This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2495.30 270.98 6193.57 794.06 1077.24 4893.10 195.72 882.99 197.44 589.07 996.63 494.88 12
test_241102_ONE95.30 270.98 6194.06 1077.17 5193.10 195.39 1182.99 197.27 10
test072695.27 571.25 5593.60 694.11 677.33 4692.81 395.79 380.98 9
DVP-MVS++90.23 191.01 187.89 2294.34 2771.25 5595.06 194.23 378.38 3192.78 495.74 682.45 397.49 389.42 496.68 294.95 8
test_241102_TWO94.06 1077.24 4892.78 495.72 881.26 897.44 589.07 996.58 694.26 39
IU-MVS95.30 271.25 5592.95 5166.81 23392.39 688.94 1196.63 494.85 17
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10392.29 795.97 274.28 2997.24 1188.58 1396.91 194.87 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3091.59 4194.10 875.90 8392.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.60 390.35 387.33 3895.27 571.25 5593.49 992.73 5977.33 4692.12 995.78 480.98 997.40 789.08 796.41 1293.33 76
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3192.12 995.78 481.46 797.40 789.42 496.57 794.67 22
test_one_060195.07 771.46 5394.14 578.27 3392.05 1195.74 680.83 11
PC_three_145268.21 22592.02 1294.00 4082.09 595.98 4984.58 3596.68 294.95 8
test_part295.06 872.65 3191.80 13
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 891.35 1494.16 3478.35 1396.77 2289.59 394.22 5694.67 22
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS195.00 1072.39 3895.06 193.84 1574.49 10991.30 15
APDe-MVS89.15 689.63 687.73 2694.49 1871.69 5093.83 493.96 1375.70 8791.06 1696.03 176.84 1497.03 1589.09 695.65 2794.47 29
SD-MVS88.06 1388.50 1386.71 4992.60 6672.71 2891.81 4093.19 3577.87 3490.32 1794.00 4074.83 2393.78 13487.63 1794.27 5593.65 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4892.24 6869.03 9389.57 8393.39 3077.53 4389.79 1894.12 3578.98 1296.58 3385.66 2495.72 2494.58 25
SF-MVS88.46 1188.74 1187.64 3392.78 6171.95 4892.40 2394.74 275.71 8589.16 1995.10 1375.65 2196.19 4187.07 2196.01 1794.79 19
TSAR-MVS + MP.88.02 1688.11 1587.72 2893.68 4372.13 4591.41 4592.35 7474.62 10788.90 2093.85 4475.75 2096.00 4787.80 1594.63 4595.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft87.44 2187.52 2187.19 4094.24 3272.39 3891.86 3992.83 5573.01 14288.58 2194.52 1973.36 3496.49 3484.26 3995.01 3592.70 95
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1488.26 1492.84 6091.52 4494.75 173.93 12188.57 2294.67 1775.57 2295.79 5186.77 2295.76 23
ACMMP_NAP88.05 1588.08 1687.94 1793.70 4173.05 2190.86 5493.59 2376.27 7788.14 2395.09 1471.06 5296.67 2787.67 1696.37 1494.09 44
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1088.10 2494.80 1573.76 3397.11 1387.51 1895.82 2194.90 11
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 5993.00 4380.90 588.06 2594.06 3876.43 1696.84 1988.48 1495.99 1894.34 35
canonicalmvs85.91 4485.87 4686.04 5889.84 11169.44 9190.45 6493.00 4376.70 6788.01 2691.23 9673.28 3693.91 12981.50 6688.80 11194.77 20
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 987.78 2794.27 3075.89 1996.81 2187.45 1996.44 993.05 86
ZD-MVS94.38 2572.22 4392.67 6170.98 17187.75 2894.07 3774.01 3296.70 2584.66 3494.84 41
alignmvs85.48 5085.32 5285.96 6089.51 11869.47 8889.74 7992.47 6876.17 7887.73 2991.46 9270.32 5993.78 13481.51 6588.95 10894.63 24
旧先验286.56 17558.10 32087.04 3088.98 26674.07 134
SR-MVS86.73 3286.67 3386.91 4494.11 3772.11 4692.37 2792.56 6774.50 10886.84 3194.65 1867.31 8595.77 5284.80 3392.85 6592.84 93
dcpmvs_285.63 4986.15 4284.06 11391.71 7564.94 18486.47 17791.87 9573.63 12786.60 3293.02 5976.57 1591.87 21183.36 4792.15 7395.35 2
MP-MVS-pluss87.67 1987.72 1987.54 3493.64 4472.04 4789.80 7793.50 2575.17 9686.34 3395.29 1270.86 5396.00 4788.78 1296.04 1694.58 25
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize85.97 4385.88 4586.22 5592.69 6369.53 8691.93 3692.99 4573.54 13185.94 3494.51 2265.80 10295.61 5583.04 5292.51 6993.53 71
MTAPA87.23 2687.00 2787.90 2094.18 3574.25 586.58 17492.02 8579.45 1785.88 3594.80 1568.07 7796.21 4086.69 2395.34 3193.23 79
TSAR-MVS + GP.85.71 4885.33 5186.84 4591.34 7872.50 3589.07 9587.28 22076.41 7085.80 3690.22 12174.15 3195.37 7081.82 6491.88 7692.65 99
NCCC88.06 1388.01 1788.24 1094.41 2273.62 1091.22 5092.83 5581.50 385.79 3793.47 4973.02 3997.00 1684.90 2994.94 3794.10 43
SR-MVS-dyc-post85.77 4685.61 4886.23 5493.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2465.00 11095.56 5682.75 5591.87 7792.50 103
RE-MVS-def85.48 4993.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2463.87 11682.75 5591.87 7792.50 103
testdata79.97 22790.90 8664.21 19884.71 25259.27 31285.40 4092.91 6062.02 14489.08 26468.95 18491.37 8486.63 280
casdiffmvs_mvgpermissive85.99 4286.09 4485.70 6487.65 18967.22 13888.69 11093.04 3879.64 1685.33 4192.54 7073.30 3594.50 10583.49 4691.14 8795.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS87.94 1787.85 1888.20 1194.39 2473.33 1893.03 1493.81 1776.81 6185.24 4294.32 2971.76 4696.93 1785.53 2695.79 2294.32 36
PHI-MVS86.43 3786.17 4187.24 3990.88 8770.96 6392.27 3194.07 972.45 14585.22 4391.90 7969.47 6796.42 3583.28 4995.94 1994.35 34
patch_mono-283.65 6684.54 6180.99 20790.06 10665.83 16284.21 23488.74 19171.60 16085.01 4492.44 7174.51 2583.50 31282.15 6292.15 7393.64 65
TEST993.26 5072.96 2488.75 10691.89 9368.44 22285.00 4593.10 5474.36 2895.41 65
train_agg86.43 3786.20 3987.13 4293.26 5072.96 2488.75 10691.89 9368.69 21885.00 4593.10 5474.43 2695.41 6584.97 2895.71 2593.02 88
HFP-MVS87.58 2087.47 2287.94 1794.58 1673.54 1493.04 1293.24 3376.78 6384.91 4794.44 2670.78 5496.61 3084.53 3694.89 3993.66 59
test_prior288.85 10275.41 9184.91 4793.54 4674.28 2983.31 4895.86 20
test_893.13 5272.57 3488.68 11191.84 9768.69 21884.87 4993.10 5474.43 2695.16 74
MCST-MVS87.37 2587.25 2487.73 2694.53 1772.46 3789.82 7593.82 1673.07 14084.86 5092.89 6176.22 1796.33 3684.89 3195.13 3494.40 32
GST-MVS87.42 2387.26 2387.89 2294.12 3672.97 2392.39 2593.43 2876.89 5984.68 5193.99 4270.67 5696.82 2084.18 4395.01 3593.90 51
h-mvs3383.15 7582.19 8386.02 5990.56 9270.85 6888.15 12889.16 17176.02 8184.67 5291.39 9461.54 14995.50 5982.71 5775.48 27391.72 126
hse-mvs281.72 9680.94 10284.07 11288.72 15167.68 12785.87 19387.26 22176.02 8184.67 5288.22 17461.54 14993.48 14982.71 5773.44 30091.06 146
ACMMPR87.44 2187.23 2588.08 1394.64 1373.59 1193.04 1293.20 3476.78 6384.66 5494.52 1968.81 7596.65 2884.53 3694.90 3894.00 48
CDPH-MVS85.76 4785.29 5487.17 4193.49 4771.08 5988.58 11392.42 7268.32 22484.61 5593.48 4772.32 4196.15 4379.00 8595.43 2994.28 38
UA-Net85.08 5784.96 5785.45 6692.07 7068.07 11989.78 7890.86 12582.48 184.60 5693.20 5369.35 6895.22 7271.39 15990.88 9093.07 85
CS-MVS86.69 3386.95 2985.90 6190.76 9067.57 12992.83 1793.30 3279.67 1584.57 5792.27 7371.47 4995.02 8484.24 4193.46 6195.13 5
region2R87.42 2387.20 2688.09 1294.63 1473.55 1293.03 1493.12 3776.73 6684.45 5894.52 1969.09 7196.70 2584.37 3894.83 4294.03 47
agg_prior92.85 5971.94 4991.78 10084.41 5994.93 85
VDD-MVS83.01 8082.36 8184.96 7891.02 8366.40 15088.91 9988.11 20077.57 3984.39 6093.29 5252.19 23093.91 12977.05 10688.70 11394.57 27
casdiffmvspermissive85.11 5685.14 5585.01 7687.20 20465.77 16687.75 14092.83 5577.84 3584.36 6192.38 7272.15 4393.93 12881.27 6890.48 9295.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSLP-MVS++85.43 5285.76 4784.45 9691.93 7270.24 7490.71 5692.86 5377.46 4584.22 6292.81 6567.16 8792.94 17580.36 7794.35 5390.16 178
DeepC-MVS_fast79.65 386.91 3186.62 3487.76 2593.52 4672.37 4091.26 4693.04 3876.62 6884.22 6293.36 5171.44 5096.76 2380.82 7295.33 3294.16 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DROMVSNet86.01 4186.38 3684.91 8289.31 12966.27 15392.32 2993.63 2179.37 1884.17 6491.88 8069.04 7495.43 6383.93 4493.77 5993.01 89
ETV-MVS84.90 6084.67 6085.59 6589.39 12368.66 10888.74 10892.64 6579.97 1384.10 6585.71 23969.32 6995.38 6780.82 7291.37 8492.72 94
VNet82.21 8782.41 7981.62 18790.82 8860.93 24884.47 22589.78 15276.36 7584.07 6691.88 8064.71 11190.26 24570.68 16588.89 10993.66 59
baseline84.93 5884.98 5684.80 8687.30 20265.39 17587.30 15292.88 5277.62 3784.04 6792.26 7471.81 4593.96 12281.31 6790.30 9495.03 7
PGM-MVS86.68 3486.27 3887.90 2094.22 3373.38 1790.22 6893.04 3875.53 8983.86 6894.42 2767.87 8096.64 2982.70 5994.57 4793.66 59
MP-MVScopyleft87.71 1887.64 2087.93 1994.36 2673.88 692.71 2292.65 6477.57 3983.84 6994.40 2872.24 4296.28 3885.65 2595.30 3393.62 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft87.11 2886.98 2887.50 3693.88 3972.16 4492.19 3293.33 3176.07 8083.81 7093.95 4369.77 6596.01 4685.15 2794.66 4494.32 36
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 2886.92 3087.68 3294.20 3473.86 793.98 392.82 5876.62 6883.68 7194.46 2367.93 7895.95 5084.20 4294.39 5193.23 79
XVS87.18 2786.91 3188.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7294.17 3367.45 8396.60 3183.06 5094.50 4894.07 45
X-MVStestdata80.37 13177.83 16888.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7212.47 37467.45 8396.60 3183.06 5094.50 4894.07 45
DELS-MVS85.41 5385.30 5385.77 6288.49 15867.93 12185.52 20693.44 2778.70 2783.63 7489.03 14974.57 2495.71 5480.26 7994.04 5793.66 59
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test86.29 4086.48 3585.71 6391.02 8367.21 13992.36 2893.78 1878.97 2683.51 7591.20 9870.65 5795.15 7581.96 6394.89 3994.77 20
LFMVS81.82 9581.23 9683.57 13191.89 7363.43 21689.84 7481.85 29277.04 5683.21 7693.10 5452.26 22993.43 15371.98 15489.95 10193.85 52
VDDNet81.52 10380.67 10684.05 11590.44 9564.13 20089.73 8085.91 24071.11 16883.18 7793.48 4750.54 25393.49 14873.40 14188.25 11994.54 28
CSCG86.41 3986.19 4087.07 4392.91 5872.48 3690.81 5593.56 2473.95 11983.16 7891.07 10375.94 1895.19 7379.94 8194.38 5293.55 69
nrg03083.88 6283.53 6584.96 7886.77 21269.28 9290.46 6392.67 6174.79 10282.95 7991.33 9572.70 4093.09 16980.79 7479.28 23092.50 103
EI-MVSNet-Vis-set84.19 6183.81 6485.31 6888.18 16867.85 12287.66 14289.73 15580.05 1282.95 7989.59 13370.74 5594.82 9380.66 7684.72 15993.28 78
MVS_Test83.15 7583.06 7183.41 13686.86 20863.21 22086.11 18792.00 8774.31 11282.87 8189.44 14170.03 6193.21 15877.39 10388.50 11793.81 55
DPM-MVS84.93 5884.29 6386.84 4590.20 9973.04 2287.12 15693.04 3869.80 19182.85 8291.22 9773.06 3896.02 4576.72 11294.63 4591.46 135
DeepC-MVS79.81 287.08 3086.88 3287.69 3191.16 8072.32 4290.31 6693.94 1477.12 5382.82 8394.23 3272.13 4497.09 1484.83 3295.37 3093.65 63
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS86.67 3586.32 3787.72 2894.41 2273.55 1292.74 2092.22 8076.87 6082.81 8494.25 3166.44 9296.24 3982.88 5494.28 5493.38 73
test1286.80 4792.63 6470.70 7091.79 9982.71 8571.67 4796.16 4294.50 4893.54 70
HPM-MVS_fast85.35 5484.95 5886.57 5193.69 4270.58 7392.15 3491.62 10373.89 12282.67 8694.09 3662.60 13195.54 5880.93 7092.93 6493.57 68
Effi-MVS+83.62 6883.08 7085.24 7088.38 16367.45 13188.89 10089.15 17275.50 9082.27 8788.28 17169.61 6694.45 10777.81 9887.84 12193.84 54
EI-MVSNet-UG-set83.81 6383.38 6785.09 7487.87 17867.53 13087.44 14889.66 15679.74 1482.23 8889.41 14270.24 6094.74 9679.95 8083.92 16992.99 90
MVS_111021_HR85.14 5584.75 5986.32 5391.65 7672.70 2985.98 18990.33 13876.11 7982.08 8991.61 8771.36 5194.17 11881.02 6992.58 6892.08 118
diffmvspermissive82.10 8881.88 9082.76 16983.00 27363.78 20683.68 24289.76 15372.94 14382.02 9089.85 12565.96 10190.79 23982.38 6187.30 12893.71 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v1_base_debu80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
xiu_mvs_v1_base80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
xiu_mvs_v1_base_debi80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
新几何183.42 13493.13 5270.71 6985.48 24557.43 32581.80 9491.98 7763.28 12092.27 19664.60 22292.99 6387.27 263
test_yl81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16386.90 13392.52 101
DCV-MVSNet81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16386.90 13392.52 101
MG-MVS83.41 7183.45 6683.28 13992.74 6262.28 23488.17 12689.50 15975.22 9481.49 9792.74 6966.75 8895.11 7872.85 14791.58 8192.45 106
CANet86.45 3686.10 4387.51 3590.09 10170.94 6589.70 8192.59 6681.78 281.32 9891.43 9370.34 5897.23 1284.26 3993.36 6294.37 33
MVSFormer82.85 8182.05 8685.24 7087.35 19770.21 7590.50 6090.38 13468.55 22081.32 9889.47 13661.68 14693.46 15178.98 8690.26 9592.05 119
lupinMVS81.39 10680.27 11584.76 8787.35 19770.21 7585.55 20286.41 23262.85 28281.32 9888.61 16161.68 14692.24 19878.41 9390.26 9591.83 123
xiu_mvs_v2_base81.69 9881.05 9983.60 12989.15 13668.03 12084.46 22790.02 14670.67 17681.30 10186.53 22463.17 12494.19 11775.60 12288.54 11588.57 239
PS-MVSNAJ81.69 9881.02 10083.70 12889.51 11868.21 11784.28 23390.09 14570.79 17381.26 10285.62 24363.15 12594.29 10975.62 12188.87 11088.59 238
原ACMM184.35 10093.01 5768.79 9892.44 6963.96 27381.09 10391.57 8866.06 9895.45 6167.19 20194.82 4388.81 232
jason81.39 10680.29 11484.70 8886.63 21469.90 8285.95 19086.77 22863.24 27581.07 10489.47 13661.08 16292.15 20078.33 9490.07 10092.05 119
jason: jason.
OPM-MVS83.50 6982.95 7385.14 7288.79 14870.95 6489.13 9491.52 10677.55 4280.96 10591.75 8260.71 16694.50 10579.67 8286.51 14089.97 194
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 7082.80 7685.43 6790.25 9868.74 10290.30 6790.13 14476.33 7680.87 10692.89 6161.00 16394.20 11672.45 15390.97 8893.35 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMPcopyleft85.89 4585.39 5087.38 3793.59 4572.63 3292.74 2093.18 3676.78 6380.73 10793.82 4564.33 11296.29 3782.67 6090.69 9193.23 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2024052980.19 13678.89 14484.10 10890.60 9164.75 18788.95 9890.90 12265.97 24880.59 10891.17 10049.97 25893.73 14069.16 18282.70 18993.81 55
MVS_111021_LR82.61 8482.11 8484.11 10788.82 14571.58 5185.15 20986.16 23774.69 10480.47 10991.04 10462.29 13890.55 24380.33 7890.08 9990.20 177
ECVR-MVScopyleft79.61 14479.26 13580.67 21490.08 10254.69 32087.89 13777.44 32774.88 10080.27 11092.79 6648.96 27492.45 18768.55 18892.50 7094.86 15
VPA-MVSNet80.60 12580.55 10880.76 21288.07 17360.80 25186.86 16491.58 10575.67 8880.24 11189.45 14063.34 11990.25 24670.51 16779.22 23191.23 140
test111179.43 15179.18 13980.15 22489.99 10753.31 33387.33 15177.05 33075.04 9780.23 11292.77 6848.97 27392.33 19568.87 18592.40 7294.81 18
test250677.30 20576.49 20179.74 23290.08 10252.02 33687.86 13963.10 36474.88 10080.16 11392.79 6638.29 33292.35 19368.74 18792.50 7094.86 15
Anonymous20240521178.25 17977.01 18781.99 18191.03 8260.67 25384.77 21783.90 26670.65 17880.00 11491.20 9841.08 32291.43 22265.21 21685.26 15493.85 52
test22291.50 7768.26 11584.16 23583.20 28054.63 33679.74 11591.63 8658.97 17991.42 8386.77 276
OMC-MVS82.69 8281.97 8984.85 8388.75 15067.42 13287.98 13190.87 12474.92 9979.72 11691.65 8462.19 14193.96 12275.26 12586.42 14193.16 83
FA-MVS(test-final)80.96 11279.91 11984.10 10888.30 16665.01 18284.55 22490.01 14773.25 13779.61 11787.57 18858.35 18394.72 9771.29 16086.25 14492.56 100
CPTT-MVS83.73 6483.33 6884.92 8193.28 4970.86 6792.09 3590.38 13468.75 21779.57 11892.83 6360.60 17093.04 17380.92 7191.56 8290.86 154
IS-MVSNet83.15 7582.81 7584.18 10689.94 10963.30 21891.59 4188.46 19779.04 2379.49 11992.16 7565.10 10794.28 11067.71 19491.86 7994.95 8
PS-MVSNAJss82.07 9081.31 9484.34 10186.51 21567.27 13689.27 8791.51 10771.75 15479.37 12090.22 12163.15 12594.27 11177.69 9982.36 19291.49 133
EPP-MVSNet83.40 7283.02 7284.57 9090.13 10064.47 19392.32 2990.73 12674.45 11179.35 12191.10 10169.05 7395.12 7672.78 14887.22 12994.13 42
test_vis1_n_192075.52 23175.78 20974.75 29479.84 31957.44 28883.26 25185.52 24462.83 28379.34 12286.17 23245.10 30079.71 32878.75 8881.21 20487.10 271
DP-MVS Recon83.11 7882.09 8586.15 5694.44 1970.92 6688.79 10492.20 8170.53 17979.17 12391.03 10664.12 11496.03 4468.39 19190.14 9791.50 132
ab-mvs79.51 14778.97 14381.14 20388.46 16060.91 24983.84 24089.24 16870.36 18179.03 12488.87 15463.23 12390.21 24765.12 21782.57 19092.28 111
EIA-MVS83.31 7482.80 7684.82 8489.59 11465.59 16888.21 12492.68 6074.66 10578.96 12586.42 22669.06 7295.26 7175.54 12390.09 9893.62 66
PVSNet_Blended_VisFu82.62 8381.83 9184.96 7890.80 8969.76 8488.74 10891.70 10269.39 19878.96 12588.46 16665.47 10494.87 9274.42 13088.57 11490.24 176
HQP_MVS83.64 6783.14 6985.14 7290.08 10268.71 10491.25 4892.44 6979.12 2178.92 12791.00 10760.42 17295.38 6778.71 8986.32 14291.33 136
plane_prior368.60 10978.44 2978.92 127
test_fmvs1_n70.86 27170.24 26972.73 30772.51 35655.28 31581.27 27479.71 31351.49 34578.73 12984.87 25827.54 35377.02 34076.06 11579.97 22185.88 293
iter_conf0580.00 14078.70 14683.91 12487.84 18065.83 16288.84 10384.92 25171.61 15978.70 13088.94 15043.88 30594.56 10079.28 8484.28 16691.33 136
EI-MVSNet80.52 12879.98 11782.12 17784.28 24463.19 22286.41 17888.95 18274.18 11678.69 13187.54 19166.62 8992.43 18872.57 15180.57 21390.74 159
MVSTER79.01 16377.88 16782.38 17583.07 27064.80 18684.08 23988.95 18269.01 21378.69 13187.17 20254.70 20992.43 18874.69 12780.57 21389.89 197
API-MVS81.99 9281.23 9684.26 10490.94 8570.18 8091.10 5189.32 16371.51 16278.66 13388.28 17165.26 10595.10 8164.74 22191.23 8687.51 257
GeoE81.71 9781.01 10183.80 12689.51 11864.45 19488.97 9788.73 19271.27 16578.63 13489.76 12766.32 9493.20 16169.89 17486.02 14893.74 57
test_fmvs170.93 27070.52 26472.16 31073.71 34855.05 31780.82 27578.77 31851.21 34678.58 13584.41 26431.20 34976.94 34175.88 11880.12 22084.47 310
UniMVSNet (Re)81.60 10281.11 9883.09 14988.38 16364.41 19587.60 14393.02 4278.42 3078.56 13688.16 17569.78 6493.26 15769.58 17876.49 25791.60 127
MAR-MVS81.84 9480.70 10585.27 6991.32 7971.53 5289.82 7590.92 12169.77 19278.50 13786.21 23062.36 13794.52 10465.36 21592.05 7589.77 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+80.81 11679.92 11883.47 13288.85 14264.51 19085.53 20489.39 16170.79 17378.49 13885.06 25667.54 8293.58 14267.03 20486.58 13892.32 109
FIs82.07 9082.42 7881.04 20688.80 14758.34 27288.26 12393.49 2676.93 5878.47 13991.04 10469.92 6392.34 19469.87 17584.97 15692.44 107
UniMVSNet_NR-MVSNet81.88 9381.54 9382.92 15888.46 16063.46 21487.13 15592.37 7380.19 1078.38 14089.14 14571.66 4893.05 17170.05 17176.46 25892.25 112
DU-MVS81.12 11080.52 10982.90 15987.80 18263.46 21487.02 15991.87 9579.01 2478.38 14089.07 14765.02 10893.05 17170.05 17176.46 25892.20 114
CLD-MVS82.31 8681.65 9284.29 10388.47 15967.73 12585.81 19792.35 7475.78 8478.33 14286.58 22164.01 11594.35 10876.05 11687.48 12690.79 155
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final80.63 12379.35 13284.46 9589.36 12567.70 12689.85 7384.49 25673.19 13878.30 14388.94 15045.98 29194.56 10079.59 8384.48 16391.11 143
VPNet78.69 17178.66 14878.76 24788.31 16555.72 31184.45 22886.63 23076.79 6278.26 14490.55 11559.30 17789.70 25466.63 20577.05 24990.88 153
mvsmamba81.69 9880.74 10484.56 9187.45 19666.72 14691.26 4685.89 24174.66 10578.23 14590.56 11454.33 21294.91 8680.73 7583.54 17792.04 121
V4279.38 15578.24 15982.83 16181.10 30665.50 17085.55 20289.82 15171.57 16178.21 14686.12 23360.66 16893.18 16475.64 12075.46 27589.81 201
BH-RMVSNet79.61 14478.44 15383.14 14789.38 12465.93 15984.95 21487.15 22373.56 13078.19 14789.79 12656.67 19893.36 15459.53 26186.74 13690.13 180
v2v48280.23 13479.29 13483.05 15283.62 25664.14 19987.04 15889.97 14873.61 12878.18 14887.22 19961.10 16193.82 13276.11 11476.78 25591.18 141
PVSNet_BlendedMVS80.60 12580.02 11682.36 17688.85 14265.40 17386.16 18692.00 8769.34 20078.11 14986.09 23466.02 9994.27 11171.52 15682.06 19487.39 259
PVSNet_Blended80.98 11180.34 11282.90 15988.85 14265.40 17384.43 22992.00 8767.62 22878.11 14985.05 25766.02 9994.27 11171.52 15689.50 10489.01 222
v114480.03 13879.03 14183.01 15483.78 25464.51 19087.11 15790.57 13071.96 15378.08 15186.20 23161.41 15393.94 12574.93 12677.23 24690.60 164
FE-MVS77.78 19475.68 21184.08 11188.09 17266.00 15783.13 25487.79 21068.42 22378.01 15285.23 25145.50 29895.12 7659.11 26585.83 15291.11 143
TranMVSNet+NR-MVSNet80.84 11480.31 11382.42 17487.85 17962.33 23287.74 14191.33 11280.55 777.99 15389.86 12465.23 10692.62 18167.05 20375.24 28292.30 110
Baseline_NR-MVSNet78.15 18478.33 15777.61 26585.79 22156.21 30786.78 16885.76 24273.60 12977.93 15487.57 18865.02 10888.99 26567.14 20275.33 27987.63 253
TR-MVS77.44 20176.18 20681.20 20188.24 16763.24 21984.61 22286.40 23367.55 22977.81 15586.48 22554.10 21593.15 16557.75 28082.72 18887.20 264
v119279.59 14678.43 15483.07 15183.55 25864.52 18986.93 16290.58 12970.83 17277.78 15685.90 23559.15 17893.94 12573.96 13577.19 24890.76 157
PCF-MVS73.52 780.38 13078.84 14585.01 7687.71 18668.99 9583.65 24391.46 11163.00 27977.77 15790.28 11866.10 9695.09 8261.40 24788.22 12090.94 152
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WR-MVS79.49 14879.22 13780.27 22288.79 14858.35 27185.06 21188.61 19578.56 2877.65 15888.34 16963.81 11890.66 24264.98 21977.22 24791.80 125
XVG-OURS80.41 12979.23 13683.97 12185.64 22469.02 9483.03 25890.39 13371.09 16977.63 15991.49 9154.62 21191.35 22475.71 11983.47 17891.54 129
v14419279.47 14978.37 15582.78 16783.35 26163.96 20286.96 16090.36 13769.99 18777.50 16085.67 24160.66 16893.77 13674.27 13276.58 25690.62 162
v192192079.22 15778.03 16282.80 16483.30 26363.94 20386.80 16690.33 13869.91 18977.48 16185.53 24458.44 18293.75 13873.60 13776.85 25390.71 160
thisisatest053079.40 15377.76 17384.31 10287.69 18865.10 18187.36 14984.26 26270.04 18677.42 16288.26 17349.94 25994.79 9570.20 16984.70 16093.03 87
FC-MVSNet-test81.52 10382.02 8780.03 22688.42 16255.97 30987.95 13393.42 2977.10 5477.38 16390.98 10969.96 6291.79 21268.46 19084.50 16192.33 108
v124078.99 16477.78 17182.64 17083.21 26563.54 21186.62 17390.30 14069.74 19577.33 16485.68 24057.04 19693.76 13773.13 14576.92 25090.62 162
PAPM_NR83.02 7982.41 7984.82 8492.47 6766.37 15187.93 13591.80 9873.82 12377.32 16590.66 11267.90 7994.90 8970.37 16889.48 10593.19 82
ACMM73.20 880.78 12179.84 12183.58 13089.31 12968.37 11289.99 7191.60 10470.28 18377.25 16689.66 12953.37 22193.53 14774.24 13382.85 18588.85 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP4-MVS77.24 16795.11 7891.03 148
AUN-MVS79.21 15877.60 17884.05 11588.71 15267.61 12885.84 19587.26 22169.08 20977.23 16888.14 17953.20 22393.47 15075.50 12473.45 29991.06 146
HQP-NCC89.33 12689.17 8976.41 7077.23 168
ACMP_Plane89.33 12689.17 8976.41 7077.23 168
HQP-MVS82.61 8482.02 8784.37 9889.33 12666.98 14289.17 8992.19 8276.41 7077.23 16890.23 12060.17 17595.11 7877.47 10185.99 14991.03 148
tt080578.73 16977.83 16881.43 19285.17 23060.30 25989.41 8590.90 12271.21 16677.17 17288.73 15646.38 28693.21 15872.57 15178.96 23390.79 155
TAPA-MVS73.13 979.15 15977.94 16482.79 16689.59 11462.99 22788.16 12791.51 10765.77 24977.14 17391.09 10260.91 16493.21 15850.26 32187.05 13192.17 116
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPR81.66 10180.89 10383.99 12090.27 9764.00 20186.76 17091.77 10168.84 21677.13 17489.50 13467.63 8194.88 9167.55 19688.52 11693.09 84
UniMVSNet_ETH3D79.10 16178.24 15981.70 18686.85 20960.24 26087.28 15388.79 18674.25 11476.84 17590.53 11649.48 26491.56 21867.98 19282.15 19393.29 77
EPNet83.72 6582.92 7486.14 5784.22 24669.48 8791.05 5385.27 24681.30 476.83 17691.65 8466.09 9795.56 5676.00 11793.85 5893.38 73
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline176.98 21076.75 19777.66 26388.13 16955.66 31285.12 21081.89 29073.04 14176.79 17788.90 15262.43 13687.78 28363.30 22971.18 31589.55 208
tttt051779.40 15377.91 16583.90 12588.10 17163.84 20488.37 12084.05 26471.45 16376.78 17889.12 14649.93 26194.89 9070.18 17083.18 18292.96 91
TAMVS78.89 16777.51 18083.03 15387.80 18267.79 12484.72 21885.05 24967.63 22776.75 17987.70 18462.25 13990.82 23858.53 27387.13 13090.49 168
XVG-OURS-SEG-HR80.81 11679.76 12283.96 12285.60 22568.78 9983.54 24890.50 13170.66 17776.71 18091.66 8360.69 16791.26 22676.94 10781.58 20091.83 123
3Dnovator+77.84 485.48 5084.47 6288.51 691.08 8173.49 1593.18 1193.78 1880.79 676.66 18193.37 5060.40 17496.75 2477.20 10493.73 6095.29 4
LPG-MVS_test82.08 8981.27 9584.50 9389.23 13368.76 10090.22 6891.94 9175.37 9276.64 18291.51 8954.29 21394.91 8678.44 9183.78 17089.83 199
LGP-MVS_train84.50 9389.23 13368.76 10091.94 9175.37 9276.64 18291.51 8954.29 21394.91 8678.44 9183.78 17089.83 199
tfpn200view976.42 21975.37 21979.55 23989.13 13757.65 28485.17 20783.60 26973.41 13476.45 18486.39 22752.12 23191.95 20648.33 32983.75 17289.07 215
thres40076.50 21675.37 21979.86 22989.13 13757.65 28485.17 20783.60 26973.41 13476.45 18486.39 22752.12 23191.95 20648.33 32983.75 17290.00 190
HyFIR lowres test77.53 20075.40 21783.94 12389.59 11466.62 14780.36 28388.64 19456.29 33176.45 18485.17 25357.64 18993.28 15661.34 24983.10 18391.91 122
RRT_MVS80.35 13279.22 13783.74 12787.63 19065.46 17291.08 5288.92 18473.82 12376.44 18790.03 12349.05 27294.25 11576.84 10879.20 23291.51 130
CDS-MVSNet79.07 16277.70 17583.17 14687.60 19168.23 11684.40 23186.20 23667.49 23076.36 18886.54 22361.54 14990.79 23961.86 24387.33 12790.49 168
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres100view90076.50 21675.55 21479.33 24089.52 11756.99 29385.83 19683.23 27873.94 12076.32 18987.12 20351.89 23891.95 20648.33 32983.75 17289.07 215
thres600view776.50 21675.44 21579.68 23489.40 12257.16 29085.53 20483.23 27873.79 12576.26 19087.09 20451.89 23891.89 20948.05 33483.72 17590.00 190
UGNet80.83 11579.59 12684.54 9288.04 17468.09 11889.42 8488.16 19976.95 5776.22 19189.46 13849.30 26793.94 12568.48 18990.31 9391.60 127
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_djsdf80.30 13379.32 13383.27 14083.98 25165.37 17690.50 6090.38 13468.55 22076.19 19288.70 15756.44 19993.46 15178.98 8680.14 21990.97 151
v14878.72 17077.80 17081.47 19182.73 27961.96 23886.30 18288.08 20273.26 13676.18 19385.47 24662.46 13592.36 19271.92 15573.82 29690.09 184
WTY-MVS75.65 22975.68 21175.57 28486.40 21656.82 29577.92 31082.40 28765.10 25576.18 19387.72 18363.13 12880.90 32460.31 25581.96 19589.00 224
mvs_anonymous79.42 15279.11 14080.34 22084.45 24357.97 27882.59 26087.62 21367.40 23176.17 19588.56 16468.47 7689.59 25570.65 16686.05 14793.47 72
Anonymous2023121178.97 16577.69 17682.81 16390.54 9364.29 19790.11 7091.51 10765.01 25876.16 19688.13 18050.56 25293.03 17469.68 17777.56 24591.11 143
thisisatest051577.33 20475.38 21883.18 14585.27 22963.80 20582.11 26483.27 27765.06 25675.91 19783.84 27349.54 26394.27 11167.24 20086.19 14591.48 134
CANet_DTU80.61 12479.87 12082.83 16185.60 22563.17 22387.36 14988.65 19376.37 7475.88 19888.44 16753.51 22093.07 17073.30 14289.74 10392.25 112
thres20075.55 23074.47 22978.82 24687.78 18557.85 28183.07 25783.51 27272.44 14775.84 19984.42 26352.08 23391.75 21347.41 33683.64 17686.86 274
CHOSEN 1792x268877.63 19975.69 21083.44 13389.98 10868.58 11078.70 30287.50 21656.38 33075.80 20086.84 20758.67 18091.40 22361.58 24685.75 15390.34 173
AdaColmapbinary80.58 12779.42 12984.06 11393.09 5468.91 9789.36 8688.97 18169.27 20175.70 20189.69 12857.20 19595.77 5263.06 23088.41 11887.50 258
c3_l78.75 16877.91 16581.26 19882.89 27661.56 24384.09 23889.13 17469.97 18875.56 20284.29 26766.36 9392.09 20273.47 14075.48 27390.12 181
miper_ehance_all_eth78.59 17477.76 17381.08 20582.66 28161.56 24383.65 24389.15 17268.87 21575.55 20383.79 27566.49 9192.03 20373.25 14376.39 26089.64 205
miper_enhance_ethall77.87 19376.86 19180.92 20981.65 29561.38 24582.68 25988.98 17965.52 25375.47 20482.30 29465.76 10392.00 20572.95 14676.39 26089.39 210
3Dnovator76.31 583.38 7382.31 8286.59 5087.94 17772.94 2790.64 5792.14 8477.21 5075.47 20492.83 6358.56 18194.72 9773.24 14492.71 6792.13 117
jajsoiax79.29 15677.96 16383.27 14084.68 24066.57 14989.25 8890.16 14369.20 20575.46 20689.49 13545.75 29693.13 16776.84 10880.80 20990.11 182
IterMVS-LS80.06 13779.38 13082.11 17885.89 22063.20 22186.79 16789.34 16274.19 11575.45 20786.72 21166.62 8992.39 19072.58 15076.86 25290.75 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 14978.60 14982.05 17989.19 13565.91 16086.07 18888.52 19672.18 15075.42 20887.69 18561.15 16093.54 14660.38 25486.83 13586.70 278
mvs_tets79.13 16077.77 17283.22 14484.70 23966.37 15189.17 8990.19 14269.38 19975.40 20989.46 13844.17 30393.15 16576.78 11080.70 21190.14 179
HY-MVS69.67 1277.95 19077.15 18580.36 21987.57 19560.21 26183.37 25087.78 21166.11 24475.37 21087.06 20663.27 12190.48 24461.38 24882.43 19190.40 172
GBi-Net78.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21187.28 19554.80 20591.11 22962.72 23279.57 22490.09 184
test178.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21187.28 19554.80 20591.11 22962.72 23279.57 22490.09 184
FMVSNet377.88 19276.85 19280.97 20886.84 21062.36 23186.52 17688.77 18771.13 16775.34 21186.66 21754.07 21691.10 23262.72 23279.57 22489.45 209
CostFormer75.24 23673.90 23579.27 24182.65 28258.27 27380.80 27682.73 28561.57 29475.33 21483.13 28455.52 20191.07 23564.98 21978.34 24088.45 240
test_vis1_n69.85 28369.21 27471.77 31272.66 35555.27 31681.48 27176.21 33452.03 34275.30 21583.20 28328.97 35176.22 34674.60 12878.41 23983.81 318
FMVSNet278.20 18277.21 18481.20 20187.60 19162.89 22887.47 14789.02 17771.63 15675.29 21687.28 19554.80 20591.10 23262.38 23679.38 22889.61 206
v879.97 14179.02 14282.80 16484.09 24864.50 19287.96 13290.29 14174.13 11875.24 21786.81 20862.88 13093.89 13174.39 13175.40 27790.00 190
anonymousdsp78.60 17377.15 18582.98 15680.51 31267.08 14087.24 15489.53 15865.66 25175.16 21887.19 20152.52 22492.25 19777.17 10579.34 22989.61 206
QAPM80.88 11379.50 12885.03 7588.01 17668.97 9691.59 4192.00 8766.63 24075.15 21992.16 7557.70 18895.45 6163.52 22588.76 11290.66 161
v1079.74 14378.67 14782.97 15784.06 24964.95 18387.88 13890.62 12873.11 13975.11 22086.56 22261.46 15294.05 12173.68 13675.55 27189.90 196
Vis-MVSNet (Re-imp)78.36 17878.45 15278.07 25888.64 15451.78 34086.70 17179.63 31474.14 11775.11 22090.83 11061.29 15789.75 25258.10 27791.60 8092.69 97
cl2278.07 18677.01 18781.23 19982.37 28861.83 24083.55 24787.98 20468.96 21475.06 22283.87 27161.40 15491.88 21073.53 13876.39 26089.98 193
ACMP74.13 681.51 10580.57 10784.36 9989.42 12168.69 10789.97 7291.50 11074.46 11075.04 22390.41 11753.82 21894.54 10277.56 10082.91 18489.86 198
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu80.03 13878.57 15084.42 9785.13 23468.74 10288.77 10588.10 20174.99 9874.97 22483.49 27957.27 19493.36 15473.53 13880.88 20791.18 141
XXY-MVS75.41 23475.56 21374.96 29083.59 25757.82 28280.59 28183.87 26766.54 24174.93 22588.31 17063.24 12280.09 32762.16 23976.85 25386.97 272
eth_miper_zixun_eth77.92 19176.69 19881.61 18983.00 27361.98 23783.15 25389.20 17069.52 19774.86 22684.35 26661.76 14592.56 18471.50 15872.89 30490.28 175
GA-MVS76.87 21275.17 22281.97 18282.75 27862.58 22981.44 27386.35 23572.16 15274.74 22782.89 28646.20 29092.02 20468.85 18681.09 20591.30 139
sss73.60 24773.64 23873.51 30282.80 27755.01 31876.12 31781.69 29362.47 28874.68 22885.85 23857.32 19378.11 33560.86 25280.93 20687.39 259
test_fmvs268.35 29467.48 29470.98 32069.50 35951.95 33880.05 28776.38 33349.33 34874.65 22984.38 26523.30 35975.40 35174.51 12975.17 28385.60 295
BH-w/o78.21 18177.33 18380.84 21088.81 14665.13 18084.87 21587.85 20969.75 19374.52 23084.74 26161.34 15593.11 16858.24 27685.84 15184.27 311
FMVSNet177.44 20176.12 20781.40 19486.81 21163.01 22488.39 11789.28 16470.49 18074.39 23187.28 19549.06 27191.11 22960.91 25178.52 23590.09 184
cl____77.72 19676.76 19580.58 21582.49 28560.48 25683.09 25587.87 20769.22 20374.38 23285.22 25262.10 14291.53 21971.09 16175.41 27689.73 204
DIV-MVS_self_test77.72 19676.76 19580.58 21582.48 28660.48 25683.09 25587.86 20869.22 20374.38 23285.24 25062.10 14291.53 21971.09 16175.40 27789.74 203
114514_t80.68 12279.51 12784.20 10594.09 3867.27 13689.64 8291.11 11858.75 31774.08 23490.72 11158.10 18495.04 8369.70 17689.42 10690.30 174
WR-MVS_H78.51 17578.49 15178.56 25088.02 17556.38 30488.43 11592.67 6177.14 5273.89 23587.55 19066.25 9589.24 26158.92 26873.55 29890.06 188
bld_raw_dy_0_6477.29 20675.98 20881.22 20085.04 23665.47 17188.14 12977.56 32469.20 20573.77 23689.40 14442.24 31688.85 27176.78 11081.64 19989.33 212
tpm273.26 25271.46 25478.63 24883.34 26256.71 29880.65 28080.40 30656.63 32973.55 23782.02 29951.80 24091.24 22756.35 29378.42 23887.95 246
CP-MVSNet78.22 18078.34 15677.84 26087.83 18154.54 32287.94 13491.17 11677.65 3673.48 23888.49 16562.24 14088.43 27562.19 23874.07 29190.55 166
pm-mvs177.25 20776.68 19978.93 24584.22 24658.62 27086.41 17888.36 19871.37 16473.31 23988.01 18161.22 15989.15 26364.24 22373.01 30389.03 221
PS-CasMVS78.01 18978.09 16177.77 26287.71 18654.39 32488.02 13091.22 11377.50 4473.26 24088.64 16060.73 16588.41 27661.88 24273.88 29590.53 167
CVMVSNet72.99 25672.58 24674.25 29884.28 24450.85 34686.41 17883.45 27544.56 35273.23 24187.54 19149.38 26585.70 29665.90 21178.44 23786.19 285
PEN-MVS77.73 19577.69 17677.84 26087.07 20753.91 32787.91 13691.18 11577.56 4173.14 24288.82 15561.23 15889.17 26259.95 25772.37 30690.43 170
1112_ss77.40 20376.43 20380.32 22189.11 14160.41 25883.65 24387.72 21262.13 29173.05 24386.72 21162.58 13389.97 24962.11 24180.80 20990.59 165
tpm72.37 26271.71 25374.35 29782.19 29052.00 33779.22 29677.29 32864.56 26272.95 24483.68 27851.35 24383.26 31558.33 27575.80 26787.81 250
cascas76.72 21474.64 22582.99 15585.78 22265.88 16182.33 26289.21 16960.85 29972.74 24581.02 30547.28 28193.75 13867.48 19785.02 15589.34 211
CR-MVSNet73.37 24971.27 25879.67 23581.32 30465.19 17875.92 31980.30 30759.92 30672.73 24681.19 30252.50 22586.69 28959.84 25877.71 24287.11 269
RPMNet73.51 24870.49 26582.58 17281.32 30465.19 17875.92 31992.27 7657.60 32472.73 24676.45 33952.30 22895.43 6348.14 33377.71 24287.11 269
DTE-MVSNet76.99 20976.80 19377.54 26786.24 21753.06 33587.52 14590.66 12777.08 5572.50 24888.67 15960.48 17189.52 25657.33 28470.74 31790.05 189
Test_1112_low_res76.40 22075.44 21579.27 24189.28 13158.09 27481.69 26887.07 22459.53 31072.48 24986.67 21661.30 15689.33 25960.81 25380.15 21890.41 171
v7n78.97 16577.58 17983.14 14783.45 26065.51 16988.32 12191.21 11473.69 12672.41 25086.32 22957.93 18593.81 13369.18 18175.65 26990.11 182
SCA74.22 24272.33 24979.91 22884.05 25062.17 23579.96 28979.29 31666.30 24372.38 25180.13 31451.95 23688.60 27359.25 26377.67 24488.96 226
CNLPA78.08 18576.79 19481.97 18290.40 9671.07 6087.59 14484.55 25566.03 24772.38 25189.64 13057.56 19086.04 29459.61 26083.35 17988.79 233
NR-MVSNet80.23 13479.38 13082.78 16787.80 18263.34 21786.31 18191.09 11979.01 2472.17 25389.07 14767.20 8692.81 18066.08 21075.65 26992.20 114
OpenMVScopyleft72.83 1079.77 14278.33 15784.09 11085.17 23069.91 8190.57 5890.97 12066.70 23672.17 25391.91 7854.70 20993.96 12261.81 24490.95 8988.41 242
MVS78.19 18376.99 18981.78 18485.66 22366.99 14184.66 21990.47 13255.08 33572.02 25585.27 24963.83 11794.11 12066.10 20989.80 10284.24 312
XVG-ACMP-BASELINE76.11 22474.27 23281.62 18783.20 26664.67 18883.60 24689.75 15469.75 19371.85 25687.09 20432.78 34592.11 20169.99 17380.43 21588.09 245
PatchmatchNetpermissive73.12 25471.33 25778.49 25383.18 26760.85 25079.63 29178.57 31964.13 26771.73 25779.81 31951.20 24585.97 29557.40 28376.36 26388.66 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst72.39 26072.13 25073.18 30680.54 31149.91 35079.91 29079.08 31763.11 27771.69 25879.95 31655.32 20282.77 31765.66 21473.89 29486.87 273
TransMVSNet (Re)75.39 23574.56 22777.86 25985.50 22757.10 29286.78 16886.09 23972.17 15171.53 25987.34 19463.01 12989.31 26056.84 28961.83 34287.17 265
Fast-Effi-MVS+-dtu78.02 18876.49 20182.62 17183.16 26966.96 14486.94 16187.45 21872.45 14571.49 26084.17 26854.79 20891.58 21767.61 19580.31 21689.30 213
PAPM77.68 19876.40 20481.51 19087.29 20361.85 23983.78 24189.59 15764.74 26071.23 26188.70 15762.59 13293.66 14152.66 30887.03 13289.01 222
tfpnnormal74.39 23973.16 24278.08 25786.10 21958.05 27584.65 22187.53 21570.32 18271.22 26285.63 24254.97 20489.86 25043.03 35075.02 28486.32 282
RPSCF73.23 25371.46 25478.54 25182.50 28459.85 26282.18 26382.84 28458.96 31471.15 26389.41 14245.48 29984.77 30458.82 27071.83 31191.02 150
PatchT68.46 29367.85 28770.29 32280.70 30943.93 36572.47 33274.88 33860.15 30470.55 26476.57 33849.94 25981.59 32050.58 31574.83 28685.34 298
CL-MVSNet_self_test72.37 26271.46 25475.09 28979.49 32653.53 32980.76 27885.01 25069.12 20870.51 26582.05 29857.92 18684.13 30752.27 30966.00 33487.60 254
IterMVS-SCA-FT75.43 23373.87 23680.11 22582.69 28064.85 18581.57 27083.47 27469.16 20770.49 26684.15 26951.95 23688.15 27869.23 18072.14 30987.34 261
miper_lstm_enhance74.11 24373.11 24377.13 27380.11 31559.62 26472.23 33386.92 22766.76 23570.40 26782.92 28556.93 19782.92 31669.06 18372.63 30588.87 229
gg-mvs-nofinetune69.95 28167.96 28575.94 28083.07 27054.51 32377.23 31470.29 34963.11 27770.32 26862.33 35743.62 30688.69 27253.88 30287.76 12284.62 309
DP-MVS76.78 21374.57 22683.42 13493.29 4869.46 9088.55 11483.70 26863.98 27270.20 26988.89 15354.01 21794.80 9446.66 33881.88 19786.01 290
pmmvs674.69 23873.39 23978.61 24981.38 30157.48 28786.64 17287.95 20564.99 25970.18 27086.61 21850.43 25489.52 25662.12 24070.18 31988.83 231
PVSNet64.34 1872.08 26470.87 26375.69 28286.21 21856.44 30274.37 32980.73 30062.06 29270.17 27182.23 29642.86 31083.31 31454.77 29884.45 16487.32 262
131476.53 21575.30 22180.21 22383.93 25262.32 23384.66 21988.81 18560.23 30370.16 27284.07 27055.30 20390.73 24167.37 19883.21 18187.59 256
Patchmtry70.74 27269.16 27575.49 28680.72 30854.07 32674.94 32880.30 30758.34 31870.01 27381.19 30252.50 22586.54 29053.37 30571.09 31685.87 294
EPMVS69.02 28768.16 28271.59 31379.61 32449.80 35277.40 31266.93 35762.82 28470.01 27379.05 32145.79 29477.86 33756.58 29175.26 28187.13 268
IterMVS74.29 24072.94 24478.35 25481.53 29863.49 21381.58 26982.49 28668.06 22669.99 27583.69 27751.66 24285.54 29765.85 21271.64 31286.01 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR72.94 25772.43 24774.48 29581.35 30258.04 27678.38 30377.46 32566.66 23769.95 27679.00 32348.06 27779.24 32966.13 20784.83 15786.15 286
test-mter71.41 26670.39 26874.48 29581.35 30258.04 27678.38 30377.46 32560.32 30269.95 27679.00 32336.08 33979.24 32966.13 20784.83 15786.15 286
pmmvs474.03 24571.91 25180.39 21881.96 29268.32 11381.45 27282.14 28859.32 31169.87 27885.13 25452.40 22788.13 27960.21 25674.74 28784.73 307
PLCcopyleft70.83 1178.05 18776.37 20583.08 15091.88 7467.80 12388.19 12589.46 16064.33 26669.87 27888.38 16853.66 21993.58 14258.86 26982.73 18787.86 249
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB69.57 1376.25 22274.54 22881.41 19388.60 15564.38 19679.24 29589.12 17570.76 17569.79 28087.86 18249.09 27093.20 16156.21 29480.16 21786.65 279
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D76.95 21174.82 22483.37 13790.45 9467.36 13589.15 9386.94 22661.87 29369.52 28190.61 11351.71 24194.53 10346.38 34186.71 13788.21 244
IB-MVS68.01 1575.85 22773.36 24083.31 13884.76 23866.03 15583.38 24985.06 24870.21 18569.40 28281.05 30445.76 29594.66 9965.10 21875.49 27289.25 214
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL72.38 26170.90 26176.80 27688.60 15567.38 13479.53 29276.17 33562.75 28569.36 28382.00 30045.51 29784.89 30353.62 30380.58 21278.12 346
MDTV_nov1_ep1369.97 27183.18 26753.48 33077.10 31580.18 31060.45 30069.33 28480.44 31148.89 27586.90 28851.60 31278.51 236
D2MVS74.82 23773.21 24179.64 23679.81 32062.56 23080.34 28487.35 21964.37 26568.86 28582.66 29046.37 28790.10 24867.91 19381.24 20386.25 283
PMMVS69.34 28568.67 27771.35 31775.67 34062.03 23675.17 32373.46 34450.00 34768.68 28679.05 32152.07 23478.13 33461.16 25082.77 18673.90 352
Patchmatch-RL test70.24 27867.78 29077.61 26577.43 33459.57 26671.16 33670.33 34862.94 28168.65 28772.77 34850.62 25185.49 29869.58 17866.58 33187.77 251
MS-PatchMatch73.83 24672.67 24577.30 27083.87 25366.02 15681.82 26584.66 25361.37 29768.61 28882.82 28847.29 28088.21 27759.27 26284.32 16577.68 347
tpm cat170.57 27468.31 28077.35 26982.41 28757.95 27978.08 30780.22 30952.04 34168.54 28977.66 33452.00 23587.84 28251.77 31072.07 31086.25 283
mvsany_test162.30 31661.26 32065.41 33669.52 35854.86 31966.86 35249.78 37346.65 35068.50 29083.21 28249.15 26966.28 36556.93 28860.77 34575.11 351
TESTMET0.1,169.89 28269.00 27672.55 30879.27 32956.85 29478.38 30374.71 34157.64 32368.09 29177.19 33637.75 33476.70 34263.92 22484.09 16884.10 315
MIMVSNet70.69 27369.30 27274.88 29184.52 24156.35 30575.87 32179.42 31564.59 26167.76 29282.41 29241.10 32181.54 32146.64 34081.34 20186.75 277
ACMH+68.96 1476.01 22574.01 23382.03 18088.60 15565.31 17788.86 10187.55 21470.25 18467.75 29387.47 19341.27 32093.19 16358.37 27475.94 26687.60 254
LCM-MVSNet-Re77.05 20876.94 19077.36 26887.20 20451.60 34180.06 28680.46 30575.20 9567.69 29486.72 21162.48 13488.98 26663.44 22789.25 10791.51 130
ITE_SJBPF78.22 25581.77 29460.57 25483.30 27669.25 20267.54 29587.20 20036.33 33887.28 28754.34 30074.62 28886.80 275
test_fmvs363.36 31561.82 31767.98 33162.51 36646.96 35777.37 31374.03 34345.24 35167.50 29678.79 32612.16 37072.98 35872.77 14966.02 33383.99 316
pmmvs571.55 26570.20 27075.61 28377.83 33256.39 30381.74 26780.89 29757.76 32267.46 29784.49 26249.26 26885.32 30057.08 28675.29 28085.11 303
MVP-Stereo76.12 22374.46 23081.13 20485.37 22869.79 8384.42 23087.95 20565.03 25767.46 29785.33 24853.28 22291.73 21558.01 27883.27 18081.85 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_040272.79 25870.44 26679.84 23088.13 16965.99 15885.93 19184.29 26065.57 25267.40 29985.49 24546.92 28392.61 18235.88 35974.38 29080.94 338
GG-mvs-BLEND75.38 28781.59 29755.80 31079.32 29469.63 35167.19 30073.67 34743.24 30788.90 27050.41 31684.50 16181.45 335
tpmvs71.09 26869.29 27376.49 27782.04 29156.04 30878.92 30081.37 29664.05 27067.18 30178.28 32949.74 26289.77 25149.67 32472.37 30683.67 319
OurMVSNet-221017-074.26 24172.42 24879.80 23183.76 25559.59 26585.92 19286.64 22966.39 24266.96 30287.58 18739.46 32691.60 21665.76 21369.27 32288.22 243
baseline275.70 22873.83 23781.30 19783.26 26461.79 24182.57 26180.65 30166.81 23366.88 30383.42 28057.86 18792.19 19963.47 22679.57 22489.91 195
MVS_030472.48 25970.89 26277.24 27182.20 28959.68 26384.11 23783.49 27367.10 23266.87 30480.59 31035.00 34287.40 28559.07 26779.58 22384.63 308
F-COLMAP76.38 22174.33 23182.50 17389.28 13166.95 14588.41 11689.03 17664.05 27066.83 30588.61 16146.78 28492.89 17657.48 28178.55 23487.67 252
ACMH67.68 1675.89 22673.93 23481.77 18588.71 15266.61 14888.62 11289.01 17869.81 19066.78 30686.70 21541.95 31991.51 22155.64 29578.14 24187.17 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test0.0.03 168.00 29567.69 29168.90 32777.55 33347.43 35475.70 32272.95 34666.66 23766.56 30782.29 29548.06 27775.87 34844.97 34774.51 28983.41 321
MDTV_nov1_ep13_2view37.79 37175.16 32455.10 33466.53 30849.34 26653.98 30187.94 247
KD-MVS_2432*160066.22 30663.89 30773.21 30375.47 34353.42 33170.76 33984.35 25864.10 26866.52 30978.52 32734.55 34384.98 30150.40 31750.33 36181.23 336
miper_refine_blended66.22 30663.89 30773.21 30375.47 34353.42 33170.76 33984.35 25864.10 26866.52 30978.52 32734.55 34384.98 30150.40 31750.33 36181.23 336
ET-MVSNet_ETH3D78.63 17276.63 20084.64 8986.73 21369.47 8885.01 21284.61 25469.54 19666.51 31186.59 21950.16 25691.75 21376.26 11384.24 16792.69 97
EU-MVSNet68.53 29267.61 29271.31 31878.51 33147.01 35684.47 22584.27 26142.27 35566.44 31284.79 26040.44 32483.76 30958.76 27168.54 32783.17 323
EPNet_dtu75.46 23274.86 22377.23 27282.57 28354.60 32186.89 16383.09 28171.64 15566.25 31385.86 23755.99 20088.04 28054.92 29786.55 13989.05 220
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120668.60 29067.80 28971.02 31980.23 31450.75 34778.30 30680.47 30456.79 32866.11 31482.63 29146.35 28878.95 33143.62 34975.70 26883.36 322
SixPastTwentyTwo73.37 24971.26 25979.70 23385.08 23557.89 28085.57 19883.56 27171.03 17065.66 31585.88 23642.10 31792.57 18359.11 26563.34 34088.65 237
MSDG73.36 25170.99 26080.49 21784.51 24265.80 16480.71 27986.13 23865.70 25065.46 31683.74 27644.60 30190.91 23751.13 31476.89 25184.74 306
OpenMVS_ROBcopyleft64.09 1970.56 27568.19 28177.65 26480.26 31359.41 26785.01 21282.96 28358.76 31665.43 31782.33 29337.63 33591.23 22845.34 34676.03 26582.32 330
ppachtmachnet_test70.04 28067.34 29578.14 25679.80 32161.13 24679.19 29780.59 30259.16 31365.27 31879.29 32046.75 28587.29 28649.33 32566.72 32986.00 292
ADS-MVSNet266.20 30863.33 31074.82 29279.92 31758.75 26967.55 35075.19 33753.37 33865.25 31975.86 34142.32 31380.53 32641.57 35368.91 32485.18 300
ADS-MVSNet64.36 31262.88 31468.78 32979.92 31747.17 35567.55 35071.18 34753.37 33865.25 31975.86 34142.32 31373.99 35641.57 35368.91 32485.18 300
testgi66.67 30266.53 30067.08 33475.62 34141.69 36975.93 31876.50 33266.11 24465.20 32186.59 21935.72 34074.71 35343.71 34873.38 30184.84 305
PM-MVS66.41 30464.14 30673.20 30573.92 34756.45 30178.97 29964.96 36263.88 27464.72 32280.24 31319.84 36283.44 31366.24 20664.52 33879.71 343
JIA-IIPM66.32 30562.82 31576.82 27577.09 33661.72 24265.34 35775.38 33658.04 32164.51 32362.32 35842.05 31886.51 29151.45 31369.22 32382.21 331
ambc75.24 28873.16 35250.51 34863.05 36287.47 21764.28 32477.81 33317.80 36489.73 25357.88 27960.64 34685.49 296
EG-PatchMatch MVS74.04 24471.82 25280.71 21384.92 23767.42 13285.86 19488.08 20266.04 24664.22 32583.85 27235.10 34192.56 18457.44 28280.83 20882.16 332
dp66.80 30065.43 30270.90 32179.74 32348.82 35375.12 32674.77 33959.61 30864.08 32677.23 33542.89 30980.72 32548.86 32766.58 33183.16 324
KD-MVS_self_test68.81 28867.59 29372.46 30974.29 34645.45 35877.93 30987.00 22563.12 27663.99 32778.99 32542.32 31384.77 30456.55 29264.09 33987.16 267
pmmvs-eth3d70.50 27667.83 28878.52 25277.37 33566.18 15481.82 26581.51 29458.90 31563.90 32880.42 31242.69 31186.28 29358.56 27265.30 33683.11 325
COLMAP_ROBcopyleft66.92 1773.01 25570.41 26780.81 21187.13 20665.63 16788.30 12284.19 26362.96 28063.80 32987.69 18538.04 33392.56 18446.66 33874.91 28584.24 312
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet569.50 28467.96 28574.15 29982.97 27555.35 31480.01 28882.12 28962.56 28763.02 33081.53 30136.92 33681.92 31948.42 32874.06 29285.17 302
test20.0367.45 29766.95 29868.94 32675.48 34244.84 36377.50 31177.67 32366.66 23763.01 33183.80 27447.02 28278.40 33342.53 35268.86 32683.58 320
K. test v371.19 26768.51 27879.21 24383.04 27257.78 28384.35 23276.91 33172.90 14462.99 33282.86 28739.27 32791.09 23461.65 24552.66 35888.75 234
our_test_369.14 28667.00 29775.57 28479.80 32158.80 26877.96 30877.81 32259.55 30962.90 33378.25 33047.43 27983.97 30851.71 31167.58 32883.93 317
CHOSEN 280x42066.51 30364.71 30471.90 31181.45 29963.52 21257.98 36468.95 35553.57 33762.59 33476.70 33746.22 28975.29 35255.25 29679.68 22276.88 349
Anonymous2024052168.80 28967.22 29673.55 30174.33 34554.11 32583.18 25285.61 24358.15 31961.68 33580.94 30730.71 35081.27 32357.00 28773.34 30285.28 299
USDC70.33 27768.37 27976.21 27980.60 31056.23 30679.19 29786.49 23160.89 29861.29 33685.47 24631.78 34889.47 25853.37 30576.21 26482.94 329
lessismore_v078.97 24481.01 30757.15 29165.99 35961.16 33782.82 28839.12 32891.34 22559.67 25946.92 36488.43 241
UnsupCasMVSNet_eth67.33 29865.99 30171.37 31573.48 35051.47 34375.16 32485.19 24765.20 25460.78 33880.93 30942.35 31277.20 33957.12 28553.69 35785.44 297
AllTest70.96 26968.09 28479.58 23785.15 23263.62 20784.58 22379.83 31162.31 28960.32 33986.73 20932.02 34688.96 26850.28 31971.57 31386.15 286
TestCases79.58 23785.15 23263.62 20779.83 31162.31 28960.32 33986.73 20932.02 34688.96 26850.28 31971.57 31386.15 286
Patchmatch-test64.82 31163.24 31169.57 32479.42 32749.82 35163.49 36169.05 35451.98 34359.95 34180.13 31450.91 24770.98 35940.66 35573.57 29787.90 248
MIMVSNet168.58 29166.78 29973.98 30080.07 31651.82 33980.77 27784.37 25764.40 26459.75 34282.16 29736.47 33783.63 31142.73 35170.33 31886.48 281
test_vis1_rt60.28 31958.42 32265.84 33567.25 36255.60 31370.44 34160.94 36644.33 35359.00 34366.64 35524.91 35568.67 36362.80 23169.48 32073.25 353
LF4IMVS64.02 31362.19 31669.50 32570.90 35753.29 33476.13 31677.18 32952.65 34058.59 34480.98 30623.55 35876.52 34353.06 30766.66 33078.68 345
PVSNet_057.27 2061.67 31859.27 32168.85 32879.61 32457.44 28868.01 34973.44 34555.93 33258.54 34570.41 35344.58 30277.55 33847.01 33735.91 36771.55 355
TDRefinement67.49 29664.34 30576.92 27473.47 35161.07 24784.86 21682.98 28259.77 30758.30 34685.13 25426.06 35487.89 28147.92 33560.59 34781.81 334
mvsany_test353.99 32451.45 32861.61 34155.51 37044.74 36463.52 36045.41 37743.69 35458.11 34776.45 33917.99 36363.76 36854.77 29847.59 36376.34 350
UnsupCasMVSNet_bld63.70 31461.53 31970.21 32373.69 34951.39 34472.82 33181.89 29055.63 33357.81 34871.80 35038.67 32978.61 33249.26 32652.21 35980.63 339
DSMNet-mixed57.77 32256.90 32460.38 34267.70 36135.61 37269.18 34553.97 37132.30 36757.49 34979.88 31740.39 32568.57 36438.78 35772.37 30676.97 348
N_pmnet52.79 32753.26 32651.40 35178.99 3307.68 38269.52 3433.89 38251.63 34457.01 35074.98 34540.83 32365.96 36637.78 35864.67 33780.56 341
new-patchmatchnet61.73 31761.73 31861.70 34072.74 35424.50 37969.16 34678.03 32161.40 29556.72 35175.53 34438.42 33076.48 34445.95 34357.67 34984.13 314
CMPMVSbinary51.72 2170.19 27968.16 28276.28 27873.15 35357.55 28679.47 29383.92 26548.02 34956.48 35284.81 25943.13 30886.42 29262.67 23581.81 19884.89 304
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap67.30 29964.81 30374.76 29381.92 29356.68 29980.29 28581.49 29560.33 30156.27 35383.22 28124.77 35687.66 28445.52 34469.47 32179.95 342
test_f52.09 32850.82 32955.90 34753.82 37342.31 36859.42 36358.31 36936.45 36256.12 35470.96 35212.18 36957.79 37053.51 30456.57 35267.60 356
YYNet165.03 30962.91 31371.38 31475.85 33956.60 30069.12 34774.66 34257.28 32654.12 35577.87 33245.85 29374.48 35449.95 32261.52 34483.05 326
MDA-MVSNet_test_wron65.03 30962.92 31271.37 31575.93 33856.73 29669.09 34874.73 34057.28 32654.03 35677.89 33145.88 29274.39 35549.89 32361.55 34382.99 328
pmmvs357.79 32154.26 32568.37 33064.02 36556.72 29775.12 32665.17 36040.20 35752.93 35769.86 35420.36 36175.48 35045.45 34555.25 35672.90 354
MVS-HIRNet59.14 32057.67 32363.57 33881.65 29543.50 36671.73 33465.06 36139.59 35951.43 35857.73 36338.34 33182.58 31839.53 35673.95 29364.62 359
MDA-MVSNet-bldmvs66.68 30163.66 30975.75 28179.28 32860.56 25573.92 33078.35 32064.43 26350.13 35979.87 31844.02 30483.67 31046.10 34256.86 35083.03 327
new_pmnet50.91 33050.29 33052.78 35068.58 36034.94 37463.71 35956.63 37039.73 35844.95 36065.47 35621.93 36058.48 36934.98 36056.62 35164.92 358
test_vis3_rt49.26 33247.02 33456.00 34654.30 37145.27 36266.76 35448.08 37436.83 36144.38 36153.20 3667.17 37764.07 36756.77 29055.66 35358.65 363
FPMVS53.68 32551.64 32759.81 34365.08 36451.03 34569.48 34469.58 35241.46 35640.67 36272.32 34916.46 36670.00 36224.24 36965.42 33558.40 364
APD_test153.31 32649.93 33163.42 33965.68 36350.13 34971.59 33566.90 35834.43 36440.58 36371.56 3518.65 37576.27 34534.64 36155.36 35563.86 360
LCM-MVSNet54.25 32349.68 33267.97 33253.73 37445.28 36166.85 35380.78 29935.96 36339.45 36462.23 3598.70 37478.06 33648.24 33251.20 36080.57 340
PMMVS240.82 33738.86 34046.69 35253.84 37216.45 38048.61 36749.92 37237.49 36031.67 36560.97 3608.14 37656.42 37128.42 36430.72 36967.19 357
ANet_high50.57 33146.10 33563.99 33748.67 37739.13 37070.99 33880.85 29861.39 29631.18 36657.70 36417.02 36573.65 35731.22 36215.89 37479.18 344
testf145.72 33341.96 33657.00 34456.90 36845.32 35966.14 35559.26 36726.19 36830.89 36760.96 3614.14 37870.64 36026.39 36746.73 36555.04 365
APD_test245.72 33341.96 33657.00 34456.90 36845.32 35966.14 35559.26 36726.19 36830.89 36760.96 3614.14 37870.64 36026.39 36746.73 36555.04 365
Gipumacopyleft45.18 33541.86 33855.16 34977.03 33751.52 34232.50 37080.52 30332.46 36627.12 36935.02 3709.52 37375.50 34922.31 37060.21 34838.45 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 33640.28 33955.82 34840.82 37942.54 36765.12 35863.99 36334.43 36424.48 37057.12 3653.92 38076.17 34717.10 37255.52 35448.75 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 35740.17 38026.90 37724.59 38117.44 37323.95 37148.61 3689.77 37226.48 37618.06 37124.47 37028.83 370
tmp_tt18.61 34321.40 34610.23 3594.82 38210.11 38134.70 36930.74 3801.48 37623.91 37226.07 37328.42 35213.41 37827.12 36515.35 3757.17 373
test_method31.52 33929.28 34338.23 35427.03 3816.50 38320.94 37262.21 3654.05 37522.35 37352.50 36713.33 36747.58 37427.04 36634.04 36860.62 361
MVEpermissive26.22 2330.37 34125.89 34543.81 35344.55 37835.46 37328.87 37139.07 37818.20 37218.58 37440.18 3692.68 38147.37 37517.07 37323.78 37148.60 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 33830.64 34135.15 35552.87 37527.67 37657.09 36547.86 37524.64 37016.40 37533.05 37111.23 37154.90 37214.46 37418.15 37222.87 371
EMVS30.81 34029.65 34234.27 35650.96 37625.95 37856.58 36646.80 37624.01 37115.53 37630.68 37212.47 36854.43 37312.81 37517.05 37322.43 372
wuyk23d16.82 34415.94 34719.46 35858.74 36731.45 37539.22 3683.74 3836.84 3746.04 3772.70 3771.27 38224.29 37710.54 37614.40 3762.63 374
EGC-MVSNET52.07 32947.05 33367.14 33383.51 25960.71 25280.50 28267.75 3560.07 3770.43 37875.85 34324.26 35781.54 32128.82 36362.25 34159.16 362
testmvs6.04 3478.02 3500.10 3610.08 3830.03 38569.74 3420.04 3840.05 3780.31 3791.68 3780.02 3840.04 3790.24 3770.02 3770.25 376
test1236.12 3468.11 3490.14 3600.06 3840.09 38471.05 3370.03 3850.04 3790.25 3801.30 3790.05 3830.03 3800.21 3780.01 3780.29 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k19.96 34226.61 3440.00 3620.00 3850.00 3860.00 37389.26 1670.00 3800.00 38188.61 16161.62 1480.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.26 3487.02 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38063.15 1250.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.23 3459.64 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38186.72 2110.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
eth-test20.00 385
eth-test0.00 385
OPU-MVS89.06 394.62 1575.42 493.57 794.02 3982.45 396.87 1883.77 4596.48 894.88 12
save fliter93.80 4072.35 4190.47 6291.17 11674.31 112
test_0728_SECOND87.71 3095.34 171.43 5493.49 994.23 397.49 389.08 796.41 1294.21 40
GSMVS88.96 226
sam_mvs151.32 24488.96 226
sam_mvs50.01 257
MTGPAbinary92.02 85
test_post178.90 3015.43 37648.81 27685.44 29959.25 263
test_post5.46 37550.36 25584.24 306
patchmatchnet-post74.00 34651.12 24688.60 273
MTMP92.18 3332.83 379
gm-plane-assit81.40 30053.83 32862.72 28680.94 30792.39 19063.40 228
test9_res84.90 2995.70 2692.87 92
agg_prior282.91 5395.45 2892.70 95
test_prior472.60 3389.01 96
test_prior86.33 5292.61 6569.59 8592.97 5095.48 6093.91 50
新几何286.29 183
旧先验191.96 7165.79 16586.37 23493.08 5869.31 7092.74 6688.74 235
无先验87.48 14688.98 17960.00 30594.12 11967.28 19988.97 225
原ACMM286.86 164
testdata291.01 23662.37 237
segment_acmp73.08 37
testdata184.14 23675.71 85
plane_prior790.08 10268.51 111
plane_prior689.84 11168.70 10660.42 172
plane_prior592.44 6995.38 6778.71 8986.32 14291.33 136
plane_prior491.00 107
plane_prior291.25 4879.12 21
plane_prior189.90 110
plane_prior68.71 10490.38 6577.62 3786.16 146
n20.00 386
nn0.00 386
door-mid69.98 350
test1192.23 79
door69.44 353
HQP5-MVS66.98 142
BP-MVS77.47 101
HQP3-MVS92.19 8285.99 149
HQP2-MVS60.17 175
NP-MVS89.62 11368.32 11390.24 119
ACMMP++_ref81.95 196
ACMMP++81.25 202
Test By Simon64.33 112