This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 6099.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4898.48 1897.22 17
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20989.67 23584.47 7595.46 5082.56 8996.26 11193.77 121
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5697.51 7394.30 95
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28287.25 27782.43 9894.53 8477.65 14796.46 10294.14 102
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13598.76 495.61 50
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22296.14 11694.16 100
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22296.14 11694.16 100
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 11083.69 7597.55 69
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11698.27 2695.04 67
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 99
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22889.33 24083.87 7994.53 8482.45 9094.89 16994.90 68
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10695.50 14594.53 83
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 197
sasdasda85.50 11386.14 10983.58 17987.97 21267.13 21287.55 10994.32 2173.44 17788.47 13587.54 27086.45 5891.06 19675.76 17293.76 20392.54 173
canonicalmvs85.50 11386.14 10983.58 17987.97 21267.13 21287.55 10994.32 2173.44 17788.47 13587.54 27086.45 5891.06 19675.76 17293.76 20392.54 173
LCM-MVSNet-Re83.48 16785.06 13178.75 26785.94 26655.75 33880.05 26194.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 32194.89 16990.75 235
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5798.73 795.23 61
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5798.73 795.23 61
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 41
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15687.09 23865.22 23284.16 17494.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11394.87 17295.16 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 103
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18587.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18179.72 11997.32 7796.50 29
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 7198.03 4193.26 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 162
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 162
RPMNet78.88 24078.28 24980.68 24379.58 35362.64 26182.58 22094.16 3274.80 15975.72 34392.59 14548.69 35295.56 4273.48 20082.91 37183.85 342
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 156
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6395.87 13295.24 60
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 175
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 200
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6897.81 5591.70 212
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8498.76 494.87 70
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8898.04 3993.64 127
MGCFI-Net85.04 12585.95 11282.31 21487.52 22663.59 24886.23 13893.96 4473.46 17588.07 14587.83 26586.46 5790.87 20576.17 16793.89 20092.47 177
baseline85.20 12185.93 11383.02 19586.30 25562.37 26784.55 16793.96 4474.48 16387.12 16392.03 16382.30 10391.94 17178.39 13394.21 19094.74 77
casdiffmvspermissive85.21 12085.85 11683.31 18886.17 26062.77 25983.03 20793.93 4674.69 16188.21 14292.68 14482.29 10491.89 17477.87 14693.75 20695.27 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17493.26 12193.64 290.93 20084.60 6790.75 27393.97 107
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 16072.03 22896.36 488.21 1190.93 26692.98 156
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 108
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 193
ACMH76.49 1489.34 5991.14 3583.96 16792.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26483.33 7698.30 2593.20 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15886.11 6390.22 22286.24 4697.24 7991.36 220
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 109
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 199
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 187
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 142
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17992.95 13474.84 18795.22 5980.78 10895.83 13494.46 84
plane_prior593.61 5995.22 5980.78 10895.83 13494.46 84
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7495.30 15393.60 130
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19789.56 23680.76 12692.13 16673.21 20995.51 14493.25 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 91
Skip Steuart: Steuart Systems R&D Blog.
ETV-MVS84.31 14183.91 15885.52 13188.58 20070.40 17884.50 17193.37 6478.76 11384.07 23678.72 37880.39 13095.13 6573.82 19592.98 22391.04 226
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 172
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6298.45 1992.41 179
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS82.19 18981.23 20885.10 13787.95 21469.17 19583.22 20493.33 6770.42 22178.58 31879.77 37077.29 15994.20 9471.51 21888.96 29791.93 204
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 96
X-MVStestdata85.04 12582.70 17892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42386.57 5595.80 2887.35 2797.62 6494.20 96
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26689.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10598.80 398.84 5
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 115
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 159
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 106
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 112
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS90.03 4591.88 1884.48 15296.57 558.88 31088.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 13198.72 998.97 3
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18896.10 11994.45 86
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18896.10 11994.45 86
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18784.24 7893.37 13177.97 14597.03 8495.52 51
dcpmvs_284.23 14685.14 13081.50 22888.61 19961.98 27482.90 21393.11 7968.66 24192.77 5492.39 15178.50 14487.63 27276.99 15892.30 23394.90 68
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 6097.78 5697.26 15
FC-MVSNet-test85.93 10987.05 9482.58 20892.25 10156.44 33285.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 13075.11 18098.58 1497.88 7
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9497.18 8190.45 246
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FIs85.35 11886.27 10682.60 20791.86 11657.31 32585.10 15993.05 8375.83 14691.02 8393.97 9673.57 20392.91 14873.97 19298.02 4297.58 12
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4597.63 6397.82 8
PHI-MVS86.38 10085.81 11788.08 8488.44 20477.34 10589.35 8593.05 8373.15 18784.76 21887.70 26778.87 14294.18 9580.67 11096.29 10792.73 162
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 146
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GDP-MVS82.17 19080.85 21486.15 12088.65 19768.95 19785.65 14993.02 8768.42 24283.73 24289.54 23745.07 37994.31 8879.66 12193.87 20195.19 63
Anonymous2023121188.40 7189.62 5984.73 14590.46 15765.27 23188.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 15997.99 4396.88 23
MSLP-MVS++85.00 12886.03 11181.90 21891.84 11971.56 17086.75 12893.02 8775.95 14487.12 16389.39 23877.98 14889.40 24977.46 15094.78 17484.75 327
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14796.62 9590.70 238
ANet_high83.17 17385.68 12175.65 31281.24 33545.26 39879.94 26392.91 9183.83 5191.33 7696.88 1380.25 13285.92 30268.89 24795.89 13195.76 43
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 20183.80 18792.87 9280.37 8789.61 11391.81 17277.72 15394.18 9575.00 18198.53 1696.99 22
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 160
DTE-MVSNet89.98 4791.91 1784.21 16296.51 757.84 32188.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12898.57 1598.80 6
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5298.60 1396.67 25
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6597.55 6994.10 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-CasMVS90.06 4391.92 1584.47 15396.56 658.83 31389.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12598.74 699.00 2
HQP3-MVS92.68 9894.47 183
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 16092.68 9873.30 18280.55 29690.17 22772.10 22494.61 7977.30 15494.47 18393.56 133
MVSMamba_PlusPlus87.53 8688.86 7183.54 18392.03 11062.26 27091.49 4092.62 10088.07 2488.07 14596.17 2372.24 22395.79 3184.85 6494.16 19392.58 170
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10183.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 150
CLD-MVS83.18 17282.64 18084.79 14389.05 18467.82 20977.93 29392.52 10268.33 24485.07 21081.54 35482.06 10892.96 14469.35 23997.91 5193.57 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS81.44 20581.25 20682.03 21684.27 29562.87 25776.47 32092.49 10370.97 21781.64 28283.83 32775.03 18492.70 15174.29 18492.22 23990.51 245
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 15684.01 15583.57 18187.22 23265.61 23086.55 13292.40 10478.64 11481.34 28784.18 32583.65 8492.93 14674.22 18587.87 31592.17 194
DP-MVS Recon84.05 15183.22 16786.52 10791.73 12275.27 12583.23 20392.40 10472.04 20582.04 27188.33 25577.91 15093.95 10466.17 26995.12 15990.34 249
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19692.38 10670.25 22589.35 11990.68 21082.85 9294.57 8179.55 12295.95 12792.00 201
balanced_conf0384.80 13085.40 12683.00 19688.95 18861.44 27790.42 5892.37 10771.48 21088.72 12993.13 12570.16 24095.15 6379.26 12794.11 19492.41 179
test_fmvsmvis_n_192085.22 11985.36 12884.81 14285.80 26876.13 12285.15 15892.32 10861.40 31191.33 7690.85 20483.76 8386.16 29884.31 6993.28 21592.15 195
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10979.74 9687.50 15992.38 15281.42 11993.28 13383.07 8097.24 7991.67 213
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21583.16 20592.21 11081.73 7490.92 8491.97 16477.20 16093.99 10274.16 18698.35 2297.61 10
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26678.30 8986.93 12092.20 11165.94 26789.16 12193.16 12483.10 8989.89 23587.81 1594.43 18593.35 137
v1086.54 9887.10 9284.84 14088.16 21063.28 25286.64 13092.20 11175.42 15492.81 5394.50 6874.05 19894.06 10183.88 7396.28 10897.17 18
MCST-MVS84.36 13983.93 15785.63 12991.59 12471.58 16883.52 19392.13 11361.82 30483.96 23889.75 23479.93 13793.46 12778.33 13694.34 18791.87 205
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11478.87 11084.27 23394.05 9278.35 14693.65 11380.54 11291.58 25492.08 197
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CP-MVSNet89.27 6290.91 4484.37 15496.34 858.61 31688.66 9792.06 11590.78 795.67 895.17 4781.80 11595.54 4479.00 12998.69 1098.95 4
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18492.01 11665.91 26986.19 18891.75 17583.77 8294.98 6977.43 15296.71 9393.73 122
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11770.56 22084.96 21390.69 20980.01 13595.14 6478.37 13495.78 13891.82 206
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11870.73 21994.19 2596.67 1476.94 16694.57 8183.07 8096.28 10896.15 33
MVS_Test82.47 18483.22 16780.22 24982.62 32257.75 32382.54 22391.96 11971.16 21582.89 25892.52 14977.41 15790.50 21680.04 11587.84 31692.40 181
F-COLMAP84.97 12983.42 16389.63 5792.39 9683.40 5288.83 9291.92 12073.19 18680.18 30489.15 24477.04 16493.28 13365.82 27592.28 23692.21 192
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12184.26 4790.87 8993.92 10382.18 10689.29 25073.75 19694.81 17393.70 123
ZD-MVS92.22 10380.48 7191.85 12271.22 21490.38 9292.98 13186.06 6496.11 781.99 9796.75 92
CSCG86.26 10186.47 10385.60 13090.87 14974.26 13187.98 10491.85 12280.35 8889.54 11788.01 25979.09 14092.13 16675.51 17495.06 16190.41 247
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27678.25 9085.82 14591.82 12465.33 28188.55 13292.35 15782.62 9689.80 23786.87 3594.32 18893.18 147
PCF-MVS74.62 1582.15 19280.92 21285.84 12589.43 17772.30 15780.53 25691.82 12457.36 34687.81 15289.92 23177.67 15493.63 11558.69 32695.08 16091.58 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MTGPAbinary91.81 126
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12684.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 186
PVSNet_Blended_VisFu81.55 20380.49 21884.70 14791.58 12773.24 14184.21 17391.67 12862.86 29480.94 29087.16 27967.27 25392.87 14969.82 23688.94 29887.99 290
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21582.55 22291.56 12983.08 6290.92 8491.82 17178.25 14793.99 10274.16 18698.35 2297.49 13
v124084.30 14284.51 14683.65 17687.65 22361.26 28182.85 21491.54 13067.94 25190.68 9190.65 21371.71 23193.64 11482.84 8594.78 17496.07 36
原ACMM184.60 14992.81 8974.01 13291.50 13162.59 29582.73 26290.67 21276.53 17394.25 9169.24 24095.69 14185.55 318
test1191.46 132
CANet83.79 15982.85 17686.63 10486.17 26072.21 16083.76 18891.43 13377.24 13274.39 35587.45 27375.36 18195.42 5277.03 15792.83 22692.25 191
v119284.57 13584.69 14084.21 16287.75 21962.88 25683.02 20891.43 13369.08 23589.98 10290.89 20172.70 21893.62 11882.41 9194.97 16696.13 34
alignmvs83.94 15583.98 15683.80 17087.80 21867.88 20884.54 16991.42 13573.27 18588.41 13887.96 26072.33 22190.83 20676.02 17094.11 19492.69 166
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28478.21 9185.40 15491.39 13665.32 28287.72 15591.81 17282.33 10189.78 23886.68 3794.20 19192.99 155
GeoE85.45 11685.81 11784.37 15490.08 16467.07 21485.86 14491.39 13672.33 20187.59 15790.25 22284.85 7192.37 16078.00 14391.94 24593.66 124
v886.22 10386.83 9984.36 15687.82 21762.35 26886.42 13491.33 13876.78 13592.73 5594.48 7073.41 20793.72 11283.10 7995.41 14697.01 21
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24284.38 17291.29 13984.88 4492.06 6593.84 10586.45 5893.73 11173.22 20498.66 1197.69 9
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14078.20 11886.69 17792.28 15980.36 13195.06 6786.17 4796.49 10090.22 250
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15591.23 14177.31 13187.07 16891.47 18182.94 9194.71 7584.67 6696.27 11092.62 169
v192192084.23 14684.37 15083.79 17187.64 22461.71 27582.91 21291.20 14267.94 25190.06 9790.34 21972.04 22793.59 12082.32 9294.91 16796.07 36
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14367.85 25386.63 17894.84 5579.58 13895.96 1587.62 1994.50 18294.56 80
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14479.26 10489.68 10894.81 5982.44 9787.74 27076.54 16188.74 30196.61 27
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14578.77 11284.85 21790.89 20180.85 12595.29 5681.14 10395.32 15092.34 184
v14419284.24 14584.41 14883.71 17587.59 22561.57 27682.95 21191.03 14667.82 25489.80 10590.49 21673.28 21193.51 12581.88 10094.89 16996.04 38
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 181
No_MVS88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 181
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14783.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 244
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
v114484.54 13784.72 13884.00 16587.67 22262.55 26382.97 21090.93 15070.32 22489.80 10590.99 19573.50 20493.48 12681.69 10194.65 18095.97 39
DPM-MVS80.10 23179.18 23682.88 20390.71 15369.74 18478.87 28290.84 15160.29 32675.64 34585.92 29967.28 25293.11 13971.24 22091.79 24785.77 316
IU-MVS94.18 5072.64 14790.82 15256.98 35089.67 10985.78 5497.92 4993.28 141
PAPM_NR83.23 17183.19 16983.33 18790.90 14865.98 22688.19 10190.78 15378.13 12080.87 29287.92 26373.49 20692.42 15770.07 23388.40 30491.60 215
Anonymous2024052986.20 10487.13 9183.42 18590.19 16264.55 23984.55 16790.71 15485.85 3689.94 10395.24 4682.13 10790.40 21869.19 24396.40 10595.31 57
test1286.57 10590.74 15172.63 14990.69 15582.76 26179.20 13994.80 7395.32 15092.27 189
PLCcopyleft73.85 1682.09 19380.31 22087.45 9290.86 15080.29 7385.88 14290.65 15668.17 24776.32 33586.33 29173.12 21392.61 15461.40 31390.02 28489.44 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15770.00 22894.55 1996.67 1487.94 3993.59 12084.27 7095.97 12495.52 51
114514_t83.10 17582.54 18384.77 14492.90 8369.10 19686.65 12990.62 15854.66 36281.46 28490.81 20676.98 16594.38 8772.62 21296.18 11490.82 234
PAPR78.84 24178.10 25181.07 23585.17 27860.22 29482.21 23490.57 15962.51 29675.32 34984.61 32074.99 18592.30 16359.48 32488.04 31290.68 239
test_fmvsm_n_192083.60 16482.89 17585.74 12785.22 27777.74 9984.12 17690.48 16059.87 33086.45 18791.12 19175.65 17885.89 30582.28 9390.87 26993.58 131
NR-MVSNet86.00 10786.22 10785.34 13493.24 7664.56 23882.21 23490.46 16180.99 8288.42 13791.97 16477.56 15593.85 10772.46 21498.65 1297.61 10
PVSNet_BlendedMVS78.80 24277.84 25281.65 22684.43 28963.41 24979.49 27190.44 16261.70 30875.43 34687.07 28269.11 24591.44 18460.68 31792.24 23790.11 255
PVSNet_Blended76.49 27075.40 27579.76 25484.43 28963.41 24975.14 33690.44 16257.36 34675.43 34678.30 38069.11 24591.44 18460.68 31787.70 31884.42 332
Gipumacopyleft84.44 13886.33 10578.78 26684.20 29673.57 13589.55 7790.44 16284.24 4884.38 22594.89 5376.35 17780.40 34976.14 16896.80 9182.36 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
RRT-MVS82.97 17683.44 16281.57 22785.06 27958.04 31987.20 11490.37 16577.88 12388.59 13193.70 11363.17 27693.05 14276.49 16288.47 30393.62 128
QAPM82.59 18182.59 18282.58 20886.44 24866.69 21989.94 6790.36 16667.97 25084.94 21592.58 14772.71 21792.18 16570.63 22887.73 31788.85 278
mmtdpeth85.13 12385.78 11983.17 19384.65 28674.71 12785.87 14390.35 16777.94 12183.82 24096.96 1277.75 15180.03 35278.44 13296.21 11294.79 76
TEST992.34 9879.70 7883.94 18090.32 16865.41 28084.49 22290.97 19682.03 10993.63 115
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 18090.32 16865.79 27184.49 22290.97 19681.93 11193.63 11581.21 10296.54 9890.88 232
test_892.09 10778.87 8583.82 18590.31 17065.79 27184.36 22690.96 19881.93 11193.44 128
agg_prior91.58 12777.69 10090.30 17184.32 22893.18 136
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17181.56 7690.02 9991.20 18982.40 9990.81 20773.58 19994.66 17994.56 80
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17369.27 23294.39 2096.38 1886.02 6593.52 12483.96 7295.92 13095.34 55
diffmvspermissive80.40 22180.48 21980.17 25079.02 36260.04 29577.54 30090.28 17466.65 26582.40 26587.33 27673.50 20487.35 27577.98 14489.62 28993.13 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 16883.37 16583.75 17383.16 31763.33 25181.31 24490.23 17569.51 23190.91 8690.81 20674.16 19692.29 16480.06 11490.22 28195.62 49
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17669.87 22995.06 1596.14 2584.28 7793.07 14187.68 1896.34 10697.09 19
c3_l81.64 20281.59 19881.79 22480.86 34159.15 30778.61 28690.18 17768.36 24387.20 16187.11 28169.39 24291.62 17978.16 14094.43 18594.60 79
eth_miper_zixun_eth80.84 21280.22 22482.71 20581.41 33360.98 28777.81 29590.14 17867.31 25886.95 17187.24 27864.26 26792.31 16275.23 17891.61 25294.85 74
MVSFormer82.23 18781.57 20084.19 16485.54 27169.26 19191.98 3490.08 17971.54 20876.23 33685.07 31558.69 30494.27 8986.26 4388.77 29989.03 275
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17971.54 20894.28 2496.54 1681.57 11794.27 8986.26 4396.49 10097.09 19
AdaColmapbinary83.66 16183.69 16083.57 18190.05 16772.26 15886.29 13690.00 18178.19 11981.65 28187.16 27983.40 8794.24 9261.69 31094.76 17784.21 337
3Dnovator80.37 784.80 13084.71 13985.06 13886.36 25374.71 12788.77 9490.00 18175.65 14984.96 21393.17 12374.06 19791.19 19178.28 13791.09 26089.29 269
mvs5depth83.82 15784.54 14481.68 22582.23 32368.65 19986.89 12189.90 18380.02 9487.74 15497.86 264.19 26982.02 33776.37 16395.63 14394.35 92
IterMVS-LS84.73 13284.98 13383.96 16787.35 22963.66 24683.25 20189.88 18476.06 13989.62 11192.37 15573.40 20992.52 15578.16 14094.77 17695.69 46
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis3_rt71.42 31970.67 32073.64 32669.66 41470.46 17766.97 39089.73 18542.68 41188.20 14383.04 33543.77 38460.07 41265.35 28086.66 33190.39 248
save fliter93.75 6377.44 10386.31 13589.72 18670.80 218
v2v48284.09 14984.24 15283.62 17787.13 23461.40 27882.71 21789.71 18772.19 20489.55 11591.41 18270.70 23793.20 13581.02 10493.76 20396.25 32
miper_ehance_all_eth80.34 22380.04 22981.24 23379.82 35258.95 30977.66 29789.66 18865.75 27485.99 19585.11 31168.29 24991.42 18676.03 16992.03 24193.33 138
tt080588.09 7789.79 5582.98 19793.26 7563.94 24591.10 4589.64 18985.07 4190.91 8691.09 19289.16 2491.87 17582.03 9595.87 13293.13 148
Fast-Effi-MVS+81.04 21080.57 21582.46 21287.50 22763.22 25378.37 28989.63 19068.01 24881.87 27482.08 34882.31 10292.65 15367.10 26088.30 31091.51 218
Fast-Effi-MVS+-dtu82.54 18381.41 20385.90 12385.60 26976.53 11583.07 20689.62 19173.02 18979.11 31483.51 33080.74 12790.24 22168.76 24989.29 29290.94 229
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19288.51 2190.11 9695.12 4990.98 688.92 25477.55 14997.07 8383.13 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft76.72 1381.98 19782.00 18981.93 21784.42 29168.22 20388.50 9989.48 19366.92 26281.80 27891.86 16772.59 21990.16 22471.19 22191.25 25987.40 299
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17889.44 19488.63 2094.38 2195.77 2986.38 6193.59 12079.84 11795.21 15491.82 206
KD-MVS_self_test81.93 19883.14 17178.30 27684.75 28552.75 35980.37 25889.42 19570.24 22690.26 9593.39 11974.55 19486.77 28668.61 25296.64 9495.38 54
MSDG80.06 23279.99 23180.25 24883.91 30168.04 20777.51 30189.19 19677.65 12681.94 27283.45 33276.37 17686.31 29363.31 29886.59 33286.41 308
ambc82.98 19790.55 15664.86 23588.20 10089.15 19789.40 11893.96 9971.67 23291.38 18878.83 13096.55 9792.71 165
pmmvs686.52 9988.06 7981.90 21892.22 10362.28 26984.66 16589.15 19783.54 5789.85 10497.32 588.08 3886.80 28570.43 23097.30 7896.62 26
miper_enhance_ethall77.83 25176.93 26180.51 24476.15 38358.01 32075.47 33488.82 19958.05 34083.59 24580.69 35864.41 26691.20 19073.16 21092.03 24192.33 185
CNLPA83.55 16683.10 17284.90 13989.34 17983.87 5084.54 16988.77 20079.09 10683.54 24888.66 25274.87 18681.73 33966.84 26392.29 23589.11 271
LF4IMVS82.75 17981.93 19085.19 13582.08 32480.15 7485.53 15088.76 20168.01 24885.58 20187.75 26671.80 22986.85 28474.02 19193.87 20188.58 280
VPA-MVSNet83.47 16884.73 13679.69 25690.29 16057.52 32481.30 24688.69 20276.29 13787.58 15894.44 7180.60 12987.20 27766.60 26696.82 9094.34 93
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21891.21 4388.64 20386.30 3389.60 11492.59 14569.22 24494.91 7173.89 19397.89 5296.72 24
BH-untuned80.96 21180.99 21080.84 23988.55 20168.23 20280.33 25988.46 20472.79 19386.55 17986.76 28574.72 19191.77 17861.79 30988.99 29682.52 363
Effi-MVS+-dtu85.82 11183.38 16493.14 487.13 23491.15 387.70 10888.42 20574.57 16283.56 24785.65 30178.49 14594.21 9372.04 21692.88 22594.05 105
UniMVSNet_ETH3D89.12 6590.72 4784.31 16097.00 264.33 24189.67 7488.38 20688.84 1794.29 2297.57 490.48 1391.26 18972.57 21397.65 6297.34 14
FA-MVS(test-final)83.13 17483.02 17383.43 18486.16 26266.08 22588.00 10388.36 20775.55 15185.02 21192.75 14265.12 26492.50 15674.94 18291.30 25891.72 210
TinyColmap81.25 20782.34 18677.99 28385.33 27460.68 29182.32 22988.33 20871.26 21386.97 17092.22 16277.10 16386.98 28162.37 30295.17 15686.31 310
CANet_DTU77.81 25377.05 25980.09 25181.37 33459.90 29883.26 20088.29 20969.16 23467.83 39083.72 32860.93 28689.47 24369.22 24289.70 28890.88 232
GBi-Net82.02 19582.07 18781.85 22086.38 25061.05 28486.83 12488.27 21072.43 19686.00 19295.64 3463.78 27290.68 21165.95 27193.34 21293.82 116
test182.02 19582.07 18781.85 22086.38 25061.05 28486.83 12488.27 21072.43 19686.00 19295.64 3463.78 27290.68 21165.95 27193.34 21293.82 116
FMVSNet184.55 13685.45 12581.85 22090.27 16161.05 28486.83 12488.27 21078.57 11589.66 11095.64 3475.43 18090.68 21169.09 24495.33 14993.82 116
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19487.84 10788.05 21381.66 7594.64 1896.53 1765.94 26094.75 7483.02 8296.83 8995.41 53
USDC76.63 26776.73 26476.34 30683.46 30757.20 32780.02 26288.04 21452.14 37783.65 24491.25 18663.24 27586.65 28854.66 35394.11 19485.17 322
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18991.63 3987.98 21581.51 7787.05 16991.83 17066.18 25995.29 5670.75 22596.89 8695.64 48
MAR-MVS80.24 22778.74 24384.73 14586.87 24478.18 9285.75 14687.81 21665.67 27677.84 32378.50 37973.79 20190.53 21561.59 31290.87 26985.49 320
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 18682.61 18181.30 23086.29 25669.79 18388.71 9587.67 21778.42 11782.15 27084.15 32677.98 14891.59 18065.39 27892.75 22782.51 364
fmvsm_s_conf0.1_n_283.82 15783.49 16184.84 14085.99 26570.19 18180.93 25187.58 21867.26 25987.94 15092.37 15571.40 23388.01 26686.03 4991.87 24696.31 31
pm-mvs183.69 16084.95 13479.91 25290.04 16859.66 30082.43 22687.44 21975.52 15287.85 15195.26 4581.25 12185.65 30968.74 25096.04 12194.42 89
cascas76.29 27374.81 28080.72 24284.47 28862.94 25573.89 34887.34 22055.94 35375.16 35176.53 39563.97 27091.16 19265.00 28290.97 26588.06 288
HyFIR lowres test75.12 28372.66 30482.50 21191.44 13565.19 23372.47 35787.31 22146.79 39480.29 30084.30 32352.70 33692.10 16951.88 37386.73 33090.22 250
TransMVSNet (Re)84.02 15285.74 12078.85 26591.00 14655.20 34482.29 23087.26 22279.65 9888.38 13995.52 3783.00 9086.88 28367.97 25896.60 9694.45 86
fmvsm_s_conf0.5_n_283.62 16383.29 16684.62 14885.43 27370.18 18280.61 25587.24 22367.14 26087.79 15391.87 16671.79 23087.98 26786.00 5391.77 24995.71 45
xiu_mvs_v1_base_debu80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
xiu_mvs_v1_base80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
xiu_mvs_v1_base_debi80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
cl2278.97 23878.21 25081.24 23377.74 36659.01 30877.46 30487.13 22765.79 27184.32 22885.10 31258.96 30390.88 20475.36 17792.03 24193.84 114
PS-MVSNAJ77.04 26176.53 26578.56 27087.09 23861.40 27875.26 33587.13 22761.25 31574.38 35677.22 39076.94 16690.94 19964.63 28784.83 35783.35 350
MVS_111021_HR84.63 13384.34 15185.49 13390.18 16375.86 12379.23 27787.13 22773.35 17985.56 20289.34 23983.60 8590.50 21676.64 16094.05 19790.09 256
xiu_mvs_v2_base77.19 25976.75 26378.52 27187.01 24061.30 28075.55 33387.12 23061.24 31674.45 35478.79 37777.20 16090.93 20064.62 28884.80 35883.32 351
1112_ss74.82 28873.74 28978.04 28289.57 17260.04 29576.49 31987.09 23154.31 36373.66 36079.80 36860.25 29286.76 28758.37 32884.15 36287.32 300
cl____80.42 22080.23 22281.02 23779.99 34959.25 30477.07 30887.02 23267.37 25686.18 19089.21 24263.08 27890.16 22476.31 16595.80 13693.65 126
DIV-MVS_self_test80.43 21980.23 22281.02 23779.99 34959.25 30477.07 30887.02 23267.38 25586.19 18889.22 24163.09 27790.16 22476.32 16495.80 13693.66 124
EG-PatchMatch MVS84.08 15084.11 15383.98 16692.22 10372.61 15082.20 23687.02 23272.63 19588.86 12491.02 19478.52 14391.11 19473.41 20191.09 26088.21 284
Baseline_NR-MVSNet84.00 15385.90 11478.29 27791.47 13453.44 35582.29 23087.00 23579.06 10789.55 11595.72 3277.20 16086.14 29972.30 21598.51 1795.28 58
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23684.54 4683.58 24693.78 10873.36 21096.48 287.98 1396.21 11294.41 90
PAPM71.77 31470.06 32976.92 29786.39 24953.97 35076.62 31686.62 23753.44 36763.97 40784.73 31957.79 31292.34 16139.65 40881.33 38284.45 331
FMVSNet281.31 20681.61 19780.41 24686.38 25058.75 31483.93 18286.58 23872.43 19687.65 15692.98 13163.78 27290.22 22266.86 26193.92 19992.27 189
BH-w/o76.57 26876.07 27078.10 28086.88 24365.92 22777.63 29886.33 23965.69 27580.89 29179.95 36768.97 24790.74 20953.01 36485.25 34677.62 393
EGC-MVSNET74.79 28969.99 33189.19 6594.89 3887.00 1591.89 3786.28 2401.09 4242.23 42695.98 2781.87 11489.48 24279.76 11895.96 12591.10 225
BH-RMVSNet80.53 21780.22 22481.49 22987.19 23366.21 22477.79 29686.23 24174.21 16583.69 24388.50 25373.25 21290.75 20863.18 29987.90 31487.52 297
Test_1112_low_res73.90 29773.08 29876.35 30590.35 15955.95 33373.40 35386.17 24250.70 38773.14 36185.94 29858.31 30685.90 30456.51 33883.22 36887.20 301
fmvsm_l_conf0.5_n82.06 19481.54 20183.60 17883.94 29973.90 13383.35 19886.10 24358.97 33283.80 24190.36 21874.23 19586.94 28282.90 8390.22 28189.94 258
MonoMVSNet76.66 26677.26 25874.86 31879.86 35154.34 34886.26 13786.08 24471.08 21685.59 20088.68 25053.95 33185.93 30163.86 29280.02 38684.32 333
ab-mvs79.67 23580.56 21676.99 29588.48 20256.93 32884.70 16486.06 24568.95 23780.78 29393.08 12675.30 18284.62 31756.78 33690.90 26789.43 265
SDMVSNet81.90 20083.17 17078.10 28088.81 19262.45 26576.08 32686.05 24673.67 17183.41 24993.04 12782.35 10080.65 34670.06 23495.03 16291.21 222
v14882.31 18582.48 18481.81 22385.59 27059.66 30081.47 24386.02 24772.85 19088.05 14790.65 21370.73 23690.91 20275.15 17991.79 24794.87 70
Anonymous2024052180.18 22981.25 20676.95 29683.15 31860.84 28982.46 22585.99 24868.76 23986.78 17293.73 11259.13 30177.44 36373.71 19797.55 6992.56 171
MVS73.21 30372.59 30575.06 31780.97 33860.81 29081.64 24185.92 24946.03 39971.68 36977.54 38568.47 24889.77 23955.70 34485.39 34374.60 399
FMVSNet378.80 24278.55 24579.57 25882.89 32156.89 33081.76 23885.77 25069.04 23686.00 19290.44 21751.75 34190.09 23065.95 27193.34 21291.72 210
MVS_030485.37 11784.58 14287.75 8885.28 27573.36 13686.54 13385.71 25177.56 12981.78 28092.47 15070.29 23896.02 1185.59 5595.96 12593.87 113
UGNet82.78 17881.64 19586.21 11686.20 25976.24 12086.86 12285.68 25277.07 13373.76 35992.82 13869.64 24191.82 17769.04 24693.69 20790.56 243
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
无先验82.81 21585.62 25358.09 33991.41 18767.95 25984.48 330
fmvsm_l_conf0.5_n_a81.46 20480.87 21383.25 18983.73 30473.21 14283.00 20985.59 25458.22 33882.96 25790.09 22972.30 22286.65 28881.97 9889.95 28589.88 259
cdsmvs_eth3d_5k20.81 39127.75 3940.00 4100.00 4330.00 4350.00 42185.44 2550.00 4280.00 42982.82 34081.46 1180.00 4290.00 4280.00 4270.00 425
131473.22 30272.56 30775.20 31580.41 34857.84 32181.64 24185.36 25651.68 38073.10 36276.65 39461.45 28485.19 31263.54 29579.21 39182.59 359
test_yl78.71 24478.51 24679.32 26184.32 29358.84 31178.38 28785.33 25775.99 14282.49 26386.57 28758.01 30790.02 23362.74 30092.73 22889.10 272
DCV-MVSNet78.71 24478.51 24679.32 26184.32 29358.84 31178.38 28785.33 25775.99 14282.49 26386.57 28758.01 30790.02 23362.74 30092.73 22889.10 272
MVP-Stereo75.81 27773.51 29382.71 20589.35 17873.62 13480.06 26085.20 25960.30 32573.96 35787.94 26157.89 31189.45 24552.02 36874.87 40485.06 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29872.76 14483.91 18385.18 26080.44 8688.75 12785.49 30480.08 13491.92 17282.02 9690.85 27195.97 39
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 30272.52 15383.82 18585.15 26180.27 9088.75 12785.45 30679.95 13691.90 17381.92 9990.80 27296.13 34
EI-MVSNet82.61 18082.42 18583.20 19183.25 31463.66 24683.50 19485.07 26276.06 13986.55 17985.10 31273.41 20790.25 21978.15 14290.67 27595.68 47
MVSTER77.09 26075.70 27381.25 23175.27 39161.08 28377.49 30385.07 26260.78 32186.55 17988.68 25043.14 38990.25 21973.69 19890.67 27592.42 178
miper_lstm_enhance76.45 27176.10 26977.51 29076.72 37760.97 28864.69 39585.04 26463.98 28983.20 25388.22 25656.67 31778.79 35973.22 20493.12 21992.78 161
WR-MVS83.56 16584.40 14981.06 23693.43 7054.88 34578.67 28585.02 26581.24 7990.74 9091.56 17972.85 21591.08 19568.00 25798.04 3997.23 16
MG-MVS80.32 22480.94 21178.47 27388.18 20852.62 36282.29 23085.01 26672.01 20679.24 31392.54 14869.36 24393.36 13270.65 22789.19 29589.45 263
h-mvs3384.25 14482.76 17788.72 7391.82 12182.60 6084.00 17984.98 26771.27 21186.70 17590.55 21563.04 27993.92 10578.26 13894.20 19189.63 261
VDD-MVS84.23 14684.58 14283.20 19191.17 14265.16 23483.25 20184.97 26879.79 9587.18 16294.27 7974.77 19090.89 20369.24 24096.54 9893.55 135
test_fmvs375.72 27875.20 27877.27 29375.01 39469.47 18878.93 27984.88 26946.67 39587.08 16787.84 26450.44 34871.62 38077.42 15388.53 30290.72 236
mvsmamba80.30 22578.87 23884.58 15088.12 21167.55 21092.35 2984.88 26963.15 29285.33 20590.91 20050.71 34595.20 6266.36 26787.98 31390.99 227
mvs_anonymous78.13 24978.76 24276.23 30979.24 35950.31 37878.69 28484.82 27161.60 31083.09 25692.82 13873.89 20087.01 27868.33 25686.41 33491.37 219
D2MVS76.84 26375.67 27480.34 24780.48 34762.16 27373.50 35184.80 27257.61 34482.24 26787.54 27051.31 34287.65 27170.40 23193.19 21891.23 221
FE-MVS79.98 23378.86 23983.36 18686.47 24766.45 22289.73 7084.74 27372.80 19284.22 23591.38 18344.95 38093.60 11963.93 29191.50 25590.04 257
MIMVSNet183.63 16284.59 14180.74 24094.06 5762.77 25982.72 21684.53 27477.57 12890.34 9395.92 2876.88 17285.83 30761.88 30897.42 7493.62 128
BP-MVS182.81 17781.67 19486.23 11387.88 21668.53 20086.06 14084.36 27575.65 14985.14 20890.19 22445.84 36894.42 8685.18 5994.72 17895.75 44
VNet79.31 23680.27 22176.44 30487.92 21553.95 35175.58 33284.35 27674.39 16482.23 26890.72 20872.84 21684.39 32160.38 31993.98 19890.97 228
test_fmvs273.57 29972.80 30175.90 31172.74 40768.84 19877.07 30884.32 27745.14 40182.89 25884.22 32448.37 35370.36 38473.40 20287.03 32688.52 281
test_vis1_n_192071.30 32171.58 31570.47 34877.58 36959.99 29774.25 34284.22 27851.06 38374.85 35379.10 37455.10 32868.83 39068.86 24879.20 39282.58 360
test_fmvs1_n70.94 32370.41 32672.53 33773.92 39666.93 21775.99 32784.21 27943.31 40879.40 30979.39 37243.47 38568.55 39269.05 24584.91 35482.10 367
hse-mvs283.47 16881.81 19288.47 7791.03 14582.27 6182.61 21883.69 28071.27 21186.70 17586.05 29763.04 27992.41 15878.26 13893.62 21090.71 237
AUN-MVS81.18 20878.78 24188.39 7990.93 14782.14 6282.51 22483.67 28164.69 28680.29 30085.91 30051.07 34392.38 15976.29 16693.63 20990.65 241
MVS_111021_LR84.28 14383.76 15985.83 12689.23 18283.07 5580.99 25083.56 28272.71 19486.07 19189.07 24581.75 11686.19 29777.11 15693.36 21188.24 283
test_fmvs169.57 33869.05 33871.14 34769.15 41565.77 22973.98 34683.32 28342.83 41077.77 32678.27 38143.39 38868.50 39368.39 25584.38 36179.15 390
CHOSEN 1792x268872.45 30870.56 32278.13 27990.02 16963.08 25468.72 38083.16 28442.99 40975.92 34185.46 30557.22 31585.18 31349.87 37881.67 37886.14 311
patch_mono-278.89 23979.39 23477.41 29284.78 28368.11 20575.60 33083.11 28560.96 31979.36 31089.89 23275.18 18372.97 37573.32 20392.30 23391.15 224
TR-MVS76.77 26575.79 27179.72 25586.10 26365.79 22877.14 30683.02 28665.20 28381.40 28582.10 34666.30 25790.73 21055.57 34585.27 34582.65 358
GA-MVS75.83 27674.61 28179.48 26081.87 32659.25 30473.42 35282.88 28768.68 24079.75 30581.80 35150.62 34689.46 24466.85 26285.64 34289.72 260
tfpnnormal81.79 20182.95 17478.31 27588.93 18955.40 34080.83 25482.85 28876.81 13485.90 19694.14 8974.58 19386.51 29066.82 26495.68 14293.01 154
sd_testset79.95 23481.39 20475.64 31388.81 19258.07 31876.16 32582.81 28973.67 17183.41 24993.04 12780.96 12477.65 36258.62 32795.03 16291.21 222
OpenMVS_ROBcopyleft70.19 1777.77 25477.46 25478.71 26884.39 29261.15 28281.18 24882.52 29062.45 29983.34 25187.37 27466.20 25888.66 26064.69 28685.02 35186.32 309
Anonymous20240521180.51 21881.19 20978.49 27288.48 20257.26 32676.63 31582.49 29181.21 8084.30 23192.24 16167.99 25086.24 29462.22 30395.13 15791.98 203
EU-MVSNet75.12 28374.43 28577.18 29483.11 31959.48 30285.71 14882.43 29239.76 41585.64 19988.76 24844.71 38287.88 26973.86 19485.88 34184.16 338
CMPMVSbinary59.41 2075.12 28373.57 29179.77 25375.84 38667.22 21181.21 24782.18 29350.78 38676.50 33287.66 26855.20 32782.99 33262.17 30690.64 27989.09 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet77.32 25875.40 27583.06 19489.00 18672.48 15477.90 29482.17 29460.81 32078.94 31583.49 33159.30 29988.76 25954.64 35492.37 23287.93 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS64.64 1873.03 30472.47 30874.71 32083.36 31154.19 34982.14 23781.96 29556.76 35269.57 38286.21 29560.03 29384.83 31649.58 38082.65 37485.11 323
jason77.42 25775.75 27282.43 21387.10 23769.27 19077.99 29281.94 29651.47 38177.84 32385.07 31560.32 29189.00 25270.74 22689.27 29489.03 275
jason: jason.
旧先验191.97 11171.77 16381.78 29791.84 16973.92 19993.65 20883.61 345
VPNet80.25 22681.68 19375.94 31092.46 9547.98 38576.70 31381.67 29873.45 17684.87 21692.82 13874.66 19286.51 29061.66 31196.85 8793.33 138
test_vis1_rt65.64 36364.09 36770.31 34966.09 42070.20 18061.16 40281.60 29938.65 41672.87 36369.66 40952.84 33460.04 41356.16 34077.77 39680.68 384
TSAR-MVS + GP.83.95 15482.69 17987.72 8989.27 18181.45 6783.72 18981.58 30074.73 16085.66 19886.06 29672.56 22092.69 15275.44 17695.21 15489.01 277
reproduce_monomvs74.09 29573.23 29676.65 30376.52 37854.54 34677.50 30281.40 30165.85 27082.86 26086.67 28627.38 42084.53 31870.24 23290.66 27790.89 231
VDDNet84.35 14085.39 12781.25 23195.13 3259.32 30385.42 15381.11 30286.41 3287.41 16096.21 2273.61 20290.61 21466.33 26896.85 8793.81 119
IterMVS-SCA-FT80.64 21679.41 23384.34 15883.93 30069.66 18676.28 32281.09 30372.43 19686.47 18590.19 22460.46 28993.15 13877.45 15186.39 33590.22 250
UnsupCasMVSNet_eth71.63 31772.30 30969.62 35576.47 38052.70 36170.03 37680.97 30459.18 33179.36 31088.21 25760.50 28869.12 38858.33 33077.62 39887.04 302
test_vis1_n70.29 32769.99 33171.20 34675.97 38566.50 22176.69 31480.81 30544.22 40475.43 34677.23 38950.00 34968.59 39166.71 26582.85 37378.52 392
lupinMVS76.37 27274.46 28482.09 21585.54 27169.26 19176.79 31180.77 30650.68 38876.23 33682.82 34058.69 30488.94 25369.85 23588.77 29988.07 286
CL-MVSNet_self_test76.81 26477.38 25675.12 31686.90 24251.34 37073.20 35480.63 30768.30 24581.80 27888.40 25466.92 25580.90 34355.35 34894.90 16893.12 150
新几何182.95 19993.96 5978.56 8880.24 30855.45 35683.93 23991.08 19371.19 23488.33 26365.84 27493.07 22081.95 369
testdata79.54 25992.87 8472.34 15680.14 30959.91 32985.47 20491.75 17567.96 25185.24 31168.57 25492.18 24081.06 382
TAMVS78.08 25076.36 26683.23 19090.62 15472.87 14379.08 27880.01 31061.72 30781.35 28686.92 28463.96 27188.78 25850.61 37493.01 22288.04 289
pmmvs-eth3d78.42 24877.04 26082.57 21087.44 22874.41 13080.86 25379.67 31155.68 35584.69 21990.31 22160.91 28785.42 31062.20 30491.59 25387.88 293
KD-MVS_2432*160066.87 35465.81 36070.04 35067.50 41647.49 38762.56 39979.16 31261.21 31777.98 32180.61 35925.29 42482.48 33453.02 36284.92 35280.16 386
miper_refine_blended66.87 35465.81 36070.04 35067.50 41647.49 38762.56 39979.16 31261.21 31777.98 32180.61 35925.29 42482.48 33453.02 36284.92 35280.16 386
IterMVS76.91 26276.34 26778.64 26980.91 33964.03 24376.30 32179.03 31464.88 28583.11 25489.16 24359.90 29584.46 31968.61 25285.15 34987.42 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet72.62 30771.41 31776.28 30783.25 31460.34 29383.50 19479.02 31537.77 41976.33 33485.10 31249.60 35187.41 27470.54 22977.54 39981.08 380
ppachtmachnet_test74.73 29074.00 28876.90 29880.71 34456.89 33071.53 36578.42 31658.24 33779.32 31282.92 33957.91 31084.26 32365.60 27791.36 25789.56 262
FMVSNet572.10 31271.69 31273.32 32781.57 33153.02 35876.77 31278.37 31763.31 29076.37 33391.85 16836.68 40278.98 35647.87 38992.45 23187.95 291
MS-PatchMatch70.93 32470.22 32773.06 33081.85 32762.50 26473.82 34977.90 31852.44 37475.92 34181.27 35555.67 32481.75 33855.37 34777.70 39774.94 398
test22293.31 7376.54 11379.38 27277.79 31952.59 37282.36 26690.84 20566.83 25691.69 25081.25 377
fmvsm_s_conf0.1_n_a82.58 18281.93 19084.50 15187.68 22173.35 13786.14 13977.70 32061.64 30985.02 21191.62 17777.75 15186.24 29482.79 8687.07 32493.91 111
pmmvs474.92 28672.98 30080.73 24184.95 28071.71 16776.23 32377.59 32152.83 37177.73 32786.38 28956.35 32084.97 31457.72 33487.05 32585.51 319
EPNet80.37 22278.41 24886.23 11376.75 37673.28 13987.18 11677.45 32276.24 13868.14 38788.93 24765.41 26393.85 10769.47 23896.12 11891.55 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n82.17 19081.59 19883.94 16986.87 24471.57 16985.19 15777.42 32362.27 30384.47 22491.33 18476.43 17485.91 30383.14 7787.14 32294.33 94
fmvsm_s_conf0.5_n_a82.21 18881.51 20284.32 15986.56 24673.35 13785.46 15177.30 32461.81 30584.51 22190.88 20377.36 15886.21 29682.72 8786.97 32993.38 136
test_cas_vis1_n_192069.20 34369.12 33669.43 35773.68 39962.82 25870.38 37477.21 32546.18 39880.46 29978.95 37652.03 33865.53 40565.77 27677.45 40079.95 388
XXY-MVS74.44 29376.19 26869.21 35884.61 28752.43 36371.70 36277.18 32660.73 32280.60 29490.96 19875.44 17969.35 38756.13 34188.33 30685.86 315
fmvsm_s_conf0.5_n81.91 19981.30 20583.75 17386.02 26471.56 17084.73 16377.11 32762.44 30084.00 23790.68 21076.42 17585.89 30583.14 7787.11 32393.81 119
CR-MVSNet74.00 29673.04 29976.85 30079.58 35362.64 26182.58 22076.90 32850.50 38975.72 34392.38 15248.07 35584.07 32568.72 25182.91 37183.85 342
Patchmtry76.56 26977.46 25473.83 32479.37 35846.60 39182.41 22776.90 32873.81 16985.56 20292.38 15248.07 35583.98 32663.36 29795.31 15290.92 230
IB-MVS62.13 1971.64 31668.97 34179.66 25780.80 34362.26 27073.94 34776.90 32863.27 29168.63 38676.79 39233.83 40691.84 17659.28 32587.26 32084.88 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18785.45 15276.68 33184.06 5092.44 6096.99 1062.03 28294.65 7780.58 11193.24 21694.83 75
ET-MVSNet_ETH3D75.28 28072.77 30282.81 20483.03 32068.11 20577.09 30776.51 33260.67 32377.60 32880.52 36238.04 39891.15 19370.78 22490.68 27489.17 270
N_pmnet70.20 32868.80 34374.38 32280.91 33984.81 4359.12 40776.45 33355.06 35875.31 35082.36 34555.74 32354.82 41747.02 39187.24 32183.52 346
thisisatest053079.07 23777.33 25784.26 16187.13 23464.58 23783.66 19175.95 33468.86 23885.22 20787.36 27538.10 39793.57 12375.47 17594.28 18994.62 78
EPNet_dtu72.87 30671.33 31877.49 29177.72 36760.55 29282.35 22875.79 33566.49 26658.39 41781.06 35753.68 33285.98 30053.55 35992.97 22485.95 313
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_bld69.21 34269.68 33367.82 36879.42 35651.15 37367.82 38575.79 33554.15 36477.47 32985.36 31059.26 30070.64 38348.46 38679.35 38981.66 371
MDA-MVSNet-bldmvs77.47 25676.90 26279.16 26379.03 36164.59 23666.58 39175.67 33773.15 18788.86 12488.99 24666.94 25481.23 34264.71 28588.22 31191.64 214
pmmvs570.73 32570.07 32872.72 33377.03 37452.73 36074.14 34375.65 33850.36 39072.17 36785.37 30955.42 32680.67 34552.86 36587.59 31984.77 326
tttt051781.07 20979.58 23285.52 13188.99 18766.45 22287.03 11975.51 33973.76 17088.32 14190.20 22337.96 40094.16 9979.36 12695.13 15795.93 42
tpmvs70.16 32969.56 33471.96 34174.71 39548.13 38379.63 26675.45 34065.02 28470.26 37881.88 35045.34 37585.68 30858.34 32975.39 40382.08 368
ADS-MVSNet265.87 36263.64 37072.55 33673.16 40256.92 32967.10 38874.81 34149.74 39166.04 39682.97 33646.71 35877.26 36442.29 40269.96 41183.46 347
new-patchmatchnet70.10 33073.37 29560.29 39481.23 33616.95 42959.54 40574.62 34262.93 29380.97 28887.93 26262.83 28171.90 37855.24 34995.01 16592.00 201
Anonymous2023120671.38 32071.88 31169.88 35286.31 25454.37 34770.39 37374.62 34252.57 37376.73 33188.76 24859.94 29472.06 37744.35 40093.23 21783.23 353
CostFormer69.98 33468.68 34473.87 32377.14 37250.72 37679.26 27474.51 34451.94 37970.97 37384.75 31845.16 37887.49 27355.16 35079.23 39083.40 349
door-mid74.45 345
thisisatest051573.00 30570.52 32380.46 24581.45 33259.90 29873.16 35574.31 34657.86 34176.08 34077.78 38337.60 40192.12 16865.00 28291.45 25689.35 266
baseline173.26 30173.54 29272.43 33884.92 28147.79 38679.89 26474.00 34765.93 26878.81 31686.28 29456.36 31981.63 34056.63 33779.04 39387.87 294
test_method30.46 39029.60 39333.06 40417.99 4293.84 43213.62 42073.92 3482.79 42318.29 42553.41 41828.53 41743.25 42322.56 42135.27 42152.11 418
tfpn200view974.86 28774.23 28676.74 30186.24 25752.12 36479.24 27573.87 34973.34 18081.82 27684.60 32146.02 36388.80 25551.98 36990.99 26289.31 267
thres40075.14 28174.23 28677.86 28686.24 25752.12 36479.24 27573.87 34973.34 18081.82 27684.60 32146.02 36388.80 25551.98 36990.99 26292.66 167
LFMVS80.15 23080.56 21678.89 26489.19 18355.93 33485.22 15673.78 35182.96 6384.28 23292.72 14357.38 31390.07 23163.80 29395.75 13990.68 239
thres20072.34 31071.55 31674.70 32183.48 30651.60 36975.02 33773.71 35270.14 22778.56 31980.57 36146.20 36188.20 26546.99 39289.29 29284.32 333
tpm cat166.76 35765.21 36571.42 34477.09 37350.62 37778.01 29173.68 35344.89 40268.64 38579.00 37545.51 37282.42 33649.91 37770.15 41081.23 379
testing9169.94 33568.99 34072.80 33283.81 30345.89 39471.57 36473.64 35468.24 24670.77 37677.82 38234.37 40584.44 32053.64 35887.00 32888.07 286
testgi72.36 30974.61 28165.59 37880.56 34642.82 40668.29 38173.35 35566.87 26381.84 27589.93 23072.08 22666.92 40046.05 39692.54 23087.01 303
thres100view90075.45 27975.05 27976.66 30287.27 23051.88 36781.07 24973.26 35675.68 14883.25 25286.37 29045.54 37088.80 25551.98 36990.99 26289.31 267
thres600view775.97 27575.35 27777.85 28787.01 24051.84 36880.45 25773.26 35675.20 15683.10 25586.31 29345.54 37089.05 25155.03 35192.24 23792.66 167
wuyk23d75.13 28279.30 23562.63 38775.56 38775.18 12680.89 25273.10 35875.06 15894.76 1695.32 4187.73 4352.85 41834.16 41797.11 8259.85 414
WTY-MVS67.91 34968.35 34666.58 37580.82 34248.12 38465.96 39272.60 35953.67 36671.20 37181.68 35358.97 30269.06 38948.57 38581.67 37882.55 361
door72.57 360
PVSNet58.17 2166.41 35965.63 36268.75 36281.96 32549.88 38062.19 40172.51 36151.03 38468.04 38875.34 40050.84 34474.77 37245.82 39782.96 36981.60 372
dmvs_re66.81 35666.98 35266.28 37676.87 37558.68 31571.66 36372.24 36260.29 32669.52 38373.53 40352.38 33764.40 40844.90 39881.44 38175.76 396
MDTV_nov1_ep1368.29 34778.03 36543.87 40374.12 34472.22 36352.17 37567.02 39385.54 30245.36 37480.85 34455.73 34284.42 360
WBMVS68.76 34568.43 34569.75 35483.29 31240.30 41167.36 38772.21 36457.09 34977.05 33085.53 30333.68 40780.51 34748.79 38490.90 26788.45 282
test20.0373.75 29874.59 28371.22 34581.11 33751.12 37470.15 37572.10 36570.42 22180.28 30291.50 18064.21 26874.72 37446.96 39394.58 18187.82 295
Vis-MVSNet (Re-imp)77.82 25277.79 25377.92 28488.82 19151.29 37283.28 19971.97 36674.04 16682.23 26889.78 23357.38 31389.41 24857.22 33595.41 14693.05 152
MIMVSNet71.09 32271.59 31369.57 35687.23 23150.07 37978.91 28071.83 36760.20 32871.26 37091.76 17455.08 32976.09 36741.06 40587.02 32782.54 362
tpm268.45 34766.83 35473.30 32878.93 36348.50 38279.76 26571.76 36847.50 39369.92 38083.60 32942.07 39188.40 26248.44 38779.51 38783.01 356
sss66.92 35367.26 35165.90 37777.23 37151.10 37564.79 39471.72 36952.12 37870.13 37980.18 36557.96 30965.36 40650.21 37581.01 38481.25 377
our_test_371.85 31371.59 31372.62 33580.71 34453.78 35269.72 37771.71 37058.80 33478.03 32080.51 36356.61 31878.84 35862.20 30486.04 34085.23 321
SCA73.32 30072.57 30675.58 31481.62 33055.86 33678.89 28171.37 37161.73 30674.93 35283.42 33360.46 28987.01 27858.11 33282.63 37683.88 339
testing9969.27 34168.15 34872.63 33483.29 31245.45 39671.15 36671.08 37267.34 25770.43 37777.77 38432.24 41084.35 32253.72 35786.33 33688.10 285
test_f64.31 37065.85 35959.67 39566.54 41962.24 27257.76 41170.96 37340.13 41384.36 22682.09 34746.93 35751.67 41961.99 30781.89 37765.12 410
lessismore_v085.95 12191.10 14470.99 17470.91 37491.79 6994.42 7461.76 28392.93 14679.52 12493.03 22193.93 109
tpmrst66.28 36066.69 35665.05 38272.82 40639.33 41278.20 29070.69 37553.16 37067.88 38980.36 36448.18 35474.75 37358.13 33170.79 40981.08 380
PatchMatch-RL74.48 29173.22 29778.27 27887.70 22085.26 3875.92 32870.09 37664.34 28776.09 33981.25 35665.87 26178.07 36153.86 35683.82 36471.48 402
PatchmatchNetpermissive69.71 33768.83 34272.33 34077.66 36853.60 35379.29 27369.99 37757.66 34372.53 36582.93 33846.45 36080.08 35160.91 31672.09 40783.31 352
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ECVR-MVScopyleft78.44 24778.63 24477.88 28591.85 11748.95 38183.68 19069.91 37872.30 20284.26 23494.20 8551.89 34089.82 23663.58 29496.02 12294.87 70
baseline269.77 33666.89 35378.41 27479.51 35558.09 31776.23 32369.57 37957.50 34564.82 40577.45 38746.02 36388.44 26153.08 36177.83 39588.70 279
testing1167.38 35065.93 35871.73 34383.37 31046.60 39170.95 36969.40 38062.47 29866.14 39476.66 39331.22 41184.10 32449.10 38284.10 36384.49 329
ttmdpeth71.72 31570.67 32074.86 31873.08 40455.88 33577.41 30569.27 38155.86 35478.66 31793.77 11038.01 39975.39 37160.12 32089.87 28693.31 140
test111178.53 24678.85 24077.56 28992.22 10347.49 38782.61 21869.24 38272.43 19685.28 20694.20 8551.91 33990.07 23165.36 27996.45 10395.11 65
Patchmatch-RL test74.48 29173.68 29076.89 29984.83 28266.54 22072.29 35869.16 38357.70 34286.76 17386.33 29145.79 36982.59 33369.63 23790.65 27881.54 373
SSC-MVS77.55 25581.64 19565.29 38190.46 15720.33 42773.56 35068.28 38485.44 3788.18 14494.64 6470.93 23581.33 34171.25 21992.03 24194.20 96
WB-MVS76.06 27480.01 23064.19 38489.96 17020.58 42672.18 35968.19 38583.21 5986.46 18693.49 11770.19 23978.97 35765.96 27090.46 28093.02 153
testing22266.93 35265.30 36471.81 34283.38 30945.83 39572.06 36067.50 38664.12 28869.68 38176.37 39627.34 42183.00 33138.88 40988.38 30586.62 307
FPMVS72.29 31172.00 31073.14 32988.63 19885.00 4074.65 34167.39 38771.94 20777.80 32587.66 26850.48 34775.83 36949.95 37679.51 38758.58 416
MDA-MVSNet_test_wron70.05 33270.44 32468.88 36173.84 39753.47 35458.93 40967.28 38858.43 33587.09 16685.40 30759.80 29767.25 39859.66 32383.54 36685.92 314
YYNet170.06 33170.44 32468.90 36073.76 39853.42 35658.99 40867.20 38958.42 33687.10 16585.39 30859.82 29667.32 39759.79 32283.50 36785.96 312
test-LLR67.21 35166.74 35568.63 36476.45 38155.21 34267.89 38267.14 39062.43 30165.08 40272.39 40443.41 38669.37 38561.00 31484.89 35581.31 375
test-mter65.00 36563.79 36968.63 36476.45 38155.21 34267.89 38267.14 39050.98 38565.08 40272.39 40428.27 41869.37 38561.00 31484.89 35581.31 375
tpm67.95 34868.08 34967.55 36978.74 36443.53 40475.60 33067.10 39254.92 35972.23 36688.10 25842.87 39075.97 36852.21 36780.95 38583.15 354
PM-MVS80.20 22879.00 23783.78 17288.17 20986.66 1981.31 24466.81 39369.64 23088.33 14090.19 22464.58 26583.63 32971.99 21790.03 28381.06 382
WB-MVSnew68.72 34669.01 33967.85 36783.22 31643.98 40274.93 33865.98 39455.09 35773.83 35879.11 37365.63 26271.89 37938.21 41385.04 35087.69 296
MVStest170.05 33269.26 33572.41 33958.62 42655.59 33976.61 31765.58 39553.44 36789.28 12093.32 12022.91 42671.44 38274.08 19089.52 29090.21 254
JIA-IIPM69.41 33966.64 35777.70 28873.19 40171.24 17275.67 32965.56 39670.42 22165.18 40192.97 13333.64 40883.06 33053.52 36069.61 41378.79 391
PatchT70.52 32672.76 30363.79 38679.38 35733.53 42077.63 29865.37 39773.61 17371.77 36892.79 14144.38 38375.65 37064.53 28985.37 34482.18 366
UBG64.34 36963.35 37167.30 37183.50 30540.53 41067.46 38665.02 39854.77 36167.54 39274.47 40232.99 40978.50 36040.82 40683.58 36582.88 357
UWE-MVS66.43 35865.56 36369.05 35984.15 29740.98 40973.06 35664.71 39954.84 36076.18 33879.62 37129.21 41580.50 34838.54 41289.75 28785.66 317
dp60.70 38060.29 38361.92 39072.04 40938.67 41570.83 37064.08 40051.28 38260.75 41077.28 38836.59 40371.58 38147.41 39062.34 41775.52 397
Patchmatch-test65.91 36167.38 35061.48 39275.51 38843.21 40568.84 37963.79 40162.48 29772.80 36483.42 33344.89 38159.52 41448.27 38886.45 33381.70 370
TESTMET0.1,161.29 37660.32 38264.19 38472.06 40851.30 37167.89 38262.09 40245.27 40060.65 41169.01 41027.93 41964.74 40756.31 33981.65 38076.53 394
Syy-MVS69.40 34070.03 33067.49 37081.72 32838.94 41371.00 36761.99 40361.38 31270.81 37472.36 40661.37 28579.30 35464.50 29085.18 34784.22 335
myMVS_eth3d64.66 36763.89 36866.97 37381.72 32837.39 41671.00 36761.99 40361.38 31270.81 37472.36 40620.96 42779.30 35449.59 37985.18 34784.22 335
PVSNet_051.08 2256.10 38454.97 38959.48 39675.12 39253.28 35755.16 41361.89 40544.30 40359.16 41362.48 41654.22 33065.91 40435.40 41547.01 41959.25 415
ADS-MVSNet61.90 37362.19 37761.03 39373.16 40236.42 41867.10 38861.75 40649.74 39166.04 39682.97 33646.71 35863.21 40942.29 40269.96 41183.46 347
PMMVS61.65 37460.38 38165.47 38065.40 42369.26 19163.97 39761.73 40736.80 42060.11 41268.43 41159.42 29866.35 40248.97 38378.57 39460.81 413
ETVMVS64.67 36663.34 37268.64 36383.44 30841.89 40769.56 37861.70 40861.33 31468.74 38475.76 39828.76 41679.35 35334.65 41686.16 33984.67 328
test0.0.03 164.66 36764.36 36665.57 37975.03 39346.89 39064.69 39561.58 40962.43 30171.18 37277.54 38543.41 38668.47 39440.75 40782.65 37481.35 374
dmvs_testset60.59 38162.54 37654.72 40077.26 37027.74 42374.05 34561.00 41060.48 32465.62 39967.03 41355.93 32268.23 39532.07 42069.46 41468.17 407
E-PMN61.59 37561.62 37861.49 39166.81 41855.40 34053.77 41460.34 41166.80 26458.90 41565.50 41440.48 39466.12 40355.72 34386.25 33762.95 412
testing371.53 31870.79 31973.77 32588.89 19041.86 40876.60 31859.12 41272.83 19180.97 28882.08 34819.80 42887.33 27665.12 28191.68 25192.13 196
CHOSEN 280x42059.08 38256.52 38766.76 37476.51 37964.39 24049.62 41659.00 41343.86 40555.66 42068.41 41235.55 40468.21 39643.25 40176.78 40267.69 408
EMVS61.10 37860.81 38061.99 38965.96 42155.86 33653.10 41558.97 41467.06 26156.89 41963.33 41540.98 39267.03 39954.79 35286.18 33863.08 411
pmmvs362.47 37160.02 38469.80 35371.58 41064.00 24470.52 37258.44 41539.77 41466.05 39575.84 39727.10 42372.28 37646.15 39584.77 35973.11 400
MVS-HIRNet61.16 37762.92 37455.87 39879.09 36035.34 41971.83 36157.98 41646.56 39659.05 41491.14 19049.95 35076.43 36638.74 41071.92 40855.84 417
gg-mvs-nofinetune68.96 34469.11 33768.52 36676.12 38445.32 39783.59 19255.88 41786.68 2964.62 40697.01 930.36 41383.97 32744.78 39982.94 37076.26 395
GG-mvs-BLEND67.16 37273.36 40046.54 39384.15 17555.04 41858.64 41661.95 41729.93 41483.87 32838.71 41176.92 40171.07 403
EPMVS62.47 37162.63 37562.01 38870.63 41238.74 41474.76 33952.86 41953.91 36567.71 39180.01 36639.40 39566.60 40155.54 34668.81 41580.68 384
new_pmnet55.69 38557.66 38649.76 40175.47 38930.59 42159.56 40451.45 42043.62 40762.49 40875.48 39940.96 39349.15 42137.39 41472.52 40569.55 405
PMMVS255.64 38659.27 38544.74 40264.30 42412.32 43040.60 41749.79 42153.19 36965.06 40484.81 31753.60 33349.76 42032.68 41989.41 29172.15 401
test250674.12 29473.39 29476.28 30791.85 11744.20 40184.06 17748.20 42272.30 20281.90 27394.20 8527.22 42289.77 23964.81 28496.02 12294.87 70
DSMNet-mixed60.98 37961.61 37959.09 39772.88 40545.05 39974.70 34046.61 42326.20 42165.34 40090.32 22055.46 32563.12 41041.72 40481.30 38369.09 406
mvsany_test365.48 36462.97 37373.03 33169.99 41376.17 12164.83 39343.71 42443.68 40680.25 30387.05 28352.83 33563.09 41151.92 37272.44 40679.84 389
mvsany_test158.48 38356.47 38864.50 38365.90 42268.21 20456.95 41242.11 42538.30 41765.69 39877.19 39156.96 31659.35 41546.16 39458.96 41865.93 409
MVEpermissive40.22 2351.82 38750.47 39055.87 39862.66 42551.91 36631.61 41939.28 42640.65 41250.76 42174.98 40156.24 32144.67 42233.94 41864.11 41671.04 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP90.66 4833.14 427
tmp_tt20.25 39224.50 3957.49 4074.47 4308.70 43134.17 41825.16 4281.00 42532.43 42418.49 42239.37 3969.21 42621.64 42243.75 4204.57 422
DeepMVS_CXcopyleft24.13 40632.95 42829.49 42221.63 42912.07 42237.95 42345.07 42030.84 41219.21 42517.94 42433.06 42223.69 421
dongtai41.90 38842.65 39139.67 40370.86 41121.11 42561.01 40321.42 43057.36 34657.97 41850.06 41916.40 42958.73 41621.03 42327.69 42339.17 419
kuosan30.83 38932.17 39226.83 40553.36 42719.02 42857.90 41020.44 43138.29 41838.01 42237.82 42115.18 43033.45 4247.74 42520.76 42428.03 420
test1236.27 3958.08 3980.84 4081.11 4320.57 43362.90 3980.82 4320.54 4261.07 4282.75 4271.26 4310.30 4271.04 4261.26 4261.66 423
testmvs5.91 3967.65 3990.72 4091.20 4310.37 43459.14 4060.67 4330.49 4271.11 4272.76 4260.94 4320.24 4281.02 4271.47 4251.55 424
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas6.41 3948.55 3970.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42876.94 1660.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
n20.00 434
nn0.00 434
ab-mvs-re6.65 3938.87 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42979.80 3680.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS37.39 41652.61 366
PC_three_145258.96 33390.06 9791.33 18480.66 12893.03 14375.78 17195.94 12892.48 175
eth-test20.00 433
eth-test0.00 433
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18781.12 12294.68 7674.48 18395.35 14892.29 187
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 156
GSMVS83.88 339
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36283.88 339
sam_mvs45.92 367
test_post178.85 2833.13 42445.19 37780.13 35058.11 332
test_post3.10 42545.43 37377.22 365
patchmatchnet-post81.71 35245.93 36687.01 278
gm-plane-assit75.42 39044.97 40052.17 37572.36 40687.90 26854.10 355
test9_res80.83 10796.45 10390.57 242
agg_prior279.68 12096.16 11590.22 250
test_prior478.97 8484.59 166
test_prior283.37 19775.43 15384.58 22091.57 17881.92 11379.54 12396.97 85
旧先验281.73 23956.88 35186.54 18484.90 31572.81 211
新几何281.72 240
原ACMM282.26 233
testdata286.43 29263.52 296
segment_acmp81.94 110
testdata179.62 26773.95 168
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 179
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 16073.30 18280.55 296
ACMP_Plane91.19 13984.77 16073.30 18280.55 296
BP-MVS77.30 154
HQP4-MVS80.56 29594.61 7993.56 133
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 227
MDTV_nov1_ep13_2view27.60 42470.76 37146.47 39761.27 40945.20 37649.18 38183.75 344
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140