This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24669.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 29069.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
test_fmvsmconf0.01_n84.73 6584.52 6785.34 7280.25 33069.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
IU-MVS95.30 271.25 5792.95 5166.81 25092.39 688.94 1696.63 494.85 19
fmvsm_l_conf0.5_n84.47 6684.54 6584.27 11385.42 23568.81 10588.49 12587.26 22968.08 24188.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
fmvsm_s_conf0.5_n83.80 7283.71 7384.07 12386.69 21867.31 14789.46 8983.07 29271.09 17686.96 4193.70 5569.02 8391.47 23388.79 1884.62 17093.44 80
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvsmvis_n_192084.02 6983.87 7184.49 10184.12 26169.37 9788.15 14087.96 21270.01 19883.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_s_conf0.1_n83.56 7983.38 7784.10 11884.86 24867.28 14889.40 9383.01 29370.67 18487.08 3893.96 5068.38 8791.45 23488.56 2284.50 17193.56 75
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22569.93 8388.65 12190.78 12769.97 20088.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
fmvsm_l_conf0.5_n_a84.13 6884.16 7084.06 12585.38 23668.40 12088.34 13286.85 23767.48 24887.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
fmvsm_s_conf0.5_n_a83.63 7783.41 7684.28 11186.14 22468.12 12789.43 9082.87 29670.27 19487.27 3793.80 5469.09 7891.58 22488.21 2683.65 18793.14 93
fmvsm_s_conf0.1_n_a83.32 8582.99 8484.28 11183.79 26868.07 12989.34 9582.85 29769.80 20487.36 3694.06 4268.34 8891.56 22687.95 2783.46 19393.21 90
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23285.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
test9_res84.90 4295.70 2692.87 102
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
ZD-MVS94.38 2572.22 4492.67 6170.98 17987.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
PC_three_145268.21 24092.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19267.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 5186.15 4384.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14477.83 18188.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39667.45 9596.60 3383.06 6394.50 5094.07 47
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
agg_prior282.91 6695.45 3092.70 105
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
h-mvs3383.15 8782.19 9586.02 6190.56 9270.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29191.72 139
hse-mvs281.72 10880.94 11484.07 12388.72 15467.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 31991.06 159
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
diffmvspermissive82.10 10081.88 10282.76 18283.00 28863.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 7584.54 6580.99 22090.06 10665.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32782.15 7592.15 7593.64 71
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
baseline84.93 6284.98 6084.80 9287.30 20665.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20865.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
CPTT-MVS83.73 7383.33 7984.92 8793.28 4970.86 6992.09 3790.38 13768.75 23179.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03083.88 7083.53 7484.96 8486.77 21669.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24492.50 114
mvsmamba81.69 11080.74 11684.56 9787.45 19966.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19192.04 134
EI-MVSNet-Vis-set84.19 6783.81 7285.31 7388.18 17167.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16893.28 86
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 193
MVS_111021_LR82.61 9682.11 9684.11 11788.82 14871.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 192
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-UG-set83.81 7183.38 7785.09 8087.87 18167.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18092.99 100
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
OPM-MVS83.50 8082.95 8585.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 209
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf_final80.63 13579.35 14584.46 10289.36 12667.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31194.56 10279.59 9684.48 17491.11 156
iter_conf0580.00 15378.70 15983.91 13787.84 18365.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32694.56 10279.28 9784.28 17791.33 149
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 23984.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
MVSFormer82.85 9382.05 9885.24 7587.35 20070.21 7790.50 6290.38 13768.55 23481.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
test_djsdf80.30 14679.32 14683.27 15383.98 26565.37 18990.50 6290.38 13768.55 23476.19 20888.70 17256.44 21393.46 15378.98 9980.14 23490.97 164
test_vis1_n_192075.52 24575.78 22374.75 30879.84 33657.44 30483.26 26385.52 25562.83 30279.34 13686.17 24745.10 32079.71 34578.75 10181.21 21987.10 286
HQP_MVS83.64 7683.14 8085.14 7790.08 10268.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
LPG-MVS_test82.08 10181.27 10784.50 9989.23 13468.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18189.83 214
LGP-MVS_train84.50 9989.23 13468.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18189.83 214
lupinMVS81.39 11880.27 12784.76 9387.35 20070.21 7785.55 21586.41 24262.85 30181.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
jason81.39 11880.29 12684.70 9486.63 21969.90 8585.95 20386.77 23863.24 29481.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
xiu_mvs_v1_base_debu80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
xiu_mvs_v1_base80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
xiu_mvs_v1_base_debi80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
Effi-MVS+83.62 7883.08 8185.24 7588.38 16667.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
PS-MVSNAJss82.07 10281.31 10684.34 10886.51 22067.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20791.49 146
ACMP74.13 681.51 11780.57 11984.36 10689.42 12268.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 19989.86 213
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BP-MVS77.47 114
HQP-MVS82.61 9682.02 9984.37 10589.33 12766.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
MVS_Test83.15 8783.06 8283.41 14986.86 21263.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
3Dnovator+77.84 485.48 5384.47 6888.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
anonymousdsp78.60 18677.15 19982.98 16980.51 32867.08 15387.24 16789.53 16365.66 27075.16 23487.19 21652.52 24092.25 20277.17 11879.34 24389.61 221
VDD-MVS83.01 9282.36 9384.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24693.91 13177.05 11988.70 12294.57 29
XVG-OURS-SEG-HR80.81 12879.76 13583.96 13585.60 23268.78 10783.54 26090.50 13470.66 18676.71 19491.66 9660.69 18091.26 23976.94 12081.58 21591.83 136
RRT_MVS80.35 14579.22 15083.74 14087.63 19365.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29094.25 11776.84 12179.20 24691.51 143
jajsoiax79.29 16977.96 17683.27 15384.68 25166.57 16289.25 9790.16 14769.20 21975.46 22289.49 15045.75 31693.13 17276.84 12180.80 22490.11 197
SDMVSNet80.38 14280.18 12880.99 22089.03 14364.94 19780.45 29789.40 16675.19 9876.61 19889.98 13760.61 18387.69 29776.83 12383.55 18990.33 187
bld_raw_dy_0_6477.29 22075.98 22281.22 21385.04 24565.47 18488.14 14277.56 34069.20 21973.77 25289.40 15942.24 33788.85 28476.78 12481.64 21489.33 227
mvs_tets79.13 17377.77 18583.22 15784.70 25066.37 16489.17 9890.19 14669.38 21375.40 22589.46 15344.17 32493.15 17076.78 12480.70 22690.14 194
DPM-MVS84.93 6284.29 6986.84 4790.20 9973.04 2387.12 16993.04 3869.80 20482.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
test_cas_vis1_n_192073.76 26173.74 25273.81 31575.90 35759.77 27880.51 29582.40 30158.30 33981.62 11085.69 25544.35 32376.41 36376.29 12778.61 24885.23 315
ET-MVSNet_ETH3D78.63 18576.63 21484.64 9586.73 21769.47 9285.01 22584.61 26569.54 21066.51 33086.59 23450.16 27391.75 21976.26 12884.24 17892.69 107
v2v48280.23 14779.29 14783.05 16583.62 27164.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27191.18 154
test_fmvs1_n70.86 28670.24 28472.73 32372.51 37755.28 33181.27 28779.71 32851.49 36778.73 14384.87 27427.54 37577.02 35776.06 13079.97 23685.88 308
CLD-MVS82.31 9881.65 10484.29 11088.47 16267.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPNet83.72 7482.92 8686.14 5984.22 25969.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs170.93 28570.52 27972.16 32673.71 36755.05 33380.82 28878.77 33451.21 36878.58 14984.41 28031.20 37076.94 35875.88 13380.12 23584.47 326
XVG-OURS80.41 14179.23 14983.97 13485.64 23169.02 10183.03 27190.39 13671.09 17677.63 17391.49 10454.62 22691.35 23775.71 13483.47 19291.54 142
V4279.38 16878.24 17282.83 17481.10 32265.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29389.81 216
PS-MVSNAJ81.69 11081.02 11283.70 14189.51 11968.21 12684.28 24690.09 14970.79 18181.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 253
xiu_mvs_v2_base81.69 11081.05 11183.60 14289.15 13768.03 13184.46 24090.02 15070.67 18481.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 254
EIA-MVS83.31 8682.80 8884.82 9089.59 11565.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
AUN-MVS79.21 17177.60 19184.05 12888.71 15567.61 13985.84 20887.26 22969.08 22377.23 18288.14 19453.20 23993.47 15275.50 13973.45 31891.06 159
OMC-MVS82.69 9481.97 10184.85 8988.75 15367.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
v114480.03 15179.03 15483.01 16783.78 26964.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26290.60 177
MVSTER79.01 17677.88 18082.38 18883.07 28564.80 20084.08 25188.95 18969.01 22778.69 14587.17 21754.70 22492.43 19374.69 14280.57 22889.89 212
test_vis1_n69.85 29869.21 28971.77 32872.66 37655.27 33281.48 28476.21 35052.03 36475.30 23183.20 30028.97 37376.22 36574.60 14378.41 25483.81 334
test_fmvs268.35 31067.48 31170.98 33769.50 38051.95 35480.05 30276.38 34949.33 37074.65 24584.38 28123.30 38175.40 37274.51 14475.17 30285.60 310
PVSNet_Blended_VisFu82.62 9581.83 10384.96 8490.80 8969.76 8788.74 11791.70 10269.39 21278.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 191
v879.97 15479.02 15582.80 17784.09 26264.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29690.00 205
v14419279.47 16278.37 16882.78 18083.35 27663.96 21686.96 17390.36 14069.99 19977.50 17485.67 25760.66 18193.77 13874.27 14776.58 27290.62 175
ACMM73.20 880.78 13379.84 13483.58 14389.31 13068.37 12189.99 7391.60 10470.28 19377.25 18089.66 14453.37 23793.53 14974.24 14882.85 20088.85 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
旧先验286.56 18858.10 34187.04 3988.98 27974.07 149
v119279.59 15978.43 16783.07 16483.55 27364.52 20386.93 17590.58 13170.83 18077.78 17085.90 25059.15 19293.94 12773.96 15077.19 26490.76 170
v1079.74 15678.67 16082.97 17084.06 26364.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 28989.90 211
v192192079.22 17078.03 17582.80 17783.30 27863.94 21786.80 17990.33 14169.91 20277.48 17585.53 26058.44 19693.75 14073.60 15276.85 26990.71 173
cl2278.07 19977.01 20181.23 21282.37 30461.83 25483.55 25987.98 21168.96 22875.06 23883.87 28861.40 16791.88 21573.53 15376.39 27689.98 208
Effi-MVS+-dtu80.03 15178.57 16384.42 10485.13 24368.74 11088.77 11488.10 20874.99 10274.97 24083.49 29657.27 20893.36 15673.53 15380.88 22291.18 154
c3_l78.75 18177.91 17881.26 21182.89 29261.56 25784.09 25089.13 18169.97 20075.56 21884.29 28466.36 10692.09 20773.47 15575.48 29190.12 196
VDDNet81.52 11580.67 11884.05 12890.44 9564.13 21489.73 8285.91 25071.11 17583.18 9093.48 5850.54 27093.49 15073.40 15688.25 12894.54 30
CANet_DTU80.61 13679.87 13382.83 17485.60 23263.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
miper_ehance_all_eth78.59 18777.76 18681.08 21882.66 29761.56 25783.65 25589.15 17968.87 22975.55 21983.79 29266.49 10492.03 20873.25 15876.39 27689.64 220
3Dnovator76.31 583.38 8482.31 9486.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
v124078.99 17777.78 18482.64 18383.21 28063.54 22586.62 18690.30 14369.74 20977.33 17885.68 25657.04 21093.76 13973.13 16076.92 26690.62 175
miper_enhance_ethall77.87 20676.86 20580.92 22381.65 31161.38 25982.68 27288.98 18665.52 27275.47 22082.30 31165.76 11692.00 21072.95 16176.39 27689.39 225
MG-MVS83.41 8283.45 7583.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
EPP-MVSNet83.40 8383.02 8384.57 9690.13 10064.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
test_fmvs363.36 33361.82 33667.98 35062.51 38746.96 37377.37 33174.03 35945.24 37367.50 31478.79 34512.16 39272.98 38072.77 16466.02 35383.99 332
IterMVS-LS80.06 15079.38 14382.11 19185.89 22763.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 26890.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080578.73 18277.83 18181.43 20585.17 23960.30 27389.41 9290.90 12371.21 17377.17 18688.73 17146.38 30593.21 16372.57 16678.96 24790.79 168
EI-MVSNet80.52 14079.98 13082.12 19084.28 25763.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 22890.74 172
Vis-MVSNetpermissive83.46 8182.80 8885.43 7190.25 9868.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LFMVS81.82 10781.23 10883.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24593.43 15571.98 16989.95 10793.85 57
v14878.72 18377.80 18381.47 20482.73 29561.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31590.09 199
PVSNet_BlendedMVS80.60 13780.02 12982.36 18988.85 14565.40 18686.16 19992.00 8769.34 21478.11 16386.09 24966.02 11294.27 11371.52 17182.06 20987.39 274
PVSNet_Blended80.98 12380.34 12482.90 17288.85 14565.40 18684.43 24292.00 8767.62 24578.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 237
eth_miper_zixun_eth77.92 20476.69 21281.61 20283.00 28861.98 25183.15 26589.20 17769.52 21174.86 24284.35 28361.76 15892.56 18971.50 17372.89 32390.28 190
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
FA-MVS(test-final)80.96 12479.91 13284.10 11888.30 16965.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
cl____77.72 20976.76 20980.58 22982.49 30160.48 27083.09 26787.87 21569.22 21774.38 24885.22 26862.10 15591.53 22971.09 17675.41 29589.73 219
DIV-MVS_self_test77.72 20976.76 20980.58 22982.48 30260.48 27083.09 26787.86 21669.22 21774.38 24885.24 26662.10 15591.53 22971.09 17675.40 29689.74 218
test_yl81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
VNet82.21 9982.41 9181.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
mvs_anonymous79.42 16579.11 15380.34 23484.45 25657.97 29482.59 27387.62 22167.40 24976.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
VPA-MVSNet80.60 13780.55 12080.76 22688.07 17660.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24591.23 153
PAPM_NR83.02 9182.41 9184.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
thisisatest053079.40 16677.76 18684.31 10987.69 19165.10 19487.36 16284.26 27370.04 19777.42 17688.26 18849.94 27694.79 9770.20 18484.70 16993.03 97
tttt051779.40 16677.91 17883.90 13888.10 17463.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27894.89 9270.18 18583.18 19792.96 101
UniMVSNet_NR-MVSNet81.88 10581.54 10582.92 17188.46 16363.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27492.25 123
DU-MVS81.12 12280.52 12182.90 17287.80 18563.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27492.20 126
XVG-ACMP-BASELINE76.11 23874.27 24681.62 20083.20 28164.67 20283.60 25889.75 15869.75 20771.85 27287.09 21932.78 36592.11 20669.99 18880.43 23088.09 260
GeoE81.71 10981.01 11383.80 13989.51 11964.45 20888.97 10688.73 19971.27 17278.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
FIs82.07 10282.42 9081.04 21988.80 15058.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16592.44 118
114514_t80.68 13479.51 14084.20 11594.09 3867.27 14989.64 8591.11 11958.75 33774.08 25090.72 12458.10 19895.04 8569.70 19189.42 11390.30 189
Anonymous2023121178.97 17877.69 18982.81 17690.54 9364.29 21190.11 7291.51 10765.01 27776.16 21288.13 19550.56 26993.03 17969.68 19277.56 26191.11 156
Patchmatch-RL test70.24 29367.78 30677.61 28077.43 35259.57 28271.16 35870.33 36762.94 30068.65 30572.77 37050.62 26885.49 31269.58 19366.58 35187.77 266
UniMVSNet (Re)81.60 11481.11 11083.09 16288.38 16664.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27391.60 140
IterMVS-SCA-FT75.43 24773.87 25080.11 23982.69 29664.85 19981.57 28383.47 28469.16 22170.49 28284.15 28651.95 25388.15 29169.23 19572.14 32887.34 276
v7n78.97 17877.58 19283.14 16083.45 27565.51 18288.32 13391.21 11473.69 13072.41 26686.32 24457.93 19993.81 13569.18 19675.65 28790.11 197
Anonymous2024052980.19 14978.89 15784.10 11890.60 9164.75 20188.95 10790.90 12365.97 26780.59 12291.17 11349.97 27593.73 14269.16 19782.70 20493.81 60
miper_lstm_enhance74.11 25773.11 25877.13 28780.11 33259.62 28072.23 35586.92 23666.76 25270.40 28382.92 30256.93 21182.92 33169.06 19872.63 32488.87 244
testdata79.97 24190.90 8664.21 21284.71 26359.27 33185.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 295
test111179.43 16479.18 15280.15 23889.99 10753.31 34987.33 16477.05 34675.04 10180.23 12692.77 8148.97 29192.33 20068.87 20092.40 7494.81 20
GA-MVS76.87 22675.17 23681.97 19582.75 29462.58 24381.44 28686.35 24572.16 15974.74 24382.89 30346.20 31092.02 20968.85 20181.09 22091.30 152
test250677.30 21976.49 21579.74 24690.08 10252.02 35287.86 15263.10 38474.88 10480.16 12792.79 7938.29 35392.35 19868.74 20292.50 7294.86 17
ECVR-MVScopyleft79.61 15779.26 14880.67 22890.08 10254.69 33687.89 15077.44 34374.88 10480.27 12492.79 7948.96 29292.45 19268.55 20392.50 7294.86 17
UGNet80.83 12779.59 13984.54 9888.04 17768.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28593.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test81.52 11582.02 9980.03 24088.42 16555.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17192.33 119
DP-MVS Recon83.11 9082.09 9786.15 5894.44 1970.92 6888.79 11392.20 8170.53 18879.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
UniMVSNet_ETH3D79.10 17478.24 17281.70 19986.85 21360.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28191.56 22667.98 20782.15 20893.29 85
D2MVS74.82 25173.21 25679.64 25079.81 33762.56 24480.34 29987.35 22764.37 28468.86 30382.66 30746.37 30690.10 26167.91 20881.24 21886.25 298
IS-MVSNet83.15 8782.81 8784.18 11689.94 10963.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
Fast-Effi-MVS+-dtu78.02 20176.49 21582.62 18483.16 28466.96 15786.94 17487.45 22672.45 15271.49 27684.17 28554.79 22391.58 22467.61 21080.31 23189.30 228
PAPR81.66 11380.89 11583.99 13390.27 9764.00 21586.76 18391.77 10168.84 23077.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
cascas76.72 22874.64 23982.99 16885.78 22965.88 17482.33 27589.21 17660.85 31872.74 26181.02 32247.28 29993.75 14067.48 21285.02 16489.34 226
131476.53 22975.30 23580.21 23783.93 26662.32 24784.66 23288.81 19260.23 32270.16 28884.07 28755.30 21790.73 25467.37 21383.21 19687.59 271
无先验87.48 15988.98 18660.00 32494.12 12167.28 21488.97 240
thisisatest051577.33 21875.38 23283.18 15885.27 23863.80 21982.11 27783.27 28765.06 27575.91 21383.84 29049.54 28094.27 11367.24 21586.19 15491.48 147
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29281.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 247
Baseline_NR-MVSNet78.15 19778.33 17077.61 28085.79 22856.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 29887.63 268
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18787.85 18262.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30192.30 121
Fast-Effi-MVS+80.81 12879.92 13183.47 14588.85 14564.51 20485.53 21789.39 16770.79 18178.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
VPNet78.69 18478.66 16178.76 26188.31 16855.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26590.88 166
PM-MVS66.41 32264.14 32473.20 32073.92 36656.45 31778.97 31564.96 38263.88 29364.72 34180.24 33019.84 38483.44 32866.24 22164.52 35879.71 362
test-LLR72.94 27272.43 26274.48 30981.35 31858.04 29278.38 32177.46 34166.66 25469.95 29279.00 34248.06 29579.24 34666.13 22284.83 16686.15 301
test-mter71.41 28070.39 28374.48 30981.35 31858.04 29278.38 32177.46 34160.32 32169.95 29279.00 34236.08 36079.24 34666.13 22284.83 16686.15 301
MVS78.19 19676.99 20381.78 19785.66 23066.99 15484.66 23290.47 13555.08 35772.02 27185.27 26563.83 13094.11 12266.10 22489.80 10984.24 328
NR-MVSNet80.23 14779.38 14382.78 18087.80 18563.34 23186.31 19491.09 12079.01 2672.17 26989.07 16267.20 9892.81 18566.08 22575.65 28792.20 126
CVMVSNet72.99 27172.58 26174.25 31284.28 25750.85 36286.41 19183.45 28544.56 37473.23 25787.54 20649.38 28385.70 30965.90 22678.44 25286.19 300
IterMVS74.29 25472.94 25978.35 26981.53 31463.49 22781.58 28282.49 30068.06 24269.99 29183.69 29451.66 25985.54 31165.85 22771.64 33186.01 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 25572.42 26379.80 24583.76 27059.59 28185.92 20586.64 23966.39 26166.96 32087.58 20239.46 34791.60 22365.76 22869.27 34188.22 258
tpmrst72.39 27472.13 26573.18 32180.54 32749.91 36679.91 30579.08 33363.11 29671.69 27479.95 33355.32 21682.77 33265.66 22973.89 31386.87 288
MAR-MVS81.84 10680.70 11785.27 7491.32 7971.53 5489.82 7790.92 12269.77 20678.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521178.25 19277.01 20181.99 19491.03 8260.67 26784.77 23083.90 27770.65 18780.00 12891.20 11141.08 34391.43 23565.21 23185.26 16393.85 57
ab-mvs79.51 16078.97 15681.14 21688.46 16360.91 26383.84 25289.24 17570.36 19079.03 13888.87 16963.23 13690.21 26065.12 23282.57 20592.28 122
IB-MVS68.01 1575.85 24173.36 25583.31 15184.76 24966.03 16883.38 26185.06 25970.21 19669.40 29881.05 32145.76 31594.66 10165.10 23375.49 29089.25 229
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS79.49 16179.22 15080.27 23688.79 15158.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26391.80 138
CostFormer75.24 25073.90 24979.27 25582.65 29858.27 28980.80 28982.73 29961.57 31375.33 23083.13 30155.52 21591.07 24864.98 23478.34 25588.45 255
API-MVS81.99 10481.23 10884.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 272
新几何183.42 14793.13 5270.71 7185.48 25657.43 34781.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 278
pm-mvs177.25 22176.68 21378.93 25984.22 25958.62 28686.41 19188.36 20571.37 17173.31 25588.01 19661.22 17289.15 27664.24 23873.01 32289.03 236
TESTMET0.1,169.89 29769.00 29172.55 32479.27 34656.85 31078.38 32174.71 35757.64 34468.09 30977.19 35537.75 35576.70 35963.92 23984.09 17984.10 331
QAPM80.88 12579.50 14185.03 8188.01 17968.97 10391.59 4392.00 8766.63 25975.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
baseline275.70 24273.83 25181.30 21083.26 27961.79 25582.57 27480.65 31666.81 25066.88 32183.42 29757.86 20192.19 20463.47 24179.57 23889.91 210
LCM-MVSNet-Re77.05 22276.94 20477.36 28387.20 20851.60 35780.06 30180.46 32075.20 9767.69 31286.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
gm-plane-assit81.40 31653.83 34462.72 30580.94 32492.39 19563.40 243
baseline176.98 22476.75 21177.66 27888.13 17255.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29663.30 24471.18 33489.55 223
AdaColmapbinary80.58 13979.42 14284.06 12593.09 5468.91 10489.36 9488.97 18869.27 21575.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 273
test_vis1_rt60.28 33858.42 34165.84 35467.25 38355.60 32970.44 36360.94 38744.33 37559.00 36366.64 37724.91 37768.67 38562.80 24669.48 33973.25 373
GBi-Net78.40 18977.40 19481.40 20787.60 19463.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 23890.09 199
test178.40 18977.40 19481.40 20787.60 19463.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 23890.09 199
FMVSNet377.88 20576.85 20680.97 22286.84 21462.36 24586.52 18988.77 19471.13 17475.34 22786.66 23254.07 23191.10 24562.72 24779.57 23889.45 224
CMPMVSbinary51.72 2170.19 29468.16 29776.28 29273.15 37357.55 30279.47 30883.92 27648.02 37156.48 37284.81 27543.13 32986.42 30562.67 25081.81 21384.89 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sd_testset77.70 21177.40 19478.60 26489.03 14360.02 27679.00 31485.83 25275.19 9876.61 19889.98 13754.81 21985.46 31362.63 25183.55 18990.33 187
FMVSNet278.20 19577.21 19881.20 21487.60 19462.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24289.61 221
testdata291.01 24962.37 253
CP-MVSNet78.22 19378.34 16977.84 27587.83 18454.54 33887.94 14791.17 11677.65 3873.48 25488.49 18062.24 15388.43 28862.19 25474.07 31090.55 179
XXY-MVS75.41 24875.56 22774.96 30483.59 27257.82 29880.59 29483.87 27866.54 26074.93 24188.31 18563.24 13580.09 34462.16 25576.85 26986.97 287
pmmvs674.69 25273.39 25478.61 26381.38 31757.48 30386.64 18587.95 21364.99 27870.18 28686.61 23350.43 27189.52 26962.12 25670.18 33888.83 246
1112_ss77.40 21776.43 21780.32 23589.11 14260.41 27283.65 25587.72 22062.13 31073.05 25986.72 22662.58 14689.97 26262.11 25780.80 22490.59 178
PS-CasMVS78.01 20278.09 17477.77 27787.71 18954.39 34088.02 14391.22 11377.50 4673.26 25688.64 17560.73 17888.41 28961.88 25873.88 31490.53 180
CDS-MVSNet79.07 17577.70 18883.17 15987.60 19468.23 12584.40 24486.20 24667.49 24776.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft72.83 1079.77 15578.33 17084.09 12185.17 23969.91 8490.57 6090.97 12166.70 25372.17 26991.91 9154.70 22493.96 12461.81 26090.95 9188.41 257
K. test v371.19 28168.51 29379.21 25783.04 28757.78 29984.35 24576.91 34772.90 15162.99 35182.86 30439.27 34891.09 24761.65 26152.66 37888.75 249
CHOSEN 1792x268877.63 21375.69 22483.44 14689.98 10868.58 11878.70 31887.50 22456.38 35275.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 186
PCF-MVS73.52 780.38 14278.84 15885.01 8287.71 18968.99 10283.65 25591.46 11163.00 29877.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS69.67 1277.95 20377.15 19980.36 23387.57 19860.21 27583.37 26287.78 21966.11 26375.37 22687.06 22163.27 13490.48 25761.38 26482.43 20690.40 185
HyFIR lowres test77.53 21475.40 23183.94 13689.59 11566.62 16080.36 29888.64 20156.29 35376.45 20085.17 26957.64 20393.28 15861.34 26583.10 19891.91 135
PMMVS69.34 30068.67 29271.35 33375.67 35962.03 25075.17 34373.46 36050.00 36968.68 30479.05 34052.07 25178.13 35161.16 26682.77 20173.90 372
FMVSNet177.44 21576.12 22181.40 20786.81 21563.01 23888.39 12889.28 17070.49 18974.39 24787.28 21049.06 28991.11 24260.91 26778.52 25090.09 199
sss73.60 26273.64 25373.51 31782.80 29355.01 33476.12 33581.69 30862.47 30774.68 24485.85 25357.32 20778.11 35260.86 26880.93 22187.39 274
Test_1112_low_res76.40 23475.44 22979.27 25589.28 13258.09 29081.69 28187.07 23359.53 32972.48 26586.67 23161.30 16989.33 27260.81 26980.15 23390.41 184
BH-untuned79.47 16278.60 16282.05 19289.19 13665.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 293
WTY-MVS75.65 24375.68 22575.57 29886.40 22156.82 31177.92 32882.40 30165.10 27476.18 20987.72 19863.13 14180.90 34160.31 27181.96 21089.00 239
pmmvs474.03 25971.91 26680.39 23281.96 30768.32 12281.45 28582.14 30359.32 33069.87 29485.13 27052.40 24388.13 29260.21 27274.74 30684.73 324
PEN-MVS77.73 20877.69 18977.84 27587.07 21153.91 34387.91 14991.18 11577.56 4373.14 25888.82 17061.23 17189.17 27559.95 27372.37 32590.43 183
CR-MVSNet73.37 26471.27 27379.67 24981.32 32065.19 19175.92 33780.30 32259.92 32572.73 26281.19 31952.50 24186.69 30259.84 27477.71 25887.11 284
lessismore_v078.97 25881.01 32357.15 30765.99 37861.16 35682.82 30539.12 34991.34 23859.67 27546.92 38488.43 256
CNLPA78.08 19876.79 20881.97 19590.40 9671.07 6287.59 15784.55 26666.03 26672.38 26789.64 14557.56 20486.04 30759.61 27683.35 19488.79 248
BH-RMVSNet79.61 15778.44 16683.14 16089.38 12565.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 195
MS-PatchMatch73.83 26072.67 26077.30 28583.87 26766.02 16981.82 27884.66 26461.37 31668.61 30682.82 30547.29 29888.21 29059.27 27884.32 17677.68 366
test_post178.90 3175.43 39848.81 29485.44 31459.25 279
SCA74.22 25672.33 26479.91 24284.05 26462.17 24979.96 30479.29 33266.30 26272.38 26780.13 33151.95 25388.60 28659.25 27977.67 26088.96 241
FE-MVS77.78 20775.68 22584.08 12288.09 17566.00 17083.13 26687.79 21868.42 23878.01 16685.23 26745.50 31895.12 7859.11 28185.83 16191.11 156
SixPastTwentyTwo73.37 26471.26 27479.70 24785.08 24457.89 29685.57 21183.56 28271.03 17865.66 33485.88 25142.10 33892.57 18859.11 28163.34 36088.65 252
WR-MVS_H78.51 18878.49 16478.56 26588.02 17856.38 32088.43 12692.67 6177.14 5473.89 25187.55 20566.25 10889.24 27458.92 28373.55 31790.06 203
PLCcopyleft70.83 1178.05 20076.37 21983.08 16391.88 7467.80 13488.19 13789.46 16564.33 28569.87 29488.38 18353.66 23493.58 14458.86 28482.73 20287.86 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
RPSCF73.23 26871.46 26978.54 26682.50 30059.85 27782.18 27682.84 29858.96 33471.15 27989.41 15745.48 31984.77 31958.82 28571.83 33091.02 163
EU-MVSNet68.53 30867.61 30971.31 33478.51 34947.01 37284.47 23884.27 27242.27 37766.44 33184.79 27640.44 34583.76 32458.76 28668.54 34683.17 339
pmmvs-eth3d70.50 29167.83 30478.52 26777.37 35366.18 16781.82 27881.51 30958.90 33563.90 34780.42 32942.69 33286.28 30658.56 28765.30 35683.11 341
TAMVS78.89 18077.51 19383.03 16687.80 18567.79 13584.72 23185.05 26067.63 24476.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 181
ACMH+68.96 1476.01 23974.01 24782.03 19388.60 15865.31 19088.86 11087.55 22270.25 19567.75 31187.47 20841.27 34193.19 16858.37 28975.94 28487.60 269
tpm72.37 27671.71 26874.35 31182.19 30552.00 35379.22 31177.29 34464.56 28172.95 26083.68 29551.35 26083.26 33058.33 29075.80 28587.81 265
BH-w/o78.21 19477.33 19780.84 22488.81 14965.13 19384.87 22887.85 21769.75 20774.52 24684.74 27761.34 16893.11 17358.24 29185.84 16084.27 327
Vis-MVSNet (Re-imp)78.36 19178.45 16578.07 27388.64 15751.78 35686.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
MVP-Stereo76.12 23774.46 24481.13 21785.37 23769.79 8684.42 24387.95 21365.03 27667.46 31585.33 26453.28 23891.73 22158.01 29383.27 19581.85 352
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ambc75.24 30273.16 37250.51 36463.05 38487.47 22564.28 34377.81 35217.80 38689.73 26657.88 29460.64 36685.49 311
TR-MVS77.44 21576.18 22081.20 21488.24 17063.24 23384.61 23586.40 24367.55 24677.81 16986.48 24054.10 23093.15 17057.75 29582.72 20387.20 279
F-COLMAP76.38 23574.33 24582.50 18689.28 13266.95 15888.41 12789.03 18364.05 28966.83 32288.61 17646.78 30392.89 18157.48 29678.55 24987.67 267
EG-PatchMatch MVS74.04 25871.82 26780.71 22784.92 24767.42 14385.86 20788.08 20966.04 26564.22 34483.85 28935.10 36292.56 18957.44 29780.83 22382.16 351
PatchmatchNetpermissive73.12 26971.33 27278.49 26883.18 28260.85 26479.63 30678.57 33564.13 28671.73 27379.81 33651.20 26285.97 30857.40 29876.36 28188.66 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DTE-MVSNet76.99 22376.80 20777.54 28286.24 22253.06 35187.52 15890.66 12977.08 5772.50 26488.67 17460.48 18589.52 26957.33 29970.74 33690.05 204
UnsupCasMVSNet_eth67.33 31565.99 31971.37 33173.48 37051.47 35975.16 34485.19 25865.20 27360.78 35780.93 32642.35 33377.20 35657.12 30053.69 37785.44 312
pmmvs571.55 27970.20 28575.61 29777.83 35056.39 31981.74 28080.89 31257.76 34367.46 31584.49 27849.26 28685.32 31557.08 30175.29 29985.11 319
Anonymous2024052168.80 30467.22 31373.55 31674.33 36454.11 34183.18 26485.61 25458.15 34061.68 35480.94 32430.71 37181.27 34057.00 30273.34 32185.28 314
mvsany_test162.30 33561.26 33965.41 35569.52 37954.86 33566.86 37449.78 39546.65 37268.50 30883.21 29949.15 28766.28 38756.93 30360.77 36575.11 371
TransMVSNet (Re)75.39 24974.56 24177.86 27485.50 23457.10 30886.78 18186.09 24972.17 15871.53 27587.34 20963.01 14289.31 27356.84 30461.83 36287.17 280
test_vis3_rt49.26 35347.02 35556.00 36654.30 39245.27 37866.76 37648.08 39636.83 38344.38 38353.20 3887.17 39964.07 38956.77 30555.66 37358.65 385
EPMVS69.02 30268.16 29771.59 32979.61 34149.80 36877.40 33066.93 37662.82 30370.01 28979.05 34045.79 31477.86 35456.58 30675.26 30087.13 283
KD-MVS_self_test68.81 30367.59 31072.46 32574.29 36545.45 37477.93 32787.00 23463.12 29563.99 34678.99 34442.32 33484.77 31956.55 30764.09 35987.16 282
tpm273.26 26771.46 26978.63 26283.34 27756.71 31480.65 29380.40 32156.63 35173.55 25382.02 31651.80 25791.24 24056.35 30878.42 25387.95 261
LTVRE_ROB69.57 1376.25 23674.54 24281.41 20688.60 15864.38 21079.24 31089.12 18270.76 18369.79 29687.86 19749.09 28893.20 16656.21 30980.16 23286.65 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH67.68 1675.89 24073.93 24881.77 19888.71 15566.61 16188.62 12289.01 18569.81 20366.78 32386.70 23041.95 34091.51 23155.64 31078.14 25687.17 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42066.51 32164.71 32271.90 32781.45 31563.52 22657.98 38668.95 37453.57 35962.59 35376.70 35646.22 30975.29 37355.25 31179.68 23776.88 368
EPNet_dtu75.46 24674.86 23777.23 28682.57 29954.60 33786.89 17683.09 29171.64 16266.25 33285.86 25255.99 21488.04 29354.92 31286.55 14889.05 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test353.99 34451.45 34961.61 36055.51 39144.74 38063.52 38245.41 39943.69 37658.11 36776.45 35817.99 38563.76 39054.77 31347.59 38376.34 369
PVSNet64.34 1872.08 27870.87 27775.69 29686.21 22356.44 31874.37 34980.73 31562.06 31170.17 28782.23 31342.86 33183.31 32954.77 31384.45 17587.32 277
ITE_SJBPF78.22 27081.77 31060.57 26883.30 28669.25 21667.54 31387.20 21536.33 35987.28 30054.34 31574.62 30786.80 290
MDTV_nov1_ep13_2view37.79 39175.16 34455.10 35666.53 32749.34 28453.98 31687.94 262
gg-mvs-nofinetune69.95 29667.96 30075.94 29483.07 28554.51 33977.23 33270.29 36863.11 29670.32 28462.33 37943.62 32788.69 28553.88 31787.76 13184.62 325
PatchMatch-RL72.38 27570.90 27676.80 29088.60 15867.38 14579.53 30776.17 35162.75 30469.36 29982.00 31745.51 31784.89 31853.62 31880.58 22778.12 365
test_f52.09 34950.82 35055.90 36753.82 39442.31 38759.42 38558.31 39136.45 38456.12 37470.96 37412.18 39157.79 39253.51 31956.57 37267.60 378
Patchmtry70.74 28769.16 29075.49 30080.72 32454.07 34274.94 34880.30 32258.34 33870.01 28981.19 31952.50 24186.54 30353.37 32071.09 33585.87 309
USDC70.33 29268.37 29476.21 29380.60 32656.23 32279.19 31286.49 24160.89 31761.29 35585.47 26231.78 36889.47 27153.37 32076.21 28282.94 345
LF4IMVS64.02 33162.19 33569.50 34270.90 37853.29 35076.13 33477.18 34552.65 36258.59 36480.98 32323.55 38076.52 36153.06 32266.66 35078.68 364
PAPM77.68 21276.40 21881.51 20387.29 20761.85 25383.78 25389.59 16264.74 27971.23 27788.70 17262.59 14593.66 14352.66 32387.03 14189.01 237
dmvs_re71.14 28270.58 27872.80 32281.96 30759.68 27975.60 34179.34 33168.55 23469.27 30180.72 32749.42 28276.54 36052.56 32477.79 25782.19 350
CL-MVSNet_self_test72.37 27671.46 26975.09 30379.49 34353.53 34580.76 29185.01 26169.12 22270.51 28182.05 31557.92 20084.13 32252.27 32566.00 35487.60 269
tpm cat170.57 28968.31 29577.35 28482.41 30357.95 29578.08 32580.22 32452.04 36368.54 30777.66 35352.00 25287.84 29551.77 32672.07 32986.25 298
our_test_369.14 30167.00 31475.57 29879.80 33858.80 28477.96 32677.81 33859.55 32862.90 35278.25 34947.43 29783.97 32351.71 32767.58 34883.93 333
MDTV_nov1_ep1369.97 28683.18 28253.48 34677.10 33380.18 32560.45 31969.33 30080.44 32848.89 29386.90 30151.60 32878.51 251
JIA-IIPM66.32 32362.82 33476.82 28977.09 35461.72 25665.34 37975.38 35258.04 34264.51 34262.32 38042.05 33986.51 30451.45 32969.22 34282.21 349
MSDG73.36 26670.99 27580.49 23184.51 25565.80 17780.71 29286.13 24865.70 26965.46 33583.74 29344.60 32190.91 25051.13 33076.89 26784.74 323
PatchT68.46 30967.85 30270.29 33980.70 32543.93 38172.47 35474.88 35460.15 32370.55 28076.57 35749.94 27681.59 33750.58 33174.83 30585.34 313
GG-mvs-BLEND75.38 30181.59 31355.80 32679.32 30969.63 37067.19 31873.67 36843.24 32888.90 28350.41 33284.50 17181.45 354
KD-MVS_2432*160066.22 32463.89 32673.21 31875.47 36253.42 34770.76 36184.35 26964.10 28766.52 32878.52 34634.55 36384.98 31650.40 33350.33 38181.23 355
miper_refine_blended66.22 32463.89 32673.21 31875.47 36253.42 34770.76 36184.35 26964.10 28766.52 32878.52 34634.55 36384.98 31650.40 33350.33 38181.23 355
AllTest70.96 28468.09 29979.58 25185.15 24163.62 22184.58 23679.83 32662.31 30860.32 35986.73 22432.02 36688.96 28150.28 33571.57 33286.15 301
TestCases79.58 25185.15 24163.62 22179.83 32662.31 30860.32 35986.73 22432.02 36688.96 28150.28 33571.57 33286.15 301
TAPA-MVS73.13 979.15 17277.94 17782.79 17989.59 11562.99 24188.16 13991.51 10765.77 26877.14 18791.09 11560.91 17793.21 16350.26 33787.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
YYNet165.03 32762.91 33271.38 33075.85 35856.60 31669.12 36974.66 35857.28 34854.12 37577.87 35145.85 31374.48 37549.95 33861.52 36483.05 342
MDA-MVSNet_test_wron65.03 32762.92 33171.37 33175.93 35656.73 31269.09 37074.73 35657.28 34854.03 37677.89 35045.88 31274.39 37649.89 33961.55 36382.99 344
tpmvs71.09 28369.29 28876.49 29182.04 30656.04 32478.92 31681.37 31164.05 28967.18 31978.28 34849.74 27989.77 26449.67 34072.37 32583.67 335
ppachtmachnet_test70.04 29567.34 31278.14 27179.80 33861.13 26079.19 31280.59 31759.16 33265.27 33779.29 33946.75 30487.29 29949.33 34166.72 34986.00 307
UnsupCasMVSNet_bld63.70 33261.53 33870.21 34073.69 36851.39 36072.82 35381.89 30555.63 35557.81 36871.80 37238.67 35078.61 34949.26 34252.21 37980.63 358
dp66.80 31865.43 32070.90 33879.74 34048.82 36975.12 34674.77 35559.61 32764.08 34577.23 35442.89 33080.72 34248.86 34366.58 35183.16 340
FMVSNet569.50 29967.96 30074.15 31382.97 29155.35 33080.01 30382.12 30462.56 30663.02 34981.53 31836.92 35781.92 33648.42 34474.06 31185.17 318
thres100view90076.50 23075.55 22879.33 25489.52 11856.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25591.95 21148.33 34583.75 18389.07 230
tfpn200view976.42 23375.37 23379.55 25389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24791.95 21148.33 34583.75 18389.07 230
thres40076.50 23075.37 23379.86 24389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24791.95 21148.33 34583.75 18390.00 205
LCM-MVSNet54.25 34349.68 35367.97 35153.73 39545.28 37766.85 37580.78 31435.96 38539.45 38662.23 3818.70 39678.06 35348.24 34851.20 38080.57 359
RPMNet73.51 26370.49 28082.58 18581.32 32065.19 19175.92 33792.27 7657.60 34572.73 26276.45 35852.30 24495.43 6548.14 34977.71 25887.11 284
thres600view776.50 23075.44 22979.68 24889.40 12357.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25591.89 21448.05 35083.72 18690.00 205
TDRefinement67.49 31364.34 32376.92 28873.47 37161.07 26184.86 22982.98 29459.77 32658.30 36685.13 27026.06 37687.89 29447.92 35160.59 36781.81 353
thres20075.55 24474.47 24378.82 26087.78 18857.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25091.75 21947.41 35283.64 18886.86 289
PVSNet_057.27 2061.67 33759.27 34068.85 34679.61 34157.44 30468.01 37173.44 36155.93 35458.54 36570.41 37544.58 32277.55 35547.01 35335.91 38771.55 375
DP-MVS76.78 22774.57 24083.42 14793.29 4869.46 9488.55 12483.70 27963.98 29170.20 28588.89 16854.01 23294.80 9646.66 35481.88 21286.01 305
COLMAP_ROBcopyleft66.92 1773.01 27070.41 28280.81 22587.13 21065.63 18088.30 13484.19 27462.96 29963.80 34887.69 20038.04 35492.56 18946.66 35474.91 30484.24 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet70.69 28869.30 28774.88 30584.52 25456.35 32175.87 33979.42 33064.59 28067.76 31082.41 30941.10 34281.54 33846.64 35681.34 21686.75 292
LS3D76.95 22574.82 23883.37 15090.45 9467.36 14689.15 10286.94 23561.87 31269.52 29790.61 12651.71 25894.53 10546.38 35786.71 14688.21 259
MDA-MVSNet-bldmvs66.68 31963.66 32875.75 29579.28 34560.56 26973.92 35178.35 33664.43 28250.13 38079.87 33544.02 32583.67 32546.10 35856.86 37083.03 343
new-patchmatchnet61.73 33661.73 33761.70 35972.74 37524.50 40069.16 36878.03 33761.40 31456.72 37175.53 36438.42 35176.48 36245.95 35957.67 36984.13 330
TinyColmap67.30 31664.81 32174.76 30781.92 30956.68 31580.29 30081.49 31060.33 32056.27 37383.22 29824.77 37887.66 29845.52 36069.47 34079.95 361
pmmvs357.79 34054.26 34568.37 34964.02 38656.72 31375.12 34665.17 38040.20 37952.93 37769.86 37620.36 38375.48 37045.45 36155.25 37672.90 374
OpenMVS_ROBcopyleft64.09 1970.56 29068.19 29677.65 27980.26 32959.41 28385.01 22582.96 29558.76 33665.43 33682.33 31037.63 35691.23 24145.34 36276.03 28382.32 348
test0.0.03 168.00 31267.69 30768.90 34577.55 35147.43 37075.70 34072.95 36466.66 25466.56 32682.29 31248.06 29575.87 36744.97 36374.51 30883.41 337
testgi66.67 32066.53 31767.08 35375.62 36041.69 38875.93 33676.50 34866.11 26365.20 34086.59 23435.72 36174.71 37443.71 36473.38 32084.84 322
Anonymous2023120668.60 30567.80 30571.02 33680.23 33150.75 36378.30 32480.47 31956.79 35066.11 33382.63 30846.35 30778.95 34843.62 36575.70 28683.36 338
tfpnnormal74.39 25373.16 25778.08 27286.10 22658.05 29184.65 23487.53 22370.32 19271.22 27885.63 25854.97 21889.86 26343.03 36675.02 30386.32 297
MIMVSNet168.58 30666.78 31673.98 31480.07 33351.82 35580.77 29084.37 26864.40 28359.75 36282.16 31436.47 35883.63 32642.73 36770.33 33786.48 296
test20.0367.45 31466.95 31568.94 34475.48 36144.84 37977.50 32977.67 33966.66 25463.01 35083.80 29147.02 30178.40 35042.53 36868.86 34583.58 336
ADS-MVSNet266.20 32663.33 32974.82 30679.92 33458.75 28567.55 37275.19 35353.37 36065.25 33875.86 36142.32 33480.53 34341.57 36968.91 34385.18 316
ADS-MVSNet64.36 33062.88 33368.78 34779.92 33447.17 37167.55 37271.18 36653.37 36065.25 33875.86 36142.32 33473.99 37741.57 36968.91 34385.18 316
Patchmatch-test64.82 32963.24 33069.57 34179.42 34449.82 36763.49 38369.05 37351.98 36559.95 36180.13 33150.91 26470.98 38140.66 37173.57 31687.90 263
MVS-HIRNet59.14 33957.67 34263.57 35781.65 31143.50 38271.73 35665.06 38139.59 38151.43 37857.73 38538.34 35282.58 33339.53 37273.95 31264.62 381
WAC-MVS42.58 38439.46 373
myMVS_eth3d67.02 31766.29 31869.21 34384.68 25142.58 38478.62 31973.08 36266.65 25766.74 32479.46 33731.53 36982.30 33439.43 37476.38 27982.75 346
DSMNet-mixed57.77 34156.90 34360.38 36167.70 38235.61 39269.18 36753.97 39332.30 38957.49 36979.88 33440.39 34668.57 38638.78 37572.37 32576.97 367
N_pmnet52.79 34853.26 34751.40 37378.99 3477.68 40569.52 3653.89 40451.63 36657.01 37074.98 36540.83 34465.96 38837.78 37664.67 35780.56 360
testing368.56 30767.67 30871.22 33587.33 20542.87 38383.06 27071.54 36570.36 19069.08 30284.38 28130.33 37285.69 31037.50 37775.45 29485.09 320
test_040272.79 27370.44 28179.84 24488.13 17265.99 17185.93 20484.29 27165.57 27167.40 31785.49 26146.92 30292.61 18735.88 37874.38 30980.94 357
new_pmnet50.91 35150.29 35152.78 37268.58 38134.94 39463.71 38156.63 39239.73 38044.95 38265.47 37821.93 38258.48 39134.98 37956.62 37164.92 380
APD_test153.31 34749.93 35263.42 35865.68 38450.13 36571.59 35766.90 37734.43 38640.58 38571.56 3738.65 39776.27 36434.64 38055.36 37563.86 382
Syy-MVS68.05 31167.85 30268.67 34884.68 25140.97 38978.62 31973.08 36266.65 25766.74 32479.46 33752.11 24982.30 33432.89 38176.38 27982.75 346
dmvs_testset62.63 33464.11 32558.19 36378.55 34824.76 39975.28 34265.94 37967.91 24360.34 35876.01 36053.56 23573.94 37831.79 38267.65 34775.88 370
ANet_high50.57 35246.10 35663.99 35648.67 39839.13 39070.99 36080.85 31361.39 31531.18 38857.70 38617.02 38773.65 37931.22 38315.89 39679.18 363
EGC-MVSNET52.07 35047.05 35467.14 35283.51 27460.71 26680.50 29667.75 3750.07 3990.43 40075.85 36324.26 37981.54 33828.82 38462.25 36159.16 384
PMMVS240.82 35838.86 36146.69 37453.84 39316.45 40348.61 38949.92 39437.49 38231.67 38760.97 3828.14 39856.42 39328.42 38530.72 39167.19 379
tmp_tt18.61 36421.40 36710.23 3814.82 40310.11 40434.70 39130.74 4021.48 39823.91 39426.07 39528.42 37413.41 40027.12 38615.35 3977.17 395
test_method31.52 36029.28 36438.23 37627.03 4026.50 40620.94 39462.21 3854.05 39722.35 39552.50 38913.33 38947.58 39627.04 38734.04 38960.62 383
testf145.72 35441.96 35757.00 36456.90 38945.32 37566.14 37759.26 38926.19 39030.89 38960.96 3834.14 40070.64 38226.39 38846.73 38555.04 387
APD_test245.72 35441.96 35757.00 36456.90 38945.32 37566.14 37759.26 38926.19 39030.89 38960.96 3834.14 40070.64 38226.39 38846.73 38555.04 387
FPMVS53.68 34651.64 34859.81 36265.08 38551.03 36169.48 36669.58 37141.46 37840.67 38472.32 37116.46 38870.00 38424.24 39065.42 35558.40 386
Gipumacopyleft45.18 35641.86 35955.16 37077.03 35551.52 35832.50 39280.52 31832.46 38827.12 39135.02 3929.52 39575.50 36922.31 39160.21 36838.45 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 37940.17 40126.90 39724.59 40317.44 39523.95 39348.61 3909.77 39426.48 39818.06 39224.47 39228.83 392
WB-MVS54.94 34254.72 34455.60 36973.50 36920.90 40174.27 35061.19 38659.16 33250.61 37974.15 36647.19 30075.78 36817.31 39335.07 38870.12 376
PMVScopyleft37.38 2244.16 35740.28 36055.82 36840.82 40042.54 38665.12 38063.99 38334.43 38624.48 39257.12 3873.92 40276.17 36617.10 39455.52 37448.75 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 36225.89 36643.81 37544.55 39935.46 39328.87 39339.07 40018.20 39418.58 39640.18 3912.68 40347.37 39717.07 39523.78 39348.60 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SSC-MVS53.88 34553.59 34654.75 37172.87 37419.59 40273.84 35260.53 38857.58 34649.18 38173.45 36946.34 30875.47 37116.20 39632.28 39069.20 377
E-PMN31.77 35930.64 36235.15 37752.87 39627.67 39657.09 38747.86 39724.64 39216.40 39733.05 39311.23 39354.90 39414.46 39718.15 39422.87 393
EMVS30.81 36129.65 36334.27 37850.96 39725.95 39856.58 38846.80 39824.01 39315.53 39830.68 39412.47 39054.43 39512.81 39817.05 39522.43 394
wuyk23d16.82 36515.94 36819.46 38058.74 38831.45 39539.22 3903.74 4056.84 3966.04 3992.70 3991.27 40424.29 39910.54 39914.40 3982.63 396
testmvs6.04 3688.02 3710.10 3830.08 4040.03 40869.74 3640.04 4060.05 4000.31 4011.68 4000.02 4060.04 4010.24 4000.02 3990.25 398
test1236.12 3678.11 3700.14 3820.06 4050.09 40771.05 3590.03 4070.04 4010.25 4021.30 4010.05 4050.03 4020.21 4010.01 4000.29 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k19.96 36326.61 3650.00 3840.00 4060.00 4090.00 39589.26 1730.00 4020.00 40388.61 17661.62 1610.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.26 3697.02 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40263.15 1380.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.23 3669.64 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40386.72 2260.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 406
eth-test0.00 406
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 241
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26188.96 241
sam_mvs50.01 274
MTGPAbinary92.02 85
test_post5.46 39750.36 27284.24 321
patchmatchnet-post74.00 36751.12 26388.60 286
MTMP92.18 3532.83 401
TEST993.26 5072.96 2588.75 11591.89 9368.44 23785.00 5793.10 6774.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23284.87 6193.10 6774.43 2695.16 76
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
test_prior472.60 3489.01 105
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
新几何286.29 196
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 250
原ACMM286.86 177
test22291.50 7768.26 12484.16 24883.20 29054.63 35879.74 12991.63 9958.97 19391.42 8586.77 291
segment_acmp73.08 37
testdata184.14 24975.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
plane_prior790.08 10268.51 119
plane_prior689.84 11168.70 11460.42 186
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 110
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 408
nn0.00 408
door-mid69.98 369
test1192.23 79
door69.44 372
HQP5-MVS66.98 155
HQP-NCC89.33 12789.17 9876.41 7277.23 182
ACMP_Plane89.33 12789.17 9876.41 7277.23 182
HQP4-MVS77.24 18195.11 8091.03 161
HQP3-MVS92.19 8285.99 158
HQP2-MVS60.17 189
NP-MVS89.62 11468.32 12290.24 132
ACMMP++_ref81.95 211
ACMMP++81.25 217
Test By Simon64.33 125