This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM98.23 1195.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
MVS_030497.04 2796.73 4197.96 2397.60 13394.36 3498.01 5794.09 34497.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 165
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 13992.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
fmvsm_s_conf0.5_n96.85 3897.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 155
test_fmvsmconf0.1_n97.09 2397.06 1997.19 6295.67 23292.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
fmvsm_s_conf0.5_n_a96.75 4596.93 2896.20 11197.64 12890.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
test_fmvsmvis_n_192096.70 4696.84 3296.31 10096.62 18291.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 194
fmvsm_s_conf0.1_n96.58 5396.77 3996.01 12396.67 18090.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 158
test_fmvsmconf0.01_n96.15 6495.85 6797.03 6792.66 34991.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
fmvsm_s_conf0.1_n_a96.40 5796.47 5296.16 11395.48 24090.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 155
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_vis1_n_192094.17 11394.58 9692.91 27597.42 14082.02 33597.83 8497.85 11694.68 4698.10 2998.49 3870.15 33699.32 11797.91 1598.82 9297.40 195
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
patch_mono-296.83 4097.44 1395.01 17299.05 3985.39 29796.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
test_vis1_n92.37 18992.26 17492.72 28294.75 29082.64 32798.02 5696.80 23191.18 16597.77 3797.93 8858.02 37498.29 21997.63 1998.21 11797.23 204
test_fmvs1_n92.73 17992.88 14692.29 29296.08 22081.05 34397.98 6197.08 20190.72 17896.79 6298.18 7063.07 36798.45 20497.62 2098.42 11097.36 196
test_fmvs193.21 15293.53 12292.25 29496.55 19181.20 34297.40 13896.96 21490.68 18096.80 6198.04 7969.25 34098.40 20797.58 2198.50 10497.16 205
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
EC-MVSNet96.42 5696.47 5296.26 10697.01 16191.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19297.45 2699.11 8098.67 121
IU-MVS99.42 795.39 1197.94 10490.40 19498.94 897.41 2999.66 1099.74 8
dcpmvs_296.37 5997.05 2294.31 21198.96 4684.11 31597.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
CS-MVS96.86 3697.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18297.10 3199.17 7398.90 102
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 31996.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS-test96.89 3497.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17696.92 3599.33 5898.94 97
CANet96.39 5896.02 6397.50 4597.62 13093.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
TSAR-MVS + GP.96.69 4896.49 5197.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
DeepPCF-MVS93.97 196.61 5197.09 1895.15 16398.09 10186.63 27796.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
test_cas_vis1_n_192094.48 10794.55 10094.28 21396.78 17386.45 27997.63 11297.64 13893.32 9497.68 3898.36 5073.75 31699.08 14496.73 3999.05 8397.31 200
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19098.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++96.94 3297.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
MP-MVS-pluss96.70 4696.27 6097.98 2199.23 3094.71 2896.96 17898.06 8290.67 18195.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS97.18 2096.84 3298.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
EI-MVSNet-Vis-set96.51 5496.47 5296.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
VDD-MVS93.82 13293.08 13996.02 12197.88 11589.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 34599.39 11196.31 4994.85 19198.71 118
ACMMP_NAP97.20 1996.86 3098.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
diffmvspermissive95.25 8695.13 8495.63 14196.43 19989.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18596.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set96.34 6096.30 5996.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
SR-MVS97.01 2996.86 3097.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
xiu_mvs_v1_base95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
alignmvs95.87 7295.23 8197.78 3197.56 13795.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 18998.95 96
canonicalmvs96.02 6795.45 7497.75 3597.59 13495.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19398.91 101
MTAPA97.08 2496.78 3897.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
APD-MVS_3200maxsize96.81 4196.71 4397.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
SR-MVS-dyc-post96.88 3596.80 3797.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
RE-MVS-def96.72 4299.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
MVS_111021_HR96.68 5096.58 4896.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
PHI-MVS96.77 4396.46 5597.71 3998.40 7594.07 4698.21 4398.45 2289.86 20397.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
casdiffmvs_mvgpermissive95.81 7395.57 7096.51 8396.87 16691.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17195.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS++copyleft97.34 1796.97 2698.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
DELS-MVS96.61 5196.38 5897.30 5297.79 11993.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.24 6396.19 6296.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
h-mvs3394.15 11593.52 12496.04 11997.81 11890.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 35898.29 150
hse-mvs293.45 14592.99 14194.81 18697.02 16088.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20395.85 6979.13 36297.35 198
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
VNet95.89 7195.45 7497.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18599.16 73
PC_three_145290.77 17598.89 1498.28 6596.24 198.35 21495.76 7399.58 2199.59 22
9.1496.75 4098.93 4797.73 9598.23 5091.28 16197.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
XVS97.18 2096.96 2797.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
X-MVStestdata91.71 21389.67 27297.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 39691.70 4899.80 3095.66 7599.40 5099.62 18
baseline95.58 7895.42 7696.08 11596.78 17390.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18495.66 7597.25 14799.13 77
ETV-MVS96.02 6795.89 6696.40 9397.16 14792.44 8697.47 13197.77 12294.55 5096.48 7994.51 27491.23 6198.92 16195.65 7898.19 11897.82 177
casdiffmvspermissive95.64 7695.49 7296.08 11596.76 17890.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 17895.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HFP-MVS97.14 2296.92 2997.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
ACMMPR97.07 2596.84 3297.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
HPM-MVScopyleft96.69 4896.45 5697.40 4899.36 1893.11 6998.87 698.06 8291.17 16696.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS97.02 2896.81 3697.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
DeepC-MVS93.07 396.06 6595.66 6997.29 5397.96 10893.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS96.96 3096.67 4497.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
mvsmamba93.83 13193.46 12794.93 18194.88 28390.85 15098.55 1495.49 29794.24 6191.29 20996.97 14983.04 18298.14 23195.56 8691.17 25195.78 250
region2R97.07 2596.84 3297.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
iter_conf0593.18 15792.63 15894.83 18396.64 18190.69 15797.60 11595.53 29692.52 12591.58 19696.64 16876.35 29298.13 23295.43 8891.42 24695.68 260
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
iter_conf_final93.60 13893.11 13895.04 16997.13 15091.30 12897.92 7395.65 29092.98 11291.60 19596.64 16879.28 25298.13 23295.34 9091.49 24395.70 258
lupinMVS94.99 9694.56 9796.29 10496.34 20391.21 13395.83 26096.27 26188.93 23396.22 8996.88 15586.20 13598.85 16695.27 9199.05 8398.82 111
mPP-MVS96.86 3696.60 4697.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
DeepC-MVS_fast93.89 296.93 3396.64 4597.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jason94.84 10194.39 10696.18 11295.52 23890.93 14796.09 24896.52 25089.28 22096.01 9897.32 12984.70 15298.77 17495.15 9498.91 9198.85 108
jason: jason.
train_agg96.30 6195.83 6897.72 3798.70 5694.19 4096.41 22398.02 9488.58 24596.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
mvsany_test193.93 12793.98 11093.78 24194.94 27886.80 27094.62 29992.55 36488.77 24296.85 6098.49 3888.98 8898.08 24395.03 9695.62 18096.46 225
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
nrg03094.05 12293.31 13496.27 10595.22 26294.59 2998.34 2797.46 16192.93 11591.21 21296.64 16887.23 12298.22 22394.99 9885.80 30795.98 240
VDDNet93.05 16392.07 17796.02 12196.84 16890.39 16898.08 5195.85 27886.22 30395.79 10598.46 4267.59 34899.19 12894.92 9994.85 19198.47 135
APD-MVScopyleft96.95 3196.60 4698.01 1999.03 4194.93 2697.72 9898.10 7291.50 15198.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS96.85 3896.52 5097.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
MP-MVScopyleft96.77 4396.45 5697.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test9_res94.81 10399.38 5399.45 47
PS-MVSNAJ95.37 8295.33 7995.49 15197.35 14190.66 16095.31 28297.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 231
HPM-MVS_fast96.51 5496.27 6097.22 5999.32 2292.74 7798.74 998.06 8290.57 19096.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
xiu_mvs_v2_base95.32 8495.29 8095.40 15697.22 14390.50 16395.44 27697.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 231
CSCG96.05 6695.91 6596.46 8999.24 2890.47 16498.30 3098.57 1889.01 22893.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
test_fmvs289.77 28589.93 26189.31 34493.68 32676.37 37297.64 11095.90 27589.84 20691.49 19996.26 19458.77 37397.10 32994.65 10891.13 25294.46 326
EIA-MVS95.53 8095.47 7395.71 13897.06 15689.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
SDMVSNet94.17 11393.61 11895.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19297.28 13179.13 25498.93 16094.61 11092.84 22097.28 201
ZD-MVS99.05 3994.59 2998.08 7489.22 22297.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
ACMMPcopyleft96.27 6295.93 6497.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS96.81 4196.53 4997.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
RRT_MVS93.10 15992.83 14893.93 23494.76 28888.04 24398.47 2296.55 24993.44 8890.01 23897.04 14680.64 22797.93 27294.33 11490.21 26895.83 245
ET-MVSNet_ETH3D91.49 22590.11 25395.63 14196.40 20091.57 11895.34 27993.48 35590.60 18975.58 37595.49 23580.08 23896.79 34094.25 11589.76 27298.52 127
LFMVS93.60 13892.63 15896.52 8098.13 10091.27 13097.94 7193.39 35690.57 19096.29 8698.31 6069.00 34199.16 13294.18 11695.87 17399.12 80
MVSFormer95.37 8295.16 8395.99 12496.34 20391.21 13398.22 4197.57 14691.42 15596.22 8997.32 12986.20 13597.92 27394.07 11799.05 8398.85 108
test_djsdf93.07 16292.76 15194.00 22593.49 33288.70 22298.22 4197.57 14691.42 15590.08 23695.55 23282.85 18897.92 27394.07 11791.58 24195.40 273
mvs_anonymous93.82 13293.74 11494.06 22196.44 19885.41 29595.81 26197.05 20689.85 20590.09 23596.36 18987.44 11797.75 28993.97 11996.69 16099.02 86
VPA-MVSNet93.24 15192.48 16895.51 14995.70 23092.39 8797.86 7998.66 1692.30 13092.09 18795.37 23880.49 23098.40 20793.95 12085.86 30695.75 255
agg_prior293.94 12199.38 5399.50 40
mvs_tets92.31 19391.76 18793.94 23293.41 33588.29 23397.63 11297.53 15192.04 14088.76 27496.45 18474.62 30898.09 24293.91 12291.48 24495.45 269
Effi-MVS+94.93 9794.45 10496.36 9896.61 18391.47 12296.41 22397.41 17591.02 17194.50 13295.92 20887.53 11498.78 17193.89 12396.81 15598.84 110
jajsoiax92.42 18691.89 18594.03 22493.33 33888.50 22997.73 9597.53 15192.00 14288.85 27196.50 18275.62 30098.11 23893.88 12491.56 24295.48 264
XVG-OURS-SEG-HR93.86 13093.55 12094.81 18697.06 15688.53 22895.28 28397.45 16691.68 14894.08 14297.68 10782.41 19998.90 16493.84 12592.47 22696.98 208
PS-MVSNAJss93.74 13593.51 12594.44 20393.91 31889.28 20797.75 9297.56 14992.50 12689.94 23996.54 18088.65 9598.18 22893.83 12690.90 25895.86 241
EPNet95.20 8994.56 9797.14 6392.80 34692.68 7997.85 8294.87 32996.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu95.27 8594.91 8896.38 9698.20 9390.86 14997.27 15198.25 4590.21 19594.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
CPTT-MVS95.57 7995.19 8296.70 7199.27 2691.48 12198.33 2898.11 7087.79 27095.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
MVSTER93.20 15392.81 15094.37 20796.56 18989.59 18997.06 16897.12 19691.24 16291.30 20695.96 20682.02 20698.05 25093.48 13090.55 26395.47 267
PVSNet_BlendedMVS94.06 12193.92 11194.47 20298.27 8389.46 19796.73 19598.36 2490.17 19694.36 13495.24 24488.02 10499.58 7793.44 13190.72 26194.36 330
PVSNet_Blended94.87 10094.56 9795.81 13098.27 8389.46 19795.47 27598.36 2488.84 23694.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
3Dnovator91.36 595.19 9094.44 10597.44 4796.56 18993.36 6398.65 1198.36 2494.12 6389.25 26498.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
EPP-MVSNet95.22 8895.04 8695.76 13197.49 13889.56 19098.67 1097.00 21290.69 17994.24 13797.62 11689.79 8198.81 16993.39 13496.49 16498.92 100
CHOSEN 280x42093.12 15892.72 15694.34 20996.71 17987.27 25890.29 37297.72 12886.61 29691.34 20395.29 24084.29 16098.41 20693.25 13598.94 8997.35 198
3Dnovator+91.43 495.40 8194.48 10398.16 1696.90 16595.34 1698.48 2197.87 11194.65 4988.53 27998.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
test_yl94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
DCV-MVSNet94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
test_vis1_rt86.16 32285.06 32389.46 34293.47 33480.46 35096.41 22386.61 39085.22 31779.15 36888.64 36952.41 38297.06 33093.08 13990.57 26290.87 373
test111193.19 15492.82 14994.30 21297.58 13684.56 31098.21 4389.02 38293.53 8494.58 13098.21 6772.69 31999.05 15193.06 14098.48 10799.28 65
ECVR-MVScopyleft93.19 15492.73 15594.57 20097.66 12685.41 29598.21 4388.23 38493.43 8994.70 12898.21 6772.57 32099.07 14893.05 14198.49 10599.25 68
HQP_MVS93.78 13493.43 13094.82 18496.21 20789.99 17697.74 9397.51 15394.85 3491.34 20396.64 16881.32 21798.60 19293.02 14292.23 22995.86 241
plane_prior597.51 15398.60 19293.02 14292.23 22995.86 241
test250691.60 21790.78 22594.04 22397.66 12683.81 31898.27 3375.53 39993.43 8995.23 11998.21 6767.21 35199.07 14893.01 14498.49 10599.25 68
MVS_Test94.89 9994.62 9495.68 13996.83 17089.55 19196.70 19997.17 19391.17 16695.60 11296.11 20387.87 10898.76 17593.01 14497.17 15098.72 116
bld_raw_dy_0_6492.37 18991.69 19194.39 20694.28 31089.73 18597.71 10093.65 35392.78 12090.46 22096.67 16675.88 29597.97 26192.92 14690.89 25995.48 264
CLD-MVS92.98 16692.53 16594.32 21096.12 21789.20 21095.28 28397.47 15992.66 12289.90 24095.62 22880.58 22898.40 20792.73 14792.40 22795.38 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-OURS93.72 13693.35 13394.80 18997.07 15388.61 22394.79 29697.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 22596.92 212
旧先验295.94 25681.66 35597.34 4898.82 16892.26 149
CDPH-MVS95.97 6995.38 7797.77 3398.93 4794.44 3296.35 23197.88 10986.98 28996.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
FIs94.09 12093.70 11595.27 15995.70 23092.03 10198.10 4998.68 1393.36 9390.39 22296.70 16287.63 11297.94 26992.25 15190.50 26595.84 244
LPG-MVS_test92.94 16992.56 16294.10 21996.16 21288.26 23597.65 10697.46 16191.29 15890.12 23297.16 13979.05 25698.73 17892.25 15191.89 23795.31 280
LGP-MVS_train94.10 21996.16 21288.26 23597.46 16191.29 15890.12 23297.16 13979.05 25698.73 17892.25 15191.89 23795.31 280
cascas91.20 24190.08 25494.58 19994.97 27489.16 21393.65 33897.59 14479.90 36689.40 25692.92 32875.36 30198.36 21392.14 15494.75 19596.23 227
OPM-MVS93.28 15092.76 15194.82 18494.63 29690.77 15496.65 20597.18 19193.72 7591.68 19497.26 13479.33 25198.63 18992.13 15592.28 22895.07 293
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BP-MVS92.13 155
HQP-MVS93.19 15492.74 15494.54 20195.86 22389.33 20396.65 20597.39 17693.55 8090.14 22695.87 21080.95 22098.50 20092.13 15592.10 23495.78 250
DP-MVS Recon95.68 7595.12 8597.37 4999.19 3194.19 4097.03 16998.08 7488.35 25495.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
VPNet92.23 19991.31 20594.99 17395.56 23690.96 14597.22 15897.86 11592.96 11490.96 21496.62 17775.06 30398.20 22591.90 15983.65 34095.80 248
sss94.51 10693.80 11396.64 7297.07 15391.97 10396.32 23498.06 8288.94 23294.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
anonymousdsp92.16 20191.55 19693.97 22892.58 35189.55 19197.51 12497.42 17489.42 21788.40 28194.84 25980.66 22697.88 27891.87 16191.28 24994.48 325
test_fmvs383.21 33783.02 33483.78 36086.77 38268.34 38696.76 19394.91 32486.49 29784.14 34289.48 36536.04 39091.73 38291.86 16280.77 35591.26 372
ACMP89.59 1092.62 18192.14 17694.05 22296.40 20088.20 23897.36 14297.25 19091.52 15088.30 28496.64 16878.46 26898.72 18191.86 16291.48 24495.23 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HyFIR lowres test93.66 13792.92 14495.87 12798.24 8789.88 18194.58 30198.49 1985.06 32193.78 14895.78 21982.86 18798.67 18591.77 16495.71 17899.07 85
UGNet94.04 12393.28 13596.31 10096.85 16791.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31899.61 6991.72 16598.46 10898.13 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet93.37 14792.67 15795.47 15495.34 25192.83 7497.17 16298.58 1792.98 11290.13 23095.80 21588.37 10097.85 27991.71 16683.93 33595.73 257
DU-MVS92.90 17192.04 17895.49 15194.95 27692.83 7497.16 16398.24 4793.02 10690.13 23095.71 22283.47 17197.85 27991.71 16683.93 33595.78 250
Effi-MVS+-dtu93.08 16193.21 13792.68 28596.02 22183.25 32597.14 16596.72 23493.85 7291.20 21393.44 32283.08 18098.30 21891.69 16895.73 17796.50 222
UniMVSNet (Re)93.31 14992.55 16395.61 14395.39 24593.34 6497.39 13998.71 1193.14 10390.10 23494.83 26087.71 10998.03 25491.67 16983.99 33495.46 268
LCM-MVSNet-Re92.50 18292.52 16692.44 28796.82 17281.89 33696.92 18093.71 35292.41 12884.30 33894.60 27185.08 14897.03 33291.51 17097.36 14198.40 143
FC-MVSNet-test93.94 12693.57 11995.04 16995.48 24091.45 12498.12 4898.71 1193.37 9190.23 22596.70 16287.66 11097.85 27991.49 17190.39 26695.83 245
PMMVS92.86 17392.34 17194.42 20594.92 27986.73 27394.53 30396.38 25784.78 32694.27 13695.12 24983.13 17998.40 20791.47 17296.49 16498.12 160
Vis-MVSNetpermissive95.23 8794.81 8996.51 8397.18 14691.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268894.15 11593.51 12596.06 11798.27 8389.38 20095.18 28998.48 2185.60 31193.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
OMC-MVS95.09 9194.70 9396.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
MG-MVS95.61 7795.38 7796.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
ACMM89.79 892.96 16792.50 16794.35 20896.30 20588.71 22197.58 11797.36 18191.40 15790.53 21896.65 16779.77 24498.75 17691.24 17791.64 23995.59 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WTY-MVS94.71 10594.02 10996.79 7097.71 12392.05 10096.59 21497.35 18290.61 18794.64 12996.93 15086.41 13199.39 11191.20 17894.71 19798.94 97
tt080591.09 24590.07 25794.16 21795.61 23388.31 23297.56 11996.51 25189.56 21189.17 26595.64 22767.08 35598.38 21291.07 17988.44 28595.80 248
Anonymous2024052991.98 20790.73 22895.73 13698.14 9989.40 19997.99 6097.72 12879.63 36793.54 15397.41 12769.94 33899.56 8591.04 18091.11 25398.22 153
AUN-MVS91.76 21290.75 22794.81 18697.00 16288.57 22596.65 20596.49 25289.63 20992.15 18396.12 20078.66 26598.50 20090.83 18179.18 36197.36 196
mvsany_test383.59 33582.44 33987.03 35483.80 38573.82 37793.70 33490.92 37786.42 29882.51 35390.26 35846.76 38595.71 35490.82 18276.76 36891.57 367
CANet_DTU94.37 10893.65 11796.55 7896.46 19792.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25099.71 4690.76 18398.45 10997.82 177
ab-mvs93.57 14192.55 16396.64 7297.28 14291.96 10495.40 27797.45 16689.81 20793.22 16496.28 19279.62 24799.46 10390.74 18493.11 21798.50 130
CostFormer91.18 24490.70 22992.62 28694.84 28581.76 33794.09 32294.43 33684.15 33292.72 17393.77 31079.43 24998.20 22590.70 18592.18 23297.90 170
Anonymous20240521192.07 20490.83 22495.76 13198.19 9588.75 22097.58 11795.00 31986.00 30693.64 15097.45 12466.24 35999.53 9190.68 18692.71 22399.01 89
tpmrst91.44 22791.32 20491.79 30695.15 26779.20 36593.42 34395.37 30188.55 24893.49 15593.67 31582.49 19798.27 22090.41 18789.34 27697.90 170
thisisatest053093.03 16492.21 17595.49 15197.07 15389.11 21497.49 13092.19 36690.16 19794.09 14196.41 18676.43 29199.05 15190.38 18895.68 17998.31 149
UA-Net95.95 7095.53 7197.20 6197.67 12492.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 18997.35 14299.11 81
UniMVSNet_ETH3D91.34 23590.22 25094.68 19494.86 28487.86 25097.23 15797.46 16187.99 26289.90 24096.92 15366.35 35798.23 22290.30 19090.99 25697.96 167
tttt051792.96 16792.33 17294.87 18297.11 15187.16 26497.97 6792.09 36790.63 18593.88 14797.01 14876.50 28899.06 15090.29 19195.45 18298.38 145
FA-MVS(test-final)93.52 14392.92 14495.31 15896.77 17588.54 22794.82 29596.21 26689.61 21094.20 13895.25 24383.24 17599.14 13590.01 19296.16 16898.25 151
IS-MVSNet94.90 9894.52 10196.05 11897.67 12490.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20489.98 19397.86 12699.14 76
miper_enhance_ethall91.54 22391.01 21693.15 26795.35 25087.07 26693.97 32496.90 22286.79 29389.17 26593.43 32486.55 12897.64 29789.97 19486.93 29794.74 319
EI-MVSNet93.03 16492.88 14693.48 25595.77 22886.98 26796.44 21997.12 19690.66 18391.30 20697.64 11486.56 12798.05 25089.91 19590.55 26395.41 270
IterMVS-LS92.29 19591.94 18393.34 26096.25 20686.97 26896.57 21797.05 20690.67 18189.50 25594.80 26286.59 12697.64 29789.91 19586.11 30595.40 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2291.21 24090.56 23593.14 26896.09 21986.80 27094.41 30996.58 24887.80 26988.58 27893.99 30380.85 22597.62 30089.87 19786.93 29794.99 296
CDS-MVSNet94.14 11893.54 12195.93 12596.18 21091.46 12396.33 23397.04 20888.97 23193.56 15196.51 18187.55 11397.89 27789.80 19895.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WR-MVS92.34 19191.53 19794.77 19195.13 26990.83 15196.40 22797.98 10091.88 14489.29 26195.54 23382.50 19697.80 28489.79 19985.27 31595.69 259
NR-MVSNet92.34 19191.27 20895.53 14894.95 27693.05 7097.39 13998.07 7992.65 12384.46 33695.71 22285.00 14997.77 28889.71 20083.52 34195.78 250
Anonymous2023121190.63 26489.42 27794.27 21498.24 8789.19 21298.05 5497.89 10779.95 36588.25 28794.96 25272.56 32198.13 23289.70 20185.14 31795.49 263
testdata95.46 15598.18 9788.90 21897.66 13482.73 34797.03 5798.07 7690.06 7698.85 16689.67 20298.98 8798.64 122
Baseline_NR-MVSNet91.20 24190.62 23192.95 27493.83 32188.03 24497.01 17495.12 31588.42 25289.70 24695.13 24883.47 17197.44 31689.66 20383.24 34393.37 347
DPM-MVS95.69 7494.92 8798.01 1998.08 10495.71 995.27 28597.62 14190.43 19395.55 11397.07 14491.72 4699.50 9989.62 20498.94 8998.82 111
XXY-MVS92.16 20191.23 21094.95 17894.75 29090.94 14697.47 13197.43 17389.14 22488.90 26896.43 18579.71 24598.24 22189.56 20587.68 29095.67 261
miper_ehance_all_eth91.59 21891.13 21492.97 27395.55 23786.57 27894.47 30596.88 22587.77 27188.88 27094.01 30186.22 13397.54 30689.49 20686.93 29794.79 315
XVG-ACMP-BASELINE90.93 25490.21 25193.09 26994.31 30885.89 28895.33 28097.26 18891.06 17089.38 25795.44 23768.61 34398.60 19289.46 20791.05 25494.79 315
thisisatest051592.29 19591.30 20695.25 16096.60 18488.90 21894.36 31192.32 36587.92 26493.43 15794.57 27277.28 28399.00 15589.42 20895.86 17497.86 173
c3_l91.38 23090.89 21892.88 27795.58 23586.30 28294.68 29896.84 22988.17 25888.83 27394.23 29385.65 14297.47 31389.36 20984.63 32594.89 305
AdaColmapbinary94.34 10993.68 11696.31 10098.59 6691.68 11296.59 21497.81 12189.87 20292.15 18397.06 14583.62 17099.54 8989.34 21098.07 12297.70 181
TranMVSNet+NR-MVSNet92.50 18291.63 19395.14 16494.76 28892.07 9997.53 12398.11 7092.90 11689.56 25296.12 20083.16 17797.60 30289.30 21183.20 34495.75 255
D2MVS91.30 23790.95 21792.35 28994.71 29385.52 29396.18 24598.21 5188.89 23486.60 31993.82 30879.92 24297.95 26889.29 21290.95 25793.56 343
131492.81 17792.03 17995.14 16495.33 25489.52 19496.04 25097.44 17087.72 27486.25 32295.33 23983.84 16598.79 17089.26 21397.05 15297.11 206
v2v48291.59 21890.85 22293.80 23993.87 32088.17 24096.94 17996.88 22589.54 21289.53 25394.90 25681.70 21398.02 25589.25 21485.04 32195.20 288
114514_t93.95 12593.06 14096.63 7499.07 3791.61 11497.46 13397.96 10277.99 37393.00 16697.57 11986.14 13799.33 11589.22 21599.15 7598.94 97
PAPM_NR95.01 9294.59 9596.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21697.78 12998.97 93
baseline192.82 17691.90 18495.55 14797.20 14590.77 15497.19 16094.58 33492.20 13392.36 17896.34 19084.16 16298.21 22489.20 21783.90 33897.68 182
IB-MVS87.33 1789.91 28088.28 29394.79 19095.26 26187.70 25395.12 29193.95 34889.35 21987.03 31192.49 33470.74 33199.19 12889.18 21881.37 35297.49 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS89.66 993.87 12992.95 14396.63 7497.10 15292.49 8595.64 26996.64 24289.05 22793.00 16695.79 21885.77 14199.45 10589.16 21994.35 19997.96 167
V4291.58 22090.87 21993.73 24294.05 31588.50 22997.32 14796.97 21388.80 24189.71 24594.33 28582.54 19598.05 25089.01 22085.07 31994.64 323
sd_testset93.10 15992.45 16995.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19297.28 13175.35 30298.65 18788.99 22192.84 22097.28 201
OurMVSNet-221017-090.51 26790.19 25291.44 31593.41 33581.25 34096.98 17696.28 26091.68 14886.55 32096.30 19174.20 31197.98 25888.96 22287.40 29595.09 292
API-MVS94.84 10194.49 10295.90 12697.90 11492.00 10297.80 8997.48 15689.19 22394.81 12696.71 16088.84 9199.17 13188.91 22398.76 9596.53 220
test-LLR91.42 22891.19 21292.12 29694.59 29780.66 34694.29 31692.98 35891.11 16890.76 21692.37 33679.02 25898.07 24788.81 22496.74 15797.63 183
test-mter90.19 27689.54 27592.12 29694.59 29780.66 34694.29 31692.98 35887.68 27590.76 21692.37 33667.67 34798.07 24788.81 22496.74 15797.63 183
eth_miper_zixun_eth91.02 24990.59 23392.34 29195.33 25484.35 31194.10 32196.90 22288.56 24788.84 27294.33 28584.08 16397.60 30288.77 22684.37 33195.06 294
TAMVS94.01 12493.46 12795.64 14096.16 21290.45 16596.71 19896.89 22489.27 22193.46 15696.92 15387.29 12097.94 26988.70 22795.74 17698.53 126
Patchmatch-RL test87.38 30986.24 31290.81 32588.74 37778.40 36988.12 38393.17 35787.11 28882.17 35589.29 36681.95 20895.60 35888.64 22877.02 36698.41 142
baseline291.63 21690.86 22093.94 23294.33 30686.32 28195.92 25791.64 37189.37 21886.94 31594.69 26681.62 21498.69 18388.64 22894.57 19896.81 215
TESTMET0.1,190.06 27889.42 27791.97 29994.41 30480.62 34894.29 31691.97 36987.28 28590.44 22192.47 33568.79 34297.67 29488.50 23096.60 16297.61 187
Vis-MVSNet (Re-imp)94.15 11593.88 11294.95 17897.61 13187.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 27688.24 23197.97 12499.02 86
1112_ss93.37 14792.42 17096.21 11097.05 15890.99 14396.31 23596.72 23486.87 29289.83 24396.69 16486.51 12999.14 13588.12 23293.67 21198.50 130
CVMVSNet91.23 23991.75 18889.67 34095.77 22874.69 37596.44 21994.88 32685.81 30892.18 18297.64 11479.07 25595.58 35988.06 23395.86 17498.74 115
MAR-MVS94.22 11193.46 12796.51 8398.00 10792.19 9797.67 10397.47 15988.13 26193.00 16695.84 21284.86 15199.51 9687.99 23498.17 12097.83 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28195.22 12097.68 10790.25 7499.54 8987.95 23599.12 7998.49 132
CP-MVSNet91.89 20991.24 20993.82 23895.05 27288.57 22597.82 8698.19 5591.70 14788.21 28895.76 22081.96 20797.52 31087.86 23684.65 32495.37 276
v14890.99 25090.38 23992.81 28093.83 32185.80 28996.78 19296.68 23989.45 21688.75 27593.93 30582.96 18697.82 28387.83 23783.25 34294.80 313
v114491.37 23290.60 23293.68 24793.89 31988.23 23796.84 18797.03 21088.37 25389.69 24794.39 28182.04 20597.98 25887.80 23885.37 31294.84 307
DIV-MVS_self_test90.97 25290.33 24092.88 27795.36 24986.19 28694.46 30796.63 24587.82 26788.18 28994.23 29382.99 18397.53 30887.72 23985.57 30994.93 301
gm-plane-assit93.22 33978.89 36884.82 32593.52 31998.64 18887.72 239
GeoE93.89 12893.28 13595.72 13796.96 16489.75 18498.24 3996.92 22189.47 21592.12 18597.21 13784.42 15698.39 21187.71 24196.50 16399.01 89
cl____90.96 25390.32 24192.89 27695.37 24886.21 28594.46 30796.64 24287.82 26788.15 29094.18 29682.98 18497.54 30687.70 24285.59 30894.92 303
pmmvs490.93 25489.85 26494.17 21693.34 33790.79 15394.60 30096.02 27184.62 32787.45 30195.15 24681.88 21097.45 31587.70 24287.87 28994.27 335
Test_1112_low_res92.84 17591.84 18695.85 12997.04 15989.97 17995.53 27396.64 24285.38 31489.65 24995.18 24585.86 13999.10 13987.70 24293.58 21698.49 132
无先验95.79 26297.87 11183.87 33799.65 5887.68 24598.89 105
Fast-Effi-MVS+93.46 14492.75 15395.59 14496.77 17590.03 17396.81 18997.13 19588.19 25791.30 20694.27 29086.21 13498.63 18987.66 24696.46 16698.12 160
CNLPA94.28 11093.53 12296.52 8098.38 7892.55 8396.59 21496.88 22590.13 19991.91 18997.24 13585.21 14699.09 14287.64 24797.83 12797.92 169
v891.29 23890.53 23693.57 25294.15 31188.12 24297.34 14497.06 20588.99 22988.32 28394.26 29283.08 18098.01 25687.62 24883.92 33794.57 324
pmmvs589.86 28388.87 28692.82 27992.86 34486.23 28496.26 23895.39 29984.24 33187.12 30894.51 27474.27 31097.36 32287.61 24987.57 29194.86 306
Fast-Effi-MVS+-dtu92.29 19591.99 18193.21 26695.27 25885.52 29397.03 16996.63 24592.09 13889.11 26795.14 24780.33 23498.08 24387.54 25094.74 19696.03 239
OpenMVScopyleft89.19 1292.86 17391.68 19296.40 9395.34 25192.73 7898.27 3398.12 6784.86 32485.78 32597.75 10378.89 26399.74 4187.50 25198.65 9896.73 217
miper_lstm_enhance90.50 26890.06 25891.83 30395.33 25483.74 31993.86 33096.70 23887.56 27887.79 29593.81 30983.45 17396.92 33787.39 25284.62 32694.82 310
IterMVS-SCA-FT90.31 27089.81 26691.82 30495.52 23884.20 31494.30 31596.15 26890.61 18787.39 30494.27 29075.80 29796.44 34387.34 25386.88 30194.82 310
PLCcopyleft91.00 694.11 11993.43 13096.13 11498.58 6891.15 14196.69 20197.39 17687.29 28491.37 20296.71 16088.39 9999.52 9587.33 25497.13 15197.73 179
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm90.25 27289.74 27191.76 30993.92 31779.73 35993.98 32393.54 35488.28 25591.99 18893.25 32577.51 28297.44 31687.30 25587.94 28898.12 160
GA-MVS91.38 23090.31 24294.59 19594.65 29587.62 25494.34 31296.19 26790.73 17790.35 22393.83 30671.84 32397.96 26687.22 25693.61 21498.21 154
BH-untuned92.94 16992.62 16093.92 23597.22 14386.16 28796.40 22796.25 26390.06 20089.79 24496.17 19883.19 17698.35 21487.19 25797.27 14697.24 203
v14419291.06 24790.28 24493.39 25893.66 32787.23 26196.83 18897.07 20387.43 28089.69 24794.28 28981.48 21598.00 25787.18 25884.92 32394.93 301
RPSCF90.75 25990.86 22090.42 33296.84 16876.29 37395.61 27096.34 25883.89 33591.38 20197.87 9376.45 28998.78 17187.16 25992.23 22996.20 229
test_f80.57 34379.62 34583.41 36183.38 38767.80 38893.57 34193.72 35180.80 36277.91 37287.63 37733.40 39192.08 38187.14 26079.04 36390.34 376
PS-CasMVS91.55 22290.84 22393.69 24694.96 27588.28 23497.84 8398.24 4791.46 15388.04 29295.80 21579.67 24697.48 31287.02 26184.54 32995.31 280
pm-mvs190.72 26189.65 27493.96 22994.29 30989.63 18697.79 9096.82 23089.07 22586.12 32495.48 23678.61 26697.78 28686.97 26281.67 35094.46 326
IterMVS90.15 27789.67 27291.61 31195.48 24083.72 32094.33 31396.12 26989.99 20187.31 30794.15 29875.78 29996.27 34686.97 26286.89 30094.83 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP93.58 14092.98 14295.37 15798.40 7588.98 21697.18 16197.29 18787.75 27390.49 21997.10 14385.21 14699.50 9986.70 26496.72 15997.63 183
PVSNet86.66 1892.24 19891.74 19093.73 24297.77 12083.69 32292.88 35396.72 23487.91 26593.00 16694.86 25878.51 26799.05 15186.53 26597.45 13998.47 135
v119291.07 24690.23 24893.58 25193.70 32487.82 25196.73 19597.07 20387.77 27189.58 25094.32 28780.90 22497.97 26186.52 26685.48 31094.95 297
新几何197.32 5198.60 6593.59 5697.75 12381.58 35695.75 10697.85 9690.04 7799.67 5686.50 26799.13 7798.69 119
v1091.04 24890.23 24893.49 25494.12 31288.16 24197.32 14797.08 20188.26 25688.29 28594.22 29582.17 20497.97 26186.45 26884.12 33394.33 331
v192192090.85 25690.03 25993.29 26293.55 32886.96 26996.74 19497.04 20887.36 28289.52 25494.34 28480.23 23697.97 26186.27 26985.21 31694.94 299
MDTV_nov1_ep13_2view70.35 38293.10 35083.88 33693.55 15282.47 19886.25 27098.38 145
test_post192.81 35516.58 40080.53 22997.68 29386.20 271
SCA91.84 21091.18 21393.83 23795.59 23484.95 30694.72 29795.58 29390.82 17392.25 18193.69 31275.80 29798.10 23986.20 27195.98 17098.45 137
PAPR94.18 11293.42 13296.48 8697.64 12891.42 12595.55 27197.71 13288.99 22992.34 18095.82 21489.19 8599.11 13886.14 27397.38 14098.90 102
GBi-Net91.35 23390.27 24594.59 19596.51 19391.18 13797.50 12596.93 21788.82 23889.35 25894.51 27473.87 31297.29 32586.12 27488.82 27995.31 280
test191.35 23390.27 24594.59 19596.51 19391.18 13797.50 12596.93 21788.82 23889.35 25894.51 27473.87 31297.29 32586.12 27488.82 27995.31 280
FMVSNet391.78 21190.69 23095.03 17196.53 19292.27 9397.02 17196.93 21789.79 20889.35 25894.65 26977.01 28497.47 31386.12 27488.82 27995.35 277
EPMVS90.70 26289.81 26693.37 25994.73 29284.21 31393.67 33788.02 38589.50 21492.38 17793.49 32077.82 28097.78 28686.03 27792.68 22498.11 163
MVS91.71 21390.44 23795.51 14995.20 26491.59 11696.04 25097.45 16673.44 38187.36 30595.60 22985.42 14499.10 13985.97 27897.46 13595.83 245
testdata299.67 5685.96 279
K. test v387.64 30886.75 31090.32 33393.02 34379.48 36396.61 21192.08 36890.66 18380.25 36494.09 29967.21 35196.65 34285.96 27980.83 35494.83 308
WR-MVS_H92.00 20691.35 20293.95 23095.09 27189.47 19598.04 5598.68 1391.46 15388.34 28294.68 26785.86 13997.56 30485.77 28184.24 33294.82 310
gg-mvs-nofinetune87.82 30585.61 31794.44 20394.46 30189.27 20891.21 36784.61 39380.88 35989.89 24274.98 38771.50 32597.53 30885.75 28297.21 14896.51 221
tpm289.96 27989.21 28192.23 29594.91 28181.25 34093.78 33294.42 33780.62 36391.56 19793.44 32276.44 29097.94 26985.60 28392.08 23697.49 192
v124090.70 26289.85 26493.23 26493.51 33186.80 27096.61 21197.02 21187.16 28789.58 25094.31 28879.55 24897.98 25885.52 28485.44 31194.90 304
PEN-MVS91.20 24190.44 23793.48 25594.49 30087.91 24997.76 9198.18 5791.29 15887.78 29695.74 22180.35 23397.33 32385.46 28582.96 34595.19 291
QAPM93.45 14592.27 17396.98 6996.77 17592.62 8098.39 2698.12 6784.50 32988.27 28697.77 10282.39 20099.81 2985.40 28698.81 9398.51 129
EU-MVSNet88.72 29788.90 28588.20 34893.15 34174.21 37696.63 21094.22 34385.18 31887.32 30695.97 20576.16 29394.98 36485.27 28786.17 30395.41 270
BH-w/o92.14 20391.75 18893.31 26196.99 16385.73 29095.67 26695.69 28688.73 24389.26 26394.82 26182.97 18598.07 24785.26 28896.32 16796.13 235
FMVSNet291.31 23690.08 25494.99 17396.51 19392.21 9497.41 13496.95 21588.82 23888.62 27694.75 26473.87 31297.42 31885.20 28988.55 28495.35 277
PM-MVS83.48 33681.86 34288.31 34787.83 38077.59 37093.43 34291.75 37086.91 29080.63 36089.91 36244.42 38695.84 35285.17 29076.73 36991.50 369
LF4IMVS87.94 30487.25 30189.98 33792.38 35680.05 35794.38 31095.25 30987.59 27784.34 33794.74 26564.31 36497.66 29684.83 29187.45 29292.23 361
PatchmatchNetpermissive91.91 20891.35 20293.59 25095.38 24684.11 31593.15 34895.39 29989.54 21292.10 18693.68 31482.82 18998.13 23284.81 29295.32 18498.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs687.81 30686.19 31392.69 28491.32 36186.30 28297.34 14496.41 25680.59 36484.05 34594.37 28367.37 35097.67 29484.75 29379.51 36094.09 338
v7n90.76 25889.86 26393.45 25793.54 32987.60 25597.70 10297.37 17988.85 23587.65 29894.08 30081.08 21998.10 23984.68 29483.79 33994.66 322
SixPastTwentyTwo89.15 29088.54 29090.98 32293.49 33280.28 35496.70 19994.70 33090.78 17484.15 34195.57 23071.78 32497.71 29284.63 29585.07 31994.94 299
TDRefinement86.53 31684.76 32791.85 30282.23 38984.25 31296.38 22995.35 30284.97 32384.09 34394.94 25365.76 36298.34 21784.60 29674.52 37292.97 350
ACMH87.59 1690.53 26689.42 27793.87 23696.21 20787.92 24797.24 15396.94 21688.45 25183.91 34696.27 19371.92 32298.62 19184.43 29789.43 27595.05 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+87.92 1490.20 27589.18 28293.25 26396.48 19686.45 27996.99 17596.68 23988.83 23784.79 33596.22 19570.16 33598.53 19884.42 29888.04 28794.77 318
test_vis3_rt72.73 34970.55 35279.27 36480.02 39068.13 38793.92 32874.30 40176.90 37658.99 39073.58 39020.29 39995.37 36284.16 29972.80 37774.31 389
FE-MVS92.05 20591.05 21595.08 16796.83 17087.93 24693.91 32995.70 28486.30 30094.15 14094.97 25176.59 28799.21 12684.10 30096.86 15398.09 164
MS-PatchMatch90.27 27189.77 26891.78 30794.33 30684.72 30995.55 27196.73 23386.17 30486.36 32195.28 24271.28 32797.80 28484.09 30198.14 12192.81 353
PatchMatch-RL92.90 17192.02 18095.56 14598.19 9590.80 15295.27 28597.18 19187.96 26391.86 19195.68 22580.44 23198.99 15684.01 30297.54 13496.89 213
lessismore_v090.45 33191.96 35979.09 36787.19 38880.32 36394.39 28166.31 35897.55 30584.00 30376.84 36794.70 320
CMPMVSbinary62.92 2185.62 32884.92 32587.74 35089.14 37473.12 38094.17 31996.80 23173.98 37973.65 37894.93 25466.36 35697.61 30183.95 30491.28 24992.48 359
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVP-Stereo90.74 26090.08 25492.71 28393.19 34088.20 23895.86 25996.27 26186.07 30584.86 33494.76 26377.84 27997.75 28983.88 30598.01 12392.17 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LS3D93.57 14192.61 16196.47 8797.59 13491.61 11497.67 10397.72 12885.17 31990.29 22498.34 5484.60 15399.73 4283.85 30698.27 11598.06 166
DTE-MVSNet90.56 26589.75 27093.01 27193.95 31687.25 25997.64 11097.65 13690.74 17687.12 30895.68 22579.97 24197.00 33583.33 30781.66 35194.78 317
BH-RMVSNet92.72 18091.97 18294.97 17697.16 14787.99 24596.15 24695.60 29190.62 18691.87 19097.15 14178.41 26998.57 19683.16 30897.60 13398.36 147
pmmvs-eth3d86.22 32184.45 32891.53 31288.34 37887.25 25994.47 30595.01 31883.47 34279.51 36789.61 36469.75 33995.71 35483.13 30976.73 36991.64 365
FMVSNet189.88 28288.31 29294.59 19595.41 24491.18 13797.50 12596.93 21786.62 29587.41 30394.51 27465.94 36197.29 32583.04 31087.43 29395.31 280
MDTV_nov1_ep1390.76 22695.22 26280.33 35293.03 35195.28 30688.14 26092.84 17293.83 30681.34 21698.08 24382.86 31194.34 200
TR-MVS91.48 22690.59 23394.16 21796.40 20087.33 25695.67 26695.34 30587.68 27591.46 20095.52 23476.77 28698.35 21482.85 31293.61 21496.79 216
dmvs_re90.21 27489.50 27692.35 28995.47 24385.15 30195.70 26594.37 33990.94 17288.42 28093.57 31874.63 30795.67 35682.80 31389.57 27496.22 228
JIA-IIPM88.26 30287.04 30691.91 30093.52 33081.42 33989.38 37894.38 33880.84 36090.93 21580.74 38579.22 25397.92 27382.76 31491.62 24096.38 226
PVSNet_082.17 1985.46 32983.64 33290.92 32395.27 25879.49 36290.55 37195.60 29183.76 33883.00 35289.95 36171.09 32897.97 26182.75 31560.79 39195.31 280
ambc86.56 35683.60 38670.00 38385.69 38594.97 32180.60 36188.45 37037.42 38996.84 33982.69 31675.44 37192.86 352
USDC88.94 29287.83 29792.27 29394.66 29484.96 30593.86 33095.90 27587.34 28383.40 34895.56 23167.43 34998.19 22782.64 31789.67 27393.66 342
ITE_SJBPF92.43 28895.34 25185.37 29895.92 27391.47 15287.75 29796.39 18871.00 32997.96 26682.36 31889.86 27193.97 339
UnsupCasMVSNet_eth85.99 32484.45 32890.62 32989.97 36982.40 33293.62 33997.37 17989.86 20378.59 37092.37 33665.25 36395.35 36382.27 31970.75 37994.10 336
GG-mvs-BLEND93.62 24893.69 32589.20 21092.39 36083.33 39587.98 29489.84 36371.00 32996.87 33882.08 32095.40 18394.80 313
thres600view792.49 18491.60 19495.18 16297.91 11389.47 19597.65 10694.66 33192.18 13793.33 15994.91 25578.06 27699.10 13981.61 32194.06 20896.98 208
LTVRE_ROB88.41 1390.99 25089.92 26294.19 21596.18 21089.55 19196.31 23597.09 20087.88 26685.67 32695.91 20978.79 26498.57 19681.50 32289.98 26994.44 328
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 28489.15 28391.89 30194.92 27980.30 35393.11 34995.46 29886.28 30188.08 29192.65 33080.44 23198.52 19981.47 32389.92 27096.84 214
thres100view90092.43 18591.58 19594.98 17597.92 11289.37 20197.71 10094.66 33192.20 13393.31 16094.90 25678.06 27699.08 14481.40 32494.08 20596.48 223
tfpn200view992.38 18891.52 19894.95 17897.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27299.08 14481.40 32494.08 20596.48 223
thres40092.42 18691.52 19895.12 16697.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27299.08 14481.40 32494.08 20596.98 208
DP-MVS92.76 17891.51 20096.52 8098.77 5390.99 14397.38 14196.08 27082.38 34989.29 26197.87 9383.77 16699.69 5281.37 32796.69 16098.89 105
thres20092.23 19991.39 20194.75 19397.61 13189.03 21596.60 21395.09 31692.08 13993.28 16194.00 30278.39 27099.04 15481.26 32894.18 20196.19 230
CR-MVSNet90.82 25789.77 26893.95 23094.45 30287.19 26290.23 37395.68 28886.89 29192.40 17592.36 33980.91 22297.05 33181.09 32993.95 20997.60 188
MSDG91.42 22890.24 24794.96 17797.15 14988.91 21793.69 33696.32 25985.72 31086.93 31696.47 18380.24 23598.98 15780.57 33095.05 19096.98 208
dp88.90 29488.26 29490.81 32594.58 29976.62 37192.85 35494.93 32385.12 32090.07 23793.07 32675.81 29698.12 23780.53 33187.42 29497.71 180
tpm cat188.36 30087.21 30391.81 30595.13 26980.55 34992.58 35795.70 28474.97 37887.45 30191.96 34678.01 27898.17 22980.39 33288.74 28296.72 218
KD-MVS_self_test85.95 32584.95 32488.96 34589.55 37379.11 36695.13 29096.42 25585.91 30784.07 34490.48 35670.03 33794.82 36580.04 33372.94 37692.94 351
AllTest90.23 27388.98 28493.98 22697.94 11086.64 27496.51 21895.54 29485.38 31485.49 32896.77 15870.28 33399.15 13380.02 33492.87 21896.15 233
TestCases93.98 22697.94 11086.64 27495.54 29485.38 31485.49 32896.77 15870.28 33399.15 13380.02 33492.87 21896.15 233
ADS-MVSNet289.45 28788.59 28992.03 29895.86 22382.26 33390.93 36894.32 34283.23 34491.28 21091.81 34879.01 26095.99 34879.52 33691.39 24797.84 174
ADS-MVSNet89.89 28188.68 28893.53 25395.86 22384.89 30790.93 36895.07 31783.23 34491.28 21091.81 34879.01 26097.85 27979.52 33691.39 24797.84 174
our_test_388.78 29687.98 29691.20 32092.45 35482.53 32993.61 34095.69 28685.77 30984.88 33393.71 31179.99 24096.78 34179.47 33886.24 30294.28 334
EPNet_dtu91.71 21391.28 20792.99 27293.76 32383.71 32196.69 20195.28 30693.15 10287.02 31295.95 20783.37 17497.38 32179.46 33996.84 15497.88 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)88.94 29287.56 29893.08 27094.35 30588.45 23197.73 9595.23 31087.47 27984.26 33995.29 24079.86 24397.33 32379.44 34074.44 37393.45 346
EG-PatchMatch MVS87.02 31485.44 31891.76 30992.67 34885.00 30496.08 24996.45 25483.41 34379.52 36693.49 32057.10 37697.72 29179.34 34190.87 26092.56 357
Patchmtry88.64 29887.25 30192.78 28194.09 31386.64 27489.82 37695.68 28880.81 36187.63 29992.36 33980.91 22297.03 33278.86 34285.12 31894.67 321
FMVSNet587.29 31085.79 31691.78 30794.80 28787.28 25795.49 27495.28 30684.09 33383.85 34791.82 34762.95 36894.17 37078.48 34385.34 31493.91 340
COLMAP_ROBcopyleft87.81 1590.40 26989.28 28093.79 24097.95 10987.13 26596.92 18095.89 27782.83 34686.88 31897.18 13873.77 31599.29 12178.44 34493.62 21394.95 297
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052186.42 31885.44 31889.34 34390.33 36679.79 35896.73 19595.92 27383.71 33983.25 34991.36 35263.92 36596.01 34778.39 34585.36 31392.22 362
test0.0.03 189.37 28988.70 28791.41 31692.47 35385.63 29195.22 28892.70 36291.11 16886.91 31793.65 31679.02 25893.19 37978.00 34689.18 27795.41 270
MIMVSNet88.50 29986.76 30993.72 24494.84 28587.77 25291.39 36394.05 34586.41 29987.99 29392.59 33363.27 36695.82 35377.44 34792.84 22097.57 190
MDA-MVSNet_test_wron85.87 32684.23 33090.80 32792.38 35682.57 32893.17 34695.15 31382.15 35067.65 38292.33 34278.20 27195.51 36077.33 34879.74 35794.31 333
YYNet185.87 32684.23 33090.78 32892.38 35682.46 33193.17 34695.14 31482.12 35167.69 38192.36 33978.16 27495.50 36177.31 34979.73 35894.39 329
UnsupCasMVSNet_bld82.13 34179.46 34690.14 33588.00 37982.47 33090.89 37096.62 24778.94 37075.61 37484.40 38356.63 37796.31 34577.30 35066.77 38691.63 366
KD-MVS_2432*160084.81 33282.64 33691.31 31791.07 36385.34 29991.22 36595.75 28285.56 31283.09 35090.21 35967.21 35195.89 34977.18 35162.48 38992.69 354
miper_refine_blended84.81 33282.64 33691.31 31791.07 36385.34 29991.22 36595.75 28285.56 31283.09 35090.21 35967.21 35195.89 34977.18 35162.48 38992.69 354
PCF-MVS89.48 1191.56 22189.95 26096.36 9896.60 18492.52 8492.51 35897.26 18879.41 36888.90 26896.56 17984.04 16499.55 8777.01 35397.30 14597.01 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testgi87.97 30387.21 30390.24 33492.86 34480.76 34496.67 20494.97 32191.74 14685.52 32795.83 21362.66 36994.47 36876.25 35488.36 28695.48 264
TinyColmap86.82 31585.35 32191.21 31994.91 28182.99 32693.94 32694.02 34783.58 34081.56 35694.68 26762.34 37098.13 23275.78 35587.35 29692.52 358
ppachtmachnet_test88.35 30187.29 30091.53 31292.45 35483.57 32393.75 33395.97 27284.28 33085.32 33194.18 29679.00 26296.93 33675.71 35684.99 32294.10 336
PAPM91.52 22490.30 24395.20 16195.30 25789.83 18293.38 34496.85 22886.26 30288.59 27795.80 21584.88 15098.15 23075.67 35795.93 17297.63 183
WAC-MVS79.53 36075.56 358
myMVS_eth3d87.18 31186.38 31189.58 34195.16 26579.53 36095.00 29293.93 34988.55 24886.96 31391.99 34456.23 37894.00 37275.47 35994.11 20295.20 288
CL-MVSNet_self_test86.31 32085.15 32289.80 33988.83 37681.74 33893.93 32796.22 26486.67 29485.03 33290.80 35578.09 27594.50 36674.92 36071.86 37893.15 349
tfpnnormal89.70 28688.40 29193.60 24995.15 26790.10 17297.56 11998.16 6187.28 28586.16 32394.63 27077.57 28198.05 25074.48 36184.59 32792.65 356
DSMNet-mixed86.34 31986.12 31587.00 35589.88 37070.43 38194.93 29490.08 37977.97 37485.42 33092.78 32974.44 30993.96 37474.43 36295.14 18696.62 219
Patchmatch-test89.42 28887.99 29593.70 24595.27 25885.11 30288.98 37994.37 33981.11 35787.10 31093.69 31282.28 20197.50 31174.37 36394.76 19498.48 134
LCM-MVSNet72.55 35069.39 35482.03 36270.81 39965.42 39190.12 37594.36 34155.02 39065.88 38481.72 38424.16 39889.96 38374.32 36468.10 38490.71 375
new-patchmatchnet83.18 33881.87 34187.11 35386.88 38175.99 37493.70 33495.18 31285.02 32277.30 37388.40 37165.99 36093.88 37574.19 36570.18 38091.47 370
testing387.67 30786.88 30890.05 33696.14 21580.71 34597.10 16792.85 36090.15 19887.54 30094.55 27355.70 37994.10 37173.77 36694.10 20495.35 277
MDA-MVSNet-bldmvs85.00 33082.95 33591.17 32193.13 34283.33 32494.56 30295.00 31984.57 32865.13 38692.65 33070.45 33295.85 35173.57 36777.49 36594.33 331
pmmvs379.97 34477.50 34987.39 35282.80 38879.38 36492.70 35690.75 37870.69 38278.66 36987.47 37951.34 38393.40 37773.39 36869.65 38189.38 378
test_method66.11 35764.89 35969.79 37572.62 39735.23 40665.19 39392.83 36120.35 39665.20 38588.08 37543.14 38782.70 39373.12 36963.46 38891.45 371
PatchT88.87 29587.42 29993.22 26594.08 31485.10 30389.51 37794.64 33381.92 35292.36 17888.15 37480.05 23997.01 33472.43 37093.65 21297.54 191
Anonymous2023120687.09 31386.14 31489.93 33891.22 36280.35 35196.11 24795.35 30283.57 34184.16 34093.02 32773.54 31795.61 35772.16 37186.14 30493.84 341
MVS-HIRNet82.47 34081.21 34386.26 35795.38 24669.21 38488.96 38089.49 38066.28 38480.79 35974.08 38968.48 34497.39 32071.93 37295.47 18192.18 363
new_pmnet82.89 33981.12 34488.18 34989.63 37180.18 35591.77 36292.57 36376.79 37775.56 37688.23 37361.22 37194.48 36771.43 37382.92 34689.87 377
TAPA-MVS90.10 792.30 19491.22 21195.56 14598.33 8089.60 18896.79 19097.65 13681.83 35391.52 19897.23 13687.94 10698.91 16371.31 37498.37 11198.17 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0386.14 32385.40 32088.35 34690.12 36780.06 35695.90 25895.20 31188.59 24481.29 35793.62 31771.43 32692.65 38071.26 37581.17 35392.34 360
tmp_tt51.94 36353.82 36346.29 38033.73 40345.30 40478.32 39067.24 40318.02 39750.93 39387.05 38052.99 38153.11 39970.76 37625.29 39740.46 395
MIMVSNet184.93 33183.05 33390.56 33089.56 37284.84 30895.40 27795.35 30283.91 33480.38 36292.21 34357.23 37593.34 37870.69 37782.75 34893.50 344
APD_test179.31 34577.70 34884.14 35989.11 37569.07 38592.36 36191.50 37269.07 38373.87 37792.63 33239.93 38894.32 36970.54 37880.25 35689.02 379
RPMNet88.98 29187.05 30594.77 19194.45 30287.19 26290.23 37398.03 9177.87 37592.40 17587.55 37880.17 23799.51 9668.84 37993.95 20997.60 188
N_pmnet78.73 34678.71 34778.79 36592.80 34646.50 40294.14 32043.71 40478.61 37180.83 35891.66 35074.94 30596.36 34467.24 38084.45 33093.50 344
OpenMVS_ROBcopyleft81.14 2084.42 33482.28 34090.83 32490.06 36884.05 31795.73 26494.04 34673.89 38080.17 36591.53 35159.15 37297.64 29766.92 38189.05 27890.80 374
PMMVS270.19 35266.92 35580.01 36376.35 39365.67 39086.22 38487.58 38764.83 38662.38 38780.29 38626.78 39688.49 39063.79 38254.07 39285.88 380
test_040286.46 31784.79 32691.45 31495.02 27385.55 29296.29 23794.89 32580.90 35882.21 35493.97 30468.21 34697.29 32562.98 38388.68 28391.51 368
DeepMVS_CXcopyleft74.68 37490.84 36564.34 39281.61 39765.34 38567.47 38388.01 37648.60 38480.13 39562.33 38473.68 37579.58 386
Syy-MVS87.13 31287.02 30787.47 35195.16 26573.21 37995.00 29293.93 34988.55 24886.96 31391.99 34475.90 29494.00 37261.59 38594.11 20295.20 288
testf169.31 35366.76 35676.94 36978.61 39161.93 39388.27 38186.11 39155.62 38859.69 38885.31 38120.19 40089.32 38457.62 38669.44 38279.58 386
APD_test269.31 35366.76 35676.94 36978.61 39161.93 39388.27 38186.11 39155.62 38859.69 38885.31 38120.19 40089.32 38457.62 38669.44 38279.58 386
EGC-MVSNET68.77 35563.01 36086.07 35892.49 35282.24 33493.96 32590.96 3760.71 4012.62 40290.89 35453.66 38093.46 37657.25 38884.55 32882.51 384
dmvs_testset81.38 34282.60 33877.73 36691.74 36051.49 39993.03 35184.21 39489.07 22578.28 37191.25 35376.97 28588.53 38956.57 38982.24 34993.16 348
FPMVS71.27 35169.85 35375.50 37274.64 39459.03 39591.30 36491.50 37258.80 38757.92 39188.28 37229.98 39485.53 39253.43 39082.84 34781.95 385
ANet_high63.94 35859.58 36177.02 36861.24 40166.06 38985.66 38687.93 38678.53 37242.94 39471.04 39125.42 39780.71 39452.60 39130.83 39584.28 383
Gipumacopyleft67.86 35665.41 35875.18 37392.66 34973.45 37866.50 39294.52 33553.33 39157.80 39266.07 39230.81 39289.20 38648.15 39278.88 36462.90 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 35955.40 36268.12 37651.00 40248.64 40078.86 38987.10 38946.77 39235.84 39874.28 3888.76 40286.34 39142.07 39373.91 37469.38 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 36148.81 36666.58 37765.34 40057.50 39672.49 39170.94 40240.15 39539.28 39763.51 3936.89 40473.48 39838.29 39442.38 39368.76 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS76.77 34776.63 35077.18 36785.32 38356.82 39794.53 30389.39 38182.66 34871.35 37989.18 36775.03 30488.88 38735.42 39566.79 38585.84 381
SSC-MVS76.05 34875.83 35176.72 37184.77 38456.22 39894.32 31488.96 38381.82 35470.52 38088.91 36874.79 30688.71 38833.69 39664.71 38785.23 382
E-PMN53.28 36052.56 36455.43 37874.43 39547.13 40183.63 38876.30 39842.23 39342.59 39562.22 39428.57 39574.40 39631.53 39731.51 39444.78 393
EMVS52.08 36251.31 36554.39 37972.62 39745.39 40383.84 38775.51 40041.13 39440.77 39659.65 39530.08 39373.60 39728.31 39829.90 39644.18 394
wuyk23d25.11 36424.57 36826.74 38173.98 39639.89 40557.88 3949.80 40512.27 39810.39 3996.97 4017.03 40336.44 40025.43 39917.39 3983.89 398
testmvs13.36 36616.33 3694.48 3835.04 4042.26 40893.18 3453.28 4062.70 3998.24 40021.66 3972.29 4062.19 4017.58 4002.96 3999.00 397
test12313.04 36715.66 3705.18 3824.51 4053.45 40792.50 3591.81 4072.50 4007.58 40120.15 3983.67 4052.18 4027.13 4011.07 4009.90 396
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.24 36530.99 3670.00 3840.00 4060.00 4090.00 39597.63 1400.00 4020.00 40396.88 15584.38 1570.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.39 3699.85 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40288.65 950.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.06 36810.74 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40396.69 1640.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 406
eth-test0.00 406
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 137
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
MTGPAbinary98.08 74
test_post17.58 39981.76 21198.08 243
patchmatchnet-post90.45 35782.65 19498.10 239
MTMP97.86 7982.03 396
TEST998.70 5694.19 4096.41 22398.02 9488.17 25896.03 9597.56 12192.74 3099.59 74
test_898.67 5894.06 4796.37 23098.01 9788.58 24595.98 9997.55 12392.73 3199.58 77
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
test_prior493.66 5596.42 222
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
新几何295.79 262
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
原ACMM295.67 266
test22298.24 8792.21 9495.33 28097.60 14279.22 36995.25 11897.84 9888.80 9299.15 7598.72 116
segment_acmp92.89 27
testdata195.26 28793.10 105
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
plane_prior796.21 20789.98 178
plane_prior696.10 21890.00 17481.32 217
plane_prior496.64 168
plane_prior390.00 17494.46 5491.34 203
plane_prior297.74 9394.85 34
plane_prior196.14 215
plane_prior89.99 17697.24 15394.06 6592.16 233
n20.00 408
nn0.00 408
door-mid91.06 375
test1197.88 109
door91.13 374
HQP5-MVS89.33 203
HQP-NCC95.86 22396.65 20593.55 8090.14 226
ACMP_Plane95.86 22396.65 20593.55 8090.14 226
HQP4-MVS90.14 22698.50 20095.78 250
HQP3-MVS97.39 17692.10 234
HQP2-MVS80.95 220
NP-MVS95.99 22289.81 18395.87 210
ACMMP++_ref90.30 267
ACMMP++91.02 255
Test By Simon88.73 94