This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
APDe-MVS89.15 689.63 687.73 2694.49 1871.69 5093.83 493.96 1375.70 8791.06 1696.03 176.84 1497.03 1589.09 695.65 2794.47 29
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10392.29 795.97 274.28 2997.24 1188.58 1396.91 194.87 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072695.27 571.25 5593.60 694.11 677.33 4692.81 395.79 380.98 9
DVP-MVScopyleft89.60 390.35 387.33 3895.27 571.25 5593.49 992.73 5977.33 4692.12 995.78 480.98 997.40 789.08 796.41 1293.33 76
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3192.12 995.78 481.46 797.40 789.42 496.57 794.67 22
DVP-MVS++90.23 191.01 187.89 2294.34 2771.25 5595.06 194.23 378.38 3192.78 495.74 682.45 397.49 389.42 496.68 294.95 8
test_one_060195.07 771.46 5394.14 578.27 3392.05 1195.74 680.83 11
SED-MVS90.08 290.85 287.77 2495.30 270.98 6193.57 794.06 1077.24 4893.10 195.72 882.99 197.44 589.07 996.63 494.88 12
test_241102_TWO94.06 1077.24 4892.78 495.72 881.26 897.44 589.07 996.58 694.26 39
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3091.59 4194.10 875.90 8392.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_ONE95.30 270.98 6194.06 1077.17 5193.10 195.39 1182.99 197.27 10
MP-MVS-pluss87.67 1987.72 1987.54 3493.64 4472.04 4789.80 7793.50 2575.17 9686.34 3395.29 1270.86 5396.00 4788.78 1296.04 1694.58 25
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1188.74 1187.64 3392.78 6171.95 4892.40 2394.74 275.71 8589.16 1995.10 1375.65 2196.19 4187.07 2196.01 1794.79 19
ACMMP_NAP88.05 1588.08 1687.94 1793.70 4173.05 2190.86 5493.59 2376.27 7788.14 2395.09 1471.06 5296.67 2787.67 1696.37 1494.09 44
MTAPA87.23 2687.00 2787.90 2094.18 3574.25 586.58 17492.02 8579.45 1785.88 3594.80 1568.07 7796.21 4086.69 2395.34 3193.23 79
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1088.10 2494.80 1573.76 3397.11 1387.51 1895.82 2194.90 11
Skip Steuart: Steuart Systems R&D Blog.
9.1488.26 1492.84 6091.52 4494.75 173.93 12188.57 2294.67 1775.57 2295.79 5186.77 2295.76 23
SR-MVS86.73 3286.67 3386.91 4494.11 3772.11 4692.37 2792.56 6774.50 10886.84 3194.65 1867.31 8595.77 5284.80 3392.85 6592.84 93
region2R87.42 2387.20 2688.09 1294.63 1473.55 1293.03 1493.12 3776.73 6684.45 5894.52 1969.09 7196.70 2584.37 3894.83 4294.03 47
ACMMPR87.44 2187.23 2588.08 1394.64 1373.59 1193.04 1293.20 3476.78 6384.66 5494.52 1968.81 7596.65 2884.53 3694.90 3894.00 48
APD-MVScopyleft87.44 2187.52 2187.19 4094.24 3272.39 3891.86 3992.83 5573.01 14288.58 2194.52 1973.36 3496.49 3484.26 3995.01 3592.70 95
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD-MVS_3200maxsize85.97 4385.88 4586.22 5592.69 6369.53 8691.93 3692.99 4573.54 13185.94 3494.51 2265.80 10295.61 5583.04 5292.51 6993.53 71
CP-MVS87.11 2886.92 3087.68 3294.20 3473.86 793.98 392.82 5876.62 6883.68 7194.46 2367.93 7895.95 5084.20 4294.39 5193.23 79
SR-MVS-dyc-post85.77 4685.61 4886.23 5493.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2465.00 11095.56 5682.75 5591.87 7792.50 103
RE-MVS-def85.48 4993.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2463.87 11682.75 5591.87 7792.50 103
HFP-MVS87.58 2087.47 2287.94 1794.58 1673.54 1493.04 1293.24 3376.78 6384.91 4794.44 2670.78 5496.61 3084.53 3694.89 3993.66 59
PGM-MVS86.68 3486.27 3887.90 2094.22 3373.38 1790.22 6893.04 3875.53 8983.86 6894.42 2767.87 8096.64 2982.70 5994.57 4793.66 59
MP-MVScopyleft87.71 1887.64 2087.93 1994.36 2673.88 692.71 2292.65 6477.57 3983.84 6994.40 2872.24 4296.28 3885.65 2595.30 3393.62 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1787.85 1888.20 1194.39 2473.33 1893.03 1493.81 1776.81 6185.24 4294.32 2971.76 4696.93 1785.53 2695.79 2294.32 36
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 987.78 2794.27 3075.89 1996.81 2187.45 1996.44 993.05 86
mPP-MVS86.67 3586.32 3787.72 2894.41 2273.55 1292.74 2092.22 8076.87 6082.81 8494.25 3166.44 9296.24 3982.88 5494.28 5493.38 73
DeepC-MVS79.81 287.08 3086.88 3287.69 3191.16 8072.32 4290.31 6693.94 1477.12 5382.82 8394.23 3272.13 4497.09 1484.83 3295.37 3093.65 63
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS87.18 2786.91 3188.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7294.17 3367.45 8396.60 3183.06 5094.50 4894.07 45
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 891.35 1494.16 3478.35 1396.77 2289.59 394.22 5694.67 22
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4892.24 6869.03 9389.57 8393.39 3077.53 4389.79 1894.12 3578.98 1296.58 3385.66 2495.72 2494.58 25
HPM-MVS_fast85.35 5484.95 5886.57 5193.69 4270.58 7392.15 3491.62 10373.89 12282.67 8694.09 3662.60 13195.54 5880.93 7092.93 6493.57 68
ZD-MVS94.38 2572.22 4392.67 6170.98 17187.75 2894.07 3774.01 3296.70 2584.66 3494.84 41
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 5993.00 4380.90 588.06 2594.06 3876.43 1696.84 1988.48 1495.99 1894.34 35
OPU-MVS89.06 394.62 1575.42 493.57 794.02 3982.45 396.87 1883.77 4596.48 894.88 12
PC_three_145268.21 22592.02 1294.00 4082.09 595.98 4984.58 3596.68 294.95 8
SD-MVS88.06 1388.50 1386.71 4992.60 6672.71 2891.81 4093.19 3577.87 3490.32 1794.00 4074.83 2393.78 13487.63 1794.27 5593.65 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS87.42 2387.26 2387.89 2294.12 3672.97 2392.39 2593.43 2876.89 5984.68 5193.99 4270.67 5696.82 2084.18 4395.01 3593.90 51
HPM-MVScopyleft87.11 2886.98 2887.50 3693.88 3972.16 4492.19 3293.33 3176.07 8083.81 7093.95 4369.77 6596.01 4685.15 2794.66 4494.32 36
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1688.11 1587.72 2893.68 4372.13 4591.41 4592.35 7474.62 10788.90 2093.85 4475.75 2096.00 4787.80 1594.63 4595.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft85.89 4585.39 5087.38 3793.59 4572.63 3292.74 2093.18 3676.78 6380.73 10793.82 4564.33 11296.29 3782.67 6090.69 9193.23 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior288.85 10275.41 9184.91 4793.54 4674.28 2983.31 4895.86 20
VDDNet81.52 10380.67 10684.05 11590.44 9564.13 20089.73 8085.91 24071.11 16883.18 7793.48 4750.54 25393.49 14873.40 14188.25 11994.54 28
CDPH-MVS85.76 4785.29 5487.17 4193.49 4771.08 5988.58 11392.42 7268.32 22484.61 5593.48 4772.32 4196.15 4379.00 8595.43 2994.28 38
NCCC88.06 1388.01 1788.24 1094.41 2273.62 1091.22 5092.83 5581.50 385.79 3793.47 4973.02 3997.00 1684.90 2994.94 3794.10 43
3Dnovator+77.84 485.48 5084.47 6288.51 691.08 8173.49 1593.18 1193.78 1880.79 676.66 18193.37 5060.40 17496.75 2477.20 10493.73 6095.29 4
DeepC-MVS_fast79.65 386.91 3186.62 3487.76 2593.52 4672.37 4091.26 4693.04 3876.62 6884.22 6293.36 5171.44 5096.76 2380.82 7295.33 3294.16 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS83.01 8082.36 8184.96 7891.02 8366.40 15088.91 9988.11 20077.57 3984.39 6093.29 5252.19 23093.91 12977.05 10688.70 11394.57 27
UA-Net85.08 5784.96 5785.45 6692.07 7068.07 11989.78 7890.86 12582.48 184.60 5693.20 5369.35 6895.22 7271.39 15990.88 9093.07 85
TEST993.26 5072.96 2488.75 10691.89 9368.44 22285.00 4593.10 5474.36 2895.41 65
train_agg86.43 3786.20 3987.13 4293.26 5072.96 2488.75 10691.89 9368.69 21885.00 4593.10 5474.43 2695.41 6584.97 2895.71 2593.02 88
test_893.13 5272.57 3488.68 11191.84 9768.69 21884.87 4993.10 5474.43 2695.16 74
LFMVS81.82 9581.23 9683.57 13191.89 7363.43 21689.84 7481.85 29277.04 5683.21 7693.10 5452.26 22993.43 15371.98 15489.95 10193.85 52
旧先验191.96 7165.79 16586.37 23493.08 5869.31 7092.74 6688.74 235
dcpmvs_285.63 4986.15 4284.06 11391.71 7564.94 18486.47 17791.87 9573.63 12786.60 3293.02 5976.57 1591.87 21183.36 4792.15 7395.35 2
testdata79.97 22790.90 8664.21 19884.71 25259.27 31285.40 4092.91 6062.02 14489.08 26468.95 18491.37 8486.63 280
MCST-MVS87.37 2587.25 2487.73 2694.53 1772.46 3789.82 7593.82 1673.07 14084.86 5092.89 6176.22 1796.33 3684.89 3195.13 3494.40 32
Vis-MVSNetpermissive83.46 7082.80 7685.43 6790.25 9868.74 10290.30 6790.13 14476.33 7680.87 10692.89 6161.00 16394.20 11672.45 15390.97 8893.35 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS83.73 6483.33 6884.92 8193.28 4970.86 6792.09 3590.38 13468.75 21779.57 11892.83 6360.60 17093.04 17380.92 7191.56 8290.86 154
3Dnovator76.31 583.38 7382.31 8286.59 5087.94 17772.94 2790.64 5792.14 8477.21 5075.47 20492.83 6358.56 18194.72 9773.24 14492.71 6792.13 117
MSLP-MVS++85.43 5285.76 4784.45 9691.93 7270.24 7490.71 5692.86 5377.46 4584.22 6292.81 6567.16 8792.94 17580.36 7794.35 5390.16 178
test250677.30 20576.49 20179.74 23290.08 10252.02 33687.86 13963.10 36474.88 10080.16 11392.79 6638.29 33292.35 19368.74 18792.50 7094.86 15
ECVR-MVScopyleft79.61 14479.26 13580.67 21490.08 10254.69 32087.89 13777.44 32774.88 10080.27 11092.79 6648.96 27492.45 18768.55 18892.50 7094.86 15
test111179.43 15179.18 13980.15 22489.99 10753.31 33387.33 15177.05 33075.04 9780.23 11292.77 6848.97 27392.33 19568.87 18592.40 7294.81 18
MG-MVS83.41 7183.45 6683.28 13992.74 6262.28 23488.17 12689.50 15975.22 9481.49 9792.74 6966.75 8895.11 7872.85 14791.58 8192.45 106
casdiffmvs_mvgpermissive85.99 4286.09 4485.70 6487.65 18967.22 13888.69 11093.04 3879.64 1685.33 4192.54 7073.30 3594.50 10583.49 4691.14 8795.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 6684.54 6180.99 20790.06 10665.83 16284.21 23488.74 19171.60 16085.01 4492.44 7174.51 2583.50 31282.15 6292.15 7393.64 65
casdiffmvspermissive85.11 5685.14 5585.01 7687.20 20465.77 16687.75 14092.83 5577.84 3584.36 6192.38 7272.15 4393.93 12881.27 6890.48 9295.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS86.69 3386.95 2985.90 6190.76 9067.57 12992.83 1793.30 3279.67 1584.57 5792.27 7371.47 4995.02 8484.24 4193.46 6195.13 5
baseline84.93 5884.98 5684.80 8687.30 20265.39 17587.30 15292.88 5277.62 3784.04 6792.26 7471.81 4593.96 12281.31 6790.30 9495.03 7
QAPM80.88 11379.50 12885.03 7588.01 17668.97 9691.59 4192.00 8766.63 24075.15 21992.16 7557.70 18895.45 6163.52 22588.76 11290.66 161
IS-MVSNet83.15 7582.81 7584.18 10689.94 10963.30 21891.59 4188.46 19779.04 2379.49 11992.16 7565.10 10794.28 11067.71 19491.86 7994.95 8
新几何183.42 13493.13 5270.71 6985.48 24557.43 32581.80 9491.98 7763.28 12092.27 19664.60 22292.99 6387.27 263
OpenMVScopyleft72.83 1079.77 14278.33 15784.09 11085.17 23069.91 8190.57 5890.97 12066.70 23672.17 25391.91 7854.70 20993.96 12261.81 24490.95 8988.41 242
PHI-MVS86.43 3786.17 4187.24 3990.88 8770.96 6392.27 3194.07 972.45 14585.22 4391.90 7969.47 6796.42 3583.28 4995.94 1994.35 34
VNet82.21 8782.41 7981.62 18790.82 8860.93 24884.47 22589.78 15276.36 7584.07 6691.88 8064.71 11190.26 24570.68 16588.89 10993.66 59
DROMVSNet86.01 4186.38 3684.91 8289.31 12966.27 15392.32 2993.63 2179.37 1884.17 6491.88 8069.04 7495.43 6383.93 4493.77 5993.01 89
OPM-MVS83.50 6982.95 7385.14 7288.79 14870.95 6489.13 9491.52 10677.55 4280.96 10591.75 8260.71 16694.50 10579.67 8286.51 14089.97 194
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 11679.76 12283.96 12285.60 22568.78 9983.54 24890.50 13170.66 17776.71 18091.66 8360.69 16791.26 22676.94 10781.58 20091.83 123
EPNet83.72 6582.92 7486.14 5784.22 24669.48 8791.05 5385.27 24681.30 476.83 17691.65 8466.09 9795.56 5676.00 11793.85 5893.38 73
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS82.69 8281.97 8984.85 8388.75 15067.42 13287.98 13190.87 12474.92 9979.72 11691.65 8462.19 14193.96 12275.26 12586.42 14193.16 83
test22291.50 7768.26 11584.16 23583.20 28054.63 33679.74 11591.63 8658.97 17991.42 8386.77 276
MVS_111021_HR85.14 5584.75 5986.32 5391.65 7672.70 2985.98 18990.33 13876.11 7982.08 8991.61 8771.36 5194.17 11881.02 6992.58 6892.08 118
原ACMM184.35 10093.01 5768.79 9892.44 6963.96 27381.09 10391.57 8866.06 9895.45 6167.19 20194.82 4388.81 232
LPG-MVS_test82.08 8981.27 9584.50 9389.23 13368.76 10090.22 6891.94 9175.37 9276.64 18291.51 8954.29 21394.91 8678.44 9183.78 17089.83 199
LGP-MVS_train84.50 9389.23 13368.76 10091.94 9175.37 9276.64 18291.51 8954.29 21394.91 8678.44 9183.78 17089.83 199
XVG-OURS80.41 12979.23 13683.97 12185.64 22469.02 9483.03 25890.39 13371.09 16977.63 15991.49 9154.62 21191.35 22475.71 11983.47 17891.54 129
alignmvs85.48 5085.32 5285.96 6089.51 11869.47 8889.74 7992.47 6876.17 7887.73 2991.46 9270.32 5993.78 13481.51 6588.95 10894.63 24
CANet86.45 3686.10 4387.51 3590.09 10170.94 6589.70 8192.59 6681.78 281.32 9891.43 9370.34 5897.23 1284.26 3993.36 6294.37 33
h-mvs3383.15 7582.19 8386.02 5990.56 9270.85 6888.15 12889.16 17176.02 8184.67 5291.39 9461.54 14995.50 5982.71 5775.48 27391.72 126
nrg03083.88 6283.53 6584.96 7886.77 21269.28 9290.46 6392.67 6174.79 10282.95 7991.33 9572.70 4093.09 16980.79 7479.28 23092.50 103
canonicalmvs85.91 4485.87 4686.04 5889.84 11169.44 9190.45 6493.00 4376.70 6788.01 2691.23 9673.28 3693.91 12981.50 6688.80 11194.77 20
DPM-MVS84.93 5884.29 6386.84 4590.20 9973.04 2287.12 15693.04 3869.80 19182.85 8291.22 9773.06 3896.02 4576.72 11294.63 4591.46 135
Anonymous20240521178.25 17977.01 18781.99 18191.03 8260.67 25384.77 21783.90 26670.65 17880.00 11491.20 9841.08 32291.43 22265.21 21685.26 15493.85 52
CS-MVS-test86.29 4086.48 3585.71 6391.02 8367.21 13992.36 2893.78 1878.97 2683.51 7591.20 9870.65 5795.15 7581.96 6394.89 3994.77 20
Anonymous2024052980.19 13678.89 14484.10 10890.60 9164.75 18788.95 9890.90 12265.97 24880.59 10891.17 10049.97 25893.73 14069.16 18282.70 18993.81 55
EPP-MVSNet83.40 7283.02 7284.57 9090.13 10064.47 19392.32 2990.73 12674.45 11179.35 12191.10 10169.05 7395.12 7672.78 14887.22 12994.13 42
TAPA-MVS73.13 979.15 15977.94 16482.79 16689.59 11462.99 22788.16 12791.51 10765.77 24977.14 17391.09 10260.91 16493.21 15850.26 32187.05 13192.17 116
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG86.41 3986.19 4087.07 4392.91 5872.48 3690.81 5593.56 2473.95 11983.16 7891.07 10375.94 1895.19 7379.94 8194.38 5293.55 69
FIs82.07 9082.42 7881.04 20688.80 14758.34 27288.26 12393.49 2676.93 5878.47 13991.04 10469.92 6392.34 19469.87 17584.97 15692.44 107
MVS_111021_LR82.61 8482.11 8484.11 10788.82 14571.58 5185.15 20986.16 23774.69 10480.47 10991.04 10462.29 13890.55 24380.33 7890.08 9990.20 177
DP-MVS Recon83.11 7882.09 8586.15 5694.44 1970.92 6688.79 10492.20 8170.53 17979.17 12391.03 10664.12 11496.03 4468.39 19190.14 9791.50 132
HQP_MVS83.64 6783.14 6985.14 7290.08 10268.71 10491.25 4892.44 6979.12 2178.92 12791.00 10760.42 17295.38 6778.71 8986.32 14291.33 136
plane_prior491.00 107
FC-MVSNet-test81.52 10382.02 8780.03 22688.42 16255.97 30987.95 13393.42 2977.10 5477.38 16390.98 10969.96 6291.79 21268.46 19084.50 16192.33 108
Vis-MVSNet (Re-imp)78.36 17878.45 15278.07 25888.64 15451.78 34086.70 17179.63 31474.14 11775.11 22090.83 11061.29 15789.75 25258.10 27791.60 8092.69 97
114514_t80.68 12279.51 12784.20 10594.09 3867.27 13689.64 8291.11 11858.75 31774.08 23490.72 11158.10 18495.04 8369.70 17689.42 10690.30 174
PAPM_NR83.02 7982.41 7984.82 8492.47 6766.37 15187.93 13591.80 9873.82 12377.32 16590.66 11267.90 7994.90 8970.37 16889.48 10593.19 82
LS3D76.95 21174.82 22483.37 13790.45 9467.36 13589.15 9386.94 22661.87 29369.52 28190.61 11351.71 24194.53 10346.38 34186.71 13788.21 244
mvsmamba81.69 9880.74 10484.56 9187.45 19666.72 14691.26 4685.89 24174.66 10578.23 14590.56 11454.33 21294.91 8680.73 7583.54 17792.04 121
VPNet78.69 17178.66 14878.76 24788.31 16555.72 31184.45 22886.63 23076.79 6278.26 14490.55 11559.30 17789.70 25466.63 20577.05 24990.88 153
UniMVSNet_ETH3D79.10 16178.24 15981.70 18686.85 20960.24 26087.28 15388.79 18674.25 11476.84 17590.53 11649.48 26491.56 21867.98 19282.15 19393.29 77
ACMP74.13 681.51 10580.57 10784.36 9989.42 12168.69 10789.97 7291.50 11074.46 11075.04 22390.41 11753.82 21894.54 10277.56 10082.91 18489.86 198
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 13078.84 14585.01 7687.71 18668.99 9583.65 24391.46 11163.00 27977.77 15790.28 11866.10 9695.09 8261.40 24788.22 12090.94 152
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS89.62 11368.32 11390.24 119
HQP-MVS82.61 8482.02 8784.37 9889.33 12666.98 14289.17 8992.19 8276.41 7077.23 16890.23 12060.17 17595.11 7877.47 10185.99 14991.03 148
PS-MVSNAJss82.07 9081.31 9484.34 10186.51 21567.27 13689.27 8791.51 10771.75 15479.37 12090.22 12163.15 12594.27 11177.69 9982.36 19291.49 133
TSAR-MVS + GP.85.71 4885.33 5186.84 4591.34 7872.50 3589.07 9587.28 22076.41 7085.80 3690.22 12174.15 3195.37 7081.82 6491.88 7692.65 99
RRT_MVS80.35 13279.22 13783.74 12787.63 19065.46 17291.08 5288.92 18473.82 12376.44 18790.03 12349.05 27294.25 11576.84 10879.20 23291.51 130
TranMVSNet+NR-MVSNet80.84 11480.31 11382.42 17487.85 17962.33 23287.74 14191.33 11280.55 777.99 15389.86 12465.23 10692.62 18167.05 20375.24 28292.30 110
diffmvspermissive82.10 8881.88 9082.76 16983.00 27363.78 20683.68 24289.76 15372.94 14382.02 9089.85 12565.96 10190.79 23982.38 6187.30 12893.71 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet79.61 14478.44 15383.14 14789.38 12465.93 15984.95 21487.15 22373.56 13078.19 14789.79 12656.67 19893.36 15459.53 26186.74 13690.13 180
GeoE81.71 9781.01 10183.80 12689.51 11864.45 19488.97 9788.73 19271.27 16578.63 13489.76 12766.32 9493.20 16169.89 17486.02 14893.74 57
AdaColmapbinary80.58 12779.42 12984.06 11393.09 5468.91 9789.36 8688.97 18169.27 20175.70 20189.69 12857.20 19595.77 5263.06 23088.41 11887.50 258
ACMM73.20 880.78 12179.84 12183.58 13089.31 12968.37 11289.99 7191.60 10470.28 18377.25 16689.66 12953.37 22193.53 14774.24 13382.85 18588.85 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA78.08 18576.79 19481.97 18290.40 9671.07 6087.59 14484.55 25566.03 24772.38 25189.64 13057.56 19086.04 29459.61 26083.35 17988.79 233
test_yl81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16386.90 13392.52 101
DCV-MVSNet81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16386.90 13392.52 101
EI-MVSNet-Vis-set84.19 6183.81 6485.31 6888.18 16867.85 12287.66 14289.73 15580.05 1282.95 7989.59 13370.74 5594.82 9380.66 7684.72 15993.28 78
PAPR81.66 10180.89 10383.99 12090.27 9764.00 20186.76 17091.77 10168.84 21677.13 17489.50 13467.63 8194.88 9167.55 19688.52 11693.09 84
jajsoiax79.29 15677.96 16383.27 14084.68 24066.57 14989.25 8890.16 14369.20 20575.46 20689.49 13545.75 29693.13 16776.84 10880.80 20990.11 182
MVSFormer82.85 8182.05 8685.24 7087.35 19770.21 7590.50 6090.38 13468.55 22081.32 9889.47 13661.68 14693.46 15178.98 8690.26 9592.05 119
jason81.39 10680.29 11484.70 8886.63 21469.90 8285.95 19086.77 22863.24 27581.07 10489.47 13661.08 16292.15 20078.33 9490.07 10092.05 119
jason: jason.
mvs_tets79.13 16077.77 17283.22 14484.70 23966.37 15189.17 8990.19 14269.38 19975.40 20989.46 13844.17 30393.15 16576.78 11080.70 21190.14 179
UGNet80.83 11579.59 12684.54 9288.04 17468.09 11889.42 8488.16 19976.95 5776.22 19189.46 13849.30 26793.94 12568.48 18990.31 9391.60 127
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet80.60 12580.55 10880.76 21288.07 17360.80 25186.86 16491.58 10575.67 8880.24 11189.45 14063.34 11990.25 24670.51 16779.22 23191.23 140
MVS_Test83.15 7583.06 7183.41 13686.86 20863.21 22086.11 18792.00 8774.31 11282.87 8189.44 14170.03 6193.21 15877.39 10388.50 11793.81 55
EI-MVSNet-UG-set83.81 6383.38 6785.09 7487.87 17867.53 13087.44 14889.66 15679.74 1482.23 8889.41 14270.24 6094.74 9679.95 8083.92 16992.99 90
RPSCF73.23 25371.46 25478.54 25182.50 28459.85 26282.18 26382.84 28458.96 31471.15 26389.41 14245.48 29984.77 30458.82 27071.83 31191.02 150
bld_raw_dy_0_6477.29 20675.98 20881.22 20085.04 23665.47 17188.14 12977.56 32469.20 20573.77 23689.40 14442.24 31688.85 27176.78 11081.64 19989.33 212
UniMVSNet_NR-MVSNet81.88 9381.54 9382.92 15888.46 16063.46 21487.13 15592.37 7380.19 1078.38 14089.14 14571.66 4893.05 17170.05 17176.46 25892.25 112
tttt051779.40 15377.91 16583.90 12588.10 17163.84 20488.37 12084.05 26471.45 16376.78 17889.12 14649.93 26194.89 9070.18 17083.18 18292.96 91
DU-MVS81.12 11080.52 10982.90 15987.80 18263.46 21487.02 15991.87 9579.01 2478.38 14089.07 14765.02 10893.05 17170.05 17176.46 25892.20 114
NR-MVSNet80.23 13479.38 13082.78 16787.80 18263.34 21786.31 18191.09 11979.01 2472.17 25389.07 14767.20 8692.81 18066.08 21075.65 26992.20 114
DELS-MVS85.41 5385.30 5385.77 6288.49 15867.93 12185.52 20693.44 2778.70 2783.63 7489.03 14974.57 2495.71 5480.26 7994.04 5793.66 59
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
iter_conf_final80.63 12379.35 13284.46 9589.36 12567.70 12689.85 7384.49 25673.19 13878.30 14388.94 15045.98 29194.56 10079.59 8384.48 16391.11 143
iter_conf0580.00 14078.70 14683.91 12487.84 18065.83 16288.84 10384.92 25171.61 15978.70 13088.94 15043.88 30594.56 10079.28 8484.28 16691.33 136
baseline176.98 21076.75 19777.66 26388.13 16955.66 31285.12 21081.89 29073.04 14176.79 17788.90 15262.43 13687.78 28363.30 22971.18 31589.55 208
DP-MVS76.78 21374.57 22683.42 13493.29 4869.46 9088.55 11483.70 26863.98 27270.20 26988.89 15354.01 21794.80 9446.66 33881.88 19786.01 290
ab-mvs79.51 14778.97 14381.14 20388.46 16060.91 24983.84 24089.24 16870.36 18179.03 12488.87 15463.23 12390.21 24765.12 21782.57 19092.28 111
PEN-MVS77.73 19577.69 17677.84 26087.07 20753.91 32787.91 13691.18 11577.56 4173.14 24288.82 15561.23 15889.17 26259.95 25772.37 30690.43 170
tt080578.73 16977.83 16881.43 19285.17 23060.30 25989.41 8590.90 12271.21 16677.17 17288.73 15646.38 28693.21 15872.57 15178.96 23390.79 155
test_djsdf80.30 13379.32 13383.27 14083.98 25165.37 17690.50 6090.38 13468.55 22076.19 19288.70 15756.44 19993.46 15178.98 8680.14 21990.97 151
PAPM77.68 19876.40 20481.51 19087.29 20361.85 23983.78 24189.59 15764.74 26071.23 26188.70 15762.59 13293.66 14152.66 30887.03 13289.01 222
DTE-MVSNet76.99 20976.80 19377.54 26786.24 21753.06 33587.52 14590.66 12777.08 5572.50 24888.67 15960.48 17189.52 25657.33 28470.74 31790.05 189
PS-CasMVS78.01 18978.09 16177.77 26287.71 18654.39 32488.02 13091.22 11377.50 4473.26 24088.64 16060.73 16588.41 27661.88 24273.88 29590.53 167
cdsmvs_eth3d_5k19.96 34226.61 3440.00 3620.00 3850.00 3860.00 37389.26 1670.00 3800.00 38188.61 16161.62 1480.00 3810.00 3790.00 3790.00 377
lupinMVS81.39 10680.27 11584.76 8787.35 19770.21 7585.55 20286.41 23262.85 28281.32 9888.61 16161.68 14692.24 19878.41 9390.26 9591.83 123
F-COLMAP76.38 22174.33 23182.50 17389.28 13166.95 14588.41 11689.03 17664.05 27066.83 30588.61 16146.78 28492.89 17657.48 28178.55 23487.67 252
mvs_anonymous79.42 15279.11 14080.34 22084.45 24357.97 27882.59 26087.62 21367.40 23176.17 19588.56 16468.47 7689.59 25570.65 16686.05 14793.47 72
CP-MVSNet78.22 18078.34 15677.84 26087.83 18154.54 32287.94 13491.17 11677.65 3673.48 23888.49 16562.24 14088.43 27562.19 23874.07 29190.55 166
PVSNet_Blended_VisFu82.62 8381.83 9184.96 7890.80 8969.76 8488.74 10891.70 10269.39 19878.96 12588.46 16665.47 10494.87 9274.42 13088.57 11490.24 176
CANet_DTU80.61 12479.87 12082.83 16185.60 22563.17 22387.36 14988.65 19376.37 7475.88 19888.44 16753.51 22093.07 17073.30 14289.74 10392.25 112
PLCcopyleft70.83 1178.05 18776.37 20583.08 15091.88 7467.80 12388.19 12589.46 16064.33 26669.87 27888.38 16853.66 21993.58 14258.86 26982.73 18787.86 249
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS79.49 14879.22 13780.27 22288.79 14858.35 27185.06 21188.61 19578.56 2877.65 15888.34 16963.81 11890.66 24264.98 21977.22 24791.80 125
XXY-MVS75.41 23475.56 21374.96 29083.59 25757.82 28280.59 28183.87 26766.54 24174.93 22588.31 17063.24 12280.09 32762.16 23976.85 25386.97 272
Effi-MVS+83.62 6883.08 7085.24 7088.38 16367.45 13188.89 10089.15 17275.50 9082.27 8788.28 17169.61 6694.45 10777.81 9887.84 12193.84 54
API-MVS81.99 9281.23 9684.26 10490.94 8570.18 8091.10 5189.32 16371.51 16278.66 13388.28 17165.26 10595.10 8164.74 22191.23 8687.51 257
thisisatest053079.40 15377.76 17384.31 10287.69 18865.10 18187.36 14984.26 26270.04 18677.42 16288.26 17349.94 25994.79 9570.20 16984.70 16093.03 87
hse-mvs281.72 9680.94 10284.07 11288.72 15167.68 12785.87 19387.26 22176.02 8184.67 5288.22 17461.54 14993.48 14982.71 5773.44 30091.06 146
xiu_mvs_v1_base_debu80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
xiu_mvs_v1_base80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
xiu_mvs_v1_base_debi80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
UniMVSNet (Re)81.60 10281.11 9883.09 14988.38 16364.41 19587.60 14393.02 4278.42 3078.56 13688.16 17569.78 6493.26 15769.58 17876.49 25791.60 127
AUN-MVS79.21 15877.60 17884.05 11588.71 15267.61 12885.84 19587.26 22169.08 20977.23 16888.14 17953.20 22393.47 15075.50 12473.45 29991.06 146
Anonymous2023121178.97 16577.69 17682.81 16390.54 9364.29 19790.11 7091.51 10765.01 25876.16 19688.13 18050.56 25293.03 17469.68 17777.56 24591.11 143
pm-mvs177.25 20776.68 19978.93 24584.22 24658.62 27086.41 17888.36 19871.37 16473.31 23988.01 18161.22 15989.15 26364.24 22373.01 30389.03 221
LTVRE_ROB69.57 1376.25 22274.54 22881.41 19388.60 15564.38 19679.24 29589.12 17570.76 17569.79 28087.86 18249.09 27093.20 16156.21 29480.16 21786.65 279
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WTY-MVS75.65 22975.68 21175.57 28486.40 21656.82 29577.92 31082.40 28765.10 25576.18 19387.72 18363.13 12880.90 32460.31 25581.96 19589.00 224
TAMVS78.89 16777.51 18083.03 15387.80 18267.79 12484.72 21885.05 24967.63 22776.75 17987.70 18462.25 13990.82 23858.53 27387.13 13090.49 168
BH-untuned79.47 14978.60 14982.05 17989.19 13565.91 16086.07 18888.52 19672.18 15075.42 20887.69 18561.15 16093.54 14660.38 25486.83 13586.70 278
COLMAP_ROBcopyleft66.92 1773.01 25570.41 26780.81 21187.13 20665.63 16788.30 12284.19 26362.96 28063.80 32987.69 18538.04 33392.56 18446.66 33874.91 28584.24 312
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-074.26 24172.42 24879.80 23183.76 25559.59 26585.92 19286.64 22966.39 24266.96 30287.58 18739.46 32691.60 21665.76 21369.27 32288.22 243
FA-MVS(test-final)80.96 11279.91 11984.10 10888.30 16665.01 18284.55 22490.01 14773.25 13779.61 11787.57 18858.35 18394.72 9771.29 16086.25 14492.56 100
Baseline_NR-MVSNet78.15 18478.33 15777.61 26585.79 22156.21 30786.78 16885.76 24273.60 12977.93 15487.57 18865.02 10888.99 26567.14 20275.33 27987.63 253
WR-MVS_H78.51 17578.49 15178.56 25088.02 17556.38 30488.43 11592.67 6177.14 5273.89 23587.55 19066.25 9589.24 26158.92 26873.55 29890.06 188
EI-MVSNet80.52 12879.98 11782.12 17784.28 24463.19 22286.41 17888.95 18274.18 11678.69 13187.54 19166.62 8992.43 18872.57 15180.57 21390.74 159
CVMVSNet72.99 25672.58 24674.25 29884.28 24450.85 34686.41 17883.45 27544.56 35273.23 24187.54 19149.38 26585.70 29665.90 21178.44 23786.19 285
ACMH+68.96 1476.01 22574.01 23382.03 18088.60 15565.31 17788.86 10187.55 21470.25 18467.75 29387.47 19341.27 32093.19 16358.37 27475.94 26687.60 254
TransMVSNet (Re)75.39 23574.56 22777.86 25985.50 22757.10 29286.78 16886.09 23972.17 15171.53 25987.34 19463.01 12989.31 26056.84 28961.83 34287.17 265
GBi-Net78.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21187.28 19554.80 20591.11 22962.72 23279.57 22490.09 184
test178.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21187.28 19554.80 20591.11 22962.72 23279.57 22490.09 184
FMVSNet278.20 18277.21 18481.20 20187.60 19162.89 22887.47 14789.02 17771.63 15675.29 21687.28 19554.80 20591.10 23262.38 23679.38 22889.61 206
FMVSNet177.44 20176.12 20781.40 19486.81 21163.01 22488.39 11789.28 16470.49 18074.39 23187.28 19549.06 27191.11 22960.91 25178.52 23590.09 184
v2v48280.23 13479.29 13483.05 15283.62 25664.14 19987.04 15889.97 14873.61 12878.18 14887.22 19961.10 16193.82 13276.11 11476.78 25591.18 141
ITE_SJBPF78.22 25581.77 29460.57 25483.30 27669.25 20267.54 29587.20 20036.33 33887.28 28754.34 30074.62 28886.80 275
anonymousdsp78.60 17377.15 18582.98 15680.51 31267.08 14087.24 15489.53 15865.66 25175.16 21887.19 20152.52 22492.25 19777.17 10579.34 22989.61 206
MVSTER79.01 16377.88 16782.38 17583.07 27064.80 18684.08 23988.95 18269.01 21378.69 13187.17 20254.70 20992.43 18874.69 12780.57 21389.89 197
thres100view90076.50 21675.55 21479.33 24089.52 11756.99 29385.83 19683.23 27873.94 12076.32 18987.12 20351.89 23891.95 20648.33 32983.75 17289.07 215
thres600view776.50 21675.44 21579.68 23489.40 12257.16 29085.53 20483.23 27873.79 12576.26 19087.09 20451.89 23891.89 20948.05 33483.72 17590.00 190
XVG-ACMP-BASELINE76.11 22474.27 23281.62 18783.20 26664.67 18883.60 24689.75 15469.75 19371.85 25687.09 20432.78 34592.11 20169.99 17380.43 21588.09 245
HY-MVS69.67 1277.95 19077.15 18580.36 21987.57 19560.21 26183.37 25087.78 21166.11 24475.37 21087.06 20663.27 12190.48 24461.38 24882.43 19190.40 172
CHOSEN 1792x268877.63 19975.69 21083.44 13389.98 10868.58 11078.70 30287.50 21656.38 33075.80 20086.84 20758.67 18091.40 22361.58 24685.75 15390.34 173
v879.97 14179.02 14282.80 16484.09 24864.50 19287.96 13290.29 14174.13 11875.24 21786.81 20862.88 13093.89 13174.39 13175.40 27790.00 190
AllTest70.96 26968.09 28479.58 23785.15 23263.62 20784.58 22379.83 31162.31 28960.32 33986.73 20932.02 34688.96 26850.28 31971.57 31386.15 286
TestCases79.58 23785.15 23263.62 20779.83 31162.31 28960.32 33986.73 20932.02 34688.96 26850.28 31971.57 31386.15 286
LCM-MVSNet-Re77.05 20876.94 19077.36 26887.20 20451.60 34180.06 28680.46 30575.20 9567.69 29486.72 21162.48 13488.98 26663.44 22789.25 10791.51 130
1112_ss77.40 20376.43 20380.32 22189.11 14160.41 25883.65 24387.72 21262.13 29173.05 24386.72 21162.58 13389.97 24962.11 24180.80 20990.59 165
ab-mvs-re7.23 3459.64 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38186.72 2110.00 3850.00 3810.00 3790.00 3790.00 377
IterMVS-LS80.06 13779.38 13082.11 17885.89 22063.20 22186.79 16789.34 16274.19 11575.45 20786.72 21166.62 8992.39 19072.58 15076.86 25290.75 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH67.68 1675.89 22673.93 23481.77 18588.71 15266.61 14888.62 11289.01 17869.81 19066.78 30686.70 21541.95 31991.51 22155.64 29578.14 24187.17 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 22075.44 21579.27 24189.28 13158.09 27481.69 26887.07 22459.53 31072.48 24986.67 21661.30 15689.33 25960.81 25380.15 21890.41 171
FMVSNet377.88 19276.85 19280.97 20886.84 21062.36 23186.52 17688.77 18771.13 16775.34 21186.66 21754.07 21691.10 23262.72 23279.57 22489.45 209
pmmvs674.69 23873.39 23978.61 24981.38 30157.48 28786.64 17287.95 20564.99 25970.18 27086.61 21850.43 25489.52 25662.12 24070.18 31988.83 231
ET-MVSNet_ETH3D78.63 17276.63 20084.64 8986.73 21369.47 8885.01 21284.61 25469.54 19666.51 31186.59 21950.16 25691.75 21376.26 11384.24 16792.69 97
testgi66.67 30266.53 30067.08 33475.62 34141.69 36975.93 31876.50 33266.11 24465.20 32186.59 21935.72 34074.71 35343.71 34873.38 30184.84 305
CLD-MVS82.31 8681.65 9284.29 10388.47 15967.73 12585.81 19792.35 7475.78 8478.33 14286.58 22164.01 11594.35 10876.05 11687.48 12690.79 155
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v1079.74 14378.67 14782.97 15784.06 24964.95 18387.88 13890.62 12873.11 13975.11 22086.56 22261.46 15294.05 12173.68 13675.55 27189.90 196
CDS-MVSNet79.07 16277.70 17583.17 14687.60 19168.23 11684.40 23186.20 23667.49 23076.36 18886.54 22361.54 14990.79 23961.86 24387.33 12790.49 168
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base81.69 9881.05 9983.60 12989.15 13668.03 12084.46 22790.02 14670.67 17681.30 10186.53 22463.17 12494.19 11775.60 12288.54 11588.57 239
TR-MVS77.44 20176.18 20681.20 20188.24 16763.24 21984.61 22286.40 23367.55 22977.81 15586.48 22554.10 21593.15 16557.75 28082.72 18887.20 264
EIA-MVS83.31 7482.80 7684.82 8489.59 11465.59 16888.21 12492.68 6074.66 10578.96 12586.42 22669.06 7295.26 7175.54 12390.09 9893.62 66
tfpn200view976.42 21975.37 21979.55 23989.13 13757.65 28485.17 20783.60 26973.41 13476.45 18486.39 22752.12 23191.95 20648.33 32983.75 17289.07 215
thres40076.50 21675.37 21979.86 22989.13 13757.65 28485.17 20783.60 26973.41 13476.45 18486.39 22752.12 23191.95 20648.33 32983.75 17290.00 190
v7n78.97 16577.58 17983.14 14783.45 26065.51 16988.32 12191.21 11473.69 12672.41 25086.32 22957.93 18593.81 13369.18 18175.65 26990.11 182
MAR-MVS81.84 9480.70 10585.27 6991.32 7971.53 5289.82 7590.92 12169.77 19278.50 13786.21 23062.36 13794.52 10465.36 21592.05 7589.77 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v114480.03 13879.03 14183.01 15483.78 25464.51 19087.11 15790.57 13071.96 15378.08 15186.20 23161.41 15393.94 12574.93 12677.23 24690.60 164
test_vis1_n_192075.52 23175.78 20974.75 29479.84 31957.44 28883.26 25185.52 24462.83 28379.34 12286.17 23245.10 30079.71 32878.75 8881.21 20487.10 271
V4279.38 15578.24 15982.83 16181.10 30665.50 17085.55 20289.82 15171.57 16178.21 14686.12 23360.66 16893.18 16475.64 12075.46 27589.81 201
PVSNet_BlendedMVS80.60 12580.02 11682.36 17688.85 14265.40 17386.16 18692.00 8769.34 20078.11 14986.09 23466.02 9994.27 11171.52 15682.06 19487.39 259
v119279.59 14678.43 15483.07 15183.55 25864.52 18986.93 16290.58 12970.83 17277.78 15685.90 23559.15 17893.94 12573.96 13577.19 24890.76 157
SixPastTwentyTwo73.37 24971.26 25979.70 23385.08 23557.89 28085.57 19883.56 27171.03 17065.66 31585.88 23642.10 31792.57 18359.11 26563.34 34088.65 237
EPNet_dtu75.46 23274.86 22377.23 27282.57 28354.60 32186.89 16383.09 28171.64 15566.25 31385.86 23755.99 20088.04 28054.92 29786.55 13989.05 220
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss73.60 24773.64 23873.51 30282.80 27755.01 31876.12 31781.69 29362.47 28874.68 22885.85 23857.32 19378.11 33560.86 25280.93 20687.39 259
ETV-MVS84.90 6084.67 6085.59 6589.39 12368.66 10888.74 10892.64 6579.97 1384.10 6585.71 23969.32 6995.38 6780.82 7291.37 8492.72 94
v124078.99 16477.78 17182.64 17083.21 26563.54 21186.62 17390.30 14069.74 19577.33 16485.68 24057.04 19693.76 13773.13 14576.92 25090.62 162
v14419279.47 14978.37 15582.78 16783.35 26163.96 20286.96 16090.36 13769.99 18777.50 16085.67 24160.66 16893.77 13674.27 13276.58 25690.62 162
tfpnnormal74.39 23973.16 24278.08 25786.10 21958.05 27584.65 22187.53 21570.32 18271.22 26285.63 24254.97 20489.86 25043.03 35075.02 28486.32 282
PS-MVSNAJ81.69 9881.02 10083.70 12889.51 11868.21 11784.28 23390.09 14570.79 17381.26 10285.62 24363.15 12594.29 10975.62 12188.87 11088.59 238
v192192079.22 15778.03 16282.80 16483.30 26363.94 20386.80 16690.33 13869.91 18977.48 16185.53 24458.44 18293.75 13873.60 13776.85 25390.71 160
test_040272.79 25870.44 26679.84 23088.13 16965.99 15885.93 19184.29 26065.57 25267.40 29985.49 24546.92 28392.61 18235.88 35974.38 29080.94 338
v14878.72 17077.80 17081.47 19182.73 27961.96 23886.30 18288.08 20273.26 13676.18 19385.47 24662.46 13592.36 19271.92 15573.82 29690.09 184
USDC70.33 27768.37 27976.21 27980.60 31056.23 30679.19 29786.49 23160.89 29861.29 33685.47 24631.78 34889.47 25853.37 30576.21 26482.94 329
MVP-Stereo76.12 22374.46 23081.13 20485.37 22869.79 8384.42 23087.95 20565.03 25767.46 29785.33 24853.28 22291.73 21558.01 27883.27 18081.85 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS78.19 18376.99 18981.78 18485.66 22366.99 14184.66 21990.47 13255.08 33572.02 25585.27 24963.83 11794.11 12066.10 20989.80 10284.24 312
DIV-MVS_self_test77.72 19676.76 19580.58 21582.48 28660.48 25683.09 25587.86 20869.22 20374.38 23285.24 25062.10 14291.53 21971.09 16175.40 27789.74 203
FE-MVS77.78 19475.68 21184.08 11188.09 17266.00 15783.13 25487.79 21068.42 22378.01 15285.23 25145.50 29895.12 7659.11 26585.83 15291.11 143
cl____77.72 19676.76 19580.58 21582.49 28560.48 25683.09 25587.87 20769.22 20374.38 23285.22 25262.10 14291.53 21971.09 16175.41 27689.73 204
HyFIR lowres test77.53 20075.40 21783.94 12389.59 11466.62 14780.36 28388.64 19456.29 33176.45 18485.17 25357.64 18993.28 15661.34 24983.10 18391.91 122
pmmvs474.03 24571.91 25180.39 21881.96 29268.32 11381.45 27282.14 28859.32 31169.87 27885.13 25452.40 22788.13 27960.21 25674.74 28784.73 307
TDRefinement67.49 29664.34 30576.92 27473.47 35161.07 24784.86 21682.98 28259.77 30758.30 34685.13 25426.06 35487.89 28147.92 33560.59 34781.81 334
Fast-Effi-MVS+80.81 11679.92 11883.47 13288.85 14264.51 19085.53 20489.39 16170.79 17378.49 13885.06 25667.54 8293.58 14267.03 20486.58 13892.32 109
PVSNet_Blended80.98 11180.34 11282.90 15988.85 14265.40 17384.43 22992.00 8767.62 22878.11 14985.05 25766.02 9994.27 11171.52 15689.50 10489.01 222
test_fmvs1_n70.86 27170.24 26972.73 30772.51 35655.28 31581.27 27479.71 31351.49 34578.73 12984.87 25827.54 35377.02 34076.06 11579.97 22185.88 293
CMPMVSbinary51.72 2170.19 27968.16 28276.28 27873.15 35357.55 28679.47 29383.92 26548.02 34956.48 35284.81 25943.13 30886.42 29262.67 23581.81 19884.89 304
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet68.53 29267.61 29271.31 31878.51 33147.01 35684.47 22584.27 26142.27 35566.44 31284.79 26040.44 32483.76 30958.76 27168.54 32783.17 323
BH-w/o78.21 18177.33 18380.84 21088.81 14665.13 18084.87 21587.85 20969.75 19374.52 23084.74 26161.34 15593.11 16858.24 27685.84 15184.27 311
pmmvs571.55 26570.20 27075.61 28377.83 33256.39 30381.74 26780.89 29757.76 32267.46 29784.49 26249.26 26885.32 30057.08 28675.29 28085.11 303
thres20075.55 23074.47 22978.82 24687.78 18557.85 28183.07 25783.51 27272.44 14775.84 19984.42 26352.08 23391.75 21347.41 33683.64 17686.86 274
test_fmvs170.93 27070.52 26472.16 31073.71 34855.05 31780.82 27578.77 31851.21 34678.58 13584.41 26431.20 34976.94 34175.88 11880.12 22084.47 310
test_fmvs268.35 29467.48 29470.98 32069.50 35951.95 33880.05 28776.38 33349.33 34874.65 22984.38 26523.30 35975.40 35174.51 12975.17 28385.60 295
eth_miper_zixun_eth77.92 19176.69 19881.61 18983.00 27361.98 23783.15 25389.20 17069.52 19774.86 22684.35 26661.76 14592.56 18471.50 15872.89 30490.28 175
c3_l78.75 16877.91 16581.26 19882.89 27661.56 24384.09 23889.13 17469.97 18875.56 20284.29 26766.36 9392.09 20273.47 14075.48 27390.12 181
Fast-Effi-MVS+-dtu78.02 18876.49 20182.62 17183.16 26966.96 14486.94 16187.45 21872.45 14571.49 26084.17 26854.79 20891.58 21767.61 19580.31 21689.30 213
IterMVS-SCA-FT75.43 23373.87 23680.11 22582.69 28064.85 18581.57 27083.47 27469.16 20770.49 26684.15 26951.95 23688.15 27869.23 18072.14 30987.34 261
131476.53 21575.30 22180.21 22383.93 25262.32 23384.66 21988.81 18560.23 30370.16 27284.07 27055.30 20390.73 24167.37 19883.21 18187.59 256
cl2278.07 18677.01 18781.23 19982.37 28861.83 24083.55 24787.98 20468.96 21475.06 22283.87 27161.40 15491.88 21073.53 13876.39 26089.98 193
EG-PatchMatch MVS74.04 24471.82 25280.71 21384.92 23767.42 13285.86 19488.08 20266.04 24664.22 32583.85 27235.10 34192.56 18457.44 28280.83 20882.16 332
thisisatest051577.33 20475.38 21883.18 14585.27 22963.80 20582.11 26483.27 27765.06 25675.91 19783.84 27349.54 26394.27 11167.24 20086.19 14591.48 134
test20.0367.45 29766.95 29868.94 32675.48 34244.84 36377.50 31177.67 32366.66 23763.01 33183.80 27447.02 28278.40 33342.53 35268.86 32683.58 320
miper_ehance_all_eth78.59 17477.76 17381.08 20582.66 28161.56 24383.65 24389.15 17268.87 21575.55 20383.79 27566.49 9192.03 20373.25 14376.39 26089.64 205
MSDG73.36 25170.99 26080.49 21784.51 24265.80 16480.71 27986.13 23865.70 25065.46 31683.74 27644.60 30190.91 23751.13 31476.89 25184.74 306
IterMVS74.29 24072.94 24478.35 25481.53 29863.49 21381.58 26982.49 28668.06 22669.99 27583.69 27751.66 24285.54 29765.85 21271.64 31286.01 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 26271.71 25374.35 29782.19 29052.00 33779.22 29677.29 32864.56 26272.95 24483.68 27851.35 24383.26 31558.33 27575.80 26787.81 250
Effi-MVS+-dtu80.03 13878.57 15084.42 9785.13 23468.74 10288.77 10588.10 20174.99 9874.97 22483.49 27957.27 19493.36 15473.53 13880.88 20791.18 141
baseline275.70 22873.83 23781.30 19783.26 26461.79 24182.57 26180.65 30166.81 23366.88 30383.42 28057.86 18792.19 19963.47 22679.57 22489.91 195
TinyColmap67.30 29964.81 30374.76 29381.92 29356.68 29980.29 28581.49 29560.33 30156.27 35383.22 28124.77 35687.66 28445.52 34469.47 32179.95 342
mvsany_test162.30 31661.26 32065.41 33669.52 35854.86 31966.86 35249.78 37346.65 35068.50 29083.21 28249.15 26966.28 36556.93 28860.77 34575.11 351
test_vis1_n69.85 28369.21 27471.77 31272.66 35555.27 31681.48 27176.21 33452.03 34275.30 21583.20 28328.97 35176.22 34674.60 12878.41 23983.81 318
CostFormer75.24 23673.90 23579.27 24182.65 28258.27 27380.80 27682.73 28561.57 29475.33 21483.13 28455.52 20191.07 23564.98 21978.34 24088.45 240
miper_lstm_enhance74.11 24373.11 24377.13 27380.11 31559.62 26472.23 33386.92 22766.76 23570.40 26782.92 28556.93 19782.92 31669.06 18372.63 30588.87 229
GA-MVS76.87 21275.17 22281.97 18282.75 27862.58 22981.44 27386.35 23572.16 15274.74 22782.89 28646.20 29092.02 20468.85 18681.09 20591.30 139
K. test v371.19 26768.51 27879.21 24383.04 27257.78 28384.35 23276.91 33172.90 14462.99 33282.86 28739.27 32791.09 23461.65 24552.66 35888.75 234
MS-PatchMatch73.83 24672.67 24577.30 27083.87 25366.02 15681.82 26584.66 25361.37 29768.61 28882.82 28847.29 28088.21 27759.27 26284.32 16577.68 347
lessismore_v078.97 24481.01 30757.15 29165.99 35961.16 33782.82 28839.12 32891.34 22559.67 25946.92 36488.43 241
D2MVS74.82 23773.21 24179.64 23679.81 32062.56 23080.34 28487.35 21964.37 26568.86 28582.66 29046.37 28790.10 24867.91 19381.24 20386.25 283
Anonymous2023120668.60 29067.80 28971.02 31980.23 31450.75 34778.30 30680.47 30456.79 32866.11 31482.63 29146.35 28878.95 33143.62 34975.70 26883.36 322
MIMVSNet70.69 27369.30 27274.88 29184.52 24156.35 30575.87 32179.42 31564.59 26167.76 29282.41 29241.10 32181.54 32146.64 34081.34 20186.75 277
OpenMVS_ROBcopyleft64.09 1970.56 27568.19 28177.65 26480.26 31359.41 26785.01 21282.96 28358.76 31665.43 31782.33 29337.63 33591.23 22845.34 34676.03 26582.32 330
miper_enhance_ethall77.87 19376.86 19180.92 20981.65 29561.38 24582.68 25988.98 17965.52 25375.47 20482.30 29465.76 10392.00 20572.95 14676.39 26089.39 210
test0.0.03 168.00 29567.69 29168.90 32777.55 33347.43 35475.70 32272.95 34666.66 23766.56 30782.29 29548.06 27775.87 34844.97 34774.51 28983.41 321
PVSNet64.34 1872.08 26470.87 26375.69 28286.21 21856.44 30274.37 32980.73 30062.06 29270.17 27182.23 29642.86 31083.31 31454.77 29884.45 16487.32 262
MIMVSNet168.58 29166.78 29973.98 30080.07 31651.82 33980.77 27784.37 25764.40 26459.75 34282.16 29736.47 33783.63 31142.73 35170.33 31886.48 281
CL-MVSNet_self_test72.37 26271.46 25475.09 28979.49 32653.53 32980.76 27885.01 25069.12 20870.51 26582.05 29857.92 18684.13 30752.27 30966.00 33487.60 254
tpm273.26 25271.46 25478.63 24883.34 26256.71 29880.65 28080.40 30656.63 32973.55 23782.02 29951.80 24091.24 22756.35 29378.42 23887.95 246
PatchMatch-RL72.38 26170.90 26176.80 27688.60 15567.38 13479.53 29276.17 33562.75 28569.36 28382.00 30045.51 29784.89 30353.62 30380.58 21278.12 346
FMVSNet569.50 28467.96 28574.15 29982.97 27555.35 31480.01 28882.12 28962.56 28763.02 33081.53 30136.92 33681.92 31948.42 32874.06 29285.17 302
CR-MVSNet73.37 24971.27 25879.67 23581.32 30465.19 17875.92 31980.30 30759.92 30672.73 24681.19 30252.50 22586.69 28959.84 25877.71 24287.11 269
Patchmtry70.74 27269.16 27575.49 28680.72 30854.07 32674.94 32880.30 30758.34 31870.01 27381.19 30252.50 22586.54 29053.37 30571.09 31685.87 294
IB-MVS68.01 1575.85 22773.36 24083.31 13884.76 23866.03 15583.38 24985.06 24870.21 18569.40 28281.05 30445.76 29594.66 9965.10 21875.49 27289.25 214
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.72 21474.64 22582.99 15585.78 22265.88 16182.33 26289.21 16960.85 29972.74 24581.02 30547.28 28193.75 13867.48 19785.02 15589.34 211
LF4IMVS64.02 31362.19 31669.50 32570.90 35753.29 33476.13 31677.18 32952.65 34058.59 34480.98 30623.55 35876.52 34353.06 30766.66 33078.68 345
Anonymous2024052168.80 28967.22 29673.55 30174.33 34554.11 32583.18 25285.61 24358.15 31961.68 33580.94 30730.71 35081.27 32357.00 28773.34 30285.28 299
gm-plane-assit81.40 30053.83 32862.72 28680.94 30792.39 19063.40 228
UnsupCasMVSNet_eth67.33 29865.99 30171.37 31573.48 35051.47 34375.16 32485.19 24765.20 25460.78 33880.93 30942.35 31277.20 33957.12 28553.69 35785.44 297
MVS_030472.48 25970.89 26277.24 27182.20 28959.68 26384.11 23783.49 27367.10 23266.87 30480.59 31035.00 34287.40 28559.07 26779.58 22384.63 308
MDTV_nov1_ep1369.97 27183.18 26753.48 33077.10 31580.18 31060.45 30069.33 28480.44 31148.89 27586.90 28851.60 31278.51 236
pmmvs-eth3d70.50 27667.83 28878.52 25277.37 33566.18 15481.82 26581.51 29458.90 31563.90 32880.42 31242.69 31186.28 29358.56 27265.30 33683.11 325
PM-MVS66.41 30464.14 30673.20 30573.92 34756.45 30178.97 29964.96 36263.88 27464.72 32280.24 31319.84 36283.44 31366.24 20664.52 33879.71 343
SCA74.22 24272.33 24979.91 22884.05 25062.17 23579.96 28979.29 31666.30 24372.38 25180.13 31451.95 23688.60 27359.25 26377.67 24488.96 226
Patchmatch-test64.82 31163.24 31169.57 32479.42 32749.82 35163.49 36169.05 35451.98 34359.95 34180.13 31450.91 24770.98 35940.66 35573.57 29787.90 248
tpmrst72.39 26072.13 25073.18 30680.54 31149.91 35079.91 29079.08 31763.11 27771.69 25879.95 31655.32 20282.77 31765.66 21473.89 29486.87 273
DSMNet-mixed57.77 32256.90 32460.38 34267.70 36135.61 37269.18 34553.97 37132.30 36757.49 34979.88 31740.39 32568.57 36438.78 35772.37 30676.97 348
MDA-MVSNet-bldmvs66.68 30163.66 30975.75 28179.28 32860.56 25573.92 33078.35 32064.43 26350.13 35979.87 31844.02 30483.67 31046.10 34256.86 35083.03 327
PatchmatchNetpermissive73.12 25471.33 25778.49 25383.18 26760.85 25079.63 29178.57 31964.13 26771.73 25779.81 31951.20 24585.97 29557.40 28376.36 26388.66 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test70.04 28067.34 29578.14 25679.80 32161.13 24679.19 29780.59 30259.16 31365.27 31879.29 32046.75 28587.29 28649.33 32566.72 32986.00 292
EPMVS69.02 28768.16 28271.59 31379.61 32449.80 35277.40 31266.93 35762.82 28470.01 27379.05 32145.79 29477.86 33756.58 29175.26 28187.13 268
PMMVS69.34 28568.67 27771.35 31775.67 34062.03 23675.17 32373.46 34450.00 34768.68 28679.05 32152.07 23478.13 33461.16 25082.77 18673.90 352
test-LLR72.94 25772.43 24774.48 29581.35 30258.04 27678.38 30377.46 32566.66 23769.95 27679.00 32348.06 27779.24 32966.13 20784.83 15786.15 286
test-mter71.41 26670.39 26874.48 29581.35 30258.04 27678.38 30377.46 32560.32 30269.95 27679.00 32336.08 33979.24 32966.13 20784.83 15786.15 286
KD-MVS_self_test68.81 28867.59 29372.46 30974.29 34645.45 35877.93 30987.00 22563.12 27663.99 32778.99 32542.32 31384.77 30456.55 29264.09 33987.16 267
test_fmvs363.36 31561.82 31767.98 33162.51 36646.96 35777.37 31374.03 34345.24 35167.50 29678.79 32612.16 37072.98 35872.77 14966.02 33383.99 316
KD-MVS_2432*160066.22 30663.89 30773.21 30375.47 34353.42 33170.76 33984.35 25864.10 26866.52 30978.52 32734.55 34384.98 30150.40 31750.33 36181.23 336
miper_refine_blended66.22 30663.89 30773.21 30375.47 34353.42 33170.76 33984.35 25864.10 26866.52 30978.52 32734.55 34384.98 30150.40 31750.33 36181.23 336
tpmvs71.09 26869.29 27376.49 27782.04 29156.04 30878.92 30081.37 29664.05 27067.18 30178.28 32949.74 26289.77 25149.67 32472.37 30683.67 319
our_test_369.14 28667.00 29775.57 28479.80 32158.80 26877.96 30877.81 32259.55 30962.90 33378.25 33047.43 27983.97 30851.71 31167.58 32883.93 317
MDA-MVSNet_test_wron65.03 30962.92 31271.37 31575.93 33856.73 29669.09 34874.73 34057.28 32654.03 35677.89 33145.88 29274.39 35549.89 32361.55 34382.99 328
YYNet165.03 30962.91 31371.38 31475.85 33956.60 30069.12 34774.66 34257.28 32654.12 35577.87 33245.85 29374.48 35449.95 32261.52 34483.05 326
ambc75.24 28873.16 35250.51 34863.05 36287.47 21764.28 32477.81 33317.80 36489.73 25357.88 27960.64 34685.49 296
tpm cat170.57 27468.31 28077.35 26982.41 28757.95 27978.08 30780.22 30952.04 34168.54 28977.66 33452.00 23587.84 28251.77 31072.07 31086.25 283
dp66.80 30065.43 30270.90 32179.74 32348.82 35375.12 32674.77 33959.61 30864.08 32677.23 33542.89 30980.72 32548.86 32766.58 33183.16 324
TESTMET0.1,169.89 28269.00 27672.55 30879.27 32956.85 29478.38 30374.71 34157.64 32368.09 29177.19 33637.75 33476.70 34263.92 22484.09 16884.10 315
CHOSEN 280x42066.51 30364.71 30471.90 31181.45 29963.52 21257.98 36468.95 35553.57 33762.59 33476.70 33746.22 28975.29 35255.25 29679.68 22276.88 349
PatchT68.46 29367.85 28770.29 32280.70 30943.93 36572.47 33274.88 33860.15 30470.55 26476.57 33849.94 25981.59 32050.58 31574.83 28685.34 298
mvsany_test353.99 32451.45 32861.61 34155.51 37044.74 36463.52 36045.41 37743.69 35458.11 34776.45 33917.99 36363.76 36854.77 29847.59 36376.34 350
RPMNet73.51 24870.49 26582.58 17281.32 30465.19 17875.92 31992.27 7657.60 32472.73 24676.45 33952.30 22895.43 6348.14 33377.71 24287.11 269
ADS-MVSNet266.20 30863.33 31074.82 29279.92 31758.75 26967.55 35075.19 33753.37 33865.25 31975.86 34142.32 31380.53 32641.57 35368.91 32485.18 300
ADS-MVSNet64.36 31262.88 31468.78 32979.92 31747.17 35567.55 35071.18 34753.37 33865.25 31975.86 34142.32 31373.99 35641.57 35368.91 32485.18 300
EGC-MVSNET52.07 32947.05 33367.14 33383.51 25960.71 25280.50 28267.75 3560.07 3770.43 37875.85 34324.26 35781.54 32128.82 36362.25 34159.16 362
new-patchmatchnet61.73 31761.73 31861.70 34072.74 35424.50 37969.16 34678.03 32161.40 29556.72 35175.53 34438.42 33076.48 34445.95 34357.67 34984.13 314
N_pmnet52.79 32753.26 32651.40 35178.99 3307.68 38269.52 3433.89 38251.63 34457.01 35074.98 34540.83 32365.96 36637.78 35864.67 33780.56 341
patchmatchnet-post74.00 34651.12 24688.60 273
GG-mvs-BLEND75.38 28781.59 29755.80 31079.32 29469.63 35167.19 30073.67 34743.24 30788.90 27050.41 31684.50 16181.45 335
Patchmatch-RL test70.24 27867.78 29077.61 26577.43 33459.57 26671.16 33670.33 34862.94 28168.65 28772.77 34850.62 25185.49 29869.58 17866.58 33187.77 251
FPMVS53.68 32551.64 32759.81 34365.08 36451.03 34569.48 34469.58 35241.46 35640.67 36272.32 34916.46 36670.00 36224.24 36965.42 33558.40 364
UnsupCasMVSNet_bld63.70 31461.53 31970.21 32373.69 34951.39 34472.82 33181.89 29055.63 33357.81 34871.80 35038.67 32978.61 33249.26 32652.21 35980.63 339
APD_test153.31 32649.93 33163.42 33965.68 36350.13 34971.59 33566.90 35834.43 36440.58 36371.56 3518.65 37576.27 34534.64 36155.36 35563.86 360
test_f52.09 32850.82 32955.90 34753.82 37342.31 36859.42 36358.31 36936.45 36256.12 35470.96 35212.18 36957.79 37053.51 30456.57 35267.60 356
PVSNet_057.27 2061.67 31859.27 32168.85 32879.61 32457.44 28868.01 34973.44 34555.93 33258.54 34570.41 35344.58 30277.55 33847.01 33735.91 36771.55 355
pmmvs357.79 32154.26 32568.37 33064.02 36556.72 29775.12 32665.17 36040.20 35752.93 35769.86 35420.36 36175.48 35045.45 34555.25 35672.90 354
test_vis1_rt60.28 31958.42 32265.84 33567.25 36255.60 31370.44 34160.94 36644.33 35359.00 34366.64 35524.91 35568.67 36362.80 23169.48 32073.25 353
new_pmnet50.91 33050.29 33052.78 35068.58 36034.94 37463.71 35956.63 37039.73 35844.95 36065.47 35621.93 36058.48 36934.98 36056.62 35164.92 358
gg-mvs-nofinetune69.95 28167.96 28575.94 28083.07 27054.51 32377.23 31470.29 34963.11 27770.32 26862.33 35743.62 30688.69 27253.88 30287.76 12284.62 309
JIA-IIPM66.32 30562.82 31576.82 27577.09 33661.72 24265.34 35775.38 33658.04 32164.51 32362.32 35842.05 31886.51 29151.45 31369.22 32382.21 331
LCM-MVSNet54.25 32349.68 33267.97 33253.73 37445.28 36166.85 35380.78 29935.96 36339.45 36462.23 3598.70 37478.06 33648.24 33251.20 36080.57 340
PMMVS240.82 33738.86 34046.69 35253.84 37216.45 38048.61 36749.92 37237.49 36031.67 36560.97 3608.14 37656.42 37128.42 36430.72 36967.19 357
testf145.72 33341.96 33657.00 34456.90 36845.32 35966.14 35559.26 36726.19 36830.89 36760.96 3614.14 37870.64 36026.39 36746.73 36555.04 365
APD_test245.72 33341.96 33657.00 34456.90 36845.32 35966.14 35559.26 36726.19 36830.89 36760.96 3614.14 37870.64 36026.39 36746.73 36555.04 365
MVS-HIRNet59.14 32057.67 32363.57 33881.65 29543.50 36671.73 33465.06 36139.59 35951.43 35857.73 36338.34 33182.58 31839.53 35673.95 29364.62 359
ANet_high50.57 33146.10 33563.99 33748.67 37739.13 37070.99 33880.85 29861.39 29631.18 36657.70 36417.02 36573.65 35731.22 36215.89 37479.18 344
PMVScopyleft37.38 2244.16 33640.28 33955.82 34840.82 37942.54 36765.12 35863.99 36334.43 36424.48 37057.12 3653.92 38076.17 34717.10 37255.52 35448.75 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt49.26 33247.02 33456.00 34654.30 37145.27 36266.76 35448.08 37436.83 36144.38 36153.20 3667.17 37764.07 36756.77 29055.66 35358.65 363
test_method31.52 33929.28 34338.23 35427.03 3816.50 38320.94 37262.21 3654.05 37522.35 37352.50 36713.33 36747.58 37427.04 36634.04 36860.62 361
DeepMVS_CXcopyleft27.40 35740.17 38026.90 37724.59 38117.44 37323.95 37148.61 3689.77 37226.48 37618.06 37124.47 37028.83 370
MVEpermissive26.22 2330.37 34125.89 34543.81 35344.55 37835.46 37328.87 37139.07 37818.20 37218.58 37440.18 3692.68 38147.37 37517.07 37323.78 37148.60 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 33541.86 33855.16 34977.03 33751.52 34232.50 37080.52 30332.46 36627.12 36935.02 3709.52 37375.50 34922.31 37060.21 34838.45 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.77 33830.64 34135.15 35552.87 37527.67 37657.09 36547.86 37524.64 37016.40 37533.05 37111.23 37154.90 37214.46 37418.15 37222.87 371
EMVS30.81 34029.65 34234.27 35650.96 37625.95 37856.58 36646.80 37624.01 37115.53 37630.68 37212.47 36854.43 37312.81 37517.05 37322.43 372
tmp_tt18.61 34321.40 34610.23 3594.82 38210.11 38134.70 36930.74 3801.48 37623.91 37226.07 37328.42 35213.41 37827.12 36515.35 3757.17 373
X-MVStestdata80.37 13177.83 16888.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7212.47 37467.45 8396.60 3183.06 5094.50 4894.07 45
test_post5.46 37550.36 25584.24 306
test_post178.90 3015.43 37648.81 27685.44 29959.25 263
wuyk23d16.82 34415.94 34719.46 35858.74 36731.45 37539.22 3683.74 3836.84 3746.04 3772.70 3771.27 38224.29 37710.54 37614.40 3762.63 374
testmvs6.04 3478.02 3500.10 3610.08 3830.03 38569.74 3420.04 3840.05 3780.31 3791.68 3780.02 3840.04 3790.24 3770.02 3770.25 376
test1236.12 3468.11 3490.14 3600.06 3840.09 38471.05 3370.03 3850.04 3790.25 3801.30 3790.05 3830.03 3800.21 3780.01 3780.29 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.26 3487.02 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38063.15 1250.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS195.00 1072.39 3895.06 193.84 1574.49 10991.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
eth-test20.00 385
eth-test0.00 385
IU-MVS95.30 271.25 5592.95 5166.81 23392.39 688.94 1196.63 494.85 17
save fliter93.80 4072.35 4190.47 6291.17 11674.31 112
test_0728_SECOND87.71 3095.34 171.43 5493.49 994.23 397.49 389.08 796.41 1294.21 40
GSMVS88.96 226
test_part295.06 872.65 3191.80 13
sam_mvs151.32 24488.96 226
sam_mvs50.01 257
MTGPAbinary92.02 85
MTMP92.18 3332.83 379
test9_res84.90 2995.70 2692.87 92
agg_prior282.91 5395.45 2892.70 95
agg_prior92.85 5971.94 4991.78 10084.41 5994.93 85
test_prior472.60 3389.01 96
test_prior86.33 5292.61 6569.59 8592.97 5095.48 6093.91 50
旧先验286.56 17558.10 32087.04 3088.98 26674.07 134
新几何286.29 183
无先验87.48 14688.98 17960.00 30594.12 11967.28 19988.97 225
原ACMM286.86 164
testdata291.01 23662.37 237
segment_acmp73.08 37
testdata184.14 23675.71 85
test1286.80 4792.63 6470.70 7091.79 9982.71 8571.67 4796.16 4294.50 4893.54 70
plane_prior790.08 10268.51 111
plane_prior689.84 11168.70 10660.42 172
plane_prior592.44 6995.38 6778.71 8986.32 14291.33 136
plane_prior368.60 10978.44 2978.92 127
plane_prior291.25 4879.12 21
plane_prior189.90 110
plane_prior68.71 10490.38 6577.62 3786.16 146
n20.00 386
nn0.00 386
door-mid69.98 350
test1192.23 79
door69.44 353
HQP5-MVS66.98 142
HQP-NCC89.33 12689.17 8976.41 7077.23 168
ACMP_Plane89.33 12689.17 8976.41 7077.23 168
BP-MVS77.47 101
HQP4-MVS77.24 16795.11 7891.03 148
HQP3-MVS92.19 8285.99 149
HQP2-MVS60.17 175
MDTV_nov1_ep13_2view37.79 37175.16 32455.10 33466.53 30849.34 26653.98 30187.94 247
ACMMP++_ref81.95 196
ACMMP++81.25 202
Test By Simon64.33 112