This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5899.27 199.54 1
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 19984.60 6590.75 27093.97 104
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12778.35 13298.76 495.61 48
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19188.51 2190.11 9695.12 4990.98 688.92 25377.55 14697.07 8383.13 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14385.02 6098.45 1992.41 176
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 5991.14 3583.96 16492.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26383.33 7498.30 2593.20 142
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 159
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8298.76 494.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_ETH3D89.12 6590.72 4784.31 15797.00 264.33 23889.67 7488.38 20588.84 1794.29 2297.57 490.48 1391.26 18872.57 21097.65 6297.34 14
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 184
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 190
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 96
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14683.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 241
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11498.27 2695.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 205
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 205
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 196
tt080588.09 7789.79 5582.98 19493.26 7563.94 24291.10 4589.64 18885.07 4190.91 8691.09 19089.16 2491.87 17482.03 9395.87 13293.13 145
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 159
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 153
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 139
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 156
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 169
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 88
Skip Steuart: Steuart Systems R&D Blog.
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 105
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9686.07 4898.48 1897.22 17
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6697.81 5591.70 209
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9578.78 11192.51 5893.64 11588.13 3693.84 10884.83 6397.55 6994.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs686.52 9988.06 7981.90 21592.22 10362.28 26684.66 16489.15 19683.54 5789.85 10497.32 588.08 3886.80 28270.43 22797.30 7896.62 26
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15670.00 22894.55 1996.67 1487.94 3993.59 11984.27 6895.97 12495.52 49
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 100
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 194
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 112
wuyk23d75.13 27979.30 23262.63 38475.56 38475.18 12680.89 25073.10 35575.06 15894.76 1695.32 4187.73 4352.85 41534.16 41497.11 8259.85 411
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10083.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 147
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 103
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 153
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 10983.69 7397.55 69
PS-CasMVS90.06 4391.92 1584.47 15096.56 658.83 31089.04 8892.74 9691.40 696.12 596.06 2687.23 4895.57 4179.42 12298.74 699.00 2
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 106
PEN-MVS90.03 4591.88 1884.48 14996.57 558.88 30788.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12898.72 998.97 3
DTE-MVSNet89.98 4791.91 1784.21 15996.51 757.84 31888.93 9092.84 9391.92 496.16 496.23 2186.95 5195.99 1279.05 12598.57 1598.80 6
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 92
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 143
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12584.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 183
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 93
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42086.57 5595.80 2887.35 2797.62 6494.20 93
MGCFI-Net85.04 12585.95 11282.31 21187.52 22563.59 24586.23 13893.96 4473.46 17588.07 14587.83 26286.46 5790.87 20476.17 16493.89 20092.47 174
sasdasda85.50 11386.14 10983.58 17687.97 21167.13 20987.55 10994.32 2173.44 17788.47 13587.54 26786.45 5891.06 19575.76 16993.76 20292.54 170
canonicalmvs85.50 11386.14 10983.58 17687.97 21167.13 20987.55 10994.32 2173.44 17788.47 13587.54 26786.45 5891.06 19575.76 16993.76 20292.54 170
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13594.02 5864.13 23984.38 17191.29 13884.88 4492.06 6593.84 10586.45 5893.73 11073.22 20198.66 1197.69 9
test_040288.65 6989.58 6085.88 12392.55 9272.22 15984.01 17789.44 19388.63 2094.38 2195.77 2986.38 6193.59 11979.84 11595.21 15491.82 203
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9297.18 8190.45 243
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22186.24 4697.24 7991.36 217
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS92.22 10380.48 7191.85 12171.22 21490.38 9292.98 13186.06 6496.11 781.99 9596.75 92
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17269.27 23294.39 2096.38 1886.02 6593.52 12383.96 7095.92 13095.34 53
nrg03087.85 8288.49 7585.91 12190.07 16669.73 18387.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18079.72 11797.32 7796.50 29
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 6998.03 4193.26 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24574.12 18596.10 11994.45 83
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24574.12 18596.10 11994.45 83
GeoE85.45 11685.81 11784.37 15190.08 16467.07 21185.86 14491.39 13572.33 20187.59 15590.25 22084.85 7192.37 15978.00 14091.94 24493.66 121
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13691.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 8987.95 2589.62 11192.87 13784.56 7393.89 10577.65 14496.62 9590.70 235
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10495.50 14594.53 80
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20789.67 23384.47 7595.46 5082.56 8796.26 11193.77 118
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15387.09 23765.22 22984.16 17394.23 2777.89 12291.28 7993.66 11484.35 7692.71 14980.07 11194.87 17295.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17569.87 22995.06 1596.14 2584.28 7793.07 14087.68 1896.34 10697.09 19
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 13077.97 14297.03 8495.52 49
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22689.33 23783.87 7994.53 8482.45 8894.89 16994.90 65
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19783.86 7295.30 15393.60 127
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 13982.67 8698.04 3993.64 124
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18392.01 11565.91 26686.19 18691.75 17383.77 8294.98 6977.43 14996.71 9393.73 119
test_fmvsmvis_n_192085.22 11985.36 12884.81 14085.80 26676.13 12285.15 15792.32 10761.40 30891.33 7690.85 20283.76 8386.16 29584.31 6793.28 21492.15 192
Effi-MVS+83.90 15684.01 15583.57 17887.22 23165.61 22786.55 13292.40 10378.64 11481.34 28484.18 32283.65 8492.93 14574.22 18287.87 31292.17 191
MVS_111021_HR84.63 13384.34 15185.49 13290.18 16375.86 12379.23 27487.13 22473.35 17985.56 20089.34 23683.60 8590.50 21576.64 15794.05 19790.09 253
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9488.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
AdaColmapbinary83.66 16083.69 16083.57 17890.05 16772.26 15886.29 13690.00 18078.19 11981.65 27887.16 27683.40 8794.24 9161.69 30794.76 17784.21 334
LCM-MVSNet-Re83.48 16585.06 13178.75 26485.94 26455.75 33580.05 25894.27 2476.47 13696.09 694.54 6783.31 8889.75 24059.95 31894.89 16990.75 232
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26478.30 8986.93 12092.20 11065.94 26489.16 12193.16 12483.10 8989.89 23487.81 1594.43 18593.35 134
TransMVSNet (Re)84.02 15285.74 12078.85 26291.00 14655.20 34182.29 22987.26 22079.65 9888.38 13995.52 3783.00 9086.88 28067.97 25596.60 9694.45 83
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15491.23 14077.31 13187.07 16691.47 17982.94 9194.71 7584.67 6496.27 11092.62 166
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19592.38 10570.25 22589.35 11990.68 20882.85 9294.57 8179.55 11995.95 12792.00 198
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 9986.25 4597.63 6397.82 8
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18170.81 21996.14 11694.16 97
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18170.81 21996.14 11694.16 97
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27378.25 9085.82 14591.82 12365.33 27888.55 13292.35 15682.62 9689.80 23686.87 3594.32 18893.18 144
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14379.26 10489.68 10894.81 5982.44 9787.74 26776.54 15888.74 29896.61 27
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 27987.25 27482.43 9894.53 8477.65 14496.46 10294.14 99
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17081.56 7690.02 9991.20 18782.40 9990.81 20673.58 19694.66 17994.56 77
SDMVSNet81.90 19783.17 16878.10 27788.81 19262.45 26276.08 32386.05 24373.67 17183.41 24693.04 12782.35 10080.65 34370.06 23195.03 16291.21 219
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28178.21 9185.40 15391.39 13565.32 27987.72 15391.81 17082.33 10189.78 23786.68 3794.20 19192.99 152
Fast-Effi-MVS+81.04 20780.57 21282.46 20987.50 22663.22 25078.37 28689.63 18968.01 24781.87 27182.08 34582.31 10292.65 15267.10 25788.30 30791.51 215
baseline85.20 12185.93 11383.02 19286.30 25462.37 26484.55 16693.96 4474.48 16387.12 16192.03 16282.30 10391.94 17078.39 13094.21 19094.74 74
casdiffmvspermissive85.21 12085.85 11683.31 18586.17 25962.77 25683.03 20693.93 4674.69 16188.21 14292.68 14482.29 10491.89 17377.87 14393.75 20595.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023121188.40 7189.62 5984.73 14390.46 15765.27 22888.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 16976.70 15697.99 4396.88 23
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12084.26 4790.87 8993.92 10382.18 10689.29 24973.75 19394.81 17393.70 120
Anonymous2024052986.20 10487.13 9183.42 18290.19 16264.55 23684.55 16690.71 15385.85 3689.94 10395.24 4682.13 10790.40 21769.19 24096.40 10595.31 55
CLD-MVS83.18 17082.64 17884.79 14189.05 18467.82 20677.93 29092.52 10168.33 24385.07 20881.54 35182.06 10892.96 14369.35 23697.91 5193.57 129
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TEST992.34 9879.70 7883.94 17990.32 16765.41 27784.49 22090.97 19482.03 10993.63 114
segment_acmp81.94 110
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 17990.32 16765.79 26884.49 22090.97 19481.93 11193.63 11481.21 10096.54 9890.88 229
test_892.09 10778.87 8583.82 18490.31 16965.79 26884.36 22490.96 19681.93 11193.44 127
test_prior283.37 19675.43 15384.58 21891.57 17681.92 11379.54 12096.97 85
EGC-MVSNET74.79 28669.99 32889.19 6594.89 3887.00 1591.89 3786.28 2371.09 4212.23 42395.98 2781.87 11489.48 24179.76 11695.96 12591.10 222
CP-MVSNet89.27 6290.91 4484.37 15196.34 858.61 31388.66 9792.06 11490.78 795.67 895.17 4781.80 11595.54 4479.00 12698.69 1098.95 4
MVS_111021_LR84.28 14383.76 15985.83 12589.23 18283.07 5580.99 24983.56 27972.71 19486.07 18989.07 24281.75 11686.19 29477.11 15393.36 21088.24 280
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17871.54 20894.28 2496.54 1681.57 11794.27 8886.26 4396.49 10097.09 19
cdsmvs_eth3d_5k20.81 38827.75 3910.00 4070.00 4300.00 4320.00 41885.44 2520.00 4250.00 42682.82 33781.46 1180.00 4260.00 4250.00 4240.00 422
WR-MVS_H89.91 5091.31 3385.71 12796.32 962.39 26389.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10398.80 398.84 5
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10879.74 9687.50 15792.38 15281.42 11993.28 13283.07 7897.24 7991.67 210
pm-mvs183.69 15984.95 13479.91 24990.04 16859.66 29782.43 22587.44 21775.52 15287.85 15095.26 4581.25 12185.65 30668.74 24796.04 12194.42 86
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 172
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 18095.35 14892.29 184
sd_testset79.95 23181.39 20275.64 31088.81 19258.07 31576.16 32282.81 28673.67 17183.41 24693.04 12780.96 12477.65 35958.62 32495.03 16291.21 219
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14478.77 11284.85 21590.89 19980.85 12595.29 5681.14 10195.32 15092.34 181
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19589.56 23480.76 12692.13 16573.21 20695.51 14493.25 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+-dtu82.54 18181.41 20185.90 12285.60 26776.53 11583.07 20589.62 19073.02 18979.11 31183.51 32780.74 12790.24 22068.76 24689.29 28990.94 226
PC_three_145258.96 33090.06 9791.33 18280.66 12893.03 14275.78 16895.94 12892.48 172
VPA-MVSNet83.47 16684.73 13679.69 25390.29 16057.52 32181.30 24588.69 20176.29 13787.58 15694.44 7180.60 12987.20 27466.60 26396.82 9094.34 90
ETV-MVS84.31 14183.91 15885.52 13088.58 19970.40 17884.50 17093.37 6478.76 11384.07 23478.72 37580.39 13095.13 6573.82 19292.98 22291.04 223
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 13978.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 247
ANet_high83.17 17185.68 12175.65 30981.24 33245.26 39579.94 26092.91 9083.83 5191.33 7696.88 1380.25 13285.92 29968.89 24495.89 13195.76 42
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29572.76 14483.91 18285.18 25780.44 8688.75 12785.49 30180.08 13491.92 17182.02 9490.85 26895.97 38
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11670.56 22084.96 21190.69 20780.01 13595.14 6478.37 13195.78 13891.82 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 29972.52 15383.82 18485.15 25880.27 9088.75 12785.45 30379.95 13691.90 17281.92 9790.80 26996.13 33
MCST-MVS84.36 13983.93 15785.63 12891.59 12471.58 16883.52 19292.13 11261.82 30183.96 23689.75 23279.93 13793.46 12678.33 13394.34 18791.87 202
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14267.85 25286.63 17694.84 5579.58 13895.96 1587.62 1994.50 18294.56 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1286.57 10590.74 15172.63 14990.69 15482.76 25879.20 13994.80 7395.32 15092.27 186
CSCG86.26 10186.47 10385.60 12990.87 14974.26 13187.98 10491.85 12180.35 8889.54 11788.01 25679.09 14092.13 16575.51 17195.06 16190.41 244
Test By Simon79.09 140
PHI-MVS86.38 10085.81 11788.08 8488.44 20377.34 10589.35 8593.05 8373.15 18784.76 21687.70 26478.87 14294.18 9480.67 10896.29 10792.73 159
EG-PatchMatch MVS84.08 15084.11 15383.98 16392.22 10372.61 15082.20 23587.02 22972.63 19588.86 12491.02 19278.52 14391.11 19373.41 19891.09 25788.21 281
dcpmvs_284.23 14685.14 13081.50 22588.61 19861.98 27182.90 21293.11 7968.66 24192.77 5492.39 15178.50 14487.63 26976.99 15592.30 23294.90 65
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23391.15 387.70 10888.42 20474.57 16283.56 24485.65 29878.49 14594.21 9272.04 21392.88 22494.05 102
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11378.87 11084.27 23194.05 9278.35 14693.65 11280.54 11091.58 25192.08 194
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21282.55 22191.56 12883.08 6290.92 8491.82 16978.25 14793.99 10174.16 18398.35 2297.49 13
MSLP-MVS++85.00 12886.03 11181.90 21591.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23577.98 14889.40 24877.46 14794.78 17484.75 324
API-MVS82.28 18482.61 17981.30 22786.29 25569.79 18188.71 9587.67 21678.42 11782.15 26784.15 32377.98 14891.59 17965.39 27592.75 22682.51 361
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20292.40 10372.04 20582.04 26888.33 25277.91 15093.95 10366.17 26695.12 15990.34 246
mmtdpeth85.13 12385.78 11983.17 19084.65 28374.71 12785.87 14390.35 16677.94 12183.82 23896.96 1277.75 15180.03 34978.44 12996.21 11294.79 73
fmvsm_s_conf0.1_n_a82.58 18081.93 18884.50 14887.68 22073.35 13786.14 13977.70 31761.64 30685.02 20991.62 17577.75 15186.24 29182.79 8487.07 32193.91 108
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19883.80 18692.87 9180.37 8789.61 11391.81 17077.72 15394.18 9475.00 17898.53 1696.99 22
PCF-MVS74.62 1582.15 18980.92 21085.84 12489.43 17772.30 15780.53 25391.82 12357.36 34387.81 15189.92 22977.67 15493.63 11458.69 32395.08 16091.58 213
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NR-MVSNet86.00 10786.22 10785.34 13393.24 7664.56 23582.21 23390.46 16080.99 8288.42 13791.97 16377.56 15593.85 10672.46 21198.65 1297.61 10
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6195.87 13295.24 58
MVS_Test82.47 18283.22 16580.22 24682.62 31957.75 32082.54 22291.96 11871.16 21582.89 25592.52 14977.41 15790.50 21580.04 11387.84 31392.40 178
fmvsm_s_conf0.5_n_a82.21 18681.51 20084.32 15686.56 24573.35 13785.46 15077.30 32161.81 30284.51 21990.88 20177.36 15886.21 29382.72 8586.97 32693.38 133
EIA-MVS82.19 18781.23 20685.10 13687.95 21369.17 19383.22 20393.33 6770.42 22178.58 31579.77 36777.29 15994.20 9371.51 21588.96 29491.93 201
xiu_mvs_v2_base77.19 25676.75 26078.52 26887.01 23961.30 27775.55 33087.12 22761.24 31374.45 35178.79 37477.20 16090.93 19964.62 28584.80 35583.32 348
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21283.16 20492.21 10981.73 7490.92 8491.97 16377.20 16093.99 10174.16 18398.35 2297.61 10
Baseline_NR-MVSNet84.00 15385.90 11478.29 27491.47 13453.44 35282.29 22987.00 23279.06 10789.55 11595.72 3277.20 16086.14 29672.30 21298.51 1795.28 56
TinyColmap81.25 20482.34 18477.99 28085.33 27160.68 28882.32 22888.33 20771.26 21386.97 16892.22 16177.10 16386.98 27862.37 29995.17 15686.31 307
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 11973.19 18680.18 30189.15 24177.04 16493.28 13265.82 27292.28 23592.21 189
114514_t83.10 17382.54 18184.77 14292.90 8369.10 19486.65 12990.62 15754.66 35981.46 28190.81 20476.98 16594.38 8772.62 20996.18 11490.82 231
xiu_mvs_v1_base_debu80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
xiu_mvs_v1_base80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
xiu_mvs_v1_base_debi80.84 20980.14 22382.93 19788.31 20471.73 16479.53 26587.17 22165.43 27479.59 30382.73 33976.94 16690.14 22673.22 20188.33 30386.90 301
pcd_1.5k_mvsjas6.41 3918.55 3940.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42576.94 1660.00 4260.00 4250.00 4240.00 422
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11770.73 21994.19 2596.67 1476.94 16694.57 8183.07 7896.28 10896.15 32
PS-MVSNAJ77.04 25876.53 26278.56 26787.09 23761.40 27575.26 33287.13 22461.25 31274.38 35377.22 38776.94 16690.94 19864.63 28484.83 35483.35 347
MIMVSNet183.63 16184.59 14180.74 23794.06 5762.77 25682.72 21584.53 27177.57 12890.34 9395.92 2876.88 17285.83 30461.88 30597.42 7493.62 125
原ACMM184.60 14692.81 8974.01 13291.50 13062.59 29282.73 25990.67 21076.53 17394.25 9069.24 23795.69 14185.55 315
fmvsm_s_conf0.1_n82.17 18881.59 19683.94 16686.87 24371.57 16985.19 15677.42 32062.27 30084.47 22291.33 18276.43 17485.91 30083.14 7587.14 31994.33 91
fmvsm_s_conf0.5_n81.91 19681.30 20383.75 17086.02 26371.56 17084.73 16277.11 32462.44 29784.00 23590.68 20876.42 17585.89 30283.14 7587.11 32093.81 116
MSDG80.06 22979.99 22880.25 24583.91 29868.04 20477.51 29889.19 19577.65 12681.94 26983.45 32976.37 17686.31 29063.31 29586.59 32986.41 305
Gipumacopyleft84.44 13886.33 10578.78 26384.20 29373.57 13589.55 7790.44 16184.24 4884.38 22394.89 5376.35 17780.40 34676.14 16596.80 9182.36 362
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsm_n_192083.60 16282.89 17385.74 12685.22 27477.74 9984.12 17590.48 15959.87 32786.45 18591.12 18975.65 17885.89 30282.28 9190.87 26693.58 128
XXY-MVS74.44 29076.19 26569.21 35584.61 28452.43 36071.70 35977.18 32360.73 31980.60 29190.96 19675.44 17969.35 38456.13 33888.33 30385.86 312
FMVSNet184.55 13685.45 12581.85 21790.27 16161.05 28186.83 12488.27 20978.57 11589.66 11095.64 3475.43 18090.68 21069.09 24195.33 14993.82 113
CANet83.79 15882.85 17486.63 10486.17 25972.21 16083.76 18791.43 13277.24 13274.39 35287.45 27075.36 18195.42 5277.03 15492.83 22592.25 188
ab-mvs79.67 23280.56 21376.99 29288.48 20156.93 32584.70 16386.06 24268.95 23780.78 29093.08 12675.30 18284.62 31456.78 33390.90 26489.43 262
patch_mono-278.89 23679.39 23177.41 28984.78 28068.11 20275.60 32783.11 28260.96 31679.36 30789.89 23075.18 18372.97 37273.32 20092.30 23291.15 221
DELS-MVS81.44 20281.25 20482.03 21384.27 29262.87 25476.47 31792.49 10270.97 21781.64 27983.83 32475.03 18492.70 15074.29 18192.22 23890.51 242
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR78.84 23878.10 24881.07 23285.17 27560.22 29182.21 23390.57 15862.51 29375.32 34684.61 31774.99 18592.30 16259.48 32188.04 30990.68 236
CNLPA83.55 16483.10 17084.90 13889.34 17983.87 5084.54 16888.77 19979.09 10683.54 24588.66 24974.87 18681.73 33666.84 26092.29 23489.11 268
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10695.83 13494.46 81
plane_prior692.61 9076.54 11374.84 187
FC-MVSNet-test85.93 10987.05 9482.58 20592.25 10156.44 32985.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 12975.11 17798.58 1497.88 7
VDD-MVS84.23 14684.58 14283.20 18891.17 14265.16 23183.25 20084.97 26579.79 9587.18 16094.27 7974.77 19090.89 20269.24 23796.54 9893.55 132
BH-untuned80.96 20880.99 20880.84 23688.55 20068.23 19980.33 25688.46 20372.79 19386.55 17786.76 28274.72 19191.77 17761.79 30688.99 29382.52 360
VPNet80.25 22381.68 19175.94 30792.46 9547.98 38276.70 31081.67 29573.45 17684.87 21492.82 13874.66 19286.51 28761.66 30896.85 8793.33 135
tfpnnormal81.79 19882.95 17278.31 27288.93 18955.40 33780.83 25282.85 28576.81 13485.90 19494.14 8974.58 19386.51 28766.82 26195.68 14293.01 151
KD-MVS_self_test81.93 19583.14 16978.30 27384.75 28252.75 35680.37 25589.42 19470.24 22690.26 9593.39 11974.55 19486.77 28368.61 24996.64 9495.38 52
fmvsm_l_conf0.5_n82.06 19181.54 19983.60 17583.94 29673.90 13383.35 19786.10 24058.97 32983.80 23990.36 21674.23 19586.94 27982.90 8190.22 27889.94 255
V4283.47 16683.37 16483.75 17083.16 31463.33 24881.31 24390.23 17469.51 23190.91 8690.81 20474.16 19692.29 16380.06 11290.22 27895.62 47
3Dnovator80.37 784.80 13084.71 13985.06 13786.36 25274.71 12788.77 9490.00 18075.65 14984.96 21193.17 12374.06 19791.19 19078.28 13491.09 25789.29 266
v1086.54 9887.10 9284.84 13988.16 20963.28 24986.64 13092.20 11075.42 15492.81 5394.50 6874.05 19894.06 10083.88 7196.28 10897.17 18
旧先验191.97 11171.77 16381.78 29491.84 16773.92 19993.65 20783.61 342
mvs_anonymous78.13 24678.76 23976.23 30679.24 35650.31 37578.69 28184.82 26861.60 30783.09 25392.82 13873.89 20087.01 27568.33 25386.41 33191.37 216
MAR-MVS80.24 22478.74 24084.73 14386.87 24378.18 9285.75 14687.81 21565.67 27377.84 32078.50 37673.79 20190.53 21461.59 30990.87 26685.49 317
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet84.35 14085.39 12781.25 22895.13 3259.32 30085.42 15281.11 29986.41 3287.41 15896.21 2273.61 20290.61 21366.33 26596.85 8793.81 116
FIs85.35 11886.27 10682.60 20491.86 11657.31 32285.10 15893.05 8375.83 14691.02 8393.97 9673.57 20392.91 14773.97 18998.02 4297.58 12
v114484.54 13784.72 13884.00 16287.67 22162.55 26082.97 20990.93 14970.32 22489.80 10590.99 19373.50 20493.48 12581.69 9994.65 18095.97 38
diffmvspermissive80.40 21880.48 21680.17 24779.02 35960.04 29277.54 29790.28 17366.65 26282.40 26287.33 27373.50 20487.35 27277.98 14189.62 28693.13 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR83.23 16983.19 16783.33 18490.90 14865.98 22388.19 10190.78 15278.13 12080.87 28987.92 26073.49 20692.42 15670.07 23088.40 30191.60 212
v886.22 10386.83 9984.36 15387.82 21662.35 26586.42 13491.33 13776.78 13592.73 5594.48 7073.41 20793.72 11183.10 7795.41 14697.01 21
EI-MVSNet82.61 17882.42 18383.20 18883.25 31163.66 24383.50 19385.07 25976.06 13986.55 17785.10 30973.41 20790.25 21878.15 13990.67 27295.68 45
IterMVS-LS84.73 13284.98 13383.96 16487.35 22863.66 24383.25 20089.88 18376.06 13989.62 11192.37 15573.40 20992.52 15478.16 13794.77 17695.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23384.54 4683.58 24393.78 10873.36 21096.48 287.98 1396.21 11294.41 87
v14419284.24 14584.41 14883.71 17287.59 22461.57 27382.95 21091.03 14567.82 25389.80 10590.49 21473.28 21193.51 12481.88 9894.89 16996.04 37
BH-RMVSNet80.53 21480.22 22181.49 22687.19 23266.21 22177.79 29386.23 23874.21 16583.69 24088.50 25073.25 21290.75 20763.18 29687.90 31187.52 294
PLCcopyleft73.85 1682.09 19080.31 21787.45 9290.86 15080.29 7385.88 14290.65 15568.17 24676.32 33286.33 28873.12 21392.61 15361.40 31090.02 28189.44 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5897.78 5697.26 15
WR-MVS83.56 16384.40 14981.06 23393.43 7054.88 34278.67 28285.02 26281.24 7990.74 9091.56 17772.85 21591.08 19468.00 25498.04 3997.23 16
VNet79.31 23380.27 21876.44 30187.92 21453.95 34875.58 32984.35 27374.39 16482.23 26590.72 20672.84 21684.39 31860.38 31693.98 19890.97 225
QAPM82.59 17982.59 18082.58 20586.44 24766.69 21689.94 6790.36 16567.97 24984.94 21392.58 14772.71 21792.18 16470.63 22587.73 31488.85 275
v119284.57 13584.69 14084.21 15987.75 21862.88 25383.02 20791.43 13269.08 23589.98 10290.89 19972.70 21893.62 11782.41 8994.97 16696.13 33
OpenMVScopyleft76.72 1381.98 19482.00 18781.93 21484.42 28868.22 20088.50 9989.48 19266.92 25981.80 27591.86 16572.59 21990.16 22371.19 21891.25 25687.40 296
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18881.58 29774.73 16085.66 19686.06 29372.56 22092.69 15175.44 17395.21 15489.01 274
alignmvs83.94 15583.98 15683.80 16787.80 21767.88 20584.54 16891.42 13473.27 18588.41 13887.96 25772.33 22190.83 20576.02 16794.11 19492.69 163
fmvsm_l_conf0.5_n_a81.46 20180.87 21183.25 18683.73 30173.21 14283.00 20885.59 25158.22 33582.96 25490.09 22772.30 22286.65 28581.97 9689.95 28289.88 256
MVSMamba_PlusPlus87.53 8688.86 7183.54 18092.03 11062.26 26791.49 4092.62 9988.07 2488.07 14596.17 2372.24 22395.79 3184.85 6294.16 19392.58 167
HQP2-MVS72.10 224
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 15992.68 9773.30 18280.55 29390.17 22572.10 22494.61 7977.30 15194.47 18393.56 130
testgi72.36 30674.61 27865.59 37580.56 34342.82 40368.29 37873.35 35266.87 26081.84 27289.93 22872.08 22666.92 39746.05 39392.54 22987.01 300
v192192084.23 14684.37 15083.79 16887.64 22361.71 27282.91 21191.20 14167.94 25090.06 9790.34 21772.04 22793.59 11982.32 9094.91 16796.07 35
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26392.98 153
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LF4IMVS82.75 17781.93 18885.19 13482.08 32180.15 7485.53 14988.76 20068.01 24785.58 19987.75 26371.80 22986.85 28174.02 18893.87 20188.58 277
v124084.30 14284.51 14683.65 17387.65 22261.26 27882.85 21391.54 12967.94 25090.68 9190.65 21171.71 23093.64 11382.84 8394.78 17496.07 35
ambc82.98 19490.55 15664.86 23288.20 10089.15 19689.40 11893.96 9971.67 23191.38 18778.83 12796.55 9792.71 162
新几何182.95 19693.96 5978.56 8880.24 30555.45 35383.93 23791.08 19171.19 23288.33 26265.84 27193.07 21981.95 366
SSC-MVS77.55 25281.64 19365.29 37890.46 15720.33 42473.56 34768.28 38185.44 3788.18 14494.64 6470.93 23381.33 33871.25 21692.03 24094.20 93
v14882.31 18382.48 18281.81 22085.59 26859.66 29781.47 24286.02 24472.85 19088.05 14790.65 21170.73 23490.91 20175.15 17691.79 24594.87 67
v2v48284.09 14984.24 15283.62 17487.13 23361.40 27582.71 21689.71 18672.19 20489.55 11591.41 18070.70 23593.20 13481.02 10293.76 20296.25 31
MVS_030485.37 11784.58 14287.75 8885.28 27273.36 13686.54 13385.71 24877.56 12981.78 27792.47 15070.29 23696.02 1185.59 5395.96 12593.87 110
WB-MVS76.06 27180.01 22764.19 38189.96 17020.58 42372.18 35668.19 38283.21 5986.46 18493.49 11770.19 23778.97 35465.96 26790.46 27793.02 150
balanced_conf0384.80 13085.40 12683.00 19388.95 18861.44 27490.42 5892.37 10671.48 21088.72 12993.13 12570.16 23895.15 6379.26 12494.11 19492.41 176
UGNet82.78 17681.64 19386.21 11686.20 25876.24 12086.86 12285.68 24977.07 13373.76 35692.82 13869.64 23991.82 17669.04 24393.69 20690.56 240
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
c3_l81.64 19981.59 19681.79 22180.86 33859.15 30478.61 28390.18 17668.36 24287.20 15987.11 27869.39 24091.62 17878.16 13794.43 18594.60 76
MG-MVS80.32 22180.94 20978.47 27088.18 20752.62 35982.29 22985.01 26372.01 20679.24 31092.54 14869.36 24193.36 13170.65 22489.19 29289.45 260
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21591.21 4388.64 20286.30 3389.60 11492.59 14569.22 24294.91 7173.89 19097.89 5296.72 24
PVSNet_BlendedMVS78.80 23977.84 24981.65 22384.43 28663.41 24679.49 26890.44 16161.70 30575.43 34387.07 27969.11 24391.44 18360.68 31492.24 23690.11 252
PVSNet_Blended76.49 26775.40 27279.76 25184.43 28663.41 24675.14 33390.44 16157.36 34375.43 34378.30 37769.11 24391.44 18360.68 31487.70 31584.42 329
BH-w/o76.57 26576.07 26778.10 27786.88 24265.92 22477.63 29586.33 23665.69 27280.89 28879.95 36468.97 24590.74 20853.01 36185.25 34377.62 390
MVS73.21 30072.59 30275.06 31480.97 33560.81 28781.64 24085.92 24646.03 39671.68 36677.54 38268.47 24689.77 23855.70 34185.39 34074.60 396
miper_ehance_all_eth80.34 22080.04 22681.24 23079.82 34958.95 30677.66 29489.66 18765.75 27185.99 19385.11 30868.29 24791.42 18576.03 16692.03 24093.33 135
Anonymous20240521180.51 21581.19 20778.49 26988.48 20157.26 32376.63 31282.49 28881.21 8084.30 22992.24 16067.99 24886.24 29162.22 30095.13 15791.98 200
testdata79.54 25692.87 8472.34 15680.14 30659.91 32685.47 20291.75 17367.96 24985.24 30868.57 25192.18 23981.06 379
DPM-MVS80.10 22879.18 23382.88 20090.71 15369.74 18278.87 27990.84 15060.29 32375.64 34285.92 29667.28 25093.11 13871.24 21791.79 24585.77 313
PVSNet_Blended_VisFu81.55 20080.49 21584.70 14591.58 12773.24 14184.21 17291.67 12762.86 29180.94 28787.16 27667.27 25192.87 14869.82 23388.94 29587.99 287
MDA-MVSNet-bldmvs77.47 25376.90 25979.16 26079.03 35864.59 23366.58 38875.67 33473.15 18788.86 12488.99 24366.94 25281.23 33964.71 28288.22 30891.64 211
CL-MVSNet_self_test76.81 26177.38 25375.12 31386.90 24151.34 36773.20 35180.63 30468.30 24481.80 27588.40 25166.92 25380.90 34055.35 34594.90 16893.12 147
test22293.31 7376.54 11379.38 26977.79 31652.59 36982.36 26390.84 20366.83 25491.69 24781.25 374
TR-MVS76.77 26275.79 26879.72 25286.10 26265.79 22577.14 30383.02 28365.20 28081.40 28282.10 34366.30 25590.73 20955.57 34285.27 34282.65 355
OpenMVS_ROBcopyleft70.19 1777.77 25177.46 25178.71 26584.39 28961.15 27981.18 24782.52 28762.45 29683.34 24887.37 27166.20 25688.66 25964.69 28385.02 34886.32 306
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21481.51 7787.05 16791.83 16866.18 25795.29 5670.75 22296.89 8695.64 46
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21281.66 7594.64 1896.53 1765.94 25894.75 7483.02 8096.83 8995.41 51
PatchMatch-RL74.48 28873.22 29478.27 27587.70 21985.26 3875.92 32570.09 37364.34 28476.09 33681.25 35365.87 25978.07 35853.86 35383.82 36171.48 399
WB-MVSnew68.72 34369.01 33667.85 36483.22 31343.98 39974.93 33565.98 39155.09 35473.83 35579.11 37065.63 26071.89 37638.21 41085.04 34787.69 293
EPNet80.37 21978.41 24586.23 11376.75 37373.28 13987.18 11677.45 31976.24 13868.14 38488.93 24465.41 26193.85 10669.47 23596.12 11891.55 214
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)83.13 17283.02 17183.43 18186.16 26166.08 22288.00 10388.36 20675.55 15185.02 20992.75 14265.12 26292.50 15574.94 17991.30 25591.72 207
PM-MVS80.20 22579.00 23483.78 16988.17 20886.66 1981.31 24366.81 39069.64 23088.33 14090.19 22264.58 26383.63 32671.99 21490.03 28081.06 379
miper_enhance_ethall77.83 24876.93 25880.51 24176.15 38058.01 31775.47 33188.82 19858.05 33783.59 24280.69 35564.41 26491.20 18973.16 20792.03 24092.33 182
eth_miper_zixun_eth80.84 20980.22 22182.71 20281.41 33060.98 28477.81 29290.14 17767.31 25786.95 16987.24 27564.26 26592.31 16175.23 17591.61 24994.85 71
test20.0373.75 29574.59 28071.22 34281.11 33451.12 37170.15 37272.10 36270.42 22180.28 29991.50 17864.21 26674.72 37146.96 39094.58 18187.82 292
mvs5depth83.82 15784.54 14481.68 22282.23 32068.65 19686.89 12189.90 18280.02 9487.74 15297.86 264.19 26782.02 33476.37 16095.63 14394.35 89
cascas76.29 27074.81 27780.72 23984.47 28562.94 25273.89 34587.34 21855.94 35075.16 34876.53 39263.97 26891.16 19165.00 27990.97 26288.06 285
TAMVS78.08 24776.36 26383.23 18790.62 15472.87 14379.08 27580.01 30761.72 30481.35 28386.92 28163.96 26988.78 25750.61 37193.01 22188.04 286
GBi-Net82.02 19282.07 18581.85 21786.38 24961.05 28186.83 12488.27 20972.43 19686.00 19095.64 3463.78 27090.68 21065.95 26893.34 21193.82 113
test182.02 19282.07 18581.85 21786.38 24961.05 28186.83 12488.27 20972.43 19686.00 19095.64 3463.78 27090.68 21065.95 26893.34 21193.82 113
FMVSNet281.31 20381.61 19580.41 24386.38 24958.75 31183.93 18186.58 23572.43 19687.65 15492.98 13163.78 27090.22 22166.86 25893.92 19992.27 186
USDC76.63 26476.73 26176.34 30383.46 30457.20 32480.02 25988.04 21352.14 37483.65 24191.25 18463.24 27386.65 28554.66 35094.11 19485.17 319
RRT-MVS82.97 17483.44 16181.57 22485.06 27658.04 31687.20 11490.37 16477.88 12388.59 13193.70 11363.17 27493.05 14176.49 15988.47 30093.62 125
DIV-MVS_self_test80.43 21680.23 21981.02 23479.99 34659.25 30177.07 30587.02 22967.38 25486.19 18689.22 23863.09 27590.16 22376.32 16195.80 13693.66 121
cl____80.42 21780.23 21981.02 23479.99 34659.25 30177.07 30587.02 22967.37 25586.18 18889.21 23963.08 27690.16 22376.31 16295.80 13693.65 123
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17884.98 26471.27 21186.70 17390.55 21363.04 27793.92 10478.26 13594.20 19189.63 258
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21783.69 27771.27 21186.70 17386.05 29463.04 27792.41 15778.26 13593.62 20990.71 234
new-patchmatchnet70.10 32773.37 29260.29 39181.23 33316.95 42659.54 40274.62 33962.93 29080.97 28587.93 25962.83 27971.90 37555.24 34695.01 16592.00 198
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15176.68 32884.06 5092.44 6096.99 1062.03 28094.65 7780.58 10993.24 21594.83 72
lessismore_v085.95 12091.10 14470.99 17470.91 37191.79 6994.42 7461.76 28192.93 14579.52 12193.03 22093.93 106
131473.22 29972.56 30475.20 31280.41 34557.84 31881.64 24085.36 25351.68 37773.10 35976.65 39161.45 28285.19 30963.54 29279.21 38882.59 356
Syy-MVS69.40 33770.03 32767.49 36781.72 32538.94 41071.00 36461.99 40061.38 30970.81 37172.36 40361.37 28379.30 35164.50 28785.18 34484.22 332
CANet_DTU77.81 25077.05 25680.09 24881.37 33159.90 29583.26 19988.29 20869.16 23467.83 38783.72 32560.93 28489.47 24269.22 23989.70 28590.88 229
pmmvs-eth3d78.42 24577.04 25782.57 20787.44 22774.41 13080.86 25179.67 30855.68 35284.69 21790.31 21960.91 28585.42 30762.20 30191.59 25087.88 290
UnsupCasMVSNet_eth71.63 31472.30 30669.62 35276.47 37752.70 35870.03 37380.97 30159.18 32879.36 30788.21 25460.50 28669.12 38558.33 32777.62 39587.04 299
IterMVS-SCA-FT80.64 21379.41 23084.34 15583.93 29769.66 18476.28 31981.09 30072.43 19686.47 18390.19 22260.46 28793.15 13777.45 14886.39 33290.22 247
SCA73.32 29772.57 30375.58 31181.62 32755.86 33378.89 27871.37 36861.73 30374.93 34983.42 33060.46 28787.01 27558.11 32982.63 37383.88 336
jason77.42 25475.75 26982.43 21087.10 23669.27 18877.99 28981.94 29351.47 37877.84 32085.07 31260.32 28989.00 25170.74 22389.27 29189.03 272
jason: jason.
1112_ss74.82 28573.74 28678.04 27989.57 17260.04 29276.49 31687.09 22854.31 36073.66 35779.80 36560.25 29086.76 28458.37 32584.15 35987.32 297
HY-MVS64.64 1873.03 30172.47 30574.71 31783.36 30854.19 34682.14 23681.96 29256.76 34969.57 37986.21 29260.03 29184.83 31349.58 37782.65 37185.11 320
Anonymous2023120671.38 31771.88 30869.88 34986.31 25354.37 34470.39 37074.62 33952.57 37076.73 32888.76 24559.94 29272.06 37444.35 39793.23 21683.23 350
IterMVS76.91 25976.34 26478.64 26680.91 33664.03 24076.30 31879.03 31164.88 28283.11 25189.16 24059.90 29384.46 31668.61 24985.15 34687.42 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
YYNet170.06 32870.44 32168.90 35773.76 39553.42 35358.99 40567.20 38658.42 33387.10 16385.39 30559.82 29467.32 39459.79 31983.50 36485.96 309
MDA-MVSNet_test_wron70.05 32970.44 32168.88 35873.84 39453.47 35158.93 40667.28 38558.43 33287.09 16485.40 30459.80 29567.25 39559.66 32083.54 36385.92 311
PMMVS61.65 37160.38 37865.47 37765.40 42069.26 18963.97 39461.73 40436.80 41760.11 40968.43 40859.42 29666.35 39948.97 38078.57 39160.81 410
CDS-MVSNet77.32 25575.40 27283.06 19189.00 18672.48 15477.90 29182.17 29160.81 31778.94 31283.49 32859.30 29788.76 25854.64 35192.37 23187.93 289
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UnsupCasMVSNet_bld69.21 33969.68 33067.82 36579.42 35351.15 37067.82 38275.79 33254.15 36177.47 32685.36 30759.26 29870.64 38048.46 38379.35 38681.66 368
Anonymous2024052180.18 22681.25 20476.95 29383.15 31560.84 28682.46 22485.99 24568.76 23986.78 17093.73 11259.13 29977.44 36073.71 19497.55 6992.56 168
WTY-MVS67.91 34668.35 34366.58 37280.82 33948.12 38165.96 38972.60 35653.67 36371.20 36881.68 35058.97 30069.06 38648.57 38281.67 37582.55 358
cl2278.97 23578.21 24781.24 23077.74 36359.01 30577.46 30187.13 22465.79 26884.32 22685.10 30958.96 30190.88 20375.36 17492.03 24093.84 111
MVSFormer82.23 18581.57 19884.19 16185.54 26969.26 18991.98 3490.08 17871.54 20876.23 33385.07 31258.69 30294.27 8886.26 4388.77 29689.03 272
lupinMVS76.37 26974.46 28182.09 21285.54 26969.26 18976.79 30880.77 30350.68 38576.23 33382.82 33758.69 30288.94 25269.85 23288.77 29688.07 283
Test_1112_low_res73.90 29473.08 29576.35 30290.35 15955.95 33073.40 35086.17 23950.70 38473.14 35885.94 29558.31 30485.90 30156.51 33583.22 36587.20 298
test_yl78.71 24178.51 24379.32 25884.32 29058.84 30878.38 28485.33 25475.99 14282.49 26086.57 28458.01 30590.02 23262.74 29792.73 22789.10 269
DCV-MVSNet78.71 24178.51 24379.32 25884.32 29058.84 30878.38 28485.33 25475.99 14282.49 26086.57 28458.01 30590.02 23262.74 29792.73 22789.10 269
sss66.92 35067.26 34865.90 37477.23 36851.10 37264.79 39171.72 36652.12 37570.13 37680.18 36257.96 30765.36 40350.21 37281.01 38181.25 374
ppachtmachnet_test74.73 28774.00 28576.90 29580.71 34156.89 32771.53 36278.42 31358.24 33479.32 30982.92 33657.91 30884.26 32065.60 27491.36 25489.56 259
MVP-Stereo75.81 27473.51 29082.71 20289.35 17873.62 13480.06 25785.20 25660.30 32273.96 35487.94 25857.89 30989.45 24452.02 36574.87 40185.06 321
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM71.77 31170.06 32676.92 29486.39 24853.97 34776.62 31386.62 23453.44 36463.97 40484.73 31657.79 31092.34 16039.65 40581.33 37984.45 328
LFMVS80.15 22780.56 21378.89 26189.19 18355.93 33185.22 15573.78 34882.96 6384.28 23092.72 14357.38 31190.07 23063.80 29095.75 13990.68 236
Vis-MVSNet (Re-imp)77.82 24977.79 25077.92 28188.82 19151.29 36983.28 19871.97 36374.04 16682.23 26589.78 23157.38 31189.41 24757.22 33295.41 14693.05 149
CHOSEN 1792x268872.45 30570.56 31978.13 27690.02 16963.08 25168.72 37783.16 28142.99 40675.92 33885.46 30257.22 31385.18 31049.87 37581.67 37586.14 308
mvsany_test158.48 38056.47 38564.50 38065.90 41968.21 20156.95 40942.11 42238.30 41465.69 39577.19 38856.96 31459.35 41246.16 39158.96 41565.93 406
miper_lstm_enhance76.45 26876.10 26677.51 28776.72 37460.97 28564.69 39285.04 26163.98 28683.20 25088.22 25356.67 31578.79 35673.22 20193.12 21892.78 158
our_test_371.85 31071.59 31072.62 33280.71 34153.78 34969.72 37471.71 36758.80 33178.03 31780.51 36056.61 31678.84 35562.20 30186.04 33785.23 318
baseline173.26 29873.54 28972.43 33584.92 27847.79 38379.89 26174.00 34465.93 26578.81 31386.28 29156.36 31781.63 33756.63 33479.04 39087.87 291
pmmvs474.92 28372.98 29780.73 23884.95 27771.71 16776.23 32077.59 31852.83 36877.73 32486.38 28656.35 31884.97 31157.72 33187.05 32285.51 316
MVEpermissive40.22 2351.82 38450.47 38755.87 39562.66 42251.91 36331.61 41639.28 42340.65 40950.76 41874.98 39856.24 31944.67 41933.94 41564.11 41371.04 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset60.59 37862.54 37354.72 39777.26 36727.74 42074.05 34261.00 40760.48 32165.62 39667.03 41055.93 32068.23 39232.07 41769.46 41168.17 404
N_pmnet70.20 32568.80 34074.38 31980.91 33684.81 4359.12 40476.45 33055.06 35575.31 34782.36 34255.74 32154.82 41447.02 38887.24 31883.52 343
MS-PatchMatch70.93 32170.22 32473.06 32781.85 32462.50 26173.82 34677.90 31552.44 37175.92 33881.27 35255.67 32281.75 33555.37 34477.70 39474.94 395
DSMNet-mixed60.98 37661.61 37659.09 39472.88 40245.05 39674.70 33746.61 42026.20 41865.34 39790.32 21855.46 32363.12 40741.72 40181.30 38069.09 403
pmmvs570.73 32270.07 32572.72 33077.03 37152.73 35774.14 34075.65 33550.36 38772.17 36485.37 30655.42 32480.67 34252.86 36287.59 31684.77 323
CMPMVSbinary59.41 2075.12 28073.57 28879.77 25075.84 38367.22 20881.21 24682.18 29050.78 38376.50 32987.66 26555.20 32582.99 32962.17 30390.64 27689.09 271
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n_192071.30 31871.58 31270.47 34577.58 36659.99 29474.25 33984.22 27551.06 38074.85 35079.10 37155.10 32668.83 38768.86 24579.20 38982.58 357
MIMVSNet71.09 31971.59 31069.57 35387.23 23050.07 37678.91 27771.83 36460.20 32571.26 36791.76 17255.08 32776.09 36441.06 40287.02 32482.54 359
PVSNet_051.08 2256.10 38154.97 38659.48 39375.12 38953.28 35455.16 41061.89 40244.30 40059.16 41062.48 41354.22 32865.91 40135.40 41247.01 41659.25 412
MonoMVSNet76.66 26377.26 25574.86 31579.86 34854.34 34586.26 13786.08 24171.08 21685.59 19888.68 24753.95 32985.93 29863.86 28980.02 38384.32 330
EPNet_dtu72.87 30371.33 31577.49 28877.72 36460.55 28982.35 22775.79 33266.49 26358.39 41481.06 35453.68 33085.98 29753.55 35692.97 22385.95 310
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS255.64 38359.27 38244.74 39964.30 42112.32 42740.60 41449.79 41853.19 36665.06 40184.81 31453.60 33149.76 41732.68 41689.41 28872.15 398
test_vis1_rt65.64 36064.09 36470.31 34666.09 41770.20 18061.16 39981.60 29638.65 41372.87 36069.66 40652.84 33260.04 41056.16 33777.77 39380.68 381
mvsany_test365.48 36162.97 37073.03 32869.99 41076.17 12164.83 39043.71 42143.68 40380.25 30087.05 28052.83 33363.09 40851.92 36972.44 40379.84 386
HyFIR lowres test75.12 28072.66 30182.50 20891.44 13565.19 23072.47 35487.31 21946.79 39180.29 29784.30 32052.70 33492.10 16851.88 37086.73 32790.22 247
dmvs_re66.81 35366.98 34966.28 37376.87 37258.68 31271.66 36072.24 35960.29 32369.52 38073.53 40052.38 33564.40 40544.90 39581.44 37875.76 393
test_cas_vis1_n_192069.20 34069.12 33369.43 35473.68 39662.82 25570.38 37177.21 32246.18 39580.46 29678.95 37352.03 33665.53 40265.77 27377.45 39779.95 385
test111178.53 24378.85 23777.56 28692.22 10347.49 38482.61 21769.24 37972.43 19685.28 20494.20 8551.91 33790.07 23065.36 27696.45 10395.11 62
ECVR-MVScopyleft78.44 24478.63 24177.88 28291.85 11748.95 37883.68 18969.91 37572.30 20284.26 23294.20 8551.89 33889.82 23563.58 29196.02 12294.87 67
FMVSNet378.80 23978.55 24279.57 25582.89 31856.89 32781.76 23785.77 24769.04 23686.00 19090.44 21551.75 33990.09 22965.95 26893.34 21191.72 207
D2MVS76.84 26075.67 27180.34 24480.48 34462.16 27073.50 34884.80 26957.61 34182.24 26487.54 26751.31 34087.65 26870.40 22893.19 21791.23 218
AUN-MVS81.18 20578.78 23888.39 7990.93 14782.14 6282.51 22383.67 27864.69 28380.29 29785.91 29751.07 34192.38 15876.29 16393.63 20890.65 238
PVSNet58.17 2166.41 35665.63 35968.75 35981.96 32249.88 37762.19 39872.51 35851.03 38168.04 38575.34 39750.84 34274.77 36945.82 39482.96 36681.60 369
mvsmamba80.30 22278.87 23584.58 14788.12 21067.55 20792.35 2984.88 26663.15 28985.33 20390.91 19850.71 34395.20 6266.36 26487.98 31090.99 224
GA-MVS75.83 27374.61 27879.48 25781.87 32359.25 30173.42 34982.88 28468.68 24079.75 30281.80 34850.62 34489.46 24366.85 25985.64 33989.72 257
FPMVS72.29 30872.00 30773.14 32688.63 19785.00 4074.65 33867.39 38471.94 20777.80 32287.66 26550.48 34575.83 36649.95 37379.51 38458.58 413
test_fmvs375.72 27575.20 27577.27 29075.01 39169.47 18678.93 27684.88 26646.67 39287.08 16587.84 26150.44 34671.62 37777.42 15088.53 29990.72 233
test_vis1_n70.29 32469.99 32871.20 34375.97 38266.50 21876.69 31180.81 30244.22 40175.43 34377.23 38650.00 34768.59 38866.71 26282.85 37078.52 389
MVS-HIRNet61.16 37462.92 37155.87 39579.09 35735.34 41671.83 35857.98 41346.56 39359.05 41191.14 18849.95 34876.43 36338.74 40771.92 40555.84 414
CVMVSNet72.62 30471.41 31476.28 30483.25 31160.34 29083.50 19379.02 31237.77 41676.33 33185.10 30949.60 34987.41 27170.54 22677.54 39681.08 377
RPMNet78.88 23778.28 24680.68 24079.58 35062.64 25882.58 21994.16 3274.80 15975.72 34092.59 14548.69 35095.56 4273.48 19782.91 36883.85 339
test_fmvs273.57 29672.80 29875.90 30872.74 40468.84 19577.07 30584.32 27445.14 39882.89 25584.22 32148.37 35170.36 38173.40 19987.03 32388.52 278
tpmrst66.28 35766.69 35365.05 37972.82 40339.33 40978.20 28770.69 37253.16 36767.88 38680.36 36148.18 35274.75 37058.13 32870.79 40681.08 377
CR-MVSNet74.00 29373.04 29676.85 29779.58 35062.64 25882.58 21976.90 32550.50 38675.72 34092.38 15248.07 35384.07 32268.72 24882.91 36883.85 339
Patchmtry76.56 26677.46 25173.83 32179.37 35546.60 38882.41 22676.90 32573.81 16985.56 20092.38 15248.07 35383.98 32363.36 29495.31 15290.92 227
test_f64.31 36765.85 35659.67 39266.54 41662.24 26957.76 40870.96 37040.13 41084.36 22482.09 34446.93 35551.67 41661.99 30481.89 37465.12 407
ADS-MVSNet265.87 35963.64 36772.55 33373.16 39956.92 32667.10 38574.81 33849.74 38866.04 39382.97 33346.71 35677.26 36142.29 39969.96 40883.46 344
ADS-MVSNet61.90 37062.19 37461.03 39073.16 39936.42 41567.10 38561.75 40349.74 38866.04 39382.97 33346.71 35663.21 40642.29 39969.96 40883.46 344
PatchmatchNetpermissive69.71 33468.83 33972.33 33777.66 36553.60 35079.29 27069.99 37457.66 34072.53 36282.93 33546.45 35880.08 34860.91 31372.09 40483.31 349
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20072.34 30771.55 31374.70 31883.48 30351.60 36675.02 33473.71 34970.14 22778.56 31680.57 35846.20 35988.20 26446.99 38989.29 28984.32 330
sam_mvs146.11 36083.88 336
tfpn200view974.86 28474.23 28376.74 29886.24 25652.12 36179.24 27273.87 34673.34 18081.82 27384.60 31846.02 36188.80 25451.98 36690.99 25989.31 264
thres40075.14 27874.23 28377.86 28386.24 25652.12 36179.24 27273.87 34673.34 18081.82 27384.60 31846.02 36188.80 25451.98 36690.99 25992.66 164
baseline269.77 33366.89 35078.41 27179.51 35258.09 31476.23 32069.57 37657.50 34264.82 40277.45 38446.02 36188.44 26053.08 35877.83 39288.70 276
patchmatchnet-post81.71 34945.93 36487.01 275
sam_mvs45.92 365
BP-MVS182.81 17581.67 19286.23 11387.88 21568.53 19786.06 14084.36 27275.65 14985.14 20690.19 22245.84 36694.42 8685.18 5794.72 17895.75 43
Patchmatch-RL test74.48 28873.68 28776.89 29684.83 27966.54 21772.29 35569.16 38057.70 33986.76 17186.33 28845.79 36782.59 33069.63 23490.65 27581.54 370
thres100view90075.45 27675.05 27676.66 29987.27 22951.88 36481.07 24873.26 35375.68 14883.25 24986.37 28745.54 36888.80 25451.98 36690.99 25989.31 264
thres600view775.97 27275.35 27477.85 28487.01 23951.84 36580.45 25473.26 35375.20 15683.10 25286.31 29045.54 36889.05 25055.03 34892.24 23692.66 164
tpm cat166.76 35465.21 36271.42 34177.09 37050.62 37478.01 28873.68 35044.89 39968.64 38279.00 37245.51 37082.42 33349.91 37470.15 40781.23 376
test_post3.10 42245.43 37177.22 362
MDTV_nov1_ep1368.29 34478.03 36243.87 40074.12 34172.22 36052.17 37267.02 39085.54 29945.36 37280.85 34155.73 33984.42 357
tpmvs70.16 32669.56 33171.96 33874.71 39248.13 38079.63 26375.45 33765.02 28170.26 37581.88 34745.34 37385.68 30558.34 32675.39 40082.08 365
MDTV_nov1_ep13_2view27.60 42170.76 36846.47 39461.27 40645.20 37449.18 37883.75 341
test_post178.85 2803.13 42145.19 37580.13 34758.11 329
CostFormer69.98 33168.68 34173.87 32077.14 36950.72 37379.26 27174.51 34151.94 37670.97 37084.75 31545.16 37687.49 27055.16 34779.23 38783.40 346
FE-MVS79.98 23078.86 23683.36 18386.47 24666.45 21989.73 7084.74 27072.80 19284.22 23391.38 18144.95 37793.60 11863.93 28891.50 25290.04 254
Patchmatch-test65.91 35867.38 34761.48 38975.51 38543.21 40268.84 37663.79 39862.48 29472.80 36183.42 33044.89 37859.52 41148.27 38586.45 33081.70 367
EU-MVSNet75.12 28074.43 28277.18 29183.11 31659.48 29985.71 14882.43 28939.76 41285.64 19788.76 24544.71 37987.88 26673.86 19185.88 33884.16 335
PatchT70.52 32372.76 30063.79 38379.38 35433.53 41777.63 29565.37 39473.61 17371.77 36592.79 14144.38 38075.65 36764.53 28685.37 34182.18 363
test_vis3_rt71.42 31670.67 31773.64 32369.66 41170.46 17766.97 38789.73 18442.68 40888.20 14383.04 33243.77 38160.07 40965.35 27786.66 32890.39 245
test_fmvs1_n70.94 32070.41 32372.53 33473.92 39366.93 21475.99 32484.21 27643.31 40579.40 30679.39 36943.47 38268.55 38969.05 24284.91 35182.10 364
test-LLR67.21 34866.74 35268.63 36176.45 37855.21 33967.89 37967.14 38762.43 29865.08 39972.39 40143.41 38369.37 38261.00 31184.89 35281.31 372
test0.0.03 164.66 36464.36 36365.57 37675.03 39046.89 38764.69 39261.58 40662.43 29871.18 36977.54 38243.41 38368.47 39140.75 40482.65 37181.35 371
test_fmvs169.57 33569.05 33571.14 34469.15 41265.77 22673.98 34383.32 28042.83 40777.77 32378.27 37843.39 38568.50 39068.39 25284.38 35879.15 387
MVSTER77.09 25775.70 27081.25 22875.27 38861.08 28077.49 30085.07 25960.78 31886.55 17788.68 24743.14 38690.25 21873.69 19590.67 27292.42 175
tpm67.95 34568.08 34667.55 36678.74 36143.53 40175.60 32767.10 38954.92 35672.23 36388.10 25542.87 38775.97 36552.21 36480.95 38283.15 351
tpm268.45 34466.83 35173.30 32578.93 36048.50 37979.76 26271.76 36547.50 39069.92 37783.60 32642.07 38888.40 26148.44 38479.51 38483.01 353
EMVS61.10 37560.81 37761.99 38665.96 41855.86 33353.10 41258.97 41167.06 25856.89 41663.33 41240.98 38967.03 39654.79 34986.18 33563.08 408
new_pmnet55.69 38257.66 38349.76 39875.47 38630.59 41859.56 40151.45 41743.62 40462.49 40575.48 39640.96 39049.15 41837.39 41172.52 40269.55 402
E-PMN61.59 37261.62 37561.49 38866.81 41555.40 33753.77 41160.34 40866.80 26158.90 41265.50 41140.48 39166.12 40055.72 34086.25 33462.95 409
EPMVS62.47 36862.63 37262.01 38570.63 40938.74 41174.76 33652.86 41653.91 36267.71 38880.01 36339.40 39266.60 39855.54 34368.81 41280.68 381
tmp_tt20.25 38924.50 3927.49 4044.47 4278.70 42834.17 41525.16 4251.00 42232.43 42118.49 41939.37 3939.21 42321.64 41943.75 4174.57 419
thisisatest053079.07 23477.33 25484.26 15887.13 23364.58 23483.66 19075.95 33168.86 23885.22 20587.36 27238.10 39493.57 12275.47 17294.28 18994.62 75
ET-MVSNet_ETH3D75.28 27772.77 29982.81 20183.03 31768.11 20277.09 30476.51 32960.67 32077.60 32580.52 35938.04 39591.15 19270.78 22190.68 27189.17 267
ttmdpeth71.72 31270.67 31774.86 31573.08 40155.88 33277.41 30269.27 37855.86 35178.66 31493.77 11038.01 39675.39 36860.12 31789.87 28393.31 137
tttt051781.07 20679.58 22985.52 13088.99 18766.45 21987.03 11975.51 33673.76 17088.32 14190.20 22137.96 39794.16 9879.36 12395.13 15795.93 41
thisisatest051573.00 30270.52 32080.46 24281.45 32959.90 29573.16 35274.31 34357.86 33876.08 33777.78 38037.60 39892.12 16765.00 27991.45 25389.35 263
FMVSNet572.10 30971.69 30973.32 32481.57 32853.02 35576.77 30978.37 31463.31 28776.37 33091.85 16636.68 39978.98 35347.87 38692.45 23087.95 288
dp60.70 37760.29 38061.92 38772.04 40638.67 41270.83 36764.08 39751.28 37960.75 40777.28 38536.59 40071.58 37847.41 38762.34 41475.52 394
CHOSEN 280x42059.08 37956.52 38466.76 37176.51 37664.39 23749.62 41359.00 41043.86 40255.66 41768.41 40935.55 40168.21 39343.25 39876.78 39967.69 405
testing9169.94 33268.99 33772.80 32983.81 30045.89 39171.57 36173.64 35168.24 24570.77 37377.82 37934.37 40284.44 31753.64 35587.00 32588.07 283
IB-MVS62.13 1971.64 31368.97 33879.66 25480.80 34062.26 26773.94 34476.90 32563.27 28868.63 38376.79 38933.83 40391.84 17559.28 32287.26 31784.88 322
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WBMVS68.76 34268.43 34269.75 35183.29 30940.30 40867.36 38472.21 36157.09 34677.05 32785.53 30033.68 40480.51 34448.79 38190.90 26488.45 279
JIA-IIPM69.41 33666.64 35477.70 28573.19 39871.24 17275.67 32665.56 39370.42 22165.18 39892.97 13333.64 40583.06 32753.52 35769.61 41078.79 388
UBG64.34 36663.35 36867.30 36883.50 30240.53 40767.46 38365.02 39554.77 35867.54 38974.47 39932.99 40678.50 35740.82 40383.58 36282.88 354
testing9969.27 33868.15 34572.63 33183.29 30945.45 39371.15 36371.08 36967.34 25670.43 37477.77 38132.24 40784.35 31953.72 35486.33 33388.10 282
testing1167.38 34765.93 35571.73 34083.37 30746.60 38870.95 36669.40 37762.47 29566.14 39176.66 39031.22 40884.10 32149.10 37984.10 36084.49 326
DeepMVS_CXcopyleft24.13 40332.95 42529.49 41921.63 42612.07 41937.95 42045.07 41730.84 40919.21 42217.94 42133.06 41923.69 418
gg-mvs-nofinetune68.96 34169.11 33468.52 36376.12 38145.32 39483.59 19155.88 41486.68 2964.62 40397.01 930.36 41083.97 32444.78 39682.94 36776.26 392
GG-mvs-BLEND67.16 36973.36 39746.54 39084.15 17455.04 41558.64 41361.95 41429.93 41183.87 32538.71 40876.92 39871.07 400
UWE-MVS66.43 35565.56 36069.05 35684.15 29440.98 40673.06 35364.71 39654.84 35776.18 33579.62 36829.21 41280.50 34538.54 40989.75 28485.66 314
ETVMVS64.67 36363.34 36968.64 36083.44 30541.89 40469.56 37561.70 40561.33 31168.74 38175.76 39528.76 41379.35 35034.65 41386.16 33684.67 325
test_method30.46 38729.60 39033.06 40117.99 4263.84 42913.62 41773.92 3452.79 42018.29 42253.41 41528.53 41443.25 42022.56 41835.27 41852.11 415
test-mter65.00 36263.79 36668.63 36176.45 37855.21 33967.89 37967.14 38750.98 38265.08 39972.39 40128.27 41569.37 38261.00 31184.89 35281.31 372
TESTMET0.1,161.29 37360.32 37964.19 38172.06 40551.30 36867.89 37962.09 39945.27 39760.65 40869.01 40727.93 41664.74 40456.31 33681.65 37776.53 391
reproduce_monomvs74.09 29273.23 29376.65 30076.52 37554.54 34377.50 29981.40 29865.85 26782.86 25786.67 28327.38 41784.53 31570.24 22990.66 27490.89 228
testing22266.93 34965.30 36171.81 33983.38 30645.83 39272.06 35767.50 38364.12 28569.68 37876.37 39327.34 41883.00 32838.88 40688.38 30286.62 304
test250674.12 29173.39 29176.28 30491.85 11744.20 39884.06 17648.20 41972.30 20281.90 27094.20 8527.22 41989.77 23864.81 28196.02 12294.87 67
pmmvs362.47 36860.02 38169.80 35071.58 40764.00 24170.52 36958.44 41239.77 41166.05 39275.84 39427.10 42072.28 37346.15 39284.77 35673.11 397
KD-MVS_2432*160066.87 35165.81 35770.04 34767.50 41347.49 38462.56 39679.16 30961.21 31477.98 31880.61 35625.29 42182.48 33153.02 35984.92 34980.16 383
miper_refine_blended66.87 35165.81 35770.04 34767.50 41347.49 38462.56 39679.16 30961.21 31477.98 31880.61 35625.29 42182.48 33153.02 35984.92 34980.16 383
MVStest170.05 32969.26 33272.41 33658.62 42355.59 33676.61 31465.58 39253.44 36489.28 12093.32 12022.91 42371.44 37974.08 18789.52 28790.21 251
myMVS_eth3d64.66 36463.89 36566.97 37081.72 32537.39 41371.00 36461.99 40061.38 30970.81 37172.36 40320.96 42479.30 35149.59 37685.18 34484.22 332
testing371.53 31570.79 31673.77 32288.89 19041.86 40576.60 31559.12 40972.83 19180.97 28582.08 34519.80 42587.33 27365.12 27891.68 24892.13 193
dongtai41.90 38542.65 38839.67 40070.86 40821.11 42261.01 40021.42 42757.36 34357.97 41550.06 41616.40 42658.73 41321.03 42027.69 42039.17 416
kuosan30.83 38632.17 38926.83 40253.36 42419.02 42557.90 40720.44 42838.29 41538.01 41937.82 41815.18 42733.45 4217.74 42220.76 42128.03 417
test1236.27 3928.08 3950.84 4051.11 4290.57 43062.90 3950.82 4290.54 4231.07 4252.75 4241.26 4280.30 4241.04 4231.26 4231.66 420
testmvs5.91 3937.65 3960.72 4061.20 4280.37 43159.14 4030.67 4300.49 4241.11 4242.76 4230.94 4290.24 4251.02 4241.47 4221.55 421
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
ab-mvs-re6.65 3908.87 3930.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42679.80 3650.00 4300.00 4260.00 4250.00 4240.00 422
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
WAC-MVS37.39 41352.61 363
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 178
No_MVS88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 178
eth-test20.00 430
eth-test0.00 430
IU-MVS94.18 5072.64 14790.82 15156.98 34789.67 10985.78 5297.92 4993.28 138
save fliter93.75 6377.44 10386.31 13589.72 18570.80 218
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 197
GSMVS83.88 336
test_part293.86 6177.77 9892.84 51
MTGPAbinary91.81 125
MTMP90.66 4833.14 424
gm-plane-assit75.42 38744.97 39752.17 37272.36 40387.90 26554.10 352
test9_res80.83 10596.45 10390.57 239
agg_prior279.68 11896.16 11590.22 247
agg_prior91.58 12777.69 10090.30 17084.32 22693.18 135
test_prior478.97 8484.59 165
test_prior86.32 11090.59 15571.99 16292.85 9294.17 9692.80 157
旧先验281.73 23856.88 34886.54 18284.90 31272.81 208
新几何281.72 239
无先验82.81 21485.62 25058.09 33691.41 18667.95 25684.48 327
原ACMM282.26 232
testdata286.43 28963.52 293
testdata179.62 26473.95 168
plane_prior793.45 6877.31 106
plane_prior593.61 5995.22 5980.78 10695.83 13494.46 81
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 431
nn0.00 431
door-mid74.45 342
test1191.46 131
door72.57 357
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 15973.30 18280.55 293
ACMP_Plane91.19 13984.77 15973.30 18280.55 293
BP-MVS77.30 151
HQP4-MVS80.56 29294.61 7993.56 130
HQP3-MVS92.68 9794.47 183
NP-MVS91.95 11274.55 12990.17 225
ACMMP++_ref95.74 140
ACMMP++97.35 75