This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM80.20 780.28 879.99 282.19 8260.01 4986.19 1783.93 5473.19 177.08 3491.21 1757.23 3390.73 1083.35 188.12 3489.22 6
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2563.71 1289.23 2081.51 288.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_030478.45 1878.28 1978.98 2680.73 10757.91 8384.68 3581.64 10768.35 275.77 3990.38 2953.98 5990.26 1381.30 387.68 4288.77 11
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5682.93 6285.39 2762.15 6776.41 3791.51 1152.47 8186.78 7080.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1779.85 591.48 188.19 24
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6388.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 16
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 5285.16 3162.88 5378.10 2491.26 1652.51 7988.39 3079.34 890.52 1386.78 68
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 33
IU-MVS87.77 459.15 6385.53 2653.93 23484.64 379.07 1190.87 588.37 18
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 2158.63 2587.24 5479.00 1290.37 1485.26 132
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4888.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 67
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3985.03 3666.96 577.58 2990.06 3959.47 2189.13 2278.67 1489.73 1687.03 59
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6787.85 585.03 3664.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6687.85 587.15 390.84 378.66 1590.61 1187.62 43
SED-MVS81.56 282.30 279.32 1387.77 458.90 7287.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 22
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 41
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7562.18 1687.60 985.83 1966.69 978.03 2690.98 1854.26 5690.06 1478.42 1989.02 2387.69 39
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsmconf0.1_n72.81 7972.33 8174.24 10969.89 33155.81 11878.22 13375.40 22754.17 23175.00 4888.03 7153.82 6480.23 22078.08 2078.34 14886.69 70
test_fmvsmconf0.01_n72.17 9371.50 9074.16 11167.96 34955.58 12678.06 13874.67 24154.19 23074.54 5988.23 6450.35 11280.24 21978.07 2177.46 15986.65 73
test_fmvsmconf_n73.01 7772.59 7874.27 10871.28 30955.88 11778.21 13475.56 22354.31 22974.86 5387.80 7554.72 5280.23 22078.07 2178.48 14586.70 69
9.1478.75 1583.10 7284.15 4688.26 159.90 11278.57 2390.36 3057.51 3286.86 6877.39 2389.52 21
MTAPA76.90 3476.42 3878.35 3586.08 3763.57 274.92 21480.97 13265.13 1575.77 3990.88 1948.63 12986.66 7377.23 2488.17 3384.81 147
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 7190.60 2254.85 5186.72 7177.20 2588.06 3685.74 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SF-MVS78.82 1379.22 1277.60 4682.88 7757.83 8484.99 3188.13 261.86 7579.16 2090.75 2057.96 2687.09 6377.08 2690.18 1587.87 32
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4883.82 6359.34 12679.37 1989.76 4859.84 1687.62 5176.69 2786.74 5387.68 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4690.47 2853.96 6188.68 2776.48 2889.63 2087.16 57
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_l_conf0.5_n70.99 11270.82 10671.48 18171.45 30254.40 14277.18 16270.46 28048.67 29675.17 4486.86 8953.77 6576.86 27476.33 3077.51 15883.17 201
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3783.87 6060.37 9979.89 1889.38 5254.97 4985.58 10076.12 3184.94 6486.33 84
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmvis_n_192070.84 11470.38 11572.22 16671.16 31055.39 13075.86 19272.21 26749.03 29273.28 7686.17 11551.83 9277.29 26675.80 3278.05 15083.98 169
fmvsm_s_conf0.5_n69.58 14468.84 14071.79 17372.31 29252.90 16977.90 14062.43 34449.97 28072.85 8885.90 12452.21 8576.49 28275.75 3370.26 25485.97 96
fmvsm_s_conf0.1_n69.41 15168.60 14671.83 17171.07 31152.88 17177.85 14362.44 34349.58 28572.97 8586.22 11251.68 9576.48 28375.53 3470.10 25786.14 91
fmvsm_l_conf0.5_n_a70.50 12270.27 11771.18 19371.30 30854.09 14576.89 17069.87 28447.90 30974.37 6286.49 10653.07 7576.69 27975.41 3577.11 16682.76 208
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6385.08 3362.57 6073.09 8389.97 4450.90 10687.48 5275.30 3686.85 5187.33 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test9_res75.28 3788.31 3283.81 176
train_agg76.27 4376.15 4076.64 6285.58 4361.59 2481.62 8381.26 12255.86 18974.93 4988.81 5953.70 6784.68 12375.24 3888.33 3083.65 187
fmvsm_s_conf0.5_n_a69.54 14668.74 14371.93 16872.47 28753.82 14978.25 13162.26 34649.78 28273.12 8286.21 11352.66 7776.79 27675.02 3968.88 27985.18 133
test_fmvsm_n_192071.73 10171.14 10173.50 13672.52 28556.53 10475.60 19676.16 21348.11 30577.22 3185.56 13153.10 7477.43 26274.86 4077.14 16586.55 76
fmvsm_s_conf0.1_n_a69.32 15268.44 15271.96 16770.91 31353.78 15078.12 13662.30 34549.35 28873.20 7886.55 10551.99 8976.79 27674.83 4168.68 28485.32 128
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6490.03 4152.56 7888.53 2974.79 4288.34 2986.63 74
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6561.62 2384.17 4586.85 663.23 4673.84 6990.25 3557.68 2989.96 1574.62 4389.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PC_three_145255.09 21084.46 489.84 4666.68 589.41 1874.24 4491.38 288.42 16
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4683.03 6085.33 2862.86 5480.17 1790.03 4161.76 1488.95 2474.21 4588.67 2688.12 26
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4566.73 874.67 5889.38 5255.30 4689.18 2174.19 4687.34 4486.38 78
ZD-MVS86.64 2160.38 4582.70 9357.95 15378.10 2490.06 3956.12 4288.84 2674.05 4787.00 49
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6790.50 2653.20 7288.35 3174.02 4887.05 4586.13 92
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 7290.56 2449.80 11588.24 3374.02 4887.03 4686.32 86
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7490.58 2349.90 11388.21 3473.78 5087.03 4686.29 89
MCST-MVS77.48 2877.45 2777.54 4786.67 2058.36 7983.22 5886.93 556.91 16874.91 5188.19 6559.15 2387.68 5073.67 5187.45 4386.57 75
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7262.44 6472.68 9190.50 2648.18 13487.34 5373.59 5285.71 6084.76 150
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 9279.05 2190.30 3355.54 4588.32 3273.48 5387.03 4684.83 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4567.01 190.33 1273.16 5491.15 488.23 22
agg_prior273.09 5587.93 4084.33 157
balanced_conf0376.58 3876.55 3776.68 5981.73 8852.90 16980.94 9185.70 2361.12 8474.90 5287.17 8656.46 3888.14 3672.87 5688.03 3889.00 8
casdiffmvs_mvgpermissive76.14 4576.30 3975.66 7776.46 22651.83 19179.67 11185.08 3365.02 1975.84 3888.58 6359.42 2285.08 11172.75 5783.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet76.46 4075.93 4478.06 3981.29 9757.53 8882.35 7283.31 8067.78 370.09 11886.34 11054.92 5088.90 2572.68 5884.55 6787.76 38
reproduce-ours76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 119
our_new_method76.90 3476.58 3477.87 4383.99 6260.46 4384.75 3283.34 7760.22 10677.85 2791.42 1350.67 10787.69 4872.46 5984.53 6885.46 119
PGM-MVS76.77 3776.06 4278.88 2886.14 3562.73 982.55 7083.74 6461.71 7672.45 9790.34 3248.48 13288.13 3772.32 6186.85 5185.78 103
test_prior281.75 8160.37 9975.01 4789.06 5556.22 4172.19 6288.96 24
MVSMamba_PlusPlus75.75 5175.44 4976.67 6080.84 10553.06 16678.62 12585.13 3259.65 11771.53 10687.47 7856.92 3488.17 3572.18 6386.63 5688.80 10
ACMMPcopyleft76.02 4775.33 5178.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 12889.74 4945.43 17487.16 6072.01 6482.87 8885.14 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
reproduce_model76.43 4176.08 4177.49 4883.47 6960.09 4784.60 3682.90 8959.65 11777.31 3091.43 1249.62 11787.24 5471.99 6583.75 7885.14 134
EC-MVSNet75.84 4975.87 4675.74 7578.86 14852.65 17483.73 5386.08 1763.47 4272.77 9087.25 8553.13 7387.93 4271.97 6685.57 6286.66 72
CS-MVS76.25 4475.98 4377.06 5380.15 12155.63 12384.51 3883.90 5763.24 4573.30 7487.27 8455.06 4886.30 8671.78 6784.58 6689.25 5
mPP-MVS76.54 3975.93 4478.34 3686.47 2663.50 385.74 2582.28 9762.90 5271.77 10290.26 3446.61 16186.55 7771.71 6885.66 6184.97 143
SR-MVS76.13 4675.70 4777.40 5185.87 4061.20 2985.52 2782.19 9859.99 11175.10 4590.35 3147.66 14186.52 7871.64 6982.99 8384.47 156
XVS77.17 3176.56 3679.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 9890.01 4347.95 13688.01 4071.55 7086.74 5386.37 80
X-MVStestdata70.21 12867.28 17779.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 986.49 42047.95 13688.01 4071.55 7086.74 5386.37 80
BP-MVS173.41 7272.25 8276.88 5476.68 21953.70 15179.15 11881.07 12860.66 9171.81 10187.39 8040.93 22387.24 5471.23 7281.29 10689.71 2
dcpmvs_274.55 6375.23 5372.48 15982.34 8053.34 16077.87 14181.46 11157.80 15875.49 4186.81 9162.22 1377.75 25871.09 7382.02 9786.34 82
PHI-MVS75.87 4875.36 5077.41 4980.62 11255.91 11684.28 4285.78 2056.08 18773.41 7386.58 10250.94 10588.54 2870.79 7489.71 1787.79 37
diffmvspermissive70.69 11870.43 11371.46 18269.45 33748.95 23472.93 24778.46 17857.27 16271.69 10383.97 16251.48 9777.92 25570.70 7577.95 15287.53 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3372.71 8271.49 9176.40 6581.99 8559.58 5576.92 16976.74 20960.40 9674.81 5485.95 12345.54 17085.76 9670.41 7670.61 24583.86 175
hse-mvs271.04 11069.86 12374.60 9879.58 13057.12 9973.96 23175.25 23060.40 9674.81 5481.95 20545.54 17082.90 15670.41 7666.83 29783.77 180
APD-MVS_3200maxsize74.96 5474.39 6176.67 6082.20 8158.24 8083.67 5483.29 8158.41 14273.71 7090.14 3645.62 16785.99 9069.64 7882.85 8985.78 103
baseline74.61 6174.70 5874.34 10575.70 23449.99 21777.54 15184.63 4262.73 5973.98 6687.79 7657.67 3083.82 13969.49 7982.74 9189.20 7
OPM-MVS74.73 5874.25 6276.19 6880.81 10659.01 7082.60 6983.64 6663.74 3972.52 9487.49 7747.18 15285.88 9369.47 8080.78 10783.66 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
casdiffmvspermissive74.80 5674.89 5774.53 10175.59 23850.37 20978.17 13585.06 3562.80 5874.40 6187.86 7357.88 2783.61 14369.46 8182.79 9089.59 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDPH-MVS76.31 4275.67 4878.22 3785.35 4859.14 6581.31 8884.02 5156.32 18174.05 6588.98 5753.34 7187.92 4369.23 8288.42 2887.59 44
CPTT-MVS72.78 8072.08 8574.87 9084.88 5761.41 2684.15 4677.86 18955.27 20567.51 17188.08 6841.93 20881.85 18269.04 8380.01 11981.35 235
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3484.85 4061.98 7473.06 8488.88 5853.72 6689.06 2368.27 8488.04 3787.42 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post74.57 6273.90 6576.58 6383.49 6759.87 5284.29 4081.36 11558.07 14873.14 8090.07 3744.74 18185.84 9468.20 8581.76 10184.03 166
RE-MVS-def73.71 6983.49 6759.87 5284.29 4081.36 11558.07 14873.14 8090.07 3743.06 19768.20 8581.76 10184.03 166
HQP_MVS74.31 6573.73 6876.06 6981.41 9456.31 10584.22 4384.01 5264.52 2569.27 13686.10 11745.26 17887.21 5868.16 8780.58 11184.65 151
plane_prior584.01 5287.21 5868.16 8780.58 11184.65 151
CSCG76.92 3376.75 3177.41 4983.96 6459.60 5482.95 6186.50 1360.78 8975.27 4384.83 14060.76 1586.56 7667.86 8987.87 4186.06 94
SPE-MVS-test75.62 5275.31 5276.56 6480.63 11155.13 13383.88 5185.22 2962.05 7171.49 10786.03 12053.83 6386.36 8467.74 9086.91 5088.19 24
LPG-MVS_test72.74 8171.74 8775.76 7380.22 11657.51 8982.55 7083.40 7461.32 7966.67 18687.33 8239.15 24086.59 7467.70 9177.30 16383.19 198
LGP-MVS_train75.76 7380.22 11657.51 8983.40 7461.32 7966.67 18687.33 8239.15 24086.59 7467.70 9177.30 16383.19 198
HPM-MVS_fast74.30 6673.46 7176.80 5684.45 6059.04 6983.65 5581.05 12960.15 10870.43 11489.84 4641.09 22285.59 9967.61 9382.90 8785.77 106
MVS_111021_HR74.02 6773.46 7175.69 7683.01 7560.63 4077.29 15978.40 18361.18 8370.58 11385.97 12254.18 5884.00 13667.52 9482.98 8582.45 214
ETV-MVS74.46 6473.84 6776.33 6779.27 13755.24 13279.22 11785.00 3864.97 2172.65 9279.46 25453.65 7087.87 4467.45 9582.91 8685.89 100
DELS-MVS74.76 5774.46 6075.65 7877.84 18452.25 18375.59 19784.17 4963.76 3873.15 7982.79 18059.58 2086.80 6967.24 9686.04 5987.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.74.90 5574.15 6377.17 5282.00 8458.77 7581.80 8078.57 17258.58 13974.32 6384.51 15155.94 4387.22 5767.11 9784.48 7185.52 115
BP-MVS67.04 98
HQP-MVS73.45 7172.80 7675.40 8280.66 10854.94 13482.31 7483.90 5762.10 6867.85 16085.54 13445.46 17286.93 6667.04 9880.35 11584.32 158
GDP-MVS72.64 8371.28 9876.70 5777.72 18854.22 14479.57 11484.45 4355.30 20471.38 10886.97 8839.94 22887.00 6567.02 10079.20 13288.89 9
ACMP63.53 672.30 9071.20 10075.59 8180.28 11457.54 8782.74 6682.84 9260.58 9365.24 21686.18 11439.25 23886.03 8966.95 10176.79 17083.22 196
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EI-MVSNet-Vis-set72.42 8971.59 8874.91 8878.47 15954.02 14677.05 16579.33 15765.03 1871.68 10479.35 25852.75 7684.89 11866.46 10274.23 19385.83 102
DPM-MVS75.47 5375.00 5476.88 5481.38 9659.16 6279.94 10485.71 2256.59 17672.46 9586.76 9256.89 3587.86 4566.36 10388.91 2583.64 188
patch_mono-269.85 13571.09 10266.16 26979.11 14354.80 13871.97 26374.31 24653.50 23970.90 11184.17 15557.63 3163.31 35266.17 10482.02 9780.38 253
MVSFormer71.50 10570.38 11574.88 8978.76 15157.15 9782.79 6478.48 17651.26 26469.49 13183.22 17543.99 19083.24 14966.06 10579.37 12784.23 161
test_djsdf69.45 15067.74 16074.58 9974.57 25754.92 13682.79 6478.48 17651.26 26465.41 20983.49 17238.37 24783.24 14966.06 10569.25 27485.56 114
sasdasda74.67 5974.98 5573.71 12678.94 14650.56 20680.23 9883.87 6060.30 10377.15 3286.56 10359.65 1782.00 17966.01 10782.12 9488.58 14
canonicalmvs74.67 5974.98 5573.71 12678.94 14650.56 20680.23 9883.87 6060.30 10377.15 3286.56 10359.65 1782.00 17966.01 10782.12 9488.58 14
MVS_Test72.45 8772.46 8072.42 16374.88 24748.50 24076.28 18283.14 8659.40 12472.46 9584.68 14355.66 4481.12 19765.98 10979.66 12387.63 42
alignmvs73.86 6973.99 6473.45 13978.20 16950.50 20878.57 12782.43 9559.40 12476.57 3586.71 9656.42 4081.23 19665.84 11081.79 10088.62 12
nrg03072.96 7873.01 7472.84 15275.41 24150.24 21080.02 10282.89 9158.36 14474.44 6086.73 9458.90 2480.83 20665.84 11074.46 18987.44 48
MVS_111021_LR69.50 14868.78 14271.65 17878.38 16259.33 5974.82 21670.11 28258.08 14767.83 16484.68 14341.96 20776.34 28665.62 11277.54 15679.30 271
EI-MVSNet-UG-set71.92 9771.06 10374.52 10277.98 18053.56 15576.62 17479.16 15864.40 2771.18 10978.95 26352.19 8684.66 12565.47 11373.57 20485.32 128
PS-MVSNAJss72.24 9171.21 9975.31 8478.50 15755.93 11581.63 8282.12 9956.24 18470.02 12285.68 13047.05 15484.34 12965.27 11474.41 19285.67 110
MSLP-MVS++73.77 7073.47 7074.66 9483.02 7459.29 6182.30 7781.88 10259.34 12671.59 10586.83 9045.94 16583.65 14265.09 11585.22 6381.06 242
v2v48270.50 12269.45 13173.66 12972.62 28250.03 21677.58 14880.51 13959.90 11269.52 13082.14 20147.53 14584.88 12065.07 11670.17 25586.09 93
RRT-MVS71.46 10670.70 10973.74 12477.76 18749.30 22876.60 17580.45 14061.25 8268.17 15384.78 14244.64 18384.90 11764.79 11777.88 15387.03 59
jason69.65 14268.39 15473.43 14178.27 16856.88 10177.12 16373.71 25546.53 32469.34 13583.22 17543.37 19479.18 23364.77 11879.20 13284.23 161
jason: jason.
anonymousdsp67.00 20364.82 22073.57 13570.09 32756.13 11076.35 18077.35 20048.43 30164.99 22480.84 23033.01 30680.34 21564.66 11967.64 29184.23 161
lupinMVS69.57 14568.28 15573.44 14078.76 15157.15 9776.57 17673.29 25846.19 32769.49 13182.18 19743.99 19079.23 23264.66 11979.37 12783.93 170
CLD-MVS73.33 7372.68 7775.29 8678.82 15053.33 16178.23 13284.79 4161.30 8170.41 11581.04 22252.41 8287.12 6164.61 12182.49 9385.41 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
V4268.65 16467.35 17572.56 15768.93 34350.18 21272.90 24879.47 15456.92 16769.45 13380.26 23846.29 16382.99 15364.07 12267.82 28984.53 153
3Dnovator+66.72 475.84 4974.57 5979.66 982.40 7959.92 5185.83 2286.32 1666.92 767.80 16589.24 5442.03 20689.38 1964.07 12286.50 5789.69 3
v114470.42 12469.31 13273.76 12173.22 27050.64 20377.83 14481.43 11258.58 13969.40 13481.16 21947.53 14585.29 11064.01 12470.64 24385.34 127
Effi-MVS+73.31 7472.54 7975.62 7977.87 18253.64 15379.62 11379.61 15161.63 7772.02 10082.61 18556.44 3985.97 9163.99 12579.07 13687.25 56
MGCFI-Net72.45 8773.34 7369.81 22077.77 18643.21 29675.84 19481.18 12559.59 12275.45 4286.64 9757.74 2877.94 25363.92 12681.90 9988.30 19
SDMVSNet68.03 17968.10 15867.84 24577.13 20948.72 23865.32 32879.10 15958.02 15065.08 21982.55 18747.83 13873.40 29963.92 12673.92 19781.41 230
xiu_mvs_v1_base_debu68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
xiu_mvs_v1_base68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
xiu_mvs_v1_base_debi68.58 16667.28 17772.48 15978.19 17057.19 9475.28 20275.09 23551.61 25570.04 11981.41 21632.79 30979.02 24063.81 12877.31 16081.22 237
v870.33 12669.28 13373.49 13773.15 27250.22 21178.62 12580.78 13560.79 8866.45 19082.11 20349.35 11984.98 11463.58 13168.71 28285.28 130
jajsoiax68.25 17566.45 19173.66 12975.62 23655.49 12880.82 9378.51 17552.33 24964.33 23184.11 15728.28 34781.81 18463.48 13270.62 24483.67 184
mvs_tets68.18 17766.36 19773.63 13275.61 23755.35 13180.77 9478.56 17352.48 24864.27 23384.10 15827.45 35381.84 18363.45 13370.56 24683.69 183
v14419269.71 13868.51 14773.33 14473.10 27350.13 21377.54 15180.64 13656.65 17068.57 14680.55 23246.87 15984.96 11662.98 13469.66 26884.89 145
v119269.97 13368.68 14473.85 11673.19 27150.94 19677.68 14781.36 11557.51 16068.95 14280.85 22945.28 17785.33 10962.97 13570.37 24985.27 131
v1070.21 12869.02 13773.81 11873.51 26950.92 19878.74 12281.39 11360.05 11066.39 19181.83 20847.58 14385.41 10862.80 13668.86 28185.09 138
OMC-MVS71.40 10870.60 11073.78 11976.60 22253.15 16379.74 11079.78 14758.37 14368.75 14386.45 10845.43 17480.60 21062.58 13777.73 15487.58 45
XVG-OURS-SEG-HR68.81 16067.47 17072.82 15474.40 26156.87 10270.59 28279.04 16054.77 22066.99 17986.01 12139.57 23478.21 25062.54 13873.33 21083.37 192
EPNet73.09 7672.16 8375.90 7175.95 23256.28 10783.05 5972.39 26566.53 1065.27 21287.00 8750.40 11085.47 10562.48 13986.32 5885.94 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v192192069.47 14968.17 15673.36 14373.06 27450.10 21477.39 15480.56 13756.58 17768.59 14480.37 23444.72 18284.98 11462.47 14069.82 26385.00 140
c3_l68.33 17367.56 16470.62 20470.87 31446.21 26474.47 22378.80 16656.22 18566.19 19478.53 27151.88 9081.40 19062.08 14169.04 27784.25 160
AUN-MVS68.45 17266.41 19574.57 10079.53 13257.08 10073.93 23475.23 23154.44 22766.69 18581.85 20737.10 26582.89 15762.07 14266.84 29683.75 181
XVG-OURS68.76 16367.37 17372.90 15174.32 26357.22 9270.09 29078.81 16555.24 20667.79 16685.81 12936.54 27078.28 24962.04 14375.74 18183.19 198
v124069.24 15567.91 15973.25 14773.02 27649.82 21877.21 16180.54 13856.43 17968.34 15080.51 23343.33 19584.99 11262.03 14469.77 26684.95 144
ET-MVSNet_ETH3D67.96 18265.72 20974.68 9376.67 22055.62 12575.11 20774.74 23952.91 24360.03 28780.12 24033.68 29882.64 16861.86 14576.34 17485.78 103
VDD-MVS72.50 8572.09 8473.75 12381.58 9049.69 22277.76 14677.63 19463.21 4773.21 7789.02 5642.14 20583.32 14761.72 14682.50 9288.25 21
PS-MVSNAJ70.51 12169.70 12672.93 15081.52 9155.79 11974.92 21479.00 16155.04 21569.88 12678.66 26647.05 15482.19 17661.61 14779.58 12480.83 246
xiu_mvs_v2_base70.52 12069.75 12472.84 15281.21 10055.63 12375.11 20778.92 16354.92 21769.96 12579.68 24947.00 15882.09 17861.60 14879.37 12780.81 247
cl2267.47 19166.45 19170.54 20669.85 33246.49 26073.85 23777.35 20055.07 21365.51 20777.92 27847.64 14281.10 19861.58 14969.32 27184.01 168
miper_ehance_all_eth68.03 17967.24 18170.40 20870.54 31846.21 26473.98 23078.68 17055.07 21366.05 19677.80 28252.16 8781.31 19361.53 15069.32 27183.67 184
MG-MVS73.96 6873.89 6674.16 11185.65 4249.69 22281.59 8581.29 12161.45 7871.05 11088.11 6651.77 9387.73 4761.05 15183.09 8185.05 139
mamv456.85 30758.00 29553.43 36172.46 28854.47 14057.56 37354.74 37638.81 37857.42 31879.45 25547.57 14438.70 41360.88 15253.07 37467.11 383
miper_enhance_ethall67.11 20066.09 20470.17 21269.21 34045.98 26672.85 24978.41 18251.38 26165.65 20575.98 31451.17 10181.25 19460.82 15369.32 27183.29 195
ACMM61.98 770.80 11769.73 12574.02 11380.59 11358.59 7782.68 6782.02 10155.46 20167.18 17684.39 15338.51 24583.17 15160.65 15476.10 17780.30 254
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu69.64 14367.53 16775.95 7076.10 23062.29 1580.20 10176.06 21759.83 11665.26 21577.09 29341.56 21484.02 13560.60 15571.09 24181.53 228
PVSNet_Blended_VisFu71.45 10770.39 11474.65 9582.01 8358.82 7479.93 10580.35 14355.09 21065.82 20482.16 20049.17 12382.64 16860.34 15678.62 14482.50 213
MVSTER67.16 19965.58 21271.88 17070.37 32349.70 22070.25 28878.45 17951.52 25869.16 14080.37 23438.45 24682.50 17160.19 15771.46 23683.44 191
EIA-MVS71.78 9970.60 11075.30 8579.85 12553.54 15677.27 16083.26 8357.92 15466.49 18879.39 25652.07 8886.69 7260.05 15879.14 13585.66 111
v14868.24 17667.19 18371.40 18670.43 32147.77 24975.76 19577.03 20458.91 13167.36 17280.10 24148.60 13181.89 18160.01 15966.52 30084.53 153
test_vis1_n_192058.86 29259.06 28358.25 33263.76 37243.14 29767.49 31066.36 31440.22 37265.89 20171.95 34831.04 32559.75 36659.94 16064.90 31071.85 355
CANet_DTU68.18 17767.71 16369.59 22374.83 24946.24 26378.66 12476.85 20659.60 11963.45 24282.09 20435.25 27977.41 26359.88 16178.76 14185.14 134
IterMVS-LS69.22 15668.48 14871.43 18574.44 26049.40 22676.23 18377.55 19559.60 11965.85 20381.59 21451.28 9981.58 18859.87 16269.90 26283.30 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet69.27 15468.44 15271.73 17574.47 25849.39 22775.20 20578.45 17959.60 11969.16 14076.51 30551.29 9882.50 17159.86 16371.45 23783.30 193
3Dnovator64.47 572.49 8671.39 9475.79 7277.70 18958.99 7180.66 9683.15 8562.24 6665.46 20886.59 10142.38 20485.52 10159.59 16484.72 6582.85 207
eth_miper_zixun_eth67.63 18866.28 20171.67 17771.60 30048.33 24273.68 24077.88 18855.80 19365.91 19978.62 26947.35 15182.88 15859.45 16566.25 30183.81 176
DIV-MVS_self_test67.18 19766.26 20269.94 21570.20 32445.74 26873.29 24376.83 20755.10 20865.27 21279.58 25047.38 15080.53 21159.43 16669.22 27583.54 189
cl____67.18 19766.26 20269.94 21570.20 32445.74 26873.30 24276.83 20755.10 20865.27 21279.57 25147.39 14980.53 21159.41 16769.22 27583.53 190
mvsmamba68.47 17066.56 18874.21 11079.60 12952.95 16774.94 21375.48 22552.09 25260.10 28583.27 17436.54 27084.70 12259.32 16877.69 15584.99 142
reproduce_monomvs62.56 25861.20 26666.62 26070.62 31744.30 28470.13 28973.13 26054.78 21961.13 27876.37 30825.63 36875.63 29058.75 16960.29 34979.93 260
旧先验276.08 18645.32 33576.55 3665.56 34658.75 169
VDDNet71.81 9871.33 9673.26 14682.80 7847.60 25278.74 12275.27 22959.59 12272.94 8689.40 5141.51 21683.91 13758.75 16982.99 8388.26 20
mmtdpeth60.40 28159.12 28264.27 29469.59 33448.99 23270.67 28170.06 28354.96 21662.78 25273.26 33927.00 35867.66 33158.44 17245.29 39176.16 308
114514_t70.83 11569.56 12774.64 9686.21 3154.63 13982.34 7381.81 10448.22 30363.01 25185.83 12740.92 22487.10 6257.91 17379.79 12082.18 219
Vis-MVSNetpermissive72.18 9271.37 9574.61 9781.29 9755.41 12980.90 9278.28 18560.73 9069.23 13988.09 6744.36 18782.65 16757.68 17481.75 10385.77 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_cas_vis1_n_192056.91 30656.71 30457.51 34059.13 39445.40 27463.58 34061.29 35136.24 38267.14 17771.85 34929.89 33456.69 38157.65 17563.58 32370.46 369
PAPM_NR72.63 8471.80 8675.13 8781.72 8953.42 15979.91 10683.28 8259.14 12866.31 19385.90 12451.86 9186.06 8757.45 17680.62 10985.91 99
LFMVS71.78 9971.59 8872.32 16483.40 7046.38 26179.75 10971.08 27464.18 3272.80 8988.64 6242.58 20183.72 14057.41 17784.49 7086.86 64
v7n69.01 15867.36 17473.98 11472.51 28652.65 17478.54 12981.30 12060.26 10562.67 25681.62 21143.61 19284.49 12657.01 17868.70 28384.79 148
GeoE71.01 11170.15 12073.60 13479.57 13152.17 18478.93 12078.12 18658.02 15067.76 16883.87 16352.36 8382.72 16556.90 17975.79 18085.92 98
FA-MVS(test-final)69.82 13668.48 14873.84 11778.44 16050.04 21575.58 19978.99 16258.16 14667.59 16982.14 20142.66 19985.63 9756.60 18076.19 17685.84 101
mvs_anonymous68.03 17967.51 16869.59 22372.08 29444.57 28271.99 26275.23 23151.67 25467.06 17882.57 18654.68 5377.94 25356.56 18175.71 18286.26 90
Patchmatch-RL test58.16 29755.49 31466.15 27067.92 35048.89 23560.66 35851.07 38847.86 31059.36 29762.71 39234.02 29372.27 30556.41 18259.40 35277.30 294
miper_lstm_enhance62.03 26760.88 27065.49 28266.71 35746.25 26256.29 37875.70 22050.68 27061.27 27675.48 32140.21 22768.03 32956.31 18365.25 30882.18 219
thisisatest053067.92 18365.78 20874.33 10676.29 22751.03 19576.89 17074.25 24853.67 23765.59 20681.76 20935.15 28085.50 10355.94 18472.47 22386.47 77
EPP-MVSNet72.16 9571.31 9774.71 9178.68 15449.70 22082.10 7881.65 10660.40 9665.94 19885.84 12651.74 9486.37 8355.93 18579.55 12688.07 29
PVSNet_BlendedMVS68.56 16967.72 16171.07 19777.03 21350.57 20474.50 22281.52 10853.66 23864.22 23679.72 24849.13 12482.87 15955.82 18673.92 19779.77 266
PVSNet_Blended68.59 16567.72 16171.19 19277.03 21350.57 20472.51 25581.52 10851.91 25364.22 23677.77 28549.13 12482.87 15955.82 18679.58 12480.14 257
PAPR71.72 10270.82 10674.41 10481.20 10151.17 19479.55 11583.33 7955.81 19266.93 18184.61 14750.95 10486.06 8755.79 18879.20 13286.00 95
tttt051767.83 18565.66 21074.33 10676.69 21850.82 20077.86 14273.99 25254.54 22564.64 22882.53 19035.06 28185.50 10355.71 18969.91 26186.67 71
IterMVS-SCA-FT62.49 25961.52 25965.40 28371.99 29650.80 20171.15 27569.63 28745.71 33360.61 28177.93 27737.45 25765.99 34455.67 19063.50 32479.42 269
tt080567.77 18667.24 18169.34 22874.87 24840.08 32177.36 15581.37 11455.31 20366.33 19284.65 14537.35 25982.55 17055.65 19172.28 22885.39 126
XVG-ACMP-BASELINE64.36 24062.23 25170.74 20272.35 29052.45 18170.80 28078.45 17953.84 23559.87 29081.10 22116.24 39279.32 23155.64 19271.76 23280.47 250
Anonymous2023121169.28 15368.47 15071.73 17580.28 11447.18 25679.98 10382.37 9654.61 22267.24 17484.01 16039.43 23582.41 17455.45 19372.83 21885.62 113
GA-MVS65.53 22463.70 23171.02 19870.87 31448.10 24470.48 28474.40 24456.69 16964.70 22776.77 29833.66 29981.10 19855.42 19470.32 25283.87 174
test_yl69.69 13969.13 13471.36 18778.37 16445.74 26874.71 21880.20 14457.91 15570.01 12383.83 16442.44 20282.87 15954.97 19579.72 12185.48 117
DCV-MVSNet69.69 13969.13 13471.36 18778.37 16445.74 26874.71 21880.20 14457.91 15570.01 12383.83 16442.44 20282.87 15954.97 19579.72 12185.48 117
131464.61 23663.21 24068.80 23571.87 29847.46 25373.95 23278.39 18442.88 35759.97 28876.60 30438.11 25279.39 23054.84 19772.32 22679.55 267
Fast-Effi-MVS+-dtu67.37 19265.33 21573.48 13872.94 27757.78 8677.47 15376.88 20557.60 15961.97 26776.85 29739.31 23680.49 21454.72 19870.28 25382.17 221
UniMVSNet_NR-MVSNet71.11 10971.00 10471.44 18379.20 13944.13 28576.02 19082.60 9466.48 1168.20 15184.60 14856.82 3682.82 16354.62 19970.43 24787.36 54
DU-MVS70.01 13169.53 12871.44 18378.05 17744.13 28575.01 21081.51 11064.37 2868.20 15184.52 14949.12 12682.82 16354.62 19970.43 24787.37 52
FIs70.82 11671.43 9268.98 23378.33 16638.14 34076.96 16783.59 6861.02 8567.33 17386.73 9455.07 4781.64 18554.61 20179.22 13187.14 58
VPA-MVSNet69.02 15769.47 13067.69 24777.42 20341.00 31774.04 22979.68 14960.06 10969.26 13884.81 14151.06 10377.58 26054.44 20274.43 19184.48 155
MonoMVSNet64.15 24163.31 23866.69 25970.51 31944.12 28774.47 22374.21 24957.81 15763.03 24976.62 30138.33 24877.31 26554.22 20360.59 34878.64 277
Anonymous2024052969.91 13469.02 13772.56 15780.19 11947.65 25077.56 15080.99 13155.45 20269.88 12686.76 9239.24 23982.18 17754.04 20477.10 16787.85 33
UniMVSNet (Re)70.63 11970.20 11871.89 16978.55 15645.29 27575.94 19182.92 8863.68 4068.16 15483.59 16953.89 6283.49 14653.97 20571.12 24086.89 63
D2MVS62.30 26360.29 27468.34 24266.46 36048.42 24165.70 32073.42 25647.71 31158.16 31175.02 32530.51 32877.71 25953.96 20671.68 23478.90 276
原ACMM174.69 9285.39 4759.40 5783.42 7351.47 26070.27 11786.61 10048.61 13086.51 7953.85 20787.96 3978.16 281
无先验79.66 11274.30 24748.40 30280.78 20853.62 20879.03 274
UA-Net73.13 7572.93 7573.76 12183.58 6651.66 19278.75 12177.66 19367.75 472.61 9389.42 5049.82 11483.29 14853.61 20983.14 8086.32 86
VNet69.68 14170.19 11968.16 24379.73 12741.63 31270.53 28377.38 19960.37 9970.69 11286.63 9951.08 10277.09 26953.61 20981.69 10585.75 108
Fast-Effi-MVS+70.28 12769.12 13673.73 12578.50 15751.50 19375.01 21079.46 15556.16 18668.59 14479.55 25253.97 6084.05 13253.34 21177.53 15785.65 112
testdata64.66 28981.52 9152.93 16865.29 32146.09 32873.88 6887.46 7938.08 25366.26 34353.31 21278.48 14574.78 326
thisisatest051565.83 22063.50 23472.82 15473.75 26749.50 22571.32 27073.12 26149.39 28763.82 23876.50 30734.95 28384.84 12153.20 21375.49 18584.13 165
MVS67.37 19266.33 19870.51 20775.46 24050.94 19673.95 23281.85 10341.57 36462.54 26078.57 27047.98 13585.47 10552.97 21482.05 9675.14 318
IterMVS62.79 25761.27 26367.35 25269.37 33852.04 18871.17 27368.24 30152.63 24759.82 29176.91 29637.32 26072.36 30352.80 21563.19 32777.66 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test69.80 13770.58 11267.46 24977.61 19834.73 37376.05 18883.19 8460.84 8765.88 20286.46 10754.52 5580.76 20952.52 21678.12 14986.91 62
TranMVSNet+NR-MVSNet70.36 12570.10 12271.17 19478.64 15542.97 29976.53 17781.16 12766.95 668.53 14785.42 13651.61 9683.07 15252.32 21769.70 26787.46 47
Baseline_NR-MVSNet67.05 20167.56 16465.50 28175.65 23537.70 34675.42 20074.65 24259.90 11268.14 15583.15 17849.12 12677.20 26752.23 21869.78 26481.60 227
UniMVSNet_ETH3D67.60 18967.07 18569.18 23277.39 20442.29 30374.18 22875.59 22260.37 9966.77 18386.06 11937.64 25578.93 24552.16 21973.49 20686.32 86
ECVR-MVScopyleft67.72 18767.51 16868.35 24179.46 13336.29 36374.79 21766.93 30958.72 13467.19 17588.05 6936.10 27281.38 19152.07 22084.25 7287.39 50
test111167.21 19467.14 18467.42 25079.24 13834.76 37273.89 23665.65 31858.71 13666.96 18087.95 7236.09 27380.53 21152.03 22183.79 7786.97 61
test250665.33 22864.61 22167.50 24879.46 13334.19 37874.43 22551.92 38458.72 13466.75 18488.05 6925.99 36580.92 20451.94 22284.25 7287.39 50
API-MVS72.17 9371.41 9374.45 10381.95 8657.22 9284.03 4880.38 14259.89 11568.40 14882.33 19449.64 11687.83 4651.87 22384.16 7578.30 279
PCF-MVS61.88 870.95 11369.49 12975.35 8377.63 19355.71 12076.04 18981.81 10450.30 27569.66 12985.40 13752.51 7984.89 11851.82 22480.24 11785.45 121
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DP-MVS Recon72.15 9670.73 10876.40 6586.57 2457.99 8281.15 9082.96 8757.03 16566.78 18285.56 13144.50 18588.11 3851.77 22580.23 11883.10 202
UGNet68.81 16067.39 17273.06 14878.33 16654.47 14079.77 10875.40 22760.45 9563.22 24484.40 15232.71 31380.91 20551.71 22680.56 11383.81 176
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS71.51 10470.15 12075.60 8081.84 8759.39 5881.38 8782.90 8954.90 21868.08 15778.70 26447.73 13985.51 10251.68 22784.17 7481.88 225
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VPNet67.52 19068.11 15765.74 27879.18 14036.80 35572.17 26072.83 26262.04 7267.79 16685.83 12748.88 12876.60 28151.30 22872.97 21783.81 176
test_fmvs1_n51.37 34250.35 34554.42 35552.85 40137.71 34561.16 35551.93 38328.15 39463.81 23969.73 36613.72 39653.95 39251.16 22960.65 34671.59 358
test_fmvs151.32 34450.48 34453.81 35753.57 39937.51 34760.63 35951.16 38628.02 39663.62 24069.23 36916.41 39153.93 39351.01 23060.70 34569.99 373
QAPM70.05 13068.81 14173.78 11976.54 22453.43 15883.23 5783.48 7052.89 24465.90 20086.29 11141.55 21586.49 8051.01 23078.40 14781.42 229
NR-MVSNet69.54 14668.85 13971.59 18078.05 17743.81 29074.20 22780.86 13465.18 1462.76 25484.52 14952.35 8483.59 14450.96 23270.78 24287.37 52
IB-MVS56.42 1265.40 22762.73 24673.40 14274.89 24652.78 17373.09 24675.13 23455.69 19558.48 30973.73 33532.86 30886.32 8550.63 23370.11 25681.10 241
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PM-MVS52.33 33850.19 34658.75 32962.10 38145.14 27665.75 31940.38 40943.60 34953.52 35572.65 3409.16 41065.87 34550.41 23454.18 37165.24 386
cascas65.98 21863.42 23573.64 13177.26 20752.58 17772.26 25977.21 20248.56 29761.21 27774.60 32932.57 31885.82 9550.38 23576.75 17182.52 212
IS-MVSNet71.57 10371.00 10473.27 14578.86 14845.63 27280.22 10078.69 16964.14 3566.46 18987.36 8149.30 12085.60 9850.26 23683.71 7988.59 13
WR-MVS68.47 17068.47 15068.44 24080.20 11839.84 32473.75 23976.07 21664.68 2268.11 15683.63 16850.39 11179.14 23849.78 23769.66 26886.34 82
CVMVSNet59.63 28859.14 28161.08 31774.47 25838.84 33475.20 20568.74 29731.15 39058.24 31076.51 30532.39 32068.58 32549.77 23865.84 30475.81 311
CostFormer64.04 24362.51 24768.61 23871.88 29745.77 26771.30 27170.60 27947.55 31364.31 23276.61 30341.63 21279.62 22749.74 23969.00 27880.42 251
新几何170.76 20185.66 4161.13 3066.43 31344.68 33970.29 11686.64 9741.29 21875.23 29249.72 24081.75 10375.93 310
test-LLR58.15 29858.13 29458.22 33368.57 34444.80 27865.46 32557.92 36350.08 27855.44 33269.82 36432.62 31557.44 37749.66 24173.62 20272.41 348
test-mter56.42 31255.82 31258.22 33368.57 34444.80 27865.46 32557.92 36339.94 37555.44 33269.82 36421.92 37957.44 37749.66 24173.62 20272.41 348
Anonymous20240521166.84 20665.99 20569.40 22780.19 11942.21 30571.11 27671.31 27358.80 13367.90 15886.39 10929.83 33579.65 22549.60 24378.78 14086.33 84
test_fmvs248.69 35147.49 35652.29 37048.63 40833.06 38657.76 37048.05 39725.71 40059.76 29369.60 36711.57 40352.23 39849.45 24456.86 36171.58 359
tpmrst58.24 29658.70 28756.84 34166.97 35434.32 37669.57 29561.14 35247.17 32058.58 30871.60 35041.28 21960.41 36249.20 24562.84 32975.78 312
test_vis1_n49.89 34948.69 35153.50 36053.97 39837.38 34861.53 34947.33 39928.54 39359.62 29567.10 38013.52 39752.27 39749.07 24657.52 35870.84 367
pm-mvs165.24 22964.97 21966.04 27372.38 28939.40 33072.62 25275.63 22155.53 19962.35 26683.18 17747.45 14776.47 28449.06 24766.54 29982.24 218
gm-plane-assit71.40 30641.72 31148.85 29573.31 33782.48 17348.90 248
CMPMVSbinary42.80 2157.81 30155.97 31063.32 29860.98 38847.38 25464.66 33469.50 29032.06 38846.83 38177.80 28229.50 33871.36 31048.68 24973.75 20071.21 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ab-mvs66.65 21066.42 19467.37 25176.17 22941.73 30970.41 28676.14 21553.99 23365.98 19783.51 17149.48 11876.24 28748.60 25073.46 20884.14 164
OurMVSNet-221017-061.37 27558.63 28869.61 22272.05 29548.06 24573.93 23472.51 26447.23 31954.74 34180.92 22621.49 38381.24 19548.57 25156.22 36579.53 268
OpenMVScopyleft61.03 968.85 15967.56 16472.70 15674.26 26453.99 14781.21 8981.34 11952.70 24562.75 25585.55 13338.86 24384.14 13148.41 25283.01 8279.97 259
testing9164.46 23863.80 22966.47 26278.43 16140.06 32267.63 30769.59 28859.06 12963.18 24678.05 27434.05 29176.99 27148.30 25375.87 17982.37 216
testing9964.05 24263.29 23966.34 26478.17 17339.76 32667.33 31268.00 30258.60 13863.03 24978.10 27332.57 31876.94 27348.22 25475.58 18382.34 217
baseline263.42 24861.26 26469.89 21972.55 28447.62 25171.54 26768.38 29950.11 27754.82 34075.55 31943.06 19780.96 20148.13 25567.16 29581.11 240
TESTMET0.1,155.28 32254.90 31856.42 34366.56 35843.67 29165.46 32556.27 37339.18 37753.83 35067.44 37624.21 37455.46 38848.04 25673.11 21570.13 372
test_fmvs344.30 35942.55 36249.55 37542.83 41327.15 40653.03 38644.93 40322.03 40853.69 35364.94 3874.21 41849.63 40047.47 25749.82 38371.88 354
K. test v360.47 28057.11 29870.56 20573.74 26848.22 24375.10 20962.55 34158.27 14553.62 35476.31 30927.81 35081.59 18747.42 25839.18 39981.88 225
pmmvs663.69 24662.82 24566.27 26770.63 31639.27 33173.13 24575.47 22652.69 24659.75 29482.30 19539.71 23377.03 27047.40 25964.35 31782.53 211
sd_testset64.46 23864.45 22264.51 29177.13 20942.25 30462.67 34472.11 26858.02 15065.08 21982.55 18741.22 22169.88 32047.32 26073.92 19781.41 230
baseline163.81 24563.87 22863.62 29676.29 22736.36 35871.78 26667.29 30656.05 18864.23 23582.95 17947.11 15374.41 29647.30 26161.85 33780.10 258
GBi-Net67.21 19466.55 18969.19 22977.63 19343.33 29377.31 15677.83 19056.62 17365.04 22182.70 18141.85 20980.33 21647.18 26272.76 21983.92 171
test167.21 19466.55 18969.19 22977.63 19343.33 29377.31 15677.83 19056.62 17365.04 22182.70 18141.85 20980.33 21647.18 26272.76 21983.92 171
FMVSNet366.32 21665.61 21168.46 23976.48 22542.34 30274.98 21277.15 20355.83 19165.04 22181.16 21939.91 22980.14 22347.18 26272.76 21982.90 206
FMVSNet266.93 20466.31 20068.79 23677.63 19342.98 29876.11 18577.47 19656.62 17365.22 21882.17 19941.85 20980.18 22247.05 26572.72 22283.20 197
testdata272.18 30746.95 266
BH-RMVSNet68.81 16067.42 17172.97 14980.11 12252.53 17874.26 22676.29 21258.48 14168.38 14984.20 15442.59 20083.83 13846.53 26775.91 17882.56 209
AdaColmapbinary69.99 13268.66 14573.97 11584.94 5457.83 8482.63 6878.71 16856.28 18364.34 23084.14 15641.57 21387.06 6446.45 26878.88 13777.02 299
EG-PatchMatch MVS64.71 23462.87 24370.22 20977.68 19053.48 15777.99 13978.82 16453.37 24056.03 32877.41 29024.75 37384.04 13346.37 26973.42 20973.14 338
1112_ss64.00 24463.36 23665.93 27579.28 13642.58 30171.35 26972.36 26646.41 32560.55 28277.89 28046.27 16473.28 30046.18 27069.97 25981.92 224
FMVSNet166.70 20965.87 20669.19 22977.49 20143.33 29377.31 15677.83 19056.45 17864.60 22982.70 18138.08 25380.33 21646.08 27172.31 22783.92 171
HyFIR lowres test65.67 22263.01 24273.67 12879.97 12455.65 12269.07 29975.52 22442.68 35863.53 24177.95 27640.43 22681.64 18546.01 27271.91 23183.73 182
lessismore_v069.91 21771.42 30547.80 24750.90 38950.39 37075.56 31827.43 35481.33 19245.91 27334.10 40580.59 249
CHOSEN 1792x268865.08 23262.84 24471.82 17281.49 9356.26 10866.32 31674.20 25040.53 37063.16 24778.65 26741.30 21777.80 25745.80 27474.09 19481.40 232
LCM-MVSNet-Re61.88 26961.35 26163.46 29774.58 25631.48 39161.42 35158.14 36258.71 13653.02 35879.55 25243.07 19676.80 27545.69 27577.96 15182.11 222
ambc65.13 28763.72 37437.07 35247.66 39978.78 16754.37 34771.42 35111.24 40580.94 20245.64 27653.85 37377.38 293
MS-PatchMatch62.42 26161.46 26065.31 28575.21 24452.10 18572.05 26174.05 25146.41 32557.42 31874.36 33034.35 28977.57 26145.62 27773.67 20166.26 384
ACMH+57.40 1166.12 21764.06 22472.30 16577.79 18552.83 17280.39 9778.03 18757.30 16157.47 31682.55 18727.68 35184.17 13045.54 27869.78 26479.90 261
testing1162.81 25661.90 25565.54 28078.38 16240.76 31967.59 30966.78 31155.48 20060.13 28477.11 29231.67 32476.79 27645.53 27974.45 19079.06 272
CR-MVSNet59.91 28457.90 29665.96 27469.96 32952.07 18665.31 32963.15 33842.48 35959.36 29774.84 32635.83 27570.75 31345.50 28064.65 31375.06 319
CDS-MVSNet66.80 20765.37 21371.10 19678.98 14553.13 16573.27 24471.07 27552.15 25164.72 22680.23 23943.56 19377.10 26845.48 28178.88 13783.05 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CP-MVSNet66.49 21466.41 19566.72 25677.67 19136.33 36076.83 17379.52 15362.45 6362.54 26083.47 17346.32 16278.37 24745.47 28263.43 32585.45 121
BH-untuned68.27 17467.29 17671.21 19179.74 12653.22 16276.06 18777.46 19857.19 16366.10 19581.61 21245.37 17683.50 14545.42 28376.68 17276.91 303
PS-CasMVS66.42 21566.32 19966.70 25877.60 19936.30 36276.94 16879.61 15162.36 6562.43 26483.66 16745.69 16678.37 24745.35 28463.26 32685.42 124
XXY-MVS60.68 27761.67 25757.70 33970.43 32138.45 33864.19 33766.47 31248.05 30763.22 24480.86 22849.28 12160.47 36145.25 28567.28 29474.19 333
HY-MVS56.14 1364.55 23763.89 22666.55 26174.73 25241.02 31469.96 29174.43 24349.29 28961.66 27280.92 22647.43 14876.68 28044.91 28671.69 23381.94 223
PEN-MVS66.60 21166.45 19167.04 25477.11 21136.56 35777.03 16680.42 14162.95 5062.51 26284.03 15946.69 16079.07 23944.22 28763.08 32885.51 116
test_post168.67 3013.64 42132.39 32069.49 32144.17 288
SCA60.49 27958.38 29066.80 25574.14 26648.06 24563.35 34163.23 33749.13 29159.33 30072.10 34537.45 25774.27 29744.17 28862.57 33178.05 283
PMMVS53.96 32853.26 33456.04 34462.60 37950.92 19861.17 35456.09 37432.81 38753.51 35666.84 38134.04 29259.93 36544.14 29068.18 28657.27 396
MVP-Stereo65.41 22663.80 22970.22 20977.62 19755.53 12776.30 18178.53 17450.59 27356.47 32678.65 26739.84 23182.68 16644.10 29172.12 23072.44 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FE-MVS65.91 21963.33 23773.63 13277.36 20551.95 19072.62 25275.81 21853.70 23665.31 21078.96 26228.81 34486.39 8243.93 29273.48 20782.55 210
CNLPA65.43 22564.02 22569.68 22178.73 15358.07 8177.82 14570.71 27851.49 25961.57 27483.58 17038.23 25170.82 31243.90 29370.10 25780.16 256
pmmvs461.48 27459.39 27967.76 24671.57 30153.86 14871.42 26865.34 32044.20 34459.46 29677.92 27835.90 27474.71 29443.87 29464.87 31174.71 328
mvs5depth55.64 31953.81 33061.11 31659.39 39340.98 31865.89 31868.28 30050.21 27658.11 31275.42 32217.03 38867.63 33343.79 29546.21 38874.73 327
Test_1112_low_res62.32 26261.77 25664.00 29579.08 14439.53 32968.17 30370.17 28143.25 35359.03 30279.90 24344.08 18871.24 31143.79 29568.42 28581.25 236
TransMVSNet (Re)64.72 23364.33 22365.87 27775.22 24338.56 33674.66 22075.08 23858.90 13261.79 27082.63 18451.18 10078.07 25243.63 29755.87 36680.99 244
pmmvs-eth3d58.81 29356.31 30866.30 26667.61 35152.42 18272.30 25864.76 32543.55 35054.94 33974.19 33228.95 34172.60 30243.31 29857.21 36073.88 336
SixPastTwentyTwo61.65 27158.80 28670.20 21175.80 23347.22 25575.59 19769.68 28654.61 22254.11 34879.26 25927.07 35782.96 15443.27 29949.79 38480.41 252
BH-w/o66.85 20565.83 20769.90 21879.29 13552.46 18074.66 22076.65 21054.51 22664.85 22578.12 27245.59 16982.95 15543.26 30075.54 18474.27 332
TR-MVS66.59 21365.07 21871.17 19479.18 14049.63 22473.48 24175.20 23352.95 24267.90 15880.33 23739.81 23283.68 14143.20 30173.56 20580.20 255
EU-MVSNet55.61 32054.41 32359.19 32665.41 36633.42 38372.44 25671.91 27028.81 39251.27 36273.87 33424.76 37269.08 32343.04 30258.20 35675.06 319
PatchmatchNetpermissive59.84 28558.24 29164.65 29073.05 27546.70 25969.42 29662.18 34747.55 31358.88 30371.96 34734.49 28769.16 32242.99 30363.60 32278.07 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WR-MVS_H67.02 20266.92 18667.33 25377.95 18137.75 34477.57 14982.11 10062.03 7362.65 25782.48 19150.57 10979.46 22842.91 30464.01 31884.79 148
ACMH55.70 1565.20 23063.57 23370.07 21378.07 17652.01 18979.48 11679.69 14855.75 19456.59 32380.98 22427.12 35680.94 20242.90 30571.58 23577.25 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052155.30 32154.41 32357.96 33660.92 39041.73 30971.09 27771.06 27641.18 36548.65 37573.31 33716.93 38959.25 36842.54 30664.01 31872.90 340
WTY-MVS59.75 28660.39 27357.85 33772.32 29137.83 34361.05 35664.18 33045.95 33261.91 26879.11 26147.01 15760.88 36042.50 30769.49 27074.83 324
TAMVS66.78 20865.27 21671.33 19079.16 14253.67 15273.84 23869.59 28852.32 25065.28 21181.72 21044.49 18677.40 26442.32 30878.66 14382.92 204
LTVRE_ROB55.42 1663.15 25461.23 26568.92 23476.57 22347.80 24759.92 36076.39 21154.35 22858.67 30582.46 19229.44 33981.49 18942.12 30971.14 23977.46 291
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WBMVS60.54 27860.61 27260.34 31978.00 17935.95 36564.55 33564.89 32349.63 28363.39 24378.70 26433.85 29667.65 33242.10 31070.35 25177.43 292
sss56.17 31556.57 30554.96 35066.93 35536.32 36157.94 36861.69 34941.67 36258.64 30675.32 32438.72 24456.25 38442.04 31166.19 30272.31 351
UnsupCasMVSNet_eth53.16 33752.47 33555.23 34959.45 39233.39 38459.43 36269.13 29445.98 32950.35 37172.32 34229.30 34058.26 37542.02 31244.30 39274.05 334
tpm262.07 26660.10 27567.99 24472.79 27943.86 28971.05 27866.85 31043.14 35562.77 25375.39 32338.32 24980.80 20741.69 31368.88 27979.32 270
PLCcopyleft56.13 1465.09 23163.21 24070.72 20381.04 10354.87 13778.57 12777.47 19648.51 29955.71 32981.89 20633.71 29779.71 22441.66 31470.37 24977.58 290
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPMVS53.96 32853.69 33154.79 35266.12 36331.96 39062.34 34749.05 39244.42 34355.54 33071.33 35330.22 33156.70 38041.65 31562.54 33275.71 313
DTE-MVSNet65.58 22365.34 21466.31 26576.06 23134.79 37076.43 17979.38 15662.55 6161.66 27283.83 16445.60 16879.15 23741.64 31660.88 34385.00 140
PAPM67.92 18366.69 18771.63 17978.09 17549.02 23177.09 16481.24 12451.04 26760.91 28083.98 16147.71 14084.99 11240.81 31779.32 13080.90 245
tpm57.34 30358.16 29254.86 35171.80 29934.77 37167.47 31156.04 37548.20 30460.10 28576.92 29537.17 26353.41 39440.76 31865.01 30976.40 306
KD-MVS_self_test55.22 32353.89 32959.21 32557.80 39727.47 40357.75 37174.32 24547.38 31550.90 36570.00 36328.45 34670.30 31840.44 31957.92 35779.87 262
F-COLMAP63.05 25560.87 27169.58 22576.99 21553.63 15478.12 13676.16 21347.97 30852.41 35981.61 21227.87 34978.11 25140.07 32066.66 29877.00 300
Patchmtry57.16 30456.47 30659.23 32469.17 34134.58 37462.98 34263.15 33844.53 34056.83 32174.84 32635.83 27568.71 32440.03 32160.91 34274.39 331
pmmvs556.47 31155.68 31358.86 32861.41 38436.71 35666.37 31562.75 34040.38 37153.70 35176.62 30134.56 28567.05 33740.02 32265.27 30772.83 341
EPNet_dtu61.90 26861.97 25461.68 30972.89 27839.78 32575.85 19365.62 31955.09 21054.56 34479.36 25737.59 25667.02 33839.80 32376.95 16878.25 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CL-MVSNet_self_test61.53 27260.94 26963.30 29968.95 34236.93 35467.60 30872.80 26355.67 19659.95 28976.63 30045.01 18072.22 30639.74 32462.09 33680.74 248
test_vis1_rt41.35 36739.45 36847.03 37846.65 41237.86 34247.76 39738.65 41023.10 40444.21 39051.22 40411.20 40644.08 40739.27 32553.02 37559.14 391
Vis-MVSNet (Re-imp)63.69 24663.88 22763.14 30174.75 25131.04 39271.16 27463.64 33456.32 18159.80 29284.99 13844.51 18475.46 29139.12 32680.62 10982.92 204
PVSNet50.76 1958.40 29557.39 29761.42 31275.53 23944.04 28861.43 35063.45 33547.04 32156.91 32073.61 33627.00 35864.76 34839.12 32672.40 22475.47 316
UBG59.62 28959.53 27859.89 32078.12 17435.92 36664.11 33960.81 35449.45 28661.34 27575.55 31933.05 30467.39 33638.68 32874.62 18876.35 307
MDTV_nov1_ep13_2view25.89 40961.22 35340.10 37351.10 36332.97 30738.49 32978.61 278
our_test_356.49 31054.42 32262.68 30569.51 33545.48 27366.08 31761.49 35044.11 34750.73 36869.60 36733.05 30468.15 32638.38 33056.86 36174.40 330
tpm cat159.25 29156.95 30166.15 27072.19 29346.96 25768.09 30465.76 31740.03 37457.81 31470.56 35738.32 24974.51 29538.26 33161.50 34077.00 300
USDC56.35 31354.24 32662.69 30464.74 36840.31 32065.05 33173.83 25343.93 34847.58 37777.71 28615.36 39575.05 29338.19 33261.81 33872.70 342
MSDG61.81 27059.23 28069.55 22672.64 28152.63 17670.45 28575.81 21851.38 26153.70 35176.11 31029.52 33781.08 20037.70 33365.79 30574.93 323
MDTV_nov1_ep1357.00 30072.73 28038.26 33965.02 33264.73 32644.74 33855.46 33172.48 34132.61 31770.47 31437.47 33467.75 290
gg-mvs-nofinetune57.86 30056.43 30762.18 30772.62 28235.35 36866.57 31356.33 37250.65 27157.64 31557.10 39830.65 32776.36 28537.38 33578.88 13774.82 325
dmvs_re56.77 30856.83 30356.61 34269.23 33941.02 31458.37 36564.18 33050.59 27357.45 31771.42 35135.54 27758.94 37137.23 33667.45 29269.87 374
RPSCF55.80 31854.22 32760.53 31865.13 36742.91 30064.30 33657.62 36536.84 38158.05 31382.28 19628.01 34856.24 38537.14 33758.61 35582.44 215
testing22262.29 26461.31 26265.25 28677.87 18238.53 33768.34 30266.31 31556.37 18063.15 24877.58 28828.47 34576.18 28937.04 33876.65 17381.05 243
PatchT53.17 33653.44 33352.33 36968.29 34825.34 41158.21 36654.41 37944.46 34254.56 34469.05 37033.32 30260.94 35936.93 33961.76 33970.73 368
YYNet150.73 34548.96 34756.03 34561.10 38641.78 30851.94 38956.44 37040.94 36844.84 38667.80 37430.08 33255.08 39036.77 34050.71 38071.22 363
TAPA-MVS59.36 1066.60 21165.20 21770.81 20076.63 22148.75 23676.52 17880.04 14650.64 27265.24 21684.93 13939.15 24078.54 24636.77 34076.88 16985.14 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MDA-MVSNet_test_wron50.71 34648.95 34856.00 34661.17 38541.84 30751.90 39056.45 36940.96 36744.79 38767.84 37330.04 33355.07 39136.71 34250.69 38171.11 366
ppachtmachnet_test58.06 29955.38 31566.10 27269.51 33548.99 23268.01 30566.13 31644.50 34154.05 34970.74 35632.09 32272.34 30436.68 34356.71 36476.99 302
tpmvs58.47 29456.95 30163.03 30370.20 32441.21 31367.90 30667.23 30749.62 28454.73 34270.84 35534.14 29076.24 28736.64 34461.29 34171.64 357
CHOSEN 280x42047.83 35346.36 35752.24 37167.37 35349.78 21938.91 41043.11 40735.00 38443.27 39263.30 39128.95 34149.19 40136.53 34560.80 34457.76 395
PatchMatch-RL56.25 31454.55 32161.32 31577.06 21256.07 11265.57 32254.10 38144.13 34653.49 35771.27 35425.20 37066.78 33936.52 34663.66 32161.12 388
RPMNet61.53 27258.42 28970.86 19969.96 32952.07 18665.31 32981.36 11543.20 35459.36 29770.15 36235.37 27885.47 10536.42 34764.65 31375.06 319
ITE_SJBPF62.09 30866.16 36244.55 28364.32 32847.36 31655.31 33480.34 23619.27 38562.68 35536.29 34862.39 33379.04 273
JIA-IIPM51.56 34147.68 35563.21 30064.61 36950.73 20247.71 39858.77 36042.90 35648.46 37651.72 40224.97 37170.24 31936.06 34953.89 37268.64 380
KD-MVS_2432*160053.45 33251.50 34059.30 32262.82 37637.14 35055.33 37971.79 27147.34 31755.09 33770.52 35821.91 38070.45 31535.72 35042.97 39470.31 370
miper_refine_blended53.45 33251.50 34059.30 32262.82 37637.14 35055.33 37971.79 27147.34 31755.09 33770.52 35821.91 38070.45 31535.72 35042.97 39470.31 370
OpenMVS_ROBcopyleft52.78 1860.03 28358.14 29365.69 27970.47 32044.82 27775.33 20170.86 27745.04 33656.06 32776.00 31126.89 36079.65 22535.36 35267.29 29372.60 343
GG-mvs-BLEND62.34 30671.36 30737.04 35369.20 29857.33 36854.73 34265.48 38630.37 32977.82 25634.82 35374.93 18772.17 352
UnsupCasMVSNet_bld50.07 34848.87 34953.66 35860.97 38933.67 38257.62 37264.56 32739.47 37647.38 37864.02 39027.47 35259.32 36734.69 35443.68 39367.98 382
MDA-MVSNet-bldmvs53.87 33050.81 34263.05 30266.25 36148.58 23956.93 37663.82 33248.09 30641.22 39470.48 36030.34 33068.00 33034.24 35545.92 39072.57 344
dp51.89 34051.60 33952.77 36668.44 34732.45 38862.36 34654.57 37844.16 34549.31 37467.91 37228.87 34356.61 38233.89 35654.89 36869.24 379
AllTest57.08 30554.65 31964.39 29271.44 30349.03 22969.92 29267.30 30445.97 33047.16 37979.77 24617.47 38667.56 33433.65 35759.16 35376.57 304
TestCases64.39 29271.44 30349.03 22967.30 30445.97 33047.16 37979.77 24617.47 38667.56 33433.65 35759.16 35376.57 304
test_vis3_rt32.09 37830.20 38337.76 39235.36 42327.48 40240.60 40928.29 41916.69 41332.52 40740.53 4121.96 42437.40 41533.64 35942.21 39648.39 402
UWE-MVS60.18 28259.78 27661.39 31477.67 19133.92 38169.04 30063.82 33248.56 29764.27 23377.64 28727.20 35570.40 31733.56 36076.24 17579.83 263
FMVSNet555.86 31754.93 31758.66 33071.05 31236.35 35964.18 33862.48 34246.76 32350.66 36974.73 32825.80 36664.04 35033.11 36165.57 30675.59 314
mvsany_test139.38 36938.16 37243.02 38549.05 40634.28 37744.16 40625.94 42022.74 40646.57 38362.21 39323.85 37541.16 41233.01 36235.91 40253.63 399
DP-MVS65.68 22163.66 23271.75 17484.93 5556.87 10280.74 9573.16 25953.06 24159.09 30182.35 19336.79 26985.94 9232.82 36369.96 26072.45 346
PVSNet_043.31 2047.46 35545.64 35852.92 36567.60 35244.65 28054.06 38454.64 37741.59 36346.15 38458.75 39530.99 32658.66 37232.18 36424.81 41055.46 398
ETVMVS59.51 29058.81 28461.58 31177.46 20234.87 36964.94 33359.35 35754.06 23261.08 27976.67 29929.54 33671.87 30832.16 36574.07 19578.01 287
WB-MVSnew59.66 28759.69 27759.56 32175.19 24535.78 36769.34 29764.28 32946.88 32261.76 27175.79 31540.61 22565.20 34732.16 36571.21 23877.70 288
TinyColmap54.14 32751.72 33861.40 31366.84 35641.97 30666.52 31468.51 29844.81 33742.69 39375.77 31611.66 40272.94 30131.96 36756.77 36369.27 378
MIMVSNet57.35 30257.07 29958.22 33374.21 26537.18 34962.46 34560.88 35348.88 29455.29 33575.99 31331.68 32362.04 35731.87 36872.35 22575.43 317
thres100view90063.28 25162.41 24965.89 27677.31 20638.66 33572.65 25069.11 29557.07 16462.45 26381.03 22337.01 26779.17 23431.84 36973.25 21279.83 263
tfpn200view963.18 25362.18 25266.21 26876.85 21639.62 32771.96 26469.44 29156.63 17162.61 25879.83 24437.18 26179.17 23431.84 36973.25 21279.83 263
thres40063.31 24962.18 25266.72 25676.85 21639.62 32771.96 26469.44 29156.63 17162.61 25879.83 24437.18 26179.17 23431.84 36973.25 21281.36 233
pmmvs344.92 35841.95 36553.86 35652.58 40343.55 29262.11 34846.90 40126.05 39940.63 39560.19 39411.08 40757.91 37631.83 37246.15 38960.11 389
LF4IMVS42.95 36142.26 36345.04 38048.30 40932.50 38754.80 38148.49 39428.03 39540.51 39670.16 3619.24 40943.89 40831.63 37349.18 38658.72 392
COLMAP_ROBcopyleft52.97 1761.27 27658.81 28468.64 23774.63 25552.51 17978.42 13073.30 25749.92 28150.96 36481.51 21523.06 37679.40 22931.63 37365.85 30374.01 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet47.56 35447.73 35447.06 37758.81 3959.37 42548.78 39659.21 35843.28 35244.22 38968.66 37125.67 36757.20 37931.57 37549.35 38574.62 329
thres600view763.30 25062.27 25066.41 26377.18 20838.87 33372.35 25769.11 29556.98 16662.37 26580.96 22537.01 26779.00 24331.43 37673.05 21681.36 233
thres20062.20 26561.16 26765.34 28475.38 24239.99 32369.60 29469.29 29355.64 19861.87 26976.99 29437.07 26678.96 24431.28 37773.28 21177.06 298
LCM-MVSNet40.30 36835.88 37453.57 35942.24 41429.15 39645.21 40460.53 35522.23 40728.02 40950.98 4053.72 42061.78 35831.22 37838.76 40069.78 375
test_f31.86 37931.05 38034.28 39432.33 42521.86 41532.34 41230.46 41716.02 41439.78 40055.45 3994.80 41632.36 41930.61 37937.66 40148.64 401
test0.0.03 153.32 33553.59 33252.50 36862.81 37829.45 39559.51 36154.11 38050.08 27854.40 34674.31 33132.62 31555.92 38630.50 38063.95 32072.15 353
Anonymous2023120655.10 32555.30 31654.48 35369.81 33333.94 38062.91 34362.13 34841.08 36655.18 33675.65 31732.75 31256.59 38330.32 38167.86 28872.91 339
tfpnnormal62.47 26061.63 25864.99 28874.81 25039.01 33271.22 27273.72 25455.22 20760.21 28380.09 24241.26 22076.98 27230.02 38268.09 28778.97 275
test20.0353.87 33054.02 32853.41 36261.47 38328.11 40061.30 35259.21 35851.34 26352.09 36077.43 28933.29 30358.55 37329.76 38360.27 35073.58 337
LS3D64.71 23462.50 24871.34 18979.72 12855.71 12079.82 10774.72 24048.50 30056.62 32284.62 14633.59 30082.34 17529.65 38475.23 18675.97 309
mvsany_test332.62 37730.57 38238.77 39136.16 42224.20 41338.10 41120.63 42419.14 41040.36 39857.43 3975.06 41536.63 41629.59 38528.66 40755.49 397
testgi51.90 33952.37 33650.51 37460.39 39123.55 41458.42 36458.15 36149.03 29251.83 36179.21 26022.39 37755.59 38729.24 38662.64 33072.40 350
MIMVSNet155.17 32454.31 32557.77 33870.03 32832.01 38965.68 32164.81 32449.19 29046.75 38276.00 31125.53 36964.04 35028.65 38762.13 33577.26 296
TDRefinement53.44 33450.72 34361.60 31064.31 37146.96 25770.89 27965.27 32241.78 36044.61 38877.98 27511.52 40466.36 34228.57 38851.59 37871.49 360
WAC-MVS27.31 40427.77 389
myMVS_eth3d54.86 32654.61 32055.61 34774.69 25327.31 40465.52 32357.49 36650.97 26856.52 32472.18 34321.87 38268.09 32727.70 39064.59 31571.44 361
ttmdpeth45.56 35642.95 36153.39 36352.33 40429.15 39657.77 36948.20 39631.81 38949.86 37377.21 2918.69 41159.16 36927.31 39133.40 40671.84 356
ADS-MVSNet251.33 34348.76 35059.07 32766.02 36444.60 28150.90 39259.76 35636.90 37950.74 36666.18 38426.38 36163.11 35327.17 39254.76 36969.50 376
ADS-MVSNet48.48 35247.77 35350.63 37366.02 36429.92 39450.90 39250.87 39036.90 37950.74 36666.18 38426.38 36152.47 39627.17 39254.76 36969.50 376
Patchmatch-test49.08 35048.28 35251.50 37264.40 37030.85 39345.68 40248.46 39535.60 38346.10 38572.10 34534.47 28846.37 40527.08 39460.65 34677.27 295
MVS-HIRNet45.52 35744.48 35948.65 37668.49 34634.05 37959.41 36344.50 40427.03 39737.96 40450.47 40626.16 36464.10 34926.74 39559.52 35147.82 405
test_040263.25 25261.01 26869.96 21480.00 12354.37 14376.86 17272.02 26954.58 22458.71 30480.79 23135.00 28284.36 12826.41 39664.71 31271.15 365
N_pmnet39.35 37040.28 36736.54 39363.76 3721.62 43049.37 3950.76 42934.62 38543.61 39166.38 38326.25 36342.57 40926.02 39751.77 37765.44 385
testing356.54 30955.92 31158.41 33177.52 20027.93 40169.72 29356.36 37154.75 22158.63 30777.80 28220.88 38471.75 30925.31 39862.25 33475.53 315
Syy-MVS56.00 31656.23 30955.32 34874.69 25326.44 40765.52 32357.49 36650.97 26856.52 32472.18 34339.89 23068.09 32724.20 39964.59 31571.44 361
MVStest142.65 36239.29 36952.71 36747.26 41134.58 37454.41 38350.84 39123.35 40239.31 40274.08 33312.57 39955.09 38923.32 40028.47 40868.47 381
DSMNet-mixed39.30 37138.72 37041.03 38851.22 40519.66 41745.53 40331.35 41615.83 41539.80 39967.42 37822.19 37845.13 40622.43 40152.69 37658.31 393
dmvs_testset50.16 34751.90 33744.94 38266.49 35911.78 42261.01 35751.50 38551.17 26650.30 37267.44 37639.28 23760.29 36322.38 40257.49 35962.76 387
ANet_high41.38 36637.47 37353.11 36439.73 41924.45 41256.94 37569.69 28547.65 31226.04 41152.32 40112.44 40062.38 35621.80 40310.61 42072.49 345
new_pmnet34.13 37634.29 37733.64 39552.63 40218.23 41944.43 40533.90 41522.81 40530.89 40853.18 40010.48 40835.72 41720.77 40439.51 39846.98 406
APD_test137.39 37234.94 37544.72 38348.88 40733.19 38552.95 38744.00 40619.49 40927.28 41058.59 3963.18 42252.84 39518.92 40541.17 39748.14 404
EGC-MVSNET42.47 36338.48 37154.46 35474.33 26248.73 23770.33 28751.10 3870.03 4230.18 42467.78 37513.28 39866.49 34118.91 40650.36 38248.15 403
PMMVS227.40 38325.91 38631.87 39839.46 4206.57 42731.17 41328.52 41823.96 40120.45 41548.94 4094.20 41937.94 41416.51 40719.97 41351.09 400
test_method19.68 38718.10 39024.41 40213.68 4273.11 42912.06 41842.37 4082.00 42111.97 41936.38 4135.77 41429.35 42115.06 40823.65 41140.76 410
Gipumacopyleft34.77 37431.91 37943.33 38462.05 38237.87 34120.39 41567.03 30823.23 40318.41 41625.84 4164.24 41762.73 35414.71 40951.32 37929.38 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS42.18 36441.11 36645.39 37958.03 39641.01 31649.50 39453.81 38230.07 39133.71 40664.03 38811.69 40152.08 39914.01 41055.11 36743.09 407
testf131.46 38028.89 38439.16 38941.99 41628.78 39846.45 40037.56 41114.28 41621.10 41248.96 4071.48 42647.11 40313.63 41134.56 40341.60 408
APD_test231.46 38028.89 38439.16 38941.99 41628.78 39846.45 40037.56 41114.28 41621.10 41248.96 4071.48 42647.11 40313.63 41134.56 40341.60 408
tmp_tt9.43 39011.14 3934.30 4052.38 4284.40 42813.62 41716.08 4260.39 42215.89 41713.06 41915.80 3945.54 42412.63 41310.46 4212.95 419
dongtai34.52 37534.94 37533.26 39661.06 38716.00 42152.79 38823.78 42240.71 36939.33 40148.65 41016.91 39048.34 40212.18 41419.05 41435.44 413
WB-MVS43.26 36043.41 36042.83 38663.32 37510.32 42458.17 36745.20 40245.42 33440.44 39767.26 37934.01 29458.98 37011.96 41524.88 40959.20 390
SSC-MVS41.96 36541.99 36441.90 38762.46 3809.28 42657.41 37444.32 40543.38 35138.30 40366.45 38232.67 31458.42 37410.98 41621.91 41257.99 394
MVEpermissive17.77 2321.41 38617.77 39132.34 39734.34 42425.44 41016.11 41624.11 42111.19 41813.22 41831.92 4141.58 42530.95 42010.47 41717.03 41640.62 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN23.77 38422.73 38826.90 39942.02 41520.67 41642.66 40735.70 41317.43 41110.28 42125.05 4176.42 41342.39 41010.28 41814.71 41717.63 416
PMVScopyleft28.69 2236.22 37333.29 37845.02 38136.82 42135.98 36454.68 38248.74 39326.31 39821.02 41451.61 4032.88 42360.10 3649.99 41947.58 38738.99 412
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS22.97 38521.84 38926.36 40040.20 41819.53 41841.95 40834.64 41417.09 4129.73 42222.83 4187.29 41242.22 4119.18 42013.66 41817.32 417
DeepMVS_CXcopyleft12.03 40417.97 42610.91 42310.60 4277.46 41911.07 42028.36 4153.28 42111.29 4238.01 4219.74 42213.89 418
kuosan29.62 38230.82 38126.02 40152.99 40016.22 42051.09 39122.71 42333.91 38633.99 40540.85 41115.89 39333.11 4187.59 42218.37 41528.72 415
wuyk23d13.32 38912.52 39215.71 40347.54 41026.27 40831.06 4141.98 4284.93 4205.18 4231.94 4230.45 42818.54 4226.81 42312.83 4192.33 420
testmvs4.52 3936.03 3960.01 4070.01 4290.00 43253.86 3850.00 4300.01 4240.04 4250.27 4240.00 4300.00 4250.04 4240.00 4230.03 422
test1234.73 3926.30 3950.02 4060.01 4290.01 43156.36 3770.00 4300.01 4240.04 4250.21 4250.01 4290.00 4250.03 4250.00 4230.04 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
cdsmvs_eth3d_5k17.50 38823.34 3870.00 4080.00 4310.00 4320.00 41978.63 1710.00 4260.00 42782.18 19749.25 1220.00 4250.00 4260.00 4230.00 423
pcd_1.5k_mvsjas3.92 3945.23 3970.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 42647.05 1540.00 4250.00 4260.00 4230.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
ab-mvs-re6.49 3918.65 3940.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 42777.89 2800.00 4300.00 4250.00 4260.00 4230.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4320.00 4190.00 4300.00 4260.00 4270.00 4260.00 4300.00 4250.00 4260.00 4230.00 423
FOURS186.12 3660.82 3788.18 183.61 6760.87 8681.50 16
test_one_060187.58 959.30 6086.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 431
eth-test0.00 431
test_241102_ONE87.77 458.90 7286.78 1064.20 3185.97 191.34 1566.87 390.78 7
save fliter86.17 3361.30 2883.98 5079.66 15059.00 130
test072687.75 759.07 6787.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 283
test_part287.58 960.47 4283.42 12
sam_mvs134.74 28478.05 283
sam_mvs33.43 301
MTGPAbinary80.97 132
test_post3.55 42233.90 29566.52 340
patchmatchnet-post64.03 38834.50 28674.27 297
MTMP86.03 1917.08 425
TEST985.58 4361.59 2481.62 8381.26 12255.65 19774.93 4988.81 5953.70 6784.68 123
test_885.40 4660.96 3481.54 8681.18 12555.86 18974.81 5488.80 6153.70 6784.45 127
agg_prior85.04 5059.96 5081.04 13074.68 5784.04 133
test_prior462.51 1482.08 79
test_prior76.69 5884.20 6157.27 9184.88 3986.43 8186.38 78
新几何276.12 184
旧先验183.04 7353.15 16367.52 30387.85 7444.08 18880.76 10878.03 286
原ACMM279.02 119
test22283.14 7158.68 7672.57 25463.45 33541.78 36067.56 17086.12 11637.13 26478.73 14274.98 322
segment_acmp54.23 57
testdata172.65 25060.50 94
test1277.76 4584.52 5858.41 7883.36 7672.93 8754.61 5488.05 3988.12 3486.81 66
plane_prior781.41 9455.96 114
plane_prior681.20 10156.24 10945.26 178
plane_prior486.10 117
plane_prior356.09 11163.92 3669.27 136
plane_prior284.22 4364.52 25
plane_prior181.27 99
plane_prior56.31 10583.58 5663.19 4880.48 114
n20.00 430
nn0.00 430
door-mid47.19 400
test1183.47 71
door47.60 398
HQP5-MVS54.94 134
HQP-NCC80.66 10882.31 7462.10 6867.85 160
ACMP_Plane80.66 10882.31 7462.10 6867.85 160
HQP4-MVS67.85 16086.93 6684.32 158
HQP3-MVS83.90 5780.35 115
HQP2-MVS45.46 172
NP-MVS80.98 10456.05 11385.54 134
ACMMP++_ref74.07 195
ACMMP++72.16 229
Test By Simon48.33 133