25576.10 25277.51 27776.72 34560.97 26464.69 35285.04 25363.98 27483.20 23188.22 23456.67 29978.79 33273.22 18893.12 21192.78 152
WR-MVS83.56 16184.40 14781.06 22393.43 7454.88 31678.67 27185.02 25481.24 7590.74 8991.56 16472.85 20691.08 20068.00 23698.04 3897.23 18
MG-MVS80.32 21180.94 19678.47 26188.18 20752.62 33182.29 21785.01 25572.01 19879.24 28592.54 13769.36 22793.36 13670.65 21189.19 27989.45 239
h-mvs3384.25 14482.76 16988.72 7591.82 12682.60 5884.00 16484.98 25671.27 20286.70 16690.55 19463.04 26293.92 10978.26 13194.20 19089.63 237
VDD-MVS84.23 14684.58 14183.20 18491.17 14965.16 21683.25 18984.97 25779.79 9187.18 15494.27 7574.77 18390.89 20769.24 22296.54 10793.55 128
mvs_anonymous78.13 23578.76 22476.23 29479.24 33050.31 34778.69 27084.82 25861.60 29083.09 23492.82 12673.89 19287.01 27468.33 23586.41 30791.37 204
D2MVS76.84 24875.67 25780.34 23580.48 31962.16 25073.50 32384.80 25957.61 31582.24 24287.54 24651.31 31887.65 26870.40 21593.19 21091.23 206
MIMVSNet183.63 16084.59 14080.74 22894.06 5762.77 23982.72 20384.53 26077.57 12190.34 9495.92 2476.88 16885.83 29561.88 27897.42 7993.62 123
VNet79.31 22080.27 20476.44 28987.92 21253.95 32075.58 30984.35 26174.39 16082.23 24390.72 18872.84 20784.39 30760.38 29093.98 19490.97 211
hse-mvs283.47 16481.81 18488.47 8191.03 15282.27 5982.61 20583.69 26271.27 20286.70 16686.05 27063.04 26292.41 16278.26 13193.62 20390.71 218
AUN-MVS81.18 19378.78 22388.39 8490.93 15482.14 6082.51 21183.67 26364.69 27280.29 27485.91 27351.07 31992.38 16376.29 15793.63 20290.65 222
MVS_111021_LR84.28 14383.76 15785.83 13089.23 18783.07 5380.99 23983.56 26472.71 18486.07 18189.07 22481.75 11486.19 29077.11 14893.36 20488.24 257
CHOSEN 1792x268872.45 28870.56 29878.13 26790.02 17763.08 23468.72 34183.16 26542.99 36775.92 30985.46 27957.22 29885.18 30149.87 34281.67 34086.14 282
patch_mono-278.89 22379.39 21777.41 27984.78 26568.11 19475.60 30783.11 26660.96 29579.36 28289.89 20975.18 17672.97 34573.32 18792.30 22891.15 207
TR-MVS76.77 25075.79 25479.72 24386.10 25465.79 21277.14 29083.02 26765.20 26981.40 26082.10 32166.30 24290.73 21355.57 31385.27 31682.65 322
GA-MVS75.83 25974.61 26379.48 24881.87 30059.25 28073.42 32482.88 26868.68 23279.75 27881.80 32450.62 32189.46 24566.85 24285.64 31389.72 236
tfpnnormal81.79 18782.95 16778.31 26388.93 19355.40 31180.83 24282.85 26976.81 12885.90 18694.14 8674.58 18686.51 28566.82 24495.68 14793.01 143
OpenMVS_ROBcopyleft70.19 1777.77 24077.46 23678.71 25684.39 27261.15 25881.18 23782.52 27062.45 28383.34 22987.37 24966.20 24388.66 25964.69 26085.02 31986.32 280
Anonymous20240521180.51 20481.19 19478.49 26088.48 20157.26 29976.63 29782.49 27181.21 7684.30 21592.24 14867.99 23486.24 28962.22 27495.13 16291.98 190
EU-MVSNet75.12 26574.43 26777.18 28083.11 29359.48 27885.71 13782.43 27239.76 37085.64 18988.76 22744.71 35087.88 26673.86 18085.88 31284.16 303
CMPMVSbinary59.41 2075.12 26573.57 27379.77 24175.84 35267.22 19981.21 23682.18 27350.78 35076.50 30187.66 24455.20 30982.99 31562.17 27790.64 26889.09 250
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet77.32 24375.40 25883.06 18689.00 19172.48 15277.90 28082.17 27460.81 29678.94 28783.49 30659.30 28288.76 25854.64 32292.37 22787.93 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS64.64 1873.03 28472.47 28874.71 30183.36 28854.19 31882.14 22481.96 27556.76 32169.57 34186.21 26860.03 27684.83 30449.58 34382.65 33785.11 293
jason77.42 24275.75 25582.43 20387.10 23269.27 18377.99 27881.94 27651.47 34677.84 29485.07 28960.32 27489.00 25170.74 21089.27 27889.03 251
jason: jason.
bld_raw_dy_0_6484.85 12984.44 14486.07 12493.73 6674.93 12988.57 9381.90 27770.44 21291.28 8095.18 4256.62 30089.28 24985.15 5397.09 8893.99 101
旧先验191.97 11571.77 16281.78 27891.84 15573.92 19193.65 20183.61 310
VPNet80.25 21281.68 18575.94 29592.46 9847.98 35476.70 29681.67 27973.45 16984.87 20192.82 12674.66 18586.51 28561.66 28196.85 9593.33 130
TSAR-MVS + GP.83.95 15482.69 17187.72 9389.27 18681.45 6583.72 17481.58 28074.73 15585.66 18886.06 26972.56 21192.69 15775.44 16695.21 15989.01 253
VDDNet84.35 14085.39 12481.25 21895.13 3359.32 27985.42 14081.11 28186.41 2987.41 15296.21 1973.61 19490.61 21766.33 24696.85 9593.81 114
IterMVS-SCA-FT80.64 20279.41 21684.34 15883.93 28369.66 17976.28 30281.09 28272.43 18786.47 17690.19 20260.46 27293.15 14477.45 14486.39 30890.22 230
UnsupCasMVSNet_eth71.63 29672.30 28969.62 32276.47 34752.70 33070.03 33880.97 28359.18 30479.36 28288.21 23560.50 27169.12 35458.33 29977.62 35687.04 274
MVS_030478.17 23477.23 24180.99 22684.13 28169.07 19081.39 23280.81 28476.28 13267.53 34989.11 22362.87 26486.77 28160.90 28792.01 23987.13 273
lupinMVS76.37 25674.46 26682.09 20485.54 25869.26 18476.79 29480.77 28550.68 35276.23 30582.82 31558.69 28788.94 25269.85 21788.77 28388.07 259
CL-MVSNet_self_test76.81 24977.38 23875.12 29986.90 23651.34 33973.20 32680.63 28668.30 23681.80 25488.40 23266.92 24080.90 32455.35 31694.90 17193.12 139
新几何182.95 18993.96 5978.56 8980.24 28755.45 32483.93 22291.08 17571.19 22288.33 26265.84 25193.07 21281.95 332
112180.86 19779.81 21484.02 16493.93 6078.70 8781.64 22880.18 28855.43 32583.67 22491.15 17371.29 22191.41 19167.95 23893.06 21381.96 331
testdata79.54 24792.87 8772.34 15480.14 28959.91 30385.47 19391.75 16067.96 23585.24 29968.57 23492.18 23581.06 345
TAMVS78.08 23676.36 24983.23 18290.62 16272.87 14179.08 26580.01 29061.72 28881.35 26186.92 25863.96 25588.78 25750.61 33893.01 21588.04 261
pmmvs-eth3d78.42 23377.04 24382.57 20087.44 22274.41 13280.86 24179.67 29155.68 32384.69 20490.31 19960.91 27085.42 29862.20 27591.59 24587.88 265
KD-MVS_2432*160066.87 31865.81 32370.04 31867.50 37347.49 35662.56 35679.16 29261.21 29377.98 29280.61 33225.29 38182.48 31753.02 32884.92 32080.16 348
miper_refine_blended66.87 31865.81 32370.04 31867.50 37347.49 35662.56 35679.16 29261.21 29377.98 29280.61 33225.29 38182.48 31753.02 32884.92 32080.16 348
IterMVS76.91 24776.34 25078.64 25780.91 31164.03 22576.30 30179.03 29464.88 27183.11 23289.16 22159.90 27884.46 30668.61 23285.15 31887.42 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet72.62 28771.41 29676.28 29283.25 28960.34 27083.50 18279.02 29537.77 37176.33 30385.10 28649.60 32487.41 27170.54 21377.54 35781.08 343
ppachtmachnet_test74.73 27274.00 27076.90 28480.71 31656.89 30371.53 33278.42 29658.24 30979.32 28482.92 31457.91 29384.26 30865.60 25391.36 24889.56 238
FMVSNet572.10 29271.69 29273.32 30681.57 30353.02 32776.77 29578.37 29763.31 27576.37 30291.85 15436.68 36678.98 33047.87 35092.45 22687.95 263
MS-PatchMatch70.93 29970.22 30273.06 30981.85 30162.50 24473.82 32277.90 29852.44 33975.92 30981.27 32855.67 30681.75 32055.37 31577.70 35574.94 355
test22293.31 7776.54 11679.38 25977.79 29952.59 33782.36 24190.84 18566.83 24191.69 24381.25 340
pmmvs474.92 26872.98 28180.73 22984.95 26271.71 16676.23 30377.59 30052.83 33677.73 29786.38 26256.35 30384.97 30257.72 30387.05 30285.51 289
EPNet80.37 20878.41 23086.23 11776.75 34473.28 13887.18 11177.45 30176.24 13368.14 34488.93 22665.41 24893.85 11169.47 22096.12 12691.55 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS74.44 27576.19 25169.21 32484.61 26752.43 33271.70 33177.18 30260.73 29880.60 26890.96 18175.44 17269.35 35356.13 30988.33 28785.86 286
CR-MVSNet74.00 27773.04 28076.85 28679.58 32462.64 24182.58 20776.90 30350.50 35375.72 31192.38 14048.07 32784.07 30968.72 23182.91 33583.85 307
Patchmtry76.56 25377.46 23673.83 30579.37 32946.60 36082.41 21476.90 30373.81 16585.56 19192.38 14048.07 32783.98 31063.36 26895.31 15790.92 213
IB-MVS62.13 1971.64 29568.97 30979.66 24580.80 31562.26 24973.94 32076.90 30363.27 27668.63 34376.79 35533.83 37091.84 18059.28 29587.26 30084.88 295
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v385.14 12184.73 13486.37 11291.13 15069.63 18085.45 13976.68 30684.06 4292.44 5896.99 862.03 26694.65 7780.58 10593.24 20894.83 74
ET-MVSNet_ETH3D75.28 26272.77 28282.81 19483.03 29468.11 19477.09 29176.51 30760.67 29977.60 29880.52 33538.04 36391.15 19870.78 20890.68 26489.17 246
N_pmnet70.20 30268.80 31174.38 30380.91 31184.81 4059.12 36276.45 30855.06 32675.31 31782.36 32055.74 30554.82 37147.02 35287.24 30183.52 311
thisisatest053079.07 22177.33 24084.26 16087.13 22864.58 21983.66 17775.95 30968.86 23085.22 19587.36 25038.10 36293.57 12775.47 16594.28 18894.62 76
EPNet_dtu72.87 28671.33 29777.49 27877.72 33860.55 26982.35 21575.79 31066.49 25458.39 37181.06 33053.68 31285.98 29253.55 32592.97 21785.95 284
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_bld69.21 31169.68 30667.82 33179.42 32751.15 34267.82 34675.79 31054.15 33077.47 29985.36 28459.26 28370.64 35048.46 34779.35 34981.66 334
MDA-MVSNet-bldmvs77.47 24176.90 24579.16 25179.03 33264.59 21866.58 34975.67 31273.15 17988.86 12788.99 22566.94 23981.23 32364.71 25988.22 29291.64 199
pmmvs570.73 30070.07 30372.72 31077.03 34352.73 32974.14 31875.65 31350.36 35472.17 33185.37 28355.42 30880.67 32652.86 33187.59 29984.77 296
tttt051781.07 19479.58 21585.52 13588.99 19266.45 20787.03 11475.51 31473.76 16688.32 14190.20 20137.96 36494.16 10279.36 12195.13 16295.93 43
tpmvs70.16 30369.56 30771.96 31574.71 36048.13 35279.63 25375.45 31565.02 27070.26 33881.88 32345.34 34585.68 29658.34 29875.39 36082.08 330
ADS-MVSNet265.87 32463.64 32972.55 31273.16 36556.92 30267.10 34774.81 31649.74 35566.04 35282.97 31146.71 32977.26 33542.29 36169.96 36783.46 312
new-patchmatchnet70.10 30473.37 27760.29 35081.23 30816.95 38059.54 36074.62 31762.93 27880.97 26387.93 24062.83 26571.90 34855.24 31795.01 16892.00 187
Anonymous2023120671.38 29771.88 29169.88 32086.31 24554.37 31770.39 33674.62 31752.57 33876.73 30088.76 22759.94 27772.06 34744.35 35993.23 20983.23 318
CostFormer69.98 30768.68 31273.87 30477.14 34150.72 34579.26 26174.51 31951.94 34470.97 33784.75 29445.16 34887.49 27055.16 31879.23 35083.40 314
door-mid74.45 320
thisisatest051573.00 28570.52 29980.46 23381.45 30459.90 27473.16 32774.31 32157.86 31276.08 30877.78 34937.60 36592.12 17265.00 25691.45 24789.35 242
baseline173.26 28173.54 27472.43 31384.92 26347.79 35579.89 25174.00 32265.93 25678.81 28886.28 26756.36 30281.63 32256.63 30679.04 35287.87 266
test_method30.46 34229.60 34533.06 35717.99 3813.84 38313.62 37273.92 3232.79 37518.29 37753.41 37228.53 37643.25 37622.56 37435.27 37552.11 372
tfpn200view974.86 26974.23 26876.74 28786.24 24952.12 33379.24 26273.87 32473.34 17281.82 25284.60 29746.02 33488.80 25451.98 33490.99 25489.31 243
thres40075.14 26374.23 26877.86 27386.24 24952.12 33379.24 26273.87 32473.34 17281.82 25284.60 29746.02 33488.80 25451.98 33490.99 25492.66 158
LFMVS80.15 21680.56 19978.89 25289.19 18855.93 30785.22 14273.78 32682.96 5684.28 21692.72 13057.38 29690.07 23563.80 26495.75 14490.68 220
thres20072.34 29071.55 29574.70 30283.48 28651.60 33875.02 31473.71 32770.14 21978.56 29080.57 33446.20 33288.20 26446.99 35389.29 27684.32 301
tpm cat166.76 32065.21 32671.42 31677.09 34250.62 34678.01 27773.68 32844.89 36368.64 34279.00 34445.51 34282.42 31949.91 34170.15 36681.23 342
testgi72.36 28974.61 26365.59 33780.56 31842.82 37068.29 34273.35 32966.87 25181.84 25189.93 20772.08 21566.92 36146.05 35692.54 22587.01 275
thres100view90075.45 26175.05 26176.66 28887.27 22451.88 33681.07 23873.26 33075.68 14483.25 23086.37 26345.54 34088.80 25451.98 33490.99 25489.31 243
thres600view775.97 25875.35 26077.85 27487.01 23451.84 33780.45 24473.26 33075.20 15183.10 23386.31 26645.54 34089.05 25055.03 31992.24 23292.66 158
wuyk23d75.13 26479.30 21862.63 34375.56 35375.18 12880.89 24073.10 33275.06 15394.76 1295.32 3687.73 4252.85 37234.16 37197.11 8759.85 368
WTY-MVS67.91 31568.35 31366.58 33580.82 31448.12 35365.96 35072.60 33353.67 33271.20 33581.68 32658.97 28569.06 35548.57 34681.67 34082.55 324
door72.57 334
PVSNet58.17 2166.41 32165.63 32568.75 32781.96 29949.88 34962.19 35872.51 33551.03 34868.04 34575.34 36050.84 32074.77 34245.82 35782.96 33381.60 335
MDTV_nov1_ep1368.29 31478.03 33643.87 36774.12 31972.22 33652.17 34067.02 35085.54 27545.36 34480.85 32555.73 31084.42 327
test20.0373.75 27974.59 26571.22 31781.11 30951.12 34370.15 33772.10 33770.42 21380.28 27691.50 16564.21 25374.72 34446.96 35494.58 18187.82 267
Vis-MVSNet (Re-imp)77.82 23877.79 23577.92 27188.82 19551.29 34183.28 18771.97 33874.04 16282.23 24389.78 21057.38 29689.41 24757.22 30495.41 15193.05 141
MIMVSNet71.09 29871.59 29369.57 32387.23 22550.07 34878.91 26671.83 33960.20 30271.26 33491.76 15955.08 31076.09 33841.06 36487.02 30382.54 325
tpm268.45 31366.83 31973.30 30778.93 33448.50 35179.76 25271.76 34047.50 35769.92 34083.60 30442.07 35688.40 26148.44 34879.51 34783.01 321
sss66.92 31767.26 31765.90 33677.23 34051.10 34464.79 35171.72 34152.12 34370.13 33980.18 33857.96 29265.36 36650.21 33981.01 34581.25 340
our_test_371.85 29371.59 29372.62 31180.71 31653.78 32169.72 33971.71 34258.80 30678.03 29180.51 33656.61 30178.84 33162.20 27586.04 31185.23 291
SCA73.32 28072.57 28675.58 29781.62 30255.86 30878.89 26771.37 34361.73 28774.93 31983.42 30860.46 27287.01 27458.11 30182.63 33983.88 304
lessismore_v085.95 12591.10 15170.99 17170.91 34491.79 7094.42 6961.76 26792.93 15179.52 11993.03 21493.93 105
tpmrst66.28 32266.69 32165.05 34072.82 36839.33 37178.20 27670.69 34553.16 33567.88 34680.36 33748.18 32674.75 34358.13 30070.79 36581.08 343
PatchMatch-RL74.48 27373.22 27878.27 26687.70 21685.26 3575.92 30570.09 34664.34 27376.09 30781.25 32965.87 24778.07 33353.86 32483.82 32971.48 359
PatchmatchNetpermissive69.71 30968.83 31072.33 31477.66 33953.60 32279.29 26069.99 34757.66 31472.53 32982.93 31346.45 33180.08 32960.91 28672.09 36383.31 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ECVR-MVScopyleft78.44 23278.63 22677.88 27291.85 12248.95 35083.68 17669.91 34872.30 19384.26 21894.20 8151.89 31689.82 23963.58 26596.02 12894.87 68
baseline269.77 30866.89 31878.41 26279.51 32658.09 29276.23 30369.57 34957.50 31664.82 35977.45 35246.02 33488.44 26053.08 32777.83 35488.70 255
test111178.53 23178.85 22277.56 27692.22 10847.49 35682.61 20569.24 35072.43 18785.28 19494.20 8151.91 31590.07 23565.36 25596.45 11295.11 63
Patchmatch-RL test74.48 27373.68 27276.89 28584.83 26466.54 20672.29 32969.16 35157.70 31386.76 16486.33 26445.79 33982.59 31669.63 21990.65 26781.54 336
FPMVS72.29 29172.00 29073.14 30888.63 19785.00 3774.65 31767.39 35271.94 19977.80 29687.66 24450.48 32275.83 34049.95 34079.51 34758.58 370
MDA-MVSNet_test_wron70.05 30670.44 30068.88 32673.84 36153.47 32358.93 36467.28 35358.43 30787.09 15885.40 28159.80 28067.25 35959.66 29383.54 33085.92 285
YYNet170.06 30570.44 30068.90 32573.76 36253.42 32558.99 36367.20 35458.42 30887.10 15785.39 28259.82 27967.32 35859.79 29283.50 33185.96 283
test-LLR67.21 31666.74 32068.63 32876.45 34855.21 31367.89 34367.14 35562.43 28465.08 35672.39 36243.41 35269.37 35161.00 28484.89 32281.31 338
test-mter65.00 32563.79 32868.63 32876.45 34855.21 31367.89 34367.14 35550.98 34965.08 35672.39 36228.27 37769.37 35161.00 28484.89 32281.31 338
tpm67.95 31468.08 31567.55 33278.74 33543.53 36875.60 30767.10 35754.92 32772.23 33088.10 23642.87 35575.97 33952.21 33280.95 34683.15 319
PM-MVS80.20 21479.00 22083.78 17188.17 20886.66 1881.31 23366.81 35869.64 22288.33 14090.19 20264.58 25083.63 31371.99 20290.03 27081.06 345
JIA-IIPM69.41 31066.64 32277.70 27573.19 36471.24 16975.67 30665.56 35970.42 21365.18 35592.97 12133.64 37183.06 31453.52 32669.61 36978.79 350
PatchT70.52 30172.76 28363.79 34279.38 32833.53 37677.63 28465.37 36073.61 16771.77 33292.79 12944.38 35175.65 34164.53 26385.37 31582.18 329
dp60.70 33660.29 33861.92 34672.04 37038.67 37370.83 33364.08 36151.28 34760.75 36477.28 35336.59 36771.58 34947.41 35162.34 37275.52 354
Patchmatch-test65.91 32367.38 31661.48 34875.51 35443.21 36968.84 34063.79 36262.48 28272.80 32883.42 30844.89 34959.52 37048.27 34986.45 30681.70 333
TESTMET0.1,161.29 33260.32 33764.19 34172.06 36951.30 34067.89 34362.09 36345.27 36260.65 36569.01 36527.93 37864.74 36756.31 30881.65 34276.53 352
PVSNet_051.08 2256.10 33854.97 34359.48 35175.12 35853.28 32655.16 36561.89 36444.30 36459.16 36762.48 37054.22 31165.91 36535.40 37047.01 37359.25 369
ADS-MVSNet61.90 32962.19 33261.03 34973.16 36536.42 37467.10 34761.75 36549.74 35566.04 35282.97 31146.71 32963.21 36842.29 36169.96 36783.46 312
PMMVS61.65 33060.38 33665.47 33965.40 37769.26 18463.97 35461.73 36636.80 37260.11 36668.43 36659.42 28166.35 36348.97 34578.57 35360.81 367
test0.0.03 164.66 32664.36 32765.57 33875.03 35946.89 35964.69 35261.58 36762.43 28471.18 33677.54 35043.41 35268.47 35640.75 36582.65 33781.35 337
E-PMN61.59 33161.62 33361.49 34766.81 37555.40 31153.77 36660.34 36866.80 25258.90 36965.50 36840.48 35966.12 36455.72 31186.25 30962.95 366
CHOSEN 280x42059.08 33756.52 34266.76 33476.51 34664.39 22249.62 36859.00 36943.86 36555.66 37368.41 36735.55 36968.21 35743.25 36076.78 35967.69 364
EMVS61.10 33460.81 33561.99 34565.96 37655.86 30853.10 36758.97 37067.06 24956.89 37263.33 36940.98 35767.03 36054.79 32086.18 31063.08 365
pmmvs362.47 32760.02 33969.80 32171.58 37164.00 22670.52 33558.44 37139.77 36966.05 35175.84 35827.10 38072.28 34646.15 35584.77 32673.11 357
MVS-HIRNet61.16 33362.92 33055.87 35379.09 33135.34 37571.83 33057.98 37246.56 35959.05 36891.14 17449.95 32376.43 33738.74 36771.92 36455.84 371
gg-mvs-nofinetune68.96 31269.11 30868.52 33076.12 35145.32 36283.59 17855.88 37386.68 2664.62 36097.01 730.36 37483.97 31144.78 35882.94 33476.26 353
GG-mvs-BLEND67.16 33373.36 36346.54 36184.15 15855.04 37458.64 37061.95 37129.93 37583.87 31238.71 36876.92 35871.07 360
EPMVS62.47 32762.63 33162.01 34470.63 37238.74 37274.76 31552.86 37553.91 33167.71 34880.01 33939.40 36066.60 36255.54 31468.81 37080.68 347
new_pmnet55.69 33957.66 34149.76 35575.47 35530.59 37759.56 35951.45 37643.62 36662.49 36275.48 35940.96 35849.15 37437.39 36972.52 36269.55 362
PMMVS255.64 34059.27 34044.74 35664.30 37812.32 38140.60 36949.79 37753.19 33465.06 35884.81 29353.60 31349.76 37332.68 37389.41 27572.15 358
test250674.12 27673.39 27676.28 29291.85 12244.20 36684.06 16248.20 37872.30 19381.90 24994.20 8127.22 37989.77 24064.81 25896.02 12894.87 68
DSMNet-mixed60.98 33561.61 33459.09 35272.88 36745.05 36474.70 31646.61 37926.20 37365.34 35490.32 19855.46 30763.12 36941.72 36381.30 34469.09 363
MVEpermissive40.22 2351.82 34150.47 34455.87 35362.66 37951.91 33531.61 37139.28 38040.65 36850.76 37474.98 36156.24 30444.67 37533.94 37264.11 37171.04 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP90.66 4533.14 381
tmp_tt20.25 34424.50 3477.49 3594.47 3828.70 38234.17 37025.16 3821.00 37732.43 37618.49 37439.37 3619.21 37821.64 37543.75 3744.57 374
DeepMVS_CXcopyleft24.13 35832.95 38029.49 37821.63 38312.07 37437.95 37545.07 37330.84 37319.21 37717.94 37633.06 37623.69 373
test1236.27 3478.08 3500.84 3601.11 3840.57 38462.90 3550.82 3840.54 3781.07 3802.75 3791.26 3830.30 3791.04 3771.26 3781.66 375
testmvs5.91 3487.65 3510.72 3611.20 3830.37 38559.14 3610.67 3850.49 3791.11 3792.76 3780.94 3840.24 3801.02 3781.47 3771.55 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.41 3468.55 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38076.94 1620.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
n20.00 386
nn0.00 386
ab-mvs-re6.65 3458.87 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38179.80 3410.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145258.96 30590.06 9891.33 16880.66 12693.03 14875.78 16295.94 13392.48 165
eth-test20.00 385
eth-test0.00 385
OPU-MVS88.27 8791.89 12077.83 9690.47 5191.22 17081.12 12094.68 7674.48 17295.35 15392.29 176
test_0728_THIRD85.33 3293.75 3194.65 5787.44 4595.78 2887.41 2198.21 3192.98 144
GSMVS83.88 304
test_part293.86 6277.77 9792.84 49
sam_mvs146.11 33383.88 304
sam_mvs45.92 338
test_post178.85 2693.13 37645.19 34780.13 32858.11 301
test_post3.10 37745.43 34377.22 336
patchmatchnet-post81.71 32545.93 33787.01 274
gm-plane-assit75.42 35644.97 36552.17 34072.36 36487.90 26554.10 323
test9_res80.83 10196.45 11290.57 223
agg_prior279.68 11596.16 12390.22 230
test_prior478.97 8484.59 150
test_prior283.37 18575.43 14784.58 20591.57 16281.92 11079.54 11796.97 91
旧先验281.73 22656.88 32086.54 17584.90 30372.81 195
新几何281.72 227
原ACMM282.26 220
testdata286.43 28763.52 267
segment_acmp81.94 107
testdata179.62 25473.95 164
plane_prior793.45 7277.31 107
plane_prior692.61 9376.54 11674.84 180
plane_prior492.95 122
plane_prior376.85 11477.79 11886.55 170
plane_prior289.45 7679.44 97
plane_prior192.83 91
plane_prior76.42 12087.15 11275.94 14195.03 167
HQP5-MVS70.66 172
HQP-NCC91.19 14684.77 14573.30 17480.55 271
ACMP_Plane91.19 14684.77 14573.30 17480.55 271
BP-MVS77.30 146
HQP4-MVS80.56 27094.61 8093.56 126
HQP2-MVS72.10 213
NP-MVS91.95 11674.55 13190.17 204
MDTV_nov1_ep13_2view27.60 37970.76 33446.47 36061.27 36345.20 34649.18 34483.75 309
ACMMP++_ref95.74 145
ACMMP++97.35 80
Test By Simon79.09 138