This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5499.43 5797.48 8298.88 11599.30 1398.47 999.85 499.43 3096.71 1799.96 499.86 199.80 2499.89 4
fmvsm_l_conf0.5_n99.07 499.05 299.14 5099.41 5997.54 8098.89 11099.31 1298.49 899.86 299.42 3196.45 2499.96 499.86 199.74 5199.90 3
MM98.51 3698.24 5099.33 2999.12 10598.14 5998.93 10197.02 35098.96 199.17 4599.47 2391.97 13799.94 999.85 399.69 6199.91 2
test_fmvsm_n_192098.87 1399.01 398.45 10299.42 5896.43 13498.96 9499.36 998.63 499.86 299.51 1695.91 4399.97 199.72 499.75 4798.94 186
test_fmvsmconf_n98.92 1098.87 699.04 5898.88 13097.25 9798.82 13399.34 1098.75 299.80 599.61 495.16 7399.95 799.70 599.80 2499.93 1
fmvsm_s_conf0.5_n98.42 4798.51 2198.13 13199.30 7195.25 19498.85 12599.39 797.94 1799.74 999.62 392.59 11699.91 4299.65 699.52 9899.25 140
test_fmvsmvis_n_192098.44 4498.51 2198.23 12298.33 18696.15 14898.97 8999.15 2898.55 798.45 9699.55 994.26 9699.97 199.65 699.66 6798.57 221
test_fmvsmconf0.1_n98.58 2698.44 2798.99 6097.73 24597.15 10298.84 12998.97 4298.75 299.43 2799.54 1193.29 10799.93 2899.64 899.79 3099.89 4
MVS_030498.23 6197.91 7099.21 4298.06 21597.96 6698.58 18795.51 38798.58 598.87 6699.26 5992.99 11199.95 799.62 999.67 6499.73 44
fmvsm_s_conf0.5_n_a98.38 5098.42 2898.27 11699.09 10995.41 18498.86 12199.37 897.69 2499.78 699.61 492.38 11999.91 4299.58 1099.43 11099.49 99
test_fmvsmconf0.01_n97.86 7497.54 8498.83 7295.48 36896.83 11398.95 9598.60 14698.58 598.93 6299.55 988.57 21699.91 4299.54 1199.61 7899.77 29
fmvsm_s_conf0.1_n98.18 6498.21 5498.11 13598.54 16595.24 19598.87 11899.24 1797.50 3599.70 1399.67 191.33 15399.89 5099.47 1299.54 9599.21 146
fmvsm_s_conf0.1_n_a98.08 6598.04 6598.21 12397.66 25195.39 18598.89 11099.17 2697.24 5499.76 899.67 191.13 15899.88 5999.39 1399.41 11299.35 119
test_vis1_n_192096.71 14196.84 12196.31 27399.11 10789.74 34999.05 6998.58 15598.08 1299.87 199.37 4078.48 35599.93 2899.29 1499.69 6199.27 135
mamv497.13 12498.11 6094.17 35398.97 12383.70 39598.66 17598.71 11994.63 18897.83 13498.90 12396.25 2999.55 15799.27 1599.76 4299.27 135
test_vis1_n95.47 19795.13 19796.49 25797.77 24090.41 33999.27 2698.11 25496.58 9199.66 1599.18 7667.00 40299.62 14199.21 1699.40 11599.44 110
MVSMamba_PlusPlus98.31 5998.19 5798.67 8298.96 12497.36 8899.24 3098.57 15794.81 18098.99 5698.90 12395.22 7199.59 14499.15 1799.84 1199.07 174
patch_mono-298.36 5398.87 696.82 22599.53 3690.68 33298.64 17899.29 1497.88 1899.19 4499.52 1496.80 1599.97 199.11 1899.86 299.82 16
mmtdpeth93.12 32192.61 31794.63 33997.60 25589.68 35299.21 3997.32 32794.02 21197.72 14394.42 38577.01 37299.44 17899.05 1977.18 40794.78 385
test_fmvs196.42 15296.67 13395.66 30198.82 13788.53 37498.80 14298.20 23396.39 10099.64 1799.20 7080.35 34399.67 12999.04 2099.57 8698.78 199
test_fmvs1_n95.90 17695.99 15895.63 30298.67 15288.32 37899.26 2798.22 23096.40 9999.67 1499.26 5973.91 38999.70 12299.02 2199.50 10098.87 190
balanced_conf0398.45 4398.35 3598.74 7698.65 15697.55 7899.19 4498.60 14696.72 8599.35 3298.77 13995.06 7899.55 15798.95 2299.87 199.12 162
dcpmvs_298.08 6598.59 1796.56 24999.57 3390.34 34199.15 5198.38 20296.82 7799.29 3699.49 2095.78 4799.57 14798.94 2399.86 299.77 29
EC-MVSNet98.21 6398.11 6098.49 9898.34 18397.26 9699.61 598.43 19296.78 7898.87 6698.84 13093.72 10399.01 23398.91 2499.50 10099.19 151
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5097.38 4399.41 2899.54 1196.66 1899.84 7098.86 2599.85 699.87 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SPE-MVS-test98.49 3898.50 2398.46 10199.20 9597.05 10499.64 498.50 17797.45 3998.88 6599.14 8495.25 6899.15 20998.83 2699.56 9299.20 147
CANet98.05 6797.76 7398.90 7098.73 14297.27 9298.35 21798.78 10397.37 4597.72 14398.96 11591.53 14999.92 3498.79 2799.65 7099.51 92
reproduce_model98.94 798.81 1099.34 2599.52 3998.26 4998.94 9898.84 7998.06 1399.35 3299.61 496.39 2799.94 998.77 2899.82 1499.83 12
CS-MVS98.44 4498.49 2498.31 11499.08 11096.73 11899.67 398.47 18397.17 5998.94 5899.10 8995.73 4899.13 21298.71 2999.49 10299.09 166
reproduce-ours98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8198.06 1399.29 3699.58 796.40 2599.94 998.68 3099.81 1599.81 17
our_new_method98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8198.06 1399.29 3699.58 796.40 2599.94 998.68 3099.81 1599.81 17
VDD-MVS95.82 18195.23 19397.61 17698.84 13693.98 25298.68 17097.40 32295.02 16797.95 12699.34 5074.37 38899.78 10498.64 3296.80 21599.08 170
EI-MVSNet-Vis-set98.47 4198.39 3098.69 8099.46 5296.49 13198.30 22698.69 12497.21 5698.84 6899.36 4495.41 5799.78 10498.62 3399.65 7099.80 20
BP-MVS197.82 7797.51 8698.76 7598.25 19397.39 8799.15 5197.68 28996.69 8698.47 9299.10 8990.29 17599.51 16498.60 3499.35 11999.37 117
test_cas_vis1_n_192097.38 11097.36 9697.45 18298.95 12593.25 28499.00 8398.53 16697.70 2399.77 799.35 4684.71 29799.85 6698.57 3599.66 6799.26 138
EI-MVSNet-UG-set98.41 4898.34 3998.61 8699.45 5596.32 14198.28 22998.68 12797.17 5998.74 7699.37 4095.25 6899.79 10198.57 3599.54 9599.73 44
CHOSEN 280x42097.18 12197.18 10697.20 19598.81 13893.27 28195.78 38799.15 2895.25 15396.79 18698.11 20792.29 12299.07 22398.56 3799.85 699.25 140
MSC_two_6792asdad99.62 699.17 9799.08 1198.63 14399.94 998.53 3899.80 2499.86 7
No_MVS99.62 699.17 9799.08 1198.63 14399.94 998.53 3899.80 2499.86 7
xiu_mvs_v1_base_debu97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
xiu_mvs_v1_base97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
xiu_mvs_v1_base_debi97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
VNet97.79 7997.40 9498.96 6598.88 13097.55 7898.63 18198.93 5096.74 8299.02 5298.84 13090.33 17499.83 7298.53 3896.66 21999.50 94
MSLP-MVS++98.56 3298.57 1898.55 9099.26 8396.80 11498.71 16399.05 3697.28 4998.84 6899.28 5696.47 2399.40 18198.52 4499.70 6099.47 103
TSAR-MVS + GP.98.38 5098.24 5098.81 7399.22 9297.25 9798.11 25398.29 22297.19 5898.99 5699.02 10396.22 3099.67 12998.52 4498.56 15899.51 92
DVP-MVS++99.08 398.89 599.64 399.17 9799.23 799.69 198.88 6297.32 4699.53 2399.47 2397.81 399.94 998.47 4699.72 5799.74 39
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8998.58 15597.62 2799.45 2599.46 2797.42 999.94 998.47 4699.81 1599.69 59
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 4699.45 2599.46 2797.88 199.94 998.47 4699.86 299.85 9
test_0728_SECOND99.71 199.72 1299.35 198.97 8998.88 6299.94 998.47 4699.81 1599.84 11
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7998.87 6997.65 2599.73 1099.48 2197.53 799.94 998.43 5099.81 1599.70 56
test_241102_TWO98.87 6997.65 2599.53 2399.48 2197.34 1199.94 998.43 5099.80 2499.83 12
DELS-MVS98.40 4998.20 5598.99 6099.00 11797.66 7397.75 29698.89 5997.71 2298.33 10498.97 11094.97 8099.88 5998.42 5299.76 4299.42 114
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mvsany_test197.69 8597.70 7597.66 17398.24 19494.18 24897.53 31297.53 30795.52 13799.66 1599.51 1694.30 9499.56 15098.38 5398.62 15499.23 142
alignmvs97.56 9897.07 11199.01 5998.66 15398.37 4298.83 13198.06 26996.74 8298.00 12497.65 25090.80 16599.48 17398.37 5496.56 22399.19 151
IU-MVS99.71 1999.23 798.64 14095.28 15199.63 1898.35 5599.81 1599.83 12
TSAR-MVS + MP.98.78 1498.62 1699.24 3999.69 2498.28 4899.14 5498.66 13596.84 7599.56 2099.31 5396.34 2899.70 12298.32 5699.73 5499.73 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS96.37 297.93 7298.48 2696.30 27499.00 11789.54 35597.43 31898.87 6998.16 1199.26 4099.38 3996.12 3599.64 13498.30 5799.77 3699.72 48
MGCFI-Net97.62 9297.19 10598.92 6798.66 15398.20 5299.32 2198.38 20296.69 8697.58 15697.42 27192.10 13199.50 16798.28 5896.25 24099.08 170
sasdasda97.67 8697.23 10298.98 6298.70 14798.38 3599.34 1698.39 19896.76 8097.67 14797.40 27292.26 12399.49 16898.28 5896.28 23799.08 170
canonicalmvs97.67 8697.23 10298.98 6298.70 14798.38 3599.34 1698.39 19896.76 8097.67 14797.40 27292.26 12399.49 16898.28 5896.28 23799.08 170
casdiffmvs_mvgpermissive97.72 8297.48 8998.44 10498.42 17196.59 12698.92 10398.44 18896.20 10797.76 13799.20 7091.66 14399.23 19998.27 6198.41 16899.49 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SD-MVS98.64 1998.68 1498.53 9499.33 6298.36 4398.90 10698.85 7897.28 4999.72 1299.39 3496.63 2097.60 36498.17 6299.85 699.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
diffmvspermissive97.58 9697.40 9498.13 13198.32 18995.81 17098.06 25998.37 20496.20 10798.74 7698.89 12591.31 15599.25 19698.16 6398.52 16099.34 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive97.63 9197.41 9398.28 11598.33 18696.14 14998.82 13398.32 21296.38 10197.95 12699.21 6891.23 15799.23 19998.12 6498.37 16999.48 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline97.64 8997.44 9298.25 12098.35 17896.20 14599.00 8398.32 21296.33 10498.03 11899.17 7791.35 15299.16 20698.10 6598.29 17599.39 115
MP-MVS-pluss98.31 5997.92 6999.49 1299.72 1298.88 1898.43 21298.78 10394.10 20797.69 14699.42 3195.25 6899.92 3498.09 6699.80 2499.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft98.58 2698.25 4899.56 899.51 4099.04 1598.95 9598.80 9693.67 24299.37 3199.52 1496.52 2299.89 5098.06 6799.81 1599.76 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.78 1498.56 1999.45 1599.32 6598.87 1998.47 20698.81 8997.72 2098.76 7599.16 8097.05 1399.78 10498.06 6799.66 6799.69 59
MVS_111021_HR98.47 4198.34 3998.88 7199.22 9297.32 9097.91 27599.58 397.20 5798.33 10499.00 10895.99 4099.64 13498.05 6999.76 4299.69 59
RRT-MVS97.03 12896.78 12597.77 15997.90 23294.34 24199.12 5898.35 20795.87 12098.06 11498.70 14886.45 26399.63 13798.04 7098.54 15999.35 119
VDDNet95.36 20894.53 22797.86 14998.10 21195.13 20198.85 12597.75 28790.46 34798.36 10199.39 3473.27 39199.64 13497.98 7196.58 22298.81 195
h-mvs3396.17 16395.62 17697.81 15499.03 11394.45 23498.64 17898.75 10997.48 3698.67 8098.72 14789.76 18299.86 6597.95 7281.59 39199.11 164
hse-mvs295.71 18595.30 19196.93 21798.50 16793.53 26998.36 21698.10 25797.48 3698.67 8097.99 21789.76 18299.02 23197.95 7280.91 39698.22 237
SDMVSNet96.85 13696.42 14198.14 12899.30 7196.38 13799.21 3999.23 2095.92 11695.96 21898.76 14485.88 27399.44 17897.93 7495.59 25298.60 216
MCST-MVS98.65 1898.37 3299.48 1399.60 3198.87 1998.41 21598.68 12797.04 6798.52 9198.80 13596.78 1699.83 7297.93 7499.61 7899.74 39
MTAPA98.58 2698.29 4699.46 1499.76 298.64 2598.90 10698.74 11197.27 5398.02 12099.39 3494.81 8399.96 497.91 7699.79 3099.77 29
MVS_111021_LR98.34 5698.23 5298.67 8299.27 8196.90 11097.95 27099.58 397.14 6298.44 9899.01 10795.03 7999.62 14197.91 7699.75 4799.50 94
ACMMP_NAP98.61 2198.30 4599.55 999.62 3098.95 1798.82 13398.81 8995.80 12399.16 4899.47 2395.37 6099.92 3497.89 7899.75 4799.79 21
PS-MVSNAJ97.73 8197.77 7297.62 17598.68 15195.58 17597.34 32798.51 17297.29 4898.66 8497.88 22894.51 8799.90 4897.87 7999.17 12797.39 262
XVS98.70 1798.49 2499.34 2599.70 2298.35 4499.29 2298.88 6297.40 4098.46 9399.20 7095.90 4599.89 5097.85 8099.74 5199.78 23
X-MVStestdata94.06 30092.30 32499.34 2599.70 2298.35 4499.29 2298.88 6297.40 4098.46 9343.50 42095.90 4599.89 5097.85 8099.74 5199.78 23
xiu_mvs_v2_base97.66 8897.70 7597.56 17998.61 16095.46 18297.44 31698.46 18497.15 6198.65 8598.15 20494.33 9399.80 9197.84 8298.66 15397.41 260
DeepC-MVS95.98 397.88 7397.58 7998.77 7499.25 8496.93 10898.83 13198.75 10996.96 7196.89 18099.50 1890.46 17199.87 6197.84 8299.76 4299.52 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.74 1698.55 2099.29 3299.75 398.23 5099.26 2798.88 6297.52 3399.41 2898.78 13796.00 3999.79 10197.79 8499.59 8299.85 9
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVS98.57 3098.36 3399.19 4399.66 2697.86 6899.34 1698.87 6995.96 11598.60 8899.13 8596.05 3799.94 997.77 8599.86 299.77 29
SteuartSystems-ACMMP98.90 1298.75 1399.36 2399.22 9298.43 3399.10 6398.87 6997.38 4399.35 3299.40 3397.78 599.87 6197.77 8599.85 699.78 23
Skip Steuart: Steuart Systems R&D Blog.
APD-MVS_3200maxsize98.53 3598.33 4399.15 4999.50 4297.92 6799.15 5198.81 8996.24 10599.20 4299.37 4095.30 6499.80 9197.73 8799.67 6499.72 48
reproduce_monomvs94.77 24594.67 22195.08 32298.40 17489.48 35698.80 14298.64 14097.57 3193.21 30997.65 25080.57 34198.83 26197.72 8889.47 33996.93 278
SR-MVS-dyc-post98.54 3498.35 3599.13 5199.49 4697.86 6899.11 6098.80 9696.49 9499.17 4599.35 4695.34 6299.82 7997.72 8899.65 7099.71 52
RE-MVS-def98.34 3999.49 4697.86 6899.11 6098.80 9696.49 9499.17 4599.35 4695.29 6597.72 8899.65 7099.71 52
SF-MVS98.59 2498.32 4499.41 1799.54 3598.71 2299.04 7398.81 8995.12 15999.32 3599.39 3496.22 3099.84 7097.72 8899.73 5499.67 68
LFMVS95.86 17894.98 20698.47 10098.87 13296.32 14198.84 12996.02 37993.40 25498.62 8699.20 7074.99 38399.63 13797.72 8897.20 20499.46 107
SR-MVS98.57 3098.35 3599.24 3999.53 3698.18 5499.09 6498.82 8496.58 9199.10 5099.32 5195.39 5899.82 7997.70 9399.63 7599.72 48
PHI-MVS98.34 5698.06 6399.18 4599.15 10398.12 6099.04 7399.09 3193.32 25798.83 7099.10 8996.54 2199.83 7297.70 9399.76 4299.59 82
mvsmamba97.25 11696.99 11498.02 14198.34 18395.54 17999.18 4897.47 31395.04 16598.15 10798.57 16389.46 19199.31 19197.68 9599.01 13399.22 144
HPM-MVScopyleft98.36 5398.10 6299.13 5199.74 797.82 7299.53 698.80 9694.63 18898.61 8798.97 11095.13 7599.77 10997.65 9699.83 1399.79 21
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPE-MVScopyleft98.92 1098.67 1599.65 299.58 3299.20 998.42 21498.91 5697.58 3099.54 2299.46 2797.10 1299.94 997.64 9799.84 1199.83 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETV-MVS97.96 6997.81 7198.40 10998.42 17197.27 9298.73 15898.55 16296.84 7598.38 10097.44 26895.39 5899.35 18697.62 9898.89 13998.58 220
HFP-MVS98.63 2098.40 2999.32 3199.72 1298.29 4799.23 3298.96 4596.10 11298.94 5899.17 7796.06 3699.92 3497.62 9899.78 3499.75 37
ACMMPR98.59 2498.36 3399.29 3299.74 798.15 5799.23 3298.95 4696.10 11298.93 6299.19 7595.70 4999.94 997.62 9899.79 3099.78 23
jason97.32 11397.08 11098.06 13997.45 27195.59 17497.87 28397.91 28094.79 18198.55 9098.83 13291.12 15999.23 19997.58 10199.60 8099.34 121
jason: jason.
lupinMVS97.44 10597.22 10498.12 13498.07 21295.76 17197.68 30197.76 28694.50 19698.79 7298.61 15592.34 12099.30 19297.58 10199.59 8299.31 127
HPM-MVS_fast98.38 5098.13 5899.12 5399.75 397.86 6899.44 998.82 8494.46 19898.94 5899.20 7095.16 7399.74 11497.58 10199.85 699.77 29
ZNCC-MVS98.49 3898.20 5599.35 2499.73 1198.39 3499.19 4498.86 7595.77 12598.31 10699.10 8995.46 5599.93 2897.57 10499.81 1599.74 39
region2R98.61 2198.38 3199.29 3299.74 798.16 5699.23 3298.93 5096.15 10998.94 5899.17 7795.91 4399.94 997.55 10599.79 3099.78 23
DeepC-MVS_fast96.70 198.55 3398.34 3999.18 4599.25 8498.04 6298.50 20398.78 10397.72 2098.92 6499.28 5695.27 6699.82 7997.55 10599.77 3699.69 59
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft98.58 2698.25 4899.55 999.50 4299.08 1198.72 16298.66 13597.51 3498.15 10798.83 13295.70 4999.92 3497.53 10799.67 6499.66 71
PC_three_145295.08 16499.60 1999.16 8097.86 298.47 29397.52 10899.72 5799.74 39
nrg03096.28 16095.72 16797.96 14696.90 30998.15 5799.39 1098.31 21495.47 13994.42 25598.35 18392.09 13298.69 27297.50 10989.05 34597.04 271
test_vis1_rt91.29 33890.65 33893.19 36697.45 27186.25 39098.57 19390.90 41693.30 25986.94 38493.59 39462.07 40899.11 21697.48 11095.58 25494.22 389
CSCG97.85 7697.74 7498.20 12599.67 2595.16 19899.22 3699.32 1193.04 27197.02 17398.92 12195.36 6199.91 4297.43 11199.64 7499.52 89
mPP-MVS98.51 3698.26 4799.25 3899.75 398.04 6299.28 2498.81 8996.24 10598.35 10399.23 6595.46 5599.94 997.42 11299.81 1599.77 29
mvs_anonymous96.70 14296.53 13997.18 19898.19 20293.78 25798.31 22498.19 23594.01 21494.47 24998.27 19592.08 13398.46 29497.39 11397.91 18499.31 127
EIA-MVS97.75 8097.58 7998.27 11698.38 17596.44 13399.01 8198.60 14695.88 11997.26 16297.53 26294.97 8099.33 18997.38 11499.20 12599.05 175
NCCC98.61 2198.35 3599.38 1899.28 8098.61 2698.45 20798.76 10797.82 1998.45 9698.93 11996.65 1999.83 7297.38 11499.41 11299.71 52
VPA-MVSNet95.75 18395.11 20097.69 16797.24 28497.27 9298.94 9899.23 2095.13 15895.51 22597.32 27885.73 27598.91 24897.33 11689.55 33696.89 287
OPU-MVS99.37 2299.24 9099.05 1499.02 7999.16 8097.81 399.37 18597.24 11799.73 5499.70 56
3Dnovator94.51 597.46 10196.93 11799.07 5697.78 23997.64 7499.35 1599.06 3497.02 6893.75 29099.16 8089.25 19799.92 3497.22 11899.75 4799.64 74
ACMMPcopyleft98.23 6197.95 6899.09 5599.74 797.62 7699.03 7699.41 695.98 11497.60 15599.36 4494.45 9199.93 2897.14 11998.85 14499.70 56
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.70 8497.46 9098.44 10499.27 8195.91 16598.63 18199.16 2794.48 19797.67 14798.88 12692.80 11399.91 4297.11 12099.12 12899.50 94
mvs_tets95.41 20495.00 20496.65 23595.58 36394.42 23699.00 8398.55 16295.73 12893.21 30998.38 18083.45 32198.63 27897.09 12194.00 27196.91 284
GST-MVS98.43 4698.12 5999.34 2599.72 1298.38 3599.09 6498.82 8495.71 12998.73 7899.06 10095.27 6699.93 2897.07 12299.63 7599.72 48
9.1498.06 6399.47 5098.71 16398.82 8494.36 20199.16 4899.29 5596.05 3799.81 8497.00 12399.71 59
EPNet97.28 11496.87 12098.51 9594.98 37796.14 14998.90 10697.02 35098.28 1095.99 21699.11 8791.36 15199.89 5096.98 12499.19 12699.50 94
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test96.90 13496.49 14098.14 12899.33 6295.56 17697.38 32199.65 292.34 29797.61 15498.20 20189.29 19699.10 22096.97 12597.60 19799.77 29
3Dnovator+94.38 697.43 10696.78 12599.38 1897.83 23698.52 2899.37 1298.71 11997.09 6692.99 31899.13 8589.36 19499.89 5096.97 12599.57 8699.71 52
jajsoiax95.45 20095.03 20396.73 22995.42 37294.63 22599.14 5498.52 16995.74 12693.22 30898.36 18283.87 31798.65 27796.95 12794.04 26996.91 284
ET-MVSNet_ETH3D94.13 29292.98 30997.58 17798.22 19796.20 14597.31 33095.37 38994.53 19379.56 40697.63 25586.51 25997.53 36896.91 12890.74 32099.02 177
MVSFormer97.57 9797.49 8797.84 15098.07 21295.76 17199.47 798.40 19694.98 16998.79 7298.83 13292.34 12098.41 30696.91 12899.59 8299.34 121
test_djsdf96.00 16995.69 17396.93 21795.72 35995.49 18199.47 798.40 19694.98 16994.58 24597.86 22989.16 20098.41 30696.91 12894.12 26896.88 288
ECVR-MVScopyleft95.95 17195.71 17096.65 23599.02 11490.86 32799.03 7691.80 41296.96 7198.10 11199.26 5981.31 33099.51 16496.90 13199.04 13099.59 82
test_prior297.80 29296.12 11197.89 13398.69 14995.96 4196.89 13299.60 80
EPP-MVSNet97.46 10197.28 9997.99 14398.64 15795.38 18699.33 2098.31 21493.61 24697.19 16499.07 9994.05 9999.23 19996.89 13298.43 16799.37 117
PS-MVSNAJss96.43 15196.26 14896.92 22095.84 35795.08 20399.16 5098.50 17795.87 12093.84 28598.34 18794.51 8798.61 28096.88 13493.45 28597.06 270
PVSNet_BlendedMVS96.73 14096.60 13597.12 20499.25 8495.35 18998.26 23299.26 1594.28 20297.94 12897.46 26592.74 11499.81 8496.88 13493.32 28896.20 354
PVSNet_Blended97.38 11097.12 10798.14 12899.25 8495.35 18997.28 33299.26 1593.13 26797.94 12898.21 20092.74 11499.81 8496.88 13499.40 11599.27 135
test111195.94 17395.78 16496.41 26698.99 12090.12 34399.04 7392.45 41196.99 7098.03 11899.27 5881.40 32999.48 17396.87 13799.04 13099.63 76
Effi-MVS+97.12 12596.69 13198.39 11098.19 20296.72 11997.37 32398.43 19293.71 23597.65 15198.02 21392.20 12899.25 19696.87 13797.79 18999.19 151
CHOSEN 1792x268897.12 12596.80 12298.08 13799.30 7194.56 23298.05 26099.71 193.57 24797.09 16798.91 12288.17 22699.89 5096.87 13799.56 9299.81 17
GDP-MVS97.64 8997.28 9998.71 7998.30 19197.33 8999.05 6998.52 16996.34 10298.80 7199.05 10189.74 18499.51 16496.86 14098.86 14399.28 134
test_yl97.22 11796.78 12598.54 9298.73 14296.60 12498.45 20798.31 21494.70 18298.02 12098.42 17590.80 16599.70 12296.81 14196.79 21699.34 121
DCV-MVSNet97.22 11796.78 12598.54 9298.73 14296.60 12498.45 20798.31 21494.70 18298.02 12098.42 17590.80 16599.70 12296.81 14196.79 21699.34 121
PGM-MVS98.49 3898.23 5299.27 3799.72 1298.08 6198.99 8699.49 595.43 14199.03 5199.32 5195.56 5299.94 996.80 14399.77 3699.78 23
test250694.44 27293.91 26996.04 28399.02 11488.99 36699.06 6779.47 42596.96 7198.36 10199.26 5977.21 36799.52 16396.78 14499.04 13099.59 82
XVG-OURS-SEG-HR96.51 14996.34 14497.02 21098.77 14093.76 25897.79 29498.50 17795.45 14096.94 17599.09 9687.87 23799.55 15796.76 14595.83 25197.74 250
MP-MVScopyleft98.33 5898.01 6699.28 3599.75 398.18 5499.22 3698.79 10196.13 11097.92 13199.23 6594.54 8699.94 996.74 14699.78 3499.73 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg97.97 6897.52 8599.33 2999.31 6798.50 2997.92 27398.73 11492.98 27397.74 14098.68 15096.20 3299.80 9196.59 14799.57 8699.68 64
MVSTER96.06 16795.72 16797.08 20798.23 19695.93 16398.73 15898.27 22394.86 17795.07 23398.09 20888.21 22598.54 28696.59 14793.46 28396.79 297
UGNet96.78 13996.30 14698.19 12798.24 19495.89 16798.88 11598.93 5097.39 4296.81 18497.84 23282.60 32499.90 4896.53 14999.49 10298.79 196
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVScopyleft98.35 5598.00 6799.42 1699.51 4098.72 2198.80 14298.82 8494.52 19599.23 4199.25 6495.54 5499.80 9196.52 15099.77 3699.74 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet94.99 23194.19 24697.40 18897.16 29396.57 12798.71 16398.97 4295.67 13194.84 23898.24 19980.36 34298.67 27696.46 15187.32 36596.96 275
sss97.39 10996.98 11698.61 8698.60 16196.61 12398.22 23598.93 5093.97 21798.01 12398.48 17091.98 13599.85 6696.45 15298.15 17799.39 115
MVS_Test97.28 11497.00 11398.13 13198.33 18695.97 15798.74 15498.07 26494.27 20398.44 9898.07 20992.48 11799.26 19596.43 15398.19 17699.16 157
MonoMVSNet95.51 19595.45 17995.68 29995.54 36490.87 32698.92 10397.37 32595.79 12495.53 22497.38 27489.58 18797.68 36196.40 15492.59 29898.49 224
FIs96.51 14996.12 15297.67 17097.13 29597.54 8099.36 1399.22 2395.89 11894.03 27698.35 18391.98 13598.44 29796.40 15492.76 29697.01 272
test9_res96.39 15699.57 8699.69 59
Anonymous2024052995.10 22494.22 24497.75 16199.01 11694.26 24598.87 11898.83 8185.79 39096.64 18998.97 11078.73 35299.85 6696.27 15794.89 25799.12 162
test_fmvs293.43 30993.58 29292.95 36896.97 30383.91 39499.19 4497.24 33495.74 12695.20 23298.27 19569.65 39598.72 27196.26 15893.73 27796.24 352
PMMVS96.60 14496.33 14597.41 18697.90 23293.93 25397.35 32698.41 19492.84 27997.76 13797.45 26791.10 16199.20 20396.26 15897.91 18499.11 164
CLD-MVS95.62 19195.34 18696.46 26397.52 26593.75 26097.27 33398.46 18495.53 13694.42 25598.00 21686.21 26798.97 23596.25 16094.37 25896.66 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521195.28 21494.49 22997.67 17099.00 11793.75 26098.70 16797.04 34790.66 34396.49 20098.80 13578.13 35999.83 7296.21 16195.36 25699.44 110
ZD-MVS99.46 5298.70 2398.79 10193.21 26298.67 8098.97 11095.70 4999.83 7296.07 16299.58 85
HQP_MVS96.14 16595.90 16196.85 22397.42 27394.60 23098.80 14298.56 16097.28 4995.34 22798.28 19287.09 25099.03 22896.07 16294.27 26096.92 279
plane_prior598.56 16099.03 22896.07 16294.27 26096.92 279
CPTT-MVS97.72 8297.32 9898.92 6799.64 2897.10 10399.12 5898.81 8992.34 29798.09 11299.08 9893.01 11099.92 3496.06 16599.77 3699.75 37
DP-MVS Recon97.86 7497.46 9099.06 5799.53 3698.35 4498.33 21998.89 5992.62 28698.05 11598.94 11895.34 6299.65 13296.04 16699.42 11199.19 151
FC-MVSNet-test96.42 15296.05 15497.53 18096.95 30497.27 9299.36 1399.23 2095.83 12293.93 27998.37 18192.00 13498.32 31696.02 16792.72 29797.00 273
Vis-MVSNetpermissive97.42 10797.11 10898.34 11298.66 15396.23 14499.22 3699.00 3996.63 9098.04 11799.21 6888.05 23299.35 18696.01 16899.21 12499.45 109
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ab-mvs96.42 15295.71 17098.55 9098.63 15896.75 11797.88 28298.74 11193.84 22496.54 19898.18 20385.34 28399.75 11295.93 16996.35 22999.15 158
WTY-MVS97.37 11296.92 11898.72 7898.86 13396.89 11298.31 22498.71 11995.26 15297.67 14798.56 16492.21 12799.78 10495.89 17096.85 21499.48 101
XVG-OURS96.55 14896.41 14296.99 21198.75 14193.76 25897.50 31598.52 16995.67 13196.83 18199.30 5488.95 21099.53 16095.88 17196.26 23997.69 253
agg_prior295.87 17299.57 8699.68 64
UniMVSNet_NR-MVSNet95.71 18595.15 19697.40 18896.84 31296.97 10698.74 15499.24 1795.16 15793.88 28297.72 24391.68 14198.31 31895.81 17387.25 36696.92 279
DU-MVS95.42 20294.76 21597.40 18896.53 32896.97 10698.66 17598.99 4195.43 14193.88 28297.69 24688.57 21698.31 31895.81 17387.25 36696.92 279
UniMVSNet (Re)95.78 18295.19 19597.58 17796.99 30297.47 8498.79 14899.18 2595.60 13393.92 28097.04 30691.68 14198.48 29095.80 17587.66 36096.79 297
cascas94.63 25493.86 27496.93 21796.91 30894.27 24496.00 38498.51 17285.55 39194.54 24696.23 34984.20 31098.87 25595.80 17596.98 21297.66 254
testing1195.00 22994.28 24197.16 20097.96 22793.36 27998.09 25697.06 34694.94 17595.33 23096.15 35376.89 37399.40 18195.77 17796.30 23398.72 203
Effi-MVS+-dtu96.29 15896.56 13695.51 30697.89 23490.22 34298.80 14298.10 25796.57 9396.45 20396.66 33490.81 16498.91 24895.72 17897.99 18197.40 261
LPG-MVS_test95.62 19195.34 18696.47 26097.46 26893.54 26798.99 8698.54 16494.67 18694.36 25898.77 13985.39 28099.11 21695.71 17994.15 26696.76 300
LGP-MVS_train96.47 26097.46 26893.54 26798.54 16494.67 18694.36 25898.77 13985.39 28099.11 21695.71 17994.15 26696.76 300
旧先验297.57 31191.30 33098.67 8099.80 9195.70 181
LCM-MVSNet-Re95.22 21795.32 18994.91 32698.18 20487.85 38498.75 15195.66 38695.11 16088.96 37196.85 32590.26 17797.65 36295.65 18298.44 16599.22 144
anonymousdsp95.42 20294.91 20996.94 21695.10 37695.90 16699.14 5498.41 19493.75 22993.16 31197.46 26587.50 24598.41 30695.63 18394.03 27096.50 339
sd_testset96.17 16395.76 16597.42 18599.30 7194.34 24198.82 13399.08 3295.92 11695.96 21898.76 14482.83 32399.32 19095.56 18495.59 25298.60 216
CDPH-MVS97.94 7197.49 8799.28 3599.47 5098.44 3197.91 27598.67 13292.57 28998.77 7498.85 12995.93 4299.72 11695.56 18499.69 6199.68 64
CostFormer94.95 23694.73 21795.60 30497.28 28289.06 36397.53 31296.89 35989.66 36296.82 18396.72 33286.05 27098.95 24495.53 18696.13 24598.79 196
ACMM93.85 995.69 18895.38 18496.61 24297.61 25493.84 25698.91 10598.44 18895.25 15394.28 26298.47 17186.04 27299.12 21495.50 18793.95 27396.87 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP93.49 1095.34 21094.98 20696.43 26597.67 24993.48 27198.73 15898.44 18894.94 17592.53 33198.53 16584.50 30399.14 21195.48 18894.00 27196.66 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
WBMVS94.56 25994.04 25696.10 28298.03 21993.08 29297.82 29198.18 23894.02 21193.77 28996.82 32781.28 33198.34 31395.47 18991.00 31896.88 288
tttt051796.07 16695.51 17897.78 15698.41 17394.84 21599.28 2494.33 40094.26 20497.64 15298.64 15484.05 31299.47 17595.34 19097.60 19799.03 176
TAMVS97.02 12996.79 12497.70 16698.06 21595.31 19298.52 19798.31 21493.95 21897.05 17298.61 15593.49 10598.52 28895.33 19197.81 18899.29 132
BP-MVS95.30 192
HQP-MVS95.72 18495.40 18096.69 23397.20 28894.25 24698.05 26098.46 18496.43 9694.45 25097.73 24186.75 25698.96 23995.30 19294.18 26496.86 293
thisisatest053096.01 16895.36 18597.97 14498.38 17595.52 18098.88 11594.19 40294.04 20997.64 15298.31 19083.82 31999.46 17695.29 19497.70 19498.93 187
WR-MVS95.15 22194.46 23297.22 19496.67 32396.45 13298.21 23698.81 8994.15 20593.16 31197.69 24687.51 24398.30 32095.29 19488.62 35196.90 286
tpmrst95.63 19095.69 17395.44 31097.54 26288.54 37396.97 35297.56 30093.50 24997.52 15896.93 32089.49 18899.16 20695.25 19696.42 22898.64 214
CDS-MVSNet96.99 13096.69 13197.90 14898.05 21795.98 15298.20 23898.33 21193.67 24296.95 17498.49 16993.54 10498.42 29995.24 19797.74 19299.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OPM-MVS95.69 18895.33 18896.76 22896.16 34594.63 22598.43 21298.39 19896.64 8995.02 23598.78 13785.15 28799.05 22495.21 19894.20 26396.60 320
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS97.55 9997.34 9798.20 12599.33 6295.92 16498.28 22998.59 15095.52 13797.97 12599.10 8993.28 10899.49 16895.09 19998.88 14099.19 151
testing9994.83 24194.08 25497.07 20897.94 22893.13 28898.10 25597.17 33894.86 17795.34 22796.00 36076.31 37699.40 18195.08 20095.90 24898.68 208
UniMVSNet_ETH3D94.24 28493.33 30296.97 21497.19 29193.38 27798.74 15498.57 15791.21 33693.81 28698.58 16072.85 39298.77 26895.05 20193.93 27498.77 202
CANet_DTU96.96 13196.55 13798.21 12398.17 20796.07 15197.98 26898.21 23197.24 5497.13 16698.93 11986.88 25599.91 4295.00 20299.37 11898.66 212
testing9194.98 23394.25 24397.20 19597.94 22893.41 27498.00 26697.58 29794.99 16895.45 22696.04 35777.20 36899.42 18094.97 20396.02 24798.78 199
UA-Net97.96 6997.62 7798.98 6298.86 13397.47 8498.89 11099.08 3296.67 8898.72 7999.54 1193.15 10999.81 8494.87 20498.83 14599.65 72
114514_t96.93 13296.27 14798.92 6799.50 4297.63 7598.85 12598.90 5784.80 39497.77 13699.11 8792.84 11299.66 13194.85 20599.77 3699.47 103
Anonymous2023121194.10 29693.26 30596.61 24299.11 10794.28 24399.01 8198.88 6286.43 38492.81 32197.57 25981.66 32898.68 27594.83 20689.02 34796.88 288
XXY-MVS95.20 21994.45 23497.46 18196.75 31896.56 12898.86 12198.65 13993.30 25993.27 30798.27 19584.85 29298.87 25594.82 20791.26 31496.96 275
MG-MVS97.81 7897.60 7898.44 10499.12 10595.97 15797.75 29698.78 10396.89 7498.46 9399.22 6793.90 10299.68 12894.81 20899.52 9899.67 68
tt080594.54 26193.85 27596.63 23997.98 22593.06 29398.77 15097.84 28393.67 24293.80 28798.04 21276.88 37498.96 23994.79 20992.86 29497.86 247
mvsany_test388.80 36088.04 36091.09 37889.78 40881.57 40397.83 29095.49 38893.81 22787.53 38093.95 39256.14 41197.43 37094.68 21083.13 38594.26 387
EI-MVSNet95.96 17095.83 16396.36 26997.93 23093.70 26498.12 25198.27 22393.70 23795.07 23399.02 10392.23 12698.54 28694.68 21093.46 28396.84 294
thisisatest051595.61 19494.89 21197.76 16098.15 20895.15 20096.77 36894.41 39892.95 27597.18 16597.43 26984.78 29499.45 17794.63 21297.73 19398.68 208
IterMVS-LS95.46 19895.21 19496.22 27798.12 20993.72 26398.32 22398.13 25093.71 23594.26 26397.31 27992.24 12598.10 33494.63 21290.12 32796.84 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.25 16295.73 16697.79 15597.13 29595.55 17898.19 24198.59 15093.47 25192.03 34397.82 23691.33 15399.49 16894.62 21498.44 16598.32 234
baseline195.84 17995.12 19998.01 14298.49 16995.98 15298.73 15897.03 34895.37 14696.22 20898.19 20289.96 18099.16 20694.60 21587.48 36198.90 189
IS-MVSNet97.22 11796.88 11998.25 12098.85 13596.36 13999.19 4497.97 27495.39 14397.23 16398.99 10991.11 16098.93 24594.60 21598.59 15699.47 103
NR-MVSNet94.98 23394.16 24997.44 18396.53 32897.22 9998.74 15498.95 4694.96 17189.25 37097.69 24689.32 19598.18 32894.59 21787.40 36396.92 279
IB-MVS91.98 1793.27 31491.97 32897.19 19797.47 26793.41 27497.09 34795.99 38093.32 25792.47 33495.73 36678.06 36099.53 16094.59 21782.98 38698.62 215
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS93.96 896.82 13896.23 15098.57 8898.46 17097.00 10598.14 24898.21 23193.95 21896.72 18797.99 21791.58 14499.76 11094.51 21996.54 22498.95 185
D2MVS95.18 22095.08 20195.48 30797.10 29792.07 30498.30 22699.13 3094.02 21192.90 31996.73 33189.48 18998.73 27094.48 22093.60 28295.65 367
UBG95.32 21294.72 21897.13 20298.05 21793.26 28297.87 28397.20 33694.96 17196.18 21095.66 37180.97 33599.35 18694.47 22197.08 20698.78 199
Baseline_NR-MVSNet94.35 27693.81 27795.96 28896.20 34194.05 25198.61 18496.67 36991.44 32393.85 28497.60 25688.57 21698.14 33194.39 22286.93 36995.68 366
AdaColmapbinary97.15 12396.70 13098.48 9999.16 10196.69 12098.01 26498.89 5994.44 19996.83 18198.68 15090.69 16899.76 11094.36 22399.29 12398.98 181
AUN-MVS94.53 26393.73 28596.92 22098.50 16793.52 27098.34 21898.10 25793.83 22695.94 22097.98 21985.59 27899.03 22894.35 22480.94 39598.22 237
1112_ss96.63 14396.00 15798.50 9698.56 16296.37 13898.18 24698.10 25792.92 27694.84 23898.43 17392.14 12999.58 14694.35 22496.51 22599.56 88
CP-MVSNet94.94 23894.30 24096.83 22496.72 32095.56 17699.11 6098.95 4693.89 22192.42 33697.90 22587.19 24998.12 33394.32 22688.21 35496.82 296
CNLPA97.45 10497.03 11298.73 7799.05 11197.44 8698.07 25898.53 16695.32 14996.80 18598.53 16593.32 10699.72 11694.31 22799.31 12299.02 177
testdata98.26 11999.20 9595.36 18798.68 12791.89 31198.60 8899.10 8994.44 9299.82 7994.27 22899.44 10999.58 86
PVSNet91.96 1896.35 15696.15 15196.96 21599.17 9792.05 30596.08 38098.68 12793.69 23897.75 13997.80 23888.86 21199.69 12794.26 22999.01 13399.15 158
miper_enhance_ethall95.10 22494.75 21696.12 28197.53 26493.73 26296.61 37498.08 26292.20 30593.89 28196.65 33692.44 11898.30 32094.21 23091.16 31596.34 348
Test_1112_low_res96.34 15795.66 17598.36 11198.56 16295.94 16097.71 29998.07 26492.10 30694.79 24297.29 28091.75 14099.56 15094.17 23196.50 22699.58 86
TranMVSNet+NR-MVSNet95.14 22294.48 23097.11 20596.45 33396.36 13999.03 7699.03 3795.04 16593.58 29397.93 22288.27 22498.03 34094.13 23286.90 37196.95 277
FA-MVS(test-final)96.41 15595.94 15997.82 15398.21 19895.20 19797.80 29297.58 29793.21 26297.36 16097.70 24489.47 19099.56 15094.12 23397.99 18198.71 206
API-MVS97.41 10897.25 10197.91 14798.70 14796.80 11498.82 13398.69 12494.53 19398.11 11098.28 19294.50 9099.57 14794.12 23399.49 10297.37 264
cl2294.68 24994.19 24696.13 28098.11 21093.60 26596.94 35498.31 21492.43 29493.32 30696.87 32486.51 25998.28 32494.10 23591.16 31596.51 337
PLCcopyleft95.07 497.20 12096.78 12598.44 10499.29 7696.31 14398.14 24898.76 10792.41 29596.39 20598.31 19094.92 8299.78 10494.06 23698.77 14899.23 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-ACMP-BASELINE94.54 26194.14 25195.75 29896.55 32791.65 31398.11 25398.44 18894.96 17194.22 26697.90 22579.18 35199.11 21694.05 23793.85 27596.48 342
test_fmvs387.17 36587.06 36887.50 38391.21 40475.66 40899.05 6996.61 37292.79 28188.85 37492.78 40043.72 41593.49 40693.95 23884.56 38093.34 400
F-COLMAP97.09 12796.80 12297.97 14499.45 5594.95 21198.55 19598.62 14593.02 27296.17 21198.58 16094.01 10099.81 8493.95 23898.90 13899.14 160
MDTV_nov1_ep13_2view84.26 39396.89 36290.97 33997.90 13289.89 18193.91 24099.18 156
baseline295.11 22394.52 22896.87 22296.65 32493.56 26698.27 23194.10 40493.45 25292.02 34497.43 26987.45 24799.19 20493.88 24197.41 20297.87 246
原ACMM198.65 8499.32 6596.62 12198.67 13293.27 26197.81 13598.97 11095.18 7299.83 7293.84 24299.46 10899.50 94
RPSCF94.87 24095.40 18093.26 36498.89 12982.06 40298.33 21998.06 26990.30 35296.56 19499.26 5987.09 25099.49 16893.82 24396.32 23198.24 235
PAPM_NR97.46 10197.11 10898.50 9699.50 4296.41 13698.63 18198.60 14695.18 15697.06 17198.06 21094.26 9699.57 14793.80 24498.87 14299.52 89
ACMH92.88 1694.55 26093.95 26696.34 27197.63 25393.26 28298.81 14198.49 18293.43 25389.74 36598.53 16581.91 32699.08 22293.69 24593.30 28996.70 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth95.01 22894.69 22095.97 28797.70 24793.31 28097.02 35098.07 26492.23 30293.51 29896.96 31691.85 13898.15 33093.68 24691.16 31596.44 345
MAR-MVS96.91 13396.40 14398.45 10298.69 15096.90 11098.66 17598.68 12792.40 29697.07 17097.96 22091.54 14899.75 11293.68 24698.92 13798.69 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)96.87 13596.55 13797.83 15198.73 14295.46 18299.20 4298.30 22094.96 17196.60 19398.87 12790.05 17898.59 28393.67 24898.60 15599.46 107
LS3D97.16 12296.66 13498.68 8198.53 16697.19 10098.93 10198.90 5792.83 28095.99 21699.37 4092.12 13099.87 6193.67 24899.57 8698.97 182
PS-CasMVS94.67 25293.99 26496.71 23096.68 32295.26 19399.13 5799.03 3793.68 24092.33 33797.95 22185.35 28298.10 33493.59 25088.16 35696.79 297
c3_l94.79 24394.43 23695.89 29297.75 24193.12 29097.16 34498.03 27192.23 30293.46 30197.05 30591.39 15098.01 34193.58 25189.21 34396.53 331
CVMVSNet95.43 20196.04 15593.57 35897.93 23083.62 39698.12 25198.59 15095.68 13096.56 19499.02 10387.51 24397.51 36993.56 25297.44 20099.60 80
OurMVSNet-221017-094.21 28594.00 26294.85 33095.60 36289.22 36198.89 11097.43 32095.29 15092.18 34098.52 16882.86 32298.59 28393.46 25391.76 30696.74 302
eth_miper_zixun_eth94.68 24994.41 23795.47 30897.64 25291.71 31296.73 37198.07 26492.71 28393.64 29197.21 28790.54 17098.17 32993.38 25489.76 33196.54 329
OpenMVScopyleft93.04 1395.83 18095.00 20498.32 11397.18 29297.32 9099.21 3998.97 4289.96 35691.14 35299.05 10186.64 25899.92 3493.38 25499.47 10597.73 251
无先验97.58 31098.72 11691.38 32499.87 6193.36 25699.60 80
gm-plane-assit95.88 35587.47 38589.74 36196.94 31999.19 20493.32 257
WR-MVS_H95.05 22794.46 23296.81 22696.86 31195.82 16999.24 3099.24 1793.87 22392.53 33196.84 32690.37 17298.24 32693.24 25887.93 35796.38 347
tpm94.13 29293.80 27895.12 31996.50 33087.91 38397.44 31695.89 38592.62 28696.37 20696.30 34684.13 31198.30 32093.24 25891.66 30999.14 160
Fast-Effi-MVS+-dtu95.87 17795.85 16295.91 29097.74 24491.74 31198.69 16998.15 24795.56 13594.92 23697.68 24988.98 20898.79 26693.19 26097.78 19097.20 268
pmmvs593.65 30792.97 31095.68 29995.49 36792.37 29898.20 23897.28 33189.66 36292.58 32997.26 28182.14 32598.09 33693.18 26190.95 31996.58 322
TESTMET0.1,194.18 29093.69 28895.63 30296.92 30689.12 36296.91 35794.78 39593.17 26494.88 23796.45 34378.52 35498.92 24693.09 26298.50 16298.85 191
test-LLR95.10 22494.87 21295.80 29596.77 31589.70 35096.91 35795.21 39095.11 16094.83 24095.72 36887.71 23998.97 23593.06 26398.50 16298.72 203
test-mter94.08 29893.51 29695.80 29596.77 31589.70 35096.91 35795.21 39092.89 27794.83 24095.72 36877.69 36298.97 23593.06 26398.50 16298.72 203
BH-untuned95.95 17195.72 16796.65 23598.55 16492.26 30098.23 23497.79 28593.73 23294.62 24498.01 21588.97 20999.00 23493.04 26598.51 16198.68 208
EPMVS94.99 23194.48 23096.52 25597.22 28691.75 31097.23 33491.66 41394.11 20697.28 16196.81 32885.70 27698.84 25893.04 26597.28 20398.97 182
pmmvs494.69 24793.99 26496.81 22695.74 35895.94 16097.40 31997.67 29190.42 34993.37 30497.59 25789.08 20398.20 32792.97 26791.67 30896.30 351
GeoE96.58 14796.07 15398.10 13698.35 17895.89 16799.34 1698.12 25193.12 26896.09 21298.87 12789.71 18598.97 23592.95 26898.08 18099.43 112
v2v48294.69 24794.03 25896.65 23596.17 34394.79 22098.67 17398.08 26292.72 28294.00 27797.16 28987.69 24298.45 29592.91 26988.87 34996.72 305
Fast-Effi-MVS+96.28 16095.70 17298.03 14098.29 19295.97 15798.58 18798.25 22891.74 31495.29 23197.23 28591.03 16399.15 20992.90 27097.96 18398.97 182
V4294.78 24494.14 25196.70 23296.33 33895.22 19698.97 8998.09 26192.32 29994.31 26197.06 30288.39 22298.55 28592.90 27088.87 34996.34 348
DP-MVS96.59 14595.93 16098.57 8899.34 6096.19 14798.70 16798.39 19889.45 36694.52 24799.35 4691.85 13899.85 6692.89 27298.88 14099.68 64
TDRefinement91.06 34389.68 34895.21 31685.35 41891.49 31698.51 20297.07 34491.47 32188.83 37597.84 23277.31 36699.09 22192.79 27377.98 40595.04 379
ACMH+92.99 1494.30 27993.77 28195.88 29397.81 23892.04 30698.71 16398.37 20493.99 21690.60 35898.47 17180.86 33899.05 22492.75 27492.40 30096.55 328
cl____94.51 26594.01 26196.02 28497.58 25793.40 27697.05 34897.96 27691.73 31692.76 32397.08 29789.06 20498.13 33292.61 27590.29 32596.52 334
DIV-MVS_self_test94.52 26494.03 25895.99 28597.57 26193.38 27797.05 34897.94 27791.74 31492.81 32197.10 29189.12 20198.07 33892.60 27690.30 32496.53 331
DPM-MVS97.55 9996.99 11499.23 4199.04 11298.55 2797.17 34298.35 20794.85 17997.93 13098.58 16095.07 7799.71 12192.60 27699.34 12099.43 112
test_post196.68 37230.43 42487.85 23898.69 27292.59 278
SCA95.46 19895.13 19796.46 26397.67 24991.29 31997.33 32897.60 29694.68 18596.92 17897.10 29183.97 31498.89 25292.59 27898.32 17499.20 147
v14894.29 28193.76 28395.91 29096.10 34692.93 29498.58 18797.97 27492.59 28893.47 30096.95 31888.53 22098.32 31692.56 28087.06 36896.49 340
PEN-MVS94.42 27393.73 28596.49 25796.28 33994.84 21599.17 4999.00 3993.51 24892.23 33997.83 23586.10 26997.90 35092.55 28186.92 37096.74 302
Patchmatch-RL test91.49 33690.85 33793.41 36091.37 40384.40 39292.81 40895.93 38491.87 31287.25 38194.87 38188.99 20596.53 38892.54 28282.00 38899.30 130
miper_lstm_enhance94.33 27794.07 25595.11 32097.75 24190.97 32397.22 33598.03 27191.67 31892.76 32396.97 31490.03 17997.78 35892.51 28389.64 33396.56 326
IterMVS94.09 29793.85 27594.80 33397.99 22390.35 34097.18 34098.12 25193.68 24092.46 33597.34 27584.05 31297.41 37192.51 28391.33 31196.62 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 29593.87 27394.85 33097.98 22590.56 33697.18 34098.11 25493.75 22992.58 32997.48 26483.97 31497.41 37192.48 28591.30 31296.58 322
tpm294.19 28793.76 28395.46 30997.23 28589.04 36497.31 33096.85 36387.08 38196.21 20996.79 32983.75 32098.74 26992.43 28696.23 24298.59 218
PVSNet_088.72 1991.28 33990.03 34695.00 32497.99 22387.29 38794.84 39798.50 17792.06 30789.86 36495.19 37779.81 34699.39 18492.27 28769.79 41398.33 233
gg-mvs-nofinetune92.21 33290.58 34097.13 20296.75 31895.09 20295.85 38589.40 41885.43 39294.50 24881.98 41380.80 33998.40 31292.16 28898.33 17297.88 245
pm-mvs193.94 30393.06 30796.59 24596.49 33195.16 19898.95 9598.03 27192.32 29991.08 35397.84 23284.54 30298.41 30692.16 28886.13 37896.19 355
K. test v392.55 32891.91 33194.48 34595.64 36189.24 36099.07 6694.88 39494.04 20986.78 38597.59 25777.64 36597.64 36392.08 29089.43 34096.57 324
GBi-Net94.49 26793.80 27896.56 24998.21 19895.00 20598.82 13398.18 23892.46 29094.09 27297.07 29881.16 33297.95 34692.08 29092.14 30196.72 305
test194.49 26793.80 27896.56 24998.21 19895.00 20598.82 13398.18 23892.46 29094.09 27297.07 29881.16 33297.95 34692.08 29092.14 30196.72 305
FMVSNet394.97 23594.26 24297.11 20598.18 20496.62 12198.56 19498.26 22793.67 24294.09 27297.10 29184.25 30698.01 34192.08 29092.14 30196.70 309
PatchmatchNetpermissive95.71 18595.52 17796.29 27597.58 25790.72 33196.84 36697.52 30894.06 20897.08 16896.96 31689.24 19898.90 25192.03 29498.37 16999.26 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UWE-MVS94.30 27993.89 27295.53 30597.83 23688.95 36797.52 31493.25 40694.44 19996.63 19097.07 29878.70 35399.28 19491.99 29597.56 19998.36 231
QAPM96.29 15895.40 18098.96 6597.85 23597.60 7799.23 3298.93 5089.76 36093.11 31599.02 10389.11 20299.93 2891.99 29599.62 7799.34 121
新几何199.16 4899.34 6098.01 6498.69 12490.06 35598.13 10998.95 11794.60 8599.89 5091.97 29799.47 10599.59 82
MDTV_nov1_ep1395.40 18097.48 26688.34 37796.85 36597.29 32993.74 23197.48 15997.26 28189.18 19999.05 22491.92 29897.43 201
EU-MVSNet93.66 30594.14 25192.25 37495.96 35383.38 39898.52 19798.12 25194.69 18492.61 32898.13 20687.36 24896.39 39091.82 29990.00 32996.98 274
GA-MVS94.81 24294.03 25897.14 20197.15 29493.86 25596.76 36997.58 29794.00 21594.76 24397.04 30680.91 33698.48 29091.79 30096.25 24099.09 166
PatchMatch-RL96.59 14596.03 15698.27 11699.31 6796.51 13097.91 27599.06 3493.72 23496.92 17898.06 21088.50 22199.65 13291.77 30199.00 13598.66 212
v114494.59 25793.92 26796.60 24496.21 34094.78 22198.59 18598.14 24991.86 31394.21 26797.02 30987.97 23398.41 30691.72 30289.57 33496.61 319
v894.47 27093.77 28196.57 24896.36 33694.83 21799.05 6998.19 23591.92 31093.16 31196.97 31488.82 21398.48 29091.69 30387.79 35896.39 346
testdata299.89 5091.65 304
BH-w/o95.38 20595.08 20196.26 27698.34 18391.79 30897.70 30097.43 32092.87 27894.24 26597.22 28688.66 21498.84 25891.55 30597.70 19498.16 240
LF4IMVS93.14 32092.79 31394.20 35195.88 35588.67 37197.66 30397.07 34493.81 22791.71 34697.65 25077.96 36198.81 26491.47 30691.92 30595.12 375
JIA-IIPM93.35 31192.49 32095.92 28996.48 33290.65 33395.01 39396.96 35385.93 38896.08 21387.33 41087.70 24198.78 26791.35 30795.58 25498.34 232
test_f86.07 36985.39 37088.10 38289.28 41075.57 40997.73 29896.33 37789.41 36885.35 39491.56 40643.31 41795.53 39791.32 30884.23 38293.21 401
FE-MVS95.62 19194.90 21097.78 15698.37 17794.92 21297.17 34297.38 32490.95 34097.73 14297.70 24485.32 28599.63 13791.18 30998.33 17298.79 196
testing22294.12 29493.03 30897.37 19198.02 22094.66 22297.94 27296.65 37194.63 18895.78 22195.76 36371.49 39398.92 24691.17 31095.88 24998.52 222
ETVMVS94.50 26693.44 29997.68 16998.18 20495.35 18998.19 24197.11 34093.73 23296.40 20495.39 37474.53 38598.84 25891.10 31196.31 23298.84 193
ttmdpeth92.61 32791.96 33094.55 34194.10 38890.60 33598.52 19797.29 32992.67 28490.18 36197.92 22379.75 34797.79 35791.09 31286.15 37795.26 371
FMVSNet294.47 27093.61 29197.04 20998.21 19896.43 13498.79 14898.27 22392.46 29093.50 29997.09 29581.16 33298.00 34391.09 31291.93 30496.70 309
v14419294.39 27593.70 28796.48 25996.06 34894.35 24098.58 18798.16 24691.45 32294.33 26097.02 30987.50 24598.45 29591.08 31489.11 34496.63 317
tpmvs94.60 25594.36 23995.33 31497.46 26888.60 37296.88 36397.68 28991.29 33193.80 28796.42 34488.58 21599.24 19891.06 31596.04 24698.17 239
LTVRE_ROB92.95 1594.60 25593.90 27096.68 23497.41 27694.42 23698.52 19798.59 15091.69 31791.21 35198.35 18384.87 29199.04 22791.06 31593.44 28696.60 320
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PAPR96.84 13796.24 14998.65 8498.72 14696.92 10997.36 32598.57 15793.33 25696.67 18897.57 25994.30 9499.56 15091.05 31798.59 15699.47 103
dmvs_re94.48 26994.18 24895.37 31297.68 24890.11 34498.54 19697.08 34294.56 19194.42 25597.24 28484.25 30697.76 35991.02 31892.83 29598.24 235
SixPastTwentyTwo93.34 31292.86 31194.75 33495.67 36089.41 35998.75 15196.67 36993.89 22190.15 36398.25 19880.87 33798.27 32590.90 31990.64 32196.57 324
COLMAP_ROBcopyleft93.27 1295.33 21194.87 21296.71 23099.29 7693.24 28598.58 18798.11 25489.92 35793.57 29499.10 8986.37 26599.79 10190.78 32098.10 17997.09 269
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs691.77 33490.63 33995.17 31894.69 38491.24 32098.67 17397.92 27986.14 38689.62 36697.56 26175.79 38098.34 31390.75 32184.56 38095.94 361
BH-RMVSNet95.92 17595.32 18997.69 16798.32 18994.64 22498.19 24197.45 31894.56 19196.03 21498.61 15585.02 28899.12 21490.68 32299.06 12999.30 130
DTE-MVSNet93.98 30293.26 30596.14 27996.06 34894.39 23899.20 4298.86 7593.06 27091.78 34597.81 23785.87 27497.58 36690.53 32386.17 37596.46 344
v1094.29 28193.55 29496.51 25696.39 33594.80 21998.99 8698.19 23591.35 32793.02 31796.99 31288.09 22998.41 30690.50 32488.41 35396.33 350
ambc89.49 38086.66 41575.78 40792.66 40996.72 36686.55 38892.50 40346.01 41397.90 35090.32 32582.09 38794.80 384
lessismore_v094.45 34894.93 37988.44 37691.03 41586.77 38697.64 25376.23 37798.42 29990.31 32685.64 37996.51 337
v119294.32 27893.58 29296.53 25496.10 34694.45 23498.50 20398.17 24491.54 32094.19 26897.06 30286.95 25498.43 29890.14 32789.57 33496.70 309
MVS94.67 25293.54 29598.08 13796.88 31096.56 12898.19 24198.50 17778.05 40692.69 32698.02 21391.07 16299.63 13790.09 32898.36 17198.04 242
ADS-MVSNet294.58 25894.40 23895.11 32098.00 22188.74 37096.04 38197.30 32890.15 35396.47 20196.64 33787.89 23597.56 36790.08 32997.06 20799.02 177
ADS-MVSNet95.00 22994.45 23496.63 23998.00 22191.91 30796.04 38197.74 28890.15 35396.47 20196.64 33787.89 23598.96 23990.08 32997.06 20799.02 177
MSDG95.93 17495.30 19197.83 15198.90 12895.36 18796.83 36798.37 20491.32 32994.43 25498.73 14690.27 17699.60 14390.05 33198.82 14698.52 222
v192192094.20 28693.47 29896.40 26895.98 35194.08 25098.52 19798.15 24791.33 32894.25 26497.20 28886.41 26498.42 29990.04 33289.39 34196.69 314
dp94.15 29193.90 27094.90 32797.31 28186.82 38996.97 35297.19 33791.22 33596.02 21596.61 33985.51 27999.02 23190.00 33394.30 25998.85 191
CMPMVSbinary66.06 2189.70 35389.67 34989.78 37993.19 39576.56 40597.00 35198.35 20780.97 40381.57 40197.75 24074.75 38498.61 28089.85 33493.63 28094.17 390
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TR-MVS94.94 23894.20 24597.17 19997.75 24194.14 24997.59 30997.02 35092.28 30195.75 22297.64 25383.88 31698.96 23989.77 33596.15 24498.40 228
MS-PatchMatch93.84 30493.63 29094.46 34796.18 34289.45 35797.76 29598.27 22392.23 30292.13 34197.49 26379.50 34898.69 27289.75 33699.38 11795.25 372
ITE_SJBPF95.44 31097.42 27391.32 31897.50 31095.09 16393.59 29298.35 18381.70 32798.88 25489.71 33793.39 28796.12 356
MVP-Stereo94.28 28393.92 26795.35 31394.95 37892.60 29797.97 26997.65 29291.61 31990.68 35797.09 29586.32 26698.42 29989.70 33899.34 12095.02 380
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest95.24 21694.65 22296.99 21199.25 8493.21 28698.59 18598.18 23891.36 32593.52 29698.77 13984.67 29899.72 11689.70 33897.87 18698.02 243
TestCases96.99 21199.25 8493.21 28698.18 23891.36 32593.52 29698.77 13984.67 29899.72 11689.70 33897.87 18698.02 243
GG-mvs-BLEND96.59 24596.34 33794.98 20896.51 37788.58 41993.10 31694.34 39080.34 34498.05 33989.53 34196.99 20996.74 302
USDC93.33 31392.71 31495.21 31696.83 31390.83 32996.91 35797.50 31093.84 22490.72 35698.14 20577.69 36298.82 26389.51 34293.21 29195.97 360
v7n94.19 28793.43 30096.47 26095.90 35494.38 23999.26 2798.34 21091.99 30892.76 32397.13 29088.31 22398.52 28889.48 34387.70 35996.52 334
PM-MVS87.77 36386.55 36991.40 37791.03 40683.36 39996.92 35595.18 39291.28 33286.48 38993.42 39553.27 41296.74 38289.43 34481.97 38994.11 391
FMVSNet193.19 31892.07 32696.56 24997.54 26295.00 20598.82 13398.18 23890.38 35092.27 33897.07 29873.68 39097.95 34689.36 34591.30 31296.72 305
tpm cat193.36 31092.80 31295.07 32397.58 25787.97 38296.76 36997.86 28282.17 40293.53 29596.04 35786.13 26899.13 21289.24 34695.87 25098.10 241
UnsupCasMVSNet_eth90.99 34489.92 34794.19 35294.08 38989.83 34697.13 34698.67 13293.69 23885.83 39196.19 35275.15 38296.74 38289.14 34779.41 40096.00 359
v124094.06 30093.29 30496.34 27196.03 35093.90 25498.44 21098.17 24491.18 33794.13 27197.01 31186.05 27098.42 29989.13 34889.50 33896.70 309
test_vis3_rt79.22 37377.40 38084.67 38886.44 41674.85 41297.66 30381.43 42384.98 39367.12 41681.91 41428.09 42597.60 36488.96 34980.04 39881.55 414
tmp_tt68.90 38466.97 38674.68 40150.78 42859.95 42587.13 41383.47 42238.80 42162.21 41796.23 34964.70 40476.91 42388.91 35030.49 42187.19 411
pmmvs-eth3d90.36 34989.05 35494.32 35091.10 40592.12 30297.63 30896.95 35488.86 37384.91 39693.13 39978.32 35696.74 38288.70 35181.81 39094.09 392
WAC-MVS90.94 32488.66 352
thres600view795.49 19694.77 21497.67 17098.98 12195.02 20498.85 12596.90 35795.38 14496.63 19096.90 32184.29 30499.59 14488.65 35396.33 23098.40 228
testing393.19 31892.48 32195.30 31598.07 21292.27 29998.64 17897.17 33893.94 22093.98 27897.04 30667.97 39996.01 39488.40 35497.14 20597.63 255
myMVS_eth3d92.73 32592.01 32794.89 32897.39 27790.94 32497.91 27597.46 31493.16 26593.42 30295.37 37568.09 39896.12 39288.34 35596.99 20997.60 256
thres100view90095.38 20594.70 21997.41 18698.98 12194.92 21298.87 11896.90 35795.38 14496.61 19296.88 32284.29 30499.56 15088.11 35696.29 23497.76 248
tfpn200view995.32 21294.62 22397.43 18498.94 12694.98 20898.68 17096.93 35595.33 14796.55 19696.53 34084.23 30899.56 15088.11 35696.29 23497.76 248
thres40095.38 20594.62 22397.65 17498.94 12694.98 20898.68 17096.93 35595.33 14796.55 19696.53 34084.23 30899.56 15088.11 35696.29 23498.40 228
mvs5depth91.23 34090.17 34494.41 34992.09 40089.79 34795.26 39296.50 37390.73 34291.69 34797.06 30276.12 37898.62 27988.02 35984.11 38394.82 382
our_test_393.65 30793.30 30394.69 33595.45 37089.68 35296.91 35797.65 29291.97 30991.66 34896.88 32289.67 18697.93 34988.02 35991.49 31096.48 342
thres20095.25 21594.57 22597.28 19298.81 13894.92 21298.20 23897.11 34095.24 15596.54 19896.22 35184.58 30199.53 16087.93 36196.50 22697.39 262
EG-PatchMatch MVS91.13 34290.12 34594.17 35394.73 38389.00 36598.13 25097.81 28489.22 37085.32 39596.46 34267.71 40098.42 29987.89 36293.82 27695.08 377
CR-MVSNet94.76 24694.15 25096.59 24597.00 30093.43 27294.96 39497.56 30092.46 29096.93 17696.24 34788.15 22797.88 35487.38 36396.65 22098.46 226
Patchmtry93.22 31692.35 32395.84 29496.77 31593.09 29194.66 40197.56 30087.37 38092.90 31996.24 34788.15 22797.90 35087.37 36490.10 32896.53 331
test0.0.03 194.08 29893.51 29695.80 29595.53 36692.89 29597.38 32195.97 38195.11 16092.51 33396.66 33487.71 23996.94 37887.03 36593.67 27897.57 258
TinyColmap92.31 33191.53 33294.65 33896.92 30689.75 34896.92 35596.68 36890.45 34889.62 36697.85 23176.06 37998.81 26486.74 36692.51 29995.41 369
MIMVSNet93.26 31592.21 32596.41 26697.73 24593.13 28895.65 38897.03 34891.27 33394.04 27596.06 35675.33 38197.19 37486.56 36796.23 24298.92 188
TransMVSNet (Re)92.67 32691.51 33396.15 27896.58 32694.65 22398.90 10696.73 36590.86 34189.46 36997.86 22985.62 27798.09 33686.45 36881.12 39395.71 365
DSMNet-mixed92.52 33092.58 31992.33 37294.15 38782.65 40098.30 22694.26 40189.08 37192.65 32795.73 36685.01 28995.76 39686.24 36997.76 19198.59 218
testgi93.06 32292.45 32294.88 32996.43 33489.90 34598.75 15197.54 30695.60 13391.63 34997.91 22474.46 38797.02 37686.10 37093.67 27897.72 252
YYNet190.70 34789.39 35094.62 34094.79 38290.65 33397.20 33797.46 31487.54 37972.54 41295.74 36486.51 25996.66 38686.00 37186.76 37396.54 329
MDA-MVSNet_test_wron90.71 34689.38 35194.68 33694.83 38090.78 33097.19 33997.46 31487.60 37872.41 41395.72 36886.51 25996.71 38585.92 37286.80 37296.56 326
UnsupCasMVSNet_bld87.17 36585.12 37293.31 36391.94 40188.77 36994.92 39698.30 22084.30 39682.30 39990.04 40763.96 40697.25 37385.85 37374.47 41293.93 396
EPNet_dtu95.21 21894.95 20895.99 28596.17 34390.45 33798.16 24797.27 33296.77 7993.14 31498.33 18890.34 17398.42 29985.57 37498.81 14799.09 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet591.81 33390.92 33694.49 34497.21 28792.09 30398.00 26697.55 30589.31 36990.86 35595.61 37274.48 38695.32 40085.57 37489.70 33296.07 358
tfpnnormal93.66 30592.70 31596.55 25396.94 30595.94 16098.97 8999.19 2491.04 33891.38 35097.34 27584.94 29098.61 28085.45 37689.02 34795.11 376
Patchmatch-test94.42 27393.68 28996.63 23997.60 25591.76 30994.83 39897.49 31289.45 36694.14 27097.10 29188.99 20598.83 26185.37 37798.13 17899.29 132
MVStest189.53 35787.99 36294.14 35594.39 38590.42 33898.25 23396.84 36482.81 39881.18 40397.33 27777.09 37196.94 37885.27 37878.79 40195.06 378
ppachtmachnet_test93.22 31692.63 31694.97 32595.45 37090.84 32896.88 36397.88 28190.60 34492.08 34297.26 28188.08 23097.86 35585.12 37990.33 32396.22 353
WB-MVSnew94.19 28794.04 25694.66 33796.82 31492.14 30197.86 28595.96 38293.50 24995.64 22396.77 33088.06 23197.99 34484.87 38096.86 21393.85 397
KD-MVS_2432*160089.61 35587.96 36394.54 34294.06 39091.59 31495.59 38997.63 29489.87 35888.95 37294.38 38878.28 35796.82 38084.83 38168.05 41495.21 373
miper_refine_blended89.61 35587.96 36394.54 34294.06 39091.59 31495.59 38997.63 29489.87 35888.95 37294.38 38878.28 35796.82 38084.83 38168.05 41495.21 373
PCF-MVS93.45 1194.68 24993.43 30098.42 10898.62 15996.77 11695.48 39198.20 23384.63 39593.34 30598.32 18988.55 21999.81 8484.80 38398.96 13698.68 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_method79.03 37478.17 37681.63 39686.06 41754.40 42882.75 41696.89 35939.54 42080.98 40495.57 37358.37 41094.73 40384.74 38478.61 40295.75 364
KD-MVS_self_test90.38 34889.38 35193.40 36192.85 39788.94 36897.95 27097.94 27790.35 35190.25 36093.96 39179.82 34595.94 39584.62 38576.69 40895.33 370
Anonymous2024052191.18 34190.44 34193.42 35993.70 39388.47 37598.94 9897.56 30088.46 37589.56 36895.08 38077.15 37096.97 37783.92 38689.55 33694.82 382
MDA-MVSNet-bldmvs89.97 35288.35 35894.83 33295.21 37491.34 31797.64 30597.51 30988.36 37671.17 41496.13 35479.22 35096.63 38783.65 38786.27 37496.52 334
MVS-HIRNet89.46 35888.40 35792.64 36997.58 25782.15 40194.16 40793.05 41075.73 40990.90 35482.52 41279.42 34998.33 31583.53 38898.68 14997.43 259
APD_test188.22 36288.01 36188.86 38195.98 35174.66 41397.21 33696.44 37583.96 39786.66 38797.90 22560.95 40997.84 35682.73 38990.23 32694.09 392
new-patchmatchnet88.50 36187.45 36691.67 37690.31 40785.89 39197.16 34497.33 32689.47 36583.63 39892.77 40176.38 37595.06 40282.70 39077.29 40694.06 394
PAPM94.95 23694.00 26297.78 15697.04 29995.65 17396.03 38398.25 22891.23 33494.19 26897.80 23891.27 15698.86 25782.61 39197.61 19698.84 193
LCM-MVSNet78.70 37776.24 38386.08 38577.26 42471.99 41594.34 40596.72 36661.62 41576.53 40789.33 40833.91 42392.78 41081.85 39274.60 41193.46 398
new_pmnet90.06 35189.00 35593.22 36594.18 38688.32 37896.42 37996.89 35986.19 38585.67 39293.62 39377.18 36997.10 37581.61 39389.29 34294.23 388
pmmvs386.67 36884.86 37392.11 37588.16 41287.19 38896.63 37394.75 39679.88 40487.22 38292.75 40266.56 40395.20 40181.24 39476.56 40993.96 395
CL-MVSNet_self_test90.11 35089.14 35393.02 36791.86 40288.23 38096.51 37798.07 26490.49 34590.49 35994.41 38684.75 29595.34 39980.79 39574.95 41095.50 368
N_pmnet87.12 36787.77 36585.17 38795.46 36961.92 42397.37 32370.66 42885.83 38988.73 37696.04 35785.33 28497.76 35980.02 39690.48 32295.84 362
TAPA-MVS93.98 795.35 20994.56 22697.74 16299.13 10494.83 21798.33 21998.64 14086.62 38296.29 20798.61 15594.00 10199.29 19380.00 39799.41 11299.09 166
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepMVS_CXcopyleft86.78 38497.09 29872.30 41495.17 39375.92 40884.34 39795.19 37770.58 39495.35 39879.98 39889.04 34692.68 402
Anonymous2023120691.66 33591.10 33593.33 36294.02 39287.35 38698.58 18797.26 33390.48 34690.16 36296.31 34583.83 31896.53 38879.36 39989.90 33096.12 356
test20.0390.89 34590.38 34292.43 37093.48 39488.14 38198.33 21997.56 30093.40 25487.96 37896.71 33380.69 34094.13 40579.15 40086.17 37595.01 381
PatchT93.06 32291.97 32896.35 27096.69 32192.67 29694.48 40497.08 34286.62 38297.08 16892.23 40487.94 23497.90 35078.89 40196.69 21898.49 224
MIMVSNet189.67 35488.28 35993.82 35692.81 39891.08 32298.01 26497.45 31887.95 37787.90 37995.87 36267.63 40194.56 40478.73 40288.18 35595.83 363
test_040291.32 33790.27 34394.48 34596.60 32591.12 32198.50 20397.22 33586.10 38788.30 37796.98 31377.65 36497.99 34478.13 40392.94 29394.34 386
OpenMVS_ROBcopyleft86.42 2089.00 35987.43 36793.69 35793.08 39689.42 35897.91 27596.89 35978.58 40585.86 39094.69 38269.48 39698.29 32377.13 40493.29 29093.36 399
Syy-MVS92.55 32892.61 31792.38 37197.39 27783.41 39797.91 27597.46 31493.16 26593.42 30295.37 37584.75 29596.12 39277.00 40596.99 20997.60 256
RPMNet92.81 32491.34 33497.24 19397.00 30093.43 27294.96 39498.80 9682.27 40196.93 17692.12 40586.98 25399.82 7976.32 40696.65 22098.46 226
PMMVS277.95 38075.44 38485.46 38682.54 41974.95 41194.23 40693.08 40972.80 41074.68 40887.38 40936.36 42091.56 41173.95 40763.94 41689.87 406
EGC-MVSNET75.22 38269.54 38592.28 37394.81 38189.58 35497.64 30596.50 3731.82 4255.57 42695.74 36468.21 39796.26 39173.80 40891.71 30790.99 403
testf179.02 37577.70 37782.99 39388.10 41366.90 41994.67 39993.11 40771.08 41174.02 40993.41 39634.15 42193.25 40772.25 40978.50 40388.82 407
APD_test279.02 37577.70 37782.99 39388.10 41366.90 41994.67 39993.11 40771.08 41174.02 40993.41 39634.15 42193.25 40772.25 40978.50 40388.82 407
dmvs_testset87.64 36488.93 35683.79 39095.25 37363.36 42297.20 33791.17 41493.07 26985.64 39395.98 36185.30 28691.52 41269.42 41187.33 36496.49 340
FPMVS77.62 38177.14 38179.05 39979.25 42260.97 42495.79 38695.94 38365.96 41367.93 41594.40 38737.73 41988.88 41668.83 41288.46 35287.29 410
Gipumacopyleft78.40 37976.75 38283.38 39295.54 36480.43 40479.42 41797.40 32264.67 41473.46 41180.82 41545.65 41493.14 40966.32 41387.43 36276.56 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 38365.37 38780.22 39865.99 42671.96 41690.91 41290.09 41782.62 40049.93 42178.39 41629.36 42481.75 41862.49 41438.52 42086.95 412
dongtai82.47 37281.88 37584.22 38995.19 37576.03 40694.59 40374.14 42782.63 39987.19 38396.09 35564.10 40587.85 41758.91 41584.11 38388.78 409
PMVScopyleft61.03 2365.95 38563.57 38973.09 40257.90 42751.22 42985.05 41593.93 40554.45 41644.32 42283.57 41113.22 42689.15 41558.68 41681.00 39478.91 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS84.86 37085.33 37183.46 39189.48 40969.56 41798.19 24196.42 37689.55 36481.79 40094.67 38384.80 29390.12 41352.44 41780.64 39790.69 404
MVEpermissive62.14 2263.28 38859.38 39174.99 40074.33 42565.47 42185.55 41480.50 42452.02 41851.10 42075.00 41910.91 42980.50 41951.60 41853.40 41778.99 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SSC-MVS84.27 37184.71 37482.96 39589.19 41168.83 41898.08 25796.30 37889.04 37281.37 40294.47 38484.60 30089.89 41449.80 41979.52 39990.15 405
E-PMN64.94 38664.25 38867.02 40382.28 42059.36 42691.83 41185.63 42052.69 41760.22 41877.28 41741.06 41880.12 42046.15 42041.14 41861.57 419
kuosan78.45 37877.69 37980.72 39792.73 39975.32 41094.63 40274.51 42675.96 40780.87 40593.19 39863.23 40779.99 42142.56 42181.56 39286.85 413
EMVS64.07 38763.26 39066.53 40481.73 42158.81 42791.85 41084.75 42151.93 41959.09 41975.13 41843.32 41679.09 42242.03 42239.47 41961.69 418
wuyk23d30.17 38930.18 39330.16 40578.61 42343.29 43066.79 41814.21 42917.31 42214.82 42511.93 42511.55 42841.43 42437.08 42319.30 4225.76 422
test12320.95 39223.72 39512.64 40613.54 4308.19 43196.55 3766.13 4317.48 42416.74 42437.98 42212.97 4276.05 42516.69 4245.43 42423.68 420
testmvs21.48 39124.95 39411.09 40714.89 4296.47 43296.56 3759.87 4307.55 42317.93 42339.02 4219.43 4305.90 42616.56 42512.72 42320.91 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.98 39031.98 3920.00 4080.00 4310.00 4330.00 41998.59 1500.00 4260.00 42798.61 15590.60 1690.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.88 39410.50 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42694.51 870.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.20 39310.94 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42798.43 1730.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
FOURS199.82 198.66 2499.69 198.95 4697.46 3899.39 30
test_one_060199.66 2699.25 298.86 7597.55 3299.20 4299.47 2397.57 6
eth-test20.00 431
eth-test0.00 431
test_241102_ONE99.71 1999.24 598.87 6997.62 2799.73 1099.39 3497.53 799.74 114
save fliter99.46 5298.38 3598.21 23698.71 11997.95 16
test072699.72 1299.25 299.06 6798.88 6297.62 2799.56 2099.50 1897.42 9
GSMVS99.20 147
test_part299.63 2999.18 1099.27 39
sam_mvs189.45 19299.20 147
sam_mvs88.99 205
MTGPAbinary98.74 111
test_post31.83 42388.83 21298.91 248
patchmatchnet-post95.10 37989.42 19398.89 252
MTMP98.89 11094.14 403
TEST999.31 6798.50 2997.92 27398.73 11492.63 28597.74 14098.68 15096.20 3299.80 91
test_899.29 7698.44 3197.89 28198.72 11692.98 27397.70 14598.66 15396.20 3299.80 91
agg_prior99.30 7198.38 3598.72 11697.57 15799.81 84
test_prior498.01 6497.86 285
test_prior99.19 4399.31 6798.22 5198.84 7999.70 12299.65 72
新几何297.64 305
旧先验199.29 7697.48 8298.70 12399.09 9695.56 5299.47 10599.61 78
原ACMM297.67 302
test22299.23 9197.17 10197.40 31998.66 13588.68 37498.05 11598.96 11594.14 9899.53 9799.61 78
segment_acmp96.85 14
testdata197.32 32996.34 102
test1299.18 4599.16 10198.19 5398.53 16698.07 11395.13 7599.72 11699.56 9299.63 76
plane_prior797.42 27394.63 225
plane_prior697.35 28094.61 22887.09 250
plane_prior498.28 192
plane_prior394.61 22897.02 6895.34 227
plane_prior298.80 14297.28 49
plane_prior197.37 279
plane_prior94.60 23098.44 21096.74 8294.22 262
n20.00 432
nn0.00 432
door-mid94.37 399
test1198.66 135
door94.64 397
HQP5-MVS94.25 246
HQP-NCC97.20 28898.05 26096.43 9694.45 250
ACMP_Plane97.20 28898.05 26096.43 9694.45 250
HQP4-MVS94.45 25098.96 23996.87 291
HQP3-MVS98.46 18494.18 264
HQP2-MVS86.75 256
NP-MVS97.28 28294.51 23397.73 241
ACMMP++_ref92.97 292
ACMMP++93.61 281
Test By Simon94.64 84