This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3199.86 2099.61 7099.56 13099.63 3999.48 399.98 699.83 7298.75 5899.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 3199.84 3299.63 6799.56 13099.63 3999.47 499.98 699.82 8198.75 5899.99 499.97 199.97 799.94 11
MM99.40 5499.28 6099.74 6499.67 11499.31 11599.52 15798.87 35499.55 199.74 6899.80 10896.47 15899.98 1399.97 199.97 799.94 11
test_fmvsmvis_n_192099.65 699.61 699.77 5899.38 22499.37 10599.58 11799.62 4199.41 999.87 2999.92 1498.81 47100.00 199.97 199.93 2599.94 11
test_fmvsm_n_192099.69 499.66 399.78 5599.84 3299.44 9999.58 11799.69 1899.43 799.98 699.91 2098.62 73100.00 199.97 199.95 1799.90 16
test_fmvsmconf_n99.70 399.64 499.87 1499.80 5299.66 5699.48 18899.64 3699.45 599.92 1699.92 1498.62 7399.99 499.96 699.99 199.96 7
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3199.84 3299.65 6099.51 16699.67 2399.13 2499.98 699.92 1496.60 15299.96 3299.95 799.96 1299.95 9
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2499.44 20699.65 6099.50 17399.61 4899.45 599.87 2999.92 1497.31 12699.97 2199.95 799.99 199.97 4
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3199.83 3999.64 6699.52 15799.65 3399.10 3199.98 699.92 1497.35 12599.96 3299.94 999.92 2799.95 9
test_fmvsmconf0.01_n99.22 8199.03 9299.79 5298.42 37999.48 9499.55 14499.51 11999.39 1099.78 5499.93 994.80 22199.95 6299.93 1099.95 1799.94 11
test_vis1_n_192098.63 16898.40 17599.31 15499.86 2097.94 25499.67 6999.62 4199.43 799.99 299.91 2087.29 378100.00 199.92 1199.92 2799.98 2
fmvsm_s_conf0.1_n99.29 6899.10 8199.86 2499.70 10499.65 6099.53 15699.62 4198.74 8099.99 299.95 394.53 24399.94 7299.89 1299.96 1299.97 4
fmvsm_s_conf0.1_n_a99.26 7499.06 8799.85 3199.52 17399.62 6899.54 14899.62 4198.69 8499.99 299.96 194.47 24599.94 7299.88 1399.92 2799.98 2
test_vis1_n97.92 23997.44 27899.34 14799.53 16898.08 24299.74 4699.49 14999.15 21100.00 199.94 679.51 40899.98 1399.88 1399.76 11799.97 4
MVS_030499.15 9098.96 11099.73 6798.92 32899.37 10599.37 23796.92 40599.51 299.66 9299.78 12796.69 14999.97 2199.84 1599.97 799.84 42
mmtdpeth96.95 32396.71 32297.67 34299.33 23694.90 36999.89 299.28 29098.15 14299.72 7598.57 37686.56 38199.90 12699.82 1689.02 40098.20 370
test_fmvs1_n98.41 17998.14 19199.21 17499.82 4297.71 26799.74 4699.49 14999.32 1499.99 299.95 385.32 38999.97 2199.82 1699.84 8399.96 7
test_fmvs198.88 13598.79 13699.16 17999.69 10897.61 27199.55 14499.49 14999.32 1499.98 699.91 2091.41 32999.96 3299.82 1699.92 2799.90 16
mvsany_test199.50 2399.46 2399.62 9099.61 14599.09 14498.94 35299.48 16199.10 3199.96 1499.91 2098.85 4299.96 3299.72 1999.58 14599.82 57
mamv499.33 6299.42 2599.07 18799.67 11497.73 26299.42 21599.60 5498.15 14299.94 1599.91 2098.42 8899.94 7299.72 1999.96 1299.54 168
patch_mono-299.26 7499.62 598.16 30699.81 4694.59 37499.52 15799.64 3699.33 1399.73 7099.90 2799.00 2299.99 499.69 2199.98 499.89 19
SPE-MVS-test99.49 2599.48 1899.54 10499.78 5699.30 11799.89 299.58 6298.56 9499.73 7099.69 17298.55 7899.82 18499.69 2199.85 7599.48 188
SDMVSNet99.11 10698.90 11899.75 6199.81 4699.59 7399.81 2099.65 3398.78 7799.64 10499.88 3994.56 23999.93 9099.67 2398.26 23799.72 106
dcpmvs_299.23 8099.58 798.16 30699.83 3994.68 37299.76 3799.52 10599.07 3999.98 699.88 3998.56 7799.93 9099.67 2399.98 499.87 30
MVSMamba_PlusPlus99.46 3499.41 2999.64 8399.68 11299.50 9199.75 4299.50 13998.27 12599.87 2999.92 1498.09 10499.94 7299.65 2599.95 1799.47 194
CS-MVS99.50 2399.48 1899.54 10499.76 6699.42 10199.90 199.55 7898.56 9499.78 5499.70 16298.65 7199.79 19999.65 2599.78 11199.41 209
EC-MVSNet99.44 4299.39 3299.58 9799.56 16099.49 9299.88 499.58 6298.38 11199.73 7099.69 17298.20 9999.70 23799.64 2799.82 9699.54 168
BP-MVS199.12 10198.94 11499.65 7799.51 17699.30 11799.67 6998.92 34298.48 10199.84 3599.69 17294.96 21199.92 10299.62 2899.79 11099.71 115
CANet99.25 7899.14 7799.59 9499.41 21499.16 13499.35 24799.57 6598.82 6999.51 13699.61 21396.46 15999.95 6299.59 2999.98 499.65 133
EI-MVSNet-UG-set99.58 1299.57 899.64 8399.78 5699.14 13999.60 10299.45 20299.01 4499.90 1999.83 7298.98 2499.93 9099.59 2999.95 1799.86 32
balanced_conf0399.46 3499.39 3299.67 7299.55 16499.58 7899.74 4699.51 11998.42 10899.87 2999.84 6798.05 10799.91 11499.58 3199.94 2399.52 175
DELS-MVS99.48 2999.42 2599.65 7799.72 9499.40 10499.05 32499.66 2899.14 2399.57 12499.80 10898.46 8499.94 7299.57 3299.84 8399.60 152
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8399.78 5699.15 13899.61 10199.45 20299.01 4499.89 2199.82 8199.01 1899.92 10299.56 3399.95 1799.85 36
test_cas_vis1_n_192099.16 8899.01 10099.61 9199.81 4698.86 18199.65 8199.64 3699.39 1099.97 1399.94 693.20 28199.98 1399.55 3499.91 3499.99 1
sd_testset98.75 15798.57 16499.29 16299.81 4698.26 23399.56 13099.62 4198.78 7799.64 10499.88 3992.02 31399.88 14399.54 3598.26 23799.72 106
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10399.66 12499.09 14499.64 8499.56 7098.26 12799.45 14599.87 4896.03 17399.81 18999.54 3599.15 17899.73 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis1_rt95.81 34795.65 34696.32 37399.67 11491.35 40099.49 18496.74 40998.25 12895.24 38898.10 39474.96 40999.90 12699.53 3798.85 20397.70 394
HyFIR lowres test99.11 10698.92 11599.65 7799.90 499.37 10599.02 33299.91 397.67 20799.59 12099.75 14295.90 18199.73 22199.53 3799.02 19299.86 32
VNet99.11 10698.90 11899.73 6799.52 17399.56 7999.41 21899.39 23099.01 4499.74 6899.78 12795.56 19299.92 10299.52 3998.18 24499.72 106
baseline99.15 9099.02 9699.53 11299.66 12499.14 13999.72 5299.48 16198.35 11699.42 15599.84 6796.07 17199.79 19999.51 4099.14 17999.67 126
xiu_mvs_v1_base_debu99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
xiu_mvs_v1_base99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
xiu_mvs_v1_base_debi99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
CHOSEN 1792x268899.19 8299.10 8199.45 13299.89 898.52 21699.39 23099.94 198.73 8199.11 22799.89 3295.50 19499.94 7299.50 4199.97 799.89 19
VDD-MVS97.73 27497.35 29098.88 22199.47 19797.12 28999.34 25098.85 35698.19 13799.67 8799.85 5782.98 39999.92 10299.49 4598.32 23599.60 152
h-mvs3397.70 28097.28 30198.97 20199.70 10497.27 28199.36 24299.45 20298.94 5899.66 9299.64 19894.93 21399.99 499.48 4684.36 40799.65 133
hse-mvs297.50 29997.14 30798.59 25599.49 18997.05 29699.28 26899.22 30298.94 5899.66 9299.42 27594.93 21399.65 25399.48 4683.80 40999.08 243
PVSNet_Blended_VisFu99.36 5999.28 6099.61 9199.86 2099.07 14999.47 19499.93 297.66 20899.71 7799.86 5297.73 11599.96 3299.47 4899.82 9699.79 77
CHOSEN 280x42099.12 10199.13 7899.08 18699.66 12497.89 25598.43 39399.71 1398.88 6399.62 11199.76 13996.63 15199.70 23799.46 4999.99 199.66 129
casdiffmvspermissive99.13 9598.98 10599.56 10199.65 13099.16 13499.56 13099.50 13998.33 11999.41 15999.86 5295.92 17999.83 17799.45 5099.16 17599.70 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111198.04 21998.11 19597.83 33399.74 8393.82 38299.58 11795.40 41599.12 2999.65 9999.93 990.73 33899.84 16499.43 5199.38 15899.82 57
ECVR-MVScopyleft98.04 21998.05 20498.00 31999.74 8394.37 37799.59 10994.98 41699.13 2499.66 9299.93 990.67 33999.84 16499.40 5299.38 15899.80 73
test250696.81 32796.65 32397.29 35499.74 8392.21 39799.60 10285.06 42899.13 2499.77 5899.93 987.82 37699.85 15799.38 5399.38 15899.80 73
DeepC-MVS98.35 299.30 6699.19 7399.64 8399.82 4299.23 12799.62 9599.55 7898.94 5899.63 10799.95 395.82 18499.94 7299.37 5499.97 799.73 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
reproduce_monomvs97.89 24397.87 22597.96 32399.51 17695.45 35699.60 10299.25 29699.17 1998.85 27599.49 25589.29 35599.64 25699.35 5596.31 31698.78 269
alignmvs98.81 15098.56 16699.58 9799.43 20799.42 10199.51 16698.96 33798.61 9099.35 17698.92 36094.78 22399.77 20699.35 5598.11 24999.54 168
PS-MVSNAJ99.32 6499.32 4699.30 15999.57 15698.94 17198.97 34699.46 19198.92 6199.71 7799.24 32399.01 1899.98 1399.35 5599.66 13598.97 258
VPA-MVSNet98.29 19197.95 21599.30 15999.16 28799.54 8399.50 17399.58 6298.27 12599.35 17699.37 29292.53 30199.65 25399.35 5594.46 35898.72 282
mvs_anonymous99.03 12098.99 10299.16 17999.38 22498.52 21699.51 16699.38 23897.79 19199.38 16899.81 9597.30 12799.45 27799.35 5598.99 19399.51 182
xiu_mvs_v2_base99.26 7499.25 6799.29 16299.53 16898.91 17599.02 33299.45 20298.80 7399.71 7799.26 32198.94 3299.98 1399.34 6099.23 17198.98 257
nrg03098.64 16798.42 17399.28 16699.05 31099.69 5099.81 2099.46 19198.04 16599.01 24699.82 8196.69 14999.38 29199.34 6094.59 35798.78 269
UGNet98.87 13698.69 14599.40 13999.22 26898.72 19599.44 20499.68 2099.24 1799.18 21899.42 27592.74 29199.96 3299.34 6099.94 2399.53 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs_tets98.40 18298.23 18598.91 21498.67 36398.51 21899.66 7599.53 10098.19 13798.65 30499.81 9592.75 28999.44 28299.31 6397.48 28598.77 273
VDDNet97.55 29497.02 31399.16 17999.49 18998.12 24199.38 23599.30 28495.35 35799.68 8399.90 2782.62 40199.93 9099.31 6398.13 24899.42 206
diffmvspermissive99.14 9399.02 9699.51 12099.61 14598.96 16599.28 26899.49 14998.46 10399.72 7599.71 15896.50 15799.88 14399.31 6399.11 18199.67 126
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MGCFI-Net99.01 12598.85 12899.50 12599.42 20999.26 12399.82 1699.48 16198.60 9199.28 18998.81 36597.04 13799.76 21099.29 6697.87 25899.47 194
LFMVS97.90 24297.35 29099.54 10499.52 17399.01 15699.39 23098.24 39097.10 26899.65 9999.79 12084.79 39299.91 11499.28 6798.38 22899.69 119
MSLP-MVS++99.46 3499.47 2099.44 13699.60 15099.16 13499.41 21899.71 1398.98 5299.45 14599.78 12799.19 999.54 27199.28 6799.84 8399.63 145
sasdasda99.02 12198.86 12699.51 12099.42 20999.32 11199.80 2599.48 16198.63 8799.31 18298.81 36597.09 13399.75 21399.27 6997.90 25599.47 194
canonicalmvs99.02 12198.86 12699.51 12099.42 20999.32 11199.80 2599.48 16198.63 8799.31 18298.81 36597.09 13399.75 21399.27 6997.90 25599.47 194
Anonymous2024052998.09 20997.68 24699.34 14799.66 12498.44 22599.40 22699.43 21693.67 38199.22 20599.89 3290.23 34599.93 9099.26 7198.33 23199.66 129
EPNet98.86 13998.71 14399.30 15997.20 39998.18 23699.62 9598.91 34799.28 1698.63 30799.81 9595.96 17599.99 499.24 7299.72 12599.73 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
jajsoiax98.43 17698.28 18398.88 22198.60 37098.43 22699.82 1699.53 10098.19 13798.63 30799.80 10893.22 28099.44 28299.22 7397.50 28198.77 273
APDe-MVScopyleft99.66 599.57 899.92 199.77 6399.89 499.75 4299.56 7099.02 4299.88 2499.85 5799.18 1099.96 3299.22 7399.92 2799.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VPNet97.84 25397.44 27899.01 19599.21 26998.94 17199.48 18899.57 6598.38 11199.28 18999.73 15388.89 35899.39 28999.19 7593.27 37798.71 284
mvsmamba99.06 11598.96 11099.36 14599.47 19798.64 20299.70 5699.05 32697.61 21299.65 9999.83 7296.54 15599.92 10299.19 7599.62 14199.51 182
sss99.17 8699.05 8899.53 11299.62 14198.97 16199.36 24299.62 4197.83 18699.67 8799.65 19297.37 12499.95 6299.19 7599.19 17499.68 123
Vis-MVSNetpermissive99.12 10198.97 10699.56 10199.78 5699.10 14399.68 6699.66 2898.49 10099.86 3399.87 4894.77 22699.84 16499.19 7599.41 15799.74 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ab-mvs98.86 13998.63 15299.54 10499.64 13299.19 12999.44 20499.54 8797.77 19499.30 18599.81 9594.20 25399.93 9099.17 7998.82 20699.49 187
Anonymous20240521198.30 19097.98 21199.26 16899.57 15698.16 23799.41 21898.55 38396.03 34999.19 21499.74 14791.87 31699.92 10299.16 8098.29 23699.70 117
PS-MVSNAJss98.92 13298.92 11598.90 21698.78 34698.53 21299.78 3299.54 8798.07 15899.00 25099.76 13999.01 1899.37 29499.13 8197.23 29798.81 267
EPP-MVSNet99.13 9598.99 10299.53 11299.65 13099.06 15099.81 2099.33 26697.43 23699.60 11799.88 3997.14 13199.84 16499.13 8198.94 19599.69 119
reproduce_model99.63 799.54 1199.90 499.78 5699.88 899.56 13099.55 7899.15 2199.90 1999.90 2799.00 2299.97 2199.11 8399.91 3499.86 32
Effi-MVS+98.81 15098.59 16399.48 12699.46 19999.12 14298.08 40699.50 13997.50 22799.38 16899.41 27996.37 16399.81 18999.11 8398.54 22299.51 182
RRT-MVS98.91 13398.75 13999.39 14399.46 19998.61 20699.76 3799.50 13998.06 16299.81 4399.88 3993.91 26699.94 7299.11 8399.27 16999.61 149
ETV-MVS99.26 7499.21 7199.40 13999.46 19999.30 11799.56 13099.52 10598.52 9899.44 15099.27 31998.41 9099.86 15199.10 8699.59 14499.04 250
TSAR-MVS + GP.99.36 5999.36 3899.36 14599.67 11498.61 20699.07 31999.33 26699.00 4799.82 4299.81 9599.06 1699.84 16499.09 8799.42 15699.65 133
FIs98.78 15498.63 15299.23 17399.18 27799.54 8399.83 1599.59 5898.28 12398.79 28299.81 9596.75 14799.37 29499.08 8896.38 31398.78 269
FC-MVSNet-test98.75 15798.62 15799.15 18399.08 30499.45 9899.86 1199.60 5498.23 13298.70 29599.82 8196.80 14499.22 32399.07 8996.38 31398.79 268
HPM-MVS_fast99.51 2199.40 3099.85 3199.91 199.79 3399.76 3799.56 7097.72 19999.76 6499.75 14299.13 1299.92 10299.07 8999.92 2799.85 36
reproduce-ours99.61 899.52 1299.90 499.76 6699.88 899.52 15799.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9199.90 4399.85 36
our_new_method99.61 899.52 1299.90 499.76 6699.88 899.52 15799.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9199.90 4399.85 36
MVSFormer99.17 8699.12 7999.29 16299.51 17698.94 17199.88 499.46 19197.55 21999.80 4799.65 19297.39 12199.28 31199.03 9399.85 7599.65 133
test_djsdf98.67 16498.57 16498.98 19998.70 36098.91 17599.88 499.46 19197.55 21999.22 20599.88 3995.73 18799.28 31199.03 9397.62 26998.75 277
jason99.13 9599.03 9299.45 13299.46 19998.87 17899.12 30999.26 29498.03 16799.79 4999.65 19297.02 13899.85 15799.02 9599.90 4399.65 133
jason: jason.
DeepPCF-MVS98.18 398.81 15099.37 3697.12 35899.60 15091.75 39898.61 38399.44 21099.35 1299.83 4199.85 5798.70 6699.81 18999.02 9599.91 3499.81 64
CSCG99.32 6499.32 4699.32 15399.85 2698.29 23199.71 5599.66 2898.11 15099.41 15999.80 10898.37 9299.96 3298.99 9799.96 1299.72 106
ET-MVSNet_ETH3D96.49 33395.64 34799.05 19199.53 16898.82 18798.84 36297.51 40297.63 21084.77 41199.21 32892.09 31298.91 37098.98 9892.21 38799.41 209
PVSNet_BlendedMVS98.86 13998.80 13399.03 19399.76 6698.79 19099.28 26899.91 397.42 23899.67 8799.37 29297.53 11899.88 14398.98 9897.29 29598.42 355
PVSNet_Blended99.08 11298.97 10699.42 13799.76 6698.79 19098.78 36899.91 396.74 29399.67 8799.49 25597.53 11899.88 14398.98 9899.85 7599.60 152
GDP-MVS99.08 11298.89 12199.64 8399.53 16899.34 10999.64 8499.48 16198.32 12099.77 5899.66 19095.14 20899.93 9098.97 10199.50 15199.64 140
3Dnovator97.25 999.24 7999.05 8899.81 4799.12 29399.66 5699.84 1299.74 1099.09 3698.92 26199.90 2795.94 17899.98 1398.95 10299.92 2799.79 77
WBMVS97.74 27297.50 26598.46 27699.24 26297.43 27599.21 29499.42 21897.45 23298.96 25699.41 27988.83 35999.23 31998.94 10396.02 32198.71 284
EIA-MVS99.18 8499.09 8499.45 13299.49 18999.18 13199.67 6999.53 10097.66 20899.40 16499.44 27198.10 10399.81 18998.94 10399.62 14199.35 218
lupinMVS99.13 9599.01 10099.46 13199.51 17698.94 17199.05 32499.16 31197.86 18099.80 4799.56 23097.39 12199.86 15198.94 10399.85 7599.58 160
DVP-MVScopyleft99.57 1599.47 2099.88 899.85 2699.89 499.57 12499.37 24699.10 3199.81 4399.80 10898.94 3299.96 3298.93 10699.86 6899.81 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 12499.51 11999.96 3298.93 10699.86 6899.88 25
UA-Net99.42 4799.29 5899.80 4999.62 14199.55 8199.50 17399.70 1598.79 7499.77 5899.96 197.45 12099.96 3298.92 10899.90 4399.89 19
SED-MVS99.61 899.52 1299.88 899.84 3299.90 299.60 10299.48 16199.08 3799.91 1799.81 9599.20 799.96 3298.91 10999.85 7599.79 77
test_241102_TWO99.48 16199.08 3799.88 2499.81 9598.94 3299.96 3298.91 10999.84 8399.88 25
MVS_111021_HR99.41 5199.32 4699.66 7399.72 9499.47 9698.95 35099.85 698.82 6999.54 13099.73 15398.51 8199.74 21598.91 10999.88 5799.77 85
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7599.47 18298.79 7499.68 8399.81 9598.43 8699.97 2198.88 11299.90 4399.83 52
XXY-MVS98.38 18398.09 19999.24 17199.26 25699.32 11199.56 13099.55 7897.45 23298.71 28999.83 7293.23 27899.63 26298.88 11296.32 31598.76 275
ACMH97.28 898.10 20897.99 21098.44 28199.41 21496.96 30799.60 10299.56 7098.09 15398.15 33999.91 2090.87 33799.70 23798.88 11297.45 28698.67 305
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSC_two_6792asdad99.87 1499.51 17699.76 4099.33 26699.96 3298.87 11599.84 8399.89 19
No_MVS99.87 1499.51 17699.76 4099.33 26699.96 3298.87 11599.84 8399.89 19
MVS_Test99.10 11098.97 10699.48 12699.49 18999.14 13999.67 6999.34 25997.31 24799.58 12199.76 13997.65 11799.82 18498.87 11599.07 18799.46 199
MVSTER98.49 17198.32 18099.00 19799.35 23199.02 15499.54 14899.38 23897.41 23999.20 21199.73 15393.86 26899.36 29898.87 11597.56 27498.62 326
1112_ss98.98 12798.77 13799.59 9499.68 11299.02 15499.25 28499.48 16197.23 25599.13 22399.58 22296.93 14299.90 12698.87 11598.78 20999.84 42
IU-MVS99.84 3299.88 899.32 27698.30 12299.84 3598.86 12099.85 7599.89 19
3Dnovator+97.12 1399.18 8498.97 10699.82 4499.17 28599.68 5199.81 2099.51 11999.20 1898.72 28899.89 3295.68 18999.97 2198.86 12099.86 6899.81 64
DVP-MVS++99.59 1199.50 1699.88 899.51 17699.88 899.87 899.51 11998.99 4999.88 2499.81 9599.27 599.96 3298.85 12299.80 10399.81 64
test_0728_THIRD98.99 4999.81 4399.80 10899.09 1499.96 3298.85 12299.90 4399.88 25
WTY-MVS99.06 11598.88 12399.61 9199.62 14199.16 13499.37 23799.56 7098.04 16599.53 13299.62 20996.84 14399.94 7298.85 12298.49 22599.72 106
TSAR-MVS + MP.99.58 1299.50 1699.81 4799.91 199.66 5699.63 9099.39 23098.91 6299.78 5499.85 5799.36 299.94 7298.84 12599.88 5799.82 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023121197.88 24497.54 26198.90 21699.71 9998.53 21299.48 18899.57 6594.16 37798.81 27899.68 17993.23 27899.42 28798.84 12594.42 36098.76 275
114514_t98.93 13198.67 14799.72 6999.85 2699.53 8699.62 9599.59 5892.65 39399.71 7799.78 12798.06 10699.90 12698.84 12599.91 3499.74 95
tttt051798.42 17798.14 19199.28 16699.66 12498.38 22999.74 4696.85 40697.68 20599.79 4999.74 14791.39 33099.89 13898.83 12899.56 14699.57 163
MP-MVS-pluss99.37 5899.20 7299.88 899.90 499.87 1599.30 25899.52 10597.18 25899.60 11799.79 12098.79 5099.95 6298.83 12899.91 3499.83 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Test_1112_low_res98.89 13498.66 15099.57 9999.69 10898.95 16899.03 32999.47 18296.98 27899.15 22199.23 32496.77 14699.89 13898.83 12898.78 20999.86 32
MVS_111021_LR99.41 5199.33 4499.65 7799.77 6399.51 9098.94 35299.85 698.82 6999.65 9999.74 14798.51 8199.80 19698.83 12899.89 5499.64 140
ACMMP_NAP99.47 3299.34 4299.88 899.87 1599.86 1699.47 19499.48 16198.05 16499.76 6499.86 5298.82 4699.93 9098.82 13299.91 3499.84 42
SMA-MVScopyleft99.44 4299.30 5499.85 3199.73 9099.83 1999.56 13099.47 18297.45 23299.78 5499.82 8199.18 1099.91 11498.79 13399.89 5499.81 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS99.53 1999.42 2599.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 17099.74 14798.81 4799.94 7298.79 13399.86 6899.84 42
X-MVStestdata96.55 33195.45 35099.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 17064.01 42498.81 4799.94 7298.79 13399.86 6899.84 42
CVMVSNet98.57 17098.67 14798.30 29599.35 23195.59 35099.50 17399.55 7898.60 9199.39 16699.83 7294.48 24499.45 27798.75 13698.56 22099.85 36
CP-MVS99.45 3899.32 4699.85 3199.83 3999.75 4299.69 6099.52 10598.07 15899.53 13299.63 20498.93 3699.97 2198.74 13799.91 3499.83 52
ACMM97.58 598.37 18598.34 17898.48 27099.41 21497.10 29099.56 13099.45 20298.53 9799.04 24399.85 5793.00 28399.71 23198.74 13797.45 28698.64 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu98.78 15498.89 12198.47 27599.33 23696.91 30999.57 12499.30 28498.47 10299.41 15998.99 35096.78 14599.74 21598.73 13999.38 15898.74 280
ZNCC-MVS99.47 3299.33 4499.87 1499.87 1599.81 2899.64 8499.67 2398.08 15799.55 12999.64 19898.91 3799.96 3298.72 14099.90 4399.82 57
SD-MVS99.41 5199.52 1299.05 19199.74 8399.68 5199.46 19799.52 10599.11 3099.88 2499.91 2099.43 197.70 40098.72 14099.93 2599.77 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
D2MVS98.41 17998.50 16998.15 30999.26 25696.62 32399.40 22699.61 4897.71 20098.98 25299.36 29596.04 17299.67 24598.70 14297.41 29198.15 373
CDS-MVSNet99.09 11199.03 9299.25 16999.42 20998.73 19499.45 19899.46 19198.11 15099.46 14499.77 13598.01 10899.37 29498.70 14298.92 19899.66 129
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 10199.08 8599.24 17199.46 19998.55 21099.51 16699.46 19198.09 15399.45 14599.82 8198.34 9399.51 27298.70 14298.93 19699.67 126
HFP-MVS99.49 2599.37 3699.86 2499.87 1599.80 3099.66 7599.67 2398.15 14299.68 8399.69 17299.06 1699.96 3298.69 14599.87 6099.84 42
ACMMPR99.49 2599.36 3899.86 2499.87 1599.79 3399.66 7599.67 2398.15 14299.67 8799.69 17298.95 3099.96 3298.69 14599.87 6099.84 42
UniMVSNet_ETH3D97.32 31196.81 31998.87 22599.40 21997.46 27499.51 16699.53 10095.86 35298.54 31699.77 13582.44 40299.66 24898.68 14797.52 27899.50 186
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 5899.63 13599.59 7399.36 24299.46 19199.07 3999.79 4999.82 8198.85 4299.92 10298.68 14799.87 6099.82 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
anonymousdsp98.44 17598.28 18398.94 20698.50 37698.96 16599.77 3499.50 13997.07 27098.87 27099.77 13594.76 22799.28 31198.66 14997.60 27098.57 341
DP-MVS99.16 8898.95 11299.78 5599.77 6399.53 8699.41 21899.50 13997.03 27699.04 24399.88 3997.39 12199.92 10298.66 14999.90 4399.87 30
MonoMVSNet98.38 18398.47 17198.12 31198.59 37296.19 34099.72 5298.79 36497.89 17799.44 15099.52 24596.13 16998.90 37298.64 15197.54 27699.28 226
MCST-MVS99.43 4599.30 5499.82 4499.79 5499.74 4499.29 26399.40 22798.79 7499.52 13499.62 20998.91 3799.90 12698.64 15199.75 11999.82 57
CP-MVSNet98.09 20997.78 23399.01 19598.97 32399.24 12699.67 6999.46 19197.25 25298.48 32099.64 19893.79 27099.06 34798.63 15394.10 36698.74 280
thisisatest053098.35 18698.03 20699.31 15499.63 13598.56 20999.54 14896.75 40897.53 22399.73 7099.65 19291.25 33399.89 13898.62 15499.56 14699.48 188
region2R99.48 2999.35 4099.87 1499.88 1199.80 3099.65 8199.66 2898.13 14799.66 9299.68 17998.96 2599.96 3298.62 15499.87 6099.84 42
APD-MVS_3200maxsize99.48 2999.35 4099.85 3199.76 6699.83 1999.63 9099.54 8798.36 11599.79 4999.82 8198.86 4199.95 6298.62 15499.81 9999.78 83
SR-MVS-dyc-post99.45 3899.31 5299.85 3199.76 6699.82 2599.63 9099.52 10598.38 11199.76 6499.82 8198.53 7999.95 6298.61 15799.81 9999.77 85
RE-MVS-def99.34 4299.76 6699.82 2599.63 9099.52 10598.38 11199.76 6499.82 8198.75 5898.61 15799.81 9999.77 85
PHI-MVS99.30 6699.17 7599.70 7099.56 16099.52 8999.58 11799.80 897.12 26499.62 11199.73 15398.58 7599.90 12698.61 15799.91 3499.68 123
test_yl98.86 13998.63 15299.54 10499.49 18999.18 13199.50 17399.07 32398.22 13399.61 11499.51 24995.37 19899.84 16498.60 16098.33 23199.59 156
DCV-MVSNet98.86 13998.63 15299.54 10499.49 18999.18 13199.50 17399.07 32398.22 13399.61 11499.51 24995.37 19899.84 16498.60 16098.33 23199.59 156
CNVR-MVS99.42 4799.30 5499.78 5599.62 14199.71 4799.26 28299.52 10598.82 6999.39 16699.71 15898.96 2599.85 15798.59 16299.80 10399.77 85
tt080597.97 23397.77 23598.57 25999.59 15296.61 32499.45 19899.08 32098.21 13598.88 26799.80 10888.66 36399.70 23798.58 16397.72 26499.39 212
WR-MVS98.06 21397.73 24299.06 18998.86 33899.25 12599.19 29699.35 25497.30 24898.66 29899.43 27393.94 26399.21 32898.58 16394.28 36298.71 284
HPM-MVScopyleft99.42 4799.28 6099.83 4399.90 499.72 4599.81 2099.54 8797.59 21399.68 8399.63 20498.91 3799.94 7298.58 16399.91 3499.84 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_NR-MVSNet98.22 19497.97 21298.96 20298.92 32898.98 15899.48 18899.53 10097.76 19598.71 28999.46 26896.43 16299.22 32398.57 16692.87 38298.69 293
DU-MVS98.08 21197.79 23098.96 20298.87 33598.98 15899.41 21899.45 20297.87 17998.71 28999.50 25294.82 21999.22 32398.57 16692.87 38298.68 298
mPP-MVS99.44 4299.30 5499.86 2499.88 1199.79 3399.69 6099.48 16198.12 14899.50 13799.75 14298.78 5199.97 2198.57 16699.89 5499.83 52
CANet_DTU98.97 12998.87 12499.25 16999.33 23698.42 22899.08 31899.30 28499.16 2099.43 15299.75 14295.27 20299.97 2198.56 16999.95 1799.36 217
PMMVS98.80 15398.62 15799.34 14799.27 25498.70 19698.76 37099.31 28097.34 24499.21 20899.07 34097.20 13099.82 18498.56 16998.87 20199.52 175
PVSNet96.02 1798.85 14698.84 13098.89 21999.73 9097.28 28098.32 39999.60 5497.86 18099.50 13799.57 22796.75 14799.86 15198.56 16999.70 12999.54 168
ACMMPcopyleft99.45 3899.32 4699.82 4499.89 899.67 5499.62 9599.69 1898.12 14899.63 10799.84 6798.73 6399.96 3298.55 17299.83 9299.81 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVG-OURS-SEG-HR98.69 16298.62 15798.89 21999.71 9997.74 26199.12 30999.54 8798.44 10799.42 15599.71 15894.20 25399.92 10298.54 17398.90 20099.00 254
PS-CasMVS97.93 23697.59 25798.95 20498.99 31899.06 15099.68 6699.52 10597.13 26298.31 32899.68 17992.44 30799.05 34898.51 17494.08 36798.75 277
CostFormer97.72 27697.73 24297.71 34099.15 29194.02 38199.54 14899.02 33094.67 37299.04 24399.35 29892.35 30999.77 20698.50 17597.94 25499.34 221
baseline198.31 18897.95 21599.38 14499.50 18798.74 19399.59 10998.93 33998.41 10999.14 22299.60 21694.59 23799.79 19998.48 17693.29 37699.61 149
SteuartSystems-ACMMP99.54 1899.42 2599.87 1499.82 4299.81 2899.59 10999.51 11998.62 8999.79 4999.83 7299.28 499.97 2198.48 17699.90 4399.84 42
Skip Steuart: Steuart Systems R&D Blog.
tpmrst98.33 18798.48 17097.90 32799.16 28794.78 37099.31 25699.11 31697.27 25099.45 14599.59 21895.33 20099.84 16498.48 17698.61 21499.09 242
IB-MVS95.67 1896.22 33795.44 35198.57 25999.21 26996.70 31798.65 38197.74 40096.71 29597.27 36598.54 37786.03 38399.92 10298.47 17986.30 40599.10 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSP-MVS99.42 4799.27 6399.88 899.89 899.80 3099.67 6999.50 13998.70 8399.77 5899.49 25598.21 9899.95 6298.46 18099.77 11499.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testing1197.50 29997.10 31098.71 24799.20 27196.91 30999.29 26398.82 35997.89 17798.21 33698.40 38185.63 38699.83 17798.45 18198.04 25199.37 216
SR-MVS99.43 4599.29 5899.86 2499.75 7699.83 1999.59 10999.62 4198.21 13599.73 7099.79 12098.68 6799.96 3298.44 18299.77 11499.79 77
HPM-MVS++copyleft99.39 5699.23 7099.87 1499.75 7699.84 1899.43 20899.51 11998.68 8699.27 19499.53 24298.64 7299.96 3298.44 18299.80 10399.79 77
LTVRE_ROB97.16 1298.02 22397.90 22098.40 28699.23 26496.80 31599.70 5699.60 5497.12 26498.18 33899.70 16291.73 32199.72 22598.39 18497.45 28698.68 298
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GST-MVS99.40 5499.24 6899.85 3199.86 2099.79 3399.60 10299.67 2397.97 17099.63 10799.68 17998.52 8099.95 6298.38 18599.86 6899.81 64
EI-MVSNet98.67 16498.67 14798.68 25099.35 23197.97 24899.50 17399.38 23896.93 28599.20 21199.83 7297.87 11099.36 29898.38 18597.56 27498.71 284
HY-MVS97.30 798.85 14698.64 15199.47 12999.42 20999.08 14799.62 9599.36 24797.39 24199.28 18999.68 17996.44 16199.92 10298.37 18798.22 23999.40 211
TDRefinement95.42 35194.57 35897.97 32189.83 42196.11 34299.48 18898.75 36696.74 29396.68 37799.88 3988.65 36499.71 23198.37 18782.74 41098.09 376
ttmdpeth97.80 26297.63 25398.29 29698.77 35197.38 27799.64 8499.36 24798.78 7796.30 38199.58 22292.34 31099.39 28998.36 18995.58 33698.10 375
UniMVSNet (Re)98.29 19198.00 20999.13 18499.00 31599.36 10899.49 18499.51 11997.95 17198.97 25499.13 33596.30 16599.38 29198.36 18993.34 37598.66 313
WR-MVS_H98.13 20597.87 22598.90 21699.02 31398.84 18399.70 5699.59 5897.27 25098.40 32399.19 32995.53 19399.23 31998.34 19193.78 37298.61 335
PGM-MVS99.45 3899.31 5299.86 2499.87 1599.78 3999.58 11799.65 3397.84 18599.71 7799.80 10899.12 1399.97 2198.33 19299.87 6099.83 52
LS3D99.27 7299.12 7999.74 6499.18 27799.75 4299.56 13099.57 6598.45 10499.49 14099.85 5797.77 11499.94 7298.33 19299.84 8399.52 175
IterMVS-LS98.46 17498.42 17398.58 25899.59 15298.00 24699.37 23799.43 21696.94 28499.07 23599.59 21897.87 11099.03 35198.32 19495.62 33598.71 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS98.16 20298.10 19698.33 29199.29 24996.82 31498.75 37199.44 21097.83 18699.13 22399.55 23392.92 28599.67 24598.32 19497.69 26598.48 347
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PC_three_145298.18 14099.84 3599.70 16299.31 398.52 38398.30 19699.80 10399.81 64
UBG97.85 24997.48 26798.95 20499.25 26097.64 26999.24 28698.74 36997.90 17698.64 30598.20 38988.65 36499.81 18998.27 19798.40 22799.42 206
NCCC99.34 6199.19 7399.79 5299.61 14599.65 6099.30 25899.48 16198.86 6499.21 20899.63 20498.72 6499.90 12698.25 19899.63 14099.80 73
OPU-MVS99.64 8399.56 16099.72 4599.60 10299.70 16299.27 599.42 28798.24 19999.80 10399.79 77
GeoE98.85 14698.62 15799.53 11299.61 14599.08 14799.80 2599.51 11997.10 26899.31 18299.78 12795.23 20699.77 20698.21 20099.03 19099.75 91
cl2297.85 24997.64 25298.48 27099.09 30197.87 25698.60 38599.33 26697.11 26798.87 27099.22 32592.38 30899.17 33298.21 20095.99 32498.42 355
SF-MVS99.38 5799.24 6899.79 5299.79 5499.68 5199.57 12499.54 8797.82 19099.71 7799.80 10898.95 3099.93 9098.19 20299.84 8399.74 95
旧先验298.96 34796.70 29699.47 14299.94 7298.19 202
F-COLMAP99.19 8299.04 9099.64 8399.78 5699.27 12299.42 21599.54 8797.29 24999.41 15999.59 21898.42 8899.93 9098.19 20299.69 13099.73 100
LCM-MVSNet-Re97.83 25598.15 19096.87 36699.30 24592.25 39699.59 10998.26 38897.43 23696.20 38299.13 33596.27 16698.73 37998.17 20598.99 19399.64 140
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5699.88 899.36 24299.51 11998.73 8199.88 2499.84 6798.72 6499.96 3298.16 20699.87 6099.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
cascas97.69 28197.43 28298.48 27098.60 37097.30 27998.18 40499.39 23092.96 38998.41 32298.78 36993.77 27199.27 31498.16 20698.61 21498.86 264
COLMAP_ROBcopyleft97.56 698.86 13998.75 13999.17 17899.88 1198.53 21299.34 25099.59 5897.55 21998.70 29599.89 3295.83 18399.90 12698.10 20899.90 4399.08 243
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS97.76 26697.44 27898.72 24598.77 35198.54 21199.78 3299.51 11997.06 27298.29 33199.64 19892.63 29898.89 37398.09 20993.16 37898.72 282
LPG-MVS_test98.22 19498.13 19398.49 26899.33 23697.05 29699.58 11799.55 7897.46 22999.24 20099.83 7292.58 29999.72 22598.09 20997.51 27998.68 298
LGP-MVS_train98.49 26899.33 23697.05 29699.55 7897.46 22999.24 20099.83 7292.58 29999.72 22598.09 20997.51 27998.68 298
IS-MVSNet99.05 11798.87 12499.57 9999.73 9099.32 11199.75 4299.20 30698.02 16899.56 12599.86 5296.54 15599.67 24598.09 20999.13 18099.73 100
thisisatest051598.14 20497.79 23099.19 17699.50 18798.50 21998.61 38396.82 40796.95 28299.54 13099.43 27391.66 32599.86 15198.08 21399.51 15099.22 232
OPM-MVS98.19 19898.10 19698.45 27898.88 33297.07 29499.28 26899.38 23898.57 9399.22 20599.81 9592.12 31199.66 24898.08 21397.54 27698.61 335
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS98.73 16098.68 14698.88 22199.70 10497.73 26298.92 35499.55 7898.52 9899.45 14599.84 6795.27 20299.91 11498.08 21398.84 20499.00 254
Baseline_NR-MVSNet97.76 26697.45 27398.68 25099.09 30198.29 23199.41 21898.85 35695.65 35498.63 30799.67 18594.82 21999.10 34498.07 21692.89 38198.64 317
ACMH+97.24 1097.92 23997.78 23398.32 29399.46 19996.68 32199.56 13099.54 8798.41 10997.79 35599.87 4890.18 34699.66 24898.05 21797.18 30098.62 326
testing9997.36 30996.94 31698.63 25299.18 27796.70 31799.30 25898.93 33997.71 20098.23 33398.26 38784.92 39199.84 16498.04 21897.85 26099.35 218
testing9197.44 30697.02 31398.71 24799.18 27796.89 31199.19 29699.04 32797.78 19398.31 32898.29 38685.41 38899.85 15798.01 21997.95 25399.39 212
TranMVSNet+NR-MVSNet97.93 23697.66 24898.76 24398.78 34698.62 20499.65 8199.49 14997.76 19598.49 31999.60 21694.23 25298.97 36598.00 22092.90 38098.70 289
DP-MVS Recon99.12 10198.95 11299.65 7799.74 8399.70 4999.27 27399.57 6596.40 32499.42 15599.68 17998.75 5899.80 19697.98 22199.72 12599.44 204
test_prior298.96 34798.34 11799.01 24699.52 24598.68 6797.96 22299.74 122
Fast-Effi-MVS+-dtu98.77 15698.83 13298.60 25499.41 21496.99 30399.52 15799.49 14998.11 15099.24 20099.34 30296.96 14199.79 19997.95 22399.45 15499.02 253
MP-MVScopyleft99.33 6299.15 7699.87 1499.88 1199.82 2599.66 7599.46 19198.09 15399.48 14199.74 14798.29 9599.96 3297.93 22499.87 6099.82 57
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNet (Re-imp)98.87 13698.72 14199.31 15499.71 9998.88 17799.80 2599.44 21097.91 17599.36 17399.78 12795.49 19599.43 28697.91 22599.11 18199.62 147
ACMP97.20 1198.06 21397.94 21798.45 27899.37 22797.01 30199.44 20499.49 14997.54 22298.45 32199.79 12091.95 31599.72 22597.91 22597.49 28498.62 326
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvs297.25 31497.30 29897.09 35999.43 20793.31 39099.73 5098.87 35498.83 6899.28 18999.80 10884.45 39499.66 24897.88 22797.45 28698.30 363
Fast-Effi-MVS+98.70 16198.43 17299.51 12099.51 17699.28 12099.52 15799.47 18296.11 34499.01 24699.34 30296.20 16899.84 16497.88 22798.82 20699.39 212
EPMVS97.82 25897.65 24998.35 29098.88 33295.98 34399.49 18494.71 41897.57 21699.26 19899.48 26192.46 30699.71 23197.87 22999.08 18699.35 218
ETVMVS97.50 29996.90 31799.29 16299.23 26498.78 19299.32 25398.90 34997.52 22598.56 31498.09 39584.72 39399.69 24297.86 23097.88 25799.39 212
miper_enhance_ethall98.16 20298.08 20098.41 28498.96 32497.72 26498.45 39299.32 27696.95 28298.97 25499.17 33097.06 13699.22 32397.86 23095.99 32498.29 364
tmp_tt82.80 38281.52 38586.66 39866.61 42868.44 42792.79 41797.92 39568.96 41680.04 41999.85 5785.77 38496.15 41197.86 23043.89 42195.39 411
NR-MVSNet97.97 23397.61 25599.02 19498.87 33599.26 12399.47 19499.42 21897.63 21097.08 37199.50 25295.07 21099.13 33797.86 23093.59 37398.68 298
v14897.79 26497.55 25898.50 26798.74 35497.72 26499.54 14899.33 26696.26 33198.90 26499.51 24994.68 23399.14 33497.83 23493.15 37998.63 324
CPTT-MVS99.11 10698.90 11899.74 6499.80 5299.46 9799.59 10999.49 14997.03 27699.63 10799.69 17297.27 12999.96 3297.82 23599.84 8399.81 64
MDTV_nov1_ep13_2view95.18 36499.35 24796.84 28999.58 12195.19 20797.82 23599.46 199
OMC-MVS99.08 11299.04 9099.20 17599.67 11498.22 23599.28 26899.52 10598.07 15899.66 9299.81 9597.79 11399.78 20497.79 23799.81 9999.60 152
FA-MVS(test-final)98.75 15798.53 16899.41 13899.55 16499.05 15299.80 2599.01 33196.59 31099.58 12199.59 21895.39 19799.90 12697.78 23899.49 15299.28 226
HQP_MVS98.27 19398.22 18698.44 28199.29 24996.97 30599.39 23099.47 18298.97 5599.11 22799.61 21392.71 29499.69 24297.78 23897.63 26798.67 305
plane_prior599.47 18299.69 24297.78 23897.63 26798.67 305
dmvs_re98.08 21198.16 18897.85 33099.55 16494.67 37399.70 5698.92 34298.15 14299.06 24099.35 29893.67 27499.25 31697.77 24197.25 29699.64 140
testdata99.54 10499.75 7698.95 16899.51 11997.07 27099.43 15299.70 16298.87 4099.94 7297.76 24299.64 13899.72 106
PLCcopyleft97.94 499.02 12198.85 12899.53 11299.66 12499.01 15699.24 28699.52 10596.85 28899.27 19499.48 26198.25 9799.91 11497.76 24299.62 14199.65 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm97.67 28697.55 25898.03 31499.02 31395.01 36699.43 20898.54 38496.44 32099.12 22599.34 30291.83 31899.60 26597.75 24496.46 31199.48 188
131498.68 16398.54 16799.11 18598.89 33198.65 20099.27 27399.49 14996.89 28697.99 34699.56 23097.72 11699.83 17797.74 24599.27 16998.84 266
XVG-ACMP-BASELINE97.83 25597.71 24498.20 30399.11 29596.33 33399.41 21899.52 10598.06 16299.05 24299.50 25289.64 35299.73 22197.73 24697.38 29398.53 343
CNLPA99.14 9398.99 10299.59 9499.58 15499.41 10399.16 30099.44 21098.45 10499.19 21499.49 25598.08 10599.89 13897.73 24699.75 11999.48 188
v2v48298.06 21397.77 23598.92 21098.90 33098.82 18799.57 12499.36 24796.65 30099.19 21499.35 29894.20 25399.25 31697.72 24894.97 35098.69 293
AUN-MVS96.88 32596.31 33198.59 25599.48 19697.04 29999.27 27399.22 30297.44 23598.51 31799.41 27991.97 31499.66 24897.71 24983.83 40899.07 248
baseline297.87 24697.55 25898.82 23499.18 27798.02 24599.41 21896.58 41296.97 27996.51 37899.17 33093.43 27599.57 26797.71 24999.03 19098.86 264
原ACMM199.65 7799.73 9099.33 11099.47 18297.46 22999.12 22599.66 19098.67 6999.91 11497.70 25199.69 13099.71 115
PVSNet_094.43 1996.09 34295.47 34997.94 32499.31 24494.34 37997.81 40899.70 1597.12 26497.46 35998.75 37089.71 35099.79 19997.69 25281.69 41199.68 123
MAR-MVS98.86 13998.63 15299.54 10499.37 22799.66 5699.45 19899.54 8796.61 30599.01 24699.40 28397.09 13399.86 15197.68 25399.53 14999.10 238
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
9.1499.10 8199.72 9499.40 22699.51 11997.53 22399.64 10499.78 12798.84 4499.91 11497.63 25499.82 96
train_agg99.02 12198.77 13799.77 5899.67 11499.65 6099.05 32499.41 22196.28 32898.95 25799.49 25598.76 5599.91 11497.63 25499.72 12599.75 91
miper_ehance_all_eth98.18 20098.10 19698.41 28499.23 26497.72 26498.72 37499.31 28096.60 30898.88 26799.29 31497.29 12899.13 33797.60 25695.99 32498.38 360
MDTV_nov1_ep1398.32 18099.11 29594.44 37699.27 27398.74 36997.51 22699.40 16499.62 20994.78 22399.76 21097.59 25798.81 208
c3_l98.12 20798.04 20598.38 28899.30 24597.69 26898.81 36599.33 26696.67 29898.83 27699.34 30297.11 13298.99 35797.58 25895.34 34298.48 347
test_post199.23 28865.14 42394.18 25699.71 23197.58 258
SCA98.19 19898.16 18898.27 30199.30 24595.55 35199.07 31998.97 33597.57 21699.43 15299.57 22792.72 29299.74 21597.58 25899.20 17399.52 175
JIA-IIPM97.50 29997.02 31398.93 20898.73 35597.80 26099.30 25898.97 33591.73 39698.91 26294.86 41195.10 20999.71 23197.58 25897.98 25299.28 226
V4298.06 21397.79 23098.86 22898.98 32198.84 18399.69 6099.34 25996.53 31299.30 18599.37 29294.67 23499.32 30697.57 26294.66 35598.42 355
gm-plane-assit98.54 37592.96 39294.65 37399.15 33399.64 25697.56 263
APD-MVScopyleft99.27 7299.08 8599.84 4299.75 7699.79 3399.50 17399.50 13997.16 26099.77 5899.82 8198.78 5199.94 7297.56 26399.86 6899.80 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pm-mvs197.68 28397.28 30198.88 22199.06 30798.62 20499.50 17399.45 20296.32 32697.87 35199.79 12092.47 30399.35 30197.54 26593.54 37498.67 305
无先验98.99 34099.51 11996.89 28699.93 9097.53 26699.72 106
pmmvs597.52 29697.30 29898.16 30698.57 37396.73 31699.27 27398.90 34996.14 34298.37 32599.53 24291.54 32899.14 33497.51 26795.87 32898.63 324
mvsany_test393.77 36593.45 36994.74 37895.78 40788.01 40499.64 8498.25 38998.28 12394.31 39597.97 39768.89 41298.51 38497.50 26890.37 39597.71 392
test9_res97.49 26999.72 12599.75 91
CDPH-MVS99.13 9598.91 11799.80 4999.75 7699.71 4799.15 30399.41 22196.60 30899.60 11799.55 23398.83 4599.90 12697.48 27099.83 9299.78 83
AdaColmapbinary99.01 12598.80 13399.66 7399.56 16099.54 8399.18 29899.70 1598.18 14099.35 17699.63 20496.32 16499.90 12697.48 27099.77 11499.55 166
OpenMVScopyleft96.50 1698.47 17398.12 19499.52 11899.04 31199.53 8699.82 1699.72 1194.56 37498.08 34199.88 3994.73 22999.98 1397.47 27299.76 11799.06 249
IterMVS97.83 25597.77 23598.02 31699.58 15496.27 33699.02 33299.48 16197.22 25698.71 28999.70 16292.75 28999.13 33797.46 27396.00 32398.67 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPSCF98.22 19498.62 15796.99 36099.82 4291.58 39999.72 5299.44 21096.61 30599.66 9299.89 3295.92 17999.82 18497.46 27399.10 18499.57 163
IterMVS-SCA-FT97.82 25897.75 24098.06 31399.57 15696.36 33299.02 33299.49 14997.18 25898.71 28999.72 15792.72 29299.14 33497.44 27595.86 32998.67 305
PatchmatchNetpermissive98.31 18898.36 17698.19 30499.16 28795.32 36099.27 27398.92 34297.37 24299.37 17099.58 22294.90 21699.70 23797.43 27699.21 17299.54 168
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet97.98 23098.03 20697.81 33698.72 35796.65 32299.66 7599.66 2898.09 15398.35 32699.82 8195.25 20598.01 39397.41 27795.30 34398.78 269
eth_miper_zixun_eth98.05 21897.96 21398.33 29199.26 25697.38 27798.56 38899.31 28096.65 30098.88 26799.52 24596.58 15399.12 34197.39 27895.53 33998.47 349
UWE-MVS97.58 29397.29 30098.48 27099.09 30196.25 33799.01 33796.61 41197.86 18099.19 21499.01 34888.72 36099.90 12697.38 27998.69 21299.28 226
testing22297.16 31796.50 32699.16 17999.16 28798.47 22499.27 27398.66 37997.71 20098.23 33398.15 39082.28 40499.84 16497.36 28097.66 26699.18 234
FE-MVS98.48 17298.17 18799.40 13999.54 16798.96 16599.68 6698.81 36195.54 35599.62 11199.70 16293.82 26999.93 9097.35 28199.46 15399.32 223
tpm297.44 30697.34 29397.74 33999.15 29194.36 37899.45 19898.94 33893.45 38698.90 26499.44 27191.35 33199.59 26697.31 28298.07 25099.29 225
TESTMET0.1,197.55 29497.27 30498.40 28698.93 32696.53 32698.67 37797.61 40196.96 28098.64 30599.28 31688.63 36699.45 27797.30 28399.38 15899.21 233
miper_lstm_enhance98.00 22897.91 21998.28 30099.34 23597.43 27598.88 35899.36 24796.48 31798.80 28099.55 23395.98 17498.91 37097.27 28495.50 34098.51 345
test-LLR98.06 21397.90 22098.55 26498.79 34397.10 29098.67 37797.75 39897.34 24498.61 31098.85 36294.45 24699.45 27797.25 28599.38 15899.10 238
test-mter97.49 30497.13 30998.55 26498.79 34397.10 29098.67 37797.75 39896.65 30098.61 31098.85 36288.23 37099.45 27797.25 28599.38 15899.10 238
cl____98.01 22697.84 22898.55 26499.25 26097.97 24898.71 37599.34 25996.47 31998.59 31399.54 23895.65 19099.21 32897.21 28795.77 33098.46 352
DIV-MVS_self_test98.01 22697.85 22798.48 27099.24 26297.95 25298.71 37599.35 25496.50 31398.60 31299.54 23895.72 18899.03 35197.21 28795.77 33098.46 352
agg_prior297.21 28799.73 12499.75 91
OurMVSNet-221017-097.88 24497.77 23598.19 30498.71 35996.53 32699.88 499.00 33297.79 19198.78 28399.94 691.68 32299.35 30197.21 28796.99 30498.69 293
BP-MVS97.19 291
HQP-MVS98.02 22397.90 22098.37 28999.19 27496.83 31298.98 34399.39 23098.24 12998.66 29899.40 28392.47 30399.64 25697.19 29197.58 27298.64 317
pmmvs498.13 20597.90 22098.81 23798.61 36998.87 17898.99 34099.21 30596.44 32099.06 24099.58 22295.90 18199.11 34297.18 29396.11 32098.46 352
PatchMatch-RL98.84 14998.62 15799.52 11899.71 9999.28 12099.06 32299.77 997.74 19899.50 13799.53 24295.41 19699.84 16497.17 29499.64 13899.44 204
GBi-Net97.68 28397.48 26798.29 29699.51 17697.26 28399.43 20899.48 16196.49 31499.07 23599.32 30990.26 34298.98 35897.10 29596.65 30698.62 326
test197.68 28397.48 26798.29 29699.51 17697.26 28399.43 20899.48 16196.49 31499.07 23599.32 30990.26 34298.98 35897.10 29596.65 30698.62 326
FMVSNet398.03 22197.76 23998.84 23299.39 22298.98 15899.40 22699.38 23896.67 29899.07 23599.28 31692.93 28498.98 35897.10 29596.65 30698.56 342
BH-untuned98.42 17798.36 17698.59 25599.49 18996.70 31799.27 27399.13 31597.24 25498.80 28099.38 28995.75 18699.74 21597.07 29899.16 17599.33 222
LF4IMVS97.52 29697.46 27297.70 34198.98 32195.55 35199.29 26398.82 35998.07 15898.66 29899.64 19889.97 34799.61 26497.01 29996.68 30597.94 388
SixPastTwentyTwo97.50 29997.33 29598.03 31498.65 36496.23 33899.77 3498.68 37897.14 26197.90 34999.93 990.45 34099.18 33197.00 30096.43 31298.67 305
MG-MVS99.13 9599.02 9699.45 13299.57 15698.63 20399.07 31999.34 25998.99 4999.61 11499.82 8197.98 10999.87 14897.00 30099.80 10399.85 36
API-MVS99.04 11899.03 9299.06 18999.40 21999.31 11599.55 14499.56 7098.54 9699.33 18099.39 28798.76 5599.78 20496.98 30299.78 11198.07 377
tpmvs97.98 23098.02 20897.84 33299.04 31194.73 37199.31 25699.20 30696.10 34898.76 28599.42 27594.94 21299.81 18996.97 30398.45 22698.97 258
QAPM98.67 16498.30 18299.80 4999.20 27199.67 5499.77 3499.72 1194.74 37198.73 28799.90 2795.78 18599.98 1396.96 30499.88 5799.76 90
PAPM_NR99.04 11898.84 13099.66 7399.74 8399.44 9999.39 23099.38 23897.70 20399.28 18999.28 31698.34 9399.85 15796.96 30499.45 15499.69 119
v897.95 23597.63 25398.93 20898.95 32598.81 18999.80 2599.41 22196.03 34999.10 23099.42 27594.92 21599.30 30996.94 30694.08 36798.66 313
ZD-MVS99.71 9999.79 3399.61 4896.84 28999.56 12599.54 23898.58 7599.96 3296.93 30799.75 119
MSDG98.98 12798.80 13399.53 11299.76 6699.19 12998.75 37199.55 7897.25 25299.47 14299.77 13597.82 11299.87 14896.93 30799.90 4399.54 168
pmmvs696.53 33296.09 33797.82 33598.69 36195.47 35599.37 23799.47 18293.46 38597.41 36099.78 12787.06 38099.33 30496.92 30992.70 38498.65 315
新几何199.75 6199.75 7699.59 7399.54 8796.76 29299.29 18899.64 19898.43 8699.94 7296.92 30999.66 13599.72 106
DTE-MVSNet97.51 29897.19 30698.46 27698.63 36698.13 24099.84 1299.48 16196.68 29797.97 34899.67 18592.92 28598.56 38296.88 31192.60 38698.70 289
ADS-MVSNet298.02 22398.07 20397.87 32999.33 23695.19 36399.23 28899.08 32096.24 33299.10 23099.67 18594.11 25798.93 36996.81 31299.05 18899.48 188
ADS-MVSNet98.20 19798.08 20098.56 26299.33 23696.48 32899.23 28899.15 31296.24 33299.10 23099.67 18594.11 25799.71 23196.81 31299.05 18899.48 188
gg-mvs-nofinetune96.17 34095.32 35298.73 24498.79 34398.14 23999.38 23594.09 41991.07 40098.07 34491.04 41789.62 35399.35 30196.75 31499.09 18598.68 298
v114497.98 23097.69 24598.85 23198.87 33598.66 19999.54 14899.35 25496.27 33099.23 20499.35 29894.67 23499.23 31996.73 31595.16 34698.68 298
UnsupCasMVSNet_eth96.44 33496.12 33597.40 35198.65 36495.65 34899.36 24299.51 11997.13 26296.04 38598.99 35088.40 36898.17 38996.71 31690.27 39698.40 358
GA-MVS97.85 24997.47 27099.00 19799.38 22497.99 24798.57 38699.15 31297.04 27598.90 26499.30 31289.83 34999.38 29196.70 31798.33 23199.62 147
K. test v397.10 32096.79 32098.01 31798.72 35796.33 33399.87 897.05 40497.59 21396.16 38399.80 10888.71 36199.04 34996.69 31896.55 31098.65 315
testdata299.95 6296.67 319
AllTest98.87 13698.72 14199.31 15499.86 2098.48 22299.56 13099.61 4897.85 18399.36 17399.85 5795.95 17699.85 15796.66 32099.83 9299.59 156
TestCases99.31 15499.86 2098.48 22299.61 4897.85 18399.36 17399.85 5795.95 17699.85 15796.66 32099.83 9299.59 156
mvs5depth96.66 32996.22 33397.97 32197.00 40396.28 33598.66 38099.03 32996.61 30596.93 37599.79 12087.20 37999.47 27496.65 32294.13 36598.16 372
test_fmvs392.10 37191.77 37493.08 38596.19 40486.25 40599.82 1698.62 38196.65 30095.19 39196.90 40555.05 42095.93 41296.63 32390.92 39497.06 401
dp97.75 27097.80 22997.59 34699.10 29893.71 38599.32 25398.88 35296.48 31799.08 23499.55 23392.67 29799.82 18496.52 32498.58 21799.24 231
BH-RMVSNet98.41 17998.08 20099.40 13999.41 21498.83 18699.30 25898.77 36597.70 20398.94 25999.65 19292.91 28799.74 21596.52 32499.55 14899.64 140
FMVSNet297.72 27697.36 28898.80 23999.51 17698.84 18399.45 19899.42 21896.49 31498.86 27499.29 31490.26 34298.98 35896.44 32696.56 30998.58 340
ambc93.06 38692.68 41782.36 41198.47 39198.73 37595.09 39297.41 40055.55 41899.10 34496.42 32791.32 38997.71 392
tpm cat197.39 30897.36 28897.50 34999.17 28593.73 38499.43 20899.31 28091.27 39798.71 28999.08 33994.31 25199.77 20696.41 32898.50 22499.00 254
v14419297.92 23997.60 25698.87 22598.83 34198.65 20099.55 14499.34 25996.20 33599.32 18199.40 28394.36 24899.26 31596.37 32995.03 34998.70 289
Patchmatch-RL test95.84 34695.81 34495.95 37595.61 40890.57 40198.24 40198.39 38695.10 36395.20 39098.67 37294.78 22397.77 39896.28 33090.02 39799.51 182
Patchmtry97.75 27097.40 28598.81 23799.10 29898.87 17899.11 31599.33 26694.83 36998.81 27899.38 28994.33 24999.02 35396.10 33195.57 33798.53 343
BH-w/o98.00 22897.89 22498.32 29399.35 23196.20 33999.01 33798.90 34996.42 32298.38 32499.00 34995.26 20499.72 22596.06 33298.61 21499.03 251
testing397.28 31296.76 32198.82 23499.37 22798.07 24399.45 19899.36 24797.56 21897.89 35098.95 35583.70 39798.82 37496.03 33398.56 22099.58 160
v7n97.87 24697.52 26298.92 21098.76 35398.58 20899.84 1299.46 19196.20 33598.91 26299.70 16294.89 21799.44 28296.03 33393.89 37098.75 277
v1097.85 24997.52 26298.86 22898.99 31898.67 19899.75 4299.41 22195.70 35398.98 25299.41 27994.75 22899.23 31996.01 33594.63 35698.67 305
lessismore_v097.79 33798.69 36195.44 35894.75 41795.71 38799.87 4888.69 36299.32 30695.89 33694.93 35298.62 326
ITE_SJBPF98.08 31299.29 24996.37 33198.92 34298.34 11798.83 27699.75 14291.09 33499.62 26395.82 33797.40 29298.25 367
FMVSNet196.84 32696.36 33098.29 29699.32 24397.26 28399.43 20899.48 16195.11 36198.55 31599.32 30983.95 39698.98 35895.81 33896.26 31798.62 326
DPM-MVS98.95 13098.71 14399.66 7399.63 13599.55 8198.64 38299.10 31797.93 17399.42 15599.55 23398.67 6999.80 19695.80 33999.68 13399.61 149
MIMVSNet97.73 27497.45 27398.57 25999.45 20597.50 27399.02 33298.98 33496.11 34499.41 15999.14 33490.28 34198.74 37895.74 34098.93 19699.47 194
test_f91.90 37291.26 37693.84 38195.52 41185.92 40699.69 6098.53 38595.31 35893.87 39796.37 40855.33 41998.27 38795.70 34190.98 39397.32 400
tfpnnormal97.84 25397.47 27098.98 19999.20 27199.22 12899.64 8499.61 4896.32 32698.27 33299.70 16293.35 27799.44 28295.69 34295.40 34198.27 365
MS-PatchMatch97.24 31697.32 29696.99 36098.45 37893.51 38998.82 36499.32 27697.41 23998.13 34099.30 31288.99 35799.56 26895.68 34399.80 10397.90 391
EG-PatchMatch MVS95.97 34495.69 34596.81 36797.78 38892.79 39399.16 30098.93 33996.16 33994.08 39699.22 32582.72 40099.47 27495.67 34497.50 28198.17 371
USDC97.34 31097.20 30597.75 33899.07 30595.20 36298.51 39099.04 32797.99 16998.31 32899.86 5289.02 35699.55 27095.67 34497.36 29498.49 346
MVP-Stereo97.81 26097.75 24097.99 32097.53 39296.60 32598.96 34798.85 35697.22 25697.23 36699.36 29595.28 20199.46 27695.51 34699.78 11197.92 390
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WAC-MVS97.16 28795.47 347
CMPMVSbinary69.68 2394.13 36394.90 35591.84 38897.24 39880.01 41898.52 38999.48 16189.01 40591.99 40599.67 18585.67 38599.13 33795.44 34897.03 30396.39 406
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GG-mvs-BLEND98.45 27898.55 37498.16 23799.43 20893.68 42097.23 36698.46 37889.30 35499.22 32395.43 34998.22 23997.98 386
v192192097.80 26297.45 27398.84 23298.80 34298.53 21299.52 15799.34 25996.15 34199.24 20099.47 26493.98 26299.29 31095.40 35095.13 34798.69 293
TR-MVS97.76 26697.41 28498.82 23499.06 30797.87 25698.87 36098.56 38296.63 30498.68 29799.22 32592.49 30299.65 25395.40 35097.79 26298.95 262
v119297.81 26097.44 27898.91 21498.88 33298.68 19799.51 16699.34 25996.18 33799.20 21199.34 30294.03 26099.36 29895.32 35295.18 34598.69 293
myMVS_eth3d96.89 32496.37 32998.43 28399.00 31597.16 28799.29 26399.39 23097.06 27297.41 36098.15 39083.46 39898.68 38095.27 35398.34 22999.45 202
PAPR98.63 16898.34 17899.51 12099.40 21999.03 15398.80 36699.36 24796.33 32599.00 25099.12 33898.46 8499.84 16495.23 35499.37 16599.66 129
TinyColmap97.12 31996.89 31897.83 33399.07 30595.52 35498.57 38698.74 36997.58 21597.81 35499.79 12088.16 37199.56 26895.10 35597.21 29898.39 359
DSMNet-mixed97.25 31497.35 29096.95 36397.84 38793.61 38899.57 12496.63 41096.13 34398.87 27098.61 37594.59 23797.70 40095.08 35698.86 20299.55 166
test0.0.03 197.71 27997.42 28398.56 26298.41 38097.82 25998.78 36898.63 38097.34 24498.05 34598.98 35294.45 24698.98 35895.04 35797.15 30198.89 263
MVStest196.08 34395.48 34897.89 32898.93 32696.70 31799.56 13099.35 25492.69 39291.81 40699.46 26889.90 34898.96 36795.00 35892.61 38598.00 384
our_test_397.65 28897.68 24697.55 34798.62 36794.97 36798.84 36299.30 28496.83 29198.19 33799.34 30297.01 13999.02 35395.00 35896.01 32298.64 317
MVS-HIRNet95.75 34895.16 35397.51 34899.30 24593.69 38698.88 35895.78 41385.09 41098.78 28392.65 41391.29 33299.37 29494.85 36099.85 7599.46 199
CR-MVSNet98.17 20197.93 21898.87 22599.18 27798.49 22099.22 29299.33 26696.96 28099.56 12599.38 28994.33 24999.00 35694.83 36198.58 21799.14 235
pmmvs-eth3d95.34 35394.73 35697.15 35595.53 41095.94 34499.35 24799.10 31795.13 35993.55 39897.54 39988.15 37297.91 39594.58 36289.69 39997.61 395
testgi97.65 28897.50 26598.13 31099.36 23096.45 32999.42 21599.48 16197.76 19597.87 35199.45 27091.09 33498.81 37594.53 36398.52 22399.13 237
v124097.69 28197.32 29698.79 24098.85 33998.43 22699.48 18899.36 24796.11 34499.27 19499.36 29593.76 27299.24 31894.46 36495.23 34498.70 289
YYNet195.36 35294.51 35997.92 32597.89 38697.10 29099.10 31799.23 30093.26 38780.77 41699.04 34492.81 28898.02 39294.30 36594.18 36498.64 317
PM-MVS92.96 36992.23 37395.14 37795.61 40889.98 40399.37 23798.21 39194.80 37095.04 39397.69 39865.06 41397.90 39694.30 36589.98 39897.54 398
test_vis3_rt87.04 37885.81 38190.73 39293.99 41681.96 41399.76 3790.23 42792.81 39181.35 41591.56 41540.06 42499.07 34694.27 36788.23 40291.15 415
MVS97.28 31296.55 32599.48 12698.78 34698.95 16899.27 27399.39 23083.53 41198.08 34199.54 23896.97 14099.87 14894.23 36899.16 17599.63 145
MDA-MVSNet_test_wron95.45 35094.60 35798.01 31798.16 38397.21 28699.11 31599.24 29993.49 38480.73 41798.98 35293.02 28298.18 38894.22 36994.45 35998.64 317
TransMVSNet (Re)97.15 31896.58 32498.86 22899.12 29398.85 18299.49 18498.91 34795.48 35697.16 36999.80 10893.38 27699.11 34294.16 37091.73 38898.62 326
UnsupCasMVSNet_bld93.53 36692.51 37296.58 37197.38 39493.82 38298.24 40199.48 16191.10 39993.10 40096.66 40674.89 41098.37 38594.03 37187.71 40397.56 397
ppachtmachnet_test97.49 30497.45 27397.61 34598.62 36795.24 36198.80 36699.46 19196.11 34498.22 33599.62 20996.45 16098.97 36593.77 37295.97 32798.61 335
thres600view797.86 24897.51 26498.92 21099.72 9497.95 25299.59 10998.74 36997.94 17299.27 19498.62 37391.75 31999.86 15193.73 37398.19 24398.96 260
test_method91.10 37391.36 37590.31 39395.85 40673.72 42694.89 41499.25 29668.39 41795.82 38699.02 34780.50 40798.95 36893.64 37494.89 35498.25 367
DeepMVS_CXcopyleft93.34 38399.29 24982.27 41299.22 30285.15 40996.33 38099.05 34390.97 33699.73 22193.57 37597.77 26398.01 381
MDA-MVSNet-bldmvs94.96 35693.98 36397.92 32598.24 38297.27 28199.15 30399.33 26693.80 38080.09 41899.03 34588.31 36997.86 39793.49 37694.36 36198.62 326
Patchmatch-test97.93 23697.65 24998.77 24299.18 27797.07 29499.03 32999.14 31496.16 33998.74 28699.57 22794.56 23999.72 22593.36 37799.11 18199.52 175
thres100view90097.76 26697.45 27398.69 24999.72 9497.86 25899.59 10998.74 36997.93 17399.26 19898.62 37391.75 31999.83 17793.22 37898.18 24498.37 361
tfpn200view997.72 27697.38 28698.72 24599.69 10897.96 25099.50 17398.73 37597.83 18699.17 21998.45 37991.67 32399.83 17793.22 37898.18 24498.37 361
thres40097.77 26597.38 28698.92 21099.69 10897.96 25099.50 17398.73 37597.83 18699.17 21998.45 37991.67 32399.83 17793.22 37898.18 24498.96 260
EPNet_dtu98.03 22197.96 21398.23 30298.27 38195.54 35399.23 28898.75 36699.02 4297.82 35399.71 15896.11 17099.48 27393.04 38199.65 13799.69 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WB-MVSnew97.65 28897.65 24997.63 34398.78 34697.62 27099.13 30698.33 38797.36 24399.07 23598.94 35695.64 19199.15 33392.95 38298.68 21396.12 409
thres20097.61 29197.28 30198.62 25399.64 13298.03 24499.26 28298.74 36997.68 20599.09 23398.32 38591.66 32599.81 18992.88 38398.22 23998.03 380
KD-MVS_2432*160094.62 35893.72 36697.31 35297.19 40095.82 34698.34 39699.20 30695.00 36597.57 35798.35 38387.95 37398.10 39092.87 38477.00 41598.01 381
miper_refine_blended94.62 35893.72 36697.31 35297.19 40095.82 34698.34 39699.20 30695.00 36597.57 35798.35 38387.95 37398.10 39092.87 38477.00 41598.01 381
PCF-MVS97.08 1497.66 28797.06 31299.47 12999.61 14599.09 14498.04 40799.25 29691.24 39898.51 31799.70 16294.55 24199.91 11492.76 38699.85 7599.42 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FMVSNet596.43 33596.19 33497.15 35599.11 29595.89 34599.32 25399.52 10594.47 37698.34 32799.07 34087.54 37797.07 40592.61 38795.72 33398.47 349
test_040296.64 33096.24 33297.85 33098.85 33996.43 33099.44 20499.26 29493.52 38396.98 37399.52 24588.52 36799.20 33092.58 38897.50 28197.93 389
APD_test195.87 34596.49 32794.00 38099.53 16884.01 40999.54 14899.32 27695.91 35197.99 34699.85 5785.49 38799.88 14391.96 38998.84 20498.12 374
Syy-MVS97.09 32197.14 30796.95 36399.00 31592.73 39499.29 26399.39 23097.06 27297.41 36098.15 39093.92 26598.68 38091.71 39098.34 22999.45 202
new-patchmatchnet94.48 36194.08 36295.67 37695.08 41392.41 39599.18 29899.28 29094.55 37593.49 39997.37 40287.86 37597.01 40691.57 39188.36 40197.61 395
N_pmnet94.95 35795.83 34392.31 38798.47 37779.33 41999.12 30992.81 42593.87 37997.68 35699.13 33593.87 26799.01 35591.38 39296.19 31898.59 339
Anonymous2024052196.20 33995.89 34297.13 35797.72 39194.96 36899.79 3199.29 28893.01 38897.20 36899.03 34589.69 35198.36 38691.16 39396.13 31998.07 377
LCM-MVSNet86.80 38085.22 38491.53 39087.81 42280.96 41698.23 40398.99 33371.05 41590.13 41096.51 40748.45 42396.88 40790.51 39485.30 40696.76 402
new_pmnet96.38 33696.03 33897.41 35098.13 38495.16 36599.05 32499.20 30693.94 37897.39 36398.79 36891.61 32799.04 34990.43 39595.77 33098.05 379
KD-MVS_self_test95.00 35594.34 36096.96 36297.07 40295.39 35999.56 13099.44 21095.11 36197.13 37097.32 40391.86 31797.27 40490.35 39681.23 41298.23 369
PAPM97.59 29297.09 31199.07 18799.06 30798.26 23398.30 40099.10 31794.88 36798.08 34199.34 30296.27 16699.64 25689.87 39798.92 19899.31 224
pmmvs394.09 36493.25 37096.60 37094.76 41594.49 37598.92 35498.18 39389.66 40196.48 37998.06 39686.28 38297.33 40389.68 39887.20 40497.97 387
EGC-MVSNET82.80 38277.86 38897.62 34497.91 38596.12 34199.33 25299.28 2908.40 42525.05 42699.27 31984.11 39599.33 30489.20 39998.22 23997.42 399
OpenMVS_ROBcopyleft92.34 2094.38 36293.70 36896.41 37297.38 39493.17 39199.06 32298.75 36686.58 40894.84 39498.26 38781.53 40599.32 30689.01 40097.87 25896.76 402
CL-MVSNet_self_test94.49 36093.97 36496.08 37496.16 40593.67 38798.33 39899.38 23895.13 35997.33 36498.15 39092.69 29696.57 40888.67 40179.87 41397.99 385
PatchT97.03 32296.44 32898.79 24098.99 31898.34 23099.16 30099.07 32392.13 39499.52 13497.31 40494.54 24298.98 35888.54 40298.73 21199.03 251
MIMVSNet195.51 34995.04 35496.92 36597.38 39495.60 34999.52 15799.50 13993.65 38296.97 37499.17 33085.28 39096.56 40988.36 40395.55 33898.60 338
dmvs_testset95.02 35496.12 33591.72 38999.10 29880.43 41799.58 11797.87 39797.47 22895.22 38998.82 36493.99 26195.18 41488.09 40494.91 35399.56 165
TAPA-MVS97.07 1597.74 27297.34 29398.94 20699.70 10497.53 27299.25 28499.51 11991.90 39599.30 18599.63 20498.78 5199.64 25688.09 40499.87 6099.65 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Gipumacopyleft90.99 37490.15 37993.51 38298.73 35590.12 40293.98 41599.45 20279.32 41392.28 40394.91 41069.61 41197.98 39487.42 40695.67 33492.45 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0396.12 34195.96 34096.63 36997.44 39395.45 35699.51 16699.38 23896.55 31196.16 38399.25 32293.76 27296.17 41087.35 40794.22 36398.27 365
Anonymous2023120696.22 33796.03 33896.79 36897.31 39794.14 38099.63 9099.08 32096.17 33897.04 37299.06 34293.94 26397.76 39986.96 40895.06 34898.47 349
RPMNet96.72 32895.90 34199.19 17699.18 27798.49 22099.22 29299.52 10588.72 40799.56 12597.38 40194.08 25999.95 6286.87 40998.58 21799.14 235
testf190.42 37690.68 37789.65 39697.78 38873.97 42499.13 30698.81 36189.62 40291.80 40798.93 35762.23 41698.80 37686.61 41091.17 39096.19 407
APD_test290.42 37690.68 37789.65 39697.78 38873.97 42499.13 30698.81 36189.62 40291.80 40798.93 35762.23 41698.80 37686.61 41091.17 39096.19 407
PMMVS286.87 37985.37 38391.35 39190.21 42083.80 41098.89 35797.45 40383.13 41291.67 40995.03 40948.49 42294.70 41585.86 41277.62 41495.54 410
FPMVS84.93 38185.65 38282.75 40286.77 42363.39 42898.35 39598.92 34274.11 41483.39 41398.98 35250.85 42192.40 41784.54 41394.97 35092.46 412
PMVScopyleft70.75 2275.98 38874.97 38979.01 40470.98 42755.18 42993.37 41698.21 39165.08 42161.78 42293.83 41221.74 42992.53 41678.59 41491.12 39289.34 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai93.26 36792.93 37194.25 37999.39 22285.68 40797.68 41093.27 42192.87 39096.85 37699.39 28782.33 40397.48 40276.78 41597.80 26199.58 160
WB-MVS93.10 36894.10 36190.12 39495.51 41281.88 41499.73 5099.27 29395.05 36493.09 40198.91 36194.70 23291.89 41876.62 41694.02 36996.58 404
ANet_high77.30 38674.86 39084.62 40075.88 42677.61 42097.63 41193.15 42488.81 40664.27 42189.29 41836.51 42583.93 42375.89 41752.31 42092.33 414
SSC-MVS92.73 37093.73 36589.72 39595.02 41481.38 41599.76 3799.23 30094.87 36892.80 40298.93 35794.71 23191.37 41974.49 41893.80 37196.42 405
MVEpermissive76.82 2176.91 38774.31 39184.70 39985.38 42576.05 42396.88 41393.17 42267.39 41871.28 42089.01 41921.66 43087.69 42071.74 41972.29 41790.35 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 38479.88 38682.81 40190.75 41976.38 42297.69 40995.76 41466.44 41983.52 41292.25 41462.54 41587.16 42168.53 42061.40 41884.89 419
EMVS80.02 38579.22 38782.43 40391.19 41876.40 42197.55 41292.49 42666.36 42083.01 41491.27 41664.63 41485.79 42265.82 42160.65 41985.08 418
kuosan90.92 37590.11 38093.34 38398.78 34685.59 40898.15 40593.16 42389.37 40492.07 40498.38 38281.48 40695.19 41362.54 42297.04 30299.25 230
wuyk23d40.18 38941.29 39436.84 40586.18 42449.12 43079.73 41822.81 43027.64 42225.46 42528.45 42521.98 42848.89 42455.80 42323.56 42412.51 422
testmvs39.17 39043.78 39225.37 40736.04 43016.84 43298.36 39426.56 42920.06 42338.51 42467.32 42029.64 42715.30 42637.59 42439.90 42243.98 421
test12339.01 39142.50 39328.53 40639.17 42920.91 43198.75 37119.17 43119.83 42438.57 42366.67 42133.16 42615.42 42537.50 42529.66 42349.26 420
mmdepth0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.13 3950.17 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4271.57 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.64 39232.85 3950.00 4080.00 4310.00 4330.00 41999.51 1190.00 4260.00 42799.56 23096.58 1530.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.27 39411.03 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 42799.01 180.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.30 39311.06 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.58 2220.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
FOURS199.91 199.93 199.87 899.56 7099.10 3199.81 43
test_one_060199.81 4699.88 899.49 14998.97 5599.65 9999.81 9599.09 14
eth-test20.00 431
eth-test0.00 431
test_241102_ONE99.84 3299.90 299.48 16199.07 3999.91 1799.74 14799.20 799.76 210
save fliter99.76 6699.59 7399.14 30599.40 22799.00 47
test072699.85 2699.89 499.62 9599.50 13999.10 3199.86 3399.82 8198.94 32
GSMVS99.52 175
test_part299.81 4699.83 1999.77 58
sam_mvs194.86 21899.52 175
sam_mvs94.72 230
MTGPAbinary99.47 182
test_post65.99 42294.65 23699.73 221
patchmatchnet-post98.70 37194.79 22299.74 215
MTMP99.54 14898.88 352
TEST999.67 11499.65 6099.05 32499.41 22196.22 33498.95 25799.49 25598.77 5499.91 114
test_899.67 11499.61 7099.03 32999.41 22196.28 32898.93 26099.48 26198.76 5599.91 114
agg_prior99.67 11499.62 6899.40 22798.87 27099.91 114
test_prior499.56 7998.99 340
test_prior99.68 7199.67 11499.48 9499.56 7099.83 17799.74 95
新几何299.01 337
旧先验199.74 8399.59 7399.54 8799.69 17298.47 8399.68 13399.73 100
原ACMM298.95 350
test22299.75 7699.49 9298.91 35699.49 14996.42 32299.34 17999.65 19298.28 9699.69 13099.72 106
segment_acmp98.96 25
testdata198.85 36198.32 120
test1299.75 6199.64 13299.61 7099.29 28899.21 20898.38 9199.89 13899.74 12299.74 95
plane_prior799.29 24997.03 300
plane_prior699.27 25496.98 30492.71 294
plane_prior499.61 213
plane_prior397.00 30298.69 8499.11 227
plane_prior299.39 23098.97 55
plane_prior199.26 256
plane_prior96.97 30599.21 29498.45 10497.60 270
n20.00 432
nn0.00 432
door-mid98.05 394
test1199.35 254
door97.92 395
HQP5-MVS96.83 312
HQP-NCC99.19 27498.98 34398.24 12998.66 298
ACMP_Plane99.19 27498.98 34398.24 12998.66 298
HQP4-MVS98.66 29899.64 25698.64 317
HQP3-MVS99.39 23097.58 272
HQP2-MVS92.47 303
NP-MVS99.23 26496.92 30899.40 283
ACMMP++_ref97.19 299
ACMMP++97.43 290
Test By Simon98.75 58