This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 6099.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
DTE-MVSNet89.98 4791.91 1784.21 16296.51 757.84 32188.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12898.57 1598.80 6
PS-CasMVS90.06 4391.92 1584.47 15396.56 658.83 31389.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12598.74 699.00 2
LCM-MVSNet-Re83.48 16785.06 13178.75 26785.94 26655.75 33880.05 26194.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 32194.89 16990.75 235
PEN-MVS90.03 4591.88 1884.48 15296.57 558.88 31088.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 13198.72 998.97 3
CP-MVSNet89.27 6290.91 4484.37 15496.34 858.61 31688.66 9792.06 11590.78 795.67 895.17 4781.80 11595.54 4479.00 12998.69 1098.95 4
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 197
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26689.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10598.80 398.84 5
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 6097.78 5697.26 15
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17669.87 22995.06 1596.14 2584.28 7793.07 14187.68 1896.34 10697.09 19
wuyk23d75.13 28279.30 23562.63 38775.56 38775.18 12680.89 25273.10 35875.06 15894.76 1695.32 4187.73 4352.85 41834.16 41797.11 8259.85 414
ACMH76.49 1489.34 5991.14 3583.96 16792.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26483.33 7698.30 2593.20 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19487.84 10788.05 21381.66 7594.64 1896.53 1765.94 26094.75 7483.02 8296.83 8995.41 53
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15770.00 22894.55 1996.67 1487.94 3993.59 12084.27 7095.97 12495.52 51
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17369.27 23294.39 2096.38 1886.02 6593.52 12483.96 7295.92 13095.34 55
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17889.44 19488.63 2094.38 2195.77 2986.38 6193.59 12079.84 11795.21 15491.82 206
UniMVSNet_ETH3D89.12 6590.72 4784.31 16097.00 264.33 24189.67 7488.38 20688.84 1794.29 2297.57 490.48 1391.26 18972.57 21397.65 6297.34 14
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4597.63 6397.82 8
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17971.54 20894.28 2496.54 1681.57 11794.27 8986.26 4396.49 10097.09 19
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11870.73 21994.19 2596.67 1476.94 16694.57 8183.07 8096.28 10896.15 33
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 187
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6897.81 5591.70 212
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 156
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13598.76 495.61 50
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6298.45 1992.41 179
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 162
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 162
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14783.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 244
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 156
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5798.73 795.23 61
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5798.73 795.23 61
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 175
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 199
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 193
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 99
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18896.10 11994.45 86
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18896.10 11994.45 86
Anonymous2023121188.40 7189.62 5984.73 14590.46 15765.27 23188.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 15997.99 4396.88 23
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15886.11 6390.22 22286.24 4697.24 7991.36 220
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8498.76 494.87 70
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4898.48 1897.22 17
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 112
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_part293.86 6177.77 9892.84 51
v1086.54 9887.10 9284.84 14088.16 21063.28 25286.64 13092.20 11175.42 15492.81 5394.50 6874.05 19894.06 10183.88 7396.28 10897.17 18
dcpmvs_284.23 14685.14 13081.50 22888.61 19961.98 27482.90 21393.11 7968.66 24192.77 5492.39 15178.50 14487.63 27276.99 15892.30 23394.90 68
v886.22 10386.83 9984.36 15687.82 21762.35 26886.42 13491.33 13876.78 13592.73 5594.48 7073.41 20793.72 11283.10 7995.41 14697.01 21
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18587.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18179.72 11997.32 7796.50 29
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 91
Skip Steuart: Steuart Systems R&D Blog.
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6597.55 6994.10 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 41
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18785.45 15276.68 33184.06 5092.44 6096.99 1062.03 28294.65 7780.58 11193.24 21694.83 75
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5697.51 7394.30 95
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11698.27 2695.04 67
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8898.04 3993.64 127
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24284.38 17291.29 13984.88 4492.06 6593.84 10586.45 5893.73 11173.22 20498.66 1197.69 9
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12684.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 186
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 142
FC-MVSNet-test85.93 10987.05 9482.58 20892.25 10156.44 33285.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 13075.11 18098.58 1497.88 7
lessismore_v085.95 12191.10 14470.99 17470.91 37491.79 6994.42 7461.76 28392.93 14679.52 12493.03 22193.93 109
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 108
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10183.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 150
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 159
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 106
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 109
test_fmvsmvis_n_192085.22 11985.36 12884.81 14285.80 26876.13 12285.15 15892.32 10861.40 31191.33 7690.85 20483.76 8386.16 29884.31 6993.28 21592.15 195
ANet_high83.17 17385.68 12175.65 31281.24 33545.26 39879.94 26392.91 9183.83 5191.33 7696.88 1380.25 13285.92 30268.89 24795.89 13195.76 43
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 103
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15687.09 23865.22 23284.16 17494.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11394.87 17295.16 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9497.18 8190.45 246
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 11083.69 7597.55 69
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 172
FIs85.35 11886.27 10682.60 20791.86 11657.31 32585.10 15993.05 8375.83 14691.02 8393.97 9673.57 20392.91 14873.97 19298.02 4297.58 12
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21582.55 22291.56 12983.08 6290.92 8491.82 17178.25 14793.99 10274.16 18698.35 2297.49 13
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21583.16 20592.21 11081.73 7490.92 8491.97 16477.20 16093.99 10274.16 18698.35 2297.61 10
tt080588.09 7789.79 5582.98 19793.26 7563.94 24591.10 4589.64 18985.07 4190.91 8691.09 19289.16 2491.87 17582.03 9595.87 13293.13 148
V4283.47 16883.37 16583.75 17383.16 31763.33 25181.31 24490.23 17569.51 23190.91 8690.81 20674.16 19692.29 16480.06 11490.22 28195.62 49
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 115
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12184.26 4790.87 8993.92 10382.18 10689.29 25073.75 19694.81 17393.70 123
WR-MVS83.56 16584.40 14981.06 23693.43 7054.88 34578.67 28585.02 26581.24 7990.74 9091.56 17972.85 21591.08 19568.00 25798.04 3997.23 16
v124084.30 14284.51 14683.65 17687.65 22361.26 28182.85 21491.54 13067.94 25190.68 9190.65 21371.71 23193.64 11482.84 8594.78 17496.07 36
ZD-MVS92.22 10380.48 7191.85 12271.22 21490.38 9292.98 13186.06 6496.11 781.99 9796.75 92
MIMVSNet183.63 16284.59 14180.74 24094.06 5762.77 25982.72 21684.53 27477.57 12890.34 9395.92 2876.88 17285.83 30761.88 30897.42 7493.62 128
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10695.50 14594.53 83
KD-MVS_self_test81.93 19883.14 17178.30 27684.75 28552.75 35980.37 25889.42 19570.24 22690.26 9593.39 11974.55 19486.77 28668.61 25296.64 9495.38 54
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19288.51 2190.11 9695.12 4990.98 688.92 25477.55 14997.07 8383.13 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PC_three_145258.96 33390.06 9791.33 18480.66 12893.03 14375.78 17195.94 12892.48 175
v192192084.23 14684.37 15083.79 17187.64 22461.71 27582.91 21291.20 14267.94 25190.06 9790.34 21972.04 22793.59 12082.32 9294.91 16796.07 36
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17181.56 7690.02 9991.20 18982.40 9990.81 20773.58 19994.66 17994.56 80
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 96
X-MVStestdata85.04 12582.70 17892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42386.57 5595.80 2887.35 2797.62 6494.20 96
v119284.57 13584.69 14084.21 16287.75 21962.88 25683.02 20891.43 13369.08 23589.98 10290.89 20172.70 21893.62 11882.41 9194.97 16696.13 34
Anonymous2024052986.20 10487.13 9183.42 18590.19 16264.55 23984.55 16790.71 15485.85 3689.94 10395.24 4682.13 10790.40 21869.19 24396.40 10595.31 57
pmmvs686.52 9988.06 7981.90 21892.22 10362.28 26984.66 16589.15 19783.54 5789.85 10497.32 588.08 3886.80 28570.43 23097.30 7896.62 26
v14419284.24 14584.41 14883.71 17587.59 22561.57 27682.95 21191.03 14667.82 25489.80 10590.49 21673.28 21193.51 12581.88 10094.89 16996.04 38
v114484.54 13784.72 13884.00 16587.67 22262.55 26382.97 21090.93 15070.32 22489.80 10590.99 19573.50 20493.48 12681.69 10194.65 18095.97 39
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 7198.03 4193.26 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14479.26 10489.68 10894.81 5982.44 9787.74 27076.54 16188.74 30196.61 27
IU-MVS94.18 5072.64 14790.82 15256.98 35089.67 10985.78 5497.92 4993.28 141
FMVSNet184.55 13685.45 12581.85 22090.27 16161.05 28486.83 12488.27 21078.57 11589.66 11095.64 3475.43 18090.68 21169.09 24495.33 14993.82 116
IterMVS-LS84.73 13284.98 13383.96 16787.35 22963.66 24683.25 20189.88 18476.06 13989.62 11192.37 15573.40 20992.52 15578.16 14094.77 17695.69 46
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14796.62 9590.70 238
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 20183.80 18792.87 9280.37 8789.61 11391.81 17277.72 15394.18 9575.00 18198.53 1696.99 22
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21891.21 4388.64 20386.30 3389.60 11492.59 14569.22 24494.91 7173.89 19397.89 5296.72 24
v2v48284.09 14984.24 15283.62 17787.13 23461.40 27882.71 21789.71 18772.19 20489.55 11591.41 18270.70 23793.20 13581.02 10493.76 20396.25 32
Baseline_NR-MVSNet84.00 15385.90 11478.29 27791.47 13453.44 35582.29 23087.00 23579.06 10789.55 11595.72 3277.20 16086.14 29972.30 21598.51 1795.28 58
CSCG86.26 10186.47 10385.60 13090.87 14974.26 13187.98 10491.85 12280.35 8889.54 11788.01 25979.09 14092.13 16675.51 17495.06 16190.41 247
ambc82.98 19790.55 15664.86 23588.20 10089.15 19789.40 11893.96 9971.67 23291.38 18878.83 13096.55 9792.71 165
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19692.38 10670.25 22589.35 11990.68 21082.85 9294.57 8179.55 12295.95 12792.00 201
MVStest170.05 33269.26 33572.41 33958.62 42655.59 33976.61 31765.58 39553.44 36789.28 12093.32 12022.91 42671.44 38274.08 19089.52 29090.21 254
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26678.30 8986.93 12092.20 11165.94 26789.16 12193.16 12483.10 8989.89 23587.81 1594.43 18593.35 137
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 16072.03 22896.36 488.21 1190.93 26692.98 156
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7495.30 15393.60 130
MDA-MVSNet-bldmvs77.47 25676.90 26279.16 26379.03 36164.59 23666.58 39175.67 33773.15 18788.86 12488.99 24666.94 25481.23 34264.71 28588.22 31191.64 214
EG-PatchMatch MVS84.08 15084.11 15383.98 16692.22 10372.61 15082.20 23687.02 23272.63 19588.86 12491.02 19478.52 14391.11 19473.41 20191.09 26088.21 284
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6395.87 13295.24 60
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 30272.52 15383.82 18585.15 26180.27 9088.75 12785.45 30679.95 13691.90 17381.92 9990.80 27296.13 34
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29872.76 14483.91 18385.18 26080.44 8688.75 12785.49 30480.08 13491.92 17282.02 9690.85 27195.97 39
balanced_conf0384.80 13085.40 12683.00 19688.95 18861.44 27790.42 5892.37 10771.48 21088.72 12993.13 12570.16 24095.15 6379.26 12794.11 19492.41 179
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18784.24 7893.37 13177.97 14597.03 8495.52 51
RRT-MVS82.97 17683.44 16281.57 22785.06 27958.04 31987.20 11490.37 16577.88 12388.59 13193.70 11363.17 27693.05 14276.49 16288.47 30393.62 128
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27678.25 9085.82 14591.82 12465.33 28188.55 13292.35 15782.62 9689.80 23786.87 3594.32 18893.18 147
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5298.60 1396.67 25
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 146
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
sasdasda85.50 11386.14 10983.58 17987.97 21267.13 21287.55 10994.32 2173.44 17788.47 13587.54 27086.45 5891.06 19675.76 17293.76 20392.54 173
canonicalmvs85.50 11386.14 10983.58 17987.97 21267.13 21287.55 10994.32 2173.44 17788.47 13587.54 27086.45 5891.06 19675.76 17293.76 20392.54 173
NR-MVSNet86.00 10786.22 10785.34 13493.24 7664.56 23882.21 23490.46 16180.99 8288.42 13791.97 16477.56 15593.85 10772.46 21498.65 1297.61 10
alignmvs83.94 15583.98 15683.80 17087.80 21867.88 20884.54 16991.42 13573.27 18588.41 13887.96 26072.33 22190.83 20676.02 17094.11 19492.69 166
TransMVSNet (Re)84.02 15285.74 12078.85 26591.00 14655.20 34482.29 23087.26 22279.65 9888.38 13995.52 3783.00 9086.88 28367.97 25896.60 9694.45 86
PM-MVS80.20 22879.00 23783.78 17288.17 20986.66 1981.31 24466.81 39369.64 23088.33 14090.19 22464.58 26583.63 32971.99 21790.03 28381.06 382
tttt051781.07 20979.58 23285.52 13188.99 18766.45 22287.03 11975.51 33973.76 17088.32 14190.20 22337.96 40094.16 9979.36 12695.13 15795.93 42
casdiffmvspermissive85.21 12085.85 11683.31 18886.17 26062.77 25983.03 20793.93 4674.69 16188.21 14292.68 14482.29 10491.89 17477.87 14693.75 20695.27 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis3_rt71.42 31970.67 32073.64 32669.66 41470.46 17766.97 39089.73 18542.68 41188.20 14383.04 33543.77 38460.07 41265.35 28086.66 33190.39 248
SSC-MVS77.55 25581.64 19565.29 38190.46 15720.33 42773.56 35068.28 38485.44 3788.18 14494.64 6470.93 23581.33 34171.25 21992.03 24194.20 96
MVSMamba_PlusPlus87.53 8688.86 7183.54 18392.03 11062.26 27091.49 4092.62 10088.07 2488.07 14596.17 2372.24 22395.79 3184.85 6494.16 19392.58 170
MGCFI-Net85.04 12585.95 11282.31 21487.52 22663.59 24886.23 13893.96 4473.46 17588.07 14587.83 26586.46 5790.87 20576.17 16793.89 20092.47 177
v14882.31 18582.48 18481.81 22385.59 27059.66 30081.47 24386.02 24772.85 19088.05 14790.65 21370.73 23690.91 20275.15 17991.79 24794.87 70
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22296.14 11694.16 100
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22296.14 11694.16 100
fmvsm_s_conf0.1_n_283.82 15783.49 16184.84 14085.99 26570.19 18180.93 25187.58 21867.26 25987.94 15092.37 15571.40 23388.01 26686.03 4991.87 24696.31 31
pm-mvs183.69 16084.95 13479.91 25290.04 16859.66 30082.43 22687.44 21975.52 15287.85 15195.26 4581.25 12185.65 30968.74 25096.04 12194.42 89
PCF-MVS74.62 1582.15 19280.92 21285.84 12589.43 17772.30 15780.53 25691.82 12457.36 34687.81 15289.92 23177.67 15493.63 11558.69 32695.08 16091.58 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_s_conf0.5_n_283.62 16383.29 16684.62 14885.43 27370.18 18280.61 25587.24 22367.14 26087.79 15391.87 16671.79 23087.98 26786.00 5391.77 24995.71 45
mvs5depth83.82 15784.54 14481.68 22582.23 32368.65 19986.89 12189.90 18380.02 9487.74 15497.86 264.19 26982.02 33776.37 16395.63 14394.35 92
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28478.21 9185.40 15491.39 13665.32 28287.72 15591.81 17282.33 10189.78 23886.68 3794.20 19192.99 155
FMVSNet281.31 20681.61 19780.41 24686.38 25058.75 31483.93 18286.58 23872.43 19687.65 15692.98 13163.78 27290.22 22266.86 26193.92 19992.27 189
GeoE85.45 11685.81 11784.37 15490.08 16467.07 21485.86 14491.39 13672.33 20187.59 15790.25 22284.85 7192.37 16078.00 14391.94 24593.66 124
VPA-MVSNet83.47 16884.73 13679.69 25690.29 16057.52 32481.30 24688.69 20276.29 13787.58 15894.44 7180.60 12987.20 27766.60 26696.82 9094.34 93
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10979.74 9687.50 15992.38 15281.42 11993.28 13383.07 8097.24 7991.67 213
VDDNet84.35 14085.39 12781.25 23195.13 3259.32 30385.42 15381.11 30286.41 3287.41 16096.21 2273.61 20290.61 21466.33 26896.85 8793.81 119
c3_l81.64 20281.59 19881.79 22480.86 34159.15 30778.61 28690.18 17768.36 24387.20 16187.11 28169.39 24291.62 17978.16 14094.43 18594.60 79
VDD-MVS84.23 14684.58 14283.20 19191.17 14265.16 23483.25 20184.97 26879.79 9587.18 16294.27 7974.77 19090.89 20369.24 24096.54 9893.55 135
MSLP-MVS++85.00 12886.03 11181.90 21891.84 11971.56 17086.75 12893.02 8775.95 14487.12 16389.39 23877.98 14889.40 24977.46 15094.78 17484.75 327
baseline85.20 12185.93 11383.02 19586.30 25562.37 26784.55 16793.96 4474.48 16387.12 16392.03 16382.30 10391.94 17178.39 13394.21 19094.74 77
YYNet170.06 33170.44 32468.90 36073.76 39853.42 35658.99 40867.20 38958.42 33687.10 16585.39 30859.82 29667.32 39759.79 32283.50 36785.96 312
MDA-MVSNet_test_wron70.05 33270.44 32468.88 36173.84 39753.47 35458.93 40967.28 38858.43 33587.09 16685.40 30759.80 29767.25 39859.66 32383.54 36685.92 314
test_fmvs375.72 27875.20 27877.27 29375.01 39469.47 18878.93 27984.88 26946.67 39587.08 16787.84 26450.44 34871.62 38077.42 15388.53 30290.72 236
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15591.23 14177.31 13187.07 16891.47 18182.94 9194.71 7584.67 6696.27 11092.62 169
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18991.63 3987.98 21581.51 7787.05 16991.83 17066.18 25995.29 5670.75 22596.89 8695.64 48
TinyColmap81.25 20782.34 18677.99 28385.33 27460.68 29182.32 22988.33 20871.26 21386.97 17092.22 16277.10 16386.98 28162.37 30295.17 15686.31 310
eth_miper_zixun_eth80.84 21280.22 22482.71 20581.41 33360.98 28777.81 29590.14 17867.31 25886.95 17187.24 27864.26 26792.31 16275.23 17891.61 25294.85 74
Anonymous2024052180.18 22981.25 20676.95 29683.15 31860.84 28982.46 22585.99 24868.76 23986.78 17293.73 11259.13 30177.44 36373.71 19797.55 6992.56 171
Patchmatch-RL test74.48 29173.68 29076.89 29984.83 28266.54 22072.29 35869.16 38357.70 34286.76 17386.33 29145.79 36982.59 33369.63 23790.65 27881.54 373
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17493.26 12193.64 290.93 20084.60 6790.75 27393.97 107
h-mvs3384.25 14482.76 17788.72 7391.82 12182.60 6084.00 17984.98 26771.27 21186.70 17590.55 21563.04 27993.92 10578.26 13894.20 19189.63 261
hse-mvs283.47 16881.81 19288.47 7791.03 14582.27 6182.61 21883.69 28071.27 21186.70 17586.05 29763.04 27992.41 15878.26 13893.62 21090.71 237
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14078.20 11886.69 17792.28 15980.36 13195.06 6786.17 4796.49 10090.22 250
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14367.85 25386.63 17894.84 5579.58 13895.96 1587.62 1994.50 18294.56 80
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet82.61 18082.42 18583.20 19183.25 31463.66 24683.50 19485.07 26276.06 13986.55 17985.10 31273.41 20790.25 21978.15 14290.67 27595.68 47
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17992.95 13474.84 18795.22 5980.78 10895.83 13494.46 84
plane_prior376.85 11177.79 12586.55 179
BH-untuned80.96 21180.99 21080.84 23988.55 20168.23 20280.33 25988.46 20472.79 19386.55 17986.76 28574.72 19191.77 17861.79 30988.99 29682.52 363
MVSTER77.09 26075.70 27381.25 23175.27 39161.08 28377.49 30385.07 26260.78 32186.55 17988.68 25043.14 38990.25 21973.69 19890.67 27592.42 178
旧先验281.73 23956.88 35186.54 18484.90 31572.81 211
IterMVS-SCA-FT80.64 21679.41 23384.34 15883.93 30069.66 18676.28 32281.09 30372.43 19686.47 18590.19 22460.46 28993.15 13877.45 15186.39 33590.22 250
WB-MVS76.06 27480.01 23064.19 38489.96 17020.58 42672.18 35968.19 38583.21 5986.46 18693.49 11770.19 23978.97 35765.96 27090.46 28093.02 153
test_fmvsm_n_192083.60 16482.89 17585.74 12785.22 27777.74 9984.12 17690.48 16059.87 33086.45 18791.12 19175.65 17885.89 30582.28 9390.87 26993.58 131
DIV-MVS_self_test80.43 21980.23 22281.02 23779.99 34959.25 30477.07 30887.02 23267.38 25586.19 18889.22 24163.09 27790.16 22476.32 16495.80 13693.66 124
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18492.01 11665.91 26986.19 18891.75 17583.77 8294.98 6977.43 15296.71 9393.73 122
cl____80.42 22080.23 22281.02 23779.99 34959.25 30477.07 30887.02 23267.37 25686.18 19089.21 24263.08 27890.16 22476.31 16595.80 13693.65 126
MVS_111021_LR84.28 14383.76 15985.83 12689.23 18283.07 5580.99 25083.56 28272.71 19486.07 19189.07 24581.75 11686.19 29777.11 15693.36 21188.24 283
GBi-Net82.02 19582.07 18781.85 22086.38 25061.05 28486.83 12488.27 21072.43 19686.00 19295.64 3463.78 27290.68 21165.95 27193.34 21293.82 116
test182.02 19582.07 18781.85 22086.38 25061.05 28486.83 12488.27 21072.43 19686.00 19295.64 3463.78 27290.68 21165.95 27193.34 21293.82 116
FMVSNet378.80 24278.55 24579.57 25882.89 32156.89 33081.76 23885.77 25069.04 23686.00 19290.44 21751.75 34190.09 23065.95 27193.34 21291.72 210
miper_ehance_all_eth80.34 22380.04 22981.24 23379.82 35258.95 30977.66 29789.66 18865.75 27485.99 19585.11 31168.29 24991.42 18676.03 16992.03 24193.33 138
tfpnnormal81.79 20182.95 17478.31 27588.93 18955.40 34080.83 25482.85 28876.81 13485.90 19694.14 8974.58 19386.51 29066.82 26495.68 14293.01 154
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19789.56 23680.76 12692.13 16673.21 20995.51 14493.25 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.83.95 15482.69 17987.72 8989.27 18181.45 6783.72 18981.58 30074.73 16085.66 19886.06 29672.56 22092.69 15275.44 17695.21 15489.01 277
EU-MVSNet75.12 28374.43 28577.18 29483.11 31959.48 30285.71 14882.43 29239.76 41585.64 19988.76 24844.71 38287.88 26973.86 19485.88 34184.16 338
MonoMVSNet76.66 26677.26 25874.86 31879.86 35154.34 34886.26 13786.08 24471.08 21685.59 20088.68 25053.95 33185.93 30163.86 29280.02 38684.32 333
LF4IMVS82.75 17981.93 19085.19 13582.08 32480.15 7485.53 15088.76 20168.01 24885.58 20187.75 26671.80 22986.85 28474.02 19193.87 20188.58 280
Patchmtry76.56 26977.46 25473.83 32479.37 35846.60 39182.41 22776.90 32873.81 16985.56 20292.38 15248.07 35583.98 32663.36 29795.31 15290.92 230
MVS_111021_HR84.63 13384.34 15185.49 13390.18 16375.86 12379.23 27787.13 22773.35 17985.56 20289.34 23983.60 8590.50 21676.64 16094.05 19790.09 256
testdata79.54 25992.87 8472.34 15680.14 30959.91 32985.47 20491.75 17567.96 25185.24 31168.57 25492.18 24081.06 382
mvsmamba80.30 22578.87 23884.58 15088.12 21167.55 21092.35 2984.88 26963.15 29285.33 20590.91 20050.71 34595.20 6266.36 26787.98 31390.99 227
test111178.53 24678.85 24077.56 28992.22 10347.49 38782.61 21869.24 38272.43 19685.28 20694.20 8551.91 33990.07 23165.36 27996.45 10395.11 65
thisisatest053079.07 23777.33 25784.26 16187.13 23464.58 23783.66 19175.95 33468.86 23885.22 20787.36 27538.10 39793.57 12375.47 17594.28 18994.62 78
BP-MVS182.81 17781.67 19486.23 11387.88 21668.53 20086.06 14084.36 27575.65 14985.14 20890.19 22445.84 36894.42 8685.18 5994.72 17895.75 44
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20989.67 23584.47 7595.46 5082.56 8996.26 11193.77 121
CLD-MVS83.18 17282.64 18084.79 14389.05 18467.82 20977.93 29392.52 10268.33 24485.07 21081.54 35482.06 10892.96 14469.35 23997.91 5193.57 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.1_n_a82.58 18281.93 19084.50 15187.68 22173.35 13786.14 13977.70 32061.64 30985.02 21191.62 17777.75 15186.24 29482.79 8687.07 32493.91 111
FA-MVS(test-final)83.13 17483.02 17383.43 18486.16 26266.08 22588.00 10388.36 20775.55 15185.02 21192.75 14265.12 26492.50 15674.94 18291.30 25891.72 210
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11770.56 22084.96 21390.69 20980.01 13595.14 6478.37 13495.78 13891.82 206
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator80.37 784.80 13084.71 13985.06 13886.36 25374.71 12788.77 9490.00 18175.65 14984.96 21393.17 12374.06 19791.19 19178.28 13791.09 26089.29 269
QAPM82.59 18182.59 18282.58 20886.44 24866.69 21989.94 6790.36 16667.97 25084.94 21592.58 14772.71 21792.18 16570.63 22887.73 31788.85 278
VPNet80.25 22681.68 19375.94 31092.46 9547.98 38576.70 31381.67 29873.45 17684.87 21692.82 13874.66 19286.51 29061.66 31196.85 8793.33 138
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14578.77 11284.85 21790.89 20180.85 12595.29 5681.14 10395.32 15092.34 184
PHI-MVS86.38 10085.81 11788.08 8488.44 20477.34 10589.35 8593.05 8373.15 18784.76 21887.70 26778.87 14294.18 9580.67 11096.29 10792.73 162
pmmvs-eth3d78.42 24877.04 26082.57 21087.44 22874.41 13080.86 25379.67 31155.68 35584.69 21990.31 22160.91 28785.42 31062.20 30491.59 25387.88 293
test_prior283.37 19775.43 15384.58 22091.57 17881.92 11379.54 12396.97 85
fmvsm_s_conf0.5_n_a82.21 18881.51 20284.32 15986.56 24673.35 13785.46 15177.30 32461.81 30584.51 22190.88 20377.36 15886.21 29682.72 8786.97 32993.38 136
TEST992.34 9879.70 7883.94 18090.32 16865.41 28084.49 22290.97 19682.03 10993.63 115
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 18090.32 16865.79 27184.49 22290.97 19681.93 11193.63 11581.21 10296.54 9890.88 232
fmvsm_s_conf0.1_n82.17 19081.59 19883.94 16986.87 24471.57 16985.19 15777.42 32362.27 30384.47 22491.33 18476.43 17485.91 30383.14 7787.14 32294.33 94
Gipumacopyleft84.44 13886.33 10578.78 26684.20 29673.57 13589.55 7790.44 16284.24 4884.38 22594.89 5376.35 17780.40 34976.14 16896.80 9182.36 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f64.31 37065.85 35959.67 39566.54 41962.24 27257.76 41170.96 37340.13 41384.36 22682.09 34746.93 35751.67 41961.99 30781.89 37765.12 410
test_892.09 10778.87 8583.82 18590.31 17065.79 27184.36 22690.96 19881.93 11193.44 128
cl2278.97 23878.21 25081.24 23377.74 36659.01 30877.46 30487.13 22765.79 27184.32 22885.10 31258.96 30390.88 20475.36 17792.03 24193.84 114
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22889.33 24083.87 7994.53 8482.45 9094.89 16994.90 68
agg_prior91.58 12777.69 10090.30 17184.32 22893.18 136
Anonymous20240521180.51 21881.19 20978.49 27288.48 20257.26 32676.63 31582.49 29181.21 8084.30 23192.24 16167.99 25086.24 29462.22 30395.13 15791.98 203
LFMVS80.15 23080.56 21678.89 26489.19 18355.93 33485.22 15673.78 35182.96 6384.28 23292.72 14357.38 31390.07 23163.80 29395.75 13990.68 239
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11478.87 11084.27 23394.05 9278.35 14693.65 11380.54 11291.58 25492.08 197
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ECVR-MVScopyleft78.44 24778.63 24477.88 28591.85 11748.95 38183.68 19069.91 37872.30 20284.26 23494.20 8551.89 34089.82 23663.58 29496.02 12294.87 70
FE-MVS79.98 23378.86 23983.36 18686.47 24766.45 22289.73 7084.74 27372.80 19284.22 23591.38 18344.95 38093.60 11963.93 29191.50 25590.04 257
ETV-MVS84.31 14183.91 15885.52 13188.58 20070.40 17884.50 17193.37 6478.76 11384.07 23678.72 37880.39 13095.13 6573.82 19592.98 22391.04 226
fmvsm_s_conf0.5_n81.91 19981.30 20583.75 17386.02 26471.56 17084.73 16377.11 32762.44 30084.00 23790.68 21076.42 17585.89 30583.14 7787.11 32393.81 119
MCST-MVS84.36 13983.93 15785.63 12991.59 12471.58 16883.52 19392.13 11361.82 30483.96 23889.75 23479.93 13793.46 12778.33 13694.34 18791.87 205
新几何182.95 19993.96 5978.56 8880.24 30855.45 35683.93 23991.08 19371.19 23488.33 26365.84 27493.07 22081.95 369
mmtdpeth85.13 12385.78 11983.17 19384.65 28674.71 12785.87 14390.35 16777.94 12183.82 24096.96 1277.75 15180.03 35278.44 13296.21 11294.79 76
fmvsm_l_conf0.5_n82.06 19481.54 20183.60 17883.94 29973.90 13383.35 19886.10 24358.97 33283.80 24190.36 21874.23 19586.94 28282.90 8390.22 28189.94 258
GDP-MVS82.17 19080.85 21486.15 12088.65 19768.95 19785.65 14993.02 8768.42 24283.73 24289.54 23745.07 37994.31 8879.66 12193.87 20195.19 63
BH-RMVSNet80.53 21780.22 22481.49 22987.19 23366.21 22477.79 29686.23 24174.21 16583.69 24388.50 25373.25 21290.75 20863.18 29987.90 31487.52 297
USDC76.63 26776.73 26476.34 30683.46 30757.20 32780.02 26288.04 21452.14 37783.65 24491.25 18663.24 27586.65 28854.66 35394.11 19485.17 322
miper_enhance_ethall77.83 25176.93 26180.51 24476.15 38358.01 32075.47 33488.82 19958.05 34083.59 24580.69 35864.41 26691.20 19073.16 21092.03 24192.33 185
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23684.54 4683.58 24693.78 10873.36 21096.48 287.98 1396.21 11294.41 90
Effi-MVS+-dtu85.82 11183.38 16493.14 487.13 23491.15 387.70 10888.42 20574.57 16283.56 24785.65 30178.49 14594.21 9372.04 21692.88 22594.05 105
CNLPA83.55 16683.10 17284.90 13989.34 17983.87 5084.54 16988.77 20079.09 10683.54 24888.66 25274.87 18681.73 33966.84 26392.29 23589.11 271
SDMVSNet81.90 20083.17 17078.10 28088.81 19262.45 26576.08 32686.05 24673.67 17183.41 24993.04 12782.35 10080.65 34670.06 23495.03 16291.21 222
sd_testset79.95 23481.39 20475.64 31388.81 19258.07 31876.16 32582.81 28973.67 17183.41 24993.04 12780.96 12477.65 36258.62 32795.03 16291.21 222
OpenMVS_ROBcopyleft70.19 1777.77 25477.46 25478.71 26884.39 29261.15 28281.18 24882.52 29062.45 29983.34 25187.37 27466.20 25888.66 26064.69 28685.02 35186.32 309
thres100view90075.45 27975.05 27976.66 30287.27 23051.88 36781.07 24973.26 35675.68 14883.25 25286.37 29045.54 37088.80 25551.98 36990.99 26289.31 267
miper_lstm_enhance76.45 27176.10 26977.51 29076.72 37760.97 28864.69 39585.04 26463.98 28983.20 25388.22 25656.67 31778.79 35973.22 20493.12 21992.78 161
IterMVS76.91 26276.34 26778.64 26980.91 33964.03 24376.30 32179.03 31464.88 28583.11 25489.16 24359.90 29584.46 31968.61 25285.15 34987.42 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres600view775.97 27575.35 27777.85 28787.01 24051.84 36880.45 25773.26 35675.20 15683.10 25586.31 29345.54 37089.05 25155.03 35192.24 23792.66 167
mvs_anonymous78.13 24978.76 24276.23 30979.24 35950.31 37878.69 28484.82 27161.60 31083.09 25692.82 13873.89 20087.01 27868.33 25686.41 33491.37 219
fmvsm_l_conf0.5_n_a81.46 20480.87 21383.25 18983.73 30473.21 14283.00 20985.59 25458.22 33882.96 25790.09 22972.30 22286.65 28881.97 9889.95 28589.88 259
test_fmvs273.57 29972.80 30175.90 31172.74 40768.84 19877.07 30884.32 27745.14 40182.89 25884.22 32448.37 35370.36 38473.40 20287.03 32688.52 281
MVS_Test82.47 18483.22 16780.22 24982.62 32257.75 32382.54 22391.96 11971.16 21582.89 25892.52 14977.41 15790.50 21680.04 11587.84 31692.40 181
reproduce_monomvs74.09 29573.23 29676.65 30376.52 37854.54 34677.50 30281.40 30165.85 27082.86 26086.67 28627.38 42084.53 31870.24 23290.66 27790.89 231
test1286.57 10590.74 15172.63 14990.69 15582.76 26179.20 13994.80 7395.32 15092.27 189
原ACMM184.60 14992.81 8974.01 13291.50 13162.59 29582.73 26290.67 21276.53 17394.25 9169.24 24095.69 14185.55 318
test_yl78.71 24478.51 24679.32 26184.32 29358.84 31178.38 28785.33 25775.99 14282.49 26386.57 28758.01 30790.02 23362.74 30092.73 22889.10 272
DCV-MVSNet78.71 24478.51 24679.32 26184.32 29358.84 31178.38 28785.33 25775.99 14282.49 26386.57 28758.01 30790.02 23362.74 30092.73 22889.10 272
diffmvspermissive80.40 22180.48 21980.17 25079.02 36260.04 29577.54 30090.28 17466.65 26582.40 26587.33 27673.50 20487.35 27577.98 14489.62 28993.13 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test22293.31 7376.54 11379.38 27277.79 31952.59 37282.36 26690.84 20566.83 25691.69 25081.25 377
D2MVS76.84 26375.67 27480.34 24780.48 34762.16 27373.50 35184.80 27257.61 34482.24 26787.54 27051.31 34287.65 27170.40 23193.19 21891.23 221
VNet79.31 23680.27 22176.44 30487.92 21553.95 35175.58 33284.35 27674.39 16482.23 26890.72 20872.84 21684.39 32160.38 31993.98 19890.97 228
Vis-MVSNet (Re-imp)77.82 25277.79 25377.92 28488.82 19151.29 37283.28 19971.97 36674.04 16682.23 26889.78 23357.38 31389.41 24857.22 33595.41 14693.05 152
API-MVS82.28 18682.61 18181.30 23086.29 25669.79 18388.71 9587.67 21778.42 11782.15 27084.15 32677.98 14891.59 18065.39 27892.75 22782.51 364
DP-MVS Recon84.05 15183.22 16786.52 10791.73 12275.27 12583.23 20392.40 10472.04 20582.04 27188.33 25577.91 15093.95 10466.17 26995.12 15990.34 249
MSDG80.06 23279.99 23180.25 24883.91 30168.04 20777.51 30189.19 19677.65 12681.94 27283.45 33276.37 17686.31 29363.31 29886.59 33286.41 308
test250674.12 29473.39 29476.28 30791.85 11744.20 40184.06 17748.20 42272.30 20281.90 27394.20 8527.22 42289.77 23964.81 28496.02 12294.87 70
Fast-Effi-MVS+81.04 21080.57 21582.46 21287.50 22763.22 25378.37 28989.63 19068.01 24881.87 27482.08 34882.31 10292.65 15367.10 26088.30 31091.51 218
testgi72.36 30974.61 28165.59 37880.56 34642.82 40668.29 38173.35 35566.87 26381.84 27589.93 23072.08 22666.92 40046.05 39692.54 23087.01 303
tfpn200view974.86 28774.23 28676.74 30186.24 25752.12 36479.24 27573.87 34973.34 18081.82 27684.60 32146.02 36388.80 25551.98 36990.99 26289.31 267
thres40075.14 28174.23 28677.86 28686.24 25752.12 36479.24 27573.87 34973.34 18081.82 27684.60 32146.02 36388.80 25551.98 36990.99 26292.66 167
CL-MVSNet_self_test76.81 26477.38 25675.12 31686.90 24251.34 37073.20 35480.63 30768.30 24581.80 27888.40 25466.92 25580.90 34355.35 34894.90 16893.12 150
OpenMVScopyleft76.72 1381.98 19782.00 18981.93 21784.42 29168.22 20388.50 9989.48 19366.92 26281.80 27891.86 16772.59 21990.16 22471.19 22191.25 25987.40 299
MVS_030485.37 11784.58 14287.75 8885.28 27573.36 13686.54 13385.71 25177.56 12981.78 28092.47 15070.29 23896.02 1185.59 5595.96 12593.87 113
AdaColmapbinary83.66 16183.69 16083.57 18190.05 16772.26 15886.29 13690.00 18178.19 11981.65 28187.16 27983.40 8794.24 9261.69 31094.76 17784.21 337
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28287.25 27782.43 9894.53 8477.65 14796.46 10294.14 102
DELS-MVS81.44 20581.25 20682.03 21684.27 29562.87 25776.47 32092.49 10370.97 21781.64 28283.83 32775.03 18492.70 15174.29 18492.22 23990.51 245
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
114514_t83.10 17582.54 18384.77 14492.90 8369.10 19686.65 12990.62 15854.66 36281.46 28490.81 20676.98 16594.38 8772.62 21296.18 11490.82 234
TR-MVS76.77 26575.79 27179.72 25586.10 26365.79 22877.14 30683.02 28665.20 28381.40 28582.10 34666.30 25790.73 21055.57 34585.27 34582.65 358
TAMVS78.08 25076.36 26683.23 19090.62 15472.87 14379.08 27880.01 31061.72 30781.35 28686.92 28463.96 27188.78 25850.61 37493.01 22288.04 289
Effi-MVS+83.90 15684.01 15583.57 18187.22 23265.61 23086.55 13292.40 10478.64 11481.34 28784.18 32583.65 8492.93 14674.22 18587.87 31592.17 194
testing371.53 31870.79 31973.77 32588.89 19041.86 40876.60 31859.12 41272.83 19180.97 28882.08 34819.80 42887.33 27665.12 28191.68 25192.13 196
new-patchmatchnet70.10 33073.37 29560.29 39481.23 33616.95 42959.54 40574.62 34262.93 29380.97 28887.93 26262.83 28171.90 37855.24 34995.01 16592.00 201
PVSNet_Blended_VisFu81.55 20380.49 21884.70 14791.58 12773.24 14184.21 17391.67 12862.86 29480.94 29087.16 27967.27 25392.87 14969.82 23688.94 29887.99 290
BH-w/o76.57 26876.07 27078.10 28086.88 24365.92 22777.63 29886.33 23965.69 27580.89 29179.95 36768.97 24790.74 20953.01 36485.25 34677.62 393
PAPM_NR83.23 17183.19 16983.33 18790.90 14865.98 22688.19 10190.78 15378.13 12080.87 29287.92 26373.49 20692.42 15770.07 23388.40 30491.60 215
ab-mvs79.67 23580.56 21676.99 29588.48 20256.93 32884.70 16486.06 24568.95 23780.78 29393.08 12675.30 18284.62 31756.78 33690.90 26789.43 265
XXY-MVS74.44 29376.19 26869.21 35884.61 28752.43 36371.70 36277.18 32660.73 32280.60 29490.96 19875.44 17969.35 38756.13 34188.33 30685.86 315
HQP4-MVS80.56 29594.61 7993.56 133
HQP-NCC91.19 13984.77 16073.30 18280.55 296
ACMP_Plane91.19 13984.77 16073.30 18280.55 296
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 16092.68 9873.30 18280.55 29690.17 22772.10 22494.61 7977.30 15494.47 18393.56 133
test_cas_vis1_n_192069.20 34369.12 33669.43 35773.68 39962.82 25870.38 37477.21 32546.18 39880.46 29978.95 37652.03 33865.53 40565.77 27677.45 40079.95 388
AUN-MVS81.18 20878.78 24188.39 7990.93 14782.14 6282.51 22483.67 28164.69 28680.29 30085.91 30051.07 34392.38 15976.29 16693.63 20990.65 241
HyFIR lowres test75.12 28372.66 30482.50 21191.44 13565.19 23372.47 35787.31 22146.79 39480.29 30084.30 32352.70 33692.10 16951.88 37386.73 33090.22 250
test20.0373.75 29874.59 28371.22 34581.11 33751.12 37470.15 37572.10 36570.42 22180.28 30291.50 18064.21 26874.72 37446.96 39394.58 18187.82 295
mvsany_test365.48 36462.97 37373.03 33169.99 41376.17 12164.83 39343.71 42443.68 40680.25 30387.05 28352.83 33563.09 41151.92 37272.44 40679.84 389
F-COLMAP84.97 12983.42 16389.63 5792.39 9683.40 5288.83 9291.92 12073.19 18680.18 30489.15 24477.04 16493.28 13365.82 27592.28 23692.21 192
GA-MVS75.83 27674.61 28179.48 26081.87 32659.25 30473.42 35282.88 28768.68 24079.75 30581.80 35150.62 34689.46 24466.85 26285.64 34289.72 260
xiu_mvs_v1_base_debu80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
xiu_mvs_v1_base80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
xiu_mvs_v1_base_debi80.84 21280.14 22682.93 20088.31 20571.73 16479.53 26887.17 22465.43 27779.59 30682.73 34276.94 16690.14 22773.22 20488.33 30686.90 304
test_fmvs1_n70.94 32370.41 32672.53 33773.92 39666.93 21775.99 32784.21 27943.31 40879.40 30979.39 37243.47 38568.55 39269.05 24584.91 35482.10 367
patch_mono-278.89 23979.39 23477.41 29284.78 28368.11 20575.60 33083.11 28560.96 31979.36 31089.89 23275.18 18372.97 37573.32 20392.30 23391.15 224
UnsupCasMVSNet_eth71.63 31772.30 30969.62 35576.47 38052.70 36170.03 37680.97 30459.18 33179.36 31088.21 25760.50 28869.12 38858.33 33077.62 39887.04 302
ppachtmachnet_test74.73 29074.00 28876.90 29880.71 34456.89 33071.53 36578.42 31658.24 33779.32 31282.92 33957.91 31084.26 32365.60 27791.36 25789.56 262
MG-MVS80.32 22480.94 21178.47 27388.18 20852.62 36282.29 23085.01 26672.01 20679.24 31392.54 14869.36 24393.36 13270.65 22789.19 29589.45 263
Fast-Effi-MVS+-dtu82.54 18381.41 20385.90 12385.60 26976.53 11583.07 20689.62 19173.02 18979.11 31483.51 33080.74 12790.24 22168.76 24989.29 29290.94 229
CDS-MVSNet77.32 25875.40 27583.06 19489.00 18672.48 15477.90 29482.17 29460.81 32078.94 31583.49 33159.30 29988.76 25954.64 35492.37 23287.93 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline173.26 30173.54 29272.43 33884.92 28147.79 38679.89 26474.00 34765.93 26878.81 31686.28 29456.36 31981.63 34056.63 33779.04 39387.87 294
ttmdpeth71.72 31570.67 32074.86 31873.08 40455.88 33577.41 30569.27 38155.86 35478.66 31793.77 11038.01 39975.39 37160.12 32089.87 28693.31 140
EIA-MVS82.19 18981.23 20885.10 13787.95 21469.17 19583.22 20493.33 6770.42 22178.58 31879.77 37077.29 15994.20 9471.51 21888.96 29791.93 204
thres20072.34 31071.55 31674.70 32183.48 30651.60 36975.02 33773.71 35270.14 22778.56 31980.57 36146.20 36188.20 26546.99 39289.29 29284.32 333
our_test_371.85 31371.59 31372.62 33580.71 34453.78 35269.72 37771.71 37058.80 33478.03 32080.51 36356.61 31878.84 35862.20 30486.04 34085.23 321
KD-MVS_2432*160066.87 35465.81 36070.04 35067.50 41647.49 38762.56 39979.16 31261.21 31777.98 32180.61 35925.29 42482.48 33453.02 36284.92 35280.16 386
miper_refine_blended66.87 35465.81 36070.04 35067.50 41647.49 38762.56 39979.16 31261.21 31777.98 32180.61 35925.29 42482.48 33453.02 36284.92 35280.16 386
jason77.42 25775.75 27282.43 21387.10 23769.27 19077.99 29281.94 29651.47 38177.84 32385.07 31560.32 29189.00 25270.74 22689.27 29489.03 275
jason: jason.
MAR-MVS80.24 22778.74 24384.73 14586.87 24478.18 9285.75 14687.81 21665.67 27677.84 32378.50 37973.79 20190.53 21561.59 31290.87 26985.49 320
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FPMVS72.29 31172.00 31073.14 32988.63 19885.00 4074.65 34167.39 38771.94 20777.80 32587.66 26850.48 34775.83 36949.95 37679.51 38758.58 416
test_fmvs169.57 33869.05 33871.14 34769.15 41565.77 22973.98 34683.32 28342.83 41077.77 32678.27 38143.39 38868.50 39368.39 25584.38 36179.15 390
pmmvs474.92 28672.98 30080.73 24184.95 28071.71 16776.23 32377.59 32152.83 37177.73 32786.38 28956.35 32084.97 31457.72 33487.05 32585.51 319
ET-MVSNet_ETH3D75.28 28072.77 30282.81 20483.03 32068.11 20577.09 30776.51 33260.67 32377.60 32880.52 36238.04 39891.15 19370.78 22490.68 27489.17 270
UnsupCasMVSNet_bld69.21 34269.68 33367.82 36879.42 35651.15 37367.82 38575.79 33554.15 36477.47 32985.36 31059.26 30070.64 38348.46 38679.35 38981.66 371
WBMVS68.76 34568.43 34569.75 35483.29 31240.30 41167.36 38772.21 36457.09 34977.05 33085.53 30333.68 40780.51 34748.79 38490.90 26788.45 282
Anonymous2023120671.38 32071.88 31169.88 35286.31 25454.37 34770.39 37374.62 34252.57 37376.73 33188.76 24859.94 29472.06 37744.35 40093.23 21783.23 353
CMPMVSbinary59.41 2075.12 28373.57 29179.77 25375.84 38667.22 21181.21 24782.18 29350.78 38676.50 33287.66 26855.20 32782.99 33262.17 30690.64 27989.09 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet572.10 31271.69 31273.32 32781.57 33153.02 35876.77 31278.37 31763.31 29076.37 33391.85 16836.68 40278.98 35647.87 38992.45 23187.95 291
CVMVSNet72.62 30771.41 31776.28 30783.25 31460.34 29383.50 19479.02 31537.77 41976.33 33485.10 31249.60 35187.41 27470.54 22977.54 39981.08 380
PLCcopyleft73.85 1682.09 19380.31 22087.45 9290.86 15080.29 7385.88 14290.65 15668.17 24776.32 33586.33 29173.12 21392.61 15461.40 31390.02 28489.44 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVSFormer82.23 18781.57 20084.19 16485.54 27169.26 19191.98 3490.08 17971.54 20876.23 33685.07 31558.69 30494.27 8986.26 4388.77 29989.03 275
lupinMVS76.37 27274.46 28482.09 21585.54 27169.26 19176.79 31180.77 30650.68 38876.23 33682.82 34058.69 30488.94 25369.85 23588.77 29988.07 286
UWE-MVS66.43 35865.56 36369.05 35984.15 29740.98 40973.06 35664.71 39954.84 36076.18 33879.62 37129.21 41580.50 34838.54 41289.75 28785.66 317
PatchMatch-RL74.48 29173.22 29778.27 27887.70 22085.26 3875.92 32870.09 37664.34 28776.09 33981.25 35665.87 26178.07 36153.86 35683.82 36471.48 402
thisisatest051573.00 30570.52 32380.46 24581.45 33259.90 29873.16 35574.31 34657.86 34176.08 34077.78 38337.60 40192.12 16865.00 28291.45 25689.35 266
MS-PatchMatch70.93 32470.22 32773.06 33081.85 32762.50 26473.82 34977.90 31852.44 37475.92 34181.27 35555.67 32481.75 33855.37 34777.70 39774.94 398
CHOSEN 1792x268872.45 30870.56 32278.13 27990.02 16963.08 25468.72 38083.16 28442.99 40975.92 34185.46 30557.22 31585.18 31349.87 37881.67 37886.14 311
CR-MVSNet74.00 29673.04 29976.85 30079.58 35362.64 26182.58 22076.90 32850.50 38975.72 34392.38 15248.07 35584.07 32568.72 25182.91 37183.85 342
RPMNet78.88 24078.28 24980.68 24379.58 35362.64 26182.58 22094.16 3274.80 15975.72 34392.59 14548.69 35295.56 4273.48 20082.91 37183.85 342
DPM-MVS80.10 23179.18 23682.88 20390.71 15369.74 18478.87 28290.84 15160.29 32675.64 34585.92 29967.28 25293.11 13971.24 22091.79 24785.77 316
test_vis1_n70.29 32769.99 33171.20 34675.97 38566.50 22176.69 31480.81 30544.22 40475.43 34677.23 38950.00 34968.59 39166.71 26582.85 37378.52 392
PVSNet_BlendedMVS78.80 24277.84 25281.65 22684.43 28963.41 24979.49 27190.44 16261.70 30875.43 34687.07 28269.11 24591.44 18460.68 31792.24 23790.11 255
PVSNet_Blended76.49 27075.40 27579.76 25484.43 28963.41 24975.14 33690.44 16257.36 34675.43 34678.30 38069.11 24591.44 18460.68 31787.70 31884.42 332
PAPR78.84 24178.10 25181.07 23585.17 27860.22 29482.21 23490.57 15962.51 29675.32 34984.61 32074.99 18592.30 16359.48 32488.04 31290.68 239
N_pmnet70.20 32868.80 34374.38 32280.91 33984.81 4359.12 40776.45 33355.06 35875.31 35082.36 34555.74 32354.82 41747.02 39187.24 32183.52 346
cascas76.29 27374.81 28080.72 24284.47 28862.94 25573.89 34887.34 22055.94 35375.16 35176.53 39563.97 27091.16 19265.00 28290.97 26588.06 288
SCA73.32 30072.57 30675.58 31481.62 33055.86 33678.89 28171.37 37161.73 30674.93 35283.42 33360.46 28987.01 27858.11 33282.63 37683.88 339
test_vis1_n_192071.30 32171.58 31570.47 34877.58 36959.99 29774.25 34284.22 27851.06 38374.85 35379.10 37455.10 32868.83 39068.86 24879.20 39282.58 360
xiu_mvs_v2_base77.19 25976.75 26378.52 27187.01 24061.30 28075.55 33387.12 23061.24 31674.45 35478.79 37777.20 16090.93 20064.62 28884.80 35883.32 351
CANet83.79 15982.85 17686.63 10486.17 26072.21 16083.76 18891.43 13377.24 13274.39 35587.45 27375.36 18195.42 5277.03 15792.83 22692.25 191
PS-MVSNAJ77.04 26176.53 26578.56 27087.09 23861.40 27875.26 33587.13 22761.25 31574.38 35677.22 39076.94 16690.94 19964.63 28784.83 35783.35 350
MVP-Stereo75.81 27773.51 29382.71 20589.35 17873.62 13480.06 26085.20 25960.30 32573.96 35787.94 26157.89 31189.45 24552.02 36874.87 40485.06 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WB-MVSnew68.72 34669.01 33967.85 36783.22 31643.98 40274.93 33865.98 39455.09 35773.83 35879.11 37365.63 26271.89 37938.21 41385.04 35087.69 296
UGNet82.78 17881.64 19586.21 11686.20 25976.24 12086.86 12285.68 25277.07 13373.76 35992.82 13869.64 24191.82 17769.04 24693.69 20790.56 243
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
1112_ss74.82 28873.74 28978.04 28289.57 17260.04 29576.49 31987.09 23154.31 36373.66 36079.80 36860.25 29286.76 28758.37 32884.15 36287.32 300
Test_1112_low_res73.90 29773.08 29876.35 30590.35 15955.95 33373.40 35386.17 24250.70 38773.14 36185.94 29858.31 30685.90 30456.51 33883.22 36887.20 301
131473.22 30272.56 30775.20 31580.41 34857.84 32181.64 24185.36 25651.68 38073.10 36276.65 39461.45 28485.19 31263.54 29579.21 39182.59 359
test_vis1_rt65.64 36364.09 36770.31 34966.09 42070.20 18061.16 40281.60 29938.65 41672.87 36369.66 40952.84 33460.04 41356.16 34077.77 39680.68 384
Patchmatch-test65.91 36167.38 35061.48 39275.51 38843.21 40568.84 37963.79 40162.48 29772.80 36483.42 33344.89 38159.52 41448.27 38886.45 33381.70 370
PatchmatchNetpermissive69.71 33768.83 34272.33 34077.66 36853.60 35379.29 27369.99 37757.66 34372.53 36582.93 33846.45 36080.08 35160.91 31672.09 40783.31 352
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm67.95 34868.08 34967.55 36978.74 36443.53 40475.60 33067.10 39254.92 35972.23 36688.10 25842.87 39075.97 36852.21 36780.95 38583.15 354
pmmvs570.73 32570.07 32872.72 33377.03 37452.73 36074.14 34375.65 33850.36 39072.17 36785.37 30955.42 32680.67 34552.86 36587.59 31984.77 326
PatchT70.52 32672.76 30363.79 38679.38 35733.53 42077.63 29865.37 39773.61 17371.77 36892.79 14144.38 38375.65 37064.53 28985.37 34482.18 366
MVS73.21 30372.59 30575.06 31780.97 33860.81 29081.64 24185.92 24946.03 39971.68 36977.54 38568.47 24889.77 23955.70 34485.39 34374.60 399
MIMVSNet71.09 32271.59 31369.57 35687.23 23150.07 37978.91 28071.83 36760.20 32871.26 37091.76 17455.08 32976.09 36741.06 40587.02 32782.54 362
WTY-MVS67.91 34968.35 34666.58 37580.82 34248.12 38465.96 39272.60 35953.67 36671.20 37181.68 35358.97 30269.06 38948.57 38581.67 37882.55 361
test0.0.03 164.66 36764.36 36665.57 37975.03 39346.89 39064.69 39561.58 40962.43 30171.18 37277.54 38543.41 38668.47 39440.75 40782.65 37481.35 374
CostFormer69.98 33468.68 34473.87 32377.14 37250.72 37679.26 27474.51 34451.94 37970.97 37384.75 31845.16 37887.49 27355.16 35079.23 39083.40 349
Syy-MVS69.40 34070.03 33067.49 37081.72 32838.94 41371.00 36761.99 40361.38 31270.81 37472.36 40661.37 28579.30 35464.50 29085.18 34784.22 335
myMVS_eth3d64.66 36763.89 36866.97 37381.72 32837.39 41671.00 36761.99 40361.38 31270.81 37472.36 40620.96 42779.30 35449.59 37985.18 34784.22 335
testing9169.94 33568.99 34072.80 33283.81 30345.89 39471.57 36473.64 35468.24 24670.77 37677.82 38234.37 40584.44 32053.64 35887.00 32888.07 286
testing9969.27 34168.15 34872.63 33483.29 31245.45 39671.15 36671.08 37267.34 25770.43 37777.77 38432.24 41084.35 32253.72 35786.33 33688.10 285
tpmvs70.16 32969.56 33471.96 34174.71 39548.13 38379.63 26675.45 34065.02 28470.26 37881.88 35045.34 37585.68 30858.34 32975.39 40382.08 368
sss66.92 35367.26 35165.90 37777.23 37151.10 37564.79 39471.72 36952.12 37870.13 37980.18 36557.96 30965.36 40650.21 37581.01 38481.25 377
tpm268.45 34766.83 35473.30 32878.93 36348.50 38279.76 26571.76 36847.50 39369.92 38083.60 32942.07 39188.40 26248.44 38779.51 38783.01 356
testing22266.93 35265.30 36471.81 34283.38 30945.83 39572.06 36067.50 38664.12 28869.68 38176.37 39627.34 42183.00 33138.88 40988.38 30586.62 307
HY-MVS64.64 1873.03 30472.47 30874.71 32083.36 31154.19 34982.14 23781.96 29556.76 35269.57 38286.21 29560.03 29384.83 31649.58 38082.65 37485.11 323
dmvs_re66.81 35666.98 35266.28 37676.87 37558.68 31571.66 36372.24 36260.29 32669.52 38373.53 40352.38 33764.40 40844.90 39881.44 38175.76 396
ETVMVS64.67 36663.34 37268.64 36383.44 30841.89 40769.56 37861.70 40861.33 31468.74 38475.76 39828.76 41679.35 35334.65 41686.16 33984.67 328
tpm cat166.76 35765.21 36571.42 34477.09 37350.62 37778.01 29173.68 35344.89 40268.64 38579.00 37545.51 37282.42 33649.91 37770.15 41081.23 379
IB-MVS62.13 1971.64 31668.97 34179.66 25780.80 34362.26 27073.94 34776.90 32863.27 29168.63 38676.79 39233.83 40691.84 17659.28 32587.26 32084.88 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet80.37 22278.41 24886.23 11376.75 37673.28 13987.18 11677.45 32276.24 13868.14 38788.93 24765.41 26393.85 10769.47 23896.12 11891.55 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet58.17 2166.41 35965.63 36268.75 36281.96 32549.88 38062.19 40172.51 36151.03 38468.04 38875.34 40050.84 34474.77 37245.82 39782.96 36981.60 372
tpmrst66.28 36066.69 35665.05 38272.82 40639.33 41278.20 29070.69 37553.16 37067.88 38980.36 36448.18 35474.75 37358.13 33170.79 40981.08 380
CANet_DTU77.81 25377.05 25980.09 25181.37 33459.90 29883.26 20088.29 20969.16 23467.83 39083.72 32860.93 28689.47 24369.22 24289.70 28890.88 232
EPMVS62.47 37162.63 37562.01 38870.63 41238.74 41474.76 33952.86 41953.91 36567.71 39180.01 36639.40 39566.60 40155.54 34668.81 41580.68 384
UBG64.34 36963.35 37167.30 37183.50 30540.53 41067.46 38665.02 39854.77 36167.54 39274.47 40232.99 40978.50 36040.82 40683.58 36582.88 357
MDTV_nov1_ep1368.29 34778.03 36543.87 40374.12 34472.22 36352.17 37567.02 39385.54 30245.36 37480.85 34455.73 34284.42 360
testing1167.38 35065.93 35871.73 34383.37 31046.60 39170.95 36969.40 38062.47 29866.14 39476.66 39331.22 41184.10 32449.10 38284.10 36384.49 329
pmmvs362.47 37160.02 38469.80 35371.58 41064.00 24470.52 37258.44 41539.77 41466.05 39575.84 39727.10 42372.28 37646.15 39584.77 35973.11 400
ADS-MVSNet265.87 36263.64 37072.55 33673.16 40256.92 32967.10 38874.81 34149.74 39166.04 39682.97 33646.71 35877.26 36442.29 40269.96 41183.46 347
ADS-MVSNet61.90 37362.19 37761.03 39373.16 40236.42 41867.10 38861.75 40649.74 39166.04 39682.97 33646.71 35863.21 40942.29 40269.96 41183.46 347
mvsany_test158.48 38356.47 38864.50 38365.90 42268.21 20456.95 41242.11 42538.30 41765.69 39877.19 39156.96 31659.35 41546.16 39458.96 41865.93 409
dmvs_testset60.59 38162.54 37654.72 40077.26 37027.74 42374.05 34561.00 41060.48 32465.62 39967.03 41355.93 32268.23 39532.07 42069.46 41468.17 407
DSMNet-mixed60.98 37961.61 37959.09 39772.88 40545.05 39974.70 34046.61 42326.20 42165.34 40090.32 22055.46 32563.12 41041.72 40481.30 38369.09 406
JIA-IIPM69.41 33966.64 35777.70 28873.19 40171.24 17275.67 32965.56 39670.42 22165.18 40192.97 13333.64 40883.06 33053.52 36069.61 41378.79 391
test-LLR67.21 35166.74 35568.63 36476.45 38155.21 34267.89 38267.14 39062.43 30165.08 40272.39 40443.41 38669.37 38561.00 31484.89 35581.31 375
test-mter65.00 36563.79 36968.63 36476.45 38155.21 34267.89 38267.14 39050.98 38565.08 40272.39 40428.27 41869.37 38561.00 31484.89 35581.31 375
PMMVS255.64 38659.27 38544.74 40264.30 42412.32 43040.60 41749.79 42153.19 36965.06 40484.81 31753.60 33349.76 42032.68 41989.41 29172.15 401
baseline269.77 33666.89 35378.41 27479.51 35558.09 31776.23 32369.57 37957.50 34564.82 40577.45 38746.02 36388.44 26153.08 36177.83 39588.70 279
gg-mvs-nofinetune68.96 34469.11 33768.52 36676.12 38445.32 39783.59 19255.88 41786.68 2964.62 40697.01 930.36 41383.97 32744.78 39982.94 37076.26 395
PAPM71.77 31470.06 32976.92 29786.39 24953.97 35076.62 31686.62 23753.44 36763.97 40784.73 31957.79 31292.34 16139.65 40881.33 38284.45 331
new_pmnet55.69 38557.66 38649.76 40175.47 38930.59 42159.56 40451.45 42043.62 40762.49 40875.48 39940.96 39349.15 42137.39 41472.52 40569.55 405
MDTV_nov1_ep13_2view27.60 42470.76 37146.47 39761.27 40945.20 37649.18 38183.75 344
dp60.70 38060.29 38361.92 39072.04 40938.67 41570.83 37064.08 40051.28 38260.75 41077.28 38836.59 40371.58 38147.41 39062.34 41775.52 397
TESTMET0.1,161.29 37660.32 38264.19 38472.06 40851.30 37167.89 38262.09 40245.27 40060.65 41169.01 41027.93 41964.74 40756.31 33981.65 38076.53 394
PMMVS61.65 37460.38 38165.47 38065.40 42369.26 19163.97 39761.73 40736.80 42060.11 41268.43 41159.42 29866.35 40248.97 38378.57 39460.81 413
PVSNet_051.08 2256.10 38454.97 38959.48 39675.12 39253.28 35755.16 41361.89 40544.30 40359.16 41362.48 41654.22 33065.91 40435.40 41547.01 41959.25 415
MVS-HIRNet61.16 37762.92 37455.87 39879.09 36035.34 41971.83 36157.98 41646.56 39659.05 41491.14 19049.95 35076.43 36638.74 41071.92 40855.84 417
E-PMN61.59 37561.62 37861.49 39166.81 41855.40 34053.77 41460.34 41166.80 26458.90 41565.50 41440.48 39466.12 40355.72 34386.25 33762.95 412
GG-mvs-BLEND67.16 37273.36 40046.54 39384.15 17555.04 41858.64 41661.95 41729.93 41483.87 32838.71 41176.92 40171.07 403
EPNet_dtu72.87 30671.33 31877.49 29177.72 36760.55 29282.35 22875.79 33566.49 26658.39 41781.06 35753.68 33285.98 30053.55 35992.97 22485.95 313
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dongtai41.90 38842.65 39139.67 40370.86 41121.11 42561.01 40321.42 43057.36 34657.97 41850.06 41916.40 42958.73 41621.03 42327.69 42339.17 419
EMVS61.10 37860.81 38061.99 38965.96 42155.86 33653.10 41558.97 41467.06 26156.89 41963.33 41540.98 39267.03 39954.79 35286.18 33863.08 411
CHOSEN 280x42059.08 38256.52 38766.76 37476.51 37964.39 24049.62 41659.00 41343.86 40555.66 42068.41 41235.55 40468.21 39643.25 40176.78 40267.69 408
MVEpermissive40.22 2351.82 38750.47 39055.87 39862.66 42551.91 36631.61 41939.28 42640.65 41250.76 42174.98 40156.24 32144.67 42233.94 41864.11 41671.04 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
kuosan30.83 38932.17 39226.83 40553.36 42719.02 42857.90 41020.44 43138.29 41838.01 42237.82 42115.18 43033.45 4247.74 42520.76 42428.03 420
DeepMVS_CXcopyleft24.13 40632.95 42829.49 42221.63 42912.07 42237.95 42345.07 42030.84 41219.21 42517.94 42433.06 42223.69 421
tmp_tt20.25 39224.50 3957.49 4074.47 4308.70 43134.17 41825.16 4281.00 42532.43 42418.49 42239.37 3969.21 42621.64 42243.75 4204.57 422
test_method30.46 39029.60 39333.06 40417.99 4293.84 43213.62 42073.92 3482.79 42318.29 42553.41 41828.53 41743.25 42322.56 42135.27 42152.11 418
EGC-MVSNET74.79 28969.99 33189.19 6594.89 3887.00 1591.89 3786.28 2401.09 4242.23 42695.98 2781.87 11489.48 24279.76 11895.96 12591.10 225
testmvs5.91 3967.65 3990.72 4091.20 4310.37 43459.14 4060.67 4330.49 4271.11 4272.76 4260.94 4320.24 4281.02 4271.47 4251.55 424
test1236.27 3958.08 3980.84 4081.11 4320.57 43362.90 3980.82 4320.54 4261.07 4282.75 4271.26 4310.30 4271.04 4261.26 4261.66 423
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
cdsmvs_eth3d_5k20.81 39127.75 3940.00 4100.00 4330.00 4350.00 42185.44 2550.00 4280.00 42982.82 34081.46 1180.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas6.41 3948.55 3970.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42876.94 1660.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
ab-mvs-re6.65 3938.87 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42979.80 3680.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS37.39 41652.61 366
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 181
No_MVS88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 181
eth-test20.00 433
eth-test0.00 433
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18781.12 12294.68 7674.48 18395.35 14892.29 187
save fliter93.75 6377.44 10386.31 13589.72 18670.80 218
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 200
GSMVS83.88 339
sam_mvs146.11 36283.88 339
sam_mvs45.92 367
MTGPAbinary91.81 126
test_post178.85 2833.13 42445.19 37780.13 35058.11 332
test_post3.10 42545.43 37377.22 365
patchmatchnet-post81.71 35245.93 36687.01 278
MTMP90.66 4833.14 427
gm-plane-assit75.42 39044.97 40052.17 37572.36 40687.90 26854.10 355
test9_res80.83 10796.45 10390.57 242
agg_prior279.68 12096.16 11590.22 250
test_prior478.97 8484.59 166
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 160
新几何281.72 240
旧先验191.97 11171.77 16381.78 29791.84 16973.92 19993.65 20883.61 345
无先验82.81 21585.62 25358.09 33991.41 18767.95 25984.48 330
原ACMM282.26 233
testdata286.43 29263.52 296
segment_acmp81.94 110
testdata179.62 26773.95 168
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior593.61 5995.22 5980.78 10895.83 13494.46 84
plane_prior492.95 134
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 434
nn0.00 434
door-mid74.45 345
test1191.46 132
door72.57 360
HQP5-MVS70.66 175
BP-MVS77.30 154
HQP3-MVS92.68 9894.47 183
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 227
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140