This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1496.63 494.88 15
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1296.41 1293.33 91
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 106
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 44
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 22
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 33
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 14187.63 3094.27 5993.65 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1488.26 1592.84 6391.52 4894.75 173.93 13388.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 11988.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 53
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 52
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 45
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4283.84 9094.40 3272.24 4596.28 4385.65 4195.30 3593.62 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 104
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 104
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17382.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 7
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15888.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 72
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 99
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 62
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15684.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 41
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 57
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 56
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19392.02 9379.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 94
balanced_conf0386.78 3786.99 3386.15 6391.24 8367.61 14590.51 6292.90 5677.26 5287.44 4091.63 10571.27 6096.06 4985.62 4295.01 3794.78 23
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9193.95 5469.77 7896.01 5385.15 4494.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3986.95 3585.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9384.24 5993.46 6795.13 8
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9394.46 2767.93 9895.95 5784.20 6094.39 5593.23 94
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9494.17 3967.45 10396.60 3383.06 6994.50 5194.07 54
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10594.23 3872.13 4797.09 1684.83 4995.37 3193.65 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7574.50 12086.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 114
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8193.36 6671.44 5796.76 2580.82 9495.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SPE-MVS-test86.29 4686.48 4185.71 7391.02 8867.21 16092.36 2993.78 1878.97 2883.51 9791.20 12070.65 6995.15 8481.96 8394.89 4294.77 24
EC-MVSNet86.01 4786.38 4284.91 9689.31 13866.27 17392.32 3093.63 2179.37 2084.17 8391.88 9769.04 8895.43 7083.93 6393.77 6393.01 109
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8876.87 6582.81 10694.25 3766.44 11396.24 4482.88 7494.28 5893.38 88
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 8994.42 3167.87 10096.64 3182.70 7994.57 5093.66 72
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 12091.89 10168.69 24685.00 6393.10 7074.43 2695.41 7384.97 4595.71 2593.02 108
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13183.16 10091.07 12575.94 1895.19 8279.94 10394.38 5693.55 83
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16385.22 6191.90 9669.47 8096.42 4083.28 6895.94 1994.35 43
dcpmvs_285.63 5886.15 4884.06 13391.71 7864.94 20286.47 19691.87 10373.63 13986.60 5093.02 7576.57 1591.87 22383.36 6692.15 8095.35 3
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12191.43 11370.34 7097.23 1484.26 5793.36 6894.37 42
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7487.65 20967.22 15988.69 12493.04 4179.64 1885.33 5992.54 8673.30 3594.50 11283.49 6591.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf_n85.92 5186.04 5185.57 7685.03 26269.51 9389.62 8990.58 14073.42 14787.75 3594.02 4772.85 4193.24 16690.37 390.75 9993.96 58
MVSMamba_PlusPlus85.99 4885.96 5286.05 6691.09 8567.64 14489.63 8892.65 7072.89 16184.64 7391.71 10171.85 4996.03 5084.77 5194.45 5494.49 37
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14385.94 5294.51 2665.80 12395.61 6283.04 7192.51 7693.53 85
sasdasda85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11773.28 3693.91 13581.50 8688.80 12894.77 24
canonicalmvs85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11773.28 3693.91 13581.50 8688.80 12894.77 24
MSLP-MVS++85.43 6285.76 5684.45 10991.93 7570.24 7990.71 5992.86 5877.46 4884.22 8192.81 8167.16 10792.94 18680.36 9894.35 5790.16 203
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7782.99 30969.39 10089.65 8690.29 15373.31 15087.77 3494.15 4171.72 5293.23 16790.31 490.67 10193.89 63
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8473.53 14485.69 5694.45 2865.00 13195.56 6382.75 7591.87 8492.50 125
MGCFI-Net85.06 6985.51 5983.70 14789.42 13063.01 24389.43 9392.62 7376.43 7687.53 3891.34 11572.82 4293.42 16181.28 8988.74 13194.66 31
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8473.53 14485.69 5694.45 2863.87 13782.75 7591.87 8492.50 125
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 13093.82 5664.33 13396.29 4282.67 8090.69 10093.23 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192085.29 6585.34 6285.13 8786.12 24169.93 8688.65 12690.78 13669.97 21488.27 2693.98 5271.39 5891.54 23588.49 2390.45 10393.91 60
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 11087.28 23776.41 7785.80 5490.22 14474.15 3195.37 7881.82 8491.88 8392.65 120
alignmvs85.48 6085.32 6485.96 7089.51 12669.47 9589.74 8392.47 7676.17 8587.73 3791.46 11270.32 7193.78 14181.51 8588.95 12594.63 32
DELS-MVS85.41 6385.30 6585.77 7288.49 16967.93 13785.52 22693.44 2778.70 2983.63 9689.03 17274.57 2495.71 6180.26 10094.04 6193.66 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12892.42 8068.32 25384.61 7493.48 6172.32 4496.15 4879.00 10695.43 3094.28 47
casdiffmvspermissive85.11 6785.14 6785.01 9087.20 22365.77 18587.75 15792.83 6077.84 3784.36 8092.38 8872.15 4693.93 13481.27 9090.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.93 7084.98 6884.80 10087.30 22165.39 19387.30 17192.88 5777.62 4084.04 8692.26 9071.81 5093.96 12881.31 8890.30 10595.03 10
UA-Net85.08 6884.96 6985.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7593.20 6969.35 8195.22 8171.39 18390.88 9893.07 103
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11173.89 13482.67 10894.09 4362.60 15295.54 6580.93 9292.93 7193.57 81
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20990.33 15076.11 8682.08 11191.61 10771.36 5994.17 12481.02 9192.58 7592.08 142
ETV-MVS84.90 7284.67 7285.59 7589.39 13368.66 12088.74 12292.64 7279.97 1584.10 8485.71 26169.32 8295.38 7580.82 9491.37 9292.72 115
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11985.42 25268.81 10988.49 13087.26 23868.08 25588.03 3093.49 6072.04 4891.77 22588.90 1789.14 12492.24 136
patch_mono-283.65 8484.54 7380.99 22690.06 11265.83 18284.21 25588.74 20771.60 17885.01 6292.44 8774.51 2583.50 34582.15 8292.15 8093.64 78
test_fmvsmconf0.01_n84.73 7384.52 7585.34 8080.25 35069.03 10389.47 9189.65 17073.24 15486.98 4694.27 3566.62 10993.23 16790.26 589.95 11393.78 69
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20393.37 6560.40 19696.75 2677.20 12593.73 6495.29 5
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17593.04 4169.80 21882.85 10491.22 11973.06 3996.02 5276.72 13394.63 4891.46 159
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13385.38 25368.40 12588.34 13786.85 24867.48 26287.48 3993.40 6470.89 6491.61 22988.38 2589.22 12292.16 140
test_fmvsmvis_n_192084.02 7883.87 7984.49 10884.12 27869.37 10188.15 14587.96 22170.01 21283.95 8893.23 6868.80 9191.51 23888.61 2089.96 11292.57 121
EI-MVSNet-Vis-set84.19 7683.81 8085.31 8188.18 18067.85 13887.66 15989.73 16880.05 1482.95 10189.59 15770.74 6794.82 10180.66 9784.72 18193.28 93
BP-MVS184.32 7583.71 8186.17 6187.84 19967.85 13889.38 9889.64 17177.73 3883.98 8792.12 9356.89 22095.43 7084.03 6291.75 8795.24 6
fmvsm_s_conf0.5_n83.80 8183.71 8184.07 13186.69 23367.31 15489.46 9283.07 30371.09 18886.96 4793.70 5869.02 8991.47 24088.79 1884.62 18393.44 87
nrg03083.88 7983.53 8384.96 9286.77 23169.28 10290.46 6792.67 6774.79 11482.95 10191.33 11672.70 4393.09 18080.79 9679.28 25992.50 125
MG-MVS83.41 9283.45 8483.28 15992.74 6562.28 25588.17 14389.50 17575.22 10181.49 12092.74 8566.75 10895.11 8772.85 17191.58 8992.45 128
fmvsm_s_conf0.5_n_a83.63 8683.41 8584.28 11786.14 24068.12 13289.43 9382.87 30870.27 20787.27 4393.80 5769.09 8491.58 23188.21 2683.65 20393.14 101
fmvsm_s_conf0.1_n83.56 8883.38 8684.10 12584.86 26467.28 15589.40 9783.01 30470.67 19687.08 4493.96 5368.38 9391.45 24188.56 2284.50 18493.56 82
EI-MVSNet-UG-set83.81 8083.38 8685.09 8887.87 19767.53 14887.44 16789.66 16979.74 1682.23 11089.41 16670.24 7394.74 10479.95 10283.92 19592.99 111
CPTT-MVS83.73 8283.33 8884.92 9593.28 4970.86 7292.09 3690.38 14668.75 24579.57 14292.83 7960.60 19293.04 18480.92 9391.56 9090.86 176
HQP_MVS83.64 8583.14 8985.14 8590.08 10868.71 11691.25 5292.44 7779.12 2378.92 15191.00 13060.42 19495.38 7578.71 11086.32 16291.33 160
Effi-MVS+83.62 8783.08 9085.24 8388.38 17567.45 14988.89 11589.15 18975.50 9782.27 10988.28 19369.61 7994.45 11477.81 11987.84 14193.84 66
MVS_Test83.15 9783.06 9183.41 15686.86 22763.21 23986.11 20792.00 9574.31 12482.87 10389.44 16570.03 7493.21 16977.39 12488.50 13693.81 67
EPP-MVSNet83.40 9383.02 9284.57 10490.13 10664.47 21292.32 3090.73 13774.45 12379.35 14591.10 12369.05 8795.12 8572.78 17287.22 14994.13 51
fmvsm_s_conf0.1_n_a83.32 9582.99 9384.28 11783.79 28668.07 13489.34 10082.85 30969.80 21887.36 4294.06 4568.34 9491.56 23387.95 2783.46 20893.21 97
OPM-MVS83.50 9082.95 9485.14 8588.79 15970.95 6989.13 10891.52 11477.55 4580.96 12891.75 10060.71 18794.50 11279.67 10586.51 16089.97 219
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet83.72 8382.92 9586.14 6584.22 27669.48 9491.05 5685.27 26881.30 676.83 19891.65 10366.09 11895.56 6376.00 13993.85 6293.38 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 9782.81 9684.18 12389.94 11563.30 23791.59 4388.46 21379.04 2579.49 14392.16 9165.10 12894.28 11767.71 21991.86 8694.95 11
EIA-MVS83.31 9682.80 9784.82 9889.59 12265.59 18888.21 14192.68 6674.66 11878.96 14986.42 24869.06 8695.26 8075.54 14590.09 10993.62 79
Vis-MVSNetpermissive83.46 9182.80 9785.43 7990.25 10468.74 11490.30 7290.13 15776.33 8380.87 12992.89 7761.00 18494.20 12272.45 17790.97 9693.35 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GDP-MVS83.52 8982.64 9986.16 6288.14 18368.45 12489.13 10892.69 6572.82 16283.71 9291.86 9955.69 22595.35 7980.03 10189.74 11694.69 27
FIs82.07 11382.42 10081.04 22588.80 15858.34 29788.26 14093.49 2676.93 6378.47 16291.04 12669.92 7692.34 20669.87 20084.97 17892.44 129
VNet82.21 11082.41 10181.62 20790.82 9360.93 27084.47 24689.78 16576.36 8284.07 8591.88 9764.71 13290.26 26570.68 19088.89 12693.66 72
PAPM_NR83.02 10182.41 10184.82 9892.47 7066.37 17187.93 15291.80 10673.82 13577.32 18690.66 13567.90 9994.90 9770.37 19389.48 11993.19 98
VDD-MVS83.01 10282.36 10384.96 9291.02 8866.40 17088.91 11488.11 21677.57 4284.39 7993.29 6752.19 25793.91 13577.05 12888.70 13294.57 35
3Dnovator76.31 583.38 9482.31 10486.59 5587.94 19472.94 2890.64 6092.14 9277.21 5575.47 22892.83 7958.56 20394.72 10573.24 16892.71 7492.13 141
h-mvs3383.15 9782.19 10586.02 6990.56 9870.85 7388.15 14589.16 18876.02 8884.67 7091.39 11461.54 17095.50 6682.71 7775.48 30791.72 149
MVS_111021_LR82.61 10682.11 10684.11 12488.82 15671.58 5585.15 22986.16 25974.69 11680.47 13291.04 12662.29 15990.55 26380.33 9990.08 11090.20 202
RRT-MVS82.60 10882.10 10784.10 12587.98 19362.94 24887.45 16691.27 12177.42 4979.85 13890.28 14056.62 22294.70 10779.87 10488.15 14094.67 28
DP-MVS Recon83.11 10082.09 10886.15 6394.44 1970.92 7188.79 11892.20 8970.53 20179.17 14791.03 12864.12 13596.03 5068.39 21690.14 10891.50 155
MVSFormer82.85 10382.05 10985.24 8387.35 21570.21 8090.50 6490.38 14668.55 24881.32 12189.47 16061.68 16793.46 15878.98 10790.26 10692.05 143
FC-MVSNet-test81.52 12582.02 11080.03 24688.42 17455.97 33687.95 15093.42 2977.10 5977.38 18490.98 13269.96 7591.79 22468.46 21584.50 18492.33 130
HQP-MVS82.61 10682.02 11084.37 11189.33 13566.98 16389.17 10392.19 9076.41 7777.23 18990.23 14360.17 19795.11 8777.47 12285.99 17091.03 170
OMC-MVS82.69 10481.97 11284.85 9788.75 16167.42 15087.98 14890.87 13474.92 11079.72 14091.65 10362.19 16293.96 12875.26 14986.42 16193.16 99
diffmvspermissive82.10 11181.88 11382.76 18983.00 30763.78 22583.68 26389.76 16672.94 15982.02 11289.85 14965.96 12290.79 25982.38 8187.30 14893.71 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu82.62 10581.83 11484.96 9290.80 9469.76 9088.74 12291.70 11069.39 22678.96 14988.46 18865.47 12594.87 10074.42 15488.57 13390.24 201
CLD-MVS82.31 10981.65 11584.29 11688.47 17067.73 14285.81 21792.35 8275.78 9178.33 16586.58 24364.01 13694.35 11576.05 13887.48 14690.79 177
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 11681.54 11682.92 17888.46 17163.46 23387.13 17492.37 8180.19 1278.38 16389.14 16871.66 5593.05 18270.05 19676.46 29092.25 134
PS-MVSNAJss82.07 11381.31 11784.34 11486.51 23667.27 15689.27 10191.51 11571.75 17379.37 14490.22 14463.15 14694.27 11877.69 12082.36 22291.49 156
LPG-MVS_test82.08 11281.27 11884.50 10689.23 14268.76 11290.22 7391.94 9975.37 9976.64 20491.51 10954.29 23894.91 9578.44 11283.78 19689.83 224
LFMVS81.82 11881.23 11983.57 15191.89 7663.43 23589.84 7881.85 32077.04 6183.21 9893.10 7052.26 25693.43 16071.98 17889.95 11393.85 64
API-MVS81.99 11581.23 11984.26 12190.94 9070.18 8591.10 5589.32 18071.51 18078.66 15688.28 19365.26 12695.10 9064.74 24691.23 9487.51 288
UniMVSNet (Re)81.60 12481.11 12183.09 16988.38 17564.41 21487.60 16093.02 4578.42 3278.56 15988.16 19769.78 7793.26 16569.58 20376.49 28991.60 150
xiu_mvs_v2_base81.69 12181.05 12283.60 14989.15 14568.03 13684.46 24890.02 15970.67 19681.30 12486.53 24663.17 14594.19 12375.60 14488.54 13488.57 267
PS-MVSNAJ81.69 12181.02 12383.70 14789.51 12668.21 13184.28 25490.09 15870.79 19381.26 12585.62 26663.15 14694.29 11675.62 14388.87 12788.59 266
GeoE81.71 12081.01 12483.80 14689.51 12664.45 21388.97 11288.73 20871.27 18478.63 15789.76 15166.32 11593.20 17269.89 19986.02 16993.74 70
hse-mvs281.72 11980.94 12584.07 13188.72 16267.68 14385.87 21387.26 23876.02 8884.67 7088.22 19661.54 17093.48 15682.71 7773.44 33591.06 168
PAPR81.66 12380.89 12683.99 14190.27 10364.00 22086.76 18991.77 10968.84 24477.13 19689.50 15867.63 10194.88 9967.55 22188.52 13593.09 102
MAR-MVS81.84 11780.70 12785.27 8291.32 8271.53 5689.82 7990.92 13169.77 22078.50 16086.21 25262.36 15894.52 11165.36 24092.05 8289.77 227
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 12580.67 12884.05 13690.44 10164.13 21989.73 8485.91 26271.11 18783.18 9993.48 6150.54 28393.49 15573.40 16588.25 13894.54 36
ACMP74.13 681.51 12780.57 12984.36 11289.42 13068.69 11989.97 7791.50 11874.46 12275.04 25090.41 13953.82 24394.54 10977.56 12182.91 21489.86 223
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 14680.55 13080.76 23288.07 18860.80 27386.86 18391.58 11375.67 9580.24 13489.45 16463.34 14090.25 26670.51 19279.22 26091.23 163
DU-MVS81.12 13280.52 13182.90 17987.80 20163.46 23387.02 17891.87 10379.01 2678.38 16389.07 17065.02 12993.05 18270.05 19676.46 29092.20 137
test_yl81.17 13080.47 13283.24 16289.13 14663.62 22686.21 20489.95 16272.43 16681.78 11789.61 15557.50 21393.58 14970.75 18886.90 15392.52 123
DCV-MVSNet81.17 13080.47 13283.24 16289.13 14663.62 22686.21 20489.95 16272.43 16681.78 11789.61 15557.50 21393.58 14970.75 18886.90 15392.52 123
PVSNet_Blended80.98 13380.34 13482.90 17988.85 15365.40 19184.43 25092.00 9567.62 25978.11 17085.05 28066.02 12094.27 11871.52 18089.50 11889.01 248
TranMVSNet+NR-MVSNet80.84 13680.31 13582.42 19487.85 19862.33 25387.74 15891.33 12080.55 977.99 17489.86 14865.23 12792.62 19267.05 22875.24 31792.30 132
jason81.39 12880.29 13684.70 10286.63 23569.90 8885.95 21086.77 24963.24 31381.07 12789.47 16061.08 18392.15 21278.33 11590.07 11192.05 143
jason: jason.
lupinMVS81.39 12880.27 13784.76 10187.35 21570.21 8085.55 22286.41 25362.85 32081.32 12188.61 18361.68 16792.24 21078.41 11490.26 10691.83 146
SDMVSNet80.38 15280.18 13880.99 22689.03 15164.94 20280.45 31289.40 17775.19 10376.61 20689.98 14660.61 19187.69 30976.83 13183.55 20590.33 197
PVSNet_BlendedMVS80.60 14680.02 13982.36 19688.85 15365.40 19186.16 20692.00 9569.34 22878.11 17086.09 25666.02 12094.27 11871.52 18082.06 22587.39 290
EI-MVSNet80.52 15079.98 14082.12 19784.28 27463.19 24186.41 19788.95 19974.18 12878.69 15487.54 21366.62 10992.43 20072.57 17580.57 24390.74 181
Fast-Effi-MVS+80.81 13879.92 14183.47 15288.85 15364.51 20985.53 22489.39 17870.79 19378.49 16185.06 27967.54 10293.58 14967.03 22986.58 15892.32 131
FA-MVS(test-final)80.96 13479.91 14284.10 12588.30 17865.01 20084.55 24590.01 16073.25 15379.61 14187.57 21058.35 20594.72 10571.29 18486.25 16492.56 122
CANet_DTU80.61 14579.87 14382.83 18185.60 24963.17 24287.36 16888.65 20976.37 8175.88 22188.44 18953.51 24693.07 18173.30 16689.74 11692.25 134
ACMM73.20 880.78 14379.84 14483.58 15089.31 13868.37 12689.99 7691.60 11270.28 20677.25 18789.66 15353.37 24893.53 15474.24 15782.85 21588.85 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR80.81 13879.76 14583.96 14385.60 24968.78 11183.54 26990.50 14370.66 19976.71 20291.66 10260.69 18891.26 24676.94 12981.58 23091.83 146
xiu_mvs_v1_base_debu80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
xiu_mvs_v1_base80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
xiu_mvs_v1_base_debi80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
UGNet80.83 13779.59 14984.54 10588.04 18968.09 13389.42 9588.16 21576.95 6276.22 21489.46 16249.30 29893.94 13168.48 21490.31 10491.60 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 14479.51 15084.20 12294.09 3867.27 15689.64 8791.11 12858.75 35774.08 26490.72 13458.10 20695.04 9269.70 20189.42 12090.30 199
QAPM80.88 13579.50 15185.03 8988.01 19268.97 10791.59 4392.00 9566.63 27475.15 24692.16 9157.70 21095.45 6863.52 25288.76 13090.66 183
AdaColmapbinary80.58 14979.42 15284.06 13393.09 5768.91 10889.36 9988.97 19869.27 22975.70 22489.69 15257.20 21795.77 5963.06 25788.41 13787.50 289
NR-MVSNet80.23 15679.38 15382.78 18787.80 20163.34 23686.31 20191.09 12979.01 2672.17 28889.07 17067.20 10692.81 19166.08 23575.65 30392.20 137
mvsmamba80.60 14679.38 15384.27 11989.74 12067.24 15887.47 16486.95 24470.02 21175.38 23488.93 17351.24 27492.56 19575.47 14789.22 12293.00 110
IterMVS-LS80.06 15979.38 15382.11 19885.89 24463.20 24086.79 18689.34 17974.19 12775.45 23186.72 23366.62 10992.39 20272.58 17476.86 28490.75 180
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf80.30 15579.32 15683.27 16083.98 28265.37 19490.50 6490.38 14668.55 24876.19 21588.70 17956.44 22393.46 15878.98 10780.14 24990.97 173
v2v48280.23 15679.29 15783.05 17283.62 29064.14 21887.04 17789.97 16173.61 14078.18 16987.22 22161.10 18293.82 13976.11 13676.78 28791.18 164
ECVR-MVScopyleft79.61 16579.26 15880.67 23490.08 10854.69 35187.89 15477.44 36074.88 11180.27 13392.79 8248.96 30492.45 19968.55 21392.50 7794.86 18
XVG-OURS80.41 15179.23 15983.97 14285.64 24869.02 10583.03 28090.39 14571.09 18877.63 18091.49 11154.62 23791.35 24475.71 14183.47 20791.54 153
WR-MVS79.49 16979.22 16080.27 24288.79 15958.35 29685.06 23288.61 21178.56 3077.65 17988.34 19163.81 13990.66 26264.98 24477.22 27991.80 148
test111179.43 17279.18 16180.15 24489.99 11353.31 36487.33 17077.05 36475.04 10680.23 13592.77 8448.97 30392.33 20768.87 21092.40 7994.81 21
mvs_anonymous79.42 17379.11 16280.34 24084.45 27357.97 30382.59 28287.62 23067.40 26376.17 21888.56 18668.47 9289.59 27870.65 19186.05 16893.47 86
v114480.03 16079.03 16383.01 17483.78 28764.51 20987.11 17690.57 14271.96 17278.08 17286.20 25361.41 17493.94 13174.93 15077.23 27890.60 186
v879.97 16279.02 16482.80 18484.09 27964.50 21187.96 14990.29 15374.13 13075.24 24386.81 23062.88 15193.89 13874.39 15575.40 31290.00 215
ab-mvs79.51 16878.97 16581.14 22288.46 17160.91 27183.84 26089.24 18570.36 20379.03 14888.87 17663.23 14490.21 26765.12 24282.57 22092.28 133
Anonymous2024052980.19 15878.89 16684.10 12590.60 9764.75 20688.95 11390.90 13265.97 28280.59 13191.17 12249.97 28893.73 14769.16 20782.70 21993.81 67
PCF-MVS73.52 780.38 15278.84 16785.01 9087.71 20668.99 10683.65 26491.46 11963.00 31777.77 17890.28 14066.10 11795.09 9161.40 27688.22 13990.94 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v1079.74 16478.67 16882.97 17784.06 28064.95 20187.88 15590.62 13973.11 15575.11 24786.56 24461.46 17394.05 12773.68 16075.55 30589.90 221
VPNet78.69 19278.66 16978.76 26988.31 17755.72 34084.45 24986.63 25176.79 6778.26 16690.55 13759.30 19989.70 27766.63 23077.05 28190.88 175
BH-untuned79.47 17078.60 17082.05 19989.19 14465.91 18086.07 20888.52 21272.18 16875.42 23287.69 20761.15 18193.54 15360.38 28386.83 15586.70 309
Effi-MVS+-dtu80.03 16078.57 17184.42 11085.13 26068.74 11488.77 11988.10 21774.99 10774.97 25183.49 31257.27 21693.36 16273.53 16280.88 23791.18 164
WR-MVS_H78.51 19678.49 17278.56 27488.02 19056.38 33088.43 13192.67 6777.14 5773.89 26587.55 21266.25 11689.24 28558.92 29773.55 33390.06 213
Vis-MVSNet (Re-imp)78.36 19978.45 17378.07 28588.64 16551.78 37486.70 19079.63 34574.14 12975.11 24790.83 13361.29 17889.75 27558.10 30791.60 8892.69 118
BH-RMVSNet79.61 16578.44 17483.14 16789.38 13465.93 17984.95 23587.15 24173.56 14278.19 16889.79 15056.67 22193.36 16259.53 29186.74 15690.13 205
v119279.59 16778.43 17583.07 17183.55 29264.52 20886.93 18190.58 14070.83 19277.78 17785.90 25759.15 20093.94 13173.96 15977.19 28090.76 179
v14419279.47 17078.37 17682.78 18783.35 29563.96 22186.96 17990.36 14969.99 21377.50 18185.67 26460.66 18993.77 14374.27 15676.58 28890.62 184
CP-MVSNet78.22 20178.34 17777.84 28787.83 20054.54 35387.94 15191.17 12577.65 3973.48 27088.49 18762.24 16188.43 30062.19 26774.07 32690.55 188
Baseline_NR-MVSNet78.15 20578.33 17877.61 29285.79 24556.21 33486.78 18785.76 26473.60 14177.93 17587.57 21065.02 12988.99 28967.14 22775.33 31487.63 284
OpenMVScopyleft72.83 1079.77 16378.33 17884.09 12985.17 25669.91 8790.57 6190.97 13066.70 26872.17 28891.91 9554.70 23593.96 12861.81 27390.95 9788.41 271
UniMVSNet_ETH3D79.10 18278.24 18081.70 20686.85 22860.24 28287.28 17288.79 20274.25 12676.84 19790.53 13849.48 29491.56 23367.98 21782.15 22393.29 92
V4279.38 17678.24 18082.83 18181.10 34265.50 19085.55 22289.82 16471.57 17978.21 16786.12 25560.66 18993.18 17575.64 14275.46 30989.81 226
mamv476.81 23478.23 18272.54 34486.12 24165.75 18678.76 33582.07 31764.12 30472.97 27691.02 12967.97 9768.08 40883.04 7178.02 27183.80 354
PS-CasMVS78.01 21078.09 18377.77 28987.71 20654.39 35588.02 14791.22 12277.50 4773.26 27288.64 18260.73 18688.41 30161.88 27173.88 33090.53 189
v192192079.22 17878.03 18482.80 18483.30 29763.94 22286.80 18590.33 15069.91 21677.48 18285.53 26758.44 20493.75 14573.60 16176.85 28590.71 182
jajsoiax79.29 17777.96 18583.27 16084.68 26766.57 16989.25 10290.16 15669.20 23475.46 23089.49 15945.75 32993.13 17876.84 13080.80 23990.11 207
TAPA-MVS73.13 979.15 18077.94 18682.79 18689.59 12262.99 24788.16 14491.51 11565.77 28377.14 19591.09 12460.91 18593.21 16950.26 35487.05 15192.17 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 17477.91 18783.90 14588.10 18663.84 22388.37 13684.05 28571.45 18176.78 20089.12 16949.93 29194.89 9870.18 19583.18 21292.96 112
c3_l78.75 18977.91 18781.26 21882.89 31161.56 26484.09 25889.13 19169.97 21475.56 22684.29 29466.36 11492.09 21473.47 16475.48 30790.12 206
MVSTER79.01 18477.88 18982.38 19583.07 30464.80 20584.08 25988.95 19969.01 24178.69 15487.17 22454.70 23592.43 20074.69 15180.57 24389.89 222
tt080578.73 19077.83 19081.43 21285.17 25660.30 28189.41 9690.90 13271.21 18577.17 19488.73 17846.38 31893.21 16972.57 17578.96 26190.79 177
X-MVStestdata80.37 15477.83 19088.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9412.47 42067.45 10396.60 3383.06 6994.50 5194.07 54
v14878.72 19177.80 19281.47 21182.73 31461.96 25986.30 20288.08 21873.26 15276.18 21685.47 26962.46 15692.36 20471.92 17973.82 33190.09 209
v124078.99 18577.78 19382.64 19083.21 29963.54 23086.62 19290.30 15269.74 22377.33 18585.68 26357.04 21893.76 14473.13 16976.92 28290.62 184
mvs_tets79.13 18177.77 19483.22 16484.70 26666.37 17189.17 10390.19 15569.38 22775.40 23389.46 16244.17 33993.15 17676.78 13280.70 24190.14 204
miper_ehance_all_eth78.59 19577.76 19581.08 22482.66 31661.56 26483.65 26489.15 18968.87 24375.55 22783.79 30566.49 11292.03 21573.25 16776.39 29289.64 230
thisisatest053079.40 17477.76 19584.31 11587.69 20865.10 19987.36 16884.26 28370.04 21077.42 18388.26 19549.94 28994.79 10370.20 19484.70 18293.03 107
CDS-MVSNet79.07 18377.70 19783.17 16687.60 21068.23 13084.40 25286.20 25867.49 26176.36 21186.54 24561.54 17090.79 25961.86 27287.33 14790.49 191
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 18677.69 19882.81 18390.54 9964.29 21690.11 7591.51 11565.01 29476.16 21988.13 20250.56 28293.03 18569.68 20277.56 27791.11 166
PEN-MVS77.73 21677.69 19877.84 28787.07 22653.91 35887.91 15391.18 12477.56 4473.14 27488.82 17761.23 17989.17 28659.95 28672.37 34190.43 193
AUN-MVS79.21 17977.60 20084.05 13688.71 16367.61 14585.84 21587.26 23869.08 23777.23 18988.14 20153.20 25093.47 15775.50 14673.45 33491.06 168
v7n78.97 18677.58 20183.14 16783.45 29465.51 18988.32 13891.21 12373.69 13872.41 28486.32 25157.93 20793.81 14069.18 20675.65 30390.11 207
TAMVS78.89 18877.51 20283.03 17387.80 20167.79 14184.72 23985.05 27267.63 25876.75 20187.70 20662.25 16090.82 25858.53 30287.13 15090.49 191
sd_testset77.70 21977.40 20378.60 27289.03 15160.02 28479.00 33185.83 26375.19 10376.61 20689.98 14654.81 23085.46 33062.63 26383.55 20590.33 197
GBi-Net78.40 19777.40 20381.40 21487.60 21063.01 24388.39 13389.28 18171.63 17575.34 23687.28 21754.80 23191.11 24962.72 25979.57 25390.09 209
test178.40 19777.40 20381.40 21487.60 21063.01 24388.39 13389.28 18171.63 17575.34 23687.28 21754.80 23191.11 24962.72 25979.57 25390.09 209
BH-w/o78.21 20277.33 20680.84 23088.81 15765.13 19884.87 23687.85 22669.75 22174.52 25984.74 28661.34 17693.11 17958.24 30685.84 17284.27 346
FMVSNet278.20 20377.21 20781.20 22087.60 21062.89 24987.47 16489.02 19471.63 17575.29 24287.28 21754.80 23191.10 25262.38 26479.38 25789.61 231
anonymousdsp78.60 19477.15 20882.98 17680.51 34867.08 16187.24 17389.53 17465.66 28575.16 24587.19 22352.52 25192.25 20977.17 12679.34 25889.61 231
HY-MVS69.67 1277.95 21177.15 20880.36 23987.57 21460.21 28383.37 27187.78 22866.11 27875.37 23587.06 22863.27 14290.48 26461.38 27782.43 22190.40 195
cl2278.07 20777.01 21081.23 21982.37 32361.83 26183.55 26887.98 22068.96 24275.06 24983.87 30161.40 17591.88 22273.53 16276.39 29289.98 218
Anonymous20240521178.25 20077.01 21081.99 20191.03 8760.67 27584.77 23883.90 28770.65 20080.00 13791.20 12041.08 35891.43 24265.21 24185.26 17693.85 64
MVS78.19 20476.99 21281.78 20485.66 24766.99 16284.66 24090.47 14455.08 37772.02 29085.27 27263.83 13894.11 12666.10 23489.80 11584.24 347
LCM-MVSNet-Re77.05 22976.94 21377.36 29687.20 22351.60 37580.06 31680.46 33575.20 10267.69 33286.72 23362.48 15588.98 29063.44 25489.25 12191.51 154
miper_enhance_ethall77.87 21476.86 21480.92 22981.65 33061.38 26682.68 28188.98 19665.52 28775.47 22882.30 33265.76 12492.00 21772.95 17076.39 29289.39 236
FMVSNet377.88 21376.85 21580.97 22886.84 22962.36 25286.52 19588.77 20371.13 18675.34 23686.66 23954.07 24191.10 25262.72 25979.57 25389.45 235
DTE-MVSNet76.99 23076.80 21677.54 29586.24 23853.06 36787.52 16290.66 13877.08 6072.50 28288.67 18160.48 19389.52 27957.33 31470.74 35390.05 214
CNLPA78.08 20676.79 21781.97 20290.40 10271.07 6587.59 16184.55 27766.03 28172.38 28589.64 15457.56 21286.04 32259.61 29083.35 20988.79 259
cl____77.72 21776.76 21880.58 23582.49 32060.48 27883.09 27687.87 22469.22 23274.38 26285.22 27562.10 16391.53 23671.09 18575.41 31189.73 229
DIV-MVS_self_test77.72 21776.76 21880.58 23582.48 32160.48 27883.09 27687.86 22569.22 23274.38 26285.24 27362.10 16391.53 23671.09 18575.40 31289.74 228
baseline176.98 23176.75 22077.66 29088.13 18455.66 34185.12 23081.89 31873.04 15776.79 19988.90 17462.43 15787.78 30863.30 25671.18 35189.55 233
eth_miper_zixun_eth77.92 21276.69 22181.61 20983.00 30761.98 25883.15 27489.20 18769.52 22574.86 25384.35 29361.76 16692.56 19571.50 18272.89 33990.28 200
pm-mvs177.25 22876.68 22278.93 26784.22 27658.62 29486.41 19788.36 21471.37 18273.31 27188.01 20361.22 18089.15 28764.24 25073.01 33889.03 247
ET-MVSNet_ETH3D78.63 19376.63 22384.64 10386.73 23269.47 9585.01 23384.61 27669.54 22466.51 35086.59 24150.16 28691.75 22676.26 13584.24 19292.69 118
test250677.30 22776.49 22479.74 25290.08 10852.02 36887.86 15663.10 40674.88 11180.16 13692.79 8238.29 37292.35 20568.74 21292.50 7794.86 18
Fast-Effi-MVS+-dtu78.02 20976.49 22482.62 19183.16 30366.96 16586.94 18087.45 23572.45 16371.49 29684.17 29854.79 23491.58 23167.61 22080.31 24689.30 239
1112_ss77.40 22576.43 22680.32 24189.11 15060.41 28083.65 26487.72 22962.13 33073.05 27586.72 23362.58 15489.97 27162.11 27080.80 23990.59 187
PAPM77.68 22076.40 22781.51 21087.29 22261.85 26083.78 26189.59 17264.74 29671.23 29788.70 17962.59 15393.66 14852.66 33987.03 15289.01 248
PLCcopyleft70.83 1178.05 20876.37 22883.08 17091.88 7767.80 14088.19 14289.46 17664.33 30269.87 31488.38 19053.66 24493.58 14958.86 29882.73 21787.86 280
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 22376.18 22981.20 22088.24 17963.24 23884.61 24386.40 25467.55 26077.81 17686.48 24754.10 24093.15 17657.75 31082.72 21887.20 295
FMVSNet177.44 22376.12 23081.40 21486.81 23063.01 24388.39 13389.28 18170.49 20274.39 26187.28 21749.06 30291.11 24960.91 28078.52 26490.09 209
MonoMVSNet76.49 24275.80 23178.58 27381.55 33358.45 29586.36 20086.22 25774.87 11374.73 25583.73 30751.79 26988.73 29570.78 18772.15 34488.55 268
test_vis1_n_192075.52 25675.78 23274.75 32579.84 35657.44 31483.26 27285.52 26662.83 32179.34 14686.17 25445.10 33479.71 36478.75 10981.21 23487.10 302
CHOSEN 1792x268877.63 22175.69 23383.44 15389.98 11468.58 12278.70 33687.50 23356.38 37275.80 22386.84 22958.67 20291.40 24361.58 27585.75 17490.34 196
FE-MVS77.78 21575.68 23484.08 13088.09 18766.00 17783.13 27587.79 22768.42 25278.01 17385.23 27445.50 33295.12 8559.11 29585.83 17391.11 166
WTY-MVS75.65 25475.68 23475.57 31286.40 23756.82 32177.92 34882.40 31365.10 29176.18 21687.72 20563.13 14980.90 36060.31 28481.96 22689.00 250
testing9176.54 23775.66 23679.18 26488.43 17355.89 33781.08 29983.00 30573.76 13775.34 23684.29 29446.20 32390.07 26964.33 24884.50 18491.58 152
XXY-MVS75.41 25975.56 23774.96 32183.59 29157.82 30780.59 30983.87 28866.54 27574.93 25288.31 19263.24 14380.09 36362.16 26876.85 28586.97 303
thres100view90076.50 23975.55 23879.33 26089.52 12556.99 31985.83 21683.23 29873.94 13276.32 21287.12 22551.89 26691.95 21848.33 36383.75 19989.07 241
thres600view776.50 23975.44 23979.68 25489.40 13257.16 31685.53 22483.23 29873.79 13676.26 21387.09 22651.89 26691.89 22148.05 36883.72 20290.00 215
Test_1112_low_res76.40 24475.44 23979.27 26189.28 14058.09 29981.69 29187.07 24259.53 34972.48 28386.67 23861.30 17789.33 28260.81 28280.15 24890.41 194
HyFIR lowres test77.53 22275.40 24183.94 14489.59 12266.62 16780.36 31388.64 21056.29 37376.45 20885.17 27657.64 21193.28 16461.34 27883.10 21391.91 145
thisisatest051577.33 22675.38 24283.18 16585.27 25563.80 22482.11 28783.27 29765.06 29275.91 22083.84 30349.54 29394.27 11867.24 22586.19 16591.48 157
tfpn200view976.42 24375.37 24379.55 25989.13 14657.65 31085.17 22783.60 29073.41 14876.45 20886.39 24952.12 25891.95 21848.33 36383.75 19989.07 241
thres40076.50 23975.37 24379.86 24989.13 14657.65 31085.17 22783.60 29073.41 14876.45 20886.39 24952.12 25891.95 21848.33 36383.75 19990.00 215
131476.53 23875.30 24580.21 24383.93 28362.32 25484.66 24088.81 20160.23 34270.16 30884.07 30055.30 22890.73 26167.37 22383.21 21187.59 287
GA-MVS76.87 23375.17 24681.97 20282.75 31362.58 25081.44 29686.35 25672.16 17074.74 25482.89 32346.20 32392.02 21668.85 21181.09 23591.30 162
testing9976.09 24975.12 24779.00 26588.16 18155.50 34380.79 30381.40 32473.30 15175.17 24484.27 29644.48 33790.02 27064.28 24984.22 19391.48 157
EPNet_dtu75.46 25774.86 24877.23 29982.57 31854.60 35286.89 18283.09 30271.64 17466.25 35285.86 25955.99 22488.04 30554.92 32886.55 15989.05 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 23274.82 24983.37 15790.45 10067.36 15389.15 10786.94 24561.87 33269.52 31790.61 13651.71 27094.53 11046.38 37586.71 15788.21 274
cascas76.72 23674.64 25082.99 17585.78 24665.88 18182.33 28489.21 18660.85 33872.74 27881.02 34347.28 31193.75 14567.48 22285.02 17789.34 238
DP-MVS76.78 23574.57 25183.42 15493.29 4869.46 9788.55 12983.70 28963.98 30970.20 30588.89 17554.01 24294.80 10246.66 37281.88 22886.01 321
TransMVSNet (Re)75.39 26174.56 25277.86 28685.50 25157.10 31886.78 18786.09 26172.17 16971.53 29587.34 21663.01 15089.31 28356.84 31961.83 38087.17 296
LTVRE_ROB69.57 1376.25 24674.54 25381.41 21388.60 16664.38 21579.24 32689.12 19270.76 19569.79 31687.86 20449.09 30193.20 17256.21 32480.16 24786.65 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 25574.47 25478.82 26887.78 20457.85 30683.07 27883.51 29372.44 16575.84 22284.42 28952.08 26191.75 22647.41 37083.64 20486.86 305
MVP-Stereo76.12 24774.46 25581.13 22385.37 25469.79 8984.42 25187.95 22265.03 29367.46 33585.33 27153.28 24991.73 22858.01 30883.27 21081.85 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
reproduce_monomvs75.40 26074.38 25678.46 27983.92 28457.80 30883.78 26186.94 24573.47 14672.25 28784.47 28838.74 36889.27 28475.32 14870.53 35488.31 272
F-COLMAP76.38 24574.33 25782.50 19389.28 14066.95 16688.41 13289.03 19364.05 30766.83 34288.61 18346.78 31592.89 18757.48 31178.55 26387.67 283
XVG-ACMP-BASELINE76.11 24874.27 25881.62 20783.20 30064.67 20783.60 26789.75 16769.75 22171.85 29187.09 22632.78 38592.11 21369.99 19880.43 24588.09 276
testing1175.14 26374.01 25978.53 27688.16 18156.38 33080.74 30680.42 33670.67 19672.69 28183.72 30843.61 34389.86 27262.29 26683.76 19889.36 237
ACMH+68.96 1476.01 25074.01 25982.03 20088.60 16665.31 19588.86 11687.55 23170.25 20867.75 33187.47 21541.27 35693.19 17458.37 30475.94 30087.60 285
ACMH67.68 1675.89 25173.93 26181.77 20588.71 16366.61 16888.62 12789.01 19569.81 21766.78 34386.70 23741.95 35591.51 23855.64 32578.14 27087.17 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 26273.90 26279.27 26182.65 31758.27 29880.80 30282.73 31161.57 33375.33 24083.13 31855.52 22691.07 25564.98 24478.34 26988.45 269
IterMVS-SCA-FT75.43 25873.87 26380.11 24582.69 31564.85 20481.57 29383.47 29469.16 23570.49 30284.15 29951.95 26488.15 30369.23 20572.14 34587.34 292
baseline275.70 25373.83 26481.30 21783.26 29861.79 26282.57 28380.65 33166.81 26566.88 34183.42 31357.86 20992.19 21163.47 25379.57 25389.91 220
test_cas_vis1_n_192073.76 27673.74 26573.81 33375.90 37759.77 28680.51 31082.40 31358.30 35981.62 11985.69 26244.35 33876.41 38276.29 13478.61 26285.23 334
sss73.60 27773.64 26673.51 33582.80 31255.01 34976.12 35581.69 32162.47 32674.68 25685.85 26057.32 21578.11 37160.86 28180.93 23687.39 290
pmmvs674.69 26573.39 26778.61 27181.38 33757.48 31386.64 19187.95 22264.99 29570.18 30686.61 24050.43 28489.52 27962.12 26970.18 35688.83 257
IB-MVS68.01 1575.85 25273.36 26883.31 15884.76 26566.03 17583.38 27085.06 27170.21 20969.40 31881.05 34245.76 32894.66 10865.10 24375.49 30689.25 240
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 26473.21 26979.64 25679.81 35762.56 25180.34 31487.35 23664.37 30168.86 32382.66 32746.37 31990.10 26867.91 21881.24 23386.25 314
tfpnnormal74.39 26673.16 27078.08 28486.10 24358.05 30084.65 24287.53 23270.32 20571.22 29885.63 26554.97 22989.86 27243.03 38675.02 31986.32 313
miper_lstm_enhance74.11 27173.11 27177.13 30080.11 35259.62 28872.23 37686.92 24766.76 26770.40 30382.92 32256.93 21982.92 34969.06 20872.63 34088.87 255
mmtdpeth74.16 27073.01 27277.60 29483.72 28961.13 26785.10 23185.10 27072.06 17177.21 19380.33 35143.84 34185.75 32477.14 12752.61 39885.91 324
IterMVS74.29 26772.94 27378.35 28081.53 33463.49 23281.58 29282.49 31268.06 25669.99 31183.69 30951.66 27185.54 32865.85 23771.64 34886.01 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WBMVS73.43 27972.81 27475.28 31887.91 19550.99 38178.59 33981.31 32665.51 28974.47 26084.83 28346.39 31786.68 31558.41 30377.86 27288.17 275
MS-PatchMatch73.83 27572.67 27577.30 29883.87 28566.02 17681.82 28884.66 27561.37 33668.61 32682.82 32547.29 31088.21 30259.27 29284.32 19177.68 388
testing22274.04 27272.66 27678.19 28287.89 19655.36 34481.06 30079.20 34971.30 18374.65 25783.57 31139.11 36788.67 29751.43 34685.75 17490.53 189
CVMVSNet72.99 28872.58 27774.25 32984.28 27450.85 38286.41 19783.45 29544.56 39773.23 27387.54 21349.38 29685.70 32565.90 23678.44 26686.19 316
test-LLR72.94 28972.43 27874.48 32681.35 33858.04 30178.38 34077.46 35866.66 26969.95 31279.00 36448.06 30779.24 36566.13 23284.83 17986.15 317
OurMVSNet-221017-074.26 26872.42 27979.80 25183.76 28859.59 28985.92 21286.64 25066.39 27666.96 34087.58 20939.46 36491.60 23065.76 23869.27 35988.22 273
SCA74.22 26972.33 28079.91 24884.05 28162.17 25679.96 31979.29 34866.30 27772.38 28580.13 35351.95 26488.60 29859.25 29377.67 27688.96 252
UBG73.08 28672.27 28175.51 31488.02 19051.29 37978.35 34377.38 36165.52 28773.87 26682.36 33045.55 33086.48 31855.02 32784.39 19088.75 261
tpmrst72.39 29172.13 28273.18 33980.54 34749.91 38679.91 32079.08 35063.11 31571.69 29379.95 35555.32 22782.77 35065.66 23973.89 32986.87 304
pmmvs474.03 27471.91 28380.39 23881.96 32668.32 12781.45 29582.14 31559.32 35069.87 31485.13 27752.40 25488.13 30460.21 28574.74 32284.73 343
EG-PatchMatch MVS74.04 27271.82 28480.71 23384.92 26367.42 15085.86 21488.08 21866.04 28064.22 36483.85 30235.10 38192.56 19557.44 31280.83 23882.16 372
tpm72.37 29371.71 28574.35 32882.19 32452.00 36979.22 32777.29 36264.56 29872.95 27783.68 31051.35 27283.26 34858.33 30575.80 30187.81 281
WB-MVSnew71.96 29871.65 28672.89 34084.67 27051.88 37282.29 28577.57 35762.31 32773.67 26883.00 32053.49 24781.10 35945.75 37982.13 22485.70 327
UWE-MVS72.13 29671.49 28774.03 33186.66 23447.70 39081.40 29776.89 36663.60 31275.59 22584.22 29739.94 36385.62 32748.98 36086.13 16788.77 260
CL-MVSNet_self_test72.37 29371.46 28875.09 32079.49 36353.53 36080.76 30585.01 27369.12 23670.51 30182.05 33657.92 20884.13 34052.27 34166.00 37287.60 285
tpm273.26 28371.46 28878.63 27083.34 29656.71 32480.65 30880.40 33756.63 37173.55 26982.02 33751.80 26891.24 24756.35 32378.42 26787.95 277
RPSCF73.23 28471.46 28878.54 27582.50 31959.85 28582.18 28682.84 31058.96 35471.15 29989.41 16645.48 33384.77 33758.82 29971.83 34791.02 172
PatchmatchNetpermissive73.12 28571.33 29178.49 27883.18 30160.85 27279.63 32178.57 35264.13 30371.73 29279.81 35851.20 27585.97 32357.40 31376.36 29788.66 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 28071.27 29279.67 25581.32 34065.19 19675.92 35780.30 33859.92 34572.73 27981.19 34052.50 25286.69 31459.84 28777.71 27487.11 300
SixPastTwentyTwo73.37 28071.26 29379.70 25385.08 26157.89 30585.57 21883.56 29271.03 19065.66 35485.88 25842.10 35392.57 19459.11 29563.34 37888.65 265
ETVMVS72.25 29571.05 29475.84 30887.77 20551.91 37179.39 32474.98 37369.26 23073.71 26782.95 32140.82 36086.14 32146.17 37684.43 18989.47 234
MSDG73.36 28270.99 29580.49 23784.51 27265.80 18380.71 30786.13 26065.70 28465.46 35583.74 30644.60 33590.91 25751.13 34776.89 28384.74 342
PatchMatch-RL72.38 29270.90 29676.80 30388.60 16667.38 15279.53 32276.17 37062.75 32369.36 31982.00 33845.51 33184.89 33653.62 33480.58 24278.12 387
PVSNet64.34 1872.08 29770.87 29775.69 31086.21 23956.44 32874.37 37080.73 33062.06 33170.17 30782.23 33442.86 34783.31 34754.77 32984.45 18887.32 293
dmvs_re71.14 30270.58 29872.80 34181.96 32659.68 28775.60 36179.34 34768.55 24869.27 32180.72 34849.42 29576.54 37952.56 34077.79 27382.19 371
test_fmvs170.93 30570.52 29972.16 34673.71 38855.05 34880.82 30178.77 35151.21 38978.58 15884.41 29031.20 39076.94 37775.88 14080.12 25084.47 345
RPMNet73.51 27870.49 30082.58 19281.32 34065.19 19675.92 35792.27 8457.60 36572.73 27976.45 38052.30 25595.43 7048.14 36777.71 27487.11 300
test_040272.79 29070.44 30179.84 25088.13 18465.99 17885.93 21184.29 28165.57 28667.40 33785.49 26846.92 31492.61 19335.88 40074.38 32580.94 378
COLMAP_ROBcopyleft66.92 1773.01 28770.41 30280.81 23187.13 22565.63 18788.30 13984.19 28462.96 31863.80 36887.69 20738.04 37392.56 19546.66 37274.91 32084.24 347
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 30070.39 30374.48 32681.35 33858.04 30178.38 34077.46 35860.32 34169.95 31279.00 36436.08 37979.24 36566.13 23284.83 17986.15 317
test_fmvs1_n70.86 30670.24 30472.73 34272.51 39955.28 34681.27 29879.71 34451.49 38878.73 15384.87 28227.54 39577.02 37676.06 13779.97 25185.88 325
pmmvs571.55 29970.20 30575.61 31177.83 37056.39 32981.74 29080.89 32757.76 36367.46 33584.49 28749.26 29985.32 33257.08 31675.29 31585.11 338
MDTV_nov1_ep1369.97 30683.18 30153.48 36177.10 35380.18 34160.45 33969.33 32080.44 34948.89 30586.90 31351.60 34478.51 265
MIMVSNet70.69 30869.30 30774.88 32284.52 27156.35 33275.87 35979.42 34664.59 29767.76 33082.41 32941.10 35781.54 35646.64 37481.34 23186.75 308
tpmvs71.09 30369.29 30876.49 30482.04 32556.04 33578.92 33381.37 32564.05 30767.18 33978.28 37049.74 29289.77 27449.67 35772.37 34183.67 355
test_vis1_n69.85 31869.21 30971.77 34872.66 39855.27 34781.48 29476.21 36952.03 38575.30 24183.20 31728.97 39376.22 38474.60 15278.41 26883.81 353
Patchmtry70.74 30769.16 31075.49 31580.72 34454.07 35774.94 36880.30 33858.34 35870.01 30981.19 34052.50 25286.54 31653.37 33671.09 35285.87 326
TESTMET0.1,169.89 31769.00 31172.55 34379.27 36656.85 32078.38 34074.71 37757.64 36468.09 32977.19 37737.75 37476.70 37863.92 25184.09 19484.10 350
PMMVS69.34 32168.67 31271.35 35375.67 37962.03 25775.17 36373.46 38050.00 39068.68 32479.05 36252.07 26278.13 37061.16 27982.77 21673.90 394
K. test v371.19 30168.51 31379.21 26383.04 30657.78 30984.35 25376.91 36572.90 16062.99 37182.86 32439.27 36591.09 25461.65 27452.66 39788.75 261
USDC70.33 31268.37 31476.21 30680.60 34656.23 33379.19 32886.49 25260.89 33761.29 37685.47 26931.78 38889.47 28153.37 33676.21 29882.94 365
tpm cat170.57 30968.31 31577.35 29782.41 32257.95 30478.08 34580.22 34052.04 38468.54 32777.66 37552.00 26387.84 30751.77 34272.07 34686.25 314
OpenMVS_ROBcopyleft64.09 1970.56 31068.19 31677.65 29180.26 34959.41 29185.01 23382.96 30758.76 35665.43 35682.33 33137.63 37591.23 24845.34 38276.03 29982.32 369
EPMVS69.02 32368.16 31771.59 34979.61 36149.80 38877.40 35066.93 39862.82 32270.01 30979.05 36245.79 32777.86 37356.58 32175.26 31687.13 299
CMPMVSbinary51.72 2170.19 31468.16 31776.28 30573.15 39557.55 31279.47 32383.92 28648.02 39356.48 39384.81 28443.13 34586.42 31962.67 26281.81 22984.89 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 30468.09 31979.58 25785.15 25863.62 22684.58 24479.83 34262.31 32760.32 38086.73 23132.02 38688.96 29250.28 35271.57 34986.15 317
gg-mvs-nofinetune69.95 31667.96 32075.94 30783.07 30454.51 35477.23 35270.29 38863.11 31570.32 30462.33 40143.62 34288.69 29653.88 33387.76 14284.62 344
FMVSNet569.50 31967.96 32074.15 33082.97 31055.35 34580.01 31882.12 31662.56 32563.02 36981.53 33936.92 37681.92 35448.42 36274.06 32785.17 337
Syy-MVS68.05 33267.85 32268.67 36884.68 26740.97 41178.62 33773.08 38266.65 27266.74 34479.46 35952.11 26082.30 35232.89 40376.38 29582.75 366
PatchT68.46 33067.85 32270.29 35980.70 34543.93 40372.47 37574.88 37460.15 34370.55 30076.57 37949.94 28981.59 35550.58 34874.83 32185.34 332
pmmvs-eth3d70.50 31167.83 32478.52 27777.37 37366.18 17481.82 28881.51 32258.90 35563.90 36780.42 35042.69 34886.28 32058.56 30165.30 37483.11 361
Anonymous2023120668.60 32667.80 32571.02 35680.23 35150.75 38378.30 34480.47 33456.79 37066.11 35382.63 32846.35 32078.95 36743.62 38575.70 30283.36 358
Patchmatch-RL test70.24 31367.78 32677.61 29277.43 37259.57 29071.16 38070.33 38762.94 31968.65 32572.77 39250.62 28185.49 32969.58 20366.58 36987.77 282
test0.0.03 168.00 33367.69 32768.90 36577.55 37147.43 39175.70 36072.95 38466.66 26966.56 34682.29 33348.06 30775.87 38744.97 38374.51 32483.41 357
testing368.56 32867.67 32871.22 35587.33 22042.87 40583.06 27971.54 38570.36 20369.08 32284.38 29130.33 39285.69 32637.50 39875.45 31085.09 339
EU-MVSNet68.53 32967.61 32971.31 35478.51 36947.01 39384.47 24684.27 28242.27 40066.44 35184.79 28540.44 36183.76 34258.76 30068.54 36483.17 359
KD-MVS_self_test68.81 32467.59 33072.46 34574.29 38545.45 39677.93 34787.00 24363.12 31463.99 36678.99 36642.32 35084.77 33756.55 32264.09 37787.16 298
test_fmvs268.35 33167.48 33170.98 35769.50 40251.95 37080.05 31776.38 36849.33 39174.65 25784.38 29123.30 40475.40 39274.51 15375.17 31885.60 328
mvs5depth69.45 32067.45 33275.46 31673.93 38655.83 33879.19 32883.23 29866.89 26471.63 29483.32 31433.69 38485.09 33359.81 28855.34 39485.46 330
ppachtmachnet_test70.04 31567.34 33378.14 28379.80 35861.13 26779.19 32880.59 33259.16 35265.27 35779.29 36146.75 31687.29 31149.33 35866.72 36786.00 323
Anonymous2024052168.80 32567.22 33473.55 33474.33 38454.11 35683.18 27385.61 26558.15 36061.68 37580.94 34530.71 39181.27 35857.00 31773.34 33785.28 333
our_test_369.14 32267.00 33575.57 31279.80 35858.80 29277.96 34677.81 35559.55 34862.90 37278.25 37147.43 30983.97 34151.71 34367.58 36683.93 352
test20.0367.45 33566.95 33668.94 36475.48 38144.84 40177.50 34977.67 35666.66 26963.01 37083.80 30447.02 31378.40 36942.53 38968.86 36383.58 356
MIMVSNet168.58 32766.78 33773.98 33280.07 35351.82 37380.77 30484.37 27864.40 30059.75 38382.16 33536.47 37783.63 34442.73 38770.33 35586.48 312
testgi66.67 34166.53 33867.08 37575.62 38041.69 41075.93 35676.50 36766.11 27865.20 36086.59 24135.72 38074.71 39443.71 38473.38 33684.84 341
myMVS_eth3d67.02 33866.29 33969.21 36384.68 26742.58 40678.62 33773.08 38266.65 27266.74 34479.46 35931.53 38982.30 35239.43 39576.38 29582.75 366
UnsupCasMVSNet_eth67.33 33665.99 34071.37 35173.48 39151.47 37775.16 36485.19 26965.20 29060.78 37880.93 34742.35 34977.20 37557.12 31553.69 39685.44 331
dp66.80 33965.43 34170.90 35879.74 36048.82 38975.12 36674.77 37559.61 34764.08 36577.23 37642.89 34680.72 36148.86 36166.58 36983.16 360
TinyColmap67.30 33764.81 34274.76 32481.92 32856.68 32580.29 31581.49 32360.33 34056.27 39483.22 31524.77 40087.66 31045.52 38069.47 35879.95 383
CHOSEN 280x42066.51 34264.71 34371.90 34781.45 33563.52 23157.98 41068.95 39453.57 38062.59 37376.70 37846.22 32275.29 39355.25 32679.68 25276.88 390
TDRefinement67.49 33464.34 34476.92 30173.47 39261.07 26984.86 23782.98 30659.77 34658.30 38785.13 27726.06 39687.89 30647.92 36960.59 38581.81 374
PM-MVS66.41 34364.14 34573.20 33873.92 38756.45 32778.97 33264.96 40463.88 31164.72 36180.24 35219.84 40883.44 34666.24 23164.52 37679.71 384
dmvs_testset62.63 35564.11 34658.19 38578.55 36824.76 42375.28 36265.94 40167.91 25760.34 37976.01 38253.56 24573.94 39831.79 40467.65 36575.88 392
KD-MVS_2432*160066.22 34563.89 34773.21 33675.47 38253.42 36270.76 38384.35 27964.10 30566.52 34878.52 36834.55 38284.98 33450.40 35050.33 40181.23 376
miper_refine_blended66.22 34563.89 34773.21 33675.47 38253.42 36270.76 38384.35 27964.10 30566.52 34878.52 36834.55 38284.98 33450.40 35050.33 40181.23 376
MDA-MVSNet-bldmvs66.68 34063.66 34975.75 30979.28 36560.56 27773.92 37278.35 35364.43 29950.13 40279.87 35744.02 34083.67 34346.10 37756.86 38883.03 363
ADS-MVSNet266.20 34763.33 35074.82 32379.92 35458.75 29367.55 39575.19 37253.37 38165.25 35875.86 38342.32 35080.53 36241.57 39068.91 36185.18 335
Patchmatch-test64.82 35063.24 35169.57 36179.42 36449.82 38763.49 40769.05 39351.98 38659.95 38280.13 35350.91 27770.98 40140.66 39273.57 33287.90 279
MDA-MVSNet_test_wron65.03 34862.92 35271.37 35175.93 37656.73 32269.09 39274.73 37657.28 36854.03 39777.89 37245.88 32574.39 39649.89 35661.55 38182.99 364
YYNet165.03 34862.91 35371.38 35075.85 37856.60 32669.12 39174.66 37857.28 36854.12 39677.87 37345.85 32674.48 39549.95 35561.52 38283.05 362
ADS-MVSNet64.36 35162.88 35468.78 36779.92 35447.17 39267.55 39571.18 38653.37 38165.25 35875.86 38342.32 35073.99 39741.57 39068.91 36185.18 335
JIA-IIPM66.32 34462.82 35576.82 30277.09 37461.72 26365.34 40375.38 37158.04 36264.51 36262.32 40242.05 35486.51 31751.45 34569.22 36082.21 370
LF4IMVS64.02 35262.19 35669.50 36270.90 40053.29 36576.13 35477.18 36352.65 38358.59 38580.98 34423.55 40376.52 38053.06 33866.66 36878.68 386
test_fmvs363.36 35461.82 35767.98 37262.51 41146.96 39477.37 35174.03 37945.24 39667.50 33478.79 36712.16 41672.98 40072.77 17366.02 37183.99 351
new-patchmatchnet61.73 35761.73 35861.70 38172.74 39724.50 42469.16 39078.03 35461.40 33456.72 39275.53 38638.42 37076.48 38145.95 37857.67 38784.13 349
UnsupCasMVSNet_bld63.70 35361.53 35970.21 36073.69 38951.39 37872.82 37481.89 31855.63 37557.81 38971.80 39438.67 36978.61 36849.26 35952.21 39980.63 380
mvsany_test162.30 35661.26 36065.41 37769.52 40154.86 35066.86 39749.78 41746.65 39468.50 32883.21 31649.15 30066.28 40956.93 31860.77 38375.11 393
PVSNet_057.27 2061.67 35859.27 36168.85 36679.61 36157.44 31468.01 39373.44 38155.93 37458.54 38670.41 39744.58 33677.55 37447.01 37135.91 40971.55 397
test_vis1_rt60.28 35958.42 36265.84 37667.25 40555.60 34270.44 38560.94 40944.33 39859.00 38466.64 39924.91 39968.67 40662.80 25869.48 35773.25 395
MVS-HIRNet59.14 36157.67 36363.57 37981.65 33043.50 40471.73 37765.06 40339.59 40451.43 39957.73 40738.34 37182.58 35139.53 39373.95 32864.62 403
ttmdpeth59.91 36057.10 36468.34 37067.13 40646.65 39574.64 36967.41 39748.30 39262.52 37485.04 28120.40 40675.93 38642.55 38845.90 40782.44 368
DSMNet-mixed57.77 36356.90 36560.38 38367.70 40435.61 41469.18 38953.97 41532.30 41357.49 39079.88 35640.39 36268.57 40738.78 39672.37 34176.97 389
WB-MVS54.94 36554.72 36655.60 39173.50 39020.90 42574.27 37161.19 40859.16 35250.61 40074.15 38847.19 31275.78 38817.31 41635.07 41070.12 398
pmmvs357.79 36254.26 36768.37 36964.02 41056.72 32375.12 36665.17 40240.20 40252.93 39869.86 39820.36 40775.48 39045.45 38155.25 39572.90 396
SSC-MVS53.88 36853.59 36854.75 39372.87 39619.59 42673.84 37360.53 41057.58 36649.18 40473.45 39146.34 32175.47 39116.20 41932.28 41269.20 399
N_pmnet52.79 37153.26 36951.40 39578.99 3677.68 42969.52 3873.89 42851.63 38757.01 39174.98 38740.83 35965.96 41037.78 39764.67 37580.56 382
MVStest156.63 36452.76 37068.25 37161.67 41253.25 36671.67 37868.90 39538.59 40550.59 40183.05 31925.08 39870.66 40236.76 39938.56 40880.83 379
FPMVS53.68 36951.64 37159.81 38465.08 40851.03 38069.48 38869.58 39141.46 40140.67 40872.32 39316.46 41270.00 40524.24 41265.42 37358.40 408
mvsany_test353.99 36751.45 37261.61 38255.51 41644.74 40263.52 40645.41 42143.69 39958.11 38876.45 38017.99 40963.76 41254.77 32947.59 40376.34 391
test_f52.09 37250.82 37355.90 38953.82 41942.31 40959.42 40958.31 41336.45 40856.12 39570.96 39612.18 41557.79 41553.51 33556.57 39067.60 400
new_pmnet50.91 37450.29 37452.78 39468.58 40334.94 41663.71 40556.63 41439.73 40344.95 40565.47 40021.93 40558.48 41434.98 40156.62 38964.92 402
APD_test153.31 37049.93 37563.42 38065.68 40750.13 38571.59 37966.90 39934.43 41040.58 40971.56 3958.65 42176.27 38334.64 40255.36 39363.86 404
LCM-MVSNet54.25 36649.68 37667.97 37353.73 42045.28 39966.85 39880.78 32935.96 40939.45 41062.23 4038.70 42078.06 37248.24 36651.20 40080.57 381
EGC-MVSNET52.07 37347.05 37767.14 37483.51 29360.71 27480.50 31167.75 3960.07 4230.43 42475.85 38524.26 40181.54 35628.82 40662.25 37959.16 406
test_vis3_rt49.26 37647.02 37856.00 38854.30 41745.27 40066.76 39948.08 41836.83 40744.38 40653.20 4117.17 42364.07 41156.77 32055.66 39158.65 407
ANet_high50.57 37546.10 37963.99 37848.67 42339.13 41270.99 38280.85 32861.39 33531.18 41257.70 40817.02 41173.65 39931.22 40515.89 42079.18 385
dongtai45.42 37945.38 38045.55 39773.36 39326.85 42167.72 39434.19 42354.15 37949.65 40356.41 41025.43 39762.94 41319.45 41428.09 41446.86 413
testf145.72 37741.96 38157.00 38656.90 41445.32 39766.14 40059.26 41126.19 41430.89 41360.96 4054.14 42470.64 40326.39 41046.73 40555.04 409
APD_test245.72 37741.96 38157.00 38656.90 41445.32 39766.14 40059.26 41126.19 41430.89 41360.96 4054.14 42470.64 40326.39 41046.73 40555.04 409
Gipumacopyleft45.18 38041.86 38355.16 39277.03 37551.52 37632.50 41680.52 33332.46 41227.12 41535.02 4169.52 41975.50 38922.31 41360.21 38638.45 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan39.70 38340.40 38437.58 40064.52 40926.98 41965.62 40233.02 42446.12 39542.79 40748.99 41324.10 40246.56 42112.16 42226.30 41539.20 414
PMVScopyleft37.38 2244.16 38140.28 38555.82 39040.82 42542.54 40865.12 40463.99 40534.43 41024.48 41657.12 4093.92 42676.17 38517.10 41755.52 39248.75 411
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 38238.86 38646.69 39653.84 41816.45 42748.61 41349.92 41637.49 40631.67 41160.97 4048.14 42256.42 41628.42 40730.72 41367.19 401
E-PMN31.77 38430.64 38735.15 40152.87 42127.67 41857.09 41147.86 41924.64 41616.40 42133.05 41711.23 41754.90 41714.46 42018.15 41822.87 417
EMVS30.81 38629.65 38834.27 40250.96 42225.95 42256.58 41246.80 42024.01 41715.53 42230.68 41812.47 41454.43 41812.81 42117.05 41922.43 418
test_method31.52 38529.28 38938.23 39927.03 4276.50 43020.94 41862.21 4074.05 42122.35 41952.50 41213.33 41347.58 41927.04 40934.04 41160.62 405
cdsmvs_eth3d_5k19.96 38826.61 3900.00 4080.00 4310.00 4330.00 41989.26 1840.00 4260.00 42788.61 18361.62 1690.00 4270.00 4260.00 4250.00 423
MVEpermissive26.22 2330.37 38725.89 39143.81 39844.55 42435.46 41528.87 41739.07 42218.20 41818.58 42040.18 4152.68 42747.37 42017.07 41823.78 41748.60 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 38921.40 39210.23 4054.82 42810.11 42834.70 41530.74 4261.48 42223.91 41826.07 41928.42 39413.41 42427.12 40815.35 4217.17 419
wuyk23d16.82 39015.94 39319.46 40458.74 41331.45 41739.22 4143.74 4296.84 4206.04 4232.70 4231.27 42824.29 42310.54 42314.40 4222.63 420
ab-mvs-re7.23 3919.64 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42786.72 2330.00 4310.00 4270.00 4260.00 4250.00 423
test1236.12 3928.11 3950.14 4060.06 4300.09 43171.05 3810.03 4310.04 4250.25 4261.30 4250.05 4290.03 4260.21 4250.01 4240.29 421
testmvs6.04 3938.02 3960.10 4070.08 4290.03 43269.74 3860.04 4300.05 4240.31 4251.68 4240.02 4300.04 4250.24 4240.02 4230.25 422
pcd_1.5k_mvsjas5.26 3947.02 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42663.15 1460.00 4270.00 4260.00 4250.00 423
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS42.58 40639.46 394
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 39
PC_three_145268.21 25492.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 11
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 39
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 431
eth-test0.00 431
ZD-MVS94.38 2572.22 4492.67 6770.98 19187.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
IU-MVS95.30 271.25 5992.95 5566.81 26592.39 688.94 1696.63 494.85 20
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6496.48 894.88 15
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1496.58 694.26 48
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
save fliter93.80 4072.35 4290.47 6691.17 12574.31 124
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 28
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 49
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
GSMVS88.96 252
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27388.96 252
sam_mvs50.01 287
ambc75.24 31973.16 39450.51 38463.05 40887.47 23464.28 36377.81 37417.80 41089.73 27657.88 30960.64 38485.49 329
MTGPAbinary92.02 93
test_post178.90 3345.43 42248.81 30685.44 33159.25 293
test_post5.46 42150.36 28584.24 339
patchmatchnet-post74.00 38951.12 27688.60 298
GG-mvs-BLEND75.38 31781.59 33255.80 33979.32 32569.63 39067.19 33873.67 39043.24 34488.90 29450.41 34984.50 18481.45 375
MTMP92.18 3432.83 425
gm-plane-assit81.40 33653.83 35962.72 32480.94 34592.39 20263.40 255
test9_res84.90 4695.70 2692.87 113
TEST993.26 5272.96 2588.75 12091.89 10168.44 25185.00 6393.10 7074.36 2895.41 73
test_893.13 5472.57 3588.68 12591.84 10568.69 24684.87 6793.10 7074.43 2695.16 83
agg_prior282.91 7395.45 2992.70 116
agg_prior92.85 6271.94 5091.78 10884.41 7894.93 94
TestCases79.58 25785.15 25863.62 22679.83 34262.31 32760.32 38086.73 23132.02 38688.96 29250.28 35271.57 34986.15 317
test_prior472.60 3489.01 111
test_prior288.85 11775.41 9884.91 6593.54 5974.28 2983.31 6795.86 20
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 60
旧先验286.56 19458.10 36187.04 4588.98 29074.07 158
新几何286.29 203
新几何183.42 15493.13 5470.71 7485.48 26757.43 36781.80 11691.98 9463.28 14192.27 20864.60 24792.99 7087.27 294
旧先验191.96 7465.79 18486.37 25593.08 7469.31 8392.74 7388.74 263
无先验87.48 16388.98 19660.00 34494.12 12567.28 22488.97 251
原ACMM286.86 183
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31081.09 12691.57 10866.06 11995.45 6867.19 22694.82 4688.81 258
test22291.50 8068.26 12984.16 25683.20 30154.63 37879.74 13991.63 10558.97 20191.42 9186.77 307
testdata291.01 25662.37 265
segment_acmp73.08 38
testdata79.97 24790.90 9164.21 21784.71 27459.27 35185.40 5892.91 7662.02 16589.08 28868.95 20991.37 9286.63 311
testdata184.14 25775.71 92
test1286.80 5292.63 6770.70 7591.79 10782.71 10771.67 5496.16 4794.50 5193.54 84
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior592.44 7795.38 7578.71 11086.32 16291.33 160
plane_prior491.00 130
plane_prior368.60 12178.44 3178.92 151
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4086.16 166
n20.00 432
nn0.00 432
door-mid69.98 389
lessismore_v078.97 26681.01 34357.15 31765.99 40061.16 37782.82 32539.12 36691.34 24559.67 28946.92 40488.43 270
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 9976.64 20491.51 10954.29 23894.91 9578.44 11283.78 19689.83 224
test1192.23 87
door69.44 392
HQP5-MVS66.98 163
HQP-NCC89.33 13589.17 10376.41 7777.23 189
ACMP_Plane89.33 13589.17 10376.41 7777.23 189
BP-MVS77.47 122
HQP4-MVS77.24 18895.11 8791.03 170
HQP3-MVS92.19 9085.99 170
HQP2-MVS60.17 197
NP-MVS89.62 12168.32 12790.24 142
MDTV_nov1_ep13_2view37.79 41375.16 36455.10 37666.53 34749.34 29753.98 33287.94 278
ACMMP++_ref81.95 227
ACMMP++81.25 232
Test By Simon64.33 133
ITE_SJBPF78.22 28181.77 32960.57 27683.30 29669.25 23167.54 33387.20 22236.33 37887.28 31254.34 33174.62 32386.80 306
DeepMVS_CXcopyleft27.40 40340.17 42626.90 42024.59 42717.44 41923.95 41748.61 4149.77 41826.48 42218.06 41524.47 41628.83 416