This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11793.91 4480.07 8986.75 16693.26 11493.64 290.93 19584.60 6190.75 26593.97 104
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18488.51 1790.11 9595.12 4490.98 688.92 24977.55 14097.07 8183.13 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6379.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4981.89 6894.70 1395.44 3490.69 888.31 25983.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2485.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3879.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23289.67 6988.38 19988.84 1394.29 1897.57 390.48 1391.26 18472.57 20297.65 6097.34 15
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5383.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_ONE94.18 4672.65 14293.69 5383.62 4994.11 2293.78 10490.28 1495.50 46
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4888.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 185
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14283.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 4972.56 14890.63 4593.90 4583.61 5093.75 3094.49 6489.76 18
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_241102_TWO93.71 5283.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 190
tt080588.09 7489.79 5182.98 18893.26 7263.94 23691.10 4189.64 18185.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2982.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3383.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_one_060193.85 5873.27 13694.11 3586.57 2593.47 3894.64 5988.42 26
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5577.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6981.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6283.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 6082.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4580.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3884.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12192.78 9278.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs686.52 9688.06 7481.90 20992.22 10162.28 26084.66 15589.15 18983.54 5289.85 10397.32 488.08 3686.80 27870.43 21997.30 7696.62 28
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15270.00 21994.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2680.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6881.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
wuyk23d75.13 27279.30 22562.63 37275.56 37475.18 12480.89 24273.10 34775.06 15094.76 1295.32 3587.73 4052.85 40234.16 40297.11 8059.85 399
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9683.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 7081.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30589.04 8392.74 9391.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5180.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30288.95 8493.19 7291.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31288.93 8592.84 9091.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8382.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12184.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 178
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 12182.70 16992.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9916.05 40686.57 5295.80 2587.35 2497.62 6294.20 92
MGCFI-Net85.04 12185.95 10982.31 20587.52 22063.59 23986.23 13193.96 4173.46 16788.07 14187.83 25186.46 5490.87 20076.17 15793.89 19692.47 170
sasdasda85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16988.47 13187.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16988.47 13187.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23384.38 16291.29 13484.88 3992.06 6393.84 10186.45 5593.73 10773.22 19398.66 1097.69 9
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16989.44 18688.63 1694.38 1795.77 2686.38 5893.59 11679.84 11195.21 15291.82 197
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7980.87 8191.13 7893.19 11586.22 5995.97 1282.23 8897.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 5078.90 10492.88 4592.29 14886.11 6090.22 21786.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS92.22 10180.48 6791.85 11771.22 20690.38 9192.98 12386.06 6196.11 681.99 9196.75 90
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16669.27 22394.39 1696.38 1586.02 6293.52 12083.96 6695.92 12895.34 53
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2774.04 15892.70 5394.66 5585.88 6391.50 17679.72 11397.32 7596.50 31
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 7175.37 14792.84 4895.28 3885.58 6496.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2773.53 16689.71 10694.82 5185.09 6595.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7386.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7386.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11894.45 82
GeoE85.45 11485.81 11584.37 14790.08 16167.07 20585.86 13591.39 13172.33 19487.59 14990.25 21084.85 6892.37 15578.00 13491.94 24093.66 120
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6993.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8687.95 2089.62 11092.87 12984.56 7093.89 10277.65 13896.62 9390.70 225
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 7195.37 5180.87 10095.50 14394.53 79
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19889.67 22284.47 7295.46 4782.56 8396.26 11193.77 117
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23265.22 22384.16 16494.23 2477.89 11691.28 7793.66 10884.35 7392.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16969.87 22095.06 1196.14 2184.28 7493.07 13787.68 1596.34 10597.09 21
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10893.17 7376.02 13488.64 12791.22 17684.24 7593.37 12777.97 13697.03 8295.52 49
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21789.33 22783.87 7694.53 7982.45 8494.89 16794.90 65
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13393.60 5880.16 8789.13 12193.44 11283.82 7790.98 19383.86 6895.30 15193.60 125
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 4079.68 9292.09 6293.89 10083.80 7893.10 13682.67 8298.04 3693.64 123
CDPH-MVS86.17 10485.54 12088.05 8492.25 9975.45 12283.85 17592.01 11065.91 25786.19 18091.75 16483.77 7994.98 6477.43 14396.71 9193.73 118
test_fmvsmvis_n_192085.22 11685.36 12484.81 13785.80 26176.13 11985.15 14892.32 10261.40 29891.33 7490.85 19283.76 8086.16 29184.31 6393.28 21092.15 187
Effi-MVS+83.90 15184.01 14983.57 17487.22 22665.61 22186.55 12692.40 9978.64 10981.34 27384.18 30983.65 8192.93 14174.22 17587.87 30292.17 186
MVS_111021_HR84.63 12884.34 14585.49 12990.18 16075.86 12079.23 26687.13 21973.35 17185.56 19389.34 22683.60 8290.50 21176.64 15194.05 19290.09 242
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9188.22 1888.53 12997.64 283.45 8394.55 7886.02 4898.60 1296.67 27
AdaColmapbinary83.66 15483.69 15483.57 17490.05 16472.26 15586.29 13090.00 17478.19 11481.65 26787.16 26583.40 8494.24 8761.69 29894.76 17584.21 323
LCM-MVSNet-Re83.48 15985.06 12778.75 25885.94 25955.75 32880.05 25094.27 2176.47 12996.09 594.54 6283.31 8589.75 23659.95 30894.89 16790.75 222
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25978.30 8586.93 11592.20 10565.94 25589.16 11993.16 11783.10 8689.89 23087.81 1194.43 18293.35 132
TransMVSNet (Re)84.02 14785.74 11778.85 25691.00 14355.20 33382.29 22187.26 21579.65 9388.38 13595.52 3383.00 8786.88 27667.97 24896.60 9494.45 82
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14591.23 13677.31 12487.07 16091.47 17082.94 8894.71 7084.67 6096.27 11092.62 163
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18792.38 10170.25 21689.35 11890.68 19882.85 8994.57 7679.55 11595.95 12592.00 192
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 8086.53 2694.29 1896.27 1782.69 9094.08 9586.25 4297.63 6197.82 8
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14393.03 12182.66 9191.47 17770.81 21196.14 11594.16 96
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14393.03 12182.66 9191.47 17770.81 21196.14 11594.16 96
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9485.26 26978.25 8685.82 13691.82 11965.33 26888.55 12892.35 14782.62 9389.80 23286.87 3294.32 18593.18 141
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13979.26 9989.68 10794.81 5482.44 9487.74 26376.54 15388.74 29096.61 29
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26887.25 26382.43 9594.53 7977.65 13896.46 10194.14 98
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16481.56 7190.02 9891.20 17882.40 9690.81 20273.58 18894.66 17694.56 76
SDMVSNet81.90 18983.17 16178.10 27188.81 18962.45 25676.08 31386.05 23873.67 16383.41 23793.04 11982.35 9780.65 33670.06 22495.03 16091.21 211
test_fmvsmconf_n85.88 10885.51 12186.99 9684.77 27678.21 8785.40 14491.39 13165.32 26987.72 14791.81 16182.33 9889.78 23386.68 3494.20 18892.99 149
Fast-Effi-MVS+81.04 20080.57 20582.46 20387.50 22163.22 24478.37 27889.63 18268.01 23881.87 26182.08 33382.31 9992.65 14867.10 25088.30 29891.51 207
baseline85.20 11885.93 11083.02 18786.30 24962.37 25884.55 15793.96 4174.48 15587.12 15592.03 15382.30 10091.94 16678.39 12494.21 18794.74 73
casdiffmvspermissive85.21 11785.85 11483.31 18086.17 25462.77 25083.03 19893.93 4374.69 15388.21 13892.68 13682.29 10191.89 16977.87 13793.75 20195.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22288.86 8693.02 8487.15 2393.05 4397.10 682.28 10292.02 16576.70 15097.99 4096.88 25
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11584.26 4290.87 8793.92 9982.18 10389.29 24573.75 18594.81 17193.70 119
Anonymous2024052986.20 10287.13 8883.42 17790.19 15964.55 23084.55 15790.71 14985.85 3189.94 10295.24 4082.13 10490.40 21369.19 23396.40 10495.31 55
CLD-MVS83.18 16482.64 17184.79 13889.05 18267.82 20177.93 28292.52 9768.33 23485.07 19981.54 34082.06 10592.96 13969.35 22997.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TEST992.34 9579.70 7483.94 17190.32 16165.41 26784.49 21190.97 18582.03 10693.63 111
segment_acmp81.94 107
train_agg85.98 10685.28 12588.07 8392.34 9579.70 7483.94 17190.32 16165.79 25884.49 21190.97 18581.93 10893.63 11181.21 9696.54 9690.88 219
test_892.09 10578.87 8183.82 17690.31 16365.79 25884.36 21590.96 18781.93 10893.44 124
test_prior283.37 18875.43 14584.58 20991.57 16781.92 11079.54 11696.97 83
EGC-MVSNET74.79 27969.99 31989.19 6394.89 3787.00 1191.89 3486.28 2331.09 4072.23 40995.98 2381.87 11189.48 23779.76 11295.96 12491.10 214
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30888.66 9292.06 10990.78 695.67 795.17 4281.80 11295.54 4179.00 12198.69 998.95 4
MVS_111021_LR84.28 13883.76 15385.83 12289.23 17983.07 5180.99 24183.56 27272.71 18686.07 18389.07 23281.75 11386.19 29077.11 14793.36 20688.24 270
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17271.54 20194.28 2096.54 1381.57 11494.27 8486.26 4096.49 9997.09 21
cdsmvs_eth3d_5k20.81 37427.75 3770.00 3930.00 4160.00 4180.00 40485.44 2460.00 4110.00 41282.82 32481.46 1150.00 4120.00 4110.00 4100.00 408
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25789.54 7493.31 6790.21 1095.57 995.66 2981.42 11695.90 1580.94 9998.80 298.84 5
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10379.74 9187.50 15192.38 14381.42 11693.28 12983.07 7497.24 7791.67 202
pm-mvs183.69 15384.95 13079.91 24390.04 16559.66 29282.43 21787.44 21275.52 14487.85 14595.26 3981.25 11885.65 30168.74 24096.04 12094.42 85
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3685.33 3393.49 3694.64 5981.12 11995.88 1787.41 2295.94 12692.48 168
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11994.68 7174.48 17395.35 14692.29 179
sd_testset79.95 22381.39 19475.64 30388.81 18958.07 31076.16 31282.81 27973.67 16383.41 23793.04 11980.96 12177.65 34958.62 31495.03 16091.21 211
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12591.09 14078.77 10784.85 20690.89 18980.85 12295.29 5381.14 9795.32 14892.34 176
TAPA-MVS77.73 1285.71 11084.83 13188.37 7888.78 19179.72 7387.15 11293.50 5969.17 22485.80 18989.56 22380.76 12392.13 16173.21 19895.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+-dtu82.54 17381.41 19385.90 11985.60 26276.53 11183.07 19789.62 18373.02 18179.11 30183.51 31480.74 12490.24 21668.76 23989.29 28190.94 217
PC_three_145258.96 32190.06 9691.33 17380.66 12593.03 13875.78 16195.94 12692.48 168
VPA-MVSNet83.47 16084.73 13279.69 24790.29 15757.52 31581.30 23788.69 19576.29 13087.58 15094.44 6680.60 12687.20 27066.60 25696.82 8894.34 89
ETV-MVS84.31 13683.91 15285.52 12788.58 19670.40 17584.50 16193.37 6178.76 10884.07 22678.72 36480.39 12795.13 6073.82 18492.98 21891.04 215
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13578.20 11386.69 16992.28 14980.36 12895.06 6286.17 4496.49 9990.22 237
ANet_high83.17 16585.68 11875.65 30281.24 32445.26 38579.94 25292.91 8783.83 4691.33 7496.88 1080.25 12985.92 29468.89 23795.89 12995.76 43
EI-MVSNet-Vis-set85.12 12084.53 13986.88 9884.01 28972.76 14183.91 17485.18 25180.44 8288.75 12585.49 28880.08 13091.92 16782.02 9090.85 26395.97 39
DeepC-MVS_fast80.27 886.23 10085.65 11987.96 8591.30 13376.92 10687.19 11091.99 11170.56 21184.96 20290.69 19780.01 13195.14 5978.37 12595.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set85.04 12184.44 14186.85 9983.87 29372.52 15083.82 17685.15 25280.27 8688.75 12585.45 29079.95 13291.90 16881.92 9390.80 26496.13 34
MCST-MVS84.36 13483.93 15185.63 12591.59 12171.58 16583.52 18492.13 10761.82 29183.96 22889.75 22179.93 13393.46 12378.33 12794.34 18491.87 196
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13867.85 24386.63 17094.84 5079.58 13495.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1286.57 10390.74 14872.63 14690.69 15082.76 24879.20 13594.80 6895.32 14892.27 181
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11780.35 8489.54 11688.01 24579.09 13692.13 16175.51 16495.06 15990.41 234
Test By Simon79.09 136
PHI-MVS86.38 9785.81 11588.08 8288.44 20077.34 10189.35 8093.05 8073.15 17984.76 20787.70 25378.87 13894.18 9080.67 10496.29 10792.73 156
EG-PatchMatch MVS84.08 14584.11 14783.98 15992.22 10172.61 14782.20 22787.02 22472.63 18788.86 12291.02 18378.52 13991.11 18973.41 19091.09 25388.21 271
dcpmvs_284.23 14185.14 12681.50 21888.61 19561.98 26482.90 20493.11 7668.66 23292.77 5192.39 14278.50 14087.63 26576.99 14992.30 22894.90 65
Effi-MVS+-dtu85.82 10983.38 15693.14 387.13 22891.15 287.70 10488.42 19874.57 15483.56 23585.65 28678.49 14194.21 8872.04 20592.88 22094.05 102
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10992.09 10878.87 10584.27 22294.05 8878.35 14293.65 10980.54 10691.58 24792.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20682.55 21391.56 12483.08 5790.92 8291.82 16078.25 14393.99 9774.16 17698.35 2197.49 13
MSLP-MVS++85.00 12486.03 10881.90 20991.84 11671.56 16786.75 12293.02 8475.95 13787.12 15589.39 22577.98 14489.40 24477.46 14194.78 17284.75 314
API-MVS82.28 17682.61 17281.30 22186.29 25069.79 17888.71 9087.67 21178.42 11282.15 25784.15 31077.98 14491.59 17565.39 26792.75 22282.51 349
DP-MVS Recon84.05 14683.22 15886.52 10591.73 11975.27 12383.23 19492.40 9972.04 19882.04 25888.33 24177.91 14693.95 9966.17 25895.12 15790.34 236
fmvsm_s_conf0.1_n_a82.58 17281.93 18184.50 14487.68 21573.35 13386.14 13277.70 30961.64 29685.02 20091.62 16677.75 14786.24 28782.79 8087.07 31193.91 108
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17892.87 8880.37 8389.61 11291.81 16177.72 14894.18 9075.00 17198.53 1596.99 24
PCF-MVS74.62 1582.15 18180.92 20385.84 12189.43 17472.30 15480.53 24591.82 11957.36 33487.81 14689.92 21877.67 14993.63 11158.69 31395.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22982.21 22590.46 15680.99 7888.42 13391.97 15477.56 15093.85 10372.46 20398.65 1197.61 10
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3488.89 1188.83 12494.26 7777.55 15195.86 2284.88 5895.87 13095.24 58
MVS_Test82.47 17483.22 15880.22 24082.62 31257.75 31482.54 21491.96 11371.16 20782.89 24692.52 14177.41 15290.50 21180.04 10987.84 30392.40 173
fmvsm_s_conf0.5_n_a82.21 17881.51 19284.32 15286.56 24073.35 13385.46 14177.30 31361.81 29284.51 21090.88 19177.36 15386.21 28982.72 8186.97 31693.38 131
EIA-MVS82.19 17981.23 19885.10 13387.95 20969.17 19083.22 19593.33 6470.42 21278.58 30479.77 35677.29 15494.20 8971.51 20788.96 28691.93 195
xiu_mvs_v2_base77.19 25076.75 25378.52 26287.01 23461.30 26975.55 32087.12 22261.24 30374.45 34078.79 36377.20 15590.93 19564.62 27784.80 34583.32 337
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20683.16 19692.21 10481.73 6990.92 8291.97 15477.20 15593.99 9774.16 17698.35 2197.61 10
Baseline_NR-MVSNet84.00 14885.90 11278.29 26891.47 13153.44 34282.29 22187.00 22779.06 10289.55 11495.72 2877.20 15586.14 29272.30 20498.51 1695.28 56
TinyColmap81.25 19682.34 17777.99 27485.33 26860.68 28382.32 22088.33 20271.26 20586.97 16292.22 15277.10 15886.98 27462.37 29095.17 15486.31 297
F-COLMAP84.97 12583.42 15589.63 5592.39 9383.40 4888.83 8791.92 11473.19 17880.18 29189.15 23177.04 15993.28 12965.82 26492.28 23192.21 184
114514_t83.10 16782.54 17484.77 13992.90 8069.10 19186.65 12390.62 15354.66 34781.46 27090.81 19476.98 16094.38 8372.62 20196.18 11390.82 221
xiu_mvs_v1_base_debu80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
xiu_mvs_v1_base80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
xiu_mvs_v1_base_debi80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
pcd_1.5k_mvsjas6.41 3778.55 3800.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41176.94 1610.00 4120.00 4110.00 4100.00 408
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11270.73 21094.19 2196.67 1176.94 16194.57 7683.07 7496.28 10896.15 33
PS-MVSNAJ77.04 25276.53 25578.56 26187.09 23261.40 26775.26 32287.13 21961.25 30274.38 34277.22 37676.94 16190.94 19464.63 27684.83 34483.35 336
MIMVSNet183.63 15584.59 13780.74 23194.06 5362.77 25082.72 20784.53 26477.57 12190.34 9295.92 2476.88 16785.83 29961.88 29697.42 7293.62 124
原ACMM184.60 14392.81 8674.01 12991.50 12662.59 28282.73 24990.67 20076.53 16894.25 8669.24 23095.69 14085.55 305
fmvsm_s_conf0.1_n82.17 18081.59 18883.94 16286.87 23871.57 16685.19 14777.42 31262.27 29084.47 21391.33 17376.43 16985.91 29583.14 7187.14 30994.33 90
fmvsm_s_conf0.5_n81.91 18881.30 19583.75 16686.02 25871.56 16784.73 15377.11 31662.44 28784.00 22790.68 19876.42 17085.89 29783.14 7187.11 31093.81 115
MSDG80.06 22179.99 22180.25 23983.91 29268.04 19977.51 29089.19 18877.65 11981.94 25983.45 31676.37 17186.31 28663.31 28686.59 31986.41 295
Gipumacopyleft84.44 13386.33 10278.78 25784.20 28773.57 13289.55 7290.44 15784.24 4384.38 21494.89 4876.35 17280.40 33876.14 15896.80 8982.36 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsm_n_192083.60 15682.89 16685.74 12385.22 27077.74 9584.12 16690.48 15559.87 31886.45 17991.12 18075.65 17385.89 29782.28 8790.87 26193.58 126
XXY-MVS74.44 28376.19 25869.21 34484.61 27852.43 35071.70 34977.18 31560.73 30980.60 28190.96 18775.44 17469.35 37256.13 32888.33 29485.86 302
FMVSNet184.55 13185.45 12281.85 21190.27 15861.05 27386.83 11888.27 20478.57 11089.66 10995.64 3075.43 17590.68 20669.09 23495.33 14793.82 112
CANet83.79 15282.85 16786.63 10286.17 25472.21 15783.76 17991.43 12877.24 12574.39 34187.45 25975.36 17695.42 4977.03 14892.83 22192.25 183
ab-mvs79.67 22480.56 20676.99 28688.48 19856.93 31984.70 15486.06 23768.95 22880.78 28093.08 11875.30 17784.62 30956.78 32390.90 26089.43 253
patch_mono-278.89 22879.39 22477.41 28384.78 27568.11 19775.60 31783.11 27560.96 30679.36 29789.89 21975.18 17872.97 36173.32 19292.30 22891.15 213
DELS-MVS81.44 19481.25 19682.03 20784.27 28662.87 24876.47 30792.49 9870.97 20881.64 26883.83 31175.03 17992.70 14674.29 17492.22 23490.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR78.84 23078.10 24081.07 22685.17 27160.22 28682.21 22590.57 15462.51 28375.32 33584.61 30474.99 18092.30 15859.48 31188.04 30090.68 226
CNLPA83.55 15883.10 16384.90 13589.34 17683.87 4684.54 15988.77 19379.09 10183.54 23688.66 23874.87 18181.73 32966.84 25392.29 23089.11 259
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5679.44 9686.55 17192.95 12674.84 18295.22 5680.78 10295.83 13294.46 80
plane_prior692.61 8776.54 10974.84 182
FC-MVSNet-test85.93 10787.05 9182.58 19992.25 9956.44 32385.75 13793.09 7877.33 12391.94 6694.65 5674.78 18493.41 12675.11 17098.58 1397.88 7
VDD-MVS84.23 14184.58 13883.20 18491.17 13965.16 22583.25 19284.97 25979.79 9087.18 15494.27 7474.77 18590.89 19869.24 23096.54 9693.55 130
BH-untuned80.96 20180.99 20180.84 23088.55 19768.23 19480.33 24888.46 19772.79 18586.55 17186.76 27174.72 18691.77 17361.79 29788.99 28582.52 348
VPNet80.25 21581.68 18475.94 30092.46 9247.98 37276.70 30181.67 28873.45 16884.87 20592.82 13074.66 18786.51 28361.66 29996.85 8593.33 133
tfpnnormal81.79 19082.95 16578.31 26688.93 18655.40 32980.83 24482.85 27876.81 12785.90 18894.14 8474.58 18886.51 28366.82 25495.68 14193.01 148
KD-MVS_self_test81.93 18783.14 16278.30 26784.75 27752.75 34680.37 24789.42 18770.24 21790.26 9493.39 11374.55 18986.77 27968.61 24296.64 9295.38 52
fmvsm_l_conf0.5_n82.06 18381.54 19183.60 17183.94 29073.90 13083.35 18986.10 23658.97 32083.80 23090.36 20674.23 19086.94 27582.90 7790.22 27289.94 244
V4283.47 16083.37 15783.75 16683.16 30663.33 24281.31 23590.23 16869.51 22290.91 8490.81 19474.16 19192.29 15980.06 10890.22 27295.62 47
3Dnovator80.37 784.80 12684.71 13585.06 13486.36 24774.71 12588.77 8990.00 17475.65 14284.96 20293.17 11674.06 19291.19 18678.28 12891.09 25389.29 257
v1086.54 9587.10 8984.84 13688.16 20663.28 24386.64 12492.20 10575.42 14692.81 5094.50 6374.05 19394.06 9683.88 6796.28 10897.17 20
旧先验191.97 10871.77 16081.78 28791.84 15873.92 19493.65 20383.61 331
mvs_anonymous78.13 24078.76 23176.23 29979.24 34750.31 36578.69 27384.82 26161.60 29783.09 24492.82 13073.89 19587.01 27168.33 24686.41 32191.37 208
MAR-MVS80.24 21678.74 23284.73 14086.87 23878.18 8885.75 13787.81 21065.67 26377.84 30978.50 36573.79 19690.53 21061.59 30090.87 26185.49 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet84.35 13585.39 12381.25 22295.13 3159.32 29585.42 14381.11 29186.41 2787.41 15296.21 1973.61 19790.61 20966.33 25796.85 8593.81 115
FIs85.35 11586.27 10382.60 19891.86 11357.31 31685.10 14993.05 8075.83 13991.02 8193.97 9273.57 19892.91 14373.97 18198.02 3997.58 12
v114484.54 13284.72 13484.00 15887.67 21662.55 25482.97 20190.93 14570.32 21589.80 10490.99 18473.50 19993.48 12281.69 9594.65 17795.97 39
diffmvspermissive80.40 21180.48 20980.17 24179.02 35060.04 28777.54 28990.28 16766.65 25382.40 25287.33 26273.50 19987.35 26877.98 13589.62 27993.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR83.23 16383.19 16083.33 17990.90 14565.98 21788.19 9790.78 14878.13 11580.87 27887.92 24973.49 20192.42 15270.07 22388.40 29291.60 204
v886.22 10186.83 9684.36 14987.82 21162.35 25986.42 12791.33 13376.78 12892.73 5294.48 6573.41 20293.72 10883.10 7395.41 14497.01 23
EI-MVSNet82.61 17082.42 17683.20 18483.25 30363.66 23783.50 18585.07 25376.06 13286.55 17185.10 29673.41 20290.25 21478.15 13390.67 26795.68 45
IterMVS-LS84.73 12784.98 12983.96 16087.35 22363.66 23783.25 19289.88 17676.06 13289.62 11092.37 14673.40 20492.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22984.54 4183.58 23493.78 10473.36 20596.48 187.98 996.21 11294.41 86
v14419284.24 14084.41 14283.71 16887.59 21961.57 26682.95 20291.03 14167.82 24489.80 10490.49 20473.28 20693.51 12181.88 9494.89 16796.04 38
BH-RMVSNet80.53 20780.22 21481.49 21987.19 22766.21 21577.79 28586.23 23474.21 15783.69 23188.50 23973.25 20790.75 20363.18 28787.90 30187.52 284
PLCcopyleft73.85 1682.09 18280.31 21087.45 9090.86 14780.29 6985.88 13490.65 15168.17 23776.32 32086.33 27673.12 20892.61 14961.40 30190.02 27589.44 252
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7681.10 7795.32 1097.24 572.94 20994.85 6785.07 5497.78 5397.26 16
WR-MVS83.56 15784.40 14381.06 22793.43 6754.88 33478.67 27485.02 25681.24 7590.74 8991.56 16872.85 21091.08 19068.00 24798.04 3697.23 18
VNet79.31 22580.27 21176.44 29487.92 21053.95 33875.58 31984.35 26574.39 15682.23 25590.72 19672.84 21184.39 31260.38 30793.98 19390.97 216
QAPM82.59 17182.59 17382.58 19986.44 24266.69 21089.94 6290.36 16067.97 24084.94 20492.58 13972.71 21292.18 16070.63 21787.73 30488.85 266
v119284.57 13084.69 13684.21 15587.75 21362.88 24783.02 19991.43 12869.08 22689.98 10190.89 18972.70 21393.62 11482.41 8594.97 16496.13 34
OpenMVScopyleft76.72 1381.98 18682.00 18081.93 20884.42 28268.22 19588.50 9489.48 18566.92 25081.80 26591.86 15672.59 21490.16 21971.19 21091.25 25287.40 286
TSAR-MVS + GP.83.95 14982.69 17087.72 8689.27 17881.45 6383.72 18081.58 29074.73 15285.66 19086.06 28172.56 21592.69 14775.44 16695.21 15289.01 265
alignmvs83.94 15083.98 15083.80 16387.80 21267.88 20084.54 15991.42 13073.27 17788.41 13487.96 24672.33 21690.83 20176.02 16094.11 19092.69 160
fmvsm_l_conf0.5_n_a81.46 19380.87 20483.25 18183.73 29573.21 13883.00 20085.59 24558.22 32682.96 24590.09 21672.30 21786.65 28181.97 9289.95 27689.88 245
HQP2-MVS72.10 218
HQP-MVS84.61 12984.06 14886.27 11091.19 13670.66 17284.77 15092.68 9473.30 17480.55 28390.17 21472.10 21894.61 7477.30 14594.47 18093.56 128
testgi72.36 29874.61 27165.59 36380.56 33542.82 39368.29 36873.35 34466.87 25181.84 26289.93 21772.08 22066.92 38546.05 38292.54 22587.01 290
v192192084.23 14184.37 14483.79 16487.64 21861.71 26582.91 20391.20 13767.94 24190.06 9690.34 20772.04 22193.59 11682.32 8694.91 16596.07 36
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4578.43 11189.16 11992.25 15072.03 22296.36 388.21 790.93 25992.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LF4IMVS82.75 16981.93 18185.19 13182.08 31380.15 7085.53 14088.76 19468.01 23885.58 19287.75 25271.80 22386.85 27774.02 18093.87 19788.58 268
v124084.30 13784.51 14083.65 16987.65 21761.26 27082.85 20591.54 12567.94 24190.68 9090.65 20171.71 22493.64 11082.84 7994.78 17296.07 36
ambc82.98 18890.55 15364.86 22688.20 9689.15 18989.40 11793.96 9571.67 22591.38 18378.83 12296.55 9592.71 159
MVS_030486.35 9885.92 11187.66 8889.21 18073.16 13988.40 9583.63 27181.27 7480.87 27894.12 8671.49 22695.71 3287.79 1296.50 9894.11 100
新几何182.95 19093.96 5578.56 8480.24 29755.45 34283.93 22991.08 18271.19 22788.33 25865.84 26393.07 21581.95 354
SSC-MVS77.55 24681.64 18565.29 36690.46 15420.33 41173.56 33768.28 37185.44 3288.18 14094.64 5970.93 22881.33 33171.25 20892.03 23694.20 92
v14882.31 17582.48 17581.81 21485.59 26359.66 29281.47 23486.02 23972.85 18288.05 14290.65 20170.73 22990.91 19775.15 16991.79 24194.87 67
v2v48284.09 14484.24 14683.62 17087.13 22861.40 26782.71 20889.71 17972.19 19789.55 11491.41 17170.70 23093.20 13181.02 9893.76 19896.25 32
WB-MVS76.06 26480.01 22064.19 36989.96 16720.58 41072.18 34668.19 37283.21 5486.46 17893.49 11170.19 23178.97 34565.96 25990.46 27193.02 147
UGNet82.78 16881.64 18586.21 11386.20 25376.24 11786.86 11685.68 24377.07 12673.76 34592.82 13069.64 23291.82 17269.04 23693.69 20290.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
c3_l81.64 19181.59 18881.79 21580.86 33059.15 29978.61 27590.18 17068.36 23387.20 15387.11 26769.39 23391.62 17478.16 13194.43 18294.60 75
MG-MVS80.32 21480.94 20278.47 26488.18 20452.62 34982.29 22185.01 25772.01 19979.24 30092.54 14069.36 23493.36 12870.65 21689.19 28489.45 251
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20991.21 3988.64 19686.30 2889.60 11392.59 13769.22 23594.91 6673.89 18297.89 4996.72 26
PVSNet_BlendedMVS78.80 23277.84 24181.65 21784.43 28063.41 24079.49 26090.44 15761.70 29575.43 33287.07 26869.11 23691.44 17960.68 30592.24 23290.11 241
PVSNet_Blended76.49 26075.40 26579.76 24584.43 28063.41 24075.14 32390.44 15757.36 33475.43 33278.30 36669.11 23691.44 17960.68 30587.70 30584.42 319
BH-w/o76.57 25876.07 26078.10 27186.88 23765.92 21877.63 28786.33 23265.69 26280.89 27779.95 35368.97 23890.74 20453.01 35185.25 33377.62 378
MVS73.21 29272.59 29475.06 30780.97 32760.81 28181.64 23285.92 24146.03 38371.68 35577.54 37168.47 23989.77 23455.70 33185.39 33074.60 384
miper_ehance_all_eth80.34 21380.04 21981.24 22479.82 34058.95 30177.66 28689.66 18065.75 26185.99 18785.11 29568.29 24091.42 18176.03 15992.03 23693.33 133
Anonymous20240521180.51 20881.19 19978.49 26388.48 19857.26 31776.63 30382.49 28181.21 7684.30 22092.24 15167.99 24186.24 28762.22 29195.13 15591.98 194
testdata79.54 25092.87 8172.34 15380.14 29859.91 31785.47 19591.75 16467.96 24285.24 30368.57 24492.18 23581.06 367
DPM-MVS80.10 22079.18 22682.88 19490.71 15069.74 17978.87 27190.84 14660.29 31375.64 33185.92 28467.28 24393.11 13571.24 20991.79 24185.77 303
PVSNet_Blended_VisFu81.55 19280.49 20884.70 14291.58 12473.24 13784.21 16391.67 12362.86 28180.94 27687.16 26567.27 24492.87 14469.82 22688.94 28787.99 277
MDA-MVSNet-bldmvs77.47 24776.90 25279.16 25479.03 34964.59 22766.58 37675.67 32673.15 17988.86 12288.99 23366.94 24581.23 33264.71 27488.22 29991.64 203
CL-MVSNet_self_test76.81 25577.38 24575.12 30686.90 23651.34 35773.20 34180.63 29668.30 23581.80 26588.40 24066.92 24680.90 33355.35 33594.90 16693.12 144
test22293.31 7076.54 10979.38 26177.79 30852.59 35682.36 25390.84 19366.83 24791.69 24381.25 362
TR-MVS76.77 25675.79 26179.72 24686.10 25765.79 21977.14 29483.02 27665.20 27081.40 27182.10 33166.30 24890.73 20555.57 33285.27 33282.65 343
OpenMVS_ROBcopyleft70.19 1777.77 24577.46 24378.71 25984.39 28361.15 27181.18 23982.52 28062.45 28683.34 23987.37 26066.20 24988.66 25564.69 27585.02 33886.32 296
EPP-MVSNet85.47 11385.04 12886.77 10191.52 12969.37 18491.63 3687.98 20981.51 7287.05 16191.83 15966.18 25095.29 5370.75 21496.89 8495.64 46
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11672.61 18892.16 6095.23 4166.01 25195.59 3786.02 4897.78 5397.24 17
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20781.66 7094.64 1496.53 1465.94 25294.75 6983.02 7696.83 8795.41 51
PatchMatch-RL74.48 28173.22 28678.27 26987.70 21485.26 3475.92 31570.09 36464.34 27476.09 32481.25 34265.87 25378.07 34853.86 34383.82 35171.48 387
bld_raw_dy_0_6481.25 19681.17 20081.49 21985.55 26460.85 27986.36 12895.45 957.08 33690.81 8882.69 32965.85 25493.91 10170.37 22196.34 10589.72 246
WB-MVSnew68.72 33269.01 32667.85 35383.22 30543.98 38974.93 32565.98 38155.09 34373.83 34479.11 35965.63 25571.89 36538.21 39885.04 33787.69 283
EPNet80.37 21278.41 23786.23 11176.75 36473.28 13587.18 11177.45 31176.24 13168.14 37388.93 23465.41 25693.85 10369.47 22896.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 19177.34 12293.63 3595.83 2565.40 25795.90 1585.01 5798.23 2797.49 13
FA-MVS(test-final)83.13 16683.02 16483.43 17686.16 25666.08 21688.00 9988.36 20075.55 14385.02 20092.75 13465.12 25892.50 15174.94 17291.30 25191.72 199
PM-MVS80.20 21779.00 22783.78 16588.17 20586.66 1581.31 23566.81 38069.64 22188.33 13690.19 21264.58 25983.63 32071.99 20690.03 27481.06 367
miper_enhance_ethall77.83 24276.93 25180.51 23576.15 37058.01 31175.47 32188.82 19258.05 32883.59 23380.69 34464.41 26091.20 18573.16 19992.03 23692.33 177
eth_miper_zixun_eth80.84 20280.22 21482.71 19681.41 32260.98 27677.81 28490.14 17167.31 24886.95 16387.24 26464.26 26192.31 15775.23 16891.61 24594.85 71
test20.0373.75 28774.59 27371.22 33281.11 32651.12 36170.15 36272.10 35370.42 21280.28 28991.50 16964.21 26274.72 36046.96 37994.58 17887.82 282
iter_conf05_1178.40 23977.29 24881.71 21685.55 26460.95 27877.22 29386.90 22860.10 31675.79 32881.73 33764.08 26394.47 8270.37 22193.92 19489.72 246
cascas76.29 26374.81 27080.72 23384.47 27962.94 24673.89 33587.34 21355.94 34075.16 33776.53 38163.97 26491.16 18765.00 27190.97 25888.06 275
TAMVS78.08 24176.36 25683.23 18290.62 15172.87 14079.08 26780.01 29961.72 29481.35 27286.92 27063.96 26588.78 25350.61 36193.01 21788.04 276
GBi-Net82.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20472.43 18986.00 18495.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
test182.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20472.43 18986.00 18495.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
FMVSNet281.31 19581.61 18780.41 23786.38 24458.75 30683.93 17386.58 23172.43 18987.65 14892.98 12363.78 26690.22 21766.86 25193.92 19492.27 181
USDC76.63 25776.73 25476.34 29683.46 29757.20 31880.02 25188.04 20852.14 36183.65 23291.25 17563.24 26986.65 28154.66 34094.11 19085.17 309
DIV-MVS_self_test80.43 20980.23 21281.02 22879.99 33859.25 29677.07 29687.02 22467.38 24586.19 18089.22 22863.09 27090.16 21976.32 15495.80 13593.66 120
cl____80.42 21080.23 21281.02 22879.99 33859.25 29677.07 29687.02 22467.37 24686.18 18289.21 22963.08 27190.16 21976.31 15595.80 13593.65 122
h-mvs3384.25 13982.76 16888.72 7191.82 11882.60 5684.00 17084.98 25871.27 20386.70 16790.55 20363.04 27293.92 10078.26 12994.20 18889.63 249
hse-mvs283.47 16081.81 18388.47 7591.03 14282.27 5782.61 20983.69 26971.27 20386.70 16786.05 28263.04 27292.41 15378.26 12993.62 20590.71 224
new-patchmatchnet70.10 31873.37 28560.29 37981.23 32516.95 41259.54 38974.62 33162.93 28080.97 27487.93 24862.83 27471.90 36455.24 33695.01 16392.00 192
K. test v385.14 11984.73 13286.37 10791.13 14069.63 18285.45 14276.68 32084.06 4592.44 5796.99 862.03 27594.65 7280.58 10593.24 21194.83 72
lessismore_v085.95 11791.10 14170.99 17170.91 36291.79 6794.42 6961.76 27692.93 14179.52 11793.03 21693.93 106
131473.22 29172.56 29675.20 30580.41 33757.84 31281.64 23285.36 24751.68 36473.10 34876.65 38061.45 27785.19 30463.54 28379.21 37682.59 344
Syy-MVS69.40 32770.03 31867.49 35681.72 31738.94 39871.00 35461.99 38861.38 29970.81 36072.36 39161.37 27879.30 34264.50 27985.18 33484.22 321
CANet_DTU77.81 24477.05 24980.09 24281.37 32359.90 29083.26 19188.29 20369.16 22567.83 37683.72 31260.93 27989.47 23869.22 23289.70 27890.88 219
pmmvs-eth3d78.42 23877.04 25082.57 20187.44 22274.41 12780.86 24379.67 30055.68 34184.69 20890.31 20960.91 28085.42 30262.20 29291.59 24687.88 280
UnsupCasMVSNet_eth71.63 30572.30 29869.62 34176.47 36752.70 34870.03 36380.97 29359.18 31979.36 29788.21 24360.50 28169.12 37358.33 31777.62 38387.04 289
IterMVS-SCA-FT80.64 20679.41 22384.34 15183.93 29169.66 18176.28 30981.09 29272.43 18986.47 17790.19 21260.46 28293.15 13477.45 14286.39 32290.22 237
SCA73.32 28972.57 29575.58 30481.62 31955.86 32678.89 27071.37 35961.73 29374.93 33883.42 31760.46 28287.01 27158.11 31982.63 36283.88 325
jason77.42 24875.75 26282.43 20487.10 23169.27 18577.99 28181.94 28651.47 36577.84 30985.07 29960.32 28489.00 24770.74 21589.27 28389.03 263
jason: jason.
1112_ss74.82 27873.74 27978.04 27389.57 16960.04 28776.49 30687.09 22354.31 34873.66 34679.80 35460.25 28586.76 28058.37 31584.15 34987.32 287
HY-MVS64.64 1873.03 29372.47 29774.71 30883.36 30154.19 33682.14 22881.96 28556.76 33969.57 36886.21 28060.03 28684.83 30849.58 36782.65 36085.11 310
Anonymous2023120671.38 30871.88 30069.88 33986.31 24854.37 33570.39 36074.62 33152.57 35776.73 31688.76 23559.94 28772.06 36344.35 38693.23 21283.23 339
IterMVS76.91 25376.34 25778.64 26080.91 32864.03 23476.30 30879.03 30364.88 27283.11 24289.16 23059.90 28884.46 31068.61 24285.15 33687.42 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
YYNet170.06 31970.44 31268.90 34673.76 38553.42 34358.99 39267.20 37658.42 32487.10 15785.39 29259.82 28967.32 38259.79 30983.50 35385.96 299
MDA-MVSNet_test_wron70.05 32070.44 31268.88 34773.84 38453.47 34158.93 39367.28 37558.43 32387.09 15885.40 29159.80 29067.25 38359.66 31083.54 35285.92 301
PMMVS61.65 35960.38 36665.47 36565.40 40869.26 18663.97 38261.73 39236.80 40360.11 39768.43 39659.42 29166.35 38748.97 37078.57 37960.81 398
CDS-MVSNet77.32 24975.40 26583.06 18689.00 18472.48 15177.90 28382.17 28460.81 30778.94 30283.49 31559.30 29288.76 25454.64 34192.37 22787.93 279
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UnsupCasMVSNet_bld69.21 32969.68 32167.82 35479.42 34451.15 36067.82 37275.79 32454.15 34977.47 31585.36 29459.26 29370.64 36848.46 37279.35 37481.66 356
Anonymous2024052180.18 21881.25 19676.95 28783.15 30760.84 28082.46 21685.99 24068.76 23086.78 16493.73 10759.13 29477.44 35073.71 18697.55 6792.56 164
WTY-MVS67.91 33568.35 33266.58 36080.82 33148.12 37165.96 37772.60 34853.67 35171.20 35781.68 33958.97 29569.06 37448.57 37181.67 36482.55 346
cl2278.97 22778.21 23981.24 22477.74 35459.01 30077.46 29287.13 21965.79 25884.32 21785.10 29658.96 29690.88 19975.36 16792.03 23693.84 110
MVSFormer82.23 17781.57 19084.19 15785.54 26669.26 18691.98 3190.08 17271.54 20176.23 32185.07 29958.69 29794.27 8486.26 4088.77 28889.03 263
lupinMVS76.37 26274.46 27482.09 20685.54 26669.26 18676.79 29980.77 29550.68 37276.23 32182.82 32458.69 29788.94 24869.85 22588.77 28888.07 273
Test_1112_low_res73.90 28673.08 28776.35 29590.35 15655.95 32473.40 34086.17 23550.70 37173.14 34785.94 28358.31 29985.90 29656.51 32583.22 35487.20 288
test_yl78.71 23478.51 23579.32 25284.32 28458.84 30378.38 27685.33 24875.99 13582.49 25086.57 27258.01 30090.02 22862.74 28892.73 22389.10 260
DCV-MVSNet78.71 23478.51 23579.32 25284.32 28458.84 30378.38 27685.33 24875.99 13582.49 25086.57 27258.01 30090.02 22862.74 28892.73 22389.10 260
sss66.92 33967.26 33765.90 36277.23 35951.10 36264.79 37971.72 35752.12 36270.13 36580.18 35157.96 30265.36 39150.21 36281.01 37081.25 362
ppachtmachnet_test74.73 28074.00 27876.90 28980.71 33356.89 32171.53 35278.42 30558.24 32579.32 29982.92 32357.91 30384.26 31465.60 26691.36 25089.56 250
MVP-Stereo75.81 26773.51 28382.71 19689.35 17573.62 13180.06 24985.20 25060.30 31273.96 34387.94 24757.89 30489.45 24052.02 35574.87 38985.06 311
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM71.77 30370.06 31776.92 28886.39 24353.97 33776.62 30486.62 23053.44 35263.97 39284.73 30357.79 30592.34 15639.65 39381.33 36884.45 318
LFMVS80.15 21980.56 20678.89 25589.19 18155.93 32585.22 14673.78 34082.96 5884.28 22192.72 13557.38 30690.07 22663.80 28195.75 13890.68 226
Vis-MVSNet (Re-imp)77.82 24377.79 24277.92 27588.82 18851.29 35983.28 19071.97 35474.04 15882.23 25589.78 22057.38 30689.41 24357.22 32295.41 14493.05 146
CHOSEN 1792x268872.45 29770.56 31078.13 27090.02 16663.08 24568.72 36783.16 27442.99 39375.92 32685.46 28957.22 30885.18 30549.87 36581.67 36486.14 298
mvsany_test158.48 36856.47 37364.50 36865.90 40768.21 19656.95 39542.11 41038.30 40165.69 38377.19 37756.96 30959.35 40046.16 38058.96 40365.93 394
miper_lstm_enhance76.45 26176.10 25977.51 28176.72 36560.97 27764.69 38085.04 25563.98 27683.20 24188.22 24256.67 31078.79 34773.22 19393.12 21492.78 155
our_test_371.85 30271.59 30272.62 32380.71 33353.78 33969.72 36471.71 35858.80 32278.03 30680.51 34956.61 31178.84 34662.20 29286.04 32785.23 308
baseline173.26 29073.54 28272.43 32684.92 27347.79 37379.89 25374.00 33665.93 25678.81 30386.28 27956.36 31281.63 33056.63 32479.04 37887.87 281
pmmvs474.92 27672.98 28980.73 23284.95 27271.71 16476.23 31077.59 31052.83 35577.73 31386.38 27456.35 31384.97 30657.72 32187.05 31285.51 306
MVEpermissive40.22 2351.82 37250.47 37555.87 38362.66 41051.91 35331.61 40239.28 41140.65 39650.76 40574.98 38756.24 31444.67 40633.94 40364.11 40171.04 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset60.59 36662.54 36154.72 38577.26 35827.74 40874.05 33261.00 39560.48 31165.62 38467.03 39855.93 31568.23 38032.07 40569.46 39968.17 392
N_pmnet70.20 31668.80 33074.38 31080.91 32884.81 3959.12 39176.45 32255.06 34475.31 33682.36 33055.74 31654.82 40147.02 37787.24 30883.52 332
MS-PatchMatch70.93 31270.22 31573.06 31881.85 31662.50 25573.82 33677.90 30752.44 35875.92 32681.27 34155.67 31781.75 32855.37 33477.70 38274.94 383
DSMNet-mixed60.98 36461.61 36459.09 38272.88 39145.05 38674.70 32746.61 40826.20 40465.34 38590.32 20855.46 31863.12 39541.72 39081.30 36969.09 391
pmmvs570.73 31370.07 31672.72 32177.03 36252.73 34774.14 33075.65 32750.36 37472.17 35385.37 29355.42 31980.67 33552.86 35287.59 30684.77 313
CMPMVSbinary59.41 2075.12 27373.57 28179.77 24475.84 37367.22 20281.21 23882.18 28350.78 37076.50 31787.66 25455.20 32082.99 32362.17 29490.64 27089.09 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n_192071.30 30971.58 30470.47 33577.58 35759.99 28974.25 32984.22 26751.06 36774.85 33979.10 36055.10 32168.83 37568.86 23879.20 37782.58 345
MIMVSNet71.09 31071.59 30269.57 34287.23 22550.07 36678.91 26971.83 35560.20 31571.26 35691.76 16355.08 32276.09 35441.06 39187.02 31482.54 347
PVSNet_051.08 2256.10 36954.97 37459.48 38175.12 37953.28 34455.16 39661.89 39044.30 38759.16 39862.48 40154.22 32365.91 38935.40 40047.01 40459.25 400
EPNet_dtu72.87 29571.33 30777.49 28277.72 35560.55 28482.35 21975.79 32466.49 25458.39 40281.06 34353.68 32485.98 29353.55 34692.97 21985.95 300
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS255.64 37159.27 37044.74 38764.30 40912.32 41340.60 40049.79 40653.19 35365.06 38984.81 30153.60 32549.76 40432.68 40489.41 28072.15 386
test_vis1_rt65.64 34964.09 35370.31 33666.09 40570.20 17761.16 38781.60 28938.65 40072.87 34969.66 39452.84 32660.04 39856.16 32777.77 38180.68 369
mvsany_test365.48 35062.97 35873.03 31969.99 39876.17 11864.83 37843.71 40943.68 39080.25 29087.05 26952.83 32763.09 39651.92 35972.44 39179.84 374
HyFIR lowres test75.12 27372.66 29382.50 20291.44 13265.19 22472.47 34487.31 21446.79 37880.29 28784.30 30752.70 32892.10 16451.88 36086.73 31790.22 237
dmvs_re66.81 34266.98 33866.28 36176.87 36358.68 30771.66 35072.24 35160.29 31369.52 36973.53 38852.38 32964.40 39344.90 38481.44 36775.76 381
test_cas_vis1_n_192069.20 33069.12 32369.43 34373.68 38662.82 24970.38 36177.21 31446.18 38280.46 28678.95 36252.03 33065.53 39065.77 26577.45 38579.95 373
test111178.53 23678.85 22977.56 28092.22 10147.49 37482.61 20969.24 36972.43 18985.28 19694.20 8051.91 33190.07 22665.36 26896.45 10295.11 62
ECVR-MVScopyleft78.44 23778.63 23377.88 27691.85 11448.95 36883.68 18169.91 36672.30 19584.26 22394.20 8051.89 33289.82 23163.58 28296.02 12194.87 67
FMVSNet378.80 23278.55 23479.57 24982.89 31156.89 32181.76 22985.77 24269.04 22786.00 18490.44 20551.75 33390.09 22565.95 26093.34 20791.72 199
D2MVS76.84 25475.67 26480.34 23880.48 33662.16 26373.50 33884.80 26257.61 33282.24 25487.54 25651.31 33487.65 26470.40 22093.19 21391.23 210
AUN-MVS81.18 19878.78 23088.39 7790.93 14482.14 5882.51 21583.67 27064.69 27380.29 28785.91 28551.07 33592.38 15476.29 15693.63 20490.65 228
PVSNet58.17 2166.41 34565.63 34868.75 34881.96 31449.88 36762.19 38672.51 35051.03 36868.04 37475.34 38650.84 33674.77 35845.82 38382.96 35581.60 357
GA-MVS75.83 26674.61 27179.48 25181.87 31559.25 29673.42 33982.88 27768.68 23179.75 29281.80 33650.62 33789.46 23966.85 25285.64 32989.72 246
FPMVS72.29 30072.00 29973.14 31788.63 19485.00 3674.65 32867.39 37471.94 20077.80 31187.66 25450.48 33875.83 35649.95 36379.51 37258.58 401
test_fmvs375.72 26875.20 26877.27 28475.01 38169.47 18378.93 26884.88 26046.67 37987.08 15987.84 25050.44 33971.62 36677.42 14488.53 29190.72 223
test_vis1_n70.29 31569.99 31971.20 33375.97 37266.50 21276.69 30280.81 29444.22 38875.43 33277.23 37550.00 34068.59 37666.71 25582.85 35978.52 377
MVS-HIRNet61.16 36262.92 35955.87 38379.09 34835.34 40471.83 34857.98 40146.56 38059.05 39991.14 17949.95 34176.43 35338.74 39571.92 39355.84 402
CVMVSNet72.62 29671.41 30676.28 29783.25 30360.34 28583.50 18579.02 30437.77 40276.33 31985.10 29649.60 34287.41 26770.54 21877.54 38481.08 365
RPMNet78.88 22978.28 23880.68 23479.58 34162.64 25282.58 21194.16 2974.80 15175.72 32992.59 13748.69 34395.56 3973.48 18982.91 35783.85 328
test_fmvs273.57 28872.80 29075.90 30172.74 39368.84 19277.07 29684.32 26645.14 38582.89 24684.22 30848.37 34470.36 36973.40 19187.03 31388.52 269
tpmrst66.28 34666.69 34265.05 36772.82 39239.33 39778.20 27970.69 36353.16 35467.88 37580.36 35048.18 34574.75 35958.13 31870.79 39481.08 365
CR-MVSNet74.00 28573.04 28876.85 29179.58 34162.64 25282.58 21176.90 31750.50 37375.72 32992.38 14348.07 34684.07 31668.72 24182.91 35783.85 328
Patchmtry76.56 25977.46 24373.83 31279.37 34646.60 37882.41 21876.90 31773.81 16185.56 19392.38 14348.07 34683.98 31763.36 28595.31 15090.92 218
test_f64.31 35565.85 34559.67 38066.54 40462.24 26257.76 39470.96 36140.13 39784.36 21582.09 33246.93 34851.67 40361.99 29581.89 36365.12 395
ADS-MVSNet265.87 34863.64 35672.55 32473.16 38956.92 32067.10 37374.81 33049.74 37566.04 38182.97 32046.71 34977.26 35142.29 38869.96 39683.46 333
ADS-MVSNet61.90 35862.19 36261.03 37873.16 38936.42 40367.10 37361.75 39149.74 37566.04 38182.97 32046.71 34963.21 39442.29 38869.96 39683.46 333
PatchmatchNetpermissive69.71 32468.83 32972.33 32777.66 35653.60 34079.29 26269.99 36557.66 33172.53 35182.93 32246.45 35180.08 34060.91 30472.09 39283.31 338
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20072.34 29971.55 30574.70 30983.48 29651.60 35675.02 32473.71 34170.14 21878.56 30580.57 34746.20 35288.20 26046.99 37889.29 28184.32 320
sam_mvs146.11 35383.88 325
tfpn200view974.86 27774.23 27676.74 29286.24 25152.12 35179.24 26473.87 33873.34 17281.82 26384.60 30546.02 35488.80 25051.98 35690.99 25589.31 255
thres40075.14 27174.23 27677.86 27786.24 25152.12 35179.24 26473.87 33873.34 17281.82 26384.60 30546.02 35488.80 25051.98 35690.99 25592.66 161
baseline269.77 32366.89 33978.41 26579.51 34358.09 30976.23 31069.57 36757.50 33364.82 39077.45 37346.02 35488.44 25653.08 34877.83 38088.70 267
patchmatchnet-post81.71 33845.93 35787.01 271
sam_mvs45.92 358
Patchmatch-RL test74.48 28173.68 28076.89 29084.83 27466.54 21172.29 34569.16 37057.70 33086.76 16586.33 27645.79 35982.59 32469.63 22790.65 26981.54 358
thres100view90075.45 26975.05 26976.66 29387.27 22451.88 35481.07 24073.26 34575.68 14183.25 24086.37 27545.54 36088.80 25051.98 35690.99 25589.31 255
thres600view775.97 26575.35 26777.85 27887.01 23451.84 35580.45 24673.26 34575.20 14883.10 24386.31 27845.54 36089.05 24655.03 33892.24 23292.66 161
tpm cat166.76 34365.21 35171.42 33177.09 36150.62 36478.01 28073.68 34244.89 38668.64 37179.00 36145.51 36282.42 32749.91 36470.15 39581.23 364
test_post3.10 40845.43 36377.22 352
MDTV_nov1_ep1368.29 33378.03 35343.87 39074.12 33172.22 35252.17 35967.02 37885.54 28745.36 36480.85 33455.73 32984.42 347
tpmvs70.16 31769.56 32271.96 32874.71 38248.13 37079.63 25575.45 32965.02 27170.26 36481.88 33545.34 36585.68 30058.34 31675.39 38882.08 353
MDTV_nov1_ep13_2view27.60 40970.76 35846.47 38161.27 39445.20 36649.18 36883.75 330
test_post178.85 2723.13 40745.19 36780.13 33958.11 319
CostFormer69.98 32168.68 33173.87 31177.14 36050.72 36379.26 26374.51 33351.94 36370.97 35984.75 30245.16 36887.49 26655.16 33779.23 37583.40 335
FE-MVS79.98 22278.86 22883.36 17886.47 24166.45 21389.73 6584.74 26372.80 18484.22 22591.38 17244.95 36993.60 11563.93 28091.50 24890.04 243
Patchmatch-test65.91 34767.38 33661.48 37775.51 37543.21 39268.84 36663.79 38662.48 28472.80 35083.42 31744.89 37059.52 39948.27 37486.45 32081.70 355
EU-MVSNet75.12 27374.43 27577.18 28583.11 30859.48 29485.71 13982.43 28239.76 39985.64 19188.76 23544.71 37187.88 26273.86 18385.88 32884.16 324
PatchT70.52 31472.76 29263.79 37179.38 34533.53 40577.63 28765.37 38373.61 16571.77 35492.79 13344.38 37275.65 35764.53 27885.37 33182.18 351
test_vis3_rt71.42 30770.67 30973.64 31469.66 39970.46 17466.97 37589.73 17742.68 39588.20 13983.04 31943.77 37360.07 39765.35 26986.66 31890.39 235
test_fmvs1_n70.94 31170.41 31472.53 32573.92 38366.93 20875.99 31484.21 26843.31 39279.40 29679.39 35843.47 37468.55 37769.05 23584.91 34182.10 352
test-LLR67.21 33766.74 34168.63 35076.45 36855.21 33167.89 36967.14 37762.43 28865.08 38772.39 38943.41 37569.37 37061.00 30284.89 34281.31 360
test0.0.03 164.66 35364.36 35265.57 36475.03 38046.89 37764.69 38061.58 39462.43 28871.18 35877.54 37143.41 37568.47 37940.75 39282.65 36081.35 359
test_fmvs169.57 32569.05 32571.14 33469.15 40065.77 22073.98 33383.32 27342.83 39477.77 31278.27 36743.39 37768.50 37868.39 24584.38 34879.15 375
MVSTER77.09 25175.70 26381.25 22275.27 37861.08 27277.49 29185.07 25360.78 30886.55 17188.68 23743.14 37890.25 21473.69 18790.67 26792.42 171
tpm67.95 33468.08 33567.55 35578.74 35243.53 39175.60 31767.10 37954.92 34572.23 35288.10 24442.87 37975.97 35552.21 35480.95 37183.15 340
tpm268.45 33366.83 34073.30 31678.93 35148.50 36979.76 25471.76 35647.50 37769.92 36683.60 31342.07 38088.40 25748.44 37379.51 37283.01 342
EMVS61.10 36360.81 36561.99 37465.96 40655.86 32653.10 39858.97 39967.06 24956.89 40363.33 40040.98 38167.03 38454.79 33986.18 32563.08 396
new_pmnet55.69 37057.66 37149.76 38675.47 37630.59 40659.56 38851.45 40543.62 39162.49 39375.48 38540.96 38249.15 40537.39 39972.52 39069.55 390
E-PMN61.59 36061.62 36361.49 37666.81 40355.40 32953.77 39760.34 39666.80 25258.90 40065.50 39940.48 38366.12 38855.72 33086.25 32462.95 397
EPMVS62.47 35662.63 36062.01 37370.63 39738.74 39974.76 32652.86 40453.91 35067.71 37780.01 35239.40 38466.60 38655.54 33368.81 40080.68 369
tmp_tt20.25 37524.50 3787.49 3904.47 4138.70 41434.17 40125.16 4131.00 40832.43 40718.49 40539.37 3859.21 40921.64 40743.75 4054.57 405
thisisatest053079.07 22677.33 24784.26 15487.13 22864.58 22883.66 18275.95 32368.86 22985.22 19787.36 26138.10 38693.57 11975.47 16594.28 18694.62 74
ET-MVSNet_ETH3D75.28 27072.77 29182.81 19583.03 30968.11 19777.09 29576.51 32160.67 31077.60 31480.52 34838.04 38791.15 18870.78 21390.68 26689.17 258
tttt051781.07 19979.58 22285.52 12788.99 18566.45 21387.03 11475.51 32873.76 16288.32 13790.20 21137.96 38894.16 9479.36 11995.13 15595.93 42
thisisatest051573.00 29470.52 31180.46 23681.45 32159.90 29073.16 34274.31 33557.86 32976.08 32577.78 36937.60 38992.12 16365.00 27191.45 24989.35 254
FMVSNet572.10 30171.69 30173.32 31581.57 32053.02 34576.77 30078.37 30663.31 27776.37 31891.85 15736.68 39078.98 34447.87 37592.45 22687.95 278
dp60.70 36560.29 36861.92 37572.04 39538.67 40070.83 35764.08 38551.28 36660.75 39577.28 37436.59 39171.58 36747.41 37662.34 40275.52 382
CHOSEN 280x42059.08 36756.52 37266.76 35976.51 36664.39 23149.62 39959.00 39843.86 38955.66 40468.41 39735.55 39268.21 38143.25 38776.78 38767.69 393
testing9169.94 32268.99 32772.80 32083.81 29445.89 38171.57 35173.64 34368.24 23670.77 36277.82 36834.37 39384.44 31153.64 34587.00 31588.07 273
IB-MVS62.13 1971.64 30468.97 32879.66 24880.80 33262.26 26173.94 33476.90 31763.27 27868.63 37276.79 37833.83 39491.84 17159.28 31287.26 30784.88 312
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
JIA-IIPM69.41 32666.64 34377.70 27973.19 38871.24 16975.67 31665.56 38270.42 21265.18 38692.97 12533.64 39583.06 32153.52 34769.61 39878.79 376
testing9969.27 32868.15 33472.63 32283.29 30245.45 38371.15 35371.08 36067.34 24770.43 36377.77 37032.24 39684.35 31353.72 34486.33 32388.10 272
iter_conf0578.81 23177.35 24683.21 18382.98 31060.75 28284.09 16788.34 20163.12 27984.25 22489.48 22431.41 39794.51 8176.64 15195.83 13294.38 88
testing1167.38 33665.93 34471.73 33083.37 30046.60 37870.95 35669.40 36862.47 28566.14 37976.66 37931.22 39884.10 31549.10 36984.10 35084.49 316
DeepMVS_CXcopyleft24.13 38932.95 41129.49 40721.63 41412.07 40537.95 40645.07 40430.84 39919.21 40817.94 40833.06 40723.69 404
gg-mvs-nofinetune68.96 33169.11 32468.52 35276.12 37145.32 38483.59 18355.88 40286.68 2464.62 39197.01 730.36 40083.97 31844.78 38582.94 35676.26 380
GG-mvs-BLEND67.16 35773.36 38746.54 38084.15 16555.04 40358.64 40161.95 40229.93 40183.87 31938.71 39676.92 38671.07 388
UWE-MVS66.43 34465.56 34969.05 34584.15 28840.98 39673.06 34364.71 38454.84 34676.18 32379.62 35729.21 40280.50 33738.54 39789.75 27785.66 304
ETVMVS64.67 35263.34 35768.64 34983.44 29841.89 39469.56 36561.70 39361.33 30168.74 37075.76 38428.76 40379.35 34134.65 40186.16 32684.67 315
test_method30.46 37329.60 37633.06 38817.99 4123.84 41513.62 40373.92 3372.79 40618.29 40853.41 40328.53 40443.25 40722.56 40635.27 40652.11 403
test-mter65.00 35163.79 35568.63 35076.45 36855.21 33167.89 36967.14 37750.98 36965.08 38772.39 38928.27 40569.37 37061.00 30284.89 34281.31 360
TESTMET0.1,161.29 36160.32 36764.19 36972.06 39451.30 35867.89 36962.09 38745.27 38460.65 39669.01 39527.93 40664.74 39256.31 32681.65 36676.53 379
testing22266.93 33865.30 35071.81 32983.38 29945.83 38272.06 34767.50 37364.12 27569.68 36776.37 38227.34 40783.00 32238.88 39488.38 29386.62 294
test250674.12 28473.39 28476.28 29791.85 11444.20 38884.06 16848.20 40772.30 19581.90 26094.20 8027.22 40889.77 23464.81 27396.02 12194.87 67
pmmvs362.47 35660.02 36969.80 34071.58 39664.00 23570.52 35958.44 40039.77 39866.05 38075.84 38327.10 40972.28 36246.15 38184.77 34673.11 385
KD-MVS_2432*160066.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30477.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
miper_refine_blended66.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30477.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
myMVS_eth3d64.66 35363.89 35466.97 35881.72 31737.39 40171.00 35461.99 38861.38 29970.81 36072.36 39120.96 41279.30 34249.59 36685.18 33484.22 321
testing371.53 30670.79 30873.77 31388.89 18741.86 39576.60 30559.12 39772.83 18380.97 27482.08 33319.80 41387.33 26965.12 27091.68 24492.13 188
test1236.27 3788.08 3810.84 3911.11 4150.57 41662.90 3830.82 4150.54 4091.07 4112.75 4101.26 4140.30 4101.04 4091.26 4091.66 406
testmvs5.91 3797.65 3820.72 3921.20 4140.37 41759.14 3900.67 4160.49 4101.11 4102.76 4090.94 4150.24 4111.02 4101.47 4081.55 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re6.65 3768.87 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41279.80 3540.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS37.39 40152.61 353
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14296.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12677.99 9091.01 14296.05 887.45 2098.17 3292.40 173
eth-test20.00 416
eth-test0.00 416
IU-MVS94.18 4672.64 14490.82 14756.98 33789.67 10885.78 5097.92 4693.28 135
save fliter93.75 5977.44 9986.31 12989.72 17870.80 209
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3695.88 1786.42 3697.97 4392.02 191
GSMVS83.88 325
test_part293.86 5777.77 9492.84 48
MTGPAbinary91.81 121
MTMP90.66 4433.14 412
gm-plane-assit75.42 37744.97 38752.17 35972.36 39187.90 26154.10 342
test9_res80.83 10196.45 10290.57 229
agg_prior279.68 11496.16 11490.22 237
agg_prior91.58 12477.69 9690.30 16484.32 21793.18 132
test_prior478.97 8084.59 156
test_prior86.32 10890.59 15271.99 15992.85 8994.17 9292.80 154
旧先验281.73 23056.88 33886.54 17684.90 30772.81 200
新几何281.72 231
无先验82.81 20685.62 24458.09 32791.41 18267.95 24984.48 317
原ACMM282.26 224
testdata286.43 28563.52 284
testdata179.62 25673.95 160
plane_prior793.45 6577.31 102
plane_prior593.61 5695.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
plane_prior376.85 10777.79 11886.55 171
plane_prior289.45 7779.44 96
plane_prior192.83 85
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 417
nn0.00 417
door-mid74.45 334
test1191.46 127
door72.57 349
HQP5-MVS70.66 172
HQP-NCC91.19 13684.77 15073.30 17480.55 283
ACMP_Plane91.19 13684.77 15073.30 17480.55 283
BP-MVS77.30 145
HQP4-MVS80.56 28294.61 7493.56 128
HQP3-MVS92.68 9494.47 180
NP-MVS91.95 10974.55 12690.17 214
ACMMP++_ref95.74 139
ACMMP++97.35 73