This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 6099.27 199.54 1
mvs5depth83.82 15784.54 14481.68 22582.23 32368.65 19986.89 12189.90 18380.02 9487.74 15497.86 264.19 26982.02 33776.37 16395.63 14394.35 92
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5298.60 1396.67 25
UniMVSNet_ETH3D89.12 6590.72 4784.31 16097.00 264.33 24189.67 7488.38 20688.84 1794.29 2297.57 490.48 1391.26 18972.57 21397.65 6297.34 14
pmmvs686.52 9988.06 7981.90 21892.22 10362.28 26984.66 16589.15 19783.54 5789.85 10497.32 588.08 3886.80 28570.43 23097.30 7896.62 26
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 6097.78 5697.26 15
Anonymous2023121188.40 7189.62 5984.73 14590.46 15765.27 23188.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 15997.99 4396.88 23
gg-mvs-nofinetune68.96 34469.11 33768.52 36676.12 38445.32 39783.59 19255.88 41786.68 2964.62 40697.01 930.36 41383.97 32744.78 39982.94 37076.26 395
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18785.45 15276.68 33184.06 5092.44 6096.99 1062.03 28294.65 7780.58 11193.24 21694.83 75
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mmtdpeth85.13 12385.78 11983.17 19384.65 28674.71 12785.87 14390.35 16777.94 12183.82 24096.96 1277.75 15180.03 35278.44 13296.21 11294.79 76
ANet_high83.17 17385.68 12175.65 31281.24 33545.26 39879.94 26392.91 9183.83 5191.33 7696.88 1380.25 13285.92 30268.89 24795.89 13195.76 43
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11870.73 21994.19 2596.67 1476.94 16694.57 8183.07 8096.28 10896.15 33
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15770.00 22894.55 1996.67 1487.94 3993.59 12084.27 7095.97 12495.52 51
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17971.54 20894.28 2496.54 1681.57 11794.27 8986.26 4396.49 10097.09 19
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19487.84 10788.05 21381.66 7594.64 1896.53 1765.94 26094.75 7483.02 8296.83 8995.41 53
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17369.27 23294.39 2096.38 1886.02 6593.52 12483.96 7295.92 13095.34 55
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4898.48 1897.22 17
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4597.63 6397.82 8
DTE-MVSNet89.98 4791.91 1784.21 16296.51 757.84 32188.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12898.57 1598.80 6
VDDNet84.35 14085.39 12781.25 23195.13 3259.32 30385.42 15381.11 30286.41 3287.41 16096.21 2273.61 20290.61 21466.33 26896.85 8793.81 119
MVSMamba_PlusPlus87.53 8688.86 7183.54 18392.03 11062.26 27091.49 4092.62 10088.07 2488.07 14596.17 2372.24 22395.79 3184.85 6494.16 19392.58 170
PEN-MVS90.03 4591.88 1884.48 15296.57 558.88 31088.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 13198.72 998.97 3
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17669.87 22995.06 1596.14 2584.28 7793.07 14187.68 1896.34 10697.09 19
PS-CasMVS90.06 4391.92 1584.47 15396.56 658.83 31389.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12598.74 699.00 2
EGC-MVSNET74.79 28969.99 33189.19 6594.89 3887.00 1591.89 3786.28 2401.09 4242.23 42695.98 2781.87 11489.48 24279.76 11895.96 12591.10 225
MIMVSNet183.63 16284.59 14180.74 24094.06 5762.77 25982.72 21684.53 27477.57 12890.34 9395.92 2876.88 17285.83 30761.88 30897.42 7493.62 128
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17889.44 19488.63 2094.38 2195.77 2986.38 6193.59 12079.84 11795.21 15491.82 206
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 197
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 156
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
Baseline_NR-MVSNet84.00 15385.90 11478.29 27791.47 13453.44 35582.29 23087.00 23579.06 10789.55 11595.72 3277.20 16086.14 29972.30 21598.51 1795.28 58
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26689.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10598.80 398.84 5
GBi-Net82.02 19582.07 18781.85 22086.38 25061.05 28486.83 12488.27 21072.43 19686.00 19295.64 3463.78 27290.68 21165.95 27193.34 21293.82 116
test182.02 19582.07 18781.85 22086.38 25061.05 28486.83 12488.27 21072.43 19686.00 19295.64 3463.78 27290.68 21165.95 27193.34 21293.82 116
FMVSNet184.55 13685.45 12581.85 22090.27 16161.05 28486.83 12488.27 21078.57 11589.66 11095.64 3475.43 18090.68 21169.09 24495.33 14993.82 116
TransMVSNet (Re)84.02 15285.74 12078.85 26591.00 14655.20 34482.29 23087.26 22279.65 9888.38 13995.52 3783.00 9086.88 28367.97 25896.60 9694.45 86
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
ACMH76.49 1489.34 5991.14 3583.96 16792.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26483.33 7698.30 2593.20 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
wuyk23d75.13 28279.30 23562.63 38775.56 38775.18 12680.89 25273.10 35875.06 15894.76 1695.32 4187.73 4352.85 41834.16 41797.11 8259.85 414
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18896.10 11994.45 86
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18896.10 11994.45 86
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 112
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs183.69 16084.95 13479.91 25290.04 16859.66 30082.43 22687.44 21975.52 15287.85 15195.26 4581.25 12185.65 30968.74 25096.04 12194.42 89
Anonymous2024052986.20 10487.13 9183.42 18590.19 16264.55 23984.55 16790.71 15485.85 3689.94 10395.24 4682.13 10790.40 21869.19 24396.40 10595.31 57
CP-MVSNet89.27 6290.91 4484.37 15496.34 858.61 31688.66 9792.06 11590.78 795.67 895.17 4781.80 11595.54 4479.00 12998.69 1098.95 4
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 41
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19288.51 2190.11 9695.12 4990.98 688.92 25477.55 14997.07 8383.13 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11698.27 2695.04 67
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13598.76 495.61 50
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 142
Gipumacopyleft84.44 13886.33 10578.78 26684.20 29673.57 13589.55 7790.44 16284.24 4884.38 22594.89 5376.35 17780.40 34976.14 16896.80 9182.36 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14367.85 25386.63 17894.84 5579.58 13895.96 1587.62 1994.50 18294.56 80
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5798.73 795.23 61
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5798.73 795.23 61
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 7198.03 4193.26 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14479.26 10489.68 10894.81 5982.44 9787.74 27076.54 16188.74 30196.61 27
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18587.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18179.72 11997.32 7796.50 29
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14783.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 244
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 156
FC-MVSNet-test85.93 10987.05 9482.58 20892.25 10156.44 33285.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 13075.11 18098.58 1497.88 7
SSC-MVS77.55 25581.64 19565.29 38190.46 15720.33 42773.56 35068.28 38485.44 3788.18 14494.64 6470.93 23581.33 34171.25 21992.03 24194.20 96
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 175
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
LCM-MVSNet-Re83.48 16785.06 13178.75 26785.94 26655.75 33880.05 26194.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 32194.89 16990.75 235
v1086.54 9887.10 9284.84 14088.16 21063.28 25286.64 13092.20 11175.42 15492.81 5394.50 6874.05 19894.06 10183.88 7396.28 10897.17 18
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
v886.22 10386.83 9984.36 15687.82 21762.35 26886.42 13491.33 13876.78 13592.73 5594.48 7073.41 20793.72 11283.10 7995.41 14697.01 21
VPA-MVSNet83.47 16884.73 13679.69 25690.29 16057.52 32481.30 24688.69 20276.29 13787.58 15894.44 7180.60 12987.20 27766.60 26696.82 9094.34 93
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 162
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 162
lessismore_v085.95 12191.10 14470.99 17470.91 37491.79 6994.42 7461.76 28392.93 14679.52 12493.03 22193.93 109
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 108
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12684.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 186
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 99
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 146
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 187
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 199
VDD-MVS84.23 14684.58 14283.20 19191.17 14265.16 23483.25 20184.97 26879.79 9587.18 16294.27 7974.77 19090.89 20369.24 24096.54 9893.55 135
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6395.87 13295.24 60
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10183.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 150
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 115
test250674.12 29473.39 29476.28 30791.85 11744.20 40184.06 17748.20 42272.30 20281.90 27394.20 8527.22 42289.77 23964.81 28496.02 12294.87 70
test111178.53 24678.85 24077.56 28992.22 10347.49 38782.61 21869.24 38272.43 19685.28 20694.20 8551.91 33990.07 23165.36 27996.45 10395.11 65
ECVR-MVScopyleft78.44 24778.63 24477.88 28591.85 11748.95 38183.68 19069.91 37872.30 20284.26 23494.20 8551.89 34089.82 23663.58 29496.02 12294.87 70
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 106
tfpnnormal81.79 20182.95 17478.31 27588.93 18955.40 34080.83 25482.85 28876.81 13485.90 19694.14 8974.58 19386.51 29066.82 26495.68 14293.01 154
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6897.81 5591.70 212
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11478.87 11084.27 23394.05 9278.35 14693.65 11380.54 11291.58 25492.08 197
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 96
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 193
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 172
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 103
FIs85.35 11886.27 10682.60 20791.86 11657.31 32585.10 15993.05 8375.83 14691.02 8393.97 9673.57 20392.91 14873.97 19298.02 4297.58 12
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 91
Skip Steuart: Steuart Systems R&D Blog.
ambc82.98 19790.55 15664.86 23588.20 10089.15 19789.40 11893.96 9971.67 23291.38 18878.83 13096.55 9792.71 165
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 159
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10695.50 14594.53 83
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12184.26 4790.87 8993.92 10382.18 10689.29 25073.75 19694.81 17393.70 123
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8898.04 3993.64 127
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24284.38 17291.29 13984.88 4492.06 6593.84 10586.45 5893.73 11173.22 20498.66 1197.69 9
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5697.51 7394.30 95
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 109
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23684.54 4683.58 24693.78 10873.36 21096.48 287.98 1396.21 11294.41 90
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
ttmdpeth71.72 31570.67 32074.86 31873.08 40455.88 33577.41 30569.27 38155.86 35478.66 31793.77 11038.01 39975.39 37160.12 32089.87 28693.31 140
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8498.76 494.87 70
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052180.18 22981.25 20676.95 29683.15 31860.84 28982.46 22585.99 24868.76 23986.78 17293.73 11259.13 30177.44 36373.71 19797.55 6992.56 171
RRT-MVS82.97 17683.44 16281.57 22785.06 27958.04 31987.20 11490.37 16577.88 12388.59 13193.70 11363.17 27693.05 14276.49 16288.47 30393.62 128
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15687.09 23865.22 23284.16 17494.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11394.87 17295.16 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6597.55 6994.10 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6298.45 1992.41 179
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVS76.06 27480.01 23064.19 38489.96 17020.58 42672.18 35968.19 38583.21 5986.46 18693.49 11770.19 23978.97 35765.96 27090.46 28093.02 153
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7495.30 15393.60 130
KD-MVS_self_test81.93 19883.14 17178.30 27684.75 28552.75 35980.37 25889.42 19570.24 22690.26 9593.39 11974.55 19486.77 28668.61 25296.64 9495.38 54
MVStest170.05 33269.26 33572.41 33958.62 42655.59 33976.61 31765.58 39553.44 36789.28 12093.32 12022.91 42671.44 38274.08 19089.52 29090.21 254
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17493.26 12193.64 290.93 20084.60 6790.75 27393.97 107
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9497.18 8190.45 246
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator80.37 784.80 13084.71 13985.06 13886.36 25374.71 12788.77 9490.00 18175.65 14984.96 21393.17 12374.06 19791.19 19178.28 13791.09 26089.29 269
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26678.30 8986.93 12092.20 11165.94 26789.16 12193.16 12483.10 8989.89 23587.81 1594.43 18593.35 137
balanced_conf0384.80 13085.40 12683.00 19688.95 18861.44 27790.42 5892.37 10771.48 21088.72 12993.13 12570.16 24095.15 6379.26 12794.11 19492.41 179
ab-mvs79.67 23580.56 21676.99 29588.48 20256.93 32884.70 16486.06 24568.95 23780.78 29393.08 12675.30 18284.62 31756.78 33690.90 26789.43 265
SDMVSNet81.90 20083.17 17078.10 28088.81 19262.45 26576.08 32686.05 24673.67 17183.41 24993.04 12782.35 10080.65 34670.06 23495.03 16291.21 222
sd_testset79.95 23481.39 20475.64 31388.81 19258.07 31876.16 32582.81 28973.67 17183.41 24993.04 12780.96 12477.65 36258.62 32795.03 16291.21 222
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22296.14 11694.16 100
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22296.14 11694.16 100
ZD-MVS92.22 10380.48 7191.85 12271.22 21490.38 9292.98 13186.06 6496.11 781.99 9796.75 92
FMVSNet281.31 20681.61 19780.41 24686.38 25058.75 31483.93 18286.58 23872.43 19687.65 15692.98 13163.78 27290.22 22266.86 26193.92 19992.27 189
JIA-IIPM69.41 33966.64 35777.70 28873.19 40171.24 17275.67 32965.56 39670.42 22165.18 40192.97 13333.64 40883.06 33053.52 36069.61 41378.79 391
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17992.95 13474.84 18795.22 5980.78 10895.83 13494.46 84
plane_prior492.95 134
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 11083.69 7597.55 69
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14796.62 9590.70 238
VPNet80.25 22681.68 19375.94 31092.46 9547.98 38576.70 31381.67 29873.45 17684.87 21692.82 13874.66 19286.51 29061.66 31196.85 8793.33 138
mvs_anonymous78.13 24978.76 24276.23 30979.24 35950.31 37878.69 28484.82 27161.60 31083.09 25692.82 13873.89 20087.01 27868.33 25686.41 33491.37 219
UGNet82.78 17881.64 19586.21 11686.20 25976.24 12086.86 12285.68 25277.07 13373.76 35992.82 13869.64 24191.82 17769.04 24693.69 20790.56 243
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchT70.52 32672.76 30363.79 38679.38 35733.53 42077.63 29865.37 39773.61 17371.77 36892.79 14144.38 38375.65 37064.53 28985.37 34482.18 366
FA-MVS(test-final)83.13 17483.02 17383.43 18486.16 26266.08 22588.00 10388.36 20775.55 15185.02 21192.75 14265.12 26492.50 15674.94 18291.30 25891.72 210
LFMVS80.15 23080.56 21678.89 26489.19 18355.93 33485.22 15673.78 35182.96 6384.28 23292.72 14357.38 31390.07 23163.80 29395.75 13990.68 239
casdiffmvspermissive85.21 12085.85 11683.31 18886.17 26062.77 25983.03 20793.93 4674.69 16188.21 14292.68 14482.29 10491.89 17477.87 14693.75 20695.27 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPMNet78.88 24078.28 24980.68 24379.58 35362.64 26182.58 22094.16 3274.80 15975.72 34392.59 14548.69 35295.56 4273.48 20082.91 37183.85 342
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21891.21 4388.64 20386.30 3389.60 11492.59 14569.22 24494.91 7173.89 19397.89 5296.72 24
QAPM82.59 18182.59 18282.58 20886.44 24866.69 21989.94 6790.36 16667.97 25084.94 21592.58 14772.71 21792.18 16570.63 22887.73 31788.85 278
MG-MVS80.32 22480.94 21178.47 27388.18 20852.62 36282.29 23085.01 26672.01 20679.24 31392.54 14869.36 24393.36 13270.65 22789.19 29589.45 263
MVS_Test82.47 18483.22 16780.22 24982.62 32257.75 32382.54 22391.96 11971.16 21582.89 25892.52 14977.41 15790.50 21680.04 11587.84 31692.40 181
MVS_030485.37 11784.58 14287.75 8885.28 27573.36 13686.54 13385.71 25177.56 12981.78 28092.47 15070.29 23896.02 1185.59 5595.96 12593.87 113
dcpmvs_284.23 14685.14 13081.50 22888.61 19961.98 27482.90 21393.11 7968.66 24192.77 5492.39 15178.50 14487.63 27276.99 15892.30 23394.90 68
CR-MVSNet74.00 29673.04 29976.85 30079.58 35362.64 26182.58 22076.90 32850.50 38975.72 34392.38 15248.07 35584.07 32568.72 25182.91 37183.85 342
Patchmtry76.56 26977.46 25473.83 32479.37 35846.60 39182.41 22776.90 32873.81 16985.56 20292.38 15248.07 35583.98 32663.36 29795.31 15290.92 230
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10979.74 9687.50 15992.38 15281.42 11993.28 13383.07 8097.24 7991.67 213
fmvsm_s_conf0.1_n_283.82 15783.49 16184.84 14085.99 26570.19 18180.93 25187.58 21867.26 25987.94 15092.37 15571.40 23388.01 26686.03 4991.87 24696.31 31
IterMVS-LS84.73 13284.98 13383.96 16787.35 22963.66 24683.25 20189.88 18476.06 13989.62 11192.37 15573.40 20992.52 15578.16 14094.77 17695.69 46
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27678.25 9085.82 14591.82 12465.33 28188.55 13292.35 15782.62 9689.80 23786.87 3594.32 18893.18 147
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15886.11 6390.22 22286.24 4697.24 7991.36 220
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14078.20 11886.69 17792.28 15980.36 13195.06 6786.17 4796.49 10090.22 250
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 16072.03 22896.36 488.21 1190.93 26692.98 156
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous20240521180.51 21881.19 20978.49 27288.48 20257.26 32676.63 31582.49 29181.21 8084.30 23192.24 16167.99 25086.24 29462.22 30395.13 15791.98 203
TinyColmap81.25 20782.34 18677.99 28385.33 27460.68 29182.32 22988.33 20871.26 21386.97 17092.22 16277.10 16386.98 28162.37 30295.17 15686.31 310
baseline85.20 12185.93 11383.02 19586.30 25562.37 26784.55 16793.96 4474.48 16387.12 16392.03 16382.30 10391.94 17178.39 13394.21 19094.74 77
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21583.16 20592.21 11081.73 7490.92 8491.97 16477.20 16093.99 10274.16 18698.35 2297.61 10
NR-MVSNet86.00 10786.22 10785.34 13493.24 7664.56 23882.21 23490.46 16180.99 8288.42 13791.97 16477.56 15593.85 10772.46 21498.65 1297.61 10
fmvsm_s_conf0.5_n_283.62 16383.29 16684.62 14885.43 27370.18 18280.61 25587.24 22367.14 26087.79 15391.87 16671.79 23087.98 26786.00 5391.77 24995.71 45
OpenMVScopyleft76.72 1381.98 19782.00 18981.93 21784.42 29168.22 20388.50 9989.48 19366.92 26281.80 27891.86 16772.59 21990.16 22471.19 22191.25 25987.40 299
FMVSNet572.10 31271.69 31273.32 32781.57 33153.02 35876.77 31278.37 31763.31 29076.37 33391.85 16836.68 40278.98 35647.87 38992.45 23187.95 291
旧先验191.97 11171.77 16381.78 29791.84 16973.92 19993.65 20883.61 345
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18991.63 3987.98 21581.51 7787.05 16991.83 17066.18 25995.29 5670.75 22596.89 8695.64 48
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21582.55 22291.56 12983.08 6290.92 8491.82 17178.25 14793.99 10274.16 18698.35 2297.49 13
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28478.21 9185.40 15491.39 13665.32 28287.72 15591.81 17282.33 10189.78 23886.68 3794.20 19192.99 155
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 20183.80 18792.87 9280.37 8789.61 11391.81 17277.72 15394.18 9575.00 18198.53 1696.99 22
MIMVSNet71.09 32271.59 31369.57 35687.23 23150.07 37978.91 28071.83 36760.20 32871.26 37091.76 17455.08 32976.09 36741.06 40587.02 32782.54 362
testdata79.54 25992.87 8472.34 15680.14 30959.91 32985.47 20491.75 17567.96 25185.24 31168.57 25492.18 24081.06 382
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18492.01 11665.91 26986.19 18891.75 17583.77 8294.98 6977.43 15296.71 9393.73 122
fmvsm_s_conf0.1_n_a82.58 18281.93 19084.50 15187.68 22173.35 13786.14 13977.70 32061.64 30985.02 21191.62 17777.75 15186.24 29482.79 8687.07 32493.91 111
test_prior283.37 19775.43 15384.58 22091.57 17881.92 11379.54 12396.97 85
WR-MVS83.56 16584.40 14981.06 23693.43 7054.88 34578.67 28585.02 26581.24 7990.74 9091.56 17972.85 21591.08 19568.00 25798.04 3997.23 16
test20.0373.75 29874.59 28371.22 34581.11 33751.12 37470.15 37572.10 36570.42 22180.28 30291.50 18064.21 26874.72 37446.96 39394.58 18187.82 295
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15591.23 14177.31 13187.07 16891.47 18182.94 9194.71 7584.67 6696.27 11092.62 169
v2v48284.09 14984.24 15283.62 17787.13 23461.40 27882.71 21789.71 18772.19 20489.55 11591.41 18270.70 23793.20 13581.02 10493.76 20396.25 32
FE-MVS79.98 23378.86 23983.36 18686.47 24766.45 22289.73 7084.74 27372.80 19284.22 23591.38 18344.95 38093.60 11963.93 29191.50 25590.04 257
fmvsm_s_conf0.1_n82.17 19081.59 19883.94 16986.87 24471.57 16985.19 15777.42 32362.27 30384.47 22491.33 18476.43 17485.91 30383.14 7787.14 32294.33 94
PC_three_145258.96 33390.06 9791.33 18480.66 12893.03 14375.78 17195.94 12892.48 175
USDC76.63 26776.73 26476.34 30683.46 30757.20 32780.02 26288.04 21452.14 37783.65 24491.25 18663.24 27586.65 28854.66 35394.11 19485.17 322
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18781.12 12294.68 7674.48 18395.35 14892.29 187
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18784.24 7893.37 13177.97 14597.03 8495.52 51
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17181.56 7690.02 9991.20 18982.40 9990.81 20773.58 19994.66 17994.56 80
MVS-HIRNet61.16 37762.92 37455.87 39879.09 36035.34 41971.83 36157.98 41646.56 39659.05 41491.14 19049.95 35076.43 36638.74 41071.92 40855.84 417
test_fmvsm_n_192083.60 16482.89 17585.74 12785.22 27777.74 9984.12 17690.48 16059.87 33086.45 18791.12 19175.65 17885.89 30582.28 9390.87 26993.58 131
tt080588.09 7789.79 5582.98 19793.26 7563.94 24591.10 4589.64 18985.07 4190.91 8691.09 19289.16 2491.87 17582.03 9595.87 13293.13 148
新几何182.95 19993.96 5978.56 8880.24 30855.45 35683.93 23991.08 19371.19 23488.33 26365.84 27493.07 22081.95 369
EG-PatchMatch MVS84.08 15084.11 15383.98 16692.22 10372.61 15082.20 23687.02 23272.63 19588.86 12491.02 19478.52 14391.11 19473.41 20191.09 26088.21 284
v114484.54 13784.72 13884.00 16587.67 22262.55 26382.97 21090.93 15070.32 22489.80 10590.99 19573.50 20493.48 12681.69 10194.65 18095.97 39
TEST992.34 9879.70 7883.94 18090.32 16865.41 28084.49 22290.97 19682.03 10993.63 115
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 18090.32 16865.79 27184.49 22290.97 19681.93 11193.63 11581.21 10296.54 9890.88 232
test_892.09 10778.87 8583.82 18590.31 17065.79 27184.36 22690.96 19881.93 11193.44 128
XXY-MVS74.44 29376.19 26869.21 35884.61 28752.43 36371.70 36277.18 32660.73 32280.60 29490.96 19875.44 17969.35 38756.13 34188.33 30685.86 315
mvsmamba80.30 22578.87 23884.58 15088.12 21167.55 21092.35 2984.88 26963.15 29285.33 20590.91 20050.71 34595.20 6266.36 26787.98 31390.99 227
v119284.57 13584.69 14084.21 16287.75 21962.88 25683.02 20891.43 13369.08 23589.98 10290.89 20172.70 21893.62 11882.41 9194.97 16696.13 34
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14578.77 11284.85 21790.89 20180.85 12595.29 5681.14 10395.32 15092.34 184
fmvsm_s_conf0.5_n_a82.21 18881.51 20284.32 15986.56 24673.35 13785.46 15177.30 32461.81 30584.51 22190.88 20377.36 15886.21 29682.72 8786.97 32993.38 136
test_fmvsmvis_n_192085.22 11985.36 12884.81 14285.80 26876.13 12285.15 15892.32 10861.40 31191.33 7690.85 20483.76 8386.16 29884.31 6993.28 21592.15 195
test22293.31 7376.54 11379.38 27277.79 31952.59 37282.36 26690.84 20566.83 25691.69 25081.25 377
V4283.47 16883.37 16583.75 17383.16 31763.33 25181.31 24490.23 17569.51 23190.91 8690.81 20674.16 19692.29 16480.06 11490.22 28195.62 49
114514_t83.10 17582.54 18384.77 14492.90 8369.10 19686.65 12990.62 15854.66 36281.46 28490.81 20676.98 16594.38 8772.62 21296.18 11490.82 234
VNet79.31 23680.27 22176.44 30487.92 21553.95 35175.58 33284.35 27674.39 16482.23 26890.72 20872.84 21684.39 32160.38 31993.98 19890.97 228
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11770.56 22084.96 21390.69 20980.01 13595.14 6478.37 13495.78 13891.82 206
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n81.91 19981.30 20583.75 17386.02 26471.56 17084.73 16377.11 32762.44 30084.00 23790.68 21076.42 17585.89 30583.14 7787.11 32393.81 119
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19692.38 10670.25 22589.35 11990.68 21082.85 9294.57 8179.55 12295.95 12792.00 201
原ACMM184.60 14992.81 8974.01 13291.50 13162.59 29582.73 26290.67 21276.53 17394.25 9169.24 24095.69 14185.55 318
v14882.31 18582.48 18481.81 22385.59 27059.66 30081.47 24386.02 24772.85 19088.05 14790.65 21370.73 23690.91 20275.15 17991.79 24794.87 70
v124084.30 14284.51 14683.65 17687.65 22361.26 28182.85 21491.54 13067.94 25190.68 9190.65 21371.71 23193.64 11482.84 8594.78 17496.07 36
h-mvs3384.25 14482.76 17788.72 7391.82 12182.60 6084.00 17984.98 26771.27 21186.70 17590.55 21563.04 27993.92 10578.26 13894.20 19189.63 261
v14419284.24 14584.41 14883.71 17587.59 22561.57 27682.95 21191.03 14667.82 25489.80 10590.49 21673.28 21193.51 12581.88 10094.89 16996.04 38
FMVSNet378.80 24278.55 24579.57 25882.89 32156.89 33081.76 23885.77 25069.04 23686.00 19290.44 21751.75 34190.09 23065.95 27193.34 21291.72 210
fmvsm_l_conf0.5_n82.06 19481.54 20183.60 17883.94 29973.90 13383.35 19886.10 24358.97 33283.80 24190.36 21874.23 19586.94 28282.90 8390.22 28189.94 258
v192192084.23 14684.37 15083.79 17187.64 22461.71 27582.91 21291.20 14267.94 25190.06 9790.34 21972.04 22793.59 12082.32 9294.91 16796.07 36
DSMNet-mixed60.98 37961.61 37959.09 39772.88 40545.05 39974.70 34046.61 42326.20 42165.34 40090.32 22055.46 32563.12 41041.72 40481.30 38369.09 406
pmmvs-eth3d78.42 24877.04 26082.57 21087.44 22874.41 13080.86 25379.67 31155.68 35584.69 21990.31 22160.91 28785.42 31062.20 30491.59 25387.88 293
GeoE85.45 11685.81 11784.37 15490.08 16467.07 21485.86 14491.39 13672.33 20187.59 15790.25 22284.85 7192.37 16078.00 14391.94 24593.66 124
tttt051781.07 20979.58 23285.52 13188.99 18766.45 22287.03 11975.51 33973.76 17088.32 14190.20 22337.96 40094.16 9979.36 12695.13 15795.93 42
BP-MVS182.81 17781.67 19486.23 11387.88 21668.53 20086.06 14084.36 27575.65 14985.14 20890.19 22445.84 36894.42 8685.18 5994.72 17895.75 44
IterMVS-SCA-FT80.64 21679.41 23384.34 15883.93 30069.66 18676.28 32281.09 30372.43 19686.47 18590.19 22460.46 28993.15 13877.45 15186.39 33590.22 250
PM-MVS80.20 22879.00 23783.78 17288.17 20986.66 1981.31 24466.81 39369.64 23088.33 14090.19 22464.58 26583.63 32971.99 21790.03 28381.06 382
NP-MVS91.95 11274.55 12990.17 227
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 16092.68 9873.30 18280.55 29690.17 22772.10 22494.61 7977.30 15494.47 18393.56 133
fmvsm_l_conf0.5_n_a81.46 20480.87 21383.25 18983.73 30473.21 14283.00 20985.59 25458.22 33882.96 25790.09 22972.30 22286.65 28881.97 9889.95 28589.88 259
testgi72.36 30974.61 28165.59 37880.56 34642.82 40668.29 38173.35 35566.87 26381.84 27589.93 23072.08 22666.92 40046.05 39692.54 23087.01 303
PCF-MVS74.62 1582.15 19280.92 21285.84 12589.43 17772.30 15780.53 25691.82 12457.36 34687.81 15289.92 23177.67 15493.63 11558.69 32695.08 16091.58 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
patch_mono-278.89 23979.39 23477.41 29284.78 28368.11 20575.60 33083.11 28560.96 31979.36 31089.89 23275.18 18372.97 37573.32 20392.30 23391.15 224
Vis-MVSNet (Re-imp)77.82 25277.79 25377.92 28488.82 19151.29 37283.28 19971.97 36674.04 16682.23 26889.78 23357.38 31389.41 24857.22 33595.41 14693.05 152
MCST-MVS84.36 13983.93 15785.63 12991.59 12471.58 16883.52 19392.13 11361.82 30483.96 23889.75 23479.93 13793.46 12778.33 13694.34 18791.87 205
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20989.67 23584.47 7595.46 5082.56 8996.26 11193.77 121
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19789.56 23680.76 12692.13 16673.21 20995.51 14493.25 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GDP-MVS82.17 19080.85 21486.15 12088.65 19768.95 19785.65 14993.02 8768.42 24283.73 24289.54 23745.07 37994.31 8879.66 12193.87 20195.19 63
MSLP-MVS++85.00 12886.03 11181.90 21891.84 11971.56 17086.75 12893.02 8775.95 14487.12 16389.39 23877.98 14889.40 24977.46 15094.78 17484.75 327
MVS_111021_HR84.63 13384.34 15185.49 13390.18 16375.86 12379.23 27787.13 22773.35 17985.56 20289.34 23983.60 8590.50 21676.64 16094.05 19790.09 256
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22889.33 24083.87 7994.53 8482.45 9094.89 16994.90 68
DIV-MVS_self_test80.43 21980.23 22281.02 23779.99 34959.25 30477.07 30887.02 23267.38 25586.19 18889.22 24163.09 27790.16 22476.32 16495.80 13693.66 124
cl____80.42 22080.23 22281.02 23779.99 34959.25 30477.07 30887.02 23267.37 25686.18 19089.21 24263.08 27890.16 22476.31 16595.80 13693.65 126
IterMVS76.91 26276.34 26778.64 26980.91 33964.03 24376.30 32179.03 31464.88 28583.11 25489.16 24359.90 29584.46 31968.61 25285.15 34987.42 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP84.97 12983.42 16389.63 5792.39 9683.40 5288.83 9291.92 12073.19 18680.18 30489.15 24477.04 16493.28 13365.82 27592.28 23692.21 192
MVS_111021_LR84.28 14383.76 15985.83 12689.23 18283.07 5580.99 25083.56 28272.71 19486.07 19189.07 24581.75 11686.19 29777.11 15693.36 21188.24 283
MDA-MVSNet-bldmvs77.47 25676.90 26279.16 26379.03 36164.59 23666.58 39175.67 33773.15 18788.86 12488.99 24666.94 25481.23 34264.71 28588.22 31191.64 214
EPNet80.37 22278.41 24886.23 11376.75 37673.28 13987.18 11677.45 32276.24 13868.14 38788.93 24765.41 26393.85 10769.47 23896.12 11891.55 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120671.38 32071.88 31169.88 35286.31 25454.37 34770.39 37374.62 34252.57 37376.73 33188.76 24859.94 29472.06 37744.35 40093.23 21783.23 353
EU-MVSNet75.12 28374.43 28577.18 29483.11 31959.48 30285.71 14882.43 29239.76 41585.64 19988.76 24844.71 38287.88 26973.86 19485.88 34184.16 338
MonoMVSNet76.66 26677.26 25874.86 31879.86 35154.34 34886.26 13786.08 24471.08 21685.59 20088.68 25053.95 33185.93 30163.86 29280.02 38684.32 333
MVSTER77.09 26075.70 27381.25 23175.27 39161.08 28377.49 30385.07 26260.78 32186.55 17988.68 25043.14 38990.25 21973.69 19890.67 27592.42 178
CNLPA83.55 16683.10 17284.90 13989.34 17983.87 5084.54 16988.77 20079.09 10683.54 24888.66 25274.87 18681.73 33966.84 26392.29 23589.11 271
BH-RMVSNet80.53 21780.22 22481.49 22987.19 23366.21 22477.79 29686.23 24174.21 16583.69 24388.50 25373.25 21290.75 20863.18 29987.90 31487.52 297
CL-MVSNet_self_test76.81 26477.38 25675.12 31686.90 24251.34 37073.20 35480.63 30768.30 24581.80 27888.40 25466.92 25580.90 34355.35 34894.90 16893.12 150
DP-MVS Recon84.05 15183.22 16786.52 10791.73 12275.27 12583.23 20392.40 10472.04 20582.04 27188.33 25577.91 15093.95 10466.17 26995.12 15990.34 249
miper_lstm_enhance76.45 27176.10 26977.51 29076.72 37760.97 28864.69 39585.04 26463.98 28983.20 25388.22 25656.67 31778.79 35973.22 20493.12 21992.78 161
UnsupCasMVSNet_eth71.63 31772.30 30969.62 35576.47 38052.70 36170.03 37680.97 30459.18 33179.36 31088.21 25760.50 28869.12 38858.33 33077.62 39887.04 302
tpm67.95 34868.08 34967.55 36978.74 36443.53 40475.60 33067.10 39254.92 35972.23 36688.10 25842.87 39075.97 36852.21 36780.95 38583.15 354
CSCG86.26 10186.47 10385.60 13090.87 14974.26 13187.98 10491.85 12280.35 8889.54 11788.01 25979.09 14092.13 16675.51 17495.06 16190.41 247
alignmvs83.94 15583.98 15683.80 17087.80 21867.88 20884.54 16991.42 13573.27 18588.41 13887.96 26072.33 22190.83 20676.02 17094.11 19492.69 166
MVP-Stereo75.81 27773.51 29382.71 20589.35 17873.62 13480.06 26085.20 25960.30 32573.96 35787.94 26157.89 31189.45 24552.02 36874.87 40485.06 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new-patchmatchnet70.10 33073.37 29560.29 39481.23 33616.95 42959.54 40574.62 34262.93 29380.97 28887.93 26262.83 28171.90 37855.24 34995.01 16592.00 201
PAPM_NR83.23 17183.19 16983.33 18790.90 14865.98 22688.19 10190.78 15378.13 12080.87 29287.92 26373.49 20692.42 15770.07 23388.40 30491.60 215
test_fmvs375.72 27875.20 27877.27 29375.01 39469.47 18878.93 27984.88 26946.67 39587.08 16787.84 26450.44 34871.62 38077.42 15388.53 30290.72 236
MGCFI-Net85.04 12585.95 11282.31 21487.52 22663.59 24886.23 13893.96 4473.46 17588.07 14587.83 26586.46 5790.87 20576.17 16793.89 20092.47 177
LF4IMVS82.75 17981.93 19085.19 13582.08 32480.15 7485.53 15088.76 20168.01 24885.58 20187.75 26671.80 22986.85 28474.02 19193.87 20188.58 280
PHI-MVS86.38 10085.81 11788.08 8488.44 20477.34 10589.35 8593.05 8373.15 18784.76 21887.70 26778.87 14294.18 9580.67 11096.29 10792.73 162
FPMVS72.29 31172.00 31073.14 32988.63 19885.00 4074.65 34167.39 38771.94 20777.80 32587.66 26850.48 34775.83 36949.95 37679.51 38758.58 416
CMPMVSbinary59.41 2075.12 28373.57 29179.77 25375.84 38667.22 21181.21 24782.18 29350.78 38676.50 33287.66 26855.20 32782.99 33262.17 30690.64 27989.09 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sasdasda85.50 11386.14 10983.58 17987.97 21267.13 21287.55 10994.32 2173.44 17788.47 13587.54 27086.45 5891.06 19675.76 17293.76 20392.54 173
D2MVS76.84 26375.67 27480.34 24780.48 34762.16 27373.50 35184.80 27257.61 34482.24 26787.54 27051.31 34287.65 27170.40 23193.19 21891.23 221
canonicalmvs85.50 11386.14 10983.58 17987.97 21267.13 21287.55 10994.32 2173.44 17788.47 13587.54 27086.45 5891.06 19675.76 17293.76 20392.54 173
CANet83.79 15982.85 17686.63 10486.17 26072.21 16083.76 18891.43 13377.24 13274.39 35587.45 27375.36 18195.42 5277.03 15792.83 22692.25 191
OpenMVS_ROBcopyleft70.19 1777.77 25477.46 25478.71 26884.39 29261.15 28281.18 24882.52 29062.45 29983.34 25187.37 27466.20 25888.66 26064.69 28685.02 35186.32 309
thisisatest053079.07 23777.33 25784.26 16187.13 23464.58 23783.66 19175.95 33468.86 23885.22 20787.36 27538.10 39793.57 12375.47 17594.28 18994.62 78
diffmvspermissive80.40 22180.48 21980.17 25079.02 36260.04 29577.54 30090.28 17466.65 26582.40 26587.33 27673.50 20487.35 27577.98 14489.62 28993.13 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28287.25 27782.43 9894.53 8477.65 14796.46 10294.14 102
eth_miper_zixun_eth80.84 21280.22 22482.71 20581.41 33360.98 28777.81 29590.14 17867.31 25886.95 17187.24 27864.26 26792.31 16275.23 17891.61 25294.85 74
PVSNet_Blended_VisFu81.55 20380.49 21884.70 14791.58 12773.24 14184.21 17391.67 12862.86 29480.94 29087.16 27967.27 25392.87 14969.82 23688.94 29887.99 290
AdaColmapbinary83.66 16183.69 16083.57 18190.05 16772.26 15886.29 13690.00 18178.19 11981.65 28187.16 27983.40 8794.24 9261.69 31094.76 17784.21 337
c3_l81.64 20281.59 19881.79 22480.86 34159.15 30778.61 28690.18 17768.36 24387.20 16187.11 28169.39 24291.62 17978.16 14094.43 18594.60 79
PVSNet_BlendedMVS78.80 24277.84 25281.65 22684.43 28963.41 24979.49 27190.44 16261.70 30875.43 34687.07 28269.11 24591.44 18460.68 31792.24 23790.11 255
mvsany_test365.48 36462.97 37373.03 33169.99 41376.17 12164.83 39343.71 42443.68 40680.25 30387.05 28352.83 33563.09 41151.92 37272.44 40679.84 389
TAMVS78.08 25076.36 26683.23 19090.62 15472.87 14379.08 27880.01 31061.72 30781.35 28686.92 28463.96 27188.78 25850.61 37493.01 22288.04 289
BH-untuned80.96 21180.99 21080.84 23988.55 20168.23 20280.33 25988.46 20472.79 19386.55 17986.76 28574.72 19191.77 17861.79 30988.99 29682.52 363
reproduce_monomvs74.09 29573.23 29676.65 30376.52 37854.54 34677.50 30281.40 30165.85 27082.86 26086.67 28627.38 42084.53 31870.24 23290.66 27790.89 231
test_yl78.71 24478.51 24679.32 26184.32 29358.84 31178.38 28785.33 25775.99 14282.49 26386.57 28758.01 30790.02 23362.74 30092.73 22889.10 272
DCV-MVSNet78.71 24478.51 24679.32 26184.32 29358.84 31178.38 28785.33 25775.99 14282.49 26386.57 28758.01 30790.02 23362.74 30092.73 22889.10 272
pmmvs474.92 28672.98 30080.73 24184.95 28071.71 16776.23 32377.59 32152.83 37177.73 32786.38 28956.35 32084.97 31457.72 33487.05 32585.51 319
thres100view90075.45 27975.05 27976.66 30287.27 23051.88 36781.07 24973.26 35675.68 14883.25 25286.37 29045.54 37088.80 25551.98 36990.99 26289.31 267
Patchmatch-RL test74.48 29173.68 29076.89 29984.83 28266.54 22072.29 35869.16 38357.70 34286.76 17386.33 29145.79 36982.59 33369.63 23790.65 27881.54 373
PLCcopyleft73.85 1682.09 19380.31 22087.45 9290.86 15080.29 7385.88 14290.65 15668.17 24776.32 33586.33 29173.12 21392.61 15461.40 31390.02 28489.44 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres600view775.97 27575.35 27777.85 28787.01 24051.84 36880.45 25773.26 35675.20 15683.10 25586.31 29345.54 37089.05 25155.03 35192.24 23792.66 167
baseline173.26 30173.54 29272.43 33884.92 28147.79 38679.89 26474.00 34765.93 26878.81 31686.28 29456.36 31981.63 34056.63 33779.04 39387.87 294
HY-MVS64.64 1873.03 30472.47 30874.71 32083.36 31154.19 34982.14 23781.96 29556.76 35269.57 38286.21 29560.03 29384.83 31649.58 38082.65 37485.11 323
TSAR-MVS + GP.83.95 15482.69 17987.72 8989.27 18181.45 6783.72 18981.58 30074.73 16085.66 19886.06 29672.56 22092.69 15275.44 17695.21 15489.01 277
hse-mvs283.47 16881.81 19288.47 7791.03 14582.27 6182.61 21883.69 28071.27 21186.70 17586.05 29763.04 27992.41 15878.26 13893.62 21090.71 237
Test_1112_low_res73.90 29773.08 29876.35 30590.35 15955.95 33373.40 35386.17 24250.70 38773.14 36185.94 29858.31 30685.90 30456.51 33883.22 36887.20 301
DPM-MVS80.10 23179.18 23682.88 20390.71 15369.74 18478.87 28290.84 15160.29 32675.64 34585.92 29967.28 25293.11 13971.24 22091.79 24785.77 316
AUN-MVS81.18 20878.78 24188.39 7990.93 14782.14 6282.51 22483.67 28164.69 28680.29 30085.91 30051.07 34392.38 15976.29 16693.63 20990.65 241
Effi-MVS+-dtu85.82 11183.38 16493.14 487.13 23491.15 387.70 10888.42 20574.57 16283.56 24785.65 30178.49 14594.21 9372.04 21692.88 22594.05 105
MDTV_nov1_ep1368.29 34778.03 36543.87 40374.12 34472.22 36352.17 37567.02 39385.54 30245.36 37480.85 34455.73 34284.42 360
WBMVS68.76 34568.43 34569.75 35483.29 31240.30 41167.36 38772.21 36457.09 34977.05 33085.53 30333.68 40780.51 34748.79 38490.90 26788.45 282
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29872.76 14483.91 18385.18 26080.44 8688.75 12785.49 30480.08 13491.92 17282.02 9690.85 27195.97 39
CHOSEN 1792x268872.45 30870.56 32278.13 27990.02 16963.08 25468.72 38083.16 28442.99 40975.92 34185.46 30557.22 31585.18 31349.87 37881.67 37886.14 311
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 30272.52 15383.82 18585.15 26180.27 9088.75 12785.45 30679.95 13691.90 17381.92 9990.80 27296.13 34
MDA-MVSNet_test_wron70.05 33270.44 32468.88 36173.84 39753.47 35458.93 40967.28 38858.43 33587.09 16685.40 30759.80 29767.25 39859.66 32383.54 36685.92 314
YYNet170.06 33170.44 32468.90 36073.76 39853.42 35658.99 40867.20 38958.42 33687.10 16585.39 30859.82 29667.32 39759.79 32283.50 36785.96 312
pmmvs570.73 32570.07 32872.72 33377.03 37452.73 36074.14 34375.65 33850.36 39072.17 36785.37 30955.42 32680.67 34552.86 36587.59 31984.77 326
UnsupCasMVSNet_bld69.21 34269.68 33367.82 36879.42 35651.15 37367.82 38575.79 33554.15 36477.47 32985.36 31059.26 30070.64 38348.46 38679.35 38981.66 371
miper_ehance_all_eth80.34 22380.04 22981.24 23379.82 35258.95 30977.66 29789.66 18865.75 27485.99 19585.11 31168.29 24991.42 18676.03 16992.03 24193.33 138
cl2278.97 23878.21 25081.24 23377.74 36659.01 30877.46 30487.13 22765.79 27184.32 22885.10 31258.96 30390.88 20475.36 17792.03 24193.84 114
EI-MVSNet82.61 18082.42 18583.20 19183.25 31463.66 24683.50 19485.07 26276.06 13986.55 17985.10 31273.41 20790.25 21978.15 14290.67 27595.68 47
CVMVSNet72.62 30771.41 31776.28 30783.25 31460.34 29383.50 19479.02 31537.77 41976.33 33485.10 31249.60 35187.41 27470.54 22977.54 39981.08 380
MVSFormer82.23 18781.57 20084.19 16485.54 27169.26 19191.98 3490.08 17971.54 20876.23 33685.07 31558.69 30494.27 8986.26 4388.77 29989.03 275
jason77.42 25775.75 27282.43 21387.10 23769.27 19077.99 29281.94 29651.47 38177.84 32385.07 31560.32 29189.00 25270.74 22689.27 29489.03 275
jason: jason.
PMMVS255.64 38659.27 38544.74 40264.30 42412.32 43040.60 41749.79 42153.19 36965.06 40484.81 31753.60 33349.76 42032.68 41989.41 29172.15 401
CostFormer69.98 33468.68 34473.87 32377.14 37250.72 37679.26 27474.51 34451.94 37970.97 37384.75 31845.16 37887.49 27355.16 35079.23 39083.40 349
PAPM71.77 31470.06 32976.92 29786.39 24953.97 35076.62 31686.62 23753.44 36763.97 40784.73 31957.79 31292.34 16139.65 40881.33 38284.45 331
PAPR78.84 24178.10 25181.07 23585.17 27860.22 29482.21 23490.57 15962.51 29675.32 34984.61 32074.99 18592.30 16359.48 32488.04 31290.68 239
tfpn200view974.86 28774.23 28676.74 30186.24 25752.12 36479.24 27573.87 34973.34 18081.82 27684.60 32146.02 36388.80 25551.98 36990.99 26289.31 267
thres40075.14 28174.23 28677.86 28686.24 25752.12 36479.24 27573.87 34973.34 18081.82 27684.60 32146.02 36388.80 25551.98 36990.99 26292.66 167
HyFIR lowres test75.12 28372.66 30482.50 21191.44 13565.19 23372.47 35787.31 22146.79 39480.29 30084.30 32352.70 33692.10 16951.88 37386.73 33090.22 250
test_fmvs273.57 29972.80 30175.90 31172.74 40768.84 19877.07 30884.32 27745.14 40182.89 25884.22 32448.37 35370.36 38473.40 20287.03 32688.52 281
Effi-MVS+83.90 15684.01 15583.57 18187.22 23265.61 23086.55 13292.40 10478.64 11481.34 28784.18 32583.65 8492.93 14674.22 18587.87 31592.17 194
API-MVS82.28 18682.61 18181.30 23086.29 25669.79 18388.71 9587.67 21778.42 11782.15 27084.15 32677.98 14891.59 18065.39 27892.75 22782.51 364
DELS-MVS81.44 20581.25 20682.03 21684.27 29562.87 25776.47 32092.49 10370.97 21781.64 28283.83 32775.03 18492.70 15174.29 18492.22 23990.51 245
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU77.81 25377.05 25980.09 25181.37 33459.90 29883.26 20088.29 20969.16 23467.83 39083.72 32860.93 28689.47 24369.22 24289.70 28890.88 232
tpm268.45 34766.83 35473.30 32878.93 36348.50 38279.76 26571.76 36847.50 39369.92 38083.60 32942.07 39188.40 26248.44 38779.51 38783.01 356
Fast-Effi-MVS+-dtu82.54 18381.41 20385.90 12385.60 26976.53 11583.07 20689.62 19173.02 18979.11 31483.51 33080.74 12790.24 22168.76 24989.29 29290.94 229
CDS-MVSNet77.32 25875.40 27583.06 19489.00 18672.48 15477.90 29482.17 29460.81 32078.94 31583.49 33159.30 29988.76 25954.64 35492.37 23287.93 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG80.06 23279.99 23180.25 24883.91 30168.04 20777.51 30189.19 19677.65 12681.94 27283.45 33276.37 17686.31 29363.31 29886.59 33286.41 308
SCA73.32 30072.57 30675.58 31481.62 33055.86 33678.89 28171.37 37161.73 30674.93 35283.42 33360.46 28987.01 27858.11 33282.63 37683.88 339
Patchmatch-test65.91 36167.38 35061.48 39275.51 38843.21 40568.84 37963.79 40162.48 29772.80 36483.42 33344.89 38159.52 41448.27 38886.45 33381.70 370
test_vis3_rt71.42 31970.67 32073.64 32669.66 41470.46 17766.97 39089.73 18542.68 41188.20 14383.04 33543.77 38460.07 41265.35 28086.66 33190.39 248
ADS-MVSNet265.87 36263.64 37072.55 33673.16 40256.92 32967.10 38874.81 34149.74 39166.04 39682.97 33646.71 35877.26 36442.29 40269.96 41183.46 347
ADS-MVSNet61.90 37362.19 37761.03 39373.16 40236.42 41867.10 38861.75 40649.74 39166.04 39682.97 33646.71 35863.21 40942.29 40269.96 41183.46 347
PatchmatchNetpermissive69.71 33768.83 34272.33 34077.66 36853.60 35379.29 27369.99 37757.66 34372.53 36582.93 33846.45 36080.08 35160.91 31672.09 40783.31 352
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test74.73 29074.00 28876.90 29880.71 34456.89 33071.53 36578.42 31658.24 33779.32 31282.92 33957.91 31084.26 32365.60 27791.36 25789.56 262
cdsmvs_eth3d_5k20.81 39127.75 3940.00 4100.00 4330.00 4350.00 42185.44 2550.00 4280.00 42982.82 34081.46 1180.00 4290.00 4280.00 4270.00 425
lupinMVS76.37 27274.46 28482.09 21585.54 27169.26 19176.79 31180.77 30650.68 38876.23 33682.82 34058.69 30488.94 25369.85 23588.77 29988.07 286
xiu_mvs_v1_base_debu80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
xiu_mvs_v1_base80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
xiu_mvs_v1_base_debi80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
N_pmnet70.20 32868.80 34374.38 32280.91 33984.81 4359.12 40776.45 33355.06 35875.31 35082.36 34555.74 32354.82 41747.02 39187.24 32183.52 346
TR-MVS76.77 26575.79 27179.72 25586.10 26365.79 22877.14 30683.02 28665.20 28381.40 28582.10 34666.30 25790.73 21055.57 34585.27 34582.65 358
test_f64.31 37065.85 35959.67 39566.54 41962.24 27257.76 41170.96 37340.13 41384.36 22682.09 34746.93 35751.67 41961.99 30781.89 37765.12 410
testing371.53 31870.79 31973.77 32588.89 19041.86 40876.60 31859.12 41272.83 19180.97 28882.08 34819.80 42887.33 27665.12 28191.68 25192.13 196
Fast-Effi-MVS+81.04 21080.57 21582.46 21287.50 22763.22 25378.37 28989.63 19068.01 24881.87 27482.08 34882.31 10292.65 15367.10 26088.30 31091.51 218
tpmvs70.16 32969.56 33471.96 34174.71 39548.13 38379.63 26675.45 34065.02 28470.26 37881.88 35045.34 37585.68 30858.34 32975.39 40382.08 368
GA-MVS75.83 27674.61 28179.48 26081.87 32659.25 30473.42 35282.88 28768.68 24079.75 30581.80 35150.62 34689.46 24466.85 26285.64 34289.72 260
patchmatchnet-post81.71 35245.93 36687.01 278
WTY-MVS67.91 34968.35 34666.58 37580.82 34248.12 38465.96 39272.60 35953.67 36671.20 37181.68 35358.97 30269.06 38948.57 38581.67 37882.55 361
CLD-MVS83.18 17282.64 18084.79 14389.05 18467.82 20977.93 29392.52 10268.33 24485.07 21081.54 35482.06 10892.96 14469.35 23997.91 5193.57 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MS-PatchMatch70.93 32470.22 32773.06 33081.85 32762.50 26473.82 34977.90 31852.44 37475.92 34181.27 35555.67 32481.75 33855.37 34777.70 39774.94 398
PatchMatch-RL74.48 29173.22 29778.27 27887.70 22085.26 3875.92 32870.09 37664.34 28776.09 33981.25 35665.87 26178.07 36153.86 35683.82 36471.48 402
EPNet_dtu72.87 30671.33 31877.49 29177.72 36760.55 29282.35 22875.79 33566.49 26658.39 41781.06 35753.68 33285.98 30053.55 35992.97 22485.95 313
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall77.83 25176.93 26180.51 24476.15 38358.01 32075.47 33488.82 19958.05 34083.59 24580.69 35864.41 26691.20 19073.16 21092.03 24192.33 185
KD-MVS_2432*160066.87 35465.81 36070.04 35067.50 41647.49 38762.56 39979.16 31261.21 31777.98 32180.61 35925.29 42482.48 33453.02 36284.92 35280.16 386
miper_refine_blended66.87 35465.81 36070.04 35067.50 41647.49 38762.56 39979.16 31261.21 31777.98 32180.61 35925.29 42482.48 33453.02 36284.92 35280.16 386
thres20072.34 31071.55 31674.70 32183.48 30651.60 36975.02 33773.71 35270.14 22778.56 31980.57 36146.20 36188.20 26546.99 39289.29 29284.32 333
ET-MVSNet_ETH3D75.28 28072.77 30282.81 20483.03 32068.11 20577.09 30776.51 33260.67 32377.60 32880.52 36238.04 39891.15 19370.78 22490.68 27489.17 270
our_test_371.85 31371.59 31372.62 33580.71 34453.78 35269.72 37771.71 37058.80 33478.03 32080.51 36356.61 31878.84 35862.20 30486.04 34085.23 321
tpmrst66.28 36066.69 35665.05 38272.82 40639.33 41278.20 29070.69 37553.16 37067.88 38980.36 36448.18 35474.75 37358.13 33170.79 40981.08 380
sss66.92 35367.26 35165.90 37777.23 37151.10 37564.79 39471.72 36952.12 37870.13 37980.18 36557.96 30965.36 40650.21 37581.01 38481.25 377
EPMVS62.47 37162.63 37562.01 38870.63 41238.74 41474.76 33952.86 41953.91 36567.71 39180.01 36639.40 39566.60 40155.54 34668.81 41580.68 384
BH-w/o76.57 26876.07 27078.10 28086.88 24365.92 22777.63 29886.33 23965.69 27580.89 29179.95 36768.97 24790.74 20953.01 36485.25 34677.62 393
1112_ss74.82 28873.74 28978.04 28289.57 17260.04 29576.49 31987.09 23154.31 36373.66 36079.80 36860.25 29286.76 28758.37 32884.15 36287.32 300
ab-mvs-re6.65 3938.87 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42979.80 3680.00 4330.00 4290.00 4280.00 4270.00 425
EIA-MVS82.19 18981.23 20885.10 13787.95 21469.17 19583.22 20493.33 6770.42 22178.58 31879.77 37077.29 15994.20 9471.51 21888.96 29791.93 204
UWE-MVS66.43 35865.56 36369.05 35984.15 29740.98 40973.06 35664.71 39954.84 36076.18 33879.62 37129.21 41580.50 34838.54 41289.75 28785.66 317
test_fmvs1_n70.94 32370.41 32672.53 33773.92 39666.93 21775.99 32784.21 27943.31 40879.40 30979.39 37243.47 38568.55 39269.05 24584.91 35482.10 367
WB-MVSnew68.72 34669.01 33967.85 36783.22 31643.98 40274.93 33865.98 39455.09 35773.83 35879.11 37365.63 26271.89 37938.21 41385.04 35087.69 296
test_vis1_n_192071.30 32171.58 31570.47 34877.58 36959.99 29774.25 34284.22 27851.06 38374.85 35379.10 37455.10 32868.83 39068.86 24879.20 39282.58 360
tpm cat166.76 35765.21 36571.42 34477.09 37350.62 37778.01 29173.68 35344.89 40268.64 38579.00 37545.51 37282.42 33649.91 37770.15 41081.23 379
test_cas_vis1_n_192069.20 34369.12 33669.43 35773.68 39962.82 25870.38 37477.21 32546.18 39880.46 29978.95 37652.03 33865.53 40565.77 27677.45 40079.95 388
xiu_mvs_v2_base77.19 25976.75 26378.52 27187.01 24061.30 28075.55 33387.12 23061.24 31674.45 35478.79 37777.20 16090.93 20064.62 28884.80 35883.32 351
ETV-MVS84.31 14183.91 15885.52 13188.58 20070.40 17884.50 17193.37 6478.76 11384.07 23678.72 37880.39 13095.13 6573.82 19592.98 22391.04 226
MAR-MVS80.24 22778.74 24384.73 14586.87 24478.18 9285.75 14687.81 21665.67 27677.84 32378.50 37973.79 20190.53 21561.59 31290.87 26985.49 320
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended76.49 27075.40 27579.76 25484.43 28963.41 24975.14 33690.44 16257.36 34675.43 34678.30 38069.11 24591.44 18460.68 31787.70 31884.42 332
test_fmvs169.57 33869.05 33871.14 34769.15 41565.77 22973.98 34683.32 28342.83 41077.77 32678.27 38143.39 38868.50 39368.39 25584.38 36179.15 390
testing9169.94 33568.99 34072.80 33283.81 30345.89 39471.57 36473.64 35468.24 24670.77 37677.82 38234.37 40584.44 32053.64 35887.00 32888.07 286
thisisatest051573.00 30570.52 32380.46 24581.45 33259.90 29873.16 35574.31 34657.86 34176.08 34077.78 38337.60 40192.12 16865.00 28291.45 25689.35 266
testing9969.27 34168.15 34872.63 33483.29 31245.45 39671.15 36671.08 37267.34 25770.43 37777.77 38432.24 41084.35 32253.72 35786.33 33688.10 285
MVS73.21 30372.59 30575.06 31780.97 33860.81 29081.64 24185.92 24946.03 39971.68 36977.54 38568.47 24889.77 23955.70 34485.39 34374.60 399
test0.0.03 164.66 36764.36 36665.57 37975.03 39346.89 39064.69 39561.58 40962.43 30171.18 37277.54 38543.41 38668.47 39440.75 40782.65 37481.35 374
baseline269.77 33666.89 35378.41 27479.51 35558.09 31776.23 32369.57 37957.50 34564.82 40577.45 38746.02 36388.44 26153.08 36177.83 39588.70 279
dp60.70 38060.29 38361.92 39072.04 40938.67 41570.83 37064.08 40051.28 38260.75 41077.28 38836.59 40371.58 38147.41 39062.34 41775.52 397
test_vis1_n70.29 32769.99 33171.20 34675.97 38566.50 22176.69 31480.81 30544.22 40475.43 34677.23 38950.00 34968.59 39166.71 26582.85 37378.52 392
PS-MVSNAJ77.04 26176.53 26578.56 27087.09 23861.40 27875.26 33587.13 22761.25 31574.38 35677.22 39076.94 16690.94 19964.63 28784.83 35783.35 350
mvsany_test158.48 38356.47 38864.50 38365.90 42268.21 20456.95 41242.11 42538.30 41765.69 39877.19 39156.96 31659.35 41546.16 39458.96 41865.93 409
IB-MVS62.13 1971.64 31668.97 34179.66 25780.80 34362.26 27073.94 34776.90 32863.27 29168.63 38676.79 39233.83 40691.84 17659.28 32587.26 32084.88 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing1167.38 35065.93 35871.73 34383.37 31046.60 39170.95 36969.40 38062.47 29866.14 39476.66 39331.22 41184.10 32449.10 38284.10 36384.49 329
131473.22 30272.56 30775.20 31580.41 34857.84 32181.64 24185.36 25651.68 38073.10 36276.65 39461.45 28485.19 31263.54 29579.21 39182.59 359
cascas76.29 27374.81 28080.72 24284.47 28862.94 25573.89 34887.34 22055.94 35375.16 35176.53 39563.97 27091.16 19265.00 28290.97 26588.06 288
testing22266.93 35265.30 36471.81 34283.38 30945.83 39572.06 36067.50 38664.12 28869.68 38176.37 39627.34 42183.00 33138.88 40988.38 30586.62 307
pmmvs362.47 37160.02 38469.80 35371.58 41064.00 24470.52 37258.44 41539.77 41466.05 39575.84 39727.10 42372.28 37646.15 39584.77 35973.11 400
ETVMVS64.67 36663.34 37268.64 36383.44 30841.89 40769.56 37861.70 40861.33 31468.74 38475.76 39828.76 41679.35 35334.65 41686.16 33984.67 328
new_pmnet55.69 38557.66 38649.76 40175.47 38930.59 42159.56 40451.45 42043.62 40762.49 40875.48 39940.96 39349.15 42137.39 41472.52 40569.55 405
PVSNet58.17 2166.41 35965.63 36268.75 36281.96 32549.88 38062.19 40172.51 36151.03 38468.04 38875.34 40050.84 34474.77 37245.82 39782.96 36981.60 372
MVEpermissive40.22 2351.82 38750.47 39055.87 39862.66 42551.91 36631.61 41939.28 42640.65 41250.76 42174.98 40156.24 32144.67 42233.94 41864.11 41671.04 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
UBG64.34 36963.35 37167.30 37183.50 30540.53 41067.46 38665.02 39854.77 36167.54 39274.47 40232.99 40978.50 36040.82 40683.58 36582.88 357
dmvs_re66.81 35666.98 35266.28 37676.87 37558.68 31571.66 36372.24 36260.29 32669.52 38373.53 40352.38 33764.40 40844.90 39881.44 38175.76 396
test-LLR67.21 35166.74 35568.63 36476.45 38155.21 34267.89 38267.14 39062.43 30165.08 40272.39 40443.41 38669.37 38561.00 31484.89 35581.31 375
test-mter65.00 36563.79 36968.63 36476.45 38155.21 34267.89 38267.14 39050.98 38565.08 40272.39 40428.27 41869.37 38561.00 31484.89 35581.31 375
Syy-MVS69.40 34070.03 33067.49 37081.72 32838.94 41371.00 36761.99 40361.38 31270.81 37472.36 40661.37 28579.30 35464.50 29085.18 34784.22 335
myMVS_eth3d64.66 36763.89 36866.97 37381.72 32837.39 41671.00 36761.99 40361.38 31270.81 37472.36 40620.96 42779.30 35449.59 37985.18 34784.22 335
gm-plane-assit75.42 39044.97 40052.17 37572.36 40687.90 26854.10 355
test_vis1_rt65.64 36364.09 36770.31 34966.09 42070.20 18061.16 40281.60 29938.65 41672.87 36369.66 40952.84 33460.04 41356.16 34077.77 39680.68 384
TESTMET0.1,161.29 37660.32 38264.19 38472.06 40851.30 37167.89 38262.09 40245.27 40060.65 41169.01 41027.93 41964.74 40756.31 33981.65 38076.53 394
PMMVS61.65 37460.38 38165.47 38065.40 42369.26 19163.97 39761.73 40736.80 42060.11 41268.43 41159.42 29866.35 40248.97 38378.57 39460.81 413
CHOSEN 280x42059.08 38256.52 38766.76 37476.51 37964.39 24049.62 41659.00 41343.86 40555.66 42068.41 41235.55 40468.21 39643.25 40176.78 40267.69 408
dmvs_testset60.59 38162.54 37654.72 40077.26 37027.74 42374.05 34561.00 41060.48 32465.62 39967.03 41355.93 32268.23 39532.07 42069.46 41468.17 407
E-PMN61.59 37561.62 37861.49 39166.81 41855.40 34053.77 41460.34 41166.80 26458.90 41565.50 41440.48 39466.12 40355.72 34386.25 33762.95 412
EMVS61.10 37860.81 38061.99 38965.96 42155.86 33653.10 41558.97 41467.06 26156.89 41963.33 41540.98 39267.03 39954.79 35286.18 33863.08 411
PVSNet_051.08 2256.10 38454.97 38959.48 39675.12 39253.28 35755.16 41361.89 40544.30 40359.16 41362.48 41654.22 33065.91 40435.40 41547.01 41959.25 415
GG-mvs-BLEND67.16 37273.36 40046.54 39384.15 17555.04 41858.64 41661.95 41729.93 41483.87 32838.71 41176.92 40171.07 403
test_method30.46 39029.60 39333.06 40417.99 4293.84 43213.62 42073.92 3482.79 42318.29 42553.41 41828.53 41743.25 42322.56 42135.27 42152.11 418
dongtai41.90 38842.65 39139.67 40370.86 41121.11 42561.01 40321.42 43057.36 34657.97 41850.06 41916.40 42958.73 41621.03 42327.69 42339.17 419
DeepMVS_CXcopyleft24.13 40632.95 42829.49 42221.63 42912.07 42237.95 42345.07 42030.84 41219.21 42517.94 42433.06 42223.69 421
kuosan30.83 38932.17 39226.83 40553.36 42719.02 42857.90 41020.44 43138.29 41838.01 42237.82 42115.18 43033.45 4247.74 42520.76 42428.03 420
tmp_tt20.25 39224.50 3957.49 4074.47 4308.70 43134.17 41825.16 4281.00 42532.43 42418.49 42239.37 3969.21 42621.64 42243.75 4204.57 422
X-MVStestdata85.04 12582.70 17892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42386.57 5595.80 2887.35 2797.62 6494.20 96
test_post178.85 2833.13 42445.19 37780.13 35058.11 332
test_post3.10 42545.43 37377.22 365
testmvs5.91 3967.65 3990.72 4091.20 4310.37 43459.14 4060.67 4330.49 4271.11 4272.76 4260.94 4320.24 4281.02 4271.47 4251.55 424
test1236.27 3958.08 3980.84 4081.11 4320.57 43362.90 3980.82 4320.54 4261.07 4282.75 4271.26 4310.30 4271.04 4261.26 4261.66 423
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas6.41 3948.55 3970.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42876.94 1660.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS37.39 41652.61 366
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 181
No_MVS88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 181
eth-test20.00 433
eth-test0.00 433
IU-MVS94.18 5072.64 14790.82 15256.98 35089.67 10985.78 5497.92 4993.28 141
save fliter93.75 6377.44 10386.31 13589.72 18670.80 218
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 200
GSMVS83.88 339
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36283.88 339
sam_mvs45.92 367
MTGPAbinary91.81 126
MTMP90.66 4833.14 427
test9_res80.83 10796.45 10390.57 242
agg_prior279.68 12096.16 11590.22 250
agg_prior91.58 12777.69 10090.30 17184.32 22893.18 136
test_prior478.97 8484.59 166
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 160
旧先验281.73 23956.88 35186.54 18484.90 31572.81 211
新几何281.72 240
无先验82.81 21585.62 25358.09 33991.41 18767.95 25984.48 330
原ACMM282.26 233
testdata286.43 29263.52 296
segment_acmp81.94 110
testdata179.62 26773.95 168
test1286.57 10590.74 15172.63 14990.69 15582.76 26179.20 13994.80 7395.32 15092.27 189
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior593.61 5995.22 5980.78 10895.83 13494.46 84
plane_prior376.85 11177.79 12586.55 179
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 434
nn0.00 434
door-mid74.45 345
test1191.46 132
door72.57 360
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 16073.30 18280.55 296
ACMP_Plane91.19 13984.77 16073.30 18280.55 296
BP-MVS77.30 154
HQP4-MVS80.56 29594.61 7993.56 133
HQP3-MVS92.68 9894.47 183
HQP2-MVS72.10 224
MDTV_nov1_ep13_2view27.60 42470.76 37146.47 39761.27 40945.20 37649.18 38183.75 344
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140