| LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 33 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 14 | 85.07 54 | 99.27 1 | 99.54 1 |
|
| XVG-OURS-SEG-HR | | | 89.59 51 | 89.37 57 | 90.28 42 | 94.47 42 | 85.95 23 | 86.84 117 | 93.91 44 | 80.07 89 | 86.75 166 | 93.26 114 | 93.64 2 | 90.93 195 | 84.60 61 | 90.75 265 | 93.97 104 |
|
| ACMH+ | | 77.89 11 | 90.73 27 | 91.50 21 | 88.44 76 | 93.00 78 | 76.26 116 | 89.65 70 | 95.55 7 | 87.72 21 | 93.89 26 | 94.94 47 | 91.62 3 | 93.44 124 | 78.35 126 | 98.76 3 | 95.61 48 |
|
| LPG-MVS_test | | | 91.47 17 | 91.68 16 | 90.82 33 | 94.75 40 | 81.69 59 | 90.00 57 | 94.27 21 | 82.35 63 | 93.67 33 | 94.82 51 | 91.18 4 | 95.52 42 | 85.36 52 | 98.73 6 | 95.23 59 |
|
| LGP-MVS_train | | | | | 90.82 33 | 94.75 40 | 81.69 59 | | 94.27 21 | 82.35 63 | 93.67 33 | 94.82 51 | 91.18 4 | 95.52 42 | 85.36 52 | 98.73 6 | 95.23 59 |
|
| PMVS |  | 80.48 6 | 90.08 37 | 90.66 44 | 88.34 79 | 96.71 3 | 92.97 1 | 90.31 54 | 89.57 184 | 88.51 17 | 90.11 95 | 95.12 44 | 90.98 6 | 88.92 249 | 77.55 140 | 97.07 81 | 83.13 341 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| ACMM | | 79.39 9 | 90.65 28 | 90.99 37 | 89.63 55 | 95.03 33 | 83.53 47 | 89.62 71 | 93.35 63 | 79.20 100 | 93.83 27 | 93.60 110 | 90.81 7 | 92.96 139 | 85.02 56 | 98.45 18 | 92.41 172 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMH | | 76.49 14 | 89.34 55 | 91.14 31 | 83.96 160 | 92.50 91 | 70.36 176 | 89.55 72 | 93.84 49 | 81.89 68 | 94.70 13 | 95.44 34 | 90.69 8 | 88.31 259 | 83.33 70 | 98.30 24 | 93.20 139 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| HPM-MVS_fast | | | 92.50 4 | 92.54 5 | 92.37 5 | 95.93 15 | 85.81 29 | 92.99 12 | 94.23 24 | 85.21 35 | 92.51 55 | 95.13 43 | 90.65 9 | 95.34 52 | 88.06 8 | 98.15 34 | 95.95 41 |
|
| RE-MVS-def | | | | 92.61 4 | | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 29 | 88.75 14 | 93.79 28 | 94.43 67 | 90.64 10 | | 87.16 29 | 97.60 64 | 92.73 156 |
|
| ACMP | | 79.16 10 | 90.54 31 | 90.60 45 | 90.35 41 | 94.36 43 | 80.98 65 | 89.16 81 | 94.05 38 | 79.03 103 | 92.87 46 | 93.74 106 | 90.60 11 | 95.21 58 | 82.87 78 | 98.76 3 | 94.87 67 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| HPM-MVS |  | | 92.13 7 | 92.20 9 | 91.91 15 | 95.58 25 | 84.67 42 | 93.51 8 | 94.85 15 | 82.88 59 | 91.77 68 | 93.94 98 | 90.55 12 | 95.73 31 | 88.50 6 | 98.23 27 | 95.33 54 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| UniMVSNet_ETH3D | | | 89.12 61 | 90.72 43 | 84.31 153 | 97.00 2 | 64.33 232 | 89.67 69 | 88.38 199 | 88.84 13 | 94.29 18 | 97.57 3 | 90.48 13 | 91.26 184 | 72.57 202 | 97.65 60 | 97.34 15 |
|
| SED-MVS | | | 90.46 33 | 91.64 17 | 86.93 97 | 94.18 46 | 72.65 142 | 90.47 51 | 93.69 53 | 83.77 47 | 94.11 22 | 94.27 74 | 90.28 14 | 95.84 23 | 86.03 46 | 97.92 46 | 92.29 179 |
|
| test_241102_ONE | | | | | | 94.18 46 | 72.65 142 | | 93.69 53 | 83.62 49 | 94.11 22 | 93.78 104 | 90.28 14 | 95.50 46 | | | |
|
| SR-MVS | | | 92.23 6 | 92.34 7 | 91.91 15 | 94.89 37 | 87.85 8 | 92.51 23 | 93.87 48 | 88.20 19 | 93.24 39 | 94.02 90 | 90.15 16 | 95.67 34 | 86.82 33 | 97.34 74 | 92.19 185 |
|
| APD-MVS_3200maxsize | | | 92.05 8 | 92.24 8 | 91.48 21 | 93.02 77 | 85.17 35 | 92.47 25 | 95.05 14 | 87.65 22 | 93.21 40 | 94.39 72 | 90.09 17 | 95.08 61 | 86.67 35 | 97.60 64 | 94.18 95 |
|
| DVP-MVS |  | | 90.06 39 | 91.32 28 | 86.29 109 | 94.16 49 | 72.56 148 | 90.54 48 | 91.01 142 | 83.61 50 | 93.75 30 | 94.65 56 | 89.76 18 | 95.78 28 | 86.42 36 | 97.97 43 | 90.55 231 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 94.16 49 | 72.56 148 | 90.63 45 | 93.90 45 | 83.61 50 | 93.75 30 | 94.49 64 | 89.76 18 | | | | |
|
| COLMAP_ROB |  | 83.01 3 | 91.97 9 | 91.95 10 | 92.04 10 | 93.68 61 | 86.15 20 | 93.37 10 | 95.10 13 | 90.28 9 | 92.11 61 | 95.03 45 | 89.75 20 | 94.93 65 | 79.95 110 | 98.27 25 | 95.04 64 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_241102_TWO | | | | | | | | | 93.71 52 | 83.77 47 | 93.49 36 | 94.27 74 | 89.27 21 | 95.84 23 | 86.03 46 | 97.82 51 | 92.04 190 |
|
| tt0805 | | | 88.09 74 | 89.79 51 | 82.98 188 | 93.26 72 | 63.94 236 | 91.10 41 | 89.64 181 | 85.07 36 | 90.91 84 | 91.09 181 | 89.16 22 | 91.87 170 | 82.03 89 | 95.87 130 | 93.13 142 |
|
| ACMMP |  | | 91.91 10 | 91.87 15 | 92.03 11 | 95.53 26 | 85.91 24 | 93.35 11 | 94.16 29 | 82.52 62 | 92.39 58 | 94.14 84 | 89.15 23 | 95.62 35 | 87.35 24 | 98.24 26 | 94.56 76 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SR-MVS-dyc-post | | | 92.41 5 | 92.41 6 | 92.39 4 | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 29 | 88.75 14 | 93.79 28 | 94.43 67 | 88.83 24 | 95.51 44 | 87.16 29 | 97.60 64 | 92.73 156 |
|
| APDe-MVS |  | | 91.22 21 | 91.92 11 | 89.14 64 | 92.97 79 | 78.04 89 | 92.84 15 | 94.14 33 | 83.33 53 | 93.90 24 | 95.73 27 | 88.77 25 | 96.41 2 | 87.60 18 | 97.98 42 | 92.98 150 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test_one_0601 | | | | | | 93.85 58 | 73.27 136 | | 94.11 35 | 86.57 25 | 93.47 38 | 94.64 59 | 88.42 26 | | | | |
|
| ACMMP_NAP | | | 90.65 28 | 91.07 35 | 89.42 59 | 95.93 15 | 79.54 76 | 89.95 61 | 93.68 55 | 77.65 119 | 91.97 65 | 94.89 48 | 88.38 27 | 95.45 48 | 89.27 3 | 97.87 50 | 93.27 136 |
|
| MP-MVS-pluss | | | 90.81 26 | 91.08 33 | 89.99 46 | 95.97 13 | 79.88 71 | 88.13 98 | 94.51 18 | 75.79 140 | 92.94 44 | 94.96 46 | 88.36 28 | 95.01 63 | 90.70 2 | 98.40 19 | 95.09 63 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HFP-MVS | | | 91.30 19 | 91.39 23 | 91.02 29 | 95.43 28 | 84.66 43 | 92.58 21 | 93.29 69 | 81.99 65 | 91.47 71 | 93.96 95 | 88.35 29 | 95.56 39 | 87.74 13 | 97.74 57 | 92.85 153 |
|
| CP-MVS | | | 91.67 12 | 91.58 19 | 91.96 12 | 95.29 30 | 87.62 9 | 93.38 9 | 93.36 62 | 83.16 55 | 91.06 80 | 94.00 91 | 88.26 30 | 95.71 32 | 87.28 27 | 98.39 20 | 92.55 165 |
|
| SteuartSystems-ACMMP | | | 91.16 23 | 91.36 24 | 90.55 37 | 93.91 56 | 80.97 66 | 91.49 37 | 93.48 60 | 82.82 60 | 92.60 54 | 93.97 92 | 88.19 31 | 96.29 5 | 87.61 17 | 98.20 31 | 94.39 87 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PGM-MVS | | | 91.20 22 | 90.95 39 | 91.93 13 | 95.67 22 | 85.85 27 | 90.00 57 | 93.90 45 | 80.32 85 | 91.74 69 | 94.41 70 | 88.17 32 | 95.98 11 | 86.37 38 | 97.99 40 | 93.96 105 |
|
| TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 4 | 96.46 2 | 90.58 8 | 92.86 47 | 96.29 16 | 88.16 33 | 94.17 92 | 86.07 45 | 98.48 17 | 97.22 19 |
|
| DPE-MVS |  | | 90.53 32 | 91.08 33 | 88.88 67 | 93.38 68 | 78.65 83 | 89.15 82 | 94.05 38 | 84.68 40 | 93.90 24 | 94.11 87 | 88.13 34 | 96.30 4 | 84.51 62 | 97.81 52 | 91.70 201 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| OPM-MVS | | | 89.80 47 | 89.97 48 | 89.27 61 | 94.76 39 | 79.86 72 | 86.76 121 | 92.78 92 | 78.78 106 | 92.51 55 | 93.64 109 | 88.13 34 | 93.84 105 | 84.83 59 | 97.55 67 | 94.10 101 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| pmmvs6 | | | 86.52 96 | 88.06 74 | 81.90 209 | 92.22 101 | 62.28 260 | 84.66 155 | 89.15 189 | 83.54 52 | 89.85 103 | 97.32 4 | 88.08 36 | 86.80 278 | 70.43 219 | 97.30 76 | 96.62 28 |
|
| mvs_tets | | | 89.78 48 | 89.27 59 | 91.30 25 | 93.51 64 | 84.79 40 | 89.89 63 | 90.63 152 | 70.00 219 | 94.55 15 | 96.67 11 | 87.94 37 | 93.59 116 | 84.27 64 | 95.97 123 | 95.52 49 |
|
| ZNCC-MVS | | | 91.26 20 | 91.34 27 | 91.01 30 | 95.73 20 | 83.05 52 | 92.18 28 | 94.22 26 | 80.14 88 | 91.29 76 | 93.97 92 | 87.93 38 | 95.87 19 | 88.65 4 | 97.96 45 | 94.12 99 |
|
| region2R | | | 91.44 18 | 91.30 30 | 91.87 17 | 95.75 18 | 85.90 25 | 92.63 20 | 93.30 68 | 81.91 67 | 90.88 86 | 94.21 79 | 87.75 39 | 95.87 19 | 87.60 18 | 97.71 58 | 93.83 111 |
|
| wuyk23d | | | 75.13 272 | 79.30 225 | 62.63 372 | 75.56 374 | 75.18 124 | 80.89 242 | 73.10 347 | 75.06 150 | 94.76 12 | 95.32 35 | 87.73 40 | 52.85 402 | 34.16 402 | 97.11 80 | 59.85 399 |
|
| mPP-MVS | | | 91.69 11 | 91.47 22 | 92.37 5 | 96.04 12 | 88.48 7 | 92.72 17 | 92.60 96 | 83.09 56 | 91.54 70 | 94.25 78 | 87.67 41 | 95.51 44 | 87.21 28 | 98.11 35 | 93.12 144 |
|
| ACMMPR | | | 91.49 15 | 91.35 26 | 91.92 14 | 95.74 19 | 85.88 26 | 92.58 21 | 93.25 70 | 81.99 65 | 91.40 72 | 94.17 83 | 87.51 42 | 95.87 19 | 87.74 13 | 97.76 55 | 93.99 103 |
|
| test_0728_THIRD | | | | | | | | | | 85.33 33 | 93.75 30 | 94.65 56 | 87.44 43 | 95.78 28 | 87.41 22 | 98.21 29 | 92.98 150 |
|
| 9.14 | | | | 89.29 58 | | 91.84 116 | | 88.80 88 | 95.32 12 | 75.14 149 | 91.07 79 | 92.89 128 | 87.27 44 | 93.78 106 | 83.69 69 | 97.55 67 | |
|
| PS-CasMVS | | | 90.06 39 | 91.92 11 | 84.47 146 | 96.56 6 | 58.83 305 | 89.04 83 | 92.74 93 | 91.40 5 | 96.12 4 | 96.06 22 | 87.23 45 | 95.57 38 | 79.42 118 | 98.74 5 | 99.00 2 |
|
| GST-MVS | | | 90.96 25 | 91.01 36 | 90.82 33 | 95.45 27 | 82.73 55 | 91.75 35 | 93.74 51 | 80.98 79 | 91.38 73 | 93.80 102 | 87.20 46 | 95.80 25 | 87.10 31 | 97.69 59 | 93.93 106 |
|
| PEN-MVS | | | 90.03 41 | 91.88 14 | 84.48 145 | 96.57 5 | 58.88 302 | 88.95 84 | 93.19 72 | 91.62 4 | 96.01 6 | 96.16 20 | 87.02 47 | 95.60 36 | 78.69 123 | 98.72 8 | 98.97 3 |
|
| DTE-MVSNet | | | 89.98 43 | 91.91 13 | 84.21 155 | 96.51 7 | 57.84 312 | 88.93 85 | 92.84 90 | 91.92 3 | 96.16 3 | 96.23 18 | 86.95 48 | 95.99 10 | 79.05 120 | 98.57 14 | 98.80 6 |
|
| SF-MVS | | | 90.27 35 | 90.80 42 | 88.68 74 | 92.86 83 | 77.09 104 | 91.19 40 | 95.74 5 | 81.38 73 | 92.28 59 | 93.80 102 | 86.89 49 | 94.64 73 | 85.52 51 | 97.51 71 | 94.30 91 |
|
| MP-MVS |  | | 91.14 24 | 90.91 40 | 91.83 18 | 96.18 10 | 86.88 13 | 92.20 27 | 93.03 83 | 82.59 61 | 88.52 130 | 94.37 73 | 86.74 50 | 95.41 50 | 86.32 39 | 98.21 29 | 93.19 140 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MTAPA | | | 91.52 14 | 91.60 18 | 91.29 26 | 96.59 4 | 86.29 17 | 92.02 30 | 91.81 121 | 84.07 44 | 92.00 64 | 94.40 71 | 86.63 51 | 95.28 55 | 88.59 5 | 98.31 23 | 92.30 178 |
|
| XVS | | | 91.54 13 | 91.36 24 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 64 | 85.07 36 | 89.99 99 | 94.03 89 | 86.57 52 | 95.80 25 | 87.35 24 | 97.62 62 | 94.20 92 |
|
| X-MVStestdata | | | 85.04 121 | 82.70 169 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 64 | 85.07 36 | 89.99 99 | 16.05 406 | 86.57 52 | 95.80 25 | 87.35 24 | 97.62 62 | 94.20 92 |
|
| MGCFI-Net | | | 85.04 121 | 85.95 109 | 82.31 205 | 87.52 220 | 63.59 239 | 86.23 131 | 93.96 41 | 73.46 167 | 88.07 141 | 87.83 251 | 86.46 54 | 90.87 200 | 76.17 157 | 93.89 196 | 92.47 170 |
|
| sasdasda | | | 85.50 111 | 86.14 106 | 83.58 172 | 87.97 207 | 67.13 203 | 87.55 105 | 94.32 19 | 73.44 169 | 88.47 131 | 87.54 256 | 86.45 55 | 91.06 191 | 75.76 162 | 93.76 198 | 92.54 166 |
|
| canonicalmvs | | | 85.50 111 | 86.14 106 | 83.58 172 | 87.97 207 | 67.13 203 | 87.55 105 | 94.32 19 | 73.44 169 | 88.47 131 | 87.54 256 | 86.45 55 | 91.06 191 | 75.76 162 | 93.76 198 | 92.54 166 |
|
| TranMVSNet+NR-MVSNet | | | 87.86 79 | 88.76 69 | 85.18 132 | 94.02 54 | 64.13 233 | 84.38 162 | 91.29 134 | 84.88 39 | 92.06 63 | 93.84 101 | 86.45 55 | 93.73 107 | 73.22 193 | 98.66 10 | 97.69 9 |
|
| test_0402 | | | 88.65 65 | 89.58 56 | 85.88 120 | 92.55 89 | 72.22 156 | 84.01 169 | 89.44 186 | 88.63 16 | 94.38 17 | 95.77 26 | 86.38 58 | 93.59 116 | 79.84 111 | 95.21 152 | 91.82 197 |
|
| APD-MVS |  | | 89.54 52 | 89.63 54 | 89.26 62 | 92.57 88 | 81.34 64 | 90.19 56 | 93.08 79 | 80.87 81 | 91.13 78 | 93.19 115 | 86.22 59 | 95.97 12 | 82.23 88 | 97.18 79 | 90.45 233 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| SD-MVS | | | 88.96 63 | 89.88 49 | 86.22 112 | 91.63 120 | 77.07 105 | 89.82 64 | 93.77 50 | 78.90 104 | 92.88 45 | 92.29 148 | 86.11 60 | 90.22 217 | 86.24 43 | 97.24 77 | 91.36 209 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ZD-MVS | | | | | | 92.22 101 | 80.48 67 | | 91.85 117 | 71.22 206 | 90.38 91 | 92.98 123 | 86.06 61 | 96.11 6 | 81.99 91 | 96.75 90 | |
|
| jajsoiax | | | 89.41 53 | 88.81 68 | 91.19 28 | 93.38 68 | 84.72 41 | 89.70 66 | 90.29 166 | 69.27 223 | 94.39 16 | 96.38 15 | 86.02 62 | 93.52 120 | 83.96 66 | 95.92 128 | 95.34 53 |
|
| nrg030 | | | 87.85 80 | 88.49 70 | 85.91 118 | 90.07 163 | 69.73 180 | 87.86 102 | 94.20 27 | 74.04 158 | 92.70 53 | 94.66 55 | 85.88 63 | 91.50 176 | 79.72 113 | 97.32 75 | 96.50 31 |
|
| SMA-MVS |  | | 90.31 34 | 90.48 46 | 89.83 50 | 95.31 29 | 79.52 77 | 90.98 43 | 93.24 71 | 75.37 147 | 92.84 48 | 95.28 38 | 85.58 64 | 96.09 7 | 87.92 10 | 97.76 55 | 93.88 109 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| DeepC-MVS | | 82.31 4 | 89.15 60 | 89.08 62 | 89.37 60 | 93.64 62 | 79.07 79 | 88.54 93 | 94.20 27 | 73.53 166 | 89.71 106 | 94.82 51 | 85.09 65 | 95.77 30 | 84.17 65 | 98.03 38 | 93.26 137 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| testf1 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 192 | 85.64 31 | 90.61 46 | 93.17 73 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 66 | 89.44 241 | 74.12 178 | 96.10 118 | 94.45 82 |
|
| APD_test2 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 192 | 85.64 31 | 90.61 46 | 93.17 73 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 66 | 89.44 241 | 74.12 178 | 96.10 118 | 94.45 82 |
|
| GeoE | | | 85.45 114 | 85.81 115 | 84.37 147 | 90.08 161 | 67.07 205 | 85.86 135 | 91.39 131 | 72.33 194 | 87.59 149 | 90.25 210 | 84.85 68 | 92.37 155 | 78.00 134 | 91.94 240 | 93.66 120 |
|
| LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 20 | 93.73 60 | 85.72 30 | 96.79 1 | 95.51 8 | 88.86 12 | 95.63 8 | 96.99 8 | 84.81 69 | 93.16 133 | 91.10 1 | 97.53 70 | 96.58 30 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| DP-MVS | | | 88.60 66 | 89.01 63 | 87.36 91 | 91.30 133 | 77.50 97 | 87.55 105 | 92.97 86 | 87.95 20 | 89.62 110 | 92.87 129 | 84.56 70 | 93.89 102 | 77.65 138 | 96.62 93 | 90.70 225 |
|
| LS3D | | | 90.60 30 | 90.34 47 | 91.38 24 | 89.03 183 | 84.23 45 | 93.58 6 | 94.68 17 | 90.65 7 | 90.33 93 | 93.95 97 | 84.50 71 | 95.37 51 | 80.87 100 | 95.50 143 | 94.53 79 |
|
| EC-MVSNet | | | 88.01 75 | 88.32 72 | 87.09 93 | 89.28 177 | 72.03 158 | 90.31 54 | 96.31 3 | 80.88 80 | 85.12 198 | 89.67 222 | 84.47 72 | 95.46 47 | 82.56 83 | 96.26 111 | 93.77 117 |
|
| casdiffmvs_mvg |  | | 86.72 92 | 87.51 82 | 84.36 149 | 87.09 232 | 65.22 223 | 84.16 164 | 94.23 24 | 77.89 116 | 91.28 77 | 93.66 108 | 84.35 73 | 92.71 145 | 80.07 107 | 94.87 170 | 95.16 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| anonymousdsp | | | 89.73 49 | 88.88 66 | 92.27 7 | 89.82 168 | 86.67 14 | 90.51 50 | 90.20 169 | 69.87 220 | 95.06 11 | 96.14 21 | 84.28 74 | 93.07 137 | 87.68 15 | 96.34 105 | 97.09 21 |
|
| OMC-MVS | | | 88.19 71 | 87.52 81 | 90.19 44 | 91.94 111 | 81.68 61 | 87.49 108 | 93.17 73 | 76.02 134 | 88.64 127 | 91.22 176 | 84.24 75 | 93.37 127 | 77.97 136 | 97.03 82 | 95.52 49 |
|
| CS-MVS | | | 88.14 72 | 87.67 80 | 89.54 58 | 89.56 170 | 79.18 78 | 90.47 51 | 94.77 16 | 79.37 98 | 84.32 217 | 89.33 227 | 83.87 76 | 94.53 79 | 82.45 84 | 94.89 167 | 94.90 65 |
|
| XVG-OURS | | | 89.18 59 | 88.83 67 | 90.23 43 | 94.28 44 | 86.11 22 | 85.91 133 | 93.60 58 | 80.16 87 | 89.13 121 | 93.44 112 | 83.82 77 | 90.98 193 | 83.86 68 | 95.30 151 | 93.60 125 |
|
| XVG-ACMP-BASELINE | | | 89.98 43 | 89.84 50 | 90.41 39 | 94.91 36 | 84.50 44 | 89.49 76 | 93.98 40 | 79.68 92 | 92.09 62 | 93.89 100 | 83.80 78 | 93.10 136 | 82.67 82 | 98.04 36 | 93.64 123 |
|
| CDPH-MVS | | | 86.17 104 | 85.54 120 | 88.05 84 | 92.25 99 | 75.45 122 | 83.85 175 | 92.01 110 | 65.91 257 | 86.19 180 | 91.75 164 | 83.77 79 | 94.98 64 | 77.43 143 | 96.71 91 | 93.73 118 |
|
| test_fmvsmvis_n_1920 | | | 85.22 116 | 85.36 124 | 84.81 137 | 85.80 261 | 76.13 119 | 85.15 148 | 92.32 102 | 61.40 298 | 91.33 74 | 90.85 192 | 83.76 80 | 86.16 291 | 84.31 63 | 93.28 210 | 92.15 187 |
|
| Effi-MVS+ | | | 83.90 151 | 84.01 149 | 83.57 174 | 87.22 226 | 65.61 221 | 86.55 126 | 92.40 99 | 78.64 109 | 81.34 273 | 84.18 309 | 83.65 81 | 92.93 141 | 74.22 175 | 87.87 302 | 92.17 186 |
|
| MVS_111021_HR | | | 84.63 128 | 84.34 145 | 85.49 129 | 90.18 160 | 75.86 120 | 79.23 266 | 87.13 219 | 73.35 171 | 85.56 193 | 89.34 226 | 83.60 82 | 90.50 211 | 76.64 151 | 94.05 192 | 90.09 242 |
|
| UA-Net | | | 91.49 15 | 91.53 20 | 91.39 23 | 94.98 34 | 82.95 54 | 93.52 7 | 92.79 91 | 88.22 18 | 88.53 129 | 97.64 2 | 83.45 83 | 94.55 78 | 86.02 48 | 98.60 12 | 96.67 27 |
|
| AdaColmap |  | | 83.66 154 | 83.69 154 | 83.57 174 | 90.05 164 | 72.26 155 | 86.29 130 | 90.00 174 | 78.19 114 | 81.65 267 | 87.16 265 | 83.40 84 | 94.24 87 | 61.69 298 | 94.76 175 | 84.21 323 |
|
| LCM-MVSNet-Re | | | 83.48 159 | 85.06 127 | 78.75 258 | 85.94 259 | 55.75 328 | 80.05 250 | 94.27 21 | 76.47 129 | 96.09 5 | 94.54 62 | 83.31 85 | 89.75 236 | 59.95 308 | 94.89 167 | 90.75 222 |
|
| test_fmvsmconf0.01_n | | | 86.68 93 | 86.52 99 | 87.18 92 | 85.94 259 | 78.30 85 | 86.93 115 | 92.20 105 | 65.94 255 | 89.16 119 | 93.16 117 | 83.10 86 | 89.89 230 | 87.81 11 | 94.43 182 | 93.35 132 |
|
| TransMVSNet (Re) | | | 84.02 147 | 85.74 117 | 78.85 256 | 91.00 143 | 55.20 333 | 82.29 221 | 87.26 215 | 79.65 93 | 88.38 135 | 95.52 33 | 83.00 87 | 86.88 276 | 67.97 248 | 96.60 94 | 94.45 82 |
|
| CNVR-MVS | | | 87.81 81 | 87.68 79 | 88.21 81 | 92.87 81 | 77.30 103 | 85.25 145 | 91.23 136 | 77.31 124 | 87.07 160 | 91.47 170 | 82.94 88 | 94.71 70 | 84.67 60 | 96.27 110 | 92.62 163 |
|
| DeepPCF-MVS | | 81.24 5 | 87.28 85 | 86.21 105 | 90.49 38 | 91.48 130 | 84.90 38 | 83.41 187 | 92.38 101 | 70.25 216 | 89.35 118 | 90.68 198 | 82.85 89 | 94.57 76 | 79.55 115 | 95.95 125 | 92.00 192 |
|
| v7n | | | 90.13 36 | 90.96 38 | 87.65 89 | 91.95 109 | 71.06 170 | 89.99 59 | 93.05 80 | 86.53 26 | 94.29 18 | 96.27 17 | 82.69 90 | 94.08 95 | 86.25 42 | 97.63 61 | 97.82 8 |
|
| AllTest | | | 87.97 77 | 87.40 85 | 89.68 53 | 91.59 121 | 83.40 48 | 89.50 75 | 95.44 10 | 79.47 94 | 88.00 143 | 93.03 121 | 82.66 91 | 91.47 177 | 70.81 211 | 96.14 115 | 94.16 96 |
|
| TestCases | | | | | 89.68 53 | 91.59 121 | 83.40 48 | | 95.44 10 | 79.47 94 | 88.00 143 | 93.03 121 | 82.66 91 | 91.47 177 | 70.81 211 | 96.14 115 | 94.16 96 |
|
| test_fmvsmconf0.1_n | | | 86.18 103 | 85.88 113 | 87.08 94 | 85.26 269 | 78.25 86 | 85.82 136 | 91.82 119 | 65.33 268 | 88.55 128 | 92.35 147 | 82.62 93 | 89.80 232 | 86.87 32 | 94.32 185 | 93.18 141 |
|
| RPSCF | | | 88.00 76 | 86.93 94 | 91.22 27 | 90.08 161 | 89.30 4 | 89.68 68 | 91.11 139 | 79.26 99 | 89.68 107 | 94.81 54 | 82.44 94 | 87.74 263 | 76.54 153 | 88.74 290 | 96.61 29 |
|
| CS-MVS-test | | | 87.00 87 | 86.43 101 | 88.71 72 | 89.46 173 | 77.46 98 | 89.42 79 | 95.73 6 | 77.87 117 | 81.64 268 | 87.25 263 | 82.43 95 | 94.53 79 | 77.65 138 | 96.46 101 | 94.14 98 |
|
| ITE_SJBPF | | | | | 90.11 45 | 90.72 149 | 84.97 37 | | 90.30 164 | 81.56 71 | 90.02 98 | 91.20 178 | 82.40 96 | 90.81 202 | 73.58 188 | 94.66 176 | 94.56 76 |
|
| SDMVSNet | | | 81.90 189 | 83.17 161 | 78.10 271 | 88.81 189 | 62.45 256 | 76.08 313 | 86.05 238 | 73.67 163 | 83.41 237 | 93.04 119 | 82.35 97 | 80.65 336 | 70.06 224 | 95.03 160 | 91.21 211 |
|
| test_fmvsmconf_n | | | 85.88 108 | 85.51 121 | 86.99 96 | 84.77 276 | 78.21 87 | 85.40 144 | 91.39 131 | 65.32 269 | 87.72 147 | 91.81 161 | 82.33 98 | 89.78 233 | 86.68 34 | 94.20 188 | 92.99 149 |
|
| Fast-Effi-MVS+ | | | 81.04 200 | 80.57 205 | 82.46 203 | 87.50 221 | 63.22 244 | 78.37 278 | 89.63 182 | 68.01 238 | 81.87 261 | 82.08 333 | 82.31 99 | 92.65 148 | 67.10 250 | 88.30 298 | 91.51 207 |
|
| baseline | | | 85.20 118 | 85.93 110 | 83.02 187 | 86.30 249 | 62.37 258 | 84.55 157 | 93.96 41 | 74.48 155 | 87.12 155 | 92.03 153 | 82.30 100 | 91.94 166 | 78.39 124 | 94.21 187 | 94.74 73 |
|
| casdiffmvs |  | | 85.21 117 | 85.85 114 | 83.31 180 | 86.17 254 | 62.77 250 | 83.03 198 | 93.93 43 | 74.69 153 | 88.21 138 | 92.68 136 | 82.29 101 | 91.89 169 | 77.87 137 | 93.75 201 | 95.27 57 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Anonymous20231211 | | | 88.40 67 | 89.62 55 | 84.73 140 | 90.46 154 | 65.27 222 | 88.86 86 | 93.02 84 | 87.15 23 | 93.05 43 | 97.10 6 | 82.28 102 | 92.02 165 | 76.70 150 | 97.99 40 | 96.88 25 |
|
| APD_test1 | | | 88.40 67 | 87.91 75 | 89.88 47 | 89.50 172 | 86.65 16 | 89.98 60 | 91.91 115 | 84.26 42 | 90.87 87 | 93.92 99 | 82.18 103 | 89.29 245 | 73.75 185 | 94.81 171 | 93.70 119 |
|
| Anonymous20240529 | | | 86.20 102 | 87.13 88 | 83.42 177 | 90.19 159 | 64.55 230 | 84.55 157 | 90.71 149 | 85.85 31 | 89.94 102 | 95.24 40 | 82.13 104 | 90.40 213 | 69.19 233 | 96.40 104 | 95.31 55 |
|
| CLD-MVS | | | 83.18 164 | 82.64 171 | 84.79 138 | 89.05 182 | 67.82 201 | 77.93 282 | 92.52 97 | 68.33 234 | 85.07 199 | 81.54 340 | 82.06 105 | 92.96 139 | 69.35 229 | 97.91 48 | 93.57 127 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| TEST9 | | | | | | 92.34 95 | 79.70 74 | 83.94 171 | 90.32 161 | 65.41 267 | 84.49 211 | 90.97 185 | 82.03 106 | 93.63 111 | | | |
|
| segment_acmp | | | | | | | | | | | | | 81.94 107 | | | | |
|
| train_agg | | | 85.98 106 | 85.28 125 | 88.07 83 | 92.34 95 | 79.70 74 | 83.94 171 | 90.32 161 | 65.79 258 | 84.49 211 | 90.97 185 | 81.93 108 | 93.63 111 | 81.21 96 | 96.54 96 | 90.88 219 |
|
| test_8 | | | | | | 92.09 105 | 78.87 81 | 83.82 176 | 90.31 163 | 65.79 258 | 84.36 215 | 90.96 187 | 81.93 108 | 93.44 124 | | | |
|
| test_prior2 | | | | | | | | 83.37 188 | | 75.43 145 | 84.58 209 | 91.57 167 | 81.92 110 | | 79.54 116 | 96.97 83 | |
|
| EGC-MVSNET | | | 74.79 279 | 69.99 319 | 89.19 63 | 94.89 37 | 87.00 11 | 91.89 34 | 86.28 233 | 1.09 407 | 2.23 409 | 95.98 23 | 81.87 111 | 89.48 237 | 79.76 112 | 95.96 124 | 91.10 214 |
|
| CP-MVSNet | | | 89.27 58 | 90.91 40 | 84.37 147 | 96.34 8 | 58.61 308 | 88.66 92 | 92.06 109 | 90.78 6 | 95.67 7 | 95.17 42 | 81.80 112 | 95.54 41 | 79.00 121 | 98.69 9 | 98.95 4 |
|
| MVS_111021_LR | | | 84.28 138 | 83.76 153 | 85.83 122 | 89.23 179 | 83.07 51 | 80.99 241 | 83.56 272 | 72.71 186 | 86.07 183 | 89.07 232 | 81.75 113 | 86.19 290 | 77.11 147 | 93.36 206 | 88.24 270 |
|
| test_djsdf | | | 89.62 50 | 89.01 63 | 91.45 22 | 92.36 94 | 82.98 53 | 91.98 31 | 90.08 172 | 71.54 201 | 94.28 20 | 96.54 13 | 81.57 114 | 94.27 84 | 86.26 40 | 96.49 99 | 97.09 21 |
|
| cdsmvs_eth3d_5k | | | 20.81 374 | 27.75 377 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 85.44 246 | 0.00 411 | 0.00 412 | 82.82 324 | 81.46 115 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| WR-MVS_H | | | 89.91 46 | 91.31 29 | 85.71 124 | 96.32 9 | 62.39 257 | 89.54 74 | 93.31 67 | 90.21 10 | 95.57 9 | 95.66 29 | 81.42 116 | 95.90 15 | 80.94 99 | 98.80 2 | 98.84 5 |
|
| CPTT-MVS | | | 89.39 54 | 88.98 65 | 90.63 36 | 95.09 32 | 86.95 12 | 92.09 29 | 92.30 103 | 79.74 91 | 87.50 151 | 92.38 143 | 81.42 116 | 93.28 129 | 83.07 74 | 97.24 77 | 91.67 202 |
|
| pm-mvs1 | | | 83.69 153 | 84.95 130 | 79.91 243 | 90.04 165 | 59.66 292 | 82.43 217 | 87.44 212 | 75.52 144 | 87.85 145 | 95.26 39 | 81.25 118 | 85.65 301 | 68.74 240 | 96.04 120 | 94.42 85 |
|
| DVP-MVS++ | | | 90.07 38 | 91.09 32 | 87.00 95 | 91.55 126 | 72.64 144 | 96.19 2 | 94.10 36 | 85.33 33 | 93.49 36 | 94.64 59 | 81.12 119 | 95.88 17 | 87.41 22 | 95.94 126 | 92.48 168 |
|
| OPU-MVS | | | | | 88.27 80 | 91.89 112 | 77.83 93 | 90.47 51 | | | | 91.22 176 | 81.12 119 | 94.68 71 | 74.48 173 | 95.35 146 | 92.29 179 |
|
| sd_testset | | | 79.95 223 | 81.39 194 | 75.64 303 | 88.81 189 | 58.07 310 | 76.16 312 | 82.81 279 | 73.67 163 | 83.41 237 | 93.04 119 | 80.96 121 | 77.65 349 | 58.62 314 | 95.03 160 | 91.21 211 |
|
| NCCC | | | 87.36 84 | 86.87 95 | 88.83 68 | 92.32 97 | 78.84 82 | 86.58 125 | 91.09 140 | 78.77 107 | 84.85 206 | 90.89 189 | 80.85 122 | 95.29 53 | 81.14 97 | 95.32 148 | 92.34 176 |
|
| TAPA-MVS | | 77.73 12 | 85.71 110 | 84.83 131 | 88.37 78 | 88.78 191 | 79.72 73 | 87.15 112 | 93.50 59 | 69.17 224 | 85.80 189 | 89.56 223 | 80.76 123 | 92.13 161 | 73.21 198 | 95.51 142 | 93.25 138 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| Fast-Effi-MVS+-dtu | | | 82.54 173 | 81.41 193 | 85.90 119 | 85.60 262 | 76.53 111 | 83.07 197 | 89.62 183 | 73.02 181 | 79.11 301 | 83.51 314 | 80.74 124 | 90.24 216 | 68.76 239 | 89.29 281 | 90.94 217 |
|
| PC_three_1452 | | | | | | | | | | 58.96 321 | 90.06 96 | 91.33 173 | 80.66 125 | 93.03 138 | 75.78 161 | 95.94 126 | 92.48 168 |
|
| VPA-MVSNet | | | 83.47 160 | 84.73 132 | 79.69 247 | 90.29 157 | 57.52 315 | 81.30 237 | 88.69 195 | 76.29 130 | 87.58 150 | 94.44 66 | 80.60 126 | 87.20 270 | 66.60 256 | 96.82 88 | 94.34 89 |
|
| ETV-MVS | | | 84.31 136 | 83.91 152 | 85.52 127 | 88.58 196 | 70.40 175 | 84.50 161 | 93.37 61 | 78.76 108 | 84.07 226 | 78.72 364 | 80.39 127 | 95.13 60 | 73.82 184 | 92.98 218 | 91.04 215 |
|
| HPM-MVS++ |  | | 88.93 64 | 88.45 71 | 90.38 40 | 94.92 35 | 85.85 27 | 89.70 66 | 91.27 135 | 78.20 113 | 86.69 169 | 92.28 149 | 80.36 128 | 95.06 62 | 86.17 44 | 96.49 99 | 90.22 237 |
|
| ANet_high | | | 83.17 165 | 85.68 118 | 75.65 302 | 81.24 324 | 45.26 385 | 79.94 252 | 92.91 87 | 83.83 46 | 91.33 74 | 96.88 10 | 80.25 129 | 85.92 294 | 68.89 237 | 95.89 129 | 95.76 43 |
|
| EI-MVSNet-Vis-set | | | 85.12 120 | 84.53 139 | 86.88 98 | 84.01 289 | 72.76 141 | 83.91 174 | 85.18 251 | 80.44 82 | 88.75 125 | 85.49 288 | 80.08 130 | 91.92 167 | 82.02 90 | 90.85 263 | 95.97 39 |
|
| DeepC-MVS_fast | | 80.27 8 | 86.23 100 | 85.65 119 | 87.96 85 | 91.30 133 | 76.92 106 | 87.19 110 | 91.99 111 | 70.56 211 | 84.96 202 | 90.69 197 | 80.01 131 | 95.14 59 | 78.37 125 | 95.78 137 | 91.82 197 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| EI-MVSNet-UG-set | | | 85.04 121 | 84.44 141 | 86.85 99 | 83.87 293 | 72.52 150 | 83.82 176 | 85.15 252 | 80.27 86 | 88.75 125 | 85.45 290 | 79.95 132 | 91.90 168 | 81.92 93 | 90.80 264 | 96.13 34 |
|
| MCST-MVS | | | 84.36 134 | 83.93 151 | 85.63 125 | 91.59 121 | 71.58 165 | 83.52 184 | 92.13 107 | 61.82 291 | 83.96 228 | 89.75 221 | 79.93 133 | 93.46 123 | 78.33 127 | 94.34 184 | 91.87 196 |
|
| TSAR-MVS + MP. | | | 88.14 72 | 87.82 78 | 89.09 65 | 95.72 21 | 76.74 108 | 92.49 24 | 91.19 138 | 67.85 243 | 86.63 170 | 94.84 50 | 79.58 134 | 95.96 13 | 87.62 16 | 94.50 179 | 94.56 76 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test12 | | | | | 86.57 103 | 90.74 148 | 72.63 146 | | 90.69 150 | | 82.76 248 | | 79.20 135 | 94.80 68 | | 95.32 148 | 92.27 181 |
|
| CSCG | | | 86.26 99 | 86.47 100 | 85.60 126 | 90.87 146 | 74.26 128 | 87.98 100 | 91.85 117 | 80.35 84 | 89.54 116 | 88.01 245 | 79.09 136 | 92.13 161 | 75.51 164 | 95.06 159 | 90.41 234 |
|
| Test By Simon | | | | | | | | | | | | | 79.09 136 | | | | |
|
| PHI-MVS | | | 86.38 97 | 85.81 115 | 88.08 82 | 88.44 200 | 77.34 101 | 89.35 80 | 93.05 80 | 73.15 179 | 84.76 207 | 87.70 253 | 78.87 138 | 94.18 90 | 80.67 104 | 96.29 107 | 92.73 156 |
|
| EG-PatchMatch MVS | | | 84.08 145 | 84.11 147 | 83.98 159 | 92.22 101 | 72.61 147 | 82.20 227 | 87.02 224 | 72.63 187 | 88.86 122 | 91.02 183 | 78.52 139 | 91.11 189 | 73.41 190 | 91.09 253 | 88.21 271 |
|
| dcpmvs_2 | | | 84.23 141 | 85.14 126 | 81.50 218 | 88.61 195 | 61.98 264 | 82.90 204 | 93.11 76 | 68.66 232 | 92.77 51 | 92.39 142 | 78.50 140 | 87.63 265 | 76.99 149 | 92.30 228 | 94.90 65 |
|
| Effi-MVS+-dtu | | | 85.82 109 | 83.38 156 | 93.14 3 | 87.13 228 | 91.15 2 | 87.70 104 | 88.42 198 | 74.57 154 | 83.56 235 | 85.65 286 | 78.49 141 | 94.21 88 | 72.04 205 | 92.88 220 | 94.05 102 |
|
| Vis-MVSNet |  | | 86.86 89 | 86.58 98 | 87.72 86 | 92.09 105 | 77.43 100 | 87.35 109 | 92.09 108 | 78.87 105 | 84.27 222 | 94.05 88 | 78.35 142 | 93.65 109 | 80.54 106 | 91.58 247 | 92.08 189 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| UniMVSNet_NR-MVSNet | | | 86.84 90 | 87.06 90 | 86.17 115 | 92.86 83 | 67.02 206 | 82.55 213 | 91.56 124 | 83.08 57 | 90.92 82 | 91.82 160 | 78.25 143 | 93.99 97 | 74.16 176 | 98.35 21 | 97.49 13 |
|
| MSLP-MVS++ | | | 85.00 124 | 86.03 108 | 81.90 209 | 91.84 116 | 71.56 167 | 86.75 122 | 93.02 84 | 75.95 137 | 87.12 155 | 89.39 225 | 77.98 144 | 89.40 244 | 77.46 141 | 94.78 172 | 84.75 314 |
|
| API-MVS | | | 82.28 176 | 82.61 172 | 81.30 221 | 86.29 250 | 69.79 178 | 88.71 90 | 87.67 211 | 78.42 112 | 82.15 257 | 84.15 310 | 77.98 144 | 91.59 175 | 65.39 267 | 92.75 222 | 82.51 349 |
|
| DP-MVS Recon | | | 84.05 146 | 83.22 158 | 86.52 105 | 91.73 119 | 75.27 123 | 83.23 194 | 92.40 99 | 72.04 198 | 82.04 258 | 88.33 241 | 77.91 146 | 93.95 99 | 66.17 258 | 95.12 157 | 90.34 236 |
|
| fmvsm_s_conf0.1_n_a | | | 82.58 172 | 81.93 181 | 84.50 144 | 87.68 215 | 73.35 133 | 86.14 132 | 77.70 309 | 61.64 296 | 85.02 200 | 91.62 166 | 77.75 147 | 86.24 287 | 82.79 80 | 87.07 311 | 93.91 108 |
|
| UniMVSNet (Re) | | | 86.87 88 | 86.98 93 | 86.55 104 | 93.11 76 | 68.48 193 | 83.80 178 | 92.87 88 | 80.37 83 | 89.61 112 | 91.81 161 | 77.72 148 | 94.18 90 | 75.00 171 | 98.53 15 | 96.99 24 |
|
| PCF-MVS | | 74.62 15 | 82.15 181 | 80.92 203 | 85.84 121 | 89.43 174 | 72.30 154 | 80.53 245 | 91.82 119 | 57.36 334 | 87.81 146 | 89.92 218 | 77.67 149 | 93.63 111 | 58.69 313 | 95.08 158 | 91.58 205 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| NR-MVSNet | | | 86.00 105 | 86.22 104 | 85.34 130 | 93.24 73 | 64.56 229 | 82.21 225 | 90.46 156 | 80.99 78 | 88.42 133 | 91.97 154 | 77.56 150 | 93.85 103 | 72.46 203 | 98.65 11 | 97.61 10 |
|
| 3Dnovator+ | | 83.92 2 | 89.97 45 | 89.66 53 | 90.92 31 | 91.27 135 | 81.66 62 | 91.25 38 | 94.13 34 | 88.89 11 | 88.83 124 | 94.26 77 | 77.55 151 | 95.86 22 | 84.88 58 | 95.87 130 | 95.24 58 |
|
| MVS_Test | | | 82.47 174 | 83.22 158 | 80.22 240 | 82.62 312 | 57.75 314 | 82.54 214 | 91.96 113 | 71.16 207 | 82.89 246 | 92.52 141 | 77.41 152 | 90.50 211 | 80.04 109 | 87.84 303 | 92.40 173 |
|
| fmvsm_s_conf0.5_n_a | | | 82.21 178 | 81.51 192 | 84.32 152 | 86.56 240 | 73.35 133 | 85.46 141 | 77.30 313 | 61.81 292 | 84.51 210 | 90.88 191 | 77.36 153 | 86.21 289 | 82.72 81 | 86.97 316 | 93.38 131 |
|
| EIA-MVS | | | 82.19 179 | 81.23 198 | 85.10 133 | 87.95 209 | 69.17 190 | 83.22 195 | 93.33 64 | 70.42 212 | 78.58 304 | 79.77 356 | 77.29 154 | 94.20 89 | 71.51 207 | 88.96 286 | 91.93 195 |
|
| xiu_mvs_v2_base | | | 77.19 250 | 76.75 253 | 78.52 262 | 87.01 234 | 61.30 269 | 75.55 320 | 87.12 222 | 61.24 303 | 74.45 340 | 78.79 363 | 77.20 155 | 90.93 195 | 64.62 277 | 84.80 345 | 83.32 337 |
|
| DU-MVS | | | 86.80 91 | 86.99 92 | 86.21 113 | 93.24 73 | 67.02 206 | 83.16 196 | 92.21 104 | 81.73 69 | 90.92 82 | 91.97 154 | 77.20 155 | 93.99 97 | 74.16 176 | 98.35 21 | 97.61 10 |
|
| Baseline_NR-MVSNet | | | 84.00 148 | 85.90 112 | 78.29 268 | 91.47 131 | 53.44 342 | 82.29 221 | 87.00 227 | 79.06 102 | 89.55 114 | 95.72 28 | 77.20 155 | 86.14 292 | 72.30 204 | 98.51 16 | 95.28 56 |
|
| TinyColmap | | | 81.25 196 | 82.34 177 | 77.99 274 | 85.33 268 | 60.68 283 | 82.32 220 | 88.33 202 | 71.26 205 | 86.97 162 | 92.22 152 | 77.10 158 | 86.98 274 | 62.37 290 | 95.17 154 | 86.31 297 |
|
| F-COLMAP | | | 84.97 125 | 83.42 155 | 89.63 55 | 92.39 93 | 83.40 48 | 88.83 87 | 91.92 114 | 73.19 178 | 80.18 291 | 89.15 231 | 77.04 159 | 93.28 129 | 65.82 264 | 92.28 231 | 92.21 184 |
|
| 114514_t | | | 83.10 167 | 82.54 174 | 84.77 139 | 92.90 80 | 69.10 191 | 86.65 123 | 90.62 153 | 54.66 347 | 81.46 270 | 90.81 194 | 76.98 160 | 94.38 83 | 72.62 201 | 96.18 113 | 90.82 221 |
|
| xiu_mvs_v1_base_debu | | | 80.84 202 | 80.14 216 | 82.93 191 | 88.31 201 | 71.73 161 | 79.53 257 | 87.17 216 | 65.43 264 | 79.59 293 | 82.73 326 | 76.94 161 | 90.14 222 | 73.22 193 | 88.33 294 | 86.90 291 |
|
| xiu_mvs_v1_base | | | 80.84 202 | 80.14 216 | 82.93 191 | 88.31 201 | 71.73 161 | 79.53 257 | 87.17 216 | 65.43 264 | 79.59 293 | 82.73 326 | 76.94 161 | 90.14 222 | 73.22 193 | 88.33 294 | 86.90 291 |
|
| xiu_mvs_v1_base_debi | | | 80.84 202 | 80.14 216 | 82.93 191 | 88.31 201 | 71.73 161 | 79.53 257 | 87.17 216 | 65.43 264 | 79.59 293 | 82.73 326 | 76.94 161 | 90.14 222 | 73.22 193 | 88.33 294 | 86.90 291 |
|
| pcd_1.5k_mvsjas | | | 6.41 377 | 8.55 380 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 76.94 161 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| PS-MVSNAJss | | | 88.31 69 | 87.90 76 | 89.56 57 | 93.31 70 | 77.96 92 | 87.94 101 | 91.97 112 | 70.73 210 | 94.19 21 | 96.67 11 | 76.94 161 | 94.57 76 | 83.07 74 | 96.28 108 | 96.15 33 |
|
| PS-MVSNAJ | | | 77.04 252 | 76.53 255 | 78.56 261 | 87.09 232 | 61.40 267 | 75.26 322 | 87.13 219 | 61.25 302 | 74.38 342 | 77.22 376 | 76.94 161 | 90.94 194 | 64.63 276 | 84.83 344 | 83.35 336 |
|
| MIMVSNet1 | | | 83.63 155 | 84.59 137 | 80.74 231 | 94.06 53 | 62.77 250 | 82.72 207 | 84.53 264 | 77.57 121 | 90.34 92 | 95.92 24 | 76.88 167 | 85.83 299 | 61.88 296 | 97.42 72 | 93.62 124 |
|
| 原ACMM1 | | | | | 84.60 143 | 92.81 86 | 74.01 129 | | 91.50 126 | 62.59 282 | 82.73 249 | 90.67 200 | 76.53 168 | 94.25 86 | 69.24 230 | 95.69 140 | 85.55 305 |
|
| fmvsm_s_conf0.1_n | | | 82.17 180 | 81.59 188 | 83.94 162 | 86.87 238 | 71.57 166 | 85.19 147 | 77.42 312 | 62.27 290 | 84.47 213 | 91.33 173 | 76.43 169 | 85.91 295 | 83.14 71 | 87.14 309 | 94.33 90 |
|
| fmvsm_s_conf0.5_n | | | 81.91 188 | 81.30 195 | 83.75 166 | 86.02 258 | 71.56 167 | 84.73 153 | 77.11 316 | 62.44 287 | 84.00 227 | 90.68 198 | 76.42 170 | 85.89 297 | 83.14 71 | 87.11 310 | 93.81 115 |
|
| MSDG | | | 80.06 221 | 79.99 221 | 80.25 239 | 83.91 292 | 68.04 199 | 77.51 290 | 89.19 188 | 77.65 119 | 81.94 259 | 83.45 316 | 76.37 171 | 86.31 286 | 63.31 286 | 86.59 319 | 86.41 295 |
|
| Gipuma |  | | 84.44 133 | 86.33 102 | 78.78 257 | 84.20 287 | 73.57 132 | 89.55 72 | 90.44 157 | 84.24 43 | 84.38 214 | 94.89 48 | 76.35 172 | 80.40 338 | 76.14 158 | 96.80 89 | 82.36 350 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsm_n_1920 | | | 83.60 156 | 82.89 166 | 85.74 123 | 85.22 270 | 77.74 95 | 84.12 166 | 90.48 155 | 59.87 318 | 86.45 179 | 91.12 180 | 75.65 173 | 85.89 297 | 82.28 87 | 90.87 261 | 93.58 126 |
|
| XXY-MVS | | | 74.44 283 | 76.19 258 | 69.21 344 | 84.61 278 | 52.43 350 | 71.70 349 | 77.18 315 | 60.73 309 | 80.60 281 | 90.96 187 | 75.44 174 | 69.35 372 | 56.13 328 | 88.33 294 | 85.86 302 |
|
| FMVSNet1 | | | 84.55 131 | 85.45 122 | 81.85 211 | 90.27 158 | 61.05 273 | 86.83 118 | 88.27 204 | 78.57 110 | 89.66 109 | 95.64 30 | 75.43 175 | 90.68 206 | 69.09 234 | 95.33 147 | 93.82 112 |
|
| CANet | | | 83.79 152 | 82.85 167 | 86.63 102 | 86.17 254 | 72.21 157 | 83.76 179 | 91.43 128 | 77.24 125 | 74.39 341 | 87.45 259 | 75.36 176 | 95.42 49 | 77.03 148 | 92.83 221 | 92.25 183 |
|
| ab-mvs | | | 79.67 224 | 80.56 206 | 76.99 286 | 88.48 198 | 56.93 319 | 84.70 154 | 86.06 237 | 68.95 228 | 80.78 280 | 93.08 118 | 75.30 177 | 84.62 309 | 56.78 323 | 90.90 260 | 89.43 253 |
|
| patch_mono-2 | | | 78.89 228 | 79.39 224 | 77.41 283 | 84.78 275 | 68.11 197 | 75.60 317 | 83.11 275 | 60.96 306 | 79.36 297 | 89.89 219 | 75.18 178 | 72.97 361 | 73.32 192 | 92.30 228 | 91.15 213 |
|
| DELS-MVS | | | 81.44 194 | 81.25 196 | 82.03 207 | 84.27 286 | 62.87 248 | 76.47 307 | 92.49 98 | 70.97 208 | 81.64 268 | 83.83 311 | 75.03 179 | 92.70 146 | 74.29 174 | 92.22 234 | 90.51 232 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| PAPR | | | 78.84 230 | 78.10 240 | 81.07 226 | 85.17 271 | 60.22 286 | 82.21 225 | 90.57 154 | 62.51 283 | 75.32 335 | 84.61 304 | 74.99 180 | 92.30 158 | 59.48 311 | 88.04 300 | 90.68 226 |
|
| CNLPA | | | 83.55 158 | 83.10 163 | 84.90 135 | 89.34 176 | 83.87 46 | 84.54 159 | 88.77 193 | 79.09 101 | 83.54 236 | 88.66 238 | 74.87 181 | 81.73 329 | 66.84 253 | 92.29 230 | 89.11 259 |
|
| HQP_MVS | | | 87.75 82 | 87.43 84 | 88.70 73 | 93.45 65 | 76.42 113 | 89.45 77 | 93.61 56 | 79.44 96 | 86.55 171 | 92.95 126 | 74.84 182 | 95.22 56 | 80.78 102 | 95.83 132 | 94.46 80 |
|
| plane_prior6 | | | | | | 92.61 87 | 76.54 109 | | | | | | 74.84 182 | | | | |
|
| FC-MVSNet-test | | | 85.93 107 | 87.05 91 | 82.58 199 | 92.25 99 | 56.44 323 | 85.75 137 | 93.09 78 | 77.33 123 | 91.94 66 | 94.65 56 | 74.78 184 | 93.41 126 | 75.11 170 | 98.58 13 | 97.88 7 |
|
| VDD-MVS | | | 84.23 141 | 84.58 138 | 83.20 184 | 91.17 139 | 65.16 225 | 83.25 192 | 84.97 259 | 79.79 90 | 87.18 154 | 94.27 74 | 74.77 185 | 90.89 198 | 69.24 230 | 96.54 96 | 93.55 130 |
|
| BH-untuned | | | 80.96 201 | 80.99 201 | 80.84 230 | 88.55 197 | 68.23 194 | 80.33 248 | 88.46 197 | 72.79 185 | 86.55 171 | 86.76 271 | 74.72 186 | 91.77 173 | 61.79 297 | 88.99 285 | 82.52 348 |
|
| VPNet | | | 80.25 215 | 81.68 184 | 75.94 300 | 92.46 92 | 47.98 372 | 76.70 301 | 81.67 288 | 73.45 168 | 84.87 205 | 92.82 130 | 74.66 187 | 86.51 283 | 61.66 299 | 96.85 85 | 93.33 133 |
|
| tfpnnormal | | | 81.79 190 | 82.95 165 | 78.31 266 | 88.93 186 | 55.40 329 | 80.83 244 | 82.85 278 | 76.81 127 | 85.90 188 | 94.14 84 | 74.58 188 | 86.51 283 | 66.82 254 | 95.68 141 | 93.01 148 |
|
| KD-MVS_self_test | | | 81.93 187 | 83.14 162 | 78.30 267 | 84.75 277 | 52.75 346 | 80.37 247 | 89.42 187 | 70.24 217 | 90.26 94 | 93.39 113 | 74.55 189 | 86.77 279 | 68.61 242 | 96.64 92 | 95.38 52 |
|
| fmvsm_l_conf0.5_n | | | 82.06 183 | 81.54 191 | 83.60 171 | 83.94 290 | 73.90 130 | 83.35 189 | 86.10 236 | 58.97 320 | 83.80 230 | 90.36 206 | 74.23 190 | 86.94 275 | 82.90 77 | 90.22 272 | 89.94 244 |
|
| V42 | | | 83.47 160 | 83.37 157 | 83.75 166 | 83.16 306 | 63.33 242 | 81.31 235 | 90.23 168 | 69.51 222 | 90.91 84 | 90.81 194 | 74.16 191 | 92.29 159 | 80.06 108 | 90.22 272 | 95.62 47 |
|
| 3Dnovator | | 80.37 7 | 84.80 126 | 84.71 135 | 85.06 134 | 86.36 247 | 74.71 125 | 88.77 89 | 90.00 174 | 75.65 142 | 84.96 202 | 93.17 116 | 74.06 192 | 91.19 186 | 78.28 128 | 91.09 253 | 89.29 257 |
|
| v10 | | | 86.54 95 | 87.10 89 | 84.84 136 | 88.16 206 | 63.28 243 | 86.64 124 | 92.20 105 | 75.42 146 | 92.81 50 | 94.50 63 | 74.05 193 | 94.06 96 | 83.88 67 | 96.28 108 | 97.17 20 |
|
| 旧先验1 | | | | | | 91.97 108 | 71.77 160 | | 81.78 287 | | | 91.84 158 | 73.92 194 | | | 93.65 203 | 83.61 331 |
|
| mvs_anonymous | | | 78.13 240 | 78.76 231 | 76.23 299 | 79.24 347 | 50.31 365 | 78.69 273 | 84.82 261 | 61.60 297 | 83.09 244 | 92.82 130 | 73.89 195 | 87.01 271 | 68.33 246 | 86.41 321 | 91.37 208 |
|
| MAR-MVS | | | 80.24 216 | 78.74 232 | 84.73 140 | 86.87 238 | 78.18 88 | 85.75 137 | 87.81 210 | 65.67 263 | 77.84 309 | 78.50 365 | 73.79 196 | 90.53 210 | 61.59 300 | 90.87 261 | 85.49 307 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| VDDNet | | | 84.35 135 | 85.39 123 | 81.25 222 | 95.13 31 | 59.32 295 | 85.42 143 | 81.11 291 | 86.41 27 | 87.41 152 | 96.21 19 | 73.61 197 | 90.61 209 | 66.33 257 | 96.85 85 | 93.81 115 |
|
| FIs | | | 85.35 115 | 86.27 103 | 82.60 198 | 91.86 113 | 57.31 316 | 85.10 149 | 93.05 80 | 75.83 139 | 91.02 81 | 93.97 92 | 73.57 198 | 92.91 143 | 73.97 181 | 98.02 39 | 97.58 12 |
|
| v1144 | | | 84.54 132 | 84.72 134 | 84.00 158 | 87.67 216 | 62.55 254 | 82.97 201 | 90.93 145 | 70.32 215 | 89.80 104 | 90.99 184 | 73.50 199 | 93.48 122 | 81.69 95 | 94.65 177 | 95.97 39 |
|
| diffmvs |  | | 80.40 211 | 80.48 209 | 80.17 241 | 79.02 350 | 60.04 287 | 77.54 289 | 90.28 167 | 66.65 253 | 82.40 252 | 87.33 262 | 73.50 199 | 87.35 268 | 77.98 135 | 89.62 279 | 93.13 142 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PAPM_NR | | | 83.23 163 | 83.19 160 | 83.33 179 | 90.90 145 | 65.98 217 | 88.19 97 | 90.78 148 | 78.13 115 | 80.87 278 | 87.92 249 | 73.49 201 | 92.42 152 | 70.07 223 | 88.40 292 | 91.60 204 |
|
| v8 | | | 86.22 101 | 86.83 96 | 84.36 149 | 87.82 211 | 62.35 259 | 86.42 127 | 91.33 133 | 76.78 128 | 92.73 52 | 94.48 65 | 73.41 202 | 93.72 108 | 83.10 73 | 95.41 144 | 97.01 23 |
|
| EI-MVSNet | | | 82.61 170 | 82.42 176 | 83.20 184 | 83.25 303 | 63.66 237 | 83.50 185 | 85.07 253 | 76.06 132 | 86.55 171 | 85.10 296 | 73.41 202 | 90.25 214 | 78.15 133 | 90.67 267 | 95.68 45 |
|
| IterMVS-LS | | | 84.73 127 | 84.98 129 | 83.96 160 | 87.35 223 | 63.66 237 | 83.25 192 | 89.88 176 | 76.06 132 | 89.62 110 | 92.37 146 | 73.40 204 | 92.52 150 | 78.16 131 | 94.77 174 | 95.69 44 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MM | | | 87.64 83 | 87.15 87 | 89.09 65 | 89.51 171 | 76.39 115 | 88.68 91 | 86.76 229 | 84.54 41 | 83.58 234 | 93.78 104 | 73.36 205 | 96.48 1 | 87.98 9 | 96.21 112 | 94.41 86 |
|
| v144192 | | | 84.24 140 | 84.41 142 | 83.71 168 | 87.59 219 | 61.57 266 | 82.95 202 | 91.03 141 | 67.82 244 | 89.80 104 | 90.49 204 | 73.28 206 | 93.51 121 | 81.88 94 | 94.89 167 | 96.04 38 |
|
| BH-RMVSNet | | | 80.53 207 | 80.22 214 | 81.49 219 | 87.19 227 | 66.21 215 | 77.79 285 | 86.23 234 | 74.21 157 | 83.69 231 | 88.50 239 | 73.25 207 | 90.75 203 | 63.18 287 | 87.90 301 | 87.52 284 |
|
| PLC |  | 73.85 16 | 82.09 182 | 80.31 210 | 87.45 90 | 90.86 147 | 80.29 69 | 85.88 134 | 90.65 151 | 68.17 237 | 76.32 320 | 86.33 276 | 73.12 208 | 92.61 149 | 61.40 301 | 90.02 275 | 89.44 252 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| OurMVSNet-221017-0 | | | 90.01 42 | 89.74 52 | 90.83 32 | 93.16 75 | 80.37 68 | 91.91 33 | 93.11 76 | 81.10 77 | 95.32 10 | 97.24 5 | 72.94 209 | 94.85 67 | 85.07 54 | 97.78 53 | 97.26 16 |
|
| WR-MVS | | | 83.56 157 | 84.40 143 | 81.06 227 | 93.43 67 | 54.88 334 | 78.67 274 | 85.02 256 | 81.24 75 | 90.74 89 | 91.56 168 | 72.85 210 | 91.08 190 | 68.00 247 | 98.04 36 | 97.23 18 |
|
| VNet | | | 79.31 225 | 80.27 211 | 76.44 294 | 87.92 210 | 53.95 338 | 75.58 319 | 84.35 265 | 74.39 156 | 82.23 255 | 90.72 196 | 72.84 211 | 84.39 312 | 60.38 307 | 93.98 193 | 90.97 216 |
|
| QAPM | | | 82.59 171 | 82.59 173 | 82.58 199 | 86.44 242 | 66.69 210 | 89.94 62 | 90.36 160 | 67.97 240 | 84.94 204 | 92.58 139 | 72.71 212 | 92.18 160 | 70.63 217 | 87.73 304 | 88.85 266 |
|
| v1192 | | | 84.57 130 | 84.69 136 | 84.21 155 | 87.75 213 | 62.88 247 | 83.02 199 | 91.43 128 | 69.08 226 | 89.98 101 | 90.89 189 | 72.70 213 | 93.62 114 | 82.41 85 | 94.97 164 | 96.13 34 |
|
| OpenMVS |  | 76.72 13 | 81.98 186 | 82.00 180 | 81.93 208 | 84.42 282 | 68.22 195 | 88.50 94 | 89.48 185 | 66.92 250 | 81.80 265 | 91.86 156 | 72.59 214 | 90.16 219 | 71.19 210 | 91.25 252 | 87.40 286 |
|
| TSAR-MVS + GP. | | | 83.95 149 | 82.69 170 | 87.72 86 | 89.27 178 | 81.45 63 | 83.72 180 | 81.58 290 | 74.73 152 | 85.66 190 | 86.06 281 | 72.56 215 | 92.69 147 | 75.44 166 | 95.21 152 | 89.01 265 |
|
| alignmvs | | | 83.94 150 | 83.98 150 | 83.80 163 | 87.80 212 | 67.88 200 | 84.54 159 | 91.42 130 | 73.27 177 | 88.41 134 | 87.96 246 | 72.33 216 | 90.83 201 | 76.02 160 | 94.11 190 | 92.69 160 |
|
| fmvsm_l_conf0.5_n_a | | | 81.46 193 | 80.87 204 | 83.25 181 | 83.73 295 | 73.21 138 | 83.00 200 | 85.59 245 | 58.22 326 | 82.96 245 | 90.09 216 | 72.30 217 | 86.65 281 | 81.97 92 | 89.95 276 | 89.88 245 |
|
| HQP2-MVS | | | | | | | | | | | | | 72.10 218 | | | | |
|
| HQP-MVS | | | 84.61 129 | 84.06 148 | 86.27 110 | 91.19 136 | 70.66 172 | 84.77 150 | 92.68 94 | 73.30 174 | 80.55 283 | 90.17 214 | 72.10 218 | 94.61 74 | 77.30 145 | 94.47 180 | 93.56 128 |
|
| testgi | | | 72.36 298 | 74.61 271 | 65.59 363 | 80.56 335 | 42.82 393 | 68.29 368 | 73.35 344 | 66.87 251 | 81.84 262 | 89.93 217 | 72.08 220 | 66.92 385 | 46.05 382 | 92.54 225 | 87.01 290 |
|
| v1921920 | | | 84.23 141 | 84.37 144 | 83.79 164 | 87.64 218 | 61.71 265 | 82.91 203 | 91.20 137 | 67.94 241 | 90.06 96 | 90.34 207 | 72.04 221 | 93.59 116 | 82.32 86 | 94.91 165 | 96.07 36 |
|
| MSP-MVS | | | 89.08 62 | 88.16 73 | 91.83 18 | 95.76 17 | 86.14 21 | 92.75 16 | 93.90 45 | 78.43 111 | 89.16 119 | 92.25 150 | 72.03 222 | 96.36 3 | 88.21 7 | 90.93 259 | 92.98 150 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| LF4IMVS | | | 82.75 169 | 81.93 181 | 85.19 131 | 82.08 313 | 80.15 70 | 85.53 140 | 88.76 194 | 68.01 238 | 85.58 192 | 87.75 252 | 71.80 223 | 86.85 277 | 74.02 180 | 93.87 197 | 88.58 268 |
|
| v1240 | | | 84.30 137 | 84.51 140 | 83.65 169 | 87.65 217 | 61.26 270 | 82.85 205 | 91.54 125 | 67.94 241 | 90.68 90 | 90.65 201 | 71.71 224 | 93.64 110 | 82.84 79 | 94.78 172 | 96.07 36 |
|
| ambc | | | | | 82.98 188 | 90.55 153 | 64.86 226 | 88.20 96 | 89.15 189 | | 89.40 117 | 93.96 95 | 71.67 225 | 91.38 183 | 78.83 122 | 96.55 95 | 92.71 159 |
|
| MVS_0304 | | | 86.35 98 | 85.92 111 | 87.66 88 | 89.21 180 | 73.16 139 | 88.40 95 | 83.63 271 | 81.27 74 | 80.87 278 | 94.12 86 | 71.49 226 | 95.71 32 | 87.79 12 | 96.50 98 | 94.11 100 |
|
| 新几何1 | | | | | 82.95 190 | 93.96 55 | 78.56 84 | | 80.24 297 | 55.45 342 | 83.93 229 | 91.08 182 | 71.19 227 | 88.33 258 | 65.84 263 | 93.07 215 | 81.95 354 |
|
| SSC-MVS | | | 77.55 246 | 81.64 185 | 65.29 366 | 90.46 154 | 20.33 411 | 73.56 337 | 68.28 371 | 85.44 32 | 88.18 140 | 94.64 59 | 70.93 228 | 81.33 331 | 71.25 208 | 92.03 236 | 94.20 92 |
|
| v148 | | | 82.31 175 | 82.48 175 | 81.81 214 | 85.59 263 | 59.66 292 | 81.47 234 | 86.02 239 | 72.85 182 | 88.05 142 | 90.65 201 | 70.73 229 | 90.91 197 | 75.15 169 | 91.79 241 | 94.87 67 |
|
| v2v482 | | | 84.09 144 | 84.24 146 | 83.62 170 | 87.13 228 | 61.40 267 | 82.71 208 | 89.71 179 | 72.19 197 | 89.55 114 | 91.41 171 | 70.70 230 | 93.20 131 | 81.02 98 | 93.76 198 | 96.25 32 |
|
| WB-MVS | | | 76.06 264 | 80.01 220 | 64.19 369 | 89.96 167 | 20.58 410 | 72.18 346 | 68.19 372 | 83.21 54 | 86.46 178 | 93.49 111 | 70.19 231 | 78.97 345 | 65.96 259 | 90.46 271 | 93.02 147 |
|
| UGNet | | | 82.78 168 | 81.64 185 | 86.21 113 | 86.20 253 | 76.24 117 | 86.86 116 | 85.68 243 | 77.07 126 | 73.76 345 | 92.82 130 | 69.64 232 | 91.82 172 | 69.04 236 | 93.69 202 | 90.56 230 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| c3_l | | | 81.64 191 | 81.59 188 | 81.79 215 | 80.86 330 | 59.15 299 | 78.61 275 | 90.18 170 | 68.36 233 | 87.20 153 | 87.11 267 | 69.39 233 | 91.62 174 | 78.16 131 | 94.43 182 | 94.60 75 |
|
| MG-MVS | | | 80.32 214 | 80.94 202 | 78.47 264 | 88.18 204 | 52.62 349 | 82.29 221 | 85.01 257 | 72.01 199 | 79.24 300 | 92.54 140 | 69.36 234 | 93.36 128 | 70.65 216 | 89.19 284 | 89.45 251 |
|
| IS-MVSNet | | | 86.66 94 | 86.82 97 | 86.17 115 | 92.05 107 | 66.87 209 | 91.21 39 | 88.64 196 | 86.30 28 | 89.60 113 | 92.59 137 | 69.22 235 | 94.91 66 | 73.89 182 | 97.89 49 | 96.72 26 |
|
| PVSNet_BlendedMVS | | | 78.80 232 | 77.84 241 | 81.65 217 | 84.43 280 | 63.41 240 | 79.49 260 | 90.44 157 | 61.70 295 | 75.43 332 | 87.07 268 | 69.11 236 | 91.44 179 | 60.68 305 | 92.24 232 | 90.11 241 |
|
| PVSNet_Blended | | | 76.49 260 | 75.40 265 | 79.76 245 | 84.43 280 | 63.41 240 | 75.14 323 | 90.44 157 | 57.36 334 | 75.43 332 | 78.30 366 | 69.11 236 | 91.44 179 | 60.68 305 | 87.70 305 | 84.42 319 |
|
| BH-w/o | | | 76.57 258 | 76.07 260 | 78.10 271 | 86.88 237 | 65.92 218 | 77.63 287 | 86.33 232 | 65.69 262 | 80.89 277 | 79.95 353 | 68.97 238 | 90.74 204 | 53.01 351 | 85.25 333 | 77.62 378 |
|
| MVS | | | 73.21 292 | 72.59 294 | 75.06 307 | 80.97 327 | 60.81 281 | 81.64 232 | 85.92 241 | 46.03 383 | 71.68 355 | 77.54 371 | 68.47 239 | 89.77 234 | 55.70 331 | 85.39 330 | 74.60 384 |
|
| miper_ehance_all_eth | | | 80.34 213 | 80.04 219 | 81.24 224 | 79.82 340 | 58.95 301 | 77.66 286 | 89.66 180 | 65.75 261 | 85.99 187 | 85.11 295 | 68.29 240 | 91.42 181 | 76.03 159 | 92.03 236 | 93.33 133 |
|
| Anonymous202405211 | | | 80.51 208 | 81.19 199 | 78.49 263 | 88.48 198 | 57.26 317 | 76.63 303 | 82.49 281 | 81.21 76 | 84.30 220 | 92.24 151 | 67.99 241 | 86.24 287 | 62.22 291 | 95.13 155 | 91.98 194 |
|
| testdata | | | | | 79.54 250 | 92.87 81 | 72.34 153 | | 80.14 298 | 59.91 317 | 85.47 195 | 91.75 164 | 67.96 242 | 85.24 303 | 68.57 244 | 92.18 235 | 81.06 367 |
|
| DPM-MVS | | | 80.10 220 | 79.18 226 | 82.88 194 | 90.71 150 | 69.74 179 | 78.87 271 | 90.84 146 | 60.29 313 | 75.64 331 | 85.92 284 | 67.28 243 | 93.11 135 | 71.24 209 | 91.79 241 | 85.77 303 |
|
| PVSNet_Blended_VisFu | | | 81.55 192 | 80.49 208 | 84.70 142 | 91.58 124 | 73.24 137 | 84.21 163 | 91.67 123 | 62.86 281 | 80.94 276 | 87.16 265 | 67.27 244 | 92.87 144 | 69.82 226 | 88.94 287 | 87.99 277 |
|
| MDA-MVSNet-bldmvs | | | 77.47 247 | 76.90 252 | 79.16 254 | 79.03 349 | 64.59 227 | 66.58 376 | 75.67 326 | 73.15 179 | 88.86 122 | 88.99 233 | 66.94 245 | 81.23 332 | 64.71 274 | 88.22 299 | 91.64 203 |
|
| CL-MVSNet_self_test | | | 76.81 255 | 77.38 245 | 75.12 306 | 86.90 236 | 51.34 357 | 73.20 341 | 80.63 296 | 68.30 235 | 81.80 265 | 88.40 240 | 66.92 246 | 80.90 333 | 55.35 335 | 94.90 166 | 93.12 144 |
|
| test222 | | | | | | 93.31 70 | 76.54 109 | 79.38 261 | 77.79 308 | 52.59 356 | 82.36 253 | 90.84 193 | 66.83 247 | | | 91.69 243 | 81.25 362 |
|
| TR-MVS | | | 76.77 256 | 75.79 261 | 79.72 246 | 86.10 257 | 65.79 219 | 77.14 294 | 83.02 276 | 65.20 270 | 81.40 271 | 82.10 331 | 66.30 248 | 90.73 205 | 55.57 332 | 85.27 332 | 82.65 343 |
|
| OpenMVS_ROB |  | 70.19 17 | 77.77 245 | 77.46 243 | 78.71 259 | 84.39 283 | 61.15 271 | 81.18 239 | 82.52 280 | 62.45 286 | 83.34 239 | 87.37 260 | 66.20 249 | 88.66 255 | 64.69 275 | 85.02 338 | 86.32 296 |
|
| EPP-MVSNet | | | 85.47 113 | 85.04 128 | 86.77 101 | 91.52 129 | 69.37 184 | 91.63 36 | 87.98 209 | 81.51 72 | 87.05 161 | 91.83 159 | 66.18 250 | 95.29 53 | 70.75 214 | 96.89 84 | 95.64 46 |
|
| mvsmamba | | | 87.87 78 | 87.23 86 | 89.78 51 | 92.31 98 | 76.51 112 | 91.09 42 | 91.87 116 | 72.61 188 | 92.16 60 | 95.23 41 | 66.01 251 | 95.59 37 | 86.02 48 | 97.78 53 | 97.24 17 |
|
| SixPastTwentyTwo | | | 87.20 86 | 87.45 83 | 86.45 106 | 92.52 90 | 69.19 189 | 87.84 103 | 88.05 207 | 81.66 70 | 94.64 14 | 96.53 14 | 65.94 252 | 94.75 69 | 83.02 76 | 96.83 87 | 95.41 51 |
|
| PatchMatch-RL | | | 74.48 281 | 73.22 286 | 78.27 269 | 87.70 214 | 85.26 34 | 75.92 315 | 70.09 364 | 64.34 274 | 76.09 324 | 81.25 342 | 65.87 253 | 78.07 348 | 53.86 343 | 83.82 351 | 71.48 387 |
|
| bld_raw_dy_0_64 | | | 81.25 196 | 81.17 200 | 81.49 219 | 85.55 264 | 60.85 279 | 86.36 128 | 95.45 9 | 57.08 336 | 90.81 88 | 82.69 329 | 65.85 254 | 93.91 101 | 70.37 221 | 96.34 105 | 89.72 246 |
|
| WB-MVSnew | | | 68.72 332 | 69.01 326 | 67.85 353 | 83.22 305 | 43.98 389 | 74.93 325 | 65.98 381 | 55.09 343 | 73.83 344 | 79.11 359 | 65.63 255 | 71.89 365 | 38.21 398 | 85.04 337 | 87.69 283 |
|
| EPNet | | | 80.37 212 | 78.41 237 | 86.23 111 | 76.75 364 | 73.28 135 | 87.18 111 | 77.45 311 | 76.24 131 | 68.14 373 | 88.93 234 | 65.41 256 | 93.85 103 | 69.47 228 | 96.12 117 | 91.55 206 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| RRT_MVS | | | 88.30 70 | 87.83 77 | 89.70 52 | 93.62 63 | 75.70 121 | 92.36 26 | 89.06 191 | 77.34 122 | 93.63 35 | 95.83 25 | 65.40 257 | 95.90 15 | 85.01 57 | 98.23 27 | 97.49 13 |
|
| FA-MVS(test-final) | | | 83.13 166 | 83.02 164 | 83.43 176 | 86.16 256 | 66.08 216 | 88.00 99 | 88.36 200 | 75.55 143 | 85.02 200 | 92.75 134 | 65.12 258 | 92.50 151 | 74.94 172 | 91.30 251 | 91.72 199 |
|
| PM-MVS | | | 80.20 217 | 79.00 227 | 83.78 165 | 88.17 205 | 86.66 15 | 81.31 235 | 66.81 380 | 69.64 221 | 88.33 136 | 90.19 212 | 64.58 259 | 83.63 320 | 71.99 206 | 90.03 274 | 81.06 367 |
|
| miper_enhance_ethall | | | 77.83 242 | 76.93 251 | 80.51 235 | 76.15 370 | 58.01 311 | 75.47 321 | 88.82 192 | 58.05 328 | 83.59 233 | 80.69 344 | 64.41 260 | 91.20 185 | 73.16 199 | 92.03 236 | 92.33 177 |
|
| eth_miper_zixun_eth | | | 80.84 202 | 80.22 214 | 82.71 196 | 81.41 322 | 60.98 276 | 77.81 284 | 90.14 171 | 67.31 248 | 86.95 163 | 87.24 264 | 64.26 261 | 92.31 157 | 75.23 168 | 91.61 245 | 94.85 71 |
|
| test20.03 | | | 73.75 287 | 74.59 273 | 71.22 332 | 81.11 326 | 51.12 361 | 70.15 362 | 72.10 353 | 70.42 212 | 80.28 289 | 91.50 169 | 64.21 262 | 74.72 360 | 46.96 379 | 94.58 178 | 87.82 282 |
|
| iter_conf05_11 | | | 78.40 239 | 77.29 248 | 81.71 216 | 85.55 264 | 60.95 278 | 77.22 293 | 86.90 228 | 60.10 316 | 75.79 328 | 81.73 337 | 64.08 263 | 94.47 82 | 70.37 221 | 93.92 194 | 89.72 246 |
|
| cascas | | | 76.29 263 | 74.81 270 | 80.72 233 | 84.47 279 | 62.94 246 | 73.89 335 | 87.34 213 | 55.94 340 | 75.16 337 | 76.53 381 | 63.97 264 | 91.16 187 | 65.00 271 | 90.97 258 | 88.06 275 |
|
| TAMVS | | | 78.08 241 | 76.36 256 | 83.23 182 | 90.62 151 | 72.87 140 | 79.08 267 | 80.01 299 | 61.72 294 | 81.35 272 | 86.92 270 | 63.96 265 | 88.78 253 | 50.61 361 | 93.01 217 | 88.04 276 |
|
| GBi-Net | | | 82.02 184 | 82.07 178 | 81.85 211 | 86.38 244 | 61.05 273 | 86.83 118 | 88.27 204 | 72.43 189 | 86.00 184 | 95.64 30 | 63.78 266 | 90.68 206 | 65.95 260 | 93.34 207 | 93.82 112 |
|
| test1 | | | 82.02 184 | 82.07 178 | 81.85 211 | 86.38 244 | 61.05 273 | 86.83 118 | 88.27 204 | 72.43 189 | 86.00 184 | 95.64 30 | 63.78 266 | 90.68 206 | 65.95 260 | 93.34 207 | 93.82 112 |
|
| FMVSNet2 | | | 81.31 195 | 81.61 187 | 80.41 237 | 86.38 244 | 58.75 306 | 83.93 173 | 86.58 231 | 72.43 189 | 87.65 148 | 92.98 123 | 63.78 266 | 90.22 217 | 66.86 251 | 93.92 194 | 92.27 181 |
|
| USDC | | | 76.63 257 | 76.73 254 | 76.34 296 | 83.46 297 | 57.20 318 | 80.02 251 | 88.04 208 | 52.14 361 | 83.65 232 | 91.25 175 | 63.24 269 | 86.65 281 | 54.66 340 | 94.11 190 | 85.17 309 |
|
| DIV-MVS_self_test | | | 80.43 209 | 80.23 212 | 81.02 228 | 79.99 338 | 59.25 296 | 77.07 296 | 87.02 224 | 67.38 245 | 86.19 180 | 89.22 228 | 63.09 270 | 90.16 219 | 76.32 154 | 95.80 135 | 93.66 120 |
|
| cl____ | | | 80.42 210 | 80.23 212 | 81.02 228 | 79.99 338 | 59.25 296 | 77.07 296 | 87.02 224 | 67.37 246 | 86.18 182 | 89.21 229 | 63.08 271 | 90.16 219 | 76.31 155 | 95.80 135 | 93.65 122 |
|
| h-mvs33 | | | 84.25 139 | 82.76 168 | 88.72 71 | 91.82 118 | 82.60 56 | 84.00 170 | 84.98 258 | 71.27 203 | 86.70 167 | 90.55 203 | 63.04 272 | 93.92 100 | 78.26 129 | 94.20 188 | 89.63 249 |
|
| hse-mvs2 | | | 83.47 160 | 81.81 183 | 88.47 75 | 91.03 142 | 82.27 57 | 82.61 209 | 83.69 269 | 71.27 203 | 86.70 167 | 86.05 282 | 63.04 272 | 92.41 153 | 78.26 129 | 93.62 205 | 90.71 224 |
|
| new-patchmatchnet | | | 70.10 318 | 73.37 285 | 60.29 379 | 81.23 325 | 16.95 412 | 59.54 389 | 74.62 331 | 62.93 280 | 80.97 274 | 87.93 248 | 62.83 274 | 71.90 364 | 55.24 336 | 95.01 163 | 92.00 192 |
|
| K. test v3 | | | 85.14 119 | 84.73 132 | 86.37 107 | 91.13 140 | 69.63 182 | 85.45 142 | 76.68 320 | 84.06 45 | 92.44 57 | 96.99 8 | 62.03 275 | 94.65 72 | 80.58 105 | 93.24 211 | 94.83 72 |
|
| lessismore_v0 | | | | | 85.95 117 | 91.10 141 | 70.99 171 | | 70.91 362 | | 91.79 67 | 94.42 69 | 61.76 276 | 92.93 141 | 79.52 117 | 93.03 216 | 93.93 106 |
|
| 1314 | | | 73.22 291 | 72.56 296 | 75.20 305 | 80.41 337 | 57.84 312 | 81.64 232 | 85.36 247 | 51.68 364 | 73.10 348 | 76.65 380 | 61.45 277 | 85.19 304 | 63.54 283 | 79.21 376 | 82.59 344 |
|
| Syy-MVS | | | 69.40 327 | 70.03 318 | 67.49 356 | 81.72 317 | 38.94 398 | 71.00 354 | 61.99 388 | 61.38 299 | 70.81 360 | 72.36 391 | 61.37 278 | 79.30 342 | 64.50 279 | 85.18 334 | 84.22 321 |
|
| CANet_DTU | | | 77.81 244 | 77.05 249 | 80.09 242 | 81.37 323 | 59.90 290 | 83.26 191 | 88.29 203 | 69.16 225 | 67.83 376 | 83.72 312 | 60.93 279 | 89.47 238 | 69.22 232 | 89.70 278 | 90.88 219 |
|
| pmmvs-eth3d | | | 78.42 238 | 77.04 250 | 82.57 201 | 87.44 222 | 74.41 127 | 80.86 243 | 79.67 300 | 55.68 341 | 84.69 208 | 90.31 209 | 60.91 280 | 85.42 302 | 62.20 292 | 91.59 246 | 87.88 280 |
|
| UnsupCasMVSNet_eth | | | 71.63 305 | 72.30 298 | 69.62 341 | 76.47 367 | 52.70 348 | 70.03 363 | 80.97 293 | 59.18 319 | 79.36 297 | 88.21 243 | 60.50 281 | 69.12 373 | 58.33 317 | 77.62 383 | 87.04 289 |
|
| IterMVS-SCA-FT | | | 80.64 206 | 79.41 223 | 84.34 151 | 83.93 291 | 69.66 181 | 76.28 309 | 81.09 292 | 72.43 189 | 86.47 177 | 90.19 212 | 60.46 282 | 93.15 134 | 77.45 142 | 86.39 322 | 90.22 237 |
|
| SCA | | | 73.32 289 | 72.57 295 | 75.58 304 | 81.62 319 | 55.86 326 | 78.89 270 | 71.37 359 | 61.73 293 | 74.93 338 | 83.42 317 | 60.46 282 | 87.01 271 | 58.11 319 | 82.63 362 | 83.88 325 |
|
| jason | | | 77.42 248 | 75.75 262 | 82.43 204 | 87.10 231 | 69.27 185 | 77.99 281 | 81.94 286 | 51.47 365 | 77.84 309 | 85.07 299 | 60.32 284 | 89.00 247 | 70.74 215 | 89.27 283 | 89.03 263 |
| jason: jason. |
| 1112_ss | | | 74.82 278 | 73.74 279 | 78.04 273 | 89.57 169 | 60.04 287 | 76.49 306 | 87.09 223 | 54.31 348 | 73.66 346 | 79.80 354 | 60.25 285 | 86.76 280 | 58.37 315 | 84.15 349 | 87.32 287 |
|
| HY-MVS | | 64.64 18 | 73.03 293 | 72.47 297 | 74.71 308 | 83.36 301 | 54.19 336 | 82.14 228 | 81.96 285 | 56.76 339 | 69.57 368 | 86.21 280 | 60.03 286 | 84.83 308 | 49.58 367 | 82.65 360 | 85.11 310 |
|
| Anonymous20231206 | | | 71.38 308 | 71.88 300 | 69.88 339 | 86.31 248 | 54.37 335 | 70.39 360 | 74.62 331 | 52.57 357 | 76.73 316 | 88.76 235 | 59.94 287 | 72.06 363 | 44.35 386 | 93.23 212 | 83.23 339 |
|
| IterMVS | | | 76.91 253 | 76.34 257 | 78.64 260 | 80.91 328 | 64.03 234 | 76.30 308 | 79.03 303 | 64.88 272 | 83.11 242 | 89.16 230 | 59.90 288 | 84.46 310 | 68.61 242 | 85.15 336 | 87.42 285 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| YYNet1 | | | 70.06 319 | 70.44 312 | 68.90 346 | 73.76 385 | 53.42 343 | 58.99 392 | 67.20 376 | 58.42 324 | 87.10 157 | 85.39 292 | 59.82 289 | 67.32 382 | 59.79 309 | 83.50 353 | 85.96 299 |
|
| MDA-MVSNet_test_wron | | | 70.05 320 | 70.44 312 | 68.88 347 | 73.84 384 | 53.47 341 | 58.93 393 | 67.28 375 | 58.43 323 | 87.09 158 | 85.40 291 | 59.80 290 | 67.25 383 | 59.66 310 | 83.54 352 | 85.92 301 |
|
| PMMVS | | | 61.65 359 | 60.38 366 | 65.47 365 | 65.40 408 | 69.26 186 | 63.97 382 | 61.73 392 | 36.80 403 | 60.11 397 | 68.43 396 | 59.42 291 | 66.35 387 | 48.97 370 | 78.57 379 | 60.81 398 |
|
| CDS-MVSNet | | | 77.32 249 | 75.40 265 | 83.06 186 | 89.00 184 | 72.48 151 | 77.90 283 | 82.17 284 | 60.81 307 | 78.94 302 | 83.49 315 | 59.30 292 | 88.76 254 | 54.64 341 | 92.37 227 | 87.93 279 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| UnsupCasMVSNet_bld | | | 69.21 329 | 69.68 321 | 67.82 354 | 79.42 344 | 51.15 360 | 67.82 372 | 75.79 324 | 54.15 349 | 77.47 315 | 85.36 294 | 59.26 293 | 70.64 368 | 48.46 372 | 79.35 374 | 81.66 356 |
|
| Anonymous20240521 | | | 80.18 218 | 81.25 196 | 76.95 287 | 83.15 307 | 60.84 280 | 82.46 216 | 85.99 240 | 68.76 230 | 86.78 164 | 93.73 107 | 59.13 294 | 77.44 350 | 73.71 186 | 97.55 67 | 92.56 164 |
|
| WTY-MVS | | | 67.91 335 | 68.35 332 | 66.58 360 | 80.82 331 | 48.12 371 | 65.96 377 | 72.60 348 | 53.67 351 | 71.20 357 | 81.68 339 | 58.97 295 | 69.06 374 | 48.57 371 | 81.67 364 | 82.55 346 |
|
| cl22 | | | 78.97 227 | 78.21 239 | 81.24 224 | 77.74 354 | 59.01 300 | 77.46 292 | 87.13 219 | 65.79 258 | 84.32 217 | 85.10 296 | 58.96 296 | 90.88 199 | 75.36 167 | 92.03 236 | 93.84 110 |
|
| MVSFormer | | | 82.23 177 | 81.57 190 | 84.19 157 | 85.54 266 | 69.26 186 | 91.98 31 | 90.08 172 | 71.54 201 | 76.23 321 | 85.07 299 | 58.69 297 | 94.27 84 | 86.26 40 | 88.77 288 | 89.03 263 |
|
| lupinMVS | | | 76.37 262 | 74.46 274 | 82.09 206 | 85.54 266 | 69.26 186 | 76.79 299 | 80.77 295 | 50.68 372 | 76.23 321 | 82.82 324 | 58.69 297 | 88.94 248 | 69.85 225 | 88.77 288 | 88.07 273 |
|
| Test_1112_low_res | | | 73.90 286 | 73.08 287 | 76.35 295 | 90.35 156 | 55.95 324 | 73.40 340 | 86.17 235 | 50.70 371 | 73.14 347 | 85.94 283 | 58.31 299 | 85.90 296 | 56.51 325 | 83.22 354 | 87.20 288 |
|
| test_yl | | | 78.71 234 | 78.51 235 | 79.32 252 | 84.32 284 | 58.84 303 | 78.38 276 | 85.33 248 | 75.99 135 | 82.49 250 | 86.57 272 | 58.01 300 | 90.02 228 | 62.74 288 | 92.73 223 | 89.10 260 |
|
| DCV-MVSNet | | | 78.71 234 | 78.51 235 | 79.32 252 | 84.32 284 | 58.84 303 | 78.38 276 | 85.33 248 | 75.99 135 | 82.49 250 | 86.57 272 | 58.01 300 | 90.02 228 | 62.74 288 | 92.73 223 | 89.10 260 |
|
| sss | | | 66.92 339 | 67.26 337 | 65.90 362 | 77.23 359 | 51.10 362 | 64.79 379 | 71.72 357 | 52.12 362 | 70.13 365 | 80.18 351 | 57.96 302 | 65.36 391 | 50.21 362 | 81.01 370 | 81.25 362 |
|
| ppachtmachnet_test | | | 74.73 280 | 74.00 278 | 76.90 289 | 80.71 333 | 56.89 321 | 71.53 352 | 78.42 305 | 58.24 325 | 79.32 299 | 82.92 323 | 57.91 303 | 84.26 314 | 65.60 266 | 91.36 250 | 89.56 250 |
|
| MVP-Stereo | | | 75.81 267 | 73.51 283 | 82.71 196 | 89.35 175 | 73.62 131 | 80.06 249 | 85.20 250 | 60.30 312 | 73.96 343 | 87.94 247 | 57.89 304 | 89.45 240 | 52.02 355 | 74.87 389 | 85.06 311 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| PAPM | | | 71.77 303 | 70.06 317 | 76.92 288 | 86.39 243 | 53.97 337 | 76.62 304 | 86.62 230 | 53.44 352 | 63.97 392 | 84.73 303 | 57.79 305 | 92.34 156 | 39.65 393 | 81.33 368 | 84.45 318 |
|
| LFMVS | | | 80.15 219 | 80.56 206 | 78.89 255 | 89.19 181 | 55.93 325 | 85.22 146 | 73.78 340 | 82.96 58 | 84.28 221 | 92.72 135 | 57.38 306 | 90.07 226 | 63.80 281 | 95.75 138 | 90.68 226 |
|
| Vis-MVSNet (Re-imp) | | | 77.82 243 | 77.79 242 | 77.92 275 | 88.82 188 | 51.29 359 | 83.28 190 | 71.97 354 | 74.04 158 | 82.23 255 | 89.78 220 | 57.38 306 | 89.41 243 | 57.22 322 | 95.41 144 | 93.05 146 |
|
| CHOSEN 1792x2688 | | | 72.45 297 | 70.56 310 | 78.13 270 | 90.02 166 | 63.08 245 | 68.72 367 | 83.16 274 | 42.99 393 | 75.92 326 | 85.46 289 | 57.22 308 | 85.18 305 | 49.87 365 | 81.67 364 | 86.14 298 |
|
| mvsany_test1 | | | 58.48 368 | 56.47 373 | 64.50 368 | 65.90 407 | 68.21 196 | 56.95 395 | 42.11 410 | 38.30 401 | 65.69 383 | 77.19 377 | 56.96 309 | 59.35 400 | 46.16 380 | 58.96 403 | 65.93 394 |
|
| miper_lstm_enhance | | | 76.45 261 | 76.10 259 | 77.51 281 | 76.72 365 | 60.97 277 | 64.69 380 | 85.04 255 | 63.98 276 | 83.20 241 | 88.22 242 | 56.67 310 | 78.79 347 | 73.22 193 | 93.12 214 | 92.78 155 |
|
| our_test_3 | | | 71.85 302 | 71.59 302 | 72.62 323 | 80.71 333 | 53.78 339 | 69.72 364 | 71.71 358 | 58.80 322 | 78.03 306 | 80.51 349 | 56.61 311 | 78.84 346 | 62.20 292 | 86.04 327 | 85.23 308 |
|
| baseline1 | | | 73.26 290 | 73.54 282 | 72.43 326 | 84.92 273 | 47.79 373 | 79.89 253 | 74.00 336 | 65.93 256 | 78.81 303 | 86.28 279 | 56.36 312 | 81.63 330 | 56.63 324 | 79.04 378 | 87.87 281 |
|
| pmmvs4 | | | 74.92 276 | 72.98 289 | 80.73 232 | 84.95 272 | 71.71 164 | 76.23 310 | 77.59 310 | 52.83 355 | 77.73 313 | 86.38 274 | 56.35 313 | 84.97 306 | 57.72 321 | 87.05 312 | 85.51 306 |
|
| MVE |  | 40.22 23 | 51.82 372 | 50.47 375 | 55.87 383 | 62.66 410 | 51.91 353 | 31.61 402 | 39.28 411 | 40.65 396 | 50.76 405 | 74.98 387 | 56.24 314 | 44.67 406 | 33.94 403 | 64.11 401 | 71.04 389 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| dmvs_testset | | | 60.59 366 | 62.54 361 | 54.72 385 | 77.26 358 | 27.74 408 | 74.05 332 | 61.00 395 | 60.48 311 | 65.62 384 | 67.03 398 | 55.93 315 | 68.23 380 | 32.07 405 | 69.46 399 | 68.17 392 |
|
| N_pmnet | | | 70.20 316 | 68.80 330 | 74.38 310 | 80.91 328 | 84.81 39 | 59.12 391 | 76.45 322 | 55.06 344 | 75.31 336 | 82.36 330 | 55.74 316 | 54.82 401 | 47.02 377 | 87.24 308 | 83.52 332 |
|
| MS-PatchMatch | | | 70.93 312 | 70.22 315 | 73.06 318 | 81.85 316 | 62.50 255 | 73.82 336 | 77.90 307 | 52.44 358 | 75.92 326 | 81.27 341 | 55.67 317 | 81.75 328 | 55.37 334 | 77.70 382 | 74.94 383 |
|
| DSMNet-mixed | | | 60.98 364 | 61.61 364 | 59.09 382 | 72.88 391 | 45.05 386 | 74.70 327 | 46.61 408 | 26.20 404 | 65.34 385 | 90.32 208 | 55.46 318 | 63.12 395 | 41.72 390 | 81.30 369 | 69.09 391 |
|
| pmmvs5 | | | 70.73 313 | 70.07 316 | 72.72 321 | 77.03 362 | 52.73 347 | 74.14 330 | 75.65 327 | 50.36 374 | 72.17 353 | 85.37 293 | 55.42 319 | 80.67 335 | 52.86 352 | 87.59 306 | 84.77 313 |
|
| CMPMVS |  | 59.41 20 | 75.12 273 | 73.57 281 | 79.77 244 | 75.84 373 | 67.22 202 | 81.21 238 | 82.18 283 | 50.78 370 | 76.50 317 | 87.66 254 | 55.20 320 | 82.99 323 | 62.17 294 | 90.64 270 | 89.09 262 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test_vis1_n_1920 | | | 71.30 309 | 71.58 304 | 70.47 335 | 77.58 357 | 59.99 289 | 74.25 329 | 84.22 267 | 51.06 367 | 74.85 339 | 79.10 360 | 55.10 321 | 68.83 375 | 68.86 238 | 79.20 377 | 82.58 345 |
|
| MIMVSNet | | | 71.09 310 | 71.59 302 | 69.57 342 | 87.23 225 | 50.07 366 | 78.91 269 | 71.83 355 | 60.20 315 | 71.26 356 | 91.76 163 | 55.08 322 | 76.09 354 | 41.06 391 | 87.02 314 | 82.54 347 |
|
| PVSNet_0 | | 51.08 22 | 56.10 369 | 54.97 374 | 59.48 381 | 75.12 379 | 53.28 344 | 55.16 396 | 61.89 390 | 44.30 387 | 59.16 398 | 62.48 401 | 54.22 323 | 65.91 389 | 35.40 400 | 47.01 404 | 59.25 400 |
|
| EPNet_dtu | | | 72.87 295 | 71.33 307 | 77.49 282 | 77.72 355 | 60.55 284 | 82.35 219 | 75.79 324 | 66.49 254 | 58.39 402 | 81.06 343 | 53.68 324 | 85.98 293 | 53.55 346 | 92.97 219 | 85.95 300 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PMMVS2 | | | 55.64 371 | 59.27 370 | 44.74 387 | 64.30 409 | 12.32 413 | 40.60 400 | 49.79 406 | 53.19 353 | 65.06 389 | 84.81 301 | 53.60 325 | 49.76 404 | 32.68 404 | 89.41 280 | 72.15 386 |
|
| test_vis1_rt | | | 65.64 349 | 64.09 353 | 70.31 336 | 66.09 405 | 70.20 177 | 61.16 387 | 81.60 289 | 38.65 400 | 72.87 349 | 69.66 394 | 52.84 326 | 60.04 398 | 56.16 327 | 77.77 381 | 80.68 369 |
|
| mvsany_test3 | | | 65.48 350 | 62.97 358 | 73.03 319 | 69.99 398 | 76.17 118 | 64.83 378 | 43.71 409 | 43.68 390 | 80.25 290 | 87.05 269 | 52.83 327 | 63.09 396 | 51.92 359 | 72.44 391 | 79.84 374 |
|
| HyFIR lowres test | | | 75.12 273 | 72.66 293 | 82.50 202 | 91.44 132 | 65.19 224 | 72.47 344 | 87.31 214 | 46.79 378 | 80.29 287 | 84.30 307 | 52.70 328 | 92.10 164 | 51.88 360 | 86.73 317 | 90.22 237 |
|
| dmvs_re | | | 66.81 342 | 66.98 338 | 66.28 361 | 76.87 363 | 58.68 307 | 71.66 350 | 72.24 351 | 60.29 313 | 69.52 369 | 73.53 388 | 52.38 329 | 64.40 393 | 44.90 384 | 81.44 367 | 75.76 381 |
|
| test_cas_vis1_n_1920 | | | 69.20 330 | 69.12 323 | 69.43 343 | 73.68 386 | 62.82 249 | 70.38 361 | 77.21 314 | 46.18 382 | 80.46 286 | 78.95 362 | 52.03 330 | 65.53 390 | 65.77 265 | 77.45 385 | 79.95 373 |
|
| test1111 | | | 78.53 236 | 78.85 229 | 77.56 280 | 92.22 101 | 47.49 374 | 82.61 209 | 69.24 369 | 72.43 189 | 85.28 196 | 94.20 80 | 51.91 331 | 90.07 226 | 65.36 268 | 96.45 102 | 95.11 62 |
|
| ECVR-MVS |  | | 78.44 237 | 78.63 233 | 77.88 276 | 91.85 114 | 48.95 368 | 83.68 181 | 69.91 366 | 72.30 195 | 84.26 223 | 94.20 80 | 51.89 332 | 89.82 231 | 63.58 282 | 96.02 121 | 94.87 67 |
|
| FMVSNet3 | | | 78.80 232 | 78.55 234 | 79.57 249 | 82.89 311 | 56.89 321 | 81.76 229 | 85.77 242 | 69.04 227 | 86.00 184 | 90.44 205 | 51.75 333 | 90.09 225 | 65.95 260 | 93.34 207 | 91.72 199 |
|
| D2MVS | | | 76.84 254 | 75.67 264 | 80.34 238 | 80.48 336 | 62.16 263 | 73.50 338 | 84.80 262 | 57.61 332 | 82.24 254 | 87.54 256 | 51.31 334 | 87.65 264 | 70.40 220 | 93.19 213 | 91.23 210 |
|
| AUN-MVS | | | 81.18 198 | 78.78 230 | 88.39 77 | 90.93 144 | 82.14 58 | 82.51 215 | 83.67 270 | 64.69 273 | 80.29 287 | 85.91 285 | 51.07 335 | 92.38 154 | 76.29 156 | 93.63 204 | 90.65 228 |
|
| PVSNet | | 58.17 21 | 66.41 345 | 65.63 348 | 68.75 348 | 81.96 314 | 49.88 367 | 62.19 386 | 72.51 350 | 51.03 368 | 68.04 374 | 75.34 386 | 50.84 336 | 74.77 358 | 45.82 383 | 82.96 355 | 81.60 357 |
|
| GA-MVS | | | 75.83 266 | 74.61 271 | 79.48 251 | 81.87 315 | 59.25 296 | 73.42 339 | 82.88 277 | 68.68 231 | 79.75 292 | 81.80 336 | 50.62 337 | 89.46 239 | 66.85 252 | 85.64 329 | 89.72 246 |
|
| FPMVS | | | 72.29 300 | 72.00 299 | 73.14 317 | 88.63 194 | 85.00 36 | 74.65 328 | 67.39 374 | 71.94 200 | 77.80 311 | 87.66 254 | 50.48 338 | 75.83 356 | 49.95 363 | 79.51 372 | 58.58 401 |
|
| test_fmvs3 | | | 75.72 268 | 75.20 268 | 77.27 284 | 75.01 381 | 69.47 183 | 78.93 268 | 84.88 260 | 46.67 379 | 87.08 159 | 87.84 250 | 50.44 339 | 71.62 366 | 77.42 144 | 88.53 291 | 90.72 223 |
|
| test_vis1_n | | | 70.29 315 | 69.99 319 | 71.20 333 | 75.97 372 | 66.50 212 | 76.69 302 | 80.81 294 | 44.22 388 | 75.43 332 | 77.23 375 | 50.00 340 | 68.59 376 | 66.71 255 | 82.85 359 | 78.52 377 |
|
| MVS-HIRNet | | | 61.16 362 | 62.92 359 | 55.87 383 | 79.09 348 | 35.34 404 | 71.83 348 | 57.98 401 | 46.56 380 | 59.05 399 | 91.14 179 | 49.95 341 | 76.43 353 | 38.74 395 | 71.92 393 | 55.84 402 |
|
| CVMVSNet | | | 72.62 296 | 71.41 306 | 76.28 297 | 83.25 303 | 60.34 285 | 83.50 185 | 79.02 304 | 37.77 402 | 76.33 319 | 85.10 296 | 49.60 342 | 87.41 267 | 70.54 218 | 77.54 384 | 81.08 365 |
|
| RPMNet | | | 78.88 229 | 78.28 238 | 80.68 234 | 79.58 341 | 62.64 252 | 82.58 211 | 94.16 29 | 74.80 151 | 75.72 329 | 92.59 137 | 48.69 343 | 95.56 39 | 73.48 189 | 82.91 357 | 83.85 328 |
|
| test_fmvs2 | | | 73.57 288 | 72.80 290 | 75.90 301 | 72.74 393 | 68.84 192 | 77.07 296 | 84.32 266 | 45.14 385 | 82.89 246 | 84.22 308 | 48.37 344 | 70.36 369 | 73.40 191 | 87.03 313 | 88.52 269 |
|
| tpmrst | | | 66.28 346 | 66.69 342 | 65.05 367 | 72.82 392 | 39.33 397 | 78.20 279 | 70.69 363 | 53.16 354 | 67.88 375 | 80.36 350 | 48.18 345 | 74.75 359 | 58.13 318 | 70.79 394 | 81.08 365 |
|
| CR-MVSNet | | | 74.00 285 | 73.04 288 | 76.85 291 | 79.58 341 | 62.64 252 | 82.58 211 | 76.90 317 | 50.50 373 | 75.72 329 | 92.38 143 | 48.07 346 | 84.07 316 | 68.72 241 | 82.91 357 | 83.85 328 |
|
| Patchmtry | | | 76.56 259 | 77.46 243 | 73.83 312 | 79.37 346 | 46.60 378 | 82.41 218 | 76.90 317 | 73.81 161 | 85.56 193 | 92.38 143 | 48.07 346 | 83.98 317 | 63.36 285 | 95.31 150 | 90.92 218 |
|
| test_f | | | 64.31 355 | 65.85 345 | 59.67 380 | 66.54 404 | 62.24 262 | 57.76 394 | 70.96 361 | 40.13 397 | 84.36 215 | 82.09 332 | 46.93 348 | 51.67 403 | 61.99 295 | 81.89 363 | 65.12 395 |
|
| ADS-MVSNet2 | | | 65.87 348 | 63.64 356 | 72.55 324 | 73.16 389 | 56.92 320 | 67.10 373 | 74.81 330 | 49.74 375 | 66.04 381 | 82.97 320 | 46.71 349 | 77.26 351 | 42.29 388 | 69.96 396 | 83.46 333 |
|
| ADS-MVSNet | | | 61.90 358 | 62.19 362 | 61.03 378 | 73.16 389 | 36.42 403 | 67.10 373 | 61.75 391 | 49.74 375 | 66.04 381 | 82.97 320 | 46.71 349 | 63.21 394 | 42.29 388 | 69.96 396 | 83.46 333 |
|
| PatchmatchNet |  | | 69.71 324 | 68.83 329 | 72.33 327 | 77.66 356 | 53.60 340 | 79.29 262 | 69.99 365 | 57.66 331 | 72.53 351 | 82.93 322 | 46.45 351 | 80.08 340 | 60.91 304 | 72.09 392 | 83.31 338 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| thres200 | | | 72.34 299 | 71.55 305 | 74.70 309 | 83.48 296 | 51.60 356 | 75.02 324 | 73.71 341 | 70.14 218 | 78.56 305 | 80.57 347 | 46.20 352 | 88.20 260 | 46.99 378 | 89.29 281 | 84.32 320 |
|
| sam_mvs1 | | | | | | | | | | | | | 46.11 353 | | | | 83.88 325 |
|
| tfpn200view9 | | | 74.86 277 | 74.23 276 | 76.74 292 | 86.24 251 | 52.12 351 | 79.24 264 | 73.87 338 | 73.34 172 | 81.82 263 | 84.60 305 | 46.02 354 | 88.80 250 | 51.98 356 | 90.99 255 | 89.31 255 |
|
| thres400 | | | 75.14 271 | 74.23 276 | 77.86 277 | 86.24 251 | 52.12 351 | 79.24 264 | 73.87 338 | 73.34 172 | 81.82 263 | 84.60 305 | 46.02 354 | 88.80 250 | 51.98 356 | 90.99 255 | 92.66 161 |
|
| baseline2 | | | 69.77 323 | 66.89 339 | 78.41 265 | 79.51 343 | 58.09 309 | 76.23 310 | 69.57 367 | 57.50 333 | 64.82 390 | 77.45 373 | 46.02 354 | 88.44 256 | 53.08 348 | 77.83 380 | 88.70 267 |
|
| patchmatchnet-post | | | | | | | | | | | | 81.71 338 | 45.93 357 | 87.01 271 | | | |
|
| sam_mvs | | | | | | | | | | | | | 45.92 358 | | | | |
|
| Patchmatch-RL test | | | 74.48 281 | 73.68 280 | 76.89 290 | 84.83 274 | 66.54 211 | 72.29 345 | 69.16 370 | 57.70 330 | 86.76 165 | 86.33 276 | 45.79 359 | 82.59 324 | 69.63 227 | 90.65 269 | 81.54 358 |
|
| thres100view900 | | | 75.45 269 | 75.05 269 | 76.66 293 | 87.27 224 | 51.88 354 | 81.07 240 | 73.26 345 | 75.68 141 | 83.25 240 | 86.37 275 | 45.54 360 | 88.80 250 | 51.98 356 | 90.99 255 | 89.31 255 |
|
| thres600view7 | | | 75.97 265 | 75.35 267 | 77.85 278 | 87.01 234 | 51.84 355 | 80.45 246 | 73.26 345 | 75.20 148 | 83.10 243 | 86.31 278 | 45.54 360 | 89.05 246 | 55.03 338 | 92.24 232 | 92.66 161 |
|
| tpm cat1 | | | 66.76 343 | 65.21 351 | 71.42 331 | 77.09 361 | 50.62 364 | 78.01 280 | 73.68 342 | 44.89 386 | 68.64 371 | 79.00 361 | 45.51 362 | 82.42 327 | 49.91 364 | 70.15 395 | 81.23 364 |
|
| test_post | | | | | | | | | | | | 3.10 408 | 45.43 363 | 77.22 352 | | | |
|
| MDTV_nov1_ep13 | | | | 68.29 333 | | 78.03 353 | 43.87 390 | 74.12 331 | 72.22 352 | 52.17 359 | 67.02 378 | 85.54 287 | 45.36 364 | 80.85 334 | 55.73 329 | 84.42 347 | |
|
| tpmvs | | | 70.16 317 | 69.56 322 | 71.96 328 | 74.71 382 | 48.13 370 | 79.63 255 | 75.45 329 | 65.02 271 | 70.26 364 | 81.88 335 | 45.34 365 | 85.68 300 | 58.34 316 | 75.39 388 | 82.08 353 |
|
| MDTV_nov1_ep13_2view | | | | | | | 27.60 409 | 70.76 358 | | 46.47 381 | 61.27 394 | | 45.20 366 | | 49.18 368 | | 83.75 330 |
|
| test_post1 | | | | | | | | 78.85 272 | | | | 3.13 407 | 45.19 367 | 80.13 339 | 58.11 319 | | |
|
| CostFormer | | | 69.98 321 | 68.68 331 | 73.87 311 | 77.14 360 | 50.72 363 | 79.26 263 | 74.51 333 | 51.94 363 | 70.97 359 | 84.75 302 | 45.16 368 | 87.49 266 | 55.16 337 | 79.23 375 | 83.40 335 |
|
| FE-MVS | | | 79.98 222 | 78.86 228 | 83.36 178 | 86.47 241 | 66.45 213 | 89.73 65 | 84.74 263 | 72.80 184 | 84.22 225 | 91.38 172 | 44.95 369 | 93.60 115 | 63.93 280 | 91.50 248 | 90.04 243 |
|
| Patchmatch-test | | | 65.91 347 | 67.38 336 | 61.48 377 | 75.51 375 | 43.21 392 | 68.84 366 | 63.79 386 | 62.48 284 | 72.80 350 | 83.42 317 | 44.89 370 | 59.52 399 | 48.27 374 | 86.45 320 | 81.70 355 |
|
| EU-MVSNet | | | 75.12 273 | 74.43 275 | 77.18 285 | 83.11 308 | 59.48 294 | 85.71 139 | 82.43 282 | 39.76 399 | 85.64 191 | 88.76 235 | 44.71 371 | 87.88 262 | 73.86 183 | 85.88 328 | 84.16 324 |
|
| PatchT | | | 70.52 314 | 72.76 292 | 63.79 371 | 79.38 345 | 33.53 405 | 77.63 287 | 65.37 383 | 73.61 165 | 71.77 354 | 92.79 133 | 44.38 372 | 75.65 357 | 64.53 278 | 85.37 331 | 82.18 351 |
|
| test_vis3_rt | | | 71.42 307 | 70.67 309 | 73.64 314 | 69.66 399 | 70.46 174 | 66.97 375 | 89.73 177 | 42.68 395 | 88.20 139 | 83.04 319 | 43.77 373 | 60.07 397 | 65.35 269 | 86.66 318 | 90.39 235 |
|
| test_fmvs1_n | | | 70.94 311 | 70.41 314 | 72.53 325 | 73.92 383 | 66.93 208 | 75.99 314 | 84.21 268 | 43.31 392 | 79.40 296 | 79.39 358 | 43.47 374 | 68.55 377 | 69.05 235 | 84.91 341 | 82.10 352 |
|
| test-LLR | | | 67.21 337 | 66.74 341 | 68.63 350 | 76.45 368 | 55.21 331 | 67.89 369 | 67.14 377 | 62.43 288 | 65.08 387 | 72.39 389 | 43.41 375 | 69.37 370 | 61.00 302 | 84.89 342 | 81.31 360 |
|
| test0.0.03 1 | | | 64.66 353 | 64.36 352 | 65.57 364 | 75.03 380 | 46.89 377 | 64.69 380 | 61.58 394 | 62.43 288 | 71.18 358 | 77.54 371 | 43.41 375 | 68.47 379 | 40.75 392 | 82.65 360 | 81.35 359 |
|
| test_fmvs1 | | | 69.57 325 | 69.05 325 | 71.14 334 | 69.15 400 | 65.77 220 | 73.98 333 | 83.32 273 | 42.83 394 | 77.77 312 | 78.27 367 | 43.39 377 | 68.50 378 | 68.39 245 | 84.38 348 | 79.15 375 |
|
| MVSTER | | | 77.09 251 | 75.70 263 | 81.25 222 | 75.27 378 | 61.08 272 | 77.49 291 | 85.07 253 | 60.78 308 | 86.55 171 | 88.68 237 | 43.14 378 | 90.25 214 | 73.69 187 | 90.67 267 | 92.42 171 |
|
| tpm | | | 67.95 334 | 68.08 335 | 67.55 355 | 78.74 352 | 43.53 391 | 75.60 317 | 67.10 379 | 54.92 345 | 72.23 352 | 88.10 244 | 42.87 379 | 75.97 355 | 52.21 354 | 80.95 371 | 83.15 340 |
|
| tpm2 | | | 68.45 333 | 66.83 340 | 73.30 316 | 78.93 351 | 48.50 369 | 79.76 254 | 71.76 356 | 47.50 377 | 69.92 366 | 83.60 313 | 42.07 380 | 88.40 257 | 48.44 373 | 79.51 372 | 83.01 342 |
|
| EMVS | | | 61.10 363 | 60.81 365 | 61.99 374 | 65.96 406 | 55.86 326 | 53.10 398 | 58.97 399 | 67.06 249 | 56.89 403 | 63.33 400 | 40.98 381 | 67.03 384 | 54.79 339 | 86.18 325 | 63.08 396 |
|
| new_pmnet | | | 55.69 370 | 57.66 371 | 49.76 386 | 75.47 376 | 30.59 406 | 59.56 388 | 51.45 405 | 43.62 391 | 62.49 393 | 75.48 385 | 40.96 382 | 49.15 405 | 37.39 399 | 72.52 390 | 69.55 390 |
|
| E-PMN | | | 61.59 360 | 61.62 363 | 61.49 376 | 66.81 403 | 55.40 329 | 53.77 397 | 60.34 396 | 66.80 252 | 58.90 400 | 65.50 399 | 40.48 383 | 66.12 388 | 55.72 330 | 86.25 324 | 62.95 397 |
|
| EPMVS | | | 62.47 356 | 62.63 360 | 62.01 373 | 70.63 397 | 38.74 399 | 74.76 326 | 52.86 404 | 53.91 350 | 67.71 377 | 80.01 352 | 39.40 384 | 66.60 386 | 55.54 333 | 68.81 400 | 80.68 369 |
|
| tmp_tt | | | 20.25 375 | 24.50 378 | 7.49 390 | 4.47 413 | 8.70 414 | 34.17 401 | 25.16 413 | 1.00 408 | 32.43 407 | 18.49 405 | 39.37 385 | 9.21 409 | 21.64 407 | 43.75 405 | 4.57 405 |
|
| thisisatest0530 | | | 79.07 226 | 77.33 247 | 84.26 154 | 87.13 228 | 64.58 228 | 83.66 182 | 75.95 323 | 68.86 229 | 85.22 197 | 87.36 261 | 38.10 386 | 93.57 119 | 75.47 165 | 94.28 186 | 94.62 74 |
|
| ET-MVSNet_ETH3D | | | 75.28 270 | 72.77 291 | 82.81 195 | 83.03 309 | 68.11 197 | 77.09 295 | 76.51 321 | 60.67 310 | 77.60 314 | 80.52 348 | 38.04 387 | 91.15 188 | 70.78 213 | 90.68 266 | 89.17 258 |
|
| tttt0517 | | | 81.07 199 | 79.58 222 | 85.52 127 | 88.99 185 | 66.45 213 | 87.03 114 | 75.51 328 | 73.76 162 | 88.32 137 | 90.20 211 | 37.96 388 | 94.16 94 | 79.36 119 | 95.13 155 | 95.93 42 |
|
| thisisatest0515 | | | 73.00 294 | 70.52 311 | 80.46 236 | 81.45 321 | 59.90 290 | 73.16 342 | 74.31 335 | 57.86 329 | 76.08 325 | 77.78 369 | 37.60 389 | 92.12 163 | 65.00 271 | 91.45 249 | 89.35 254 |
|
| FMVSNet5 | | | 72.10 301 | 71.69 301 | 73.32 315 | 81.57 320 | 53.02 345 | 76.77 300 | 78.37 306 | 63.31 277 | 76.37 318 | 91.85 157 | 36.68 390 | 78.98 344 | 47.87 375 | 92.45 226 | 87.95 278 |
|
| dp | | | 60.70 365 | 60.29 368 | 61.92 375 | 72.04 395 | 38.67 400 | 70.83 357 | 64.08 385 | 51.28 366 | 60.75 395 | 77.28 374 | 36.59 391 | 71.58 367 | 47.41 376 | 62.34 402 | 75.52 382 |
|
| CHOSEN 280x420 | | | 59.08 367 | 56.52 372 | 66.76 359 | 76.51 366 | 64.39 231 | 49.62 399 | 59.00 398 | 43.86 389 | 55.66 404 | 68.41 397 | 35.55 392 | 68.21 381 | 43.25 387 | 76.78 387 | 67.69 393 |
|
| testing91 | | | 69.94 322 | 68.99 327 | 72.80 320 | 83.81 294 | 45.89 381 | 71.57 351 | 73.64 343 | 68.24 236 | 70.77 362 | 77.82 368 | 34.37 393 | 84.44 311 | 53.64 345 | 87.00 315 | 88.07 273 |
|
| IB-MVS | | 62.13 19 | 71.64 304 | 68.97 328 | 79.66 248 | 80.80 332 | 62.26 261 | 73.94 334 | 76.90 317 | 63.27 278 | 68.63 372 | 76.79 378 | 33.83 394 | 91.84 171 | 59.28 312 | 87.26 307 | 84.88 312 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| JIA-IIPM | | | 69.41 326 | 66.64 343 | 77.70 279 | 73.19 388 | 71.24 169 | 75.67 316 | 65.56 382 | 70.42 212 | 65.18 386 | 92.97 125 | 33.64 395 | 83.06 321 | 53.52 347 | 69.61 398 | 78.79 376 |
|
| testing99 | | | 69.27 328 | 68.15 334 | 72.63 322 | 83.29 302 | 45.45 383 | 71.15 353 | 71.08 360 | 67.34 247 | 70.43 363 | 77.77 370 | 32.24 396 | 84.35 313 | 53.72 344 | 86.33 323 | 88.10 272 |
|
| iter_conf05 | | | 78.81 231 | 77.35 246 | 83.21 183 | 82.98 310 | 60.75 282 | 84.09 167 | 88.34 201 | 63.12 279 | 84.25 224 | 89.48 224 | 31.41 397 | 94.51 81 | 76.64 151 | 95.83 132 | 94.38 88 |
|
| testing11 | | | 67.38 336 | 65.93 344 | 71.73 330 | 83.37 300 | 46.60 378 | 70.95 356 | 69.40 368 | 62.47 285 | 66.14 379 | 76.66 379 | 31.22 398 | 84.10 315 | 49.10 369 | 84.10 350 | 84.49 316 |
|
| DeepMVS_CX |  | | | | 24.13 389 | 32.95 411 | 29.49 407 | | 21.63 414 | 12.07 405 | 37.95 406 | 45.07 404 | 30.84 399 | 19.21 408 | 17.94 408 | 33.06 407 | 23.69 404 |
|
| gg-mvs-nofinetune | | | 68.96 331 | 69.11 324 | 68.52 352 | 76.12 371 | 45.32 384 | 83.59 183 | 55.88 402 | 86.68 24 | 64.62 391 | 97.01 7 | 30.36 400 | 83.97 318 | 44.78 385 | 82.94 356 | 76.26 380 |
|
| GG-mvs-BLEND | | | | | 67.16 357 | 73.36 387 | 46.54 380 | 84.15 165 | 55.04 403 | | 58.64 401 | 61.95 402 | 29.93 401 | 83.87 319 | 38.71 396 | 76.92 386 | 71.07 388 |
|
| UWE-MVS | | | 66.43 344 | 65.56 349 | 69.05 345 | 84.15 288 | 40.98 396 | 73.06 343 | 64.71 384 | 54.84 346 | 76.18 323 | 79.62 357 | 29.21 402 | 80.50 337 | 38.54 397 | 89.75 277 | 85.66 304 |
|
| ETVMVS | | | 64.67 352 | 63.34 357 | 68.64 349 | 83.44 298 | 41.89 394 | 69.56 365 | 61.70 393 | 61.33 301 | 68.74 370 | 75.76 384 | 28.76 403 | 79.35 341 | 34.65 401 | 86.16 326 | 84.67 315 |
|
| test_method | | | 30.46 373 | 29.60 376 | 33.06 388 | 17.99 412 | 3.84 415 | 13.62 403 | 73.92 337 | 2.79 406 | 18.29 408 | 53.41 403 | 28.53 404 | 43.25 407 | 22.56 406 | 35.27 406 | 52.11 403 |
|
| test-mter | | | 65.00 351 | 63.79 355 | 68.63 350 | 76.45 368 | 55.21 331 | 67.89 369 | 67.14 377 | 50.98 369 | 65.08 387 | 72.39 389 | 28.27 405 | 69.37 370 | 61.00 302 | 84.89 342 | 81.31 360 |
|
| TESTMET0.1,1 | | | 61.29 361 | 60.32 367 | 64.19 369 | 72.06 394 | 51.30 358 | 67.89 369 | 62.09 387 | 45.27 384 | 60.65 396 | 69.01 395 | 27.93 406 | 64.74 392 | 56.31 326 | 81.65 366 | 76.53 379 |
|
| testing222 | | | 66.93 338 | 65.30 350 | 71.81 329 | 83.38 299 | 45.83 382 | 72.06 347 | 67.50 373 | 64.12 275 | 69.68 367 | 76.37 382 | 27.34 407 | 83.00 322 | 38.88 394 | 88.38 293 | 86.62 294 |
|
| test2506 | | | 74.12 284 | 73.39 284 | 76.28 297 | 91.85 114 | 44.20 388 | 84.06 168 | 48.20 407 | 72.30 195 | 81.90 260 | 94.20 80 | 27.22 408 | 89.77 234 | 64.81 273 | 96.02 121 | 94.87 67 |
|
| pmmvs3 | | | 62.47 356 | 60.02 369 | 69.80 340 | 71.58 396 | 64.00 235 | 70.52 359 | 58.44 400 | 39.77 398 | 66.05 380 | 75.84 383 | 27.10 409 | 72.28 362 | 46.15 381 | 84.77 346 | 73.11 385 |
|
| KD-MVS_2432*1600 | | | 66.87 340 | 65.81 346 | 70.04 337 | 67.50 401 | 47.49 374 | 62.56 384 | 79.16 301 | 61.21 304 | 77.98 307 | 80.61 345 | 25.29 410 | 82.48 325 | 53.02 349 | 84.92 339 | 80.16 371 |
|
| miper_refine_blended | | | 66.87 340 | 65.81 346 | 70.04 337 | 67.50 401 | 47.49 374 | 62.56 384 | 79.16 301 | 61.21 304 | 77.98 307 | 80.61 345 | 25.29 410 | 82.48 325 | 53.02 349 | 84.92 339 | 80.16 371 |
|
| myMVS_eth3d | | | 64.66 353 | 63.89 354 | 66.97 358 | 81.72 317 | 37.39 401 | 71.00 354 | 61.99 388 | 61.38 299 | 70.81 360 | 72.36 391 | 20.96 412 | 79.30 342 | 49.59 366 | 85.18 334 | 84.22 321 |
|
| testing3 | | | 71.53 306 | 70.79 308 | 73.77 313 | 88.89 187 | 41.86 395 | 76.60 305 | 59.12 397 | 72.83 183 | 80.97 274 | 82.08 333 | 19.80 413 | 87.33 269 | 65.12 270 | 91.68 244 | 92.13 188 |
|
| test123 | | | 6.27 378 | 8.08 381 | 0.84 391 | 1.11 415 | 0.57 416 | 62.90 383 | 0.82 415 | 0.54 409 | 1.07 411 | 2.75 410 | 1.26 414 | 0.30 410 | 1.04 409 | 1.26 409 | 1.66 406 |
|
| testmvs | | | 5.91 379 | 7.65 382 | 0.72 392 | 1.20 414 | 0.37 417 | 59.14 390 | 0.67 416 | 0.49 410 | 1.11 410 | 2.76 409 | 0.94 415 | 0.24 411 | 1.02 410 | 1.47 408 | 1.55 407 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| ab-mvs-re | | | 6.65 376 | 8.87 379 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 79.80 354 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| WAC-MVS | | | | | | | 37.39 401 | | | | | | | | 52.61 353 | | |
|
| FOURS1 | | | | | | 96.08 11 | 87.41 10 | 96.19 2 | 95.83 4 | 92.95 2 | 96.57 2 | | | | | | |
|
| MSC_two_6792asdad | | | | | 88.81 69 | 91.55 126 | 77.99 90 | | 91.01 142 | | | | | 96.05 8 | 87.45 20 | 98.17 32 | 92.40 173 |
|
| No_MVS | | | | | 88.81 69 | 91.55 126 | 77.99 90 | | 91.01 142 | | | | | 96.05 8 | 87.45 20 | 98.17 32 | 92.40 173 |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| IU-MVS | | | | | | 94.18 46 | 72.64 144 | | 90.82 147 | 56.98 337 | 89.67 108 | | | | 85.78 50 | 97.92 46 | 93.28 135 |
|
| save fliter | | | | | | 93.75 59 | 77.44 99 | 86.31 129 | 89.72 178 | 70.80 209 | | | | | | | |
|
| test_0728_SECOND | | | | | 86.79 100 | 94.25 45 | 72.45 152 | 90.54 48 | 94.10 36 | | | | | 95.88 17 | 86.42 36 | 97.97 43 | 92.02 191 |
|
| GSMVS | | | | | | | | | | | | | | | | | 83.88 325 |
|
| test_part2 | | | | | | 93.86 57 | 77.77 94 | | | | 92.84 48 | | | | | | |
|
| MTGPA |  | | | | | | | | 91.81 121 | | | | | | | | |
|
| MTMP | | | | | | | | 90.66 44 | 33.14 412 | | | | | | | | |
|
| gm-plane-assit | | | | | | 75.42 377 | 44.97 387 | | | 52.17 359 | | 72.36 391 | | 87.90 261 | 54.10 342 | | |
|
| test9_res | | | | | | | | | | | | | | | 80.83 101 | 96.45 102 | 90.57 229 |
|
| agg_prior2 | | | | | | | | | | | | | | | 79.68 114 | 96.16 114 | 90.22 237 |
|
| agg_prior | | | | | | 91.58 124 | 77.69 96 | | 90.30 164 | | 84.32 217 | | | 93.18 132 | | | |
|
| test_prior4 | | | | | | | 78.97 80 | 84.59 156 | | | | | | | | | |
|
| test_prior | | | | | 86.32 108 | 90.59 152 | 71.99 159 | | 92.85 89 | | | | | 94.17 92 | | | 92.80 154 |
|
| 旧先验2 | | | | | | | | 81.73 230 | | 56.88 338 | 86.54 176 | | | 84.90 307 | 72.81 200 | | |
|
| 新几何2 | | | | | | | | 81.72 231 | | | | | | | | | |
|
| 无先验 | | | | | | | | 82.81 206 | 85.62 244 | 58.09 327 | | | | 91.41 182 | 67.95 249 | | 84.48 317 |
|
| 原ACMM2 | | | | | | | | 82.26 224 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 86.43 285 | 63.52 284 | | |
|
| testdata1 | | | | | | | | 79.62 256 | | 73.95 160 | | | | | | | |
|
| plane_prior7 | | | | | | 93.45 65 | 77.31 102 | | | | | | | | | | |
|
| plane_prior5 | | | | | | | | | 93.61 56 | | | | | 95.22 56 | 80.78 102 | 95.83 132 | 94.46 80 |
|
| plane_prior4 | | | | | | | | | | | | 92.95 126 | | | | | |
|
| plane_prior3 | | | | | | | 76.85 107 | | | 77.79 118 | 86.55 171 | | | | | | |
|
| plane_prior2 | | | | | | | | 89.45 77 | | 79.44 96 | | | | | | | |
|
| plane_prior1 | | | | | | 92.83 85 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 76.42 113 | 87.15 112 | | 75.94 138 | | | | | | 95.03 160 | |
|
| n2 | | | | | | | | | 0.00 417 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 417 | | | | | | | | |
|
| door-mid | | | | | | | | | 74.45 334 | | | | | | | | |
|
| test11 | | | | | | | | | 91.46 127 | | | | | | | | |
|
| door | | | | | | | | | 72.57 349 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 70.66 172 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 91.19 136 | | 84.77 150 | | 73.30 174 | 80.55 283 | | | | | | |
|
| ACMP_Plane | | | | | | 91.19 136 | | 84.77 150 | | 73.30 174 | 80.55 283 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.30 145 | | |
|
| HQP4-MVS | | | | | | | | | | | 80.56 282 | | | 94.61 74 | | | 93.56 128 |
|
| HQP3-MVS | | | | | | | | | 92.68 94 | | | | | | | 94.47 180 | |
|
| NP-MVS | | | | | | 91.95 109 | 74.55 126 | | | | | 90.17 214 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 139 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.35 73 | |
|