LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 33 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 14 | 85.07 52 | 99.27 1 | 99.54 1 |
|
UniMVSNet_ETH3D | | | 89.12 64 | 90.72 46 | 84.31 153 | 97.00 2 | 64.33 218 | 89.67 64 | 88.38 197 | 88.84 15 | 94.29 19 | 97.57 3 | 90.48 14 | 91.26 193 | 72.57 192 | 97.65 62 | 97.34 14 |
|
PMVS |  | 80.48 6 | 90.08 41 | 90.66 47 | 88.34 82 | 96.71 3 | 92.97 1 | 90.31 50 | 89.57 180 | 88.51 19 | 90.11 93 | 95.12 41 | 90.98 7 | 88.92 248 | 77.55 139 | 97.07 86 | 83.13 313 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
zzz-MVS | | | 91.27 22 | 91.26 33 | 91.29 29 | 96.59 4 | 86.29 18 | 88.94 79 | 91.81 119 | 84.07 40 | 92.00 63 | 94.40 67 | 86.63 54 | 95.28 57 | 88.59 5 | 98.31 24 | 92.30 166 |
|
MTAPA | | | 91.52 16 | 91.60 20 | 91.29 29 | 96.59 4 | 86.29 18 | 92.02 30 | 91.81 119 | 84.07 40 | 92.00 63 | 94.40 67 | 86.63 54 | 95.28 57 | 88.59 5 | 98.31 24 | 92.30 166 |
|
PEN-MVS | | | 90.03 45 | 91.88 16 | 84.48 147 | 96.57 6 | 58.88 279 | 88.95 78 | 93.19 77 | 91.62 4 | 96.01 6 | 96.16 20 | 87.02 49 | 95.60 35 | 78.69 120 | 98.72 9 | 98.97 3 |
|
PS-CasMVS | | | 90.06 43 | 91.92 13 | 84.47 148 | 96.56 7 | 58.83 282 | 89.04 77 | 92.74 96 | 91.40 5 | 96.12 4 | 96.06 22 | 87.23 47 | 95.57 36 | 79.42 115 | 98.74 6 | 99.00 2 |
|
DTE-MVSNet | | | 89.98 47 | 91.91 15 | 84.21 155 | 96.51 8 | 57.84 287 | 88.93 80 | 92.84 93 | 91.92 3 | 96.16 3 | 96.23 18 | 86.95 50 | 95.99 10 | 79.05 117 | 98.57 15 | 98.80 6 |
|
CP-MVSNet | | | 89.27 61 | 90.91 43 | 84.37 149 | 96.34 9 | 58.61 284 | 88.66 87 | 92.06 110 | 90.78 6 | 95.67 7 | 95.17 39 | 81.80 110 | 95.54 41 | 79.00 118 | 98.69 10 | 98.95 4 |
|
WR-MVS_H | | | 89.91 50 | 91.31 31 | 85.71 127 | 96.32 10 | 62.39 240 | 89.54 69 | 93.31 70 | 90.21 10 | 95.57 9 | 95.66 28 | 81.42 114 | 95.90 15 | 80.94 96 | 98.80 3 | 98.84 5 |
|
MP-MVS |  | | 91.14 27 | 90.91 43 | 91.83 21 | 96.18 11 | 86.88 15 | 92.20 27 | 93.03 85 | 82.59 60 | 88.52 131 | 94.37 70 | 86.74 53 | 95.41 51 | 86.32 37 | 98.21 30 | 93.19 129 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
FOURS1 | | | | | | 96.08 12 | 87.41 13 | 96.19 2 | 95.83 4 | 92.95 2 | 96.57 2 | | | | | | |
|
mPP-MVS | | | 91.69 13 | 91.47 24 | 92.37 6 | 96.04 13 | 88.48 10 | 92.72 18 | 92.60 99 | 83.09 54 | 91.54 70 | 94.25 75 | 87.67 43 | 95.51 44 | 87.21 27 | 98.11 36 | 93.12 131 |
|
MP-MVS-pluss | | | 90.81 29 | 91.08 36 | 89.99 51 | 95.97 14 | 79.88 73 | 88.13 92 | 94.51 21 | 75.79 141 | 92.94 44 | 94.96 43 | 88.36 29 | 95.01 67 | 90.70 2 | 98.40 20 | 95.09 62 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 15 | 90.26 3 | 95.70 4 | 96.46 2 | 90.58 8 | 92.86 47 | 96.29 16 | 88.16 35 | 94.17 96 | 86.07 43 | 98.48 18 | 97.22 17 |
|
ACMMP_NAP | | | 90.65 31 | 91.07 38 | 89.42 60 | 95.93 16 | 79.54 78 | 89.95 57 | 93.68 56 | 77.65 117 | 91.97 65 | 94.89 45 | 88.38 28 | 95.45 49 | 89.27 3 | 97.87 52 | 93.27 125 |
|
HPM-MVS_fast | | | 92.50 5 | 92.54 6 | 92.37 6 | 95.93 16 | 85.81 31 | 92.99 13 | 94.23 26 | 85.21 34 | 92.51 54 | 95.13 40 | 90.65 10 | 95.34 54 | 88.06 9 | 98.15 35 | 95.95 40 |
|
MSP-MVS | | | 89.08 65 | 88.16 77 | 91.83 21 | 95.76 18 | 86.14 23 | 92.75 17 | 93.90 46 | 78.43 111 | 89.16 120 | 92.25 140 | 72.03 214 | 96.36 2 | 88.21 8 | 90.93 251 | 92.98 136 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
region2R | | | 91.44 20 | 91.30 32 | 91.87 19 | 95.75 19 | 85.90 27 | 92.63 21 | 93.30 72 | 81.91 68 | 90.88 84 | 94.21 76 | 87.75 41 | 95.87 18 | 87.60 16 | 97.71 60 | 93.83 102 |
|
ACMMPR | | | 91.49 17 | 91.35 28 | 91.92 16 | 95.74 20 | 85.88 28 | 92.58 22 | 93.25 75 | 81.99 66 | 91.40 73 | 94.17 78 | 87.51 44 | 95.87 18 | 87.74 11 | 97.76 56 | 93.99 95 |
|
ZNCC-MVS | | | 91.26 23 | 91.34 29 | 91.01 35 | 95.73 21 | 83.05 53 | 92.18 28 | 94.22 27 | 80.14 89 | 91.29 76 | 93.97 87 | 87.93 40 | 95.87 18 | 88.65 4 | 97.96 47 | 94.12 92 |
|
TSAR-MVS + MP. | | | 88.14 75 | 87.82 80 | 89.09 65 | 95.72 22 | 76.74 113 | 92.49 25 | 91.19 136 | 67.85 238 | 86.63 166 | 94.84 47 | 79.58 134 | 95.96 13 | 87.62 14 | 94.50 175 | 94.56 73 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PGM-MVS | | | 91.20 25 | 90.95 42 | 91.93 15 | 95.67 23 | 85.85 29 | 90.00 54 | 93.90 46 | 80.32 86 | 91.74 69 | 94.41 66 | 88.17 34 | 95.98 11 | 86.37 36 | 97.99 42 | 93.96 97 |
|
XVS | | | 91.54 15 | 91.36 26 | 92.08 10 | 95.64 24 | 86.25 20 | 92.64 19 | 93.33 67 | 85.07 35 | 89.99 97 | 94.03 84 | 86.57 56 | 95.80 24 | 87.35 23 | 97.62 64 | 94.20 87 |
|
X-MVStestdata | | | 85.04 121 | 82.70 165 | 92.08 10 | 95.64 24 | 86.25 20 | 92.64 19 | 93.33 67 | 85.07 35 | 89.99 97 | 16.05 369 | 86.57 56 | 95.80 24 | 87.35 23 | 97.62 64 | 94.20 87 |
|
HPM-MVS |  | | 92.13 9 | 92.20 11 | 91.91 17 | 95.58 26 | 84.67 42 | 93.51 8 | 94.85 16 | 82.88 57 | 91.77 68 | 93.94 94 | 90.55 13 | 95.73 30 | 88.50 7 | 98.23 29 | 95.33 53 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
ACMMP |  | | 91.91 12 | 91.87 17 | 92.03 13 | 95.53 27 | 85.91 26 | 93.35 11 | 94.16 31 | 82.52 61 | 92.39 57 | 94.14 80 | 89.15 23 | 95.62 34 | 87.35 23 | 98.24 28 | 94.56 73 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
GST-MVS | | | 90.96 28 | 91.01 39 | 90.82 38 | 95.45 28 | 82.73 56 | 91.75 35 | 93.74 52 | 80.98 79 | 91.38 74 | 93.80 97 | 87.20 48 | 95.80 24 | 87.10 31 | 97.69 61 | 93.93 98 |
|
HFP-MVS | | | 91.30 21 | 91.39 25 | 91.02 33 | 95.43 29 | 84.66 43 | 92.58 22 | 93.29 73 | 81.99 66 | 91.47 71 | 93.96 90 | 88.35 30 | 95.56 37 | 87.74 11 | 97.74 58 | 92.85 140 |
|
#test# | | | 90.49 36 | 90.31 51 | 91.02 33 | 95.43 29 | 84.66 43 | 90.65 43 | 93.29 73 | 77.00 125 | 91.47 71 | 93.96 90 | 88.35 30 | 95.56 37 | 84.88 55 | 97.74 58 | 92.85 140 |
|
SMA-MVS |  | | 90.31 38 | 90.48 49 | 89.83 52 | 95.31 31 | 79.52 79 | 90.98 41 | 93.24 76 | 75.37 148 | 92.84 48 | 95.28 35 | 85.58 66 | 96.09 7 | 87.92 10 | 97.76 56 | 93.88 100 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CP-MVS | | | 91.67 14 | 91.58 21 | 91.96 14 | 95.29 32 | 87.62 12 | 93.38 9 | 93.36 65 | 83.16 53 | 91.06 79 | 94.00 86 | 88.26 32 | 95.71 31 | 87.28 26 | 98.39 21 | 92.55 154 |
|
VDDNet | | | 84.35 136 | 85.39 120 | 81.25 212 | 95.13 33 | 59.32 272 | 85.42 135 | 81.11 275 | 86.41 29 | 87.41 148 | 96.21 19 | 73.61 191 | 90.61 216 | 66.33 241 | 96.85 92 | 93.81 107 |
|
CPTT-MVS | | | 89.39 59 | 88.98 68 | 90.63 41 | 95.09 34 | 86.95 14 | 92.09 29 | 92.30 105 | 79.74 92 | 87.50 147 | 92.38 133 | 81.42 114 | 93.28 134 | 83.07 73 | 97.24 82 | 91.67 190 |
|
ACMM | | 79.39 9 | 90.65 31 | 90.99 40 | 89.63 56 | 95.03 35 | 83.53 48 | 89.62 66 | 93.35 66 | 79.20 100 | 93.83 28 | 93.60 104 | 90.81 8 | 92.96 146 | 85.02 54 | 98.45 19 | 92.41 160 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 91.49 17 | 91.53 22 | 91.39 26 | 94.98 36 | 82.95 55 | 93.52 7 | 92.79 94 | 88.22 20 | 88.53 130 | 97.64 2 | 83.45 83 | 94.55 85 | 86.02 46 | 98.60 13 | 96.67 26 |
|
HPM-MVS++ |  | | 88.93 68 | 88.45 75 | 90.38 45 | 94.92 37 | 85.85 29 | 89.70 61 | 91.27 133 | 78.20 113 | 86.69 165 | 92.28 139 | 80.36 128 | 95.06 66 | 86.17 42 | 96.49 106 | 90.22 221 |
|
XVG-ACMP-BASELINE | | | 89.98 47 | 89.84 54 | 90.41 44 | 94.91 38 | 84.50 45 | 89.49 71 | 93.98 42 | 79.68 93 | 92.09 61 | 93.89 95 | 83.80 79 | 93.10 143 | 82.67 78 | 98.04 37 | 93.64 115 |
|
SR-MVS | | | 92.23 8 | 92.34 9 | 91.91 17 | 94.89 39 | 87.85 11 | 92.51 24 | 93.87 49 | 88.20 21 | 93.24 41 | 94.02 85 | 90.15 17 | 95.67 33 | 86.82 32 | 97.34 79 | 92.19 174 |
|
OPM-MVS | | | 89.80 51 | 89.97 52 | 89.27 62 | 94.76 40 | 79.86 74 | 86.76 115 | 92.78 95 | 78.78 106 | 92.51 54 | 93.64 103 | 88.13 36 | 93.84 110 | 84.83 57 | 97.55 69 | 94.10 93 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
LPG-MVS_test | | | 91.47 19 | 91.68 18 | 90.82 38 | 94.75 41 | 81.69 60 | 90.00 54 | 94.27 23 | 82.35 63 | 93.67 34 | 94.82 48 | 91.18 5 | 95.52 42 | 85.36 50 | 98.73 7 | 95.23 58 |
|
LGP-MVS_train | | | | | 90.82 38 | 94.75 41 | 81.69 60 | | 94.27 23 | 82.35 63 | 93.67 34 | 94.82 48 | 91.18 5 | 95.52 42 | 85.36 50 | 98.73 7 | 95.23 58 |
|
abl_6 | | | 93.02 4 | 93.16 4 | 92.60 4 | 94.73 43 | 88.99 7 | 93.26 12 | 94.19 30 | 89.11 12 | 94.43 16 | 95.27 36 | 91.86 3 | 95.09 64 | 87.54 18 | 98.02 40 | 93.71 110 |
|
test1172 | | | 92.40 7 | 92.41 7 | 92.37 6 | 94.68 44 | 89.04 6 | 91.98 31 | 93.62 57 | 90.14 11 | 93.63 36 | 94.16 79 | 88.83 24 | 95.51 44 | 87.11 30 | 97.54 72 | 92.54 155 |
|
XVG-OURS-SEG-HR | | | 89.59 55 | 89.37 61 | 90.28 47 | 94.47 45 | 85.95 25 | 86.84 111 | 93.91 45 | 80.07 90 | 86.75 162 | 93.26 107 | 93.64 2 | 90.93 203 | 84.60 59 | 90.75 256 | 93.97 96 |
|
ACMP | | 79.16 10 | 90.54 34 | 90.60 48 | 90.35 46 | 94.36 46 | 80.98 66 | 89.16 75 | 94.05 40 | 79.03 103 | 92.87 46 | 93.74 101 | 90.60 12 | 95.21 61 | 82.87 76 | 98.76 4 | 94.87 64 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
XVG-OURS | | | 89.18 62 | 88.83 71 | 90.23 48 | 94.28 47 | 86.11 24 | 85.91 126 | 93.60 60 | 80.16 88 | 89.13 121 | 93.44 105 | 83.82 78 | 90.98 201 | 83.86 66 | 95.30 151 | 93.60 117 |
|
test_0728_SECOND | | | | | 86.79 101 | 94.25 48 | 72.45 148 | 90.54 45 | 94.10 38 | | | | | 95.88 16 | 86.42 34 | 97.97 45 | 92.02 178 |
|
SED-MVS | | | 90.46 37 | 91.64 19 | 86.93 98 | 94.18 49 | 72.65 138 | 90.47 48 | 93.69 54 | 83.77 44 | 94.11 23 | 94.27 71 | 90.28 15 | 95.84 22 | 86.03 44 | 97.92 48 | 92.29 168 |
|
IU-MVS | | | | | | 94.18 49 | 72.64 140 | | 90.82 145 | 56.98 313 | 89.67 108 | | | | 85.78 47 | 97.92 48 | 93.28 124 |
|
test_241102_ONE | | | | | | 94.18 49 | 72.65 138 | | 93.69 54 | 83.62 46 | 94.11 23 | 93.78 100 | 90.28 15 | 95.50 47 | | | |
|
DVP-MVS |  | | 90.06 43 | 91.32 30 | 86.29 111 | 94.16 52 | 72.56 144 | 90.54 45 | 91.01 140 | 83.61 47 | 93.75 31 | 94.65 53 | 89.76 19 | 95.78 27 | 86.42 34 | 97.97 45 | 90.55 216 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 94.16 52 | 72.56 144 | 90.63 44 | 93.90 46 | 83.61 47 | 93.75 31 | 94.49 60 | 89.76 19 | | | | |
|
SR-MVS-dyc-post | | | 92.41 6 | 92.41 7 | 92.39 5 | 94.13 54 | 88.95 8 | 92.87 14 | 94.16 31 | 88.75 16 | 93.79 29 | 94.43 63 | 88.83 24 | 95.51 44 | 87.16 28 | 97.60 66 | 92.73 145 |
|
RE-MVS-def | | | | 92.61 5 | | 94.13 54 | 88.95 8 | 92.87 14 | 94.16 31 | 88.75 16 | 93.79 29 | 94.43 63 | 90.64 11 | | 87.16 28 | 97.60 66 | 92.73 145 |
|
MIMVSNet1 | | | 83.63 155 | 84.59 136 | 80.74 222 | 94.06 56 | 62.77 234 | 82.72 194 | 84.53 256 | 77.57 120 | 90.34 90 | 95.92 23 | 76.88 165 | 85.83 289 | 61.88 271 | 97.42 77 | 93.62 116 |
|
TranMVSNet+NR-MVSNet | | | 87.86 79 | 88.76 73 | 85.18 135 | 94.02 57 | 64.13 219 | 84.38 151 | 91.29 132 | 84.88 37 | 92.06 62 | 93.84 96 | 86.45 58 | 93.73 113 | 73.22 183 | 98.66 11 | 97.69 9 |
|
新几何1 | | | | | 82.95 183 | 93.96 58 | 78.56 88 | | 80.24 281 | 55.45 318 | 83.93 217 | 91.08 168 | 71.19 219 | 88.33 257 | 65.84 246 | 93.07 207 | 81.95 326 |
|
1121 | | | 80.86 194 | 79.81 211 | 84.02 159 | 93.93 59 | 78.70 86 | 81.64 220 | 80.18 282 | 55.43 319 | 83.67 219 | 91.15 166 | 71.29 218 | 91.41 190 | 67.95 233 | 93.06 208 | 81.96 325 |
|
SteuartSystems-ACMMP | | | 91.16 26 | 91.36 26 | 90.55 42 | 93.91 60 | 80.97 67 | 91.49 37 | 93.48 63 | 82.82 58 | 92.60 53 | 93.97 87 | 88.19 33 | 96.29 4 | 87.61 15 | 98.20 32 | 94.39 82 |
Skip Steuart: Steuart Systems R&D Blog. |
test_part2 | | | | | | 93.86 61 | 77.77 96 | | | | 92.84 48 | | | | | | |
|
test_one_0601 | | | | | | 93.85 62 | 73.27 134 | | 94.11 37 | 86.57 27 | 93.47 40 | 94.64 56 | 88.42 27 | | | | |
|
xxxxxxxxxxxxxcwj | | | 89.04 66 | 89.13 64 | 88.79 70 | 93.75 63 | 77.44 101 | 86.31 123 | 95.27 12 | 70.80 205 | 92.28 58 | 93.80 97 | 86.89 51 | 94.64 78 | 85.52 48 | 97.51 74 | 94.30 85 |
|
save fliter | | | | | | 93.75 63 | 77.44 101 | 86.31 123 | 89.72 175 | 70.80 205 | | | | | | | |
|
LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 23 | 93.73 65 | 85.72 32 | 96.79 1 | 95.51 8 | 88.86 14 | 95.63 8 | 96.99 8 | 84.81 70 | 93.16 139 | 91.10 1 | 97.53 73 | 96.58 29 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
COLMAP_ROB |  | 83.01 3 | 91.97 11 | 91.95 12 | 92.04 12 | 93.68 66 | 86.15 22 | 93.37 10 | 95.10 14 | 90.28 9 | 92.11 60 | 95.03 42 | 89.75 21 | 94.93 69 | 79.95 107 | 98.27 27 | 95.04 63 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepC-MVS | | 82.31 4 | 89.15 63 | 89.08 65 | 89.37 61 | 93.64 67 | 79.07 82 | 88.54 88 | 94.20 28 | 73.53 166 | 89.71 106 | 94.82 48 | 85.09 67 | 95.77 29 | 84.17 63 | 98.03 39 | 93.26 126 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
mvs_tets | | | 89.78 52 | 89.27 63 | 91.30 28 | 93.51 68 | 84.79 40 | 89.89 59 | 90.63 150 | 70.00 216 | 94.55 15 | 96.67 11 | 87.94 39 | 93.59 121 | 84.27 62 | 95.97 125 | 95.52 48 |
|
HQP_MVS | | | 87.75 83 | 87.43 86 | 88.70 73 | 93.45 69 | 76.42 117 | 89.45 72 | 93.61 58 | 79.44 97 | 86.55 167 | 92.95 116 | 74.84 177 | 95.22 59 | 80.78 99 | 95.83 132 | 94.46 78 |
|
plane_prior7 | | | | | | 93.45 69 | 77.31 105 | | | | | | | | | | |
|
WR-MVS | | | 83.56 156 | 84.40 142 | 81.06 217 | 93.43 71 | 54.88 310 | 78.67 264 | 85.02 250 | 81.24 75 | 90.74 85 | 91.56 157 | 72.85 203 | 91.08 199 | 68.00 231 | 98.04 37 | 97.23 16 |
|
DPE-MVS |  | | 90.53 35 | 91.08 36 | 88.88 66 | 93.38 72 | 78.65 87 | 89.15 76 | 94.05 40 | 84.68 38 | 93.90 25 | 94.11 82 | 88.13 36 | 96.30 3 | 84.51 60 | 97.81 54 | 91.70 189 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
jajsoiax | | | 89.41 58 | 88.81 72 | 91.19 32 | 93.38 72 | 84.72 41 | 89.70 61 | 90.29 164 | 69.27 220 | 94.39 17 | 96.38 15 | 86.02 64 | 93.52 125 | 83.96 64 | 95.92 129 | 95.34 52 |
|
PS-MVSNAJss | | | 88.31 73 | 87.90 79 | 89.56 59 | 93.31 74 | 77.96 94 | 87.94 95 | 91.97 113 | 70.73 207 | 94.19 22 | 96.67 11 | 76.94 159 | 94.57 82 | 83.07 73 | 96.28 114 | 96.15 32 |
|
test222 | | | | | | 93.31 74 | 76.54 114 | 79.38 252 | 77.79 294 | 52.59 332 | 82.36 237 | 90.84 179 | 66.83 238 | | | 91.69 236 | 81.25 334 |
|
DU-MVS | | | 86.80 91 | 86.99 92 | 86.21 116 | 93.24 76 | 67.02 196 | 83.16 185 | 92.21 106 | 81.73 70 | 90.92 81 | 91.97 144 | 77.20 153 | 93.99 102 | 74.16 171 | 98.35 22 | 97.61 10 |
|
NR-MVSNet | | | 86.00 104 | 86.22 103 | 85.34 133 | 93.24 76 | 64.56 215 | 82.21 213 | 90.46 153 | 80.99 78 | 88.42 133 | 91.97 144 | 77.56 149 | 93.85 108 | 72.46 193 | 98.65 12 | 97.61 10 |
|
OurMVSNet-221017-0 | | | 90.01 46 | 89.74 55 | 90.83 37 | 93.16 78 | 80.37 70 | 91.91 34 | 93.11 79 | 81.10 77 | 95.32 10 | 97.24 5 | 72.94 202 | 94.85 72 | 85.07 52 | 97.78 55 | 97.26 15 |
|
UniMVSNet (Re) | | | 86.87 88 | 86.98 93 | 86.55 105 | 93.11 79 | 68.48 186 | 83.80 165 | 92.87 90 | 80.37 84 | 89.61 112 | 91.81 151 | 77.72 147 | 94.18 94 | 75.00 167 | 98.53 16 | 96.99 22 |
|
APD-MVS_3200maxsize | | | 92.05 10 | 92.24 10 | 91.48 24 | 93.02 80 | 85.17 35 | 92.47 26 | 95.05 15 | 87.65 24 | 93.21 42 | 94.39 69 | 90.09 18 | 95.08 65 | 86.67 33 | 97.60 66 | 94.18 89 |
|
ACMH+ | | 77.89 11 | 90.73 30 | 91.50 23 | 88.44 79 | 93.00 81 | 76.26 119 | 89.65 65 | 95.55 7 | 87.72 23 | 93.89 27 | 94.94 44 | 91.62 4 | 93.44 129 | 78.35 124 | 98.76 4 | 95.61 47 |
|
APDe-MVS | | | 91.22 24 | 91.92 13 | 89.14 64 | 92.97 82 | 78.04 91 | 92.84 16 | 94.14 35 | 83.33 51 | 93.90 25 | 95.73 25 | 88.77 26 | 96.41 1 | 87.60 16 | 97.98 44 | 92.98 136 |
|
114514_t | | | 83.10 166 | 82.54 171 | 84.77 142 | 92.90 83 | 69.10 184 | 86.65 117 | 90.62 151 | 54.66 322 | 81.46 252 | 90.81 180 | 76.98 158 | 94.38 86 | 72.62 191 | 96.18 119 | 90.82 207 |
|
testdata | | | | | 79.54 243 | 92.87 84 | 72.34 149 | | 80.14 283 | 59.91 297 | 85.47 190 | 91.75 153 | 67.96 232 | 85.24 293 | 68.57 229 | 92.18 228 | 81.06 339 |
|
CNVR-MVS | | | 87.81 82 | 87.68 82 | 88.21 84 | 92.87 84 | 77.30 106 | 85.25 136 | 91.23 134 | 77.31 122 | 87.07 155 | 91.47 159 | 82.94 88 | 94.71 75 | 84.67 58 | 96.27 116 | 92.62 152 |
|
SF-MVS | | | 90.27 39 | 90.80 45 | 88.68 74 | 92.86 86 | 77.09 108 | 91.19 40 | 95.74 5 | 81.38 74 | 92.28 58 | 93.80 97 | 86.89 51 | 94.64 78 | 85.52 48 | 97.51 74 | 94.30 85 |
|
UniMVSNet_NR-MVSNet | | | 86.84 90 | 87.06 90 | 86.17 118 | 92.86 86 | 67.02 196 | 82.55 200 | 91.56 123 | 83.08 55 | 90.92 81 | 91.82 150 | 78.25 143 | 93.99 102 | 74.16 171 | 98.35 22 | 97.49 13 |
|
plane_prior1 | | | | | | 92.83 88 | | | | | | | | | | | |
|
原ACMM1 | | | | | 84.60 146 | 92.81 89 | 74.01 129 | | 91.50 125 | 62.59 275 | 82.73 233 | 90.67 185 | 76.53 166 | 94.25 89 | 69.24 217 | 95.69 139 | 85.55 281 |
|
plane_prior6 | | | | | | 92.61 90 | 76.54 114 | | | | | | 74.84 177 | | | | |
|
APD-MVS |  | | 89.54 56 | 89.63 57 | 89.26 63 | 92.57 91 | 81.34 65 | 90.19 52 | 93.08 81 | 80.87 81 | 91.13 77 | 93.19 108 | 86.22 61 | 95.97 12 | 82.23 83 | 97.18 84 | 90.45 218 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test_0402 | | | 88.65 70 | 89.58 59 | 85.88 123 | 92.55 92 | 72.22 152 | 84.01 156 | 89.44 182 | 88.63 18 | 94.38 18 | 95.77 24 | 86.38 60 | 93.59 121 | 79.84 108 | 95.21 152 | 91.82 186 |
|
SixPastTwentyTwo | | | 87.20 86 | 87.45 85 | 86.45 107 | 92.52 93 | 69.19 182 | 87.84 97 | 88.05 203 | 81.66 71 | 94.64 14 | 96.53 14 | 65.94 242 | 94.75 74 | 83.02 75 | 96.83 94 | 95.41 50 |
|
ACMH | | 76.49 14 | 89.34 60 | 91.14 34 | 83.96 162 | 92.50 94 | 70.36 170 | 89.55 67 | 93.84 50 | 81.89 69 | 94.70 13 | 95.44 33 | 90.69 9 | 88.31 258 | 83.33 71 | 98.30 26 | 93.20 128 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
VPNet | | | 80.25 208 | 81.68 181 | 75.94 288 | 92.46 95 | 47.98 349 | 76.70 289 | 81.67 273 | 73.45 167 | 84.87 198 | 92.82 120 | 74.66 182 | 86.51 279 | 61.66 274 | 96.85 92 | 93.33 122 |
|
F-COLMAP | | | 84.97 125 | 83.42 154 | 89.63 56 | 92.39 96 | 83.40 49 | 88.83 82 | 91.92 115 | 73.19 176 | 80.18 271 | 89.15 213 | 77.04 157 | 93.28 134 | 65.82 247 | 92.28 224 | 92.21 173 |
|
test_djsdf | | | 89.62 54 | 89.01 66 | 91.45 25 | 92.36 97 | 82.98 54 | 91.98 31 | 90.08 170 | 71.54 196 | 94.28 21 | 96.54 13 | 81.57 112 | 94.27 87 | 86.26 38 | 96.49 106 | 97.09 19 |
|
TEST9 | | | | | | 92.34 98 | 79.70 76 | 83.94 158 | 90.32 158 | 65.41 264 | 84.49 205 | 90.97 173 | 82.03 104 | 93.63 117 | | | |
|
train_agg | | | 85.98 106 | 85.28 121 | 88.07 86 | 92.34 98 | 79.70 76 | 83.94 158 | 90.32 158 | 65.79 254 | 84.49 205 | 90.97 173 | 81.93 106 | 93.63 117 | 81.21 92 | 96.54 104 | 90.88 205 |
|
NCCC | | | 87.36 84 | 86.87 95 | 88.83 67 | 92.32 100 | 78.84 85 | 86.58 119 | 91.09 138 | 78.77 107 | 84.85 199 | 90.89 177 | 80.85 121 | 95.29 55 | 81.14 93 | 95.32 148 | 92.34 164 |
|
testtj | | | 89.51 57 | 89.48 60 | 89.59 58 | 92.26 101 | 80.80 68 | 90.14 53 | 93.54 61 | 83.37 50 | 90.57 88 | 92.55 130 | 84.99 68 | 96.15 5 | 81.26 91 | 96.61 101 | 91.83 185 |
|
FC-MVSNet-test | | | 85.93 107 | 87.05 91 | 82.58 193 | 92.25 102 | 56.44 299 | 85.75 130 | 93.09 80 | 77.33 121 | 91.94 66 | 94.65 53 | 74.78 179 | 93.41 131 | 75.11 166 | 98.58 14 | 97.88 7 |
|
CDPH-MVS | | | 86.17 103 | 85.54 117 | 88.05 87 | 92.25 102 | 75.45 122 | 83.85 162 | 92.01 111 | 65.91 253 | 86.19 174 | 91.75 153 | 83.77 80 | 94.98 68 | 77.43 142 | 96.71 98 | 93.73 109 |
|
ECVR-MVS | | | 78.53 226 | 78.85 217 | 77.56 271 | 92.22 104 | 47.49 351 | 82.61 196 | 69.24 345 | 72.43 184 | 85.28 191 | 94.20 77 | 51.91 310 | 90.07 234 | 65.36 250 | 96.45 108 | 95.11 61 |
|
ZD-MVS | | | | | | 92.22 104 | 80.48 69 | | 91.85 116 | 71.22 202 | 90.38 89 | 92.98 113 | 86.06 63 | 96.11 6 | 81.99 85 | 96.75 97 | |
|
pmmvs6 | | | 86.52 95 | 88.06 78 | 81.90 202 | 92.22 104 | 62.28 243 | 84.66 144 | 89.15 186 | 83.54 49 | 89.85 102 | 97.32 4 | 88.08 38 | 86.80 274 | 70.43 209 | 97.30 81 | 96.62 27 |
|
EG-PatchMatch MVS | | | 84.08 145 | 84.11 146 | 83.98 161 | 92.22 104 | 72.61 143 | 82.20 215 | 87.02 222 | 72.63 183 | 88.86 123 | 91.02 171 | 78.52 139 | 91.11 198 | 73.41 182 | 91.09 243 | 88.21 251 |
|
test_8 | | | | | | 92.09 108 | 78.87 84 | 83.82 163 | 90.31 160 | 65.79 254 | 84.36 208 | 90.96 175 | 81.93 106 | 93.44 129 | | | |
|
Vis-MVSNet |  | | 86.86 89 | 86.58 98 | 87.72 89 | 92.09 108 | 77.43 103 | 87.35 102 | 92.09 109 | 78.87 105 | 84.27 214 | 94.05 83 | 78.35 142 | 93.65 115 | 80.54 103 | 91.58 239 | 92.08 176 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
IS-MVSNet | | | 86.66 93 | 86.82 97 | 86.17 118 | 92.05 110 | 66.87 198 | 91.21 39 | 88.64 193 | 86.30 30 | 89.60 113 | 92.59 127 | 69.22 225 | 94.91 70 | 73.89 175 | 97.89 51 | 96.72 24 |
|
旧先验1 | | | | | | 91.97 111 | 71.77 157 | | 81.78 272 | | | 91.84 148 | 73.92 188 | | | 93.65 195 | 83.61 303 |
|
v7n | | | 90.13 40 | 90.96 41 | 87.65 91 | 91.95 112 | 71.06 165 | 89.99 56 | 93.05 82 | 86.53 28 | 94.29 19 | 96.27 17 | 82.69 90 | 94.08 100 | 86.25 40 | 97.63 63 | 97.82 8 |
|
NP-MVS | | | | | | 91.95 112 | 74.55 126 | | | | | 90.17 198 | | | | | |
|
ETH3D-3000-0.1 | | | 88.85 69 | 88.96 69 | 88.52 75 | 91.94 114 | 77.27 107 | 88.71 85 | 95.26 13 | 76.08 132 | 90.66 87 | 92.69 125 | 84.48 73 | 93.83 111 | 83.38 70 | 97.48 76 | 94.47 77 |
|
OMC-MVS | | | 88.19 74 | 87.52 84 | 90.19 49 | 91.94 114 | 81.68 62 | 87.49 101 | 93.17 78 | 76.02 135 | 88.64 128 | 91.22 163 | 84.24 76 | 93.37 132 | 77.97 135 | 97.03 87 | 95.52 48 |
|
OPU-MVS | | | | | 88.27 83 | 91.89 116 | 77.83 95 | 90.47 48 | | | | 91.22 163 | 81.12 118 | 94.68 76 | 74.48 168 | 95.35 146 | 92.29 168 |
|
FIs | | | 85.35 114 | 86.27 102 | 82.60 192 | 91.86 117 | 57.31 292 | 85.10 138 | 93.05 82 | 75.83 140 | 91.02 80 | 93.97 87 | 73.57 192 | 92.91 150 | 73.97 174 | 98.02 40 | 97.58 12 |
|
9.14 | | | | 89.29 62 | | 91.84 118 | | 88.80 83 | 95.32 11 | 75.14 150 | 91.07 78 | 92.89 118 | 87.27 46 | 93.78 112 | 83.69 68 | 97.55 69 | |
|
MSLP-MVS++ | | | 85.00 123 | 86.03 107 | 81.90 202 | 91.84 118 | 71.56 163 | 86.75 116 | 93.02 86 | 75.95 138 | 87.12 151 | 89.39 207 | 77.98 144 | 89.40 244 | 77.46 140 | 94.78 168 | 84.75 290 |
|
h-mvs33 | | | 84.25 140 | 82.76 164 | 88.72 72 | 91.82 120 | 82.60 57 | 84.00 157 | 84.98 252 | 71.27 198 | 86.70 163 | 90.55 188 | 63.04 257 | 93.92 106 | 78.26 127 | 94.20 182 | 89.63 228 |
|
DP-MVS Recon | | | 84.05 146 | 83.22 157 | 86.52 106 | 91.73 121 | 75.27 123 | 83.23 183 | 92.40 102 | 72.04 193 | 82.04 242 | 88.33 224 | 77.91 146 | 93.95 105 | 66.17 242 | 95.12 157 | 90.34 220 |
|
SD-MVS | | | 88.96 67 | 89.88 53 | 86.22 114 | 91.63 122 | 77.07 109 | 89.82 60 | 93.77 51 | 78.90 104 | 92.88 45 | 92.29 138 | 86.11 62 | 90.22 225 | 86.24 41 | 97.24 82 | 91.36 197 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
AllTest | | | 87.97 78 | 87.40 87 | 89.68 54 | 91.59 123 | 83.40 49 | 89.50 70 | 95.44 9 | 79.47 95 | 88.00 140 | 93.03 111 | 82.66 91 | 91.47 185 | 70.81 201 | 96.14 121 | 94.16 90 |
|
TestCases | | | | | 89.68 54 | 91.59 123 | 83.40 49 | | 95.44 9 | 79.47 95 | 88.00 140 | 93.03 111 | 82.66 91 | 91.47 185 | 70.81 201 | 96.14 121 | 94.16 90 |
|
MCST-MVS | | | 84.36 135 | 83.93 150 | 85.63 128 | 91.59 123 | 71.58 162 | 83.52 171 | 92.13 108 | 61.82 281 | 83.96 216 | 89.75 204 | 79.93 133 | 93.46 128 | 78.33 125 | 94.34 179 | 91.87 184 |
|
agg_prior1 | | | 85.72 109 | 85.20 123 | 87.28 95 | 91.58 126 | 77.69 97 | 83.69 168 | 90.30 161 | 66.29 250 | 84.32 209 | 91.07 170 | 82.13 100 | 93.18 137 | 81.02 94 | 96.36 111 | 90.98 201 |
|
agg_prior | | | | | | 91.58 126 | 77.69 97 | | 90.30 161 | | 84.32 209 | | | 93.18 137 | | | |
|
PVSNet_Blended_VisFu | | | 81.55 186 | 80.49 198 | 84.70 145 | 91.58 126 | 73.24 135 | 84.21 152 | 91.67 122 | 62.86 274 | 80.94 257 | 87.16 244 | 67.27 235 | 92.87 151 | 69.82 213 | 88.94 275 | 87.99 255 |
|
DVP-MVS++. | | | 90.07 42 | 91.09 35 | 87.00 97 | 91.55 129 | 72.64 140 | 96.19 2 | 94.10 38 | 85.33 32 | 93.49 38 | 94.64 56 | 81.12 118 | 95.88 16 | 87.41 21 | 95.94 127 | 92.48 157 |
|
MSC_two_6792asdad | | | | | 88.81 68 | 91.55 129 | 77.99 92 | | 91.01 140 | | | | | 96.05 8 | 87.45 19 | 98.17 33 | 92.40 161 |
|
No_MVS | | | | | 88.81 68 | 91.55 129 | 77.99 92 | | 91.01 140 | | | | | 96.05 8 | 87.45 19 | 98.17 33 | 92.40 161 |
|
EPP-MVSNet | | | 85.47 112 | 85.04 125 | 86.77 102 | 91.52 132 | 69.37 176 | 91.63 36 | 87.98 206 | 81.51 73 | 87.05 156 | 91.83 149 | 66.18 241 | 95.29 55 | 70.75 204 | 96.89 90 | 95.64 45 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 85 | 86.21 104 | 90.49 43 | 91.48 133 | 84.90 38 | 83.41 176 | 92.38 104 | 70.25 213 | 89.35 118 | 90.68 184 | 82.85 89 | 94.57 82 | 79.55 111 | 95.95 126 | 92.00 179 |
|
Baseline_NR-MVSNet | | | 84.00 148 | 85.90 109 | 78.29 261 | 91.47 134 | 53.44 318 | 82.29 209 | 87.00 225 | 79.06 102 | 89.55 114 | 95.72 27 | 77.20 153 | 86.14 285 | 72.30 194 | 98.51 17 | 95.28 55 |
|
HyFIR lowres test | | | 75.12 260 | 72.66 278 | 82.50 196 | 91.44 135 | 65.19 210 | 72.47 322 | 87.31 212 | 46.79 353 | 80.29 267 | 84.30 291 | 52.70 309 | 92.10 170 | 51.88 331 | 86.73 297 | 90.22 221 |
|
DP-MVS | | | 88.60 71 | 89.01 66 | 87.36 94 | 91.30 136 | 77.50 100 | 87.55 99 | 92.97 88 | 87.95 22 | 89.62 110 | 92.87 119 | 84.56 71 | 93.89 107 | 77.65 137 | 96.62 100 | 90.70 210 |
|
DeepC-MVS_fast | | 80.27 8 | 86.23 100 | 85.65 116 | 87.96 88 | 91.30 136 | 76.92 110 | 87.19 105 | 91.99 112 | 70.56 208 | 84.96 195 | 90.69 183 | 80.01 131 | 95.14 62 | 78.37 123 | 95.78 136 | 91.82 186 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 83.92 2 | 89.97 49 | 89.66 56 | 90.92 36 | 91.27 138 | 81.66 63 | 91.25 38 | 94.13 36 | 88.89 13 | 88.83 125 | 94.26 74 | 77.55 150 | 95.86 21 | 84.88 55 | 95.87 131 | 95.24 57 |
|
ETH3D cwj APD-0.16 | | | 87.83 81 | 87.62 83 | 88.47 77 | 91.21 139 | 78.20 89 | 87.26 104 | 94.54 20 | 72.05 192 | 88.89 122 | 92.31 137 | 83.86 77 | 94.24 90 | 81.59 90 | 96.87 91 | 92.97 139 |
|
HQP-NCC | | | | | | 91.19 140 | | 84.77 140 | | 73.30 172 | 80.55 264 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 140 | | 84.77 140 | | 73.30 172 | 80.55 264 | | | | | | |
|
HQP-MVS | | | 84.61 129 | 84.06 147 | 86.27 112 | 91.19 140 | 70.66 167 | 84.77 140 | 92.68 97 | 73.30 172 | 80.55 264 | 90.17 198 | 72.10 210 | 94.61 80 | 77.30 143 | 94.47 176 | 93.56 119 |
|
VDD-MVS | | | 84.23 142 | 84.58 137 | 83.20 178 | 91.17 143 | 65.16 211 | 83.25 181 | 84.97 253 | 79.79 91 | 87.18 150 | 94.27 71 | 74.77 180 | 90.89 206 | 69.24 217 | 96.54 104 | 93.55 121 |
|
K. test v3 | | | 85.14 117 | 84.73 130 | 86.37 108 | 91.13 144 | 69.63 175 | 85.45 134 | 76.68 301 | 84.06 42 | 92.44 56 | 96.99 8 | 62.03 261 | 94.65 77 | 80.58 102 | 93.24 203 | 94.83 68 |
|
lessismore_v0 | | | | | 85.95 120 | 91.10 145 | 70.99 166 | | 70.91 340 | | 91.79 67 | 94.42 65 | 61.76 262 | 92.93 148 | 79.52 114 | 93.03 209 | 93.93 98 |
|
hse-mvs2 | | | 83.47 159 | 81.81 180 | 88.47 77 | 91.03 146 | 82.27 58 | 82.61 196 | 83.69 258 | 71.27 198 | 86.70 163 | 86.05 260 | 63.04 257 | 92.41 159 | 78.26 127 | 93.62 197 | 90.71 209 |
|
TransMVSNet (Re) | | | 84.02 147 | 85.74 113 | 78.85 249 | 91.00 147 | 55.20 309 | 82.29 209 | 87.26 213 | 79.65 94 | 88.38 135 | 95.52 32 | 83.00 87 | 86.88 272 | 67.97 232 | 96.60 102 | 94.45 80 |
|
AUN-MVS | | | 81.18 190 | 78.78 218 | 88.39 80 | 90.93 148 | 82.14 59 | 82.51 202 | 83.67 259 | 64.69 268 | 80.29 267 | 85.91 263 | 51.07 313 | 92.38 160 | 76.29 152 | 93.63 196 | 90.65 213 |
|
PAPM_NR | | | 83.23 163 | 83.19 159 | 83.33 175 | 90.90 149 | 65.98 205 | 88.19 91 | 90.78 146 | 78.13 115 | 80.87 259 | 87.92 232 | 73.49 195 | 92.42 158 | 70.07 211 | 88.40 279 | 91.60 192 |
|
CSCG | | | 86.26 99 | 86.47 99 | 85.60 129 | 90.87 150 | 74.26 128 | 87.98 93 | 91.85 116 | 80.35 85 | 89.54 116 | 88.01 228 | 79.09 136 | 92.13 167 | 75.51 160 | 95.06 159 | 90.41 219 |
|
PLC |  | 73.85 16 | 82.09 178 | 80.31 200 | 87.45 93 | 90.86 151 | 80.29 71 | 85.88 128 | 90.65 149 | 68.17 232 | 76.32 298 | 86.33 254 | 73.12 201 | 92.61 156 | 61.40 277 | 90.02 264 | 89.44 232 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ETH3 D test6400 | | | 85.09 119 | 84.87 128 | 85.75 126 | 90.80 152 | 69.34 177 | 85.90 127 | 93.31 70 | 65.43 260 | 86.11 177 | 89.95 200 | 80.92 120 | 94.86 71 | 75.90 157 | 95.57 141 | 93.05 133 |
|
test12 | | | | | 86.57 104 | 90.74 153 | 72.63 142 | | 90.69 148 | | 82.76 232 | | 79.20 135 | 94.80 73 | | 95.32 148 | 92.27 170 |
|
ITE_SJBPF | | | | | 90.11 50 | 90.72 154 | 84.97 37 | | 90.30 161 | 81.56 72 | 90.02 96 | 91.20 165 | 82.40 94 | 90.81 209 | 73.58 180 | 94.66 172 | 94.56 73 |
|
DPM-MVS | | | 80.10 213 | 79.18 215 | 82.88 187 | 90.71 155 | 69.74 172 | 78.87 261 | 90.84 144 | 60.29 295 | 75.64 307 | 85.92 262 | 67.28 234 | 93.11 142 | 71.24 199 | 91.79 234 | 85.77 280 |
|
TAMVS | | | 78.08 230 | 76.36 244 | 83.23 177 | 90.62 156 | 72.87 136 | 79.08 258 | 80.01 284 | 61.72 283 | 81.35 254 | 86.92 248 | 63.96 250 | 88.78 252 | 50.61 332 | 93.01 210 | 88.04 254 |
|
test_prior3 | | | 86.31 98 | 86.31 101 | 86.32 109 | 90.59 157 | 71.99 155 | 83.37 177 | 92.85 91 | 75.43 145 | 84.58 203 | 91.57 155 | 81.92 108 | 94.17 96 | 79.54 112 | 96.97 88 | 92.80 142 |
|
test_prior | | | | | 86.32 109 | 90.59 157 | 71.99 155 | | 92.85 91 | | | | | 94.17 96 | | | 92.80 142 |
|
ambc | | | | | 82.98 182 | 90.55 159 | 64.86 212 | 88.20 90 | 89.15 186 | | 89.40 117 | 93.96 90 | 71.67 217 | 91.38 192 | 78.83 119 | 96.55 103 | 92.71 148 |
|
Anonymous20231211 | | | 88.40 72 | 89.62 58 | 84.73 143 | 90.46 160 | 65.27 209 | 88.86 81 | 93.02 86 | 87.15 25 | 93.05 43 | 97.10 6 | 82.28 98 | 92.02 173 | 76.70 147 | 97.99 42 | 96.88 23 |
|
Test_1112_low_res | | | 73.90 271 | 73.08 273 | 76.35 284 | 90.35 161 | 55.95 300 | 73.40 319 | 86.17 231 | 50.70 346 | 73.14 320 | 85.94 261 | 58.31 284 | 85.90 288 | 56.51 301 | 83.22 325 | 87.20 265 |
|
VPA-MVSNet | | | 83.47 159 | 84.73 130 | 79.69 240 | 90.29 162 | 57.52 291 | 81.30 227 | 88.69 192 | 76.29 129 | 87.58 146 | 94.44 62 | 80.60 125 | 87.20 267 | 66.60 240 | 96.82 95 | 94.34 84 |
|
FMVSNet1 | | | 84.55 131 | 85.45 119 | 81.85 204 | 90.27 163 | 61.05 254 | 86.83 112 | 88.27 200 | 78.57 110 | 89.66 109 | 95.64 29 | 75.43 171 | 90.68 213 | 69.09 221 | 95.33 147 | 93.82 104 |
|
Anonymous20240529 | | | 86.20 102 | 87.13 88 | 83.42 174 | 90.19 164 | 64.55 216 | 84.55 146 | 90.71 147 | 85.85 31 | 89.94 100 | 95.24 38 | 82.13 100 | 90.40 220 | 69.19 220 | 96.40 110 | 95.31 54 |
|
MVS_111021_HR | | | 84.63 128 | 84.34 144 | 85.49 132 | 90.18 165 | 75.86 121 | 79.23 257 | 87.13 217 | 73.35 169 | 85.56 188 | 89.34 208 | 83.60 82 | 90.50 218 | 76.64 148 | 94.05 186 | 90.09 226 |
|
GeoE | | | 85.45 113 | 85.81 111 | 84.37 149 | 90.08 166 | 67.07 195 | 85.86 129 | 91.39 130 | 72.33 189 | 87.59 145 | 90.25 194 | 84.85 69 | 92.37 161 | 78.00 133 | 91.94 233 | 93.66 112 |
|
RPSCF | | | 88.00 77 | 86.93 94 | 91.22 31 | 90.08 166 | 89.30 5 | 89.68 63 | 91.11 137 | 79.26 99 | 89.68 107 | 94.81 51 | 82.44 93 | 87.74 262 | 76.54 149 | 88.74 278 | 96.61 28 |
|
nrg030 | | | 87.85 80 | 88.49 74 | 85.91 121 | 90.07 168 | 69.73 173 | 87.86 96 | 94.20 28 | 74.04 160 | 92.70 52 | 94.66 52 | 85.88 65 | 91.50 184 | 79.72 109 | 97.32 80 | 96.50 30 |
|
AdaColmap |  | | 83.66 154 | 83.69 153 | 83.57 172 | 90.05 169 | 72.26 151 | 86.29 125 | 90.00 172 | 78.19 114 | 81.65 250 | 87.16 244 | 83.40 84 | 94.24 90 | 61.69 273 | 94.76 171 | 84.21 295 |
|
pm-mvs1 | | | 83.69 153 | 84.95 127 | 79.91 235 | 90.04 170 | 59.66 269 | 82.43 204 | 87.44 210 | 75.52 144 | 87.85 142 | 95.26 37 | 81.25 117 | 85.65 291 | 68.74 225 | 96.04 124 | 94.42 81 |
|
CHOSEN 1792x2688 | | | 72.45 281 | 70.56 292 | 78.13 263 | 90.02 171 | 63.08 229 | 68.72 335 | 83.16 261 | 42.99 362 | 75.92 303 | 85.46 270 | 57.22 293 | 85.18 295 | 49.87 336 | 81.67 333 | 86.14 275 |
|
anonymousdsp | | | 89.73 53 | 88.88 70 | 92.27 9 | 89.82 172 | 86.67 16 | 90.51 47 | 90.20 167 | 69.87 217 | 95.06 11 | 96.14 21 | 84.28 75 | 93.07 144 | 87.68 13 | 96.34 112 | 97.09 19 |
|
1112_ss | | | 74.82 265 | 73.74 266 | 78.04 265 | 89.57 173 | 60.04 265 | 76.49 293 | 87.09 221 | 54.31 323 | 73.66 319 | 79.80 334 | 60.25 270 | 86.76 277 | 58.37 291 | 84.15 321 | 87.32 264 |
|
PCF-MVS | | 74.62 15 | 82.15 177 | 80.92 194 | 85.84 124 | 89.43 174 | 72.30 150 | 80.53 236 | 91.82 118 | 57.36 311 | 87.81 143 | 89.92 202 | 77.67 148 | 93.63 117 | 58.69 290 | 95.08 158 | 91.58 193 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MVP-Stereo | | | 75.81 255 | 73.51 270 | 82.71 190 | 89.35 175 | 73.62 130 | 80.06 240 | 85.20 244 | 60.30 294 | 73.96 317 | 87.94 230 | 57.89 289 | 89.45 242 | 52.02 327 | 74.87 354 | 85.06 287 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CNLPA | | | 83.55 157 | 83.10 161 | 84.90 139 | 89.34 176 | 83.87 47 | 84.54 148 | 88.77 190 | 79.09 101 | 83.54 223 | 88.66 221 | 74.87 176 | 81.73 316 | 66.84 238 | 92.29 223 | 89.11 239 |
|
DROMVSNet | | | 88.01 76 | 88.32 76 | 87.09 96 | 89.28 177 | 72.03 154 | 90.31 50 | 96.31 3 | 80.88 80 | 85.12 193 | 89.67 205 | 84.47 74 | 95.46 48 | 82.56 79 | 96.26 117 | 93.77 108 |
|
TSAR-MVS + GP. | | | 83.95 149 | 82.69 166 | 87.72 89 | 89.27 178 | 81.45 64 | 83.72 167 | 81.58 274 | 74.73 153 | 85.66 185 | 86.06 259 | 72.56 208 | 92.69 154 | 75.44 162 | 95.21 152 | 89.01 245 |
|
MVS_111021_LR | | | 84.28 139 | 83.76 152 | 85.83 125 | 89.23 179 | 83.07 52 | 80.99 231 | 83.56 260 | 72.71 182 | 86.07 178 | 89.07 215 | 81.75 111 | 86.19 284 | 77.11 145 | 93.36 199 | 88.24 250 |
|
LFMVS | | | 80.15 212 | 80.56 196 | 78.89 248 | 89.19 180 | 55.93 301 | 85.22 137 | 73.78 321 | 82.96 56 | 84.28 213 | 92.72 124 | 57.38 291 | 90.07 234 | 63.80 258 | 95.75 137 | 90.68 211 |
|
CLD-MVS | | | 83.18 164 | 82.64 167 | 84.79 141 | 89.05 181 | 67.82 192 | 77.93 272 | 92.52 100 | 68.33 230 | 85.07 194 | 81.54 320 | 82.06 102 | 92.96 146 | 69.35 216 | 97.91 50 | 93.57 118 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LS3D | | | 90.60 33 | 90.34 50 | 91.38 27 | 89.03 182 | 84.23 46 | 93.58 6 | 94.68 19 | 90.65 7 | 90.33 91 | 93.95 93 | 84.50 72 | 95.37 53 | 80.87 97 | 95.50 143 | 94.53 76 |
|
CDS-MVSNet | | | 77.32 238 | 75.40 253 | 83.06 180 | 89.00 183 | 72.48 147 | 77.90 273 | 82.17 269 | 60.81 290 | 78.94 281 | 83.49 298 | 59.30 277 | 88.76 253 | 54.64 316 | 92.37 222 | 87.93 257 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tttt0517 | | | 81.07 191 | 79.58 212 | 85.52 130 | 88.99 184 | 66.45 202 | 87.03 109 | 75.51 309 | 73.76 164 | 88.32 137 | 90.20 195 | 37.96 359 | 94.16 99 | 79.36 116 | 95.13 155 | 95.93 41 |
|
tfpnnormal | | | 81.79 184 | 82.95 162 | 78.31 259 | 88.93 185 | 55.40 305 | 80.83 234 | 82.85 264 | 76.81 126 | 85.90 183 | 94.14 80 | 74.58 183 | 86.51 279 | 66.82 239 | 95.68 140 | 93.01 135 |
|
test_part1 | | | 87.15 87 | 87.82 80 | 85.15 136 | 88.88 186 | 63.04 230 | 87.98 93 | 94.85 16 | 82.52 61 | 93.61 37 | 95.73 25 | 67.51 233 | 95.71 31 | 80.48 104 | 98.83 2 | 96.69 25 |
|
Vis-MVSNet (Re-imp) | | | 77.82 233 | 77.79 230 | 77.92 267 | 88.82 187 | 51.29 336 | 83.28 179 | 71.97 334 | 74.04 160 | 82.23 239 | 89.78 203 | 57.38 291 | 89.41 243 | 57.22 298 | 95.41 144 | 93.05 133 |
|
TAPA-MVS | | 77.73 12 | 85.71 110 | 84.83 129 | 88.37 81 | 88.78 188 | 79.72 75 | 87.15 107 | 93.50 62 | 69.17 221 | 85.80 184 | 89.56 206 | 80.76 122 | 92.13 167 | 73.21 188 | 95.51 142 | 93.25 127 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
FPMVS | | | 72.29 284 | 72.00 284 | 73.14 301 | 88.63 189 | 85.00 36 | 74.65 311 | 67.39 347 | 71.94 195 | 77.80 290 | 87.66 235 | 50.48 316 | 75.83 335 | 49.95 334 | 79.51 340 | 58.58 364 |
|
ETV-MVS | | | 84.31 137 | 83.91 151 | 85.52 130 | 88.58 190 | 70.40 169 | 84.50 150 | 93.37 64 | 78.76 108 | 84.07 215 | 78.72 339 | 80.39 127 | 95.13 63 | 73.82 177 | 92.98 211 | 91.04 199 |
|
BH-untuned | | | 80.96 193 | 80.99 192 | 80.84 221 | 88.55 191 | 68.23 187 | 80.33 239 | 88.46 194 | 72.79 181 | 86.55 167 | 86.76 249 | 74.72 181 | 91.77 181 | 61.79 272 | 88.99 273 | 82.52 319 |
|
Anonymous202405211 | | | 80.51 201 | 81.19 190 | 78.49 256 | 88.48 192 | 57.26 293 | 76.63 290 | 82.49 266 | 81.21 76 | 84.30 212 | 92.24 141 | 67.99 231 | 86.24 283 | 62.22 267 | 95.13 155 | 91.98 182 |
|
ab-mvs | | | 79.67 215 | 80.56 196 | 76.99 275 | 88.48 192 | 56.93 295 | 84.70 143 | 86.06 232 | 68.95 225 | 80.78 260 | 93.08 110 | 75.30 173 | 84.62 300 | 56.78 299 | 90.90 252 | 89.43 233 |
|
PHI-MVS | | | 86.38 97 | 85.81 111 | 88.08 85 | 88.44 194 | 77.34 104 | 89.35 74 | 93.05 82 | 73.15 177 | 84.76 200 | 87.70 234 | 78.87 138 | 94.18 94 | 80.67 101 | 96.29 113 | 92.73 145 |
|
xiu_mvs_v1_base_debu | | | 80.84 195 | 80.14 206 | 82.93 184 | 88.31 195 | 71.73 158 | 79.53 248 | 87.17 214 | 65.43 260 | 79.59 274 | 82.73 310 | 76.94 159 | 90.14 230 | 73.22 183 | 88.33 280 | 86.90 269 |
|
xiu_mvs_v1_base | | | 80.84 195 | 80.14 206 | 82.93 184 | 88.31 195 | 71.73 158 | 79.53 248 | 87.17 214 | 65.43 260 | 79.59 274 | 82.73 310 | 76.94 159 | 90.14 230 | 73.22 183 | 88.33 280 | 86.90 269 |
|
xiu_mvs_v1_base_debi | | | 80.84 195 | 80.14 206 | 82.93 184 | 88.31 195 | 71.73 158 | 79.53 248 | 87.17 214 | 65.43 260 | 79.59 274 | 82.73 310 | 76.94 159 | 90.14 230 | 73.22 183 | 88.33 280 | 86.90 269 |
|
MG-MVS | | | 80.32 207 | 80.94 193 | 78.47 257 | 88.18 198 | 52.62 325 | 82.29 209 | 85.01 251 | 72.01 194 | 79.24 279 | 92.54 131 | 69.36 224 | 93.36 133 | 70.65 206 | 89.19 272 | 89.45 231 |
|
PM-MVS | | | 80.20 210 | 79.00 216 | 83.78 166 | 88.17 199 | 86.66 17 | 81.31 225 | 66.81 353 | 69.64 218 | 88.33 136 | 90.19 196 | 64.58 245 | 83.63 308 | 71.99 197 | 90.03 263 | 81.06 339 |
|
v10 | | | 86.54 94 | 87.10 89 | 84.84 140 | 88.16 200 | 63.28 227 | 86.64 118 | 92.20 107 | 75.42 147 | 92.81 50 | 94.50 59 | 74.05 187 | 94.06 101 | 83.88 65 | 96.28 114 | 97.17 18 |
|
canonicalmvs | | | 85.50 111 | 86.14 105 | 83.58 171 | 87.97 201 | 67.13 194 | 87.55 99 | 94.32 22 | 73.44 168 | 88.47 132 | 87.54 237 | 86.45 58 | 91.06 200 | 75.76 159 | 93.76 190 | 92.54 155 |
|
EIA-MVS | | | 82.19 176 | 81.23 189 | 85.10 137 | 87.95 202 | 69.17 183 | 83.22 184 | 93.33 67 | 70.42 209 | 78.58 283 | 79.77 336 | 77.29 152 | 94.20 93 | 71.51 198 | 88.96 274 | 91.93 183 |
|
VNet | | | 79.31 216 | 80.27 201 | 76.44 283 | 87.92 203 | 53.95 314 | 75.58 302 | 84.35 257 | 74.39 158 | 82.23 239 | 90.72 182 | 72.84 204 | 84.39 302 | 60.38 284 | 93.98 187 | 90.97 202 |
|
CS-MVS-test | | | 85.00 123 | 85.28 121 | 84.17 158 | 87.84 204 | 66.12 204 | 87.30 103 | 95.67 6 | 77.63 119 | 80.02 272 | 85.85 264 | 81.34 116 | 95.41 51 | 78.18 129 | 93.71 193 | 90.99 200 |
|
v8 | | | 86.22 101 | 86.83 96 | 84.36 151 | 87.82 205 | 62.35 242 | 86.42 121 | 91.33 131 | 76.78 127 | 92.73 51 | 94.48 61 | 73.41 196 | 93.72 114 | 83.10 72 | 95.41 144 | 97.01 21 |
|
alignmvs | | | 83.94 150 | 83.98 149 | 83.80 164 | 87.80 206 | 67.88 191 | 84.54 148 | 91.42 129 | 73.27 175 | 88.41 134 | 87.96 229 | 72.33 209 | 90.83 208 | 76.02 156 | 94.11 184 | 92.69 149 |
|
v1192 | | | 84.57 130 | 84.69 134 | 84.21 155 | 87.75 207 | 62.88 232 | 83.02 188 | 91.43 127 | 69.08 223 | 89.98 99 | 90.89 177 | 72.70 206 | 93.62 120 | 82.41 80 | 94.97 163 | 96.13 33 |
|
PatchMatch-RL | | | 74.48 267 | 73.22 272 | 78.27 262 | 87.70 208 | 85.26 34 | 75.92 299 | 70.09 342 | 64.34 269 | 76.09 301 | 81.25 322 | 65.87 243 | 78.07 328 | 53.86 318 | 83.82 322 | 71.48 353 |
|
v1144 | | | 84.54 133 | 84.72 132 | 84.00 160 | 87.67 209 | 62.55 238 | 82.97 189 | 90.93 143 | 70.32 212 | 89.80 104 | 90.99 172 | 73.50 193 | 93.48 127 | 81.69 89 | 94.65 173 | 95.97 38 |
|
v1240 | | | 84.30 138 | 84.51 139 | 83.65 169 | 87.65 210 | 61.26 251 | 82.85 192 | 91.54 124 | 67.94 236 | 90.68 86 | 90.65 186 | 71.71 216 | 93.64 116 | 82.84 77 | 94.78 168 | 96.07 35 |
|
v1921920 | | | 84.23 142 | 84.37 143 | 83.79 165 | 87.64 211 | 61.71 246 | 82.91 191 | 91.20 135 | 67.94 236 | 90.06 94 | 90.34 191 | 72.04 213 | 93.59 121 | 82.32 82 | 94.91 164 | 96.07 35 |
|
v144192 | | | 84.24 141 | 84.41 141 | 83.71 168 | 87.59 212 | 61.57 247 | 82.95 190 | 91.03 139 | 67.82 239 | 89.80 104 | 90.49 189 | 73.28 199 | 93.51 126 | 81.88 88 | 94.89 166 | 96.04 37 |
|
Fast-Effi-MVS+ | | | 81.04 192 | 80.57 195 | 82.46 197 | 87.50 213 | 63.22 228 | 78.37 268 | 89.63 178 | 68.01 233 | 81.87 244 | 82.08 315 | 82.31 95 | 92.65 155 | 67.10 235 | 88.30 284 | 91.51 195 |
|
pmmvs-eth3d | | | 78.42 227 | 77.04 238 | 82.57 195 | 87.44 214 | 74.41 127 | 80.86 233 | 79.67 285 | 55.68 317 | 84.69 201 | 90.31 193 | 60.91 265 | 85.42 292 | 62.20 268 | 91.59 238 | 87.88 258 |
|
IterMVS-LS | | | 84.73 127 | 84.98 126 | 83.96 162 | 87.35 215 | 63.66 222 | 83.25 181 | 89.88 174 | 76.06 133 | 89.62 110 | 92.37 136 | 73.40 198 | 92.52 157 | 78.16 130 | 94.77 170 | 95.69 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
thres100view900 | | | 75.45 256 | 75.05 256 | 76.66 282 | 87.27 216 | 51.88 331 | 81.07 230 | 73.26 325 | 75.68 142 | 83.25 226 | 86.37 253 | 45.54 334 | 88.80 249 | 51.98 328 | 90.99 247 | 89.31 235 |
|
MIMVSNet | | | 71.09 291 | 71.59 287 | 69.57 317 | 87.23 217 | 50.07 344 | 78.91 259 | 71.83 335 | 60.20 296 | 71.26 328 | 91.76 152 | 55.08 304 | 76.09 333 | 41.06 358 | 87.02 296 | 82.54 318 |
|
Effi-MVS+ | | | 83.90 151 | 84.01 148 | 83.57 172 | 87.22 218 | 65.61 208 | 86.55 120 | 92.40 102 | 78.64 109 | 81.34 255 | 84.18 292 | 83.65 81 | 92.93 148 | 74.22 170 | 87.87 288 | 92.17 175 |
|
BH-RMVSNet | | | 80.53 200 | 80.22 204 | 81.49 210 | 87.19 219 | 66.21 203 | 77.79 275 | 86.23 230 | 74.21 159 | 83.69 218 | 88.50 222 | 73.25 200 | 90.75 210 | 63.18 263 | 87.90 287 | 87.52 261 |
|
thisisatest0530 | | | 79.07 218 | 77.33 235 | 84.26 154 | 87.13 220 | 64.58 214 | 83.66 169 | 75.95 304 | 68.86 226 | 85.22 192 | 87.36 241 | 38.10 357 | 93.57 124 | 75.47 161 | 94.28 180 | 94.62 70 |
|
Effi-MVS+-dtu | | | 85.82 108 | 83.38 155 | 93.14 3 | 87.13 220 | 91.15 2 | 87.70 98 | 88.42 195 | 74.57 155 | 83.56 222 | 85.65 265 | 78.49 140 | 94.21 92 | 72.04 195 | 92.88 213 | 94.05 94 |
|
mvs-test1 | | | 84.55 131 | 82.12 175 | 91.84 20 | 87.13 220 | 89.54 4 | 85.05 139 | 88.42 195 | 74.57 155 | 80.60 261 | 82.98 303 | 78.49 140 | 93.98 104 | 72.04 195 | 89.77 265 | 92.00 179 |
|
v2v482 | | | 84.09 144 | 84.24 145 | 83.62 170 | 87.13 220 | 61.40 248 | 82.71 195 | 89.71 176 | 72.19 191 | 89.55 114 | 91.41 160 | 70.70 221 | 93.20 136 | 81.02 94 | 93.76 190 | 96.25 31 |
|
jason | | | 77.42 237 | 75.75 250 | 82.43 198 | 87.10 224 | 69.27 178 | 77.99 271 | 81.94 271 | 51.47 341 | 77.84 288 | 85.07 280 | 60.32 269 | 89.00 246 | 70.74 205 | 89.27 271 | 89.03 243 |
jason: jason. |
PS-MVSNAJ | | | 77.04 241 | 76.53 243 | 78.56 254 | 87.09 225 | 61.40 248 | 75.26 305 | 87.13 217 | 61.25 286 | 74.38 316 | 77.22 347 | 76.94 159 | 90.94 202 | 64.63 255 | 84.83 317 | 83.35 308 |
|
xiu_mvs_v2_base | | | 77.19 239 | 76.75 241 | 78.52 255 | 87.01 226 | 61.30 250 | 75.55 303 | 87.12 220 | 61.24 287 | 74.45 314 | 78.79 338 | 77.20 153 | 90.93 203 | 64.62 256 | 84.80 318 | 83.32 309 |
|
thres600view7 | | | 75.97 253 | 75.35 255 | 77.85 269 | 87.01 226 | 51.84 332 | 80.45 237 | 73.26 325 | 75.20 149 | 83.10 229 | 86.31 256 | 45.54 334 | 89.05 245 | 55.03 313 | 92.24 225 | 92.66 150 |
|
CL-MVSNet_self_test | | | 76.81 244 | 77.38 234 | 75.12 292 | 86.90 228 | 51.34 334 | 73.20 320 | 80.63 280 | 68.30 231 | 81.80 248 | 88.40 223 | 66.92 237 | 80.90 319 | 55.35 310 | 94.90 165 | 93.12 131 |
|
BH-w/o | | | 76.57 247 | 76.07 248 | 78.10 264 | 86.88 229 | 65.92 206 | 77.63 277 | 86.33 229 | 65.69 258 | 80.89 258 | 79.95 333 | 68.97 228 | 90.74 211 | 53.01 324 | 85.25 310 | 77.62 345 |
|
MAR-MVS | | | 80.24 209 | 78.74 220 | 84.73 143 | 86.87 230 | 78.18 90 | 85.75 130 | 87.81 208 | 65.67 259 | 77.84 288 | 78.50 340 | 73.79 190 | 90.53 217 | 61.59 276 | 90.87 253 | 85.49 283 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
QAPM | | | 82.59 170 | 82.59 170 | 82.58 193 | 86.44 231 | 66.69 200 | 89.94 58 | 90.36 157 | 67.97 235 | 84.94 197 | 92.58 129 | 72.71 205 | 92.18 166 | 70.63 207 | 87.73 290 | 88.85 246 |
|
PAPM | | | 71.77 287 | 70.06 298 | 76.92 277 | 86.39 232 | 53.97 313 | 76.62 291 | 86.62 227 | 53.44 328 | 63.97 356 | 84.73 287 | 57.79 290 | 92.34 162 | 39.65 360 | 81.33 336 | 84.45 292 |
|
GBi-Net | | | 82.02 179 | 82.07 176 | 81.85 204 | 86.38 233 | 61.05 254 | 86.83 112 | 88.27 200 | 72.43 184 | 86.00 179 | 95.64 29 | 63.78 251 | 90.68 213 | 65.95 243 | 93.34 200 | 93.82 104 |
|
test1 | | | 82.02 179 | 82.07 176 | 81.85 204 | 86.38 233 | 61.05 254 | 86.83 112 | 88.27 200 | 72.43 184 | 86.00 179 | 95.64 29 | 63.78 251 | 90.68 213 | 65.95 243 | 93.34 200 | 93.82 104 |
|
FMVSNet2 | | | 81.31 188 | 81.61 183 | 80.41 228 | 86.38 233 | 58.75 283 | 83.93 160 | 86.58 228 | 72.43 184 | 87.65 144 | 92.98 113 | 63.78 251 | 90.22 225 | 66.86 236 | 93.92 188 | 92.27 170 |
|
3Dnovator | | 80.37 7 | 84.80 126 | 84.71 133 | 85.06 138 | 86.36 236 | 74.71 125 | 88.77 84 | 90.00 172 | 75.65 143 | 84.96 195 | 93.17 109 | 74.06 186 | 91.19 195 | 78.28 126 | 91.09 243 | 89.29 237 |
|
Anonymous20231206 | | | 71.38 290 | 71.88 285 | 69.88 314 | 86.31 237 | 54.37 311 | 70.39 330 | 74.62 312 | 52.57 333 | 76.73 294 | 88.76 218 | 59.94 272 | 72.06 341 | 44.35 353 | 93.23 204 | 83.23 311 |
|
baseline | | | 85.20 116 | 85.93 108 | 83.02 181 | 86.30 238 | 62.37 241 | 84.55 146 | 93.96 43 | 74.48 157 | 87.12 151 | 92.03 143 | 82.30 96 | 91.94 174 | 78.39 122 | 94.21 181 | 94.74 69 |
|
API-MVS | | | 82.28 174 | 82.61 169 | 81.30 211 | 86.29 239 | 69.79 171 | 88.71 85 | 87.67 209 | 78.42 112 | 82.15 241 | 84.15 293 | 77.98 144 | 91.59 183 | 65.39 249 | 92.75 215 | 82.51 320 |
|
tfpn200view9 | | | 74.86 264 | 74.23 263 | 76.74 281 | 86.24 240 | 52.12 328 | 79.24 255 | 73.87 319 | 73.34 170 | 81.82 246 | 84.60 289 | 46.02 328 | 88.80 249 | 51.98 328 | 90.99 247 | 89.31 235 |
|
thres400 | | | 75.14 258 | 74.23 263 | 77.86 268 | 86.24 240 | 52.12 328 | 79.24 255 | 73.87 319 | 73.34 170 | 81.82 246 | 84.60 289 | 46.02 328 | 88.80 249 | 51.98 328 | 90.99 247 | 92.66 150 |
|
UGNet | | | 82.78 167 | 81.64 182 | 86.21 116 | 86.20 242 | 76.24 120 | 86.86 110 | 85.68 237 | 77.07 124 | 73.76 318 | 92.82 120 | 69.64 222 | 91.82 180 | 69.04 222 | 93.69 194 | 90.56 215 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CANet | | | 83.79 152 | 82.85 163 | 86.63 103 | 86.17 243 | 72.21 153 | 83.76 166 | 91.43 127 | 77.24 123 | 74.39 315 | 87.45 239 | 75.36 172 | 95.42 50 | 77.03 146 | 92.83 214 | 92.25 172 |
|
casdiffmvs | | | 85.21 115 | 85.85 110 | 83.31 176 | 86.17 243 | 62.77 234 | 83.03 187 | 93.93 44 | 74.69 154 | 88.21 138 | 92.68 126 | 82.29 97 | 91.89 177 | 77.87 136 | 93.75 192 | 95.27 56 |
|
TR-MVS | | | 76.77 245 | 75.79 249 | 79.72 239 | 86.10 245 | 65.79 207 | 77.14 283 | 83.02 262 | 65.20 265 | 81.40 253 | 82.10 314 | 66.30 239 | 90.73 212 | 55.57 307 | 85.27 309 | 82.65 315 |
|
LCM-MVSNet-Re | | | 83.48 158 | 85.06 124 | 78.75 251 | 85.94 246 | 55.75 304 | 80.05 241 | 94.27 23 | 76.47 128 | 96.09 5 | 94.54 58 | 83.31 85 | 89.75 239 | 59.95 285 | 94.89 166 | 90.75 208 |
|
bset_n11_16_dypcd | | | 79.19 217 | 77.97 228 | 82.86 188 | 85.81 247 | 66.85 199 | 75.02 307 | 79.31 286 | 66.07 251 | 83.50 224 | 83.37 302 | 55.04 305 | 92.10 170 | 78.63 121 | 94.99 162 | 89.63 228 |
|
Fast-Effi-MVS+-dtu | | | 82.54 171 | 81.41 186 | 85.90 122 | 85.60 248 | 76.53 116 | 83.07 186 | 89.62 179 | 73.02 179 | 79.11 280 | 83.51 297 | 80.74 123 | 90.24 224 | 68.76 224 | 89.29 269 | 90.94 203 |
|
v148 | | | 82.31 173 | 82.48 172 | 81.81 207 | 85.59 249 | 59.66 269 | 81.47 223 | 86.02 233 | 72.85 180 | 88.05 139 | 90.65 186 | 70.73 220 | 90.91 205 | 75.15 165 | 91.79 234 | 94.87 64 |
|
MVSFormer | | | 82.23 175 | 81.57 185 | 84.19 157 | 85.54 250 | 69.26 179 | 91.98 31 | 90.08 170 | 71.54 196 | 76.23 299 | 85.07 280 | 58.69 282 | 94.27 87 | 86.26 38 | 88.77 276 | 89.03 243 |
|
lupinMVS | | | 76.37 251 | 74.46 261 | 82.09 199 | 85.54 250 | 69.26 179 | 76.79 287 | 80.77 279 | 50.68 347 | 76.23 299 | 82.82 308 | 58.69 282 | 88.94 247 | 69.85 212 | 88.77 276 | 88.07 252 |
|
TinyColmap | | | 81.25 189 | 82.34 174 | 77.99 266 | 85.33 252 | 60.68 261 | 82.32 208 | 88.33 198 | 71.26 200 | 86.97 158 | 92.22 142 | 77.10 156 | 86.98 271 | 62.37 266 | 95.17 154 | 86.31 274 |
|
PAPR | | | 78.84 221 | 78.10 227 | 81.07 216 | 85.17 253 | 60.22 264 | 82.21 213 | 90.57 152 | 62.51 276 | 75.32 310 | 84.61 288 | 74.99 175 | 92.30 164 | 59.48 288 | 88.04 286 | 90.68 211 |
|
pmmvs4 | | | 74.92 263 | 72.98 275 | 80.73 223 | 84.95 254 | 71.71 161 | 76.23 297 | 77.59 295 | 52.83 331 | 77.73 291 | 86.38 252 | 56.35 297 | 84.97 296 | 57.72 297 | 87.05 295 | 85.51 282 |
|
baseline1 | | | 73.26 274 | 73.54 269 | 72.43 307 | 84.92 255 | 47.79 350 | 79.89 244 | 74.00 317 | 65.93 252 | 78.81 282 | 86.28 257 | 56.36 296 | 81.63 317 | 56.63 300 | 79.04 345 | 87.87 259 |
|
Patchmatch-RL test | | | 74.48 267 | 73.68 267 | 76.89 279 | 84.83 256 | 66.54 201 | 72.29 323 | 69.16 346 | 57.70 307 | 86.76 161 | 86.33 254 | 45.79 333 | 82.59 311 | 69.63 214 | 90.65 260 | 81.54 330 |
|
CS-MVS | | | 82.02 179 | 82.63 168 | 80.19 232 | 84.80 257 | 57.56 290 | 82.39 206 | 94.72 18 | 71.24 201 | 80.22 270 | 84.89 284 | 75.85 169 | 94.56 84 | 76.08 154 | 93.49 198 | 88.46 249 |
|
KD-MVS_self_test | | | 81.93 183 | 83.14 160 | 78.30 260 | 84.75 258 | 52.75 322 | 80.37 238 | 89.42 183 | 70.24 214 | 90.26 92 | 93.39 106 | 74.55 184 | 86.77 275 | 68.61 227 | 96.64 99 | 95.38 51 |
|
XXY-MVS | | | 74.44 269 | 76.19 246 | 69.21 318 | 84.61 259 | 52.43 327 | 71.70 325 | 77.18 297 | 60.73 292 | 80.60 261 | 90.96 175 | 75.44 170 | 69.35 347 | 56.13 303 | 88.33 280 | 85.86 279 |
|
cascas | | | 76.29 252 | 74.81 257 | 80.72 224 | 84.47 260 | 62.94 231 | 73.89 315 | 87.34 211 | 55.94 316 | 75.16 312 | 76.53 350 | 63.97 249 | 91.16 196 | 65.00 251 | 90.97 250 | 88.06 253 |
|
PVSNet_BlendedMVS | | | 78.80 222 | 77.84 229 | 81.65 209 | 84.43 261 | 63.41 224 | 79.49 251 | 90.44 154 | 61.70 284 | 75.43 308 | 87.07 247 | 69.11 226 | 91.44 187 | 60.68 282 | 92.24 225 | 90.11 225 |
|
PVSNet_Blended | | | 76.49 249 | 75.40 253 | 79.76 237 | 84.43 261 | 63.41 224 | 75.14 306 | 90.44 154 | 57.36 311 | 75.43 308 | 78.30 341 | 69.11 226 | 91.44 187 | 60.68 282 | 87.70 291 | 84.42 293 |
|
OpenMVS |  | 76.72 13 | 81.98 182 | 82.00 178 | 81.93 201 | 84.42 263 | 68.22 188 | 88.50 89 | 89.48 181 | 66.92 245 | 81.80 248 | 91.86 146 | 72.59 207 | 90.16 227 | 71.19 200 | 91.25 242 | 87.40 263 |
|
OpenMVS_ROB |  | 70.19 17 | 77.77 235 | 77.46 232 | 78.71 252 | 84.39 264 | 61.15 252 | 81.18 229 | 82.52 265 | 62.45 278 | 83.34 225 | 87.37 240 | 66.20 240 | 88.66 254 | 64.69 254 | 85.02 312 | 86.32 273 |
|
test_yl | | | 78.71 224 | 78.51 222 | 79.32 245 | 84.32 265 | 58.84 280 | 78.38 266 | 85.33 241 | 75.99 136 | 82.49 234 | 86.57 250 | 58.01 285 | 90.02 236 | 62.74 264 | 92.73 216 | 89.10 240 |
|
DCV-MVSNet | | | 78.71 224 | 78.51 222 | 79.32 245 | 84.32 265 | 58.84 280 | 78.38 266 | 85.33 241 | 75.99 136 | 82.49 234 | 86.57 250 | 58.01 285 | 90.02 236 | 62.74 264 | 92.73 216 | 89.10 240 |
|
Regformer-3 | | | 85.06 120 | 84.67 135 | 86.22 114 | 84.27 267 | 73.43 132 | 84.07 154 | 85.26 243 | 80.77 82 | 88.62 129 | 85.48 268 | 80.56 126 | 90.39 221 | 81.99 85 | 91.04 245 | 94.85 66 |
|
Regformer-4 | | | 86.41 96 | 85.71 114 | 88.52 75 | 84.27 267 | 77.57 99 | 84.07 154 | 88.00 205 | 82.82 58 | 89.84 103 | 85.48 268 | 82.06 102 | 92.77 152 | 83.83 67 | 91.04 245 | 95.22 60 |
|
DELS-MVS | | | 81.44 187 | 81.25 187 | 82.03 200 | 84.27 267 | 62.87 233 | 76.47 294 | 92.49 101 | 70.97 204 | 81.64 251 | 83.83 294 | 75.03 174 | 92.70 153 | 74.29 169 | 92.22 227 | 90.51 217 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Gipuma |  | | 84.44 134 | 86.33 100 | 78.78 250 | 84.20 270 | 73.57 131 | 89.55 67 | 90.44 154 | 84.24 39 | 84.38 207 | 94.89 45 | 76.35 168 | 80.40 322 | 76.14 153 | 96.80 96 | 82.36 321 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
Regformer-1 | | | 86.00 104 | 85.50 118 | 87.49 92 | 84.18 271 | 76.90 111 | 83.52 171 | 87.94 207 | 82.18 65 | 89.19 119 | 85.07 280 | 82.28 98 | 91.89 177 | 82.40 81 | 92.72 218 | 93.69 111 |
|
Regformer-2 | | | 86.74 92 | 86.08 106 | 88.73 71 | 84.18 271 | 79.20 81 | 83.52 171 | 89.33 184 | 83.33 51 | 89.92 101 | 85.07 280 | 83.23 86 | 93.16 139 | 83.39 69 | 92.72 218 | 93.83 102 |
|
MVS_0304 | | | 78.17 228 | 77.23 236 | 80.99 220 | 84.13 273 | 69.07 185 | 81.39 224 | 80.81 278 | 76.28 130 | 67.53 343 | 89.11 214 | 62.87 259 | 86.77 275 | 60.90 281 | 92.01 232 | 87.13 266 |
|
EI-MVSNet-Vis-set | | | 85.12 118 | 84.53 138 | 86.88 99 | 84.01 274 | 72.76 137 | 83.91 161 | 85.18 245 | 80.44 83 | 88.75 126 | 85.49 267 | 80.08 130 | 91.92 175 | 82.02 84 | 90.85 254 | 95.97 38 |
|
IterMVS-SCA-FT | | | 80.64 199 | 79.41 213 | 84.34 152 | 83.93 275 | 69.66 174 | 76.28 296 | 81.09 276 | 72.43 184 | 86.47 173 | 90.19 196 | 60.46 267 | 93.15 141 | 77.45 141 | 86.39 301 | 90.22 221 |
|
MSDG | | | 80.06 214 | 79.99 210 | 80.25 230 | 83.91 276 | 68.04 190 | 77.51 280 | 89.19 185 | 77.65 117 | 81.94 243 | 83.45 299 | 76.37 167 | 86.31 282 | 63.31 262 | 86.59 298 | 86.41 272 |
|
EI-MVSNet-UG-set | | | 85.04 121 | 84.44 140 | 86.85 100 | 83.87 277 | 72.52 146 | 83.82 163 | 85.15 246 | 80.27 87 | 88.75 126 | 85.45 271 | 79.95 132 | 91.90 176 | 81.92 87 | 90.80 255 | 96.13 33 |
|
thres200 | | | 72.34 283 | 71.55 289 | 74.70 295 | 83.48 278 | 51.60 333 | 75.02 307 | 73.71 322 | 70.14 215 | 78.56 284 | 80.57 327 | 46.20 326 | 88.20 259 | 46.99 347 | 89.29 269 | 84.32 294 |
|
USDC | | | 76.63 246 | 76.73 242 | 76.34 285 | 83.46 279 | 57.20 294 | 80.02 242 | 88.04 204 | 52.14 337 | 83.65 220 | 91.25 162 | 63.24 254 | 86.65 278 | 54.66 315 | 94.11 184 | 85.17 285 |
|
HY-MVS | | 64.64 18 | 73.03 277 | 72.47 282 | 74.71 294 | 83.36 280 | 54.19 312 | 82.14 216 | 81.96 270 | 56.76 315 | 69.57 335 | 86.21 258 | 60.03 271 | 84.83 299 | 49.58 337 | 82.65 330 | 85.11 286 |
|
EI-MVSNet | | | 82.61 169 | 82.42 173 | 83.20 178 | 83.25 281 | 63.66 222 | 83.50 174 | 85.07 247 | 76.06 133 | 86.55 167 | 85.10 277 | 73.41 196 | 90.25 222 | 78.15 132 | 90.67 258 | 95.68 44 |
|
CVMVSNet | | | 72.62 280 | 71.41 290 | 76.28 286 | 83.25 281 | 60.34 263 | 83.50 174 | 79.02 290 | 37.77 366 | 76.33 297 | 85.10 277 | 49.60 318 | 87.41 265 | 70.54 208 | 77.54 350 | 81.08 337 |
|
V42 | | | 83.47 159 | 83.37 156 | 83.75 167 | 83.16 283 | 63.33 226 | 81.31 225 | 90.23 166 | 69.51 219 | 90.91 83 | 90.81 180 | 74.16 185 | 92.29 165 | 80.06 105 | 90.22 262 | 95.62 46 |
|
Anonymous20240521 | | | 80.18 211 | 81.25 187 | 76.95 276 | 83.15 284 | 60.84 259 | 82.46 203 | 85.99 234 | 68.76 227 | 86.78 160 | 93.73 102 | 59.13 279 | 77.44 329 | 73.71 178 | 97.55 69 | 92.56 153 |
|
EU-MVSNet | | | 75.12 260 | 74.43 262 | 77.18 274 | 83.11 285 | 59.48 271 | 85.71 132 | 82.43 267 | 39.76 365 | 85.64 186 | 88.76 218 | 44.71 345 | 87.88 261 | 73.86 176 | 85.88 305 | 84.16 296 |
|
ET-MVSNet_ETH3D | | | 75.28 257 | 72.77 276 | 82.81 189 | 83.03 286 | 68.11 189 | 77.09 284 | 76.51 302 | 60.67 293 | 77.60 292 | 80.52 328 | 38.04 358 | 91.15 197 | 70.78 203 | 90.68 257 | 89.17 238 |
|
FMVSNet3 | | | 78.80 222 | 78.55 221 | 79.57 242 | 82.89 287 | 56.89 297 | 81.76 217 | 85.77 236 | 69.04 224 | 86.00 179 | 90.44 190 | 51.75 311 | 90.09 233 | 65.95 243 | 93.34 200 | 91.72 188 |
|
MVS_Test | | | 82.47 172 | 83.22 157 | 80.22 231 | 82.62 288 | 57.75 289 | 82.54 201 | 91.96 114 | 71.16 203 | 82.89 231 | 92.52 132 | 77.41 151 | 90.50 218 | 80.04 106 | 87.84 289 | 92.40 161 |
|
LF4IMVS | | | 82.75 168 | 81.93 179 | 85.19 134 | 82.08 289 | 80.15 72 | 85.53 133 | 88.76 191 | 68.01 233 | 85.58 187 | 87.75 233 | 71.80 215 | 86.85 273 | 74.02 173 | 93.87 189 | 88.58 248 |
|
PVSNet | | 58.17 21 | 66.41 315 | 65.63 318 | 68.75 321 | 81.96 290 | 49.88 345 | 62.19 352 | 72.51 331 | 51.03 343 | 68.04 339 | 75.34 353 | 50.84 314 | 74.77 337 | 45.82 351 | 82.96 326 | 81.60 329 |
|
GA-MVS | | | 75.83 254 | 74.61 258 | 79.48 244 | 81.87 291 | 59.25 273 | 73.42 318 | 82.88 263 | 68.68 228 | 79.75 273 | 81.80 317 | 50.62 315 | 89.46 241 | 66.85 237 | 85.64 306 | 89.72 227 |
|
MS-PatchMatch | | | 70.93 292 | 70.22 296 | 73.06 302 | 81.85 292 | 62.50 239 | 73.82 316 | 77.90 293 | 52.44 334 | 75.92 303 | 81.27 321 | 55.67 300 | 81.75 315 | 55.37 309 | 77.70 348 | 74.94 349 |
|
SCA | | | 73.32 273 | 72.57 280 | 75.58 290 | 81.62 293 | 55.86 302 | 78.89 260 | 71.37 339 | 61.73 282 | 74.93 313 | 83.42 300 | 60.46 267 | 87.01 268 | 58.11 295 | 82.63 332 | 83.88 297 |
|
FMVSNet5 | | | 72.10 285 | 71.69 286 | 73.32 299 | 81.57 294 | 53.02 321 | 76.77 288 | 78.37 292 | 63.31 271 | 76.37 296 | 91.85 147 | 36.68 361 | 78.98 325 | 47.87 344 | 92.45 221 | 87.95 256 |
|
thisisatest0515 | | | 73.00 278 | 70.52 293 | 80.46 227 | 81.45 295 | 59.90 267 | 73.16 321 | 74.31 316 | 57.86 306 | 76.08 302 | 77.78 342 | 37.60 360 | 92.12 169 | 65.00 251 | 91.45 240 | 89.35 234 |
|
eth_miper_zixun_eth | | | 80.84 195 | 80.22 204 | 82.71 190 | 81.41 296 | 60.98 257 | 77.81 274 | 90.14 169 | 67.31 243 | 86.95 159 | 87.24 243 | 64.26 247 | 92.31 163 | 75.23 164 | 91.61 237 | 94.85 66 |
|
CANet_DTU | | | 77.81 234 | 77.05 237 | 80.09 234 | 81.37 297 | 59.90 267 | 83.26 180 | 88.29 199 | 69.16 222 | 67.83 341 | 83.72 295 | 60.93 264 | 89.47 240 | 69.22 219 | 89.70 266 | 90.88 205 |
|
ANet_high | | | 83.17 165 | 85.68 115 | 75.65 289 | 81.24 298 | 45.26 358 | 79.94 243 | 92.91 89 | 83.83 43 | 91.33 75 | 96.88 10 | 80.25 129 | 85.92 287 | 68.89 223 | 95.89 130 | 95.76 42 |
|
new-patchmatchnet | | | 70.10 297 | 73.37 271 | 60.29 344 | 81.23 299 | 16.95 374 | 59.54 354 | 74.62 312 | 62.93 273 | 80.97 256 | 87.93 231 | 62.83 260 | 71.90 342 | 55.24 311 | 95.01 161 | 92.00 179 |
|
test20.03 | | | 73.75 272 | 74.59 260 | 71.22 311 | 81.11 300 | 51.12 338 | 70.15 331 | 72.10 333 | 70.42 209 | 80.28 269 | 91.50 158 | 64.21 248 | 74.72 339 | 46.96 348 | 94.58 174 | 87.82 260 |
|
MVS | | | 73.21 276 | 72.59 279 | 75.06 293 | 80.97 301 | 60.81 260 | 81.64 220 | 85.92 235 | 46.03 356 | 71.68 327 | 77.54 343 | 68.47 229 | 89.77 238 | 55.70 306 | 85.39 307 | 74.60 350 |
|
N_pmnet | | | 70.20 295 | 68.80 304 | 74.38 296 | 80.91 302 | 84.81 39 | 59.12 356 | 76.45 303 | 55.06 320 | 75.31 311 | 82.36 313 | 55.74 299 | 54.82 365 | 47.02 346 | 87.24 294 | 83.52 304 |
|
IterMVS | | | 76.91 242 | 76.34 245 | 78.64 253 | 80.91 302 | 64.03 220 | 76.30 295 | 79.03 289 | 64.88 267 | 83.11 228 | 89.16 212 | 59.90 273 | 84.46 301 | 68.61 227 | 85.15 311 | 87.42 262 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
c3_l | | | 81.64 185 | 81.59 184 | 81.79 208 | 80.86 304 | 59.15 276 | 78.61 265 | 90.18 168 | 68.36 229 | 87.20 149 | 87.11 246 | 69.39 223 | 91.62 182 | 78.16 130 | 94.43 178 | 94.60 72 |
|
RRT_test8_iter05 | | | 78.08 230 | 77.52 231 | 79.75 238 | 80.84 305 | 52.54 326 | 80.61 235 | 88.96 188 | 67.77 240 | 84.62 202 | 89.29 209 | 33.89 364 | 92.10 170 | 77.59 138 | 94.15 183 | 94.62 70 |
|
WTY-MVS | | | 67.91 308 | 68.35 306 | 66.58 329 | 80.82 306 | 48.12 348 | 65.96 344 | 72.60 329 | 53.67 327 | 71.20 329 | 81.68 319 | 58.97 280 | 69.06 349 | 48.57 340 | 81.67 333 | 82.55 317 |
|
IB-MVS | | 62.13 19 | 71.64 288 | 68.97 302 | 79.66 241 | 80.80 307 | 62.26 244 | 73.94 314 | 76.90 298 | 63.27 272 | 68.63 337 | 76.79 348 | 33.83 365 | 91.84 179 | 59.28 289 | 87.26 293 | 84.88 288 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
our_test_3 | | | 71.85 286 | 71.59 287 | 72.62 305 | 80.71 308 | 53.78 315 | 69.72 333 | 71.71 338 | 58.80 300 | 78.03 285 | 80.51 329 | 56.61 295 | 78.84 326 | 62.20 268 | 86.04 304 | 85.23 284 |
|
ppachtmachnet_test | | | 74.73 266 | 74.00 265 | 76.90 278 | 80.71 308 | 56.89 297 | 71.53 326 | 78.42 291 | 58.24 303 | 79.32 278 | 82.92 307 | 57.91 288 | 84.26 303 | 65.60 248 | 91.36 241 | 89.56 230 |
|
testgi | | | 72.36 282 | 74.61 258 | 65.59 331 | 80.56 310 | 42.82 364 | 68.29 336 | 73.35 324 | 66.87 246 | 81.84 245 | 89.93 201 | 72.08 212 | 66.92 355 | 46.05 350 | 92.54 220 | 87.01 268 |
|
RRT_MVS | | | 83.25 162 | 81.08 191 | 89.74 53 | 80.55 311 | 79.32 80 | 86.41 122 | 86.69 226 | 72.33 189 | 87.00 157 | 91.08 168 | 44.98 343 | 95.55 40 | 84.47 61 | 96.24 118 | 94.36 83 |
|
D2MVS | | | 76.84 243 | 75.67 252 | 80.34 229 | 80.48 312 | 62.16 245 | 73.50 317 | 84.80 255 | 57.61 309 | 82.24 238 | 87.54 237 | 51.31 312 | 87.65 263 | 70.40 210 | 93.19 205 | 91.23 198 |
|
1314 | | | 73.22 275 | 72.56 281 | 75.20 291 | 80.41 313 | 57.84 287 | 81.64 220 | 85.36 240 | 51.68 340 | 73.10 321 | 76.65 349 | 61.45 263 | 85.19 294 | 63.54 259 | 79.21 344 | 82.59 316 |
|
cl____ | | | 80.42 203 | 80.23 202 | 81.02 218 | 79.99 314 | 59.25 273 | 77.07 285 | 87.02 222 | 67.37 242 | 86.18 176 | 89.21 211 | 63.08 256 | 90.16 227 | 76.31 151 | 95.80 134 | 93.65 114 |
|
DIV-MVS_self_test | | | 80.43 202 | 80.23 202 | 81.02 218 | 79.99 314 | 59.25 273 | 77.07 285 | 87.02 222 | 67.38 241 | 86.19 174 | 89.22 210 | 63.09 255 | 90.16 227 | 76.32 150 | 95.80 134 | 93.66 112 |
|
miper_ehance_all_eth | | | 80.34 206 | 80.04 209 | 81.24 214 | 79.82 316 | 58.95 278 | 77.66 276 | 89.66 177 | 65.75 257 | 85.99 182 | 85.11 276 | 68.29 230 | 91.42 189 | 76.03 155 | 92.03 229 | 93.33 122 |
|
CR-MVSNet | | | 74.00 270 | 73.04 274 | 76.85 280 | 79.58 317 | 62.64 236 | 82.58 198 | 76.90 298 | 50.50 348 | 75.72 305 | 92.38 133 | 48.07 321 | 84.07 304 | 68.72 226 | 82.91 328 | 83.85 300 |
|
RPMNet | | | 78.88 220 | 78.28 225 | 80.68 225 | 79.58 317 | 62.64 236 | 82.58 198 | 94.16 31 | 74.80 152 | 75.72 305 | 92.59 127 | 48.69 319 | 95.56 37 | 73.48 181 | 82.91 328 | 83.85 300 |
|
baseline2 | | | 69.77 301 | 66.89 311 | 78.41 258 | 79.51 319 | 58.09 285 | 76.23 297 | 69.57 344 | 57.50 310 | 64.82 354 | 77.45 345 | 46.02 328 | 88.44 255 | 53.08 321 | 77.83 347 | 88.70 247 |
|
UnsupCasMVSNet_bld | | | 69.21 304 | 69.68 299 | 67.82 325 | 79.42 320 | 51.15 337 | 67.82 340 | 75.79 305 | 54.15 324 | 77.47 293 | 85.36 275 | 59.26 278 | 70.64 344 | 48.46 341 | 79.35 342 | 81.66 328 |
|
PatchT | | | 70.52 294 | 72.76 277 | 63.79 336 | 79.38 321 | 33.53 370 | 77.63 277 | 65.37 355 | 73.61 165 | 71.77 326 | 92.79 123 | 44.38 346 | 75.65 336 | 64.53 257 | 85.37 308 | 82.18 323 |
|
Patchmtry | | | 76.56 248 | 77.46 232 | 73.83 298 | 79.37 322 | 46.60 355 | 82.41 205 | 76.90 298 | 73.81 163 | 85.56 188 | 92.38 133 | 48.07 321 | 83.98 305 | 63.36 261 | 95.31 150 | 90.92 204 |
|
mvs_anonymous | | | 78.13 229 | 78.76 219 | 76.23 287 | 79.24 323 | 50.31 343 | 78.69 263 | 84.82 254 | 61.60 285 | 83.09 230 | 92.82 120 | 73.89 189 | 87.01 268 | 68.33 230 | 86.41 300 | 91.37 196 |
|
MVS-HIRNet | | | 61.16 327 | 62.92 324 | 55.87 347 | 79.09 324 | 35.34 369 | 71.83 324 | 57.98 367 | 46.56 354 | 59.05 363 | 91.14 167 | 49.95 317 | 76.43 332 | 38.74 361 | 71.92 358 | 55.84 365 |
|
MDA-MVSNet-bldmvs | | | 77.47 236 | 76.90 240 | 79.16 247 | 79.03 325 | 64.59 213 | 66.58 343 | 75.67 307 | 73.15 177 | 88.86 123 | 88.99 216 | 66.94 236 | 81.23 318 | 64.71 253 | 88.22 285 | 91.64 191 |
|
diffmvs | | | 80.40 204 | 80.48 199 | 80.17 233 | 79.02 326 | 60.04 265 | 77.54 279 | 90.28 165 | 66.65 248 | 82.40 236 | 87.33 242 | 73.50 193 | 87.35 266 | 77.98 134 | 89.62 267 | 93.13 130 |
|
tpm2 | | | 68.45 306 | 66.83 312 | 73.30 300 | 78.93 327 | 48.50 346 | 79.76 245 | 71.76 336 | 47.50 352 | 69.92 334 | 83.60 296 | 42.07 351 | 88.40 256 | 48.44 342 | 79.51 340 | 83.01 314 |
|
tpm | | | 67.95 307 | 68.08 308 | 67.55 326 | 78.74 328 | 43.53 362 | 75.60 301 | 67.10 352 | 54.92 321 | 72.23 324 | 88.10 227 | 42.87 350 | 75.97 334 | 52.21 326 | 80.95 339 | 83.15 312 |
|
MDTV_nov1_ep13 | | | | 68.29 307 | | 78.03 329 | 43.87 361 | 74.12 313 | 72.22 332 | 52.17 335 | 67.02 344 | 85.54 266 | 45.36 338 | 80.85 320 | 55.73 304 | 84.42 320 | |
|
cl22 | | | 78.97 219 | 78.21 226 | 81.24 214 | 77.74 330 | 59.01 277 | 77.46 282 | 87.13 217 | 65.79 254 | 84.32 209 | 85.10 277 | 58.96 281 | 90.88 207 | 75.36 163 | 92.03 229 | 93.84 101 |
|
EPNet_dtu | | | 72.87 279 | 71.33 291 | 77.49 273 | 77.72 331 | 60.55 262 | 82.35 207 | 75.79 305 | 66.49 249 | 58.39 366 | 81.06 323 | 53.68 307 | 85.98 286 | 53.55 319 | 92.97 212 | 85.95 277 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PatchmatchNet |  | | 69.71 302 | 68.83 303 | 72.33 308 | 77.66 332 | 53.60 316 | 79.29 253 | 69.99 343 | 57.66 308 | 72.53 323 | 82.93 306 | 46.45 325 | 80.08 324 | 60.91 280 | 72.09 357 | 83.31 310 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
sss | | | 66.92 310 | 67.26 310 | 65.90 330 | 77.23 333 | 51.10 339 | 64.79 345 | 71.72 337 | 52.12 338 | 70.13 333 | 80.18 331 | 57.96 287 | 65.36 360 | 50.21 333 | 81.01 338 | 81.25 334 |
|
CostFormer | | | 69.98 300 | 68.68 305 | 73.87 297 | 77.14 334 | 50.72 341 | 79.26 254 | 74.51 314 | 51.94 339 | 70.97 331 | 84.75 286 | 45.16 342 | 87.49 264 | 55.16 312 | 79.23 343 | 83.40 307 |
|
tpm cat1 | | | 66.76 313 | 65.21 319 | 71.42 310 | 77.09 335 | 50.62 342 | 78.01 270 | 73.68 323 | 44.89 358 | 68.64 336 | 79.00 337 | 45.51 336 | 82.42 314 | 49.91 335 | 70.15 360 | 81.23 336 |
|
pmmvs5 | | | 70.73 293 | 70.07 297 | 72.72 303 | 77.03 336 | 52.73 323 | 74.14 312 | 75.65 308 | 50.36 349 | 72.17 325 | 85.37 274 | 55.42 302 | 80.67 321 | 52.86 325 | 87.59 292 | 84.77 289 |
|
EPNet | | | 80.37 205 | 78.41 224 | 86.23 113 | 76.75 337 | 73.28 133 | 87.18 106 | 77.45 296 | 76.24 131 | 68.14 338 | 88.93 217 | 65.41 244 | 93.85 108 | 69.47 215 | 96.12 123 | 91.55 194 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_lstm_enhance | | | 76.45 250 | 76.10 247 | 77.51 272 | 76.72 338 | 60.97 258 | 64.69 346 | 85.04 249 | 63.98 270 | 83.20 227 | 88.22 225 | 56.67 294 | 78.79 327 | 73.22 183 | 93.12 206 | 92.78 144 |
|
CHOSEN 280x420 | | | 59.08 331 | 56.52 336 | 66.76 328 | 76.51 339 | 64.39 217 | 49.62 362 | 59.00 364 | 43.86 360 | 55.66 368 | 68.41 360 | 35.55 363 | 68.21 351 | 43.25 354 | 76.78 352 | 67.69 358 |
|
UnsupCasMVSNet_eth | | | 71.63 289 | 72.30 283 | 69.62 316 | 76.47 340 | 52.70 324 | 70.03 332 | 80.97 277 | 59.18 298 | 79.36 277 | 88.21 226 | 60.50 266 | 69.12 348 | 58.33 293 | 77.62 349 | 87.04 267 |
|
test-LLR | | | 67.21 309 | 66.74 313 | 68.63 322 | 76.45 341 | 55.21 307 | 67.89 337 | 67.14 350 | 62.43 279 | 65.08 351 | 72.39 355 | 43.41 347 | 69.37 345 | 61.00 278 | 84.89 315 | 81.31 332 |
|
test-mter | | | 65.00 319 | 63.79 322 | 68.63 322 | 76.45 341 | 55.21 307 | 67.89 337 | 67.14 350 | 50.98 344 | 65.08 351 | 72.39 355 | 28.27 372 | 69.37 345 | 61.00 278 | 84.89 315 | 81.31 332 |
|
miper_enhance_ethall | | | 77.83 232 | 76.93 239 | 80.51 226 | 76.15 343 | 58.01 286 | 75.47 304 | 88.82 189 | 58.05 305 | 83.59 221 | 80.69 324 | 64.41 246 | 91.20 194 | 73.16 189 | 92.03 229 | 92.33 165 |
|
gg-mvs-nofinetune | | | 68.96 305 | 69.11 301 | 68.52 324 | 76.12 344 | 45.32 357 | 83.59 170 | 55.88 368 | 86.68 26 | 64.62 355 | 97.01 7 | 30.36 369 | 83.97 306 | 44.78 352 | 82.94 327 | 76.26 347 |
|
CMPMVS |  | 59.41 20 | 75.12 260 | 73.57 268 | 79.77 236 | 75.84 345 | 67.22 193 | 81.21 228 | 82.18 268 | 50.78 345 | 76.50 295 | 87.66 235 | 55.20 303 | 82.99 310 | 62.17 270 | 90.64 261 | 89.09 242 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
wuyk23d | | | 75.13 259 | 79.30 214 | 62.63 337 | 75.56 346 | 75.18 124 | 80.89 232 | 73.10 327 | 75.06 151 | 94.76 12 | 95.32 34 | 87.73 42 | 52.85 366 | 34.16 365 | 97.11 85 | 59.85 362 |
|
Patchmatch-test | | | 65.91 317 | 67.38 309 | 61.48 342 | 75.51 347 | 43.21 363 | 68.84 334 | 63.79 357 | 62.48 277 | 72.80 322 | 83.42 300 | 44.89 344 | 59.52 364 | 48.27 343 | 86.45 299 | 81.70 327 |
|
new_pmnet | | | 55.69 333 | 57.66 335 | 49.76 349 | 75.47 348 | 30.59 371 | 59.56 353 | 51.45 371 | 43.62 361 | 62.49 357 | 75.48 352 | 40.96 353 | 49.15 368 | 37.39 363 | 72.52 356 | 69.55 356 |
|
gm-plane-assit | | | | | | 75.42 349 | 44.97 360 | | | 52.17 335 | | 72.36 357 | | 87.90 260 | 54.10 317 | | |
|
MVSTER | | | 77.09 240 | 75.70 251 | 81.25 212 | 75.27 350 | 61.08 253 | 77.49 281 | 85.07 247 | 60.78 291 | 86.55 167 | 88.68 220 | 43.14 349 | 90.25 222 | 73.69 179 | 90.67 258 | 92.42 159 |
|
PVSNet_0 | | 51.08 22 | 56.10 332 | 54.97 337 | 59.48 345 | 75.12 351 | 53.28 320 | 55.16 359 | 61.89 359 | 44.30 359 | 59.16 362 | 62.48 364 | 54.22 306 | 65.91 359 | 35.40 364 | 47.01 367 | 59.25 363 |
|
test0.0.03 1 | | | 64.66 320 | 64.36 321 | 65.57 332 | 75.03 352 | 46.89 354 | 64.69 346 | 61.58 362 | 62.43 279 | 71.18 330 | 77.54 343 | 43.41 347 | 68.47 350 | 40.75 359 | 82.65 330 | 81.35 331 |
|
DWT-MVSNet_test | | | 66.43 314 | 64.37 320 | 72.63 304 | 74.86 353 | 50.86 340 | 76.52 292 | 72.74 328 | 54.06 325 | 65.50 348 | 68.30 361 | 32.13 367 | 84.84 298 | 61.63 275 | 73.59 355 | 82.19 322 |
|
tpmvs | | | 70.16 296 | 69.56 300 | 71.96 309 | 74.71 354 | 48.13 347 | 79.63 246 | 75.45 310 | 65.02 266 | 70.26 332 | 81.88 316 | 45.34 339 | 85.68 290 | 58.34 292 | 75.39 353 | 82.08 324 |
|
MDA-MVSNet_test_wron | | | 70.05 299 | 70.44 294 | 68.88 320 | 73.84 355 | 53.47 317 | 58.93 358 | 67.28 348 | 58.43 301 | 87.09 154 | 85.40 272 | 59.80 275 | 67.25 353 | 59.66 287 | 83.54 323 | 85.92 278 |
|
YYNet1 | | | 70.06 298 | 70.44 294 | 68.90 319 | 73.76 356 | 53.42 319 | 58.99 357 | 67.20 349 | 58.42 302 | 87.10 153 | 85.39 273 | 59.82 274 | 67.32 352 | 59.79 286 | 83.50 324 | 85.96 276 |
|
GG-mvs-BLEND | | | | | 67.16 327 | 73.36 357 | 46.54 356 | 84.15 153 | 55.04 369 | | 58.64 365 | 61.95 365 | 29.93 370 | 83.87 307 | 38.71 362 | 76.92 351 | 71.07 354 |
|
JIA-IIPM | | | 69.41 303 | 66.64 315 | 77.70 270 | 73.19 358 | 71.24 164 | 75.67 300 | 65.56 354 | 70.42 209 | 65.18 350 | 92.97 115 | 33.64 366 | 83.06 309 | 53.52 320 | 69.61 363 | 78.79 344 |
|
ADS-MVSNet2 | | | 65.87 318 | 63.64 323 | 72.55 306 | 73.16 359 | 56.92 296 | 67.10 341 | 74.81 311 | 49.74 350 | 66.04 346 | 82.97 304 | 46.71 323 | 77.26 330 | 42.29 355 | 69.96 361 | 83.46 305 |
|
ADS-MVSNet | | | 61.90 323 | 62.19 326 | 61.03 343 | 73.16 359 | 36.42 368 | 67.10 341 | 61.75 360 | 49.74 350 | 66.04 346 | 82.97 304 | 46.71 323 | 63.21 362 | 42.29 355 | 69.96 361 | 83.46 305 |
|
DSMNet-mixed | | | 60.98 329 | 61.61 328 | 59.09 346 | 72.88 361 | 45.05 359 | 74.70 310 | 46.61 373 | 26.20 368 | 65.34 349 | 90.32 192 | 55.46 301 | 63.12 363 | 41.72 357 | 81.30 337 | 69.09 357 |
|
tpmrst | | | 66.28 316 | 66.69 314 | 65.05 334 | 72.82 362 | 39.33 365 | 78.20 269 | 70.69 341 | 53.16 330 | 67.88 340 | 80.36 330 | 48.18 320 | 74.75 338 | 58.13 294 | 70.79 359 | 81.08 337 |
|
TESTMET0.1,1 | | | 61.29 326 | 60.32 331 | 64.19 335 | 72.06 363 | 51.30 335 | 67.89 337 | 62.09 358 | 45.27 357 | 60.65 360 | 69.01 358 | 27.93 373 | 64.74 361 | 56.31 302 | 81.65 335 | 76.53 346 |
|
dp | | | 60.70 330 | 60.29 332 | 61.92 340 | 72.04 364 | 38.67 367 | 70.83 327 | 64.08 356 | 51.28 342 | 60.75 359 | 77.28 346 | 36.59 362 | 71.58 343 | 47.41 345 | 62.34 366 | 75.52 348 |
|
pmmvs3 | | | 62.47 321 | 60.02 333 | 69.80 315 | 71.58 365 | 64.00 221 | 70.52 329 | 58.44 366 | 39.77 364 | 66.05 345 | 75.84 351 | 27.10 374 | 72.28 340 | 46.15 349 | 84.77 319 | 73.11 351 |
|
EPMVS | | | 62.47 321 | 62.63 325 | 62.01 338 | 70.63 366 | 38.74 366 | 74.76 309 | 52.86 370 | 53.91 326 | 67.71 342 | 80.01 332 | 39.40 355 | 66.60 356 | 55.54 308 | 68.81 364 | 80.68 341 |
|
KD-MVS_2432*1600 | | | 66.87 311 | 65.81 316 | 70.04 312 | 67.50 367 | 47.49 351 | 62.56 350 | 79.16 287 | 61.21 288 | 77.98 286 | 80.61 325 | 25.29 375 | 82.48 312 | 53.02 322 | 84.92 313 | 80.16 342 |
|
miper_refine_blended | | | 66.87 311 | 65.81 316 | 70.04 312 | 67.50 367 | 47.49 351 | 62.56 350 | 79.16 287 | 61.21 288 | 77.98 286 | 80.61 325 | 25.29 375 | 82.48 312 | 53.02 322 | 84.92 313 | 80.16 342 |
|
E-PMN | | | 61.59 325 | 61.62 327 | 61.49 341 | 66.81 369 | 55.40 305 | 53.77 360 | 60.34 363 | 66.80 247 | 58.90 364 | 65.50 362 | 40.48 354 | 66.12 358 | 55.72 305 | 86.25 302 | 62.95 360 |
|
EMVS | | | 61.10 328 | 60.81 329 | 61.99 339 | 65.96 370 | 55.86 302 | 53.10 361 | 58.97 365 | 67.06 244 | 56.89 367 | 63.33 363 | 40.98 352 | 67.03 354 | 54.79 314 | 86.18 303 | 63.08 359 |
|
PMMVS | | | 61.65 324 | 60.38 330 | 65.47 333 | 65.40 371 | 69.26 179 | 63.97 348 | 61.73 361 | 36.80 367 | 60.11 361 | 68.43 359 | 59.42 276 | 66.35 357 | 48.97 339 | 78.57 346 | 60.81 361 |
|
PMMVS2 | | | 55.64 334 | 59.27 334 | 44.74 350 | 64.30 372 | 12.32 375 | 40.60 363 | 49.79 372 | 53.19 329 | 65.06 353 | 84.81 285 | 53.60 308 | 49.76 367 | 32.68 367 | 89.41 268 | 72.15 352 |
|
MVE |  | 40.22 23 | 51.82 335 | 50.47 338 | 55.87 347 | 62.66 373 | 51.91 330 | 31.61 365 | 39.28 374 | 40.65 363 | 50.76 369 | 74.98 354 | 56.24 298 | 44.67 369 | 33.94 366 | 64.11 365 | 71.04 355 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | 24.13 352 | 32.95 374 | 29.49 372 | | 21.63 377 | 12.07 369 | 37.95 370 | 45.07 367 | 30.84 368 | 19.21 371 | 17.94 370 | 33.06 370 | 23.69 367 |
|
test_method | | | 30.46 336 | 29.60 339 | 33.06 351 | 17.99 375 | 3.84 377 | 13.62 366 | 73.92 318 | 2.79 370 | 18.29 372 | 53.41 366 | 28.53 371 | 43.25 370 | 22.56 368 | 35.27 369 | 52.11 366 |
|
tmp_tt | | | 20.25 338 | 24.50 341 | 7.49 353 | 4.47 376 | 8.70 376 | 34.17 364 | 25.16 376 | 1.00 371 | 32.43 371 | 18.49 368 | 39.37 356 | 9.21 372 | 21.64 369 | 43.75 368 | 4.57 368 |
|
testmvs | | | 5.91 342 | 7.65 345 | 0.72 355 | 1.20 377 | 0.37 379 | 59.14 355 | 0.67 379 | 0.49 373 | 1.11 373 | 2.76 372 | 0.94 378 | 0.24 374 | 1.02 372 | 1.47 371 | 1.55 370 |
|
test123 | | | 6.27 341 | 8.08 344 | 0.84 354 | 1.11 378 | 0.57 378 | 62.90 349 | 0.82 378 | 0.54 372 | 1.07 374 | 2.75 373 | 1.26 377 | 0.30 373 | 1.04 371 | 1.26 372 | 1.66 369 |
|
test_blank | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 373 | 0.00 371 |
|
eth-test2 | | | | | | 0.00 379 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 379 | | | | | | | | | | | |
|
uanet_test | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 373 | 0.00 371 |
|
cdsmvs_eth3d_5k | | | 20.81 337 | 27.75 340 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 85.44 239 | 0.00 374 | 0.00 375 | 82.82 308 | 81.46 113 | 0.00 375 | 0.00 373 | 0.00 373 | 0.00 371 |
|
pcd_1.5k_mvsjas | | | 6.41 340 | 8.55 343 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 76.94 159 | 0.00 375 | 0.00 373 | 0.00 373 | 0.00 371 |
|
sosnet-low-res | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 373 | 0.00 371 |
|
sosnet | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 373 | 0.00 371 |
|
uncertanet | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 373 | 0.00 371 |
|
Regformer | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 373 | 0.00 371 |
|
ab-mvs-re | | | 6.65 339 | 8.87 342 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 79.80 334 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 373 | 0.00 371 |
|
uanet | | | 0.00 343 | 0.00 346 | 0.00 356 | 0.00 379 | 0.00 380 | 0.00 367 | 0.00 380 | 0.00 374 | 0.00 375 | 0.00 374 | 0.00 379 | 0.00 375 | 0.00 373 | 0.00 373 | 0.00 371 |
|
PC_three_1452 | | | | | | | | | | 58.96 299 | 90.06 94 | 91.33 161 | 80.66 124 | 93.03 145 | 75.78 158 | 95.94 127 | 92.48 157 |
|
test_241102_TWO | | | | | | | | | 93.71 53 | 83.77 44 | 93.49 38 | 94.27 71 | 89.27 22 | 95.84 22 | 86.03 44 | 97.82 53 | 92.04 177 |
|
test_0728_THIRD | | | | | | | | | | 85.33 32 | 93.75 31 | 94.65 53 | 87.44 45 | 95.78 27 | 87.41 21 | 98.21 30 | 92.98 136 |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 297 |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 327 | | | | 83.88 297 |
|
sam_mvs | | | | | | | | | | | | | 45.92 332 | | | | |
|
MTGPA |  | | | | | | | | 91.81 119 | | | | | | | | |
|
test_post1 | | | | | | | | 78.85 262 | | | | 3.13 370 | 45.19 341 | 80.13 323 | 58.11 295 | | |
|
test_post | | | | | | | | | | | | 3.10 371 | 45.43 337 | 77.22 331 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 318 | 45.93 331 | 87.01 268 | | | |
|
MTMP | | | | | | | | 90.66 42 | 33.14 375 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 80.83 98 | 96.45 108 | 90.57 214 |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 110 | 96.16 120 | 90.22 221 |
|
test_prior4 | | | | | | | 78.97 83 | 84.59 145 | | | | | | | | | |
|
test_prior2 | | | | | | | | 83.37 177 | | 75.43 145 | 84.58 203 | 91.57 155 | 81.92 108 | | 79.54 112 | 96.97 88 | |
|
旧先验2 | | | | | | | | 81.73 218 | | 56.88 314 | 86.54 172 | | | 84.90 297 | 72.81 190 | | |
|
新几何2 | | | | | | | | 81.72 219 | | | | | | | | | |
|
无先验 | | | | | | | | 82.81 193 | 85.62 238 | 58.09 304 | | | | 91.41 190 | 67.95 233 | | 84.48 291 |
|
原ACMM2 | | | | | | | | 82.26 212 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 86.43 281 | 63.52 260 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 105 | | | | |
|
testdata1 | | | | | | | | 79.62 247 | | 73.95 162 | | | | | | | |
|
plane_prior5 | | | | | | | | | 93.61 58 | | | | | 95.22 59 | 80.78 99 | 95.83 132 | 94.46 78 |
|
plane_prior4 | | | | | | | | | | | | 92.95 116 | | | | | |
|
plane_prior3 | | | | | | | 76.85 112 | | | 77.79 116 | 86.55 167 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 72 | | 79.44 97 | | | | | | | |
|
plane_prior | | | | | | | 76.42 117 | 87.15 107 | | 75.94 139 | | | | | | 95.03 160 | |
|
n2 | | | | | | | | | 0.00 380 | | | | | | | | |
|
nn | | | | | | | | | 0.00 380 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 315 | | | | | | | | |
|
test11 | | | | | | | | | 91.46 126 | | | | | | | | |
|
door | | | | | | | | | 72.57 330 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 167 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 143 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 263 | | | 94.61 80 | | | 93.56 119 |
|
HQP3-MVS | | | | | | | | | 92.68 97 | | | | | | | 94.47 176 | |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 210 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 373 | 70.76 328 | | 46.47 355 | 61.27 358 | | 45.20 340 | | 49.18 338 | | 83.75 302 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 138 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 78 | |
|
Test By Simon | | | | | | | | | | | | | 79.09 136 | | | | |
|