This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM95.10 1194.91 1695.68 596.09 10688.34 996.68 3394.37 24495.08 194.68 4097.72 2682.94 8899.64 197.85 198.76 2999.06 7
test_fmvsmconf_n94.60 2194.81 1993.98 5894.62 17884.96 7796.15 5497.35 2289.37 6196.03 2398.11 686.36 4499.01 6697.45 297.83 7897.96 80
test_fmvsmconf0.1_n94.20 3694.31 3093.88 6292.46 26684.80 8096.18 5196.82 7189.29 6495.68 2898.11 685.10 6098.99 7397.38 397.75 8297.86 88
test_fmvsmconf0.01_n93.19 7093.02 6993.71 7289.25 36084.42 9796.06 6496.29 11389.06 7194.68 4098.13 479.22 13698.98 7797.22 497.24 9097.74 95
fmvsm_l_conf0.5_n94.29 3094.46 2493.79 6895.28 14185.43 7095.68 9096.43 10386.56 14696.84 1497.81 2587.56 3298.77 9697.14 596.82 10297.16 124
test_fmvsm_n_192094.71 2095.11 1093.50 7695.79 12084.62 8496.15 5497.64 289.85 4397.19 897.89 2286.28 4698.71 10297.11 698.08 7097.17 120
fmvsm_l_conf0.5_n_a94.20 3694.40 2693.60 7495.29 14084.98 7695.61 9796.28 11686.31 15296.75 1697.86 2487.40 3398.74 9997.07 797.02 9597.07 126
MVS_030494.18 3993.80 4995.34 994.91 16387.62 1495.97 7293.01 28492.58 394.22 4597.20 4680.56 11899.59 897.04 898.68 3798.81 17
fmvsm_s_conf0.5_n93.76 5094.06 4492.86 10395.62 13083.17 13096.14 5696.12 13288.13 10695.82 2698.04 1983.43 8098.48 12196.97 996.23 11396.92 137
fmvsm_s_conf0.1_n93.46 5793.66 5792.85 10493.75 22783.13 13296.02 6895.74 16487.68 12295.89 2598.17 282.78 9198.46 12596.71 1096.17 11496.98 133
fmvsm_s_conf0.5_n_a93.57 5493.76 5393.00 9595.02 15383.67 11396.19 4996.10 13487.27 12995.98 2498.05 1683.07 8798.45 12996.68 1195.51 12496.88 140
test_fmvsmvis_n_192093.44 5993.55 5993.10 8893.67 23184.26 10095.83 8396.14 12889.00 7792.43 9497.50 3083.37 8398.72 10096.61 1297.44 8696.32 159
fmvsm_s_conf0.1_n_a93.19 7093.26 6392.97 9792.49 26483.62 11696.02 6895.72 16786.78 14196.04 2298.19 182.30 9998.43 13396.38 1395.42 13096.86 141
MSC_two_6792asdad96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 7596.20 1998.10 889.39 1699.34 3795.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2997.71 198.07 1292.31 499.58 1095.66 1799.13 398.84 14
test_241102_TWO97.44 1590.31 2997.62 598.07 1291.46 1099.58 1095.66 1799.12 698.98 10
DVP-MVS++95.98 196.36 194.82 3197.78 5486.00 5098.29 197.49 690.75 1997.62 598.06 1492.59 299.61 495.64 1999.02 1298.86 11
test_0728_THIRD90.75 1997.04 1198.05 1692.09 699.55 1695.64 1999.13 399.13 2
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 8290.27 3297.04 1198.05 1691.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
IU-MVS98.77 586.00 5096.84 6881.26 28097.26 795.50 2399.13 399.03 8
reproduce_model94.76 1894.92 1594.29 5497.92 4385.18 7495.95 7597.19 3589.67 5495.27 3498.16 386.53 4399.36 3595.42 2498.15 6498.33 44
reproduce-ours94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7997.15 4189.82 4495.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
our_new_method94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7997.15 4189.82 4495.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
mamv490.92 10791.78 8988.33 28895.67 12770.75 37192.92 25196.02 14381.90 26088.11 16495.34 12885.88 5196.97 25695.22 2795.01 13897.26 115
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 11196.96 5592.09 695.32 3297.08 5289.49 1599.33 4095.10 2898.85 2098.66 21
MVSMamba_PlusPlus93.44 5993.54 6093.14 8696.58 8783.05 13896.06 6496.50 10084.42 20194.09 4995.56 12185.01 6698.69 10394.96 2998.66 4197.67 99
balanced_conf0393.98 4594.22 3593.26 8096.13 10183.29 12696.27 4596.52 9889.82 4495.56 3095.51 12284.50 7198.79 9494.83 3098.86 1997.72 96
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6989.90 1299.30 4394.70 3198.04 7199.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4697.28 3185.90 16297.67 398.10 888.41 2099.56 1294.66 3299.19 198.71 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft95.57 495.67 495.25 1198.36 2587.28 1895.56 10197.51 589.13 7097.14 997.91 2191.64 799.62 294.61 3399.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.85 1494.94 1494.58 4298.25 2986.33 4296.11 5996.62 9188.14 10596.10 2096.96 5889.09 1898.94 8194.48 3498.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.96 1395.33 893.88 6297.25 7286.69 2896.19 4997.11 4690.42 2796.95 1397.27 4089.53 1496.91 26194.38 3598.85 2098.03 77
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVS-pluss94.21 3494.00 4594.85 2598.17 3386.65 3194.82 14297.17 4086.26 15492.83 7997.87 2385.57 5499.56 1294.37 3698.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7586.33 4297.33 797.30 2991.38 1295.39 3197.46 3288.98 1999.40 3094.12 3798.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
patch_mono-293.74 5194.32 2892.01 14097.54 6078.37 26293.40 22797.19 3588.02 10894.99 3997.21 4488.35 2198.44 13194.07 3898.09 6899.23 1
DeepPCF-MVS89.96 194.20 3694.77 2092.49 12396.52 9180.00 22594.00 20297.08 4790.05 3695.65 2997.29 3989.66 1398.97 7893.95 3998.71 3298.50 27
ACMMP_NAP94.74 1994.56 2295.28 1098.02 4187.70 1195.68 9097.34 2388.28 9995.30 3397.67 2885.90 5099.54 2093.91 4098.95 1598.60 23
SF-MVS94.97 1294.90 1895.20 1297.84 5087.76 1096.65 3497.48 1087.76 12095.71 2797.70 2788.28 2399.35 3693.89 4198.78 2698.48 30
EC-MVSNet93.44 5993.71 5592.63 11695.21 14682.43 15897.27 996.71 8590.57 2692.88 7695.80 11183.16 8498.16 15293.68 4298.14 6597.31 112
CS-MVS94.12 4094.44 2593.17 8496.55 8883.08 13797.63 396.95 5791.71 1193.50 6596.21 8985.61 5298.24 14693.64 4398.17 6298.19 64
dcpmvs_293.49 5694.19 3991.38 17497.69 5776.78 29594.25 18096.29 11388.33 9694.46 4296.88 6188.07 2598.64 10893.62 4498.09 6898.73 18
MCST-MVS94.45 2494.20 3895.19 1398.46 1987.50 1695.00 13097.12 4487.13 13192.51 9296.30 8689.24 1799.34 3793.46 4598.62 4698.73 18
MTAPA94.42 2894.22 3595.00 1898.42 2186.95 2194.36 17796.97 5391.07 1393.14 7097.56 2984.30 7399.56 1293.43 4698.75 3098.47 33
test_vis1_n_192089.39 15389.84 12588.04 29692.97 25672.64 34894.71 15096.03 14286.18 15691.94 10696.56 8161.63 33095.74 32593.42 4795.11 13795.74 189
HPM-MVS++copyleft95.14 1094.91 1695.83 498.25 2989.65 495.92 7696.96 5591.75 994.02 5396.83 6488.12 2499.55 1693.41 4898.94 1698.28 54
SR-MVS94.23 3394.17 4094.43 4798.21 3285.78 6396.40 3896.90 6288.20 10394.33 4497.40 3584.75 6999.03 6193.35 4997.99 7298.48 30
9.1494.47 2397.79 5296.08 6097.44 1586.13 16095.10 3797.40 3588.34 2299.22 4793.25 5098.70 34
test_vis1_n86.56 25086.49 21786.78 33288.51 36672.69 34594.68 15193.78 26979.55 30190.70 12695.31 12948.75 39193.28 36893.15 5193.99 15894.38 247
BP-MVS192.48 8292.07 8593.72 7194.50 18784.39 9895.90 7794.30 24790.39 2892.67 8795.94 10374.46 19298.65 10693.14 5297.35 8998.13 68
CANet93.54 5593.20 6694.55 4395.65 12885.73 6594.94 13396.69 8791.89 890.69 12795.88 10781.99 10999.54 2093.14 5297.95 7498.39 39
SPE-MVS-test94.02 4294.29 3193.24 8196.69 8183.24 12797.49 596.92 6092.14 592.90 7595.77 11385.02 6398.33 14193.03 5498.62 4698.13 68
test_fmvs1_n87.03 23487.04 19586.97 32589.74 35571.86 35594.55 15894.43 24178.47 31891.95 10595.50 12351.16 38693.81 36093.02 5594.56 14995.26 205
test_fmvs187.34 21787.56 18186.68 33390.59 33771.80 35794.01 20094.04 25978.30 32291.97 10395.22 13356.28 36693.71 36292.89 5694.71 14394.52 237
NCCC94.81 1794.69 2195.17 1497.83 5187.46 1795.66 9396.93 5992.34 493.94 5496.58 7987.74 2799.44 2992.83 5798.40 5498.62 22
SR-MVS-dyc-post93.82 4893.82 4893.82 6597.92 4384.57 8696.28 4396.76 7887.46 12593.75 5797.43 3384.24 7499.01 6692.73 5897.80 7997.88 86
RE-MVS-def93.68 5697.92 4384.57 8696.28 4396.76 7887.46 12593.75 5797.43 3382.94 8892.73 5897.80 7997.88 86
TSAR-MVS + GP.93.66 5393.41 6194.41 4996.59 8586.78 2694.40 16993.93 26189.77 5194.21 4695.59 12087.35 3498.61 11392.72 6096.15 11597.83 91
APD-MVS_3200maxsize93.78 4993.77 5293.80 6797.92 4384.19 10196.30 4196.87 6586.96 13593.92 5597.47 3183.88 7898.96 8092.71 6197.87 7698.26 60
PC_three_145282.47 24497.09 1097.07 5492.72 198.04 16992.70 6299.02 1298.86 11
mmtdpeth85.04 28584.15 28287.72 30493.11 24775.74 31194.37 17592.83 28884.98 18589.31 14886.41 37361.61 33297.14 24492.63 6362.11 40190.29 369
PHI-MVS93.89 4793.65 5894.62 4196.84 7886.43 3996.69 3297.49 685.15 18193.56 6396.28 8785.60 5399.31 4292.45 6498.79 2498.12 71
HPM-MVScopyleft94.02 4293.88 4794.43 4798.39 2385.78 6397.25 1097.07 4886.90 13992.62 8996.80 6884.85 6899.17 5092.43 6598.65 4498.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
alignmvs93.08 7292.50 8094.81 3295.62 13087.61 1595.99 7096.07 13789.77 5194.12 4894.87 14880.56 11898.66 10492.42 6693.10 17998.15 67
sasdasda93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10590.00 3894.09 4994.60 16282.33 9798.62 11192.40 6792.86 18398.27 56
ZNCC-MVS94.47 2394.28 3295.03 1698.52 1586.96 2096.85 2897.32 2788.24 10093.15 6997.04 5586.17 4799.62 292.40 6798.81 2398.52 26
canonicalmvs93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10590.00 3894.09 4994.60 16282.33 9798.62 11192.40 6792.86 18398.27 56
HFP-MVS94.52 2294.40 2694.86 2498.61 1086.81 2596.94 2097.34 2388.63 8793.65 5997.21 4486.10 4899.49 2692.35 7098.77 2898.30 49
ACMMPR94.43 2694.28 3294.91 2198.63 986.69 2896.94 2097.32 2788.63 8793.53 6497.26 4285.04 6299.54 2092.35 7098.78 2698.50 27
MGCFI-Net93.03 7392.63 7794.23 5695.62 13085.92 5796.08 6096.33 11189.86 4293.89 5694.66 15982.11 10498.50 11992.33 7292.82 18698.27 56
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 5292.59 298.94 8192.25 7398.99 1498.84 14
region2R94.43 2694.27 3494.92 2098.65 886.67 3096.92 2497.23 3488.60 9093.58 6197.27 4085.22 5899.54 2092.21 7498.74 3198.56 25
DeepC-MVS88.79 393.31 6592.99 7094.26 5596.07 10885.83 6194.89 13696.99 5189.02 7689.56 14297.37 3782.51 9499.38 3192.20 7598.30 5797.57 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++93.72 5294.08 4192.65 11597.31 6883.43 12195.79 8597.33 2590.03 3793.58 6196.96 5884.87 6797.76 18492.19 7698.66 4196.76 144
CP-MVS94.34 2994.21 3794.74 3798.39 2386.64 3297.60 497.24 3288.53 9292.73 8597.23 4385.20 5999.32 4192.15 7798.83 2298.25 61
train_agg93.44 5993.08 6794.52 4497.53 6186.49 3794.07 19496.78 7581.86 26392.77 8296.20 9087.63 2999.12 5492.14 7898.69 3597.94 81
diffmvspermissive91.37 10091.23 9791.77 16093.09 24880.27 21292.36 26795.52 18387.03 13491.40 12094.93 14480.08 12397.44 21292.13 7994.56 14997.61 102
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3390.80 11090.15 11692.75 10996.01 11082.66 15495.43 10395.53 18289.80 4793.08 7195.64 11875.77 17299.00 7192.07 8078.05 36296.60 150
hse-mvs289.88 13789.34 13691.51 16894.83 16881.12 19193.94 20593.91 26489.80 4793.08 7193.60 20175.77 17297.66 19192.07 8077.07 36995.74 189
casdiffmvs_mvgpermissive92.96 7592.83 7393.35 7794.59 17983.40 12395.00 13096.34 11090.30 3192.05 10096.05 9883.43 8098.15 15392.07 8095.67 12198.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft94.25 3194.07 4294.77 3598.47 1886.31 4496.71 3196.98 5289.04 7391.98 10297.19 4785.43 5699.56 1292.06 8398.79 2498.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZD-MVS98.15 3486.62 3397.07 4883.63 21694.19 4796.91 6087.57 3199.26 4591.99 8498.44 53
EI-MVSNet-Vis-set93.01 7492.92 7193.29 7895.01 15483.51 12094.48 16195.77 16190.87 1592.52 9196.67 7184.50 7199.00 7191.99 8494.44 15497.36 111
XVS94.45 2494.32 2894.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7797.16 5085.02 6399.49 2691.99 8498.56 5098.47 33
X-MVStestdata88.31 18286.13 22994.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7723.41 42085.02 6399.49 2691.99 8498.56 5098.47 33
test9_res91.91 8898.71 3298.07 73
MVS_111021_HR93.45 5893.31 6293.84 6496.99 7584.84 7893.24 23997.24 3288.76 8291.60 11695.85 10886.07 4998.66 10491.91 8898.16 6398.03 77
APD-MVScopyleft94.24 3294.07 4294.75 3698.06 3986.90 2395.88 7896.94 5885.68 16895.05 3897.18 4887.31 3599.07 5691.90 9098.61 4898.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
RRT-MVS90.85 10990.70 10891.30 17794.25 20176.83 29494.85 14096.13 13189.04 7390.23 13394.88 14770.15 25398.72 10091.86 9194.88 14098.34 42
MVS_111021_LR92.47 8392.29 8392.98 9695.99 11484.43 9593.08 24496.09 13588.20 10391.12 12395.72 11681.33 11497.76 18491.74 9297.37 8896.75 145
ETV-MVS92.74 7892.66 7692.97 9795.20 14784.04 10595.07 12696.51 9990.73 2292.96 7491.19 28284.06 7598.34 13991.72 9396.54 10796.54 155
test_cas_vis1_n_192088.83 17088.85 15188.78 27391.15 31476.72 29693.85 21094.93 21983.23 23092.81 8096.00 9961.17 34194.45 34791.67 9494.84 14195.17 208
EI-MVSNet-UG-set92.74 7892.62 7893.12 8794.86 16683.20 12994.40 16995.74 16490.71 2392.05 10096.60 7884.00 7698.99 7391.55 9593.63 16497.17 120
test_prior294.12 18787.67 12392.63 8896.39 8586.62 4091.50 9698.67 40
mPP-MVS93.99 4493.78 5194.63 4098.50 1685.90 6096.87 2696.91 6188.70 8591.83 11197.17 4983.96 7799.55 1691.44 9798.64 4598.43 38
GST-MVS94.21 3493.97 4694.90 2398.41 2286.82 2496.54 3697.19 3588.24 10093.26 6696.83 6485.48 5599.59 891.43 9898.40 5498.30 49
DELS-MVS93.43 6393.25 6493.97 5995.42 13785.04 7593.06 24697.13 4390.74 2191.84 10995.09 14186.32 4599.21 4891.22 9998.45 5297.65 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
nrg03091.08 10690.39 11093.17 8493.07 24986.91 2296.41 3796.26 11888.30 9888.37 16394.85 15182.19 10397.64 19491.09 10082.95 30594.96 217
baseline92.39 8592.29 8392.69 11494.46 19081.77 17294.14 18696.27 11789.22 6691.88 10796.00 9982.35 9697.99 17391.05 10195.27 13598.30 49
xiu_mvs_v1_base_debu90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
xiu_mvs_v1_base90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
xiu_mvs_v1_base_debi90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
VDD-MVS90.74 11289.92 12493.20 8396.27 9783.02 14095.73 8793.86 26588.42 9592.53 9096.84 6362.09 32698.64 10890.95 10592.62 18897.93 83
casdiffmvspermissive92.51 8192.43 8192.74 11094.41 19481.98 16894.54 15996.23 12289.57 5691.96 10496.17 9482.58 9398.01 17190.95 10595.45 12998.23 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS_fast89.43 294.04 4193.79 5094.80 3397.48 6486.78 2695.65 9596.89 6389.40 6092.81 8096.97 5785.37 5799.24 4690.87 10798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft93.24 6892.88 7294.30 5398.09 3885.33 7296.86 2797.45 1488.33 9690.15 13797.03 5681.44 11299.51 2490.85 10895.74 12098.04 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS93.96 4693.72 5494.68 3898.43 2086.22 4795.30 10997.78 187.45 12793.26 6697.33 3884.62 7099.51 2490.75 10998.57 4998.32 48
test_fmvs283.98 29984.03 28483.83 36287.16 38067.53 38893.93 20692.89 28677.62 32886.89 19393.53 20247.18 39592.02 38090.54 11086.51 27591.93 340
agg_prior290.54 11098.68 3798.27 56
HPM-MVS_fast93.40 6493.22 6593.94 6198.36 2584.83 7997.15 1396.80 7485.77 16592.47 9397.13 5182.38 9599.07 5690.51 11298.40 5497.92 84
lupinMVS90.92 10790.21 11393.03 9393.86 22183.88 10892.81 25593.86 26579.84 29791.76 11294.29 17277.92 15298.04 16990.48 11397.11 9197.17 120
jason90.80 11090.10 11792.90 10193.04 25283.53 11993.08 24494.15 25480.22 29191.41 11994.91 14576.87 15997.93 17890.28 11496.90 9897.24 116
jason: jason.
GDP-MVS92.04 8791.46 9393.75 7094.55 18484.69 8395.60 10096.56 9687.83 11793.07 7395.89 10673.44 21298.65 10690.22 11596.03 11797.91 85
reproduce_monomvs86.37 25885.87 24287.87 30193.66 23273.71 33293.44 22695.02 21188.61 8982.64 30291.94 25957.88 36096.68 26989.96 11679.71 35493.22 301
CSCG93.23 6993.05 6893.76 6998.04 4084.07 10396.22 4897.37 2184.15 20490.05 13895.66 11787.77 2699.15 5389.91 11798.27 5898.07 73
CPTT-MVS91.99 8891.80 8892.55 12098.24 3181.98 16896.76 3096.49 10181.89 26290.24 13296.44 8478.59 14498.61 11389.68 11897.85 7797.06 127
MVSFormer91.68 9691.30 9592.80 10693.86 22183.88 10895.96 7395.90 15284.66 19791.76 11294.91 14577.92 15297.30 22889.64 11997.11 9197.24 116
test_djsdf89.03 16388.64 15390.21 22290.74 33379.28 24595.96 7395.90 15284.66 19785.33 24392.94 22274.02 20297.30 22889.64 11988.53 24694.05 261
EIA-MVS91.95 8991.94 8691.98 14495.16 14980.01 22495.36 10496.73 8288.44 9389.34 14792.16 24683.82 7998.45 12989.35 12197.06 9397.48 108
mvsmamba90.33 12289.69 12792.25 13795.17 14881.64 17495.27 11493.36 27684.88 18889.51 14394.27 17569.29 26897.42 21489.34 12296.12 11697.68 98
Effi-MVS+91.59 9791.11 9993.01 9494.35 19983.39 12494.60 15595.10 20887.10 13290.57 12893.10 21881.43 11398.07 16789.29 12394.48 15297.59 104
ET-MVSNet_ETH3D87.51 21085.91 24192.32 13193.70 23083.93 10692.33 27090.94 34384.16 20372.09 38692.52 23569.90 25495.85 31889.20 12488.36 25297.17 120
PS-MVSNAJ91.18 10490.92 10391.96 14695.26 14482.60 15792.09 27995.70 16886.27 15391.84 10992.46 23679.70 12998.99 7389.08 12595.86 11994.29 249
xiu_mvs_v2_base91.13 10590.89 10591.86 15494.97 15782.42 15992.24 27395.64 17586.11 16191.74 11493.14 21679.67 13298.89 8489.06 12695.46 12894.28 250
SDMVSNet90.19 12689.61 12991.93 14896.00 11183.09 13692.89 25295.98 14488.73 8386.85 19495.20 13672.09 22897.08 24788.90 12789.85 22695.63 194
VNet92.24 8691.91 8793.24 8196.59 8583.43 12194.84 14196.44 10289.19 6894.08 5295.90 10577.85 15598.17 15188.90 12793.38 17398.13 68
PS-MVSNAJss89.97 13289.62 12891.02 19191.90 28480.85 19995.26 11595.98 14486.26 15486.21 21094.29 17279.70 12997.65 19288.87 12988.10 25494.57 234
XVG-OURS-SEG-HR89.95 13389.45 13191.47 17194.00 21681.21 18991.87 28396.06 13985.78 16488.55 15995.73 11574.67 19197.27 23288.71 13089.64 23195.91 180
jajsoiax88.24 18487.50 18290.48 21190.89 32780.14 21695.31 10795.65 17484.97 18684.24 27294.02 18265.31 30897.42 21488.56 13188.52 24793.89 265
mvs_tets88.06 19087.28 18990.38 21890.94 32379.88 22895.22 11795.66 17285.10 18284.21 27393.94 18763.53 31897.40 22288.50 13288.40 25193.87 269
VDDNet89.56 14488.49 16092.76 10895.07 15282.09 16596.30 4193.19 27981.05 28591.88 10796.86 6261.16 34298.33 14188.43 13392.49 19297.84 90
HQP_MVS90.60 12090.19 11491.82 15794.70 17482.73 15095.85 8196.22 12390.81 1786.91 19094.86 14974.23 19698.12 15488.15 13489.99 22094.63 229
plane_prior596.22 12398.12 15488.15 13489.99 22094.63 229
EPNet91.79 9191.02 10294.10 5790.10 34785.25 7396.03 6792.05 31092.83 287.39 18495.78 11279.39 13499.01 6688.13 13697.48 8598.05 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs377.67 35577.16 35279.22 37779.52 40761.14 40392.34 26991.64 32473.98 36478.86 34686.59 37027.38 41387.03 40188.12 13775.97 37389.50 375
OPM-MVS90.12 12789.56 13091.82 15793.14 24583.90 10794.16 18595.74 16488.96 7887.86 17195.43 12672.48 22497.91 17988.10 13890.18 21993.65 285
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVSTER88.84 16788.29 16690.51 20992.95 25780.44 20993.73 21495.01 21284.66 19787.15 18593.12 21772.79 22097.21 23987.86 13987.36 26893.87 269
3Dnovator+87.14 492.42 8491.37 9495.55 795.63 12988.73 697.07 1896.77 7790.84 1684.02 27696.62 7775.95 17199.34 3787.77 14097.68 8398.59 24
LPG-MVS_test89.45 14888.90 14891.12 18394.47 18881.49 17995.30 10996.14 12886.73 14385.45 23295.16 13869.89 25598.10 15687.70 14189.23 23893.77 279
LGP-MVS_train91.12 18394.47 18881.49 17996.14 12886.73 14385.45 23295.16 13869.89 25598.10 15687.70 14189.23 23893.77 279
MVS_Test91.31 10191.11 9991.93 14894.37 19580.14 21693.46 22595.80 15986.46 14991.35 12193.77 19782.21 10298.09 16487.57 14394.95 13997.55 107
PVSNet_Blended_VisFu91.38 9990.91 10492.80 10696.39 9483.17 13094.87 13896.66 8883.29 22789.27 14994.46 16780.29 12199.17 5087.57 14395.37 13196.05 177
CDPH-MVS92.83 7692.30 8294.44 4597.79 5286.11 4994.06 19696.66 8880.09 29492.77 8296.63 7686.62 4099.04 6087.40 14598.66 4198.17 66
XVG-OURS89.40 15288.70 15291.52 16794.06 21081.46 18191.27 29996.07 13786.14 15888.89 15595.77 11368.73 27797.26 23487.39 14689.96 22295.83 185
EPP-MVSNet91.70 9591.56 9292.13 13995.88 11780.50 20897.33 795.25 20086.15 15789.76 14195.60 11983.42 8298.32 14387.37 14793.25 17697.56 106
VPA-MVSNet89.62 14188.96 14491.60 16593.86 22182.89 14595.46 10297.33 2587.91 11188.43 16293.31 20874.17 19997.40 22287.32 14882.86 31094.52 237
LFMVS90.08 12889.13 14192.95 9996.71 8082.32 16396.08 6089.91 36386.79 14092.15 9996.81 6662.60 32498.34 13987.18 14993.90 16098.19 64
anonymousdsp87.84 19387.09 19290.12 22789.13 36180.54 20794.67 15295.55 17982.05 25383.82 28092.12 24971.47 23397.15 24187.15 15087.80 26392.67 320
CLD-MVS89.47 14788.90 14891.18 18294.22 20382.07 16692.13 27796.09 13587.90 11285.37 24192.45 23774.38 19497.56 19987.15 15090.43 21593.93 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BP-MVS87.11 152
HQP-MVS89.80 13889.28 13991.34 17694.17 20581.56 17594.39 17196.04 14088.81 7985.43 23593.97 18673.83 20697.96 17587.11 15289.77 22994.50 240
ACMP84.23 889.01 16588.35 16290.99 19494.73 17181.27 18595.07 12695.89 15486.48 14783.67 28494.30 17169.33 26497.99 17387.10 15488.55 24593.72 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
旧先验293.36 22871.25 38594.37 4397.13 24586.74 155
3Dnovator86.66 591.73 9490.82 10694.44 4594.59 17986.37 4197.18 1297.02 5089.20 6784.31 27196.66 7273.74 20899.17 5086.74 15597.96 7397.79 93
PVSNet_BlendedMVS89.98 13189.70 12690.82 19996.12 10281.25 18693.92 20796.83 6983.49 22189.10 15192.26 24481.04 11698.85 8986.72 15787.86 26092.35 332
PVSNet_Blended90.73 11390.32 11291.98 14496.12 10281.25 18692.55 26296.83 6982.04 25589.10 15192.56 23481.04 11698.85 8986.72 15795.91 11895.84 184
MonoMVSNet86.89 23886.55 21387.92 30089.46 35973.75 33194.12 18793.10 28087.82 11885.10 24690.76 29969.59 26094.94 34586.47 15982.50 31295.07 211
mvs_anonymous89.37 15489.32 13789.51 25793.47 23774.22 32791.65 29094.83 22782.91 23785.45 23293.79 19581.23 11596.36 29686.47 15994.09 15797.94 81
test111189.10 15888.64 15390.48 21195.53 13574.97 31896.08 6084.89 39488.13 10690.16 13696.65 7363.29 32098.10 15686.14 16196.90 9898.39 39
AUN-MVS87.78 19686.54 21491.48 17094.82 16981.05 19293.91 20993.93 26183.00 23486.93 18893.53 20269.50 26297.67 18986.14 16177.12 36895.73 191
test_yl90.69 11490.02 12292.71 11195.72 12382.41 16194.11 18995.12 20685.63 16991.49 11794.70 15574.75 18798.42 13486.13 16392.53 19097.31 112
DCV-MVSNet90.69 11490.02 12292.71 11195.72 12382.41 16194.11 18995.12 20685.63 16991.49 11794.70 15574.75 18798.42 13486.13 16392.53 19097.31 112
test250687.21 22686.28 22490.02 23395.62 13073.64 33496.25 4771.38 41887.89 11490.45 12996.65 7355.29 37298.09 16486.03 16596.94 9698.33 44
mvsany_test185.42 27485.30 26085.77 34487.95 37775.41 31587.61 37080.97 40476.82 33688.68 15795.83 10977.44 15690.82 39085.90 16686.51 27591.08 361
ECVR-MVScopyleft89.09 16088.53 15690.77 20195.62 13075.89 30896.16 5284.22 39687.89 11490.20 13496.65 7363.19 32298.10 15685.90 16696.94 9698.33 44
OMC-MVS91.23 10290.62 10993.08 9096.27 9784.07 10393.52 22295.93 14886.95 13689.51 14396.13 9678.50 14698.35 13885.84 16892.90 18296.83 143
ACMM84.12 989.14 15788.48 16191.12 18394.65 17781.22 18895.31 10796.12 13285.31 17785.92 21594.34 16870.19 25298.06 16885.65 16988.86 24394.08 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPM-MVS92.58 8091.74 9095.08 1596.19 9989.31 592.66 25896.56 9683.44 22291.68 11595.04 14286.60 4298.99 7385.60 17097.92 7596.93 136
Effi-MVS+-dtu88.65 17388.35 16289.54 25493.33 24176.39 30294.47 16494.36 24587.70 12185.43 23589.56 33173.45 21197.26 23485.57 17191.28 20294.97 214
tt080586.92 23685.74 25090.48 21192.22 27179.98 22695.63 9694.88 22383.83 21284.74 25492.80 22857.61 36197.67 18985.48 17284.42 28993.79 274
FIs90.51 12190.35 11190.99 19493.99 21780.98 19495.73 8797.54 489.15 6986.72 19794.68 15781.83 11197.24 23685.18 17388.31 25394.76 227
MG-MVS91.77 9291.70 9192.00 14397.08 7480.03 22393.60 22095.18 20487.85 11690.89 12596.47 8382.06 10798.36 13685.07 17497.04 9497.62 101
CANet_DTU90.26 12589.41 13492.81 10593.46 23883.01 14193.48 22394.47 24089.43 5987.76 17694.23 17770.54 24899.03 6184.97 17596.39 11196.38 158
UniMVSNet_NR-MVSNet89.92 13589.29 13891.81 15993.39 24083.72 11194.43 16797.12 4489.80 4786.46 20193.32 20783.16 8497.23 23784.92 17681.02 33594.49 242
DU-MVS89.34 15588.50 15891.85 15693.04 25283.72 11194.47 16496.59 9389.50 5786.46 20193.29 21077.25 15797.23 23784.92 17681.02 33594.59 232
cascas86.43 25784.98 26690.80 20092.10 27780.92 19790.24 32095.91 15173.10 37383.57 28888.39 34965.15 30997.46 20884.90 17891.43 20094.03 262
UniMVSNet (Re)89.80 13889.07 14292.01 14093.60 23484.52 8994.78 14597.47 1189.26 6586.44 20492.32 24182.10 10597.39 22584.81 17980.84 33994.12 255
Vis-MVSNetpermissive91.75 9391.23 9793.29 7895.32 13983.78 11096.14 5695.98 14489.89 4090.45 12996.58 7975.09 18398.31 14484.75 18096.90 9897.78 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v2v48287.84 19387.06 19390.17 22390.99 31979.23 24894.00 20295.13 20584.87 18985.53 22692.07 25574.45 19397.45 20984.71 18181.75 32393.85 272
DP-MVS Recon91.95 8991.28 9693.96 6098.33 2785.92 5794.66 15396.66 8882.69 24290.03 13995.82 11082.30 9999.03 6184.57 18296.48 11096.91 138
test_vis1_rt77.96 35476.46 35482.48 36985.89 38771.74 35990.25 31878.89 40871.03 38771.30 39081.35 39742.49 40391.05 38984.55 18382.37 31484.65 395
UA-Net92.83 7692.54 7993.68 7396.10 10584.71 8295.66 9396.39 10791.92 793.22 6896.49 8283.16 8498.87 8584.47 18495.47 12797.45 110
V4287.68 19886.86 19890.15 22590.58 33880.14 21694.24 18295.28 19983.66 21585.67 22191.33 27774.73 18997.41 22084.43 18581.83 32192.89 315
FC-MVSNet-test90.27 12490.18 11590.53 20693.71 22879.85 23095.77 8697.59 389.31 6386.27 20894.67 15881.93 11097.01 25484.26 18688.09 25694.71 228
cl2286.78 24185.98 23789.18 26492.34 26977.62 28490.84 30994.13 25681.33 27883.97 27890.15 31673.96 20396.60 27784.19 18782.94 30693.33 295
miper_enhance_ethall86.90 23786.18 22789.06 26791.66 29577.58 28590.22 32294.82 22879.16 30684.48 26089.10 33679.19 13796.66 27084.06 18882.94 30692.94 313
VPNet88.20 18587.47 18490.39 21693.56 23579.46 23694.04 19795.54 18188.67 8686.96 18794.58 16569.33 26497.15 24184.05 18980.53 34494.56 235
FA-MVS(test-final)89.66 14088.91 14791.93 14894.57 18280.27 21291.36 29594.74 23384.87 18989.82 14092.61 23374.72 19098.47 12483.97 19093.53 16797.04 129
UGNet89.95 13388.95 14592.95 9994.51 18683.31 12595.70 8995.23 20189.37 6187.58 17893.94 18764.00 31598.78 9583.92 19196.31 11296.74 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS88.36 18187.91 17589.70 24893.80 22478.29 26593.73 21495.08 21085.73 16684.75 25391.90 26179.88 12596.92 26083.83 19282.51 31193.89 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth87.22 22586.62 21089.02 26992.13 27577.40 28790.91 30894.81 22981.28 27984.32 26990.08 31979.26 13596.62 27283.81 19382.94 30693.04 310
EI-MVSNet89.10 15888.86 15089.80 24491.84 28678.30 26493.70 21795.01 21285.73 16687.15 18595.28 13079.87 12697.21 23983.81 19387.36 26893.88 268
c3_l87.14 23086.50 21689.04 26892.20 27277.26 28891.22 30294.70 23582.01 25684.34 26890.43 30878.81 14096.61 27583.70 19581.09 33293.25 299
Anonymous2024052988.09 18886.59 21192.58 11996.53 9081.92 17095.99 7095.84 15774.11 36389.06 15395.21 13561.44 33498.81 9283.67 19687.47 26597.01 131
v114487.61 20686.79 20290.06 23091.01 31879.34 24193.95 20495.42 19383.36 22685.66 22291.31 28074.98 18597.42 21483.37 19782.06 31793.42 294
thisisatest053088.67 17287.61 18091.86 15494.87 16580.07 21994.63 15489.90 36484.00 20788.46 16193.78 19666.88 29298.46 12583.30 19892.65 18797.06 127
tttt051788.61 17487.78 17791.11 18694.96 15877.81 27795.35 10589.69 36785.09 18388.05 16994.59 16466.93 29098.48 12183.27 19992.13 19597.03 130
testdata90.49 21096.40 9377.89 27495.37 19672.51 37893.63 6096.69 6982.08 10697.65 19283.08 20097.39 8795.94 179
LCM-MVSNet-Re88.30 18388.32 16588.27 28994.71 17372.41 35393.15 24090.98 34187.77 11979.25 34591.96 25878.35 14895.75 32483.04 20195.62 12296.65 149
IS-MVSNet91.43 9891.09 10192.46 12495.87 11981.38 18496.95 1993.69 27189.72 5389.50 14595.98 10178.57 14597.77 18383.02 20296.50 10998.22 63
UniMVSNet_ETH3D87.53 20986.37 21991.00 19392.44 26778.96 25094.74 14795.61 17684.07 20685.36 24294.52 16659.78 35097.34 22782.93 20387.88 25996.71 147
XVG-ACMP-BASELINE86.00 26284.84 27189.45 25891.20 30978.00 27091.70 28895.55 17985.05 18482.97 29792.25 24554.49 37697.48 20582.93 20387.45 26792.89 315
v14419287.19 22886.35 22089.74 24590.64 33678.24 26693.92 20795.43 19181.93 25885.51 22891.05 29074.21 19897.45 20982.86 20581.56 32593.53 288
v887.50 21286.71 20489.89 23891.37 30479.40 23894.50 16095.38 19484.81 19283.60 28791.33 27776.05 16897.42 21482.84 20680.51 34692.84 317
Anonymous2023121186.59 24985.13 26390.98 19696.52 9181.50 17796.14 5696.16 12773.78 36683.65 28592.15 24763.26 32197.37 22682.82 20781.74 32494.06 260
PAPM_NR91.22 10390.78 10792.52 12297.60 5981.46 18194.37 17596.24 12186.39 15187.41 18194.80 15382.06 10798.48 12182.80 20895.37 13197.61 102
eth_miper_zixun_eth86.50 25385.77 24788.68 27891.94 28175.81 31090.47 31494.89 22182.05 25384.05 27590.46 30775.96 17096.77 26582.76 20979.36 35793.46 293
Patchmatch-RL test81.67 32179.96 32786.81 33185.42 39171.23 36482.17 40187.50 38278.47 31877.19 35982.50 39570.81 24193.48 36582.66 21072.89 37995.71 192
tpmrst85.35 27684.99 26586.43 33690.88 32867.88 38488.71 35191.43 33180.13 29386.08 21388.80 34473.05 21796.02 30982.48 21183.40 30495.40 200
sss88.93 16688.26 16890.94 19794.05 21180.78 20191.71 28795.38 19481.55 27488.63 15893.91 19175.04 18495.47 33682.47 21291.61 19896.57 153
ab-mvs89.41 15088.35 16292.60 11795.15 15182.65 15592.20 27595.60 17783.97 20888.55 15993.70 20074.16 20098.21 15082.46 21389.37 23496.94 135
mvsany_test374.95 36173.26 36580.02 37674.61 41263.16 40185.53 38478.42 40974.16 36274.89 37586.46 37136.02 40889.09 39882.39 21466.91 39287.82 393
CostFormer85.77 26884.94 26888.26 29091.16 31372.58 35189.47 34091.04 34076.26 34286.45 20389.97 32270.74 24296.86 26482.35 21587.07 27395.34 204
v119287.25 22286.33 22190.00 23590.76 33279.04 24993.80 21195.48 18482.57 24385.48 23091.18 28473.38 21597.42 21482.30 21682.06 31793.53 288
Baseline_NR-MVSNet87.07 23286.63 20988.40 28391.44 29977.87 27594.23 18392.57 29684.12 20585.74 22092.08 25377.25 15796.04 30782.29 21779.94 35091.30 353
testing9986.72 24585.73 25189.69 24994.23 20274.91 32091.35 29690.97 34286.14 15886.36 20590.22 31259.41 35297.48 20582.24 21890.66 21296.69 148
Anonymous20240521187.68 19886.13 22992.31 13296.66 8280.74 20294.87 13891.49 32980.47 29089.46 14695.44 12454.72 37598.23 14782.19 21989.89 22497.97 79
v14887.04 23386.32 22289.21 26290.94 32377.26 28893.71 21694.43 24184.84 19184.36 26790.80 29776.04 16997.05 25282.12 22079.60 35593.31 296
testing9187.11 23186.18 22789.92 23794.43 19375.38 31791.53 29292.27 30486.48 14786.50 19990.24 31161.19 34097.53 20182.10 22190.88 21196.84 142
testing1186.44 25685.35 25989.69 24994.29 20075.40 31691.30 29790.53 35084.76 19385.06 24790.13 31758.95 35697.45 20982.08 22291.09 20796.21 166
114514_t89.51 14588.50 15892.54 12198.11 3681.99 16795.16 12296.36 10970.19 39085.81 21795.25 13276.70 16398.63 11082.07 22396.86 10197.00 132
v192192086.97 23586.06 23489.69 24990.53 34178.11 26993.80 21195.43 19181.90 26085.33 24391.05 29072.66 22197.41 22082.05 22481.80 32293.53 288
OurMVSNet-221017-085.35 27684.64 27587.49 31090.77 33172.59 35094.01 20094.40 24384.72 19579.62 34393.17 21461.91 32896.72 26681.99 22581.16 32993.16 305
v1087.25 22286.38 21889.85 23991.19 31079.50 23594.48 16195.45 18883.79 21383.62 28691.19 28275.13 18297.42 21481.94 22680.60 34192.63 322
TranMVSNet+NR-MVSNet88.84 16787.95 17391.49 16992.68 26283.01 14194.92 13596.31 11289.88 4185.53 22693.85 19476.63 16596.96 25781.91 22779.87 35294.50 240
D2MVS85.90 26485.09 26488.35 28590.79 33077.42 28691.83 28495.70 16880.77 28780.08 33590.02 32066.74 29596.37 29481.88 22887.97 25891.26 354
test-LLR85.87 26585.41 25587.25 31790.95 32171.67 36089.55 33689.88 36583.41 22384.54 25887.95 35667.25 28695.11 34181.82 22993.37 17494.97 214
test-mter84.54 29383.64 29187.25 31790.95 32171.67 36089.55 33689.88 36579.17 30584.54 25887.95 35655.56 36895.11 34181.82 22993.37 17494.97 214
PMMVS85.71 26984.96 26787.95 29888.90 36477.09 29088.68 35290.06 35972.32 38086.47 20090.76 29972.15 22794.40 34981.78 23193.49 16992.36 331
cl____86.52 25285.78 24588.75 27592.03 27976.46 30090.74 31094.30 24781.83 26583.34 29390.78 29875.74 17796.57 27881.74 23281.54 32693.22 301
DIV-MVS_self_test86.53 25185.78 24588.75 27592.02 28076.45 30190.74 31094.30 24781.83 26583.34 29390.82 29675.75 17596.57 27881.73 23381.52 32793.24 300
NR-MVSNet88.58 17787.47 18491.93 14893.04 25284.16 10294.77 14696.25 12089.05 7280.04 33693.29 21079.02 13897.05 25281.71 23480.05 34994.59 232
WTY-MVS89.60 14288.92 14691.67 16395.47 13681.15 19092.38 26694.78 23183.11 23189.06 15394.32 17078.67 14396.61 27581.57 23590.89 21097.24 116
thisisatest051587.33 21885.99 23691.37 17593.49 23679.55 23490.63 31289.56 37180.17 29287.56 17990.86 29367.07 28998.28 14581.50 23693.02 18096.29 161
v124086.78 24185.85 24389.56 25390.45 34277.79 27993.61 21995.37 19681.65 26985.43 23591.15 28671.50 23297.43 21381.47 23782.05 31993.47 292
GeoE90.05 12989.43 13391.90 15395.16 14980.37 21195.80 8494.65 23783.90 20987.55 18094.75 15478.18 15097.62 19681.28 23893.63 16497.71 97
WR-MVS88.38 17987.67 17990.52 20893.30 24280.18 21493.26 23795.96 14788.57 9185.47 23192.81 22776.12 16796.91 26181.24 23982.29 31594.47 245
131487.51 21086.57 21290.34 22092.42 26879.74 23292.63 25995.35 19878.35 32180.14 33391.62 27174.05 20197.15 24181.05 24093.53 16794.12 255
IterMVS-SCA-FT85.45 27284.53 27888.18 29391.71 29276.87 29390.19 32492.65 29585.40 17581.44 31690.54 30466.79 29395.00 34481.04 24181.05 33392.66 321
XXY-MVS87.65 20086.85 19990.03 23192.14 27480.60 20693.76 21395.23 20182.94 23684.60 25694.02 18274.27 19595.49 33581.04 24183.68 29894.01 263
miper_lstm_enhance85.27 27984.59 27687.31 31491.28 30874.63 32287.69 36794.09 25881.20 28381.36 31889.85 32574.97 18694.30 35281.03 24379.84 35393.01 311
GA-MVS86.61 24785.27 26190.66 20291.33 30778.71 25290.40 31593.81 26885.34 17685.12 24589.57 33061.25 33797.11 24680.99 24489.59 23296.15 167
IB-MVS80.51 1585.24 28083.26 29691.19 18192.13 27579.86 22991.75 28691.29 33483.28 22880.66 32688.49 34861.28 33698.46 12580.99 24479.46 35695.25 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet84.69 29284.79 27284.37 35791.84 28664.92 39593.70 21791.47 33066.19 39786.16 21295.28 13067.18 28893.33 36780.89 24690.42 21694.88 222
baseline188.10 18787.28 18990.57 20494.96 15880.07 21994.27 17991.29 33486.74 14287.41 18194.00 18476.77 16296.20 30280.77 24779.31 35895.44 198
HyFIR lowres test88.09 18886.81 20091.93 14896.00 11180.63 20490.01 32995.79 16073.42 37087.68 17792.10 25273.86 20597.96 17580.75 24891.70 19797.19 119
AdaColmapbinary89.89 13689.07 14292.37 12997.41 6583.03 13994.42 16895.92 14982.81 23986.34 20794.65 16073.89 20499.02 6480.69 24995.51 12495.05 212
原ACMM192.01 14097.34 6781.05 19296.81 7378.89 31090.45 12995.92 10482.65 9298.84 9180.68 25098.26 5996.14 168
TESTMET0.1,183.74 30582.85 30586.42 33789.96 35171.21 36589.55 33687.88 37877.41 33083.37 29287.31 36456.71 36493.65 36480.62 25192.85 18594.40 246
无先验93.28 23696.26 11873.95 36599.05 5880.56 25296.59 151
Fast-Effi-MVS+89.41 15088.64 15391.71 16294.74 17080.81 20093.54 22195.10 20883.11 23186.82 19690.67 30379.74 12897.75 18780.51 25393.55 16696.57 153
CHOSEN 1792x268888.84 16787.69 17892.30 13396.14 10081.42 18390.01 32995.86 15674.52 35987.41 18193.94 18775.46 18098.36 13680.36 25495.53 12397.12 125
CDS-MVSNet89.45 14888.51 15792.29 13493.62 23383.61 11893.01 24794.68 23681.95 25787.82 17493.24 21278.69 14296.99 25580.34 25593.23 17796.28 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu87.44 21386.72 20389.63 25292.04 27877.68 28394.03 19893.94 26085.81 16382.42 30391.32 27970.33 25097.06 25080.33 25690.23 21894.14 254
baseline286.50 25385.39 25689.84 24091.12 31576.70 29791.88 28288.58 37482.35 24879.95 33790.95 29273.42 21397.63 19580.27 25789.95 22395.19 207
API-MVS90.66 11690.07 11892.45 12596.36 9584.57 8696.06 6495.22 20382.39 24589.13 15094.27 17580.32 12098.46 12580.16 25896.71 10494.33 248
MAR-MVS90.30 12389.37 13593.07 9296.61 8484.48 9195.68 9095.67 17082.36 24787.85 17292.85 22376.63 16598.80 9380.01 25996.68 10595.91 180
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS83.01 1289.03 16387.94 17492.29 13494.86 16682.77 14692.08 28094.49 23981.52 27586.93 18892.79 22978.32 14998.23 14779.93 26090.55 21395.88 182
CHOSEN 280x42085.15 28183.99 28688.65 27992.47 26578.40 26179.68 40892.76 29174.90 35681.41 31789.59 32969.85 25795.51 33279.92 26195.29 13392.03 338
MVS87.44 21386.10 23291.44 17292.61 26383.62 11692.63 25995.66 17267.26 39581.47 31592.15 24777.95 15198.22 14979.71 26295.48 12692.47 326
pm-mvs186.61 24785.54 25289.82 24191.44 29980.18 21495.28 11394.85 22583.84 21181.66 31392.62 23272.45 22696.48 28679.67 26378.06 36192.82 318
sd_testset88.59 17687.85 17690.83 19896.00 11180.42 21092.35 26894.71 23488.73 8386.85 19495.20 13667.31 28496.43 29179.64 26489.85 22695.63 194
IterMVS84.88 28783.98 28787.60 30691.44 29976.03 30690.18 32592.41 29883.24 22981.06 32290.42 30966.60 29694.28 35379.46 26580.98 33892.48 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
1112_ss88.42 17887.33 18791.72 16194.92 16180.98 19492.97 24994.54 23878.16 32683.82 28093.88 19278.78 14197.91 17979.45 26689.41 23396.26 163
gm-plane-assit89.60 35868.00 38277.28 33388.99 33997.57 19879.44 267
PM-MVS78.11 35376.12 35784.09 36183.54 39770.08 37688.97 34985.27 39379.93 29574.73 37686.43 37234.70 40993.48 36579.43 26872.06 38188.72 386
v7n86.81 23985.76 24889.95 23690.72 33479.25 24795.07 12695.92 14984.45 20082.29 30490.86 29372.60 22397.53 20179.42 26980.52 34593.08 309
PAPR90.02 13089.27 14092.29 13495.78 12180.95 19692.68 25796.22 12381.91 25986.66 19893.75 19982.23 10198.44 13179.40 27094.79 14297.48 108
新几何193.10 8897.30 6984.35 9995.56 17871.09 38691.26 12296.24 8882.87 9098.86 8779.19 27198.10 6796.07 174
CP-MVSNet87.63 20387.26 19188.74 27793.12 24676.59 29995.29 11196.58 9488.43 9483.49 29092.98 22175.28 18195.83 31978.97 27281.15 33193.79 274
WBMVS84.97 28684.18 28087.34 31394.14 20971.62 36290.20 32392.35 29981.61 27284.06 27490.76 29961.82 32996.52 28378.93 27383.81 29493.89 265
pmmvs485.43 27383.86 28890.16 22490.02 35082.97 14390.27 31692.67 29475.93 34580.73 32491.74 26571.05 23695.73 32678.85 27483.46 30291.78 342
Test_1112_low_res87.65 20086.51 21591.08 18794.94 16079.28 24591.77 28594.30 24776.04 34483.51 28992.37 23977.86 15497.73 18878.69 27589.13 24096.22 164
Vis-MVSNet (Re-imp)89.59 14389.44 13290.03 23195.74 12275.85 30995.61 9790.80 34787.66 12487.83 17395.40 12776.79 16196.46 28978.37 27696.73 10397.80 92
PS-CasMVS87.32 21986.88 19788.63 28092.99 25576.33 30495.33 10696.61 9288.22 10283.30 29593.07 21973.03 21895.79 32378.36 27781.00 33793.75 281
test_f71.95 36670.87 36775.21 38474.21 41459.37 40785.07 38885.82 38865.25 39870.42 39283.13 39023.62 41482.93 41278.32 27871.94 38283.33 397
testdata298.75 9778.30 279
GBi-Net87.26 22085.98 23791.08 18794.01 21383.10 13395.14 12394.94 21583.57 21784.37 26491.64 26766.59 29796.34 29778.23 28085.36 28293.79 274
test187.26 22085.98 23791.08 18794.01 21383.10 13395.14 12394.94 21583.57 21784.37 26491.64 26766.59 29796.34 29778.23 28085.36 28293.79 274
FMVSNet387.40 21586.11 23191.30 17793.79 22683.64 11594.20 18494.81 22983.89 21084.37 26491.87 26268.45 28096.56 28078.23 28085.36 28293.70 284
OpenMVScopyleft83.78 1188.74 17187.29 18893.08 9092.70 26185.39 7196.57 3596.43 10378.74 31580.85 32396.07 9769.64 25999.01 6678.01 28396.65 10694.83 224
tpm84.73 29084.02 28586.87 33090.33 34368.90 38089.06 34789.94 36280.85 28685.75 21989.86 32468.54 27995.97 31177.76 28484.05 29395.75 188
TAMVS89.21 15688.29 16691.96 14693.71 22882.62 15693.30 23494.19 25282.22 25087.78 17593.94 18778.83 13996.95 25877.70 28592.98 18196.32 159
BH-untuned88.60 17588.13 17090.01 23495.24 14578.50 25893.29 23594.15 25484.75 19484.46 26193.40 20475.76 17497.40 22277.59 28694.52 15194.12 255
FMVSNet287.19 22885.82 24491.30 17794.01 21383.67 11394.79 14494.94 21583.57 21783.88 27992.05 25666.59 29796.51 28477.56 28785.01 28593.73 282
RPSCF85.07 28284.27 27987.48 31192.91 25870.62 37391.69 28992.46 29776.20 34382.67 30195.22 13363.94 31697.29 23177.51 28885.80 27994.53 236
PLCcopyleft84.53 789.06 16288.03 17192.15 13897.27 7182.69 15394.29 17895.44 19079.71 29984.01 27794.18 17876.68 16498.75 9777.28 28993.41 17295.02 213
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA89.07 16187.98 17292.34 13096.87 7784.78 8194.08 19393.24 27781.41 27684.46 26195.13 14075.57 17996.62 27277.21 29093.84 16295.61 196
K. test v381.59 32380.15 32585.91 34389.89 35369.42 37992.57 26187.71 38085.56 17173.44 38289.71 32855.58 36795.52 33177.17 29169.76 38592.78 319
QAPM89.51 14588.15 16993.59 7594.92 16184.58 8596.82 2996.70 8678.43 32083.41 29196.19 9373.18 21699.30 4377.11 29296.54 10796.89 139
pmmvs584.21 29682.84 30688.34 28788.95 36376.94 29292.41 26491.91 31875.63 34780.28 33091.18 28464.59 31295.57 32977.09 29383.47 30192.53 324
pmmvs683.42 30781.60 31188.87 27288.01 37577.87 27594.96 13294.24 25174.67 35878.80 34991.09 28960.17 34796.49 28577.06 29475.40 37592.23 335
test_vis3_rt65.12 37362.60 37572.69 38671.44 41560.71 40487.17 37265.55 41963.80 40153.22 40965.65 41214.54 42389.44 39776.65 29565.38 39567.91 410
test_post188.00 3619.81 42269.31 26695.53 33076.65 295
SCA86.32 25985.18 26289.73 24792.15 27376.60 29891.12 30391.69 32183.53 22085.50 22988.81 34266.79 29396.48 28676.65 29590.35 21796.12 170
UBG85.51 27184.57 27788.35 28594.21 20471.78 35890.07 32789.66 36982.28 24985.91 21689.01 33861.30 33597.06 25076.58 29892.06 19696.22 164
WR-MVS_H87.80 19587.37 18689.10 26693.23 24378.12 26895.61 9797.30 2987.90 11283.72 28292.01 25779.65 13396.01 31076.36 29980.54 34393.16 305
EU-MVSNet81.32 32880.95 31682.42 37088.50 36863.67 39993.32 23091.33 33264.02 40080.57 32892.83 22561.21 33992.27 37876.34 30080.38 34791.32 352
CMPMVSbinary59.16 2180.52 33579.20 33884.48 35683.98 39567.63 38789.95 33193.84 26764.79 39966.81 39791.14 28757.93 35995.17 33976.25 30188.10 25490.65 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
F-COLMAP87.95 19186.80 20191.40 17396.35 9680.88 19894.73 14895.45 18879.65 30082.04 31094.61 16171.13 23598.50 11976.24 30291.05 20894.80 226
PEN-MVS86.80 24086.27 22588.40 28392.32 27075.71 31295.18 12096.38 10887.97 10982.82 29993.15 21573.39 21495.92 31476.15 30379.03 36093.59 286
SixPastTwentyTwo83.91 30282.90 30486.92 32790.99 31970.67 37293.48 22391.99 31385.54 17277.62 35792.11 25160.59 34496.87 26376.05 30477.75 36393.20 303
MS-PatchMatch85.05 28384.16 28187.73 30391.42 30278.51 25791.25 30093.53 27277.50 32980.15 33291.58 27361.99 32795.51 33275.69 30594.35 15589.16 382
BH-w/o87.57 20887.05 19489.12 26594.90 16477.90 27392.41 26493.51 27382.89 23883.70 28391.34 27675.75 17597.07 24975.49 30693.49 16992.39 330
gg-mvs-nofinetune81.77 31979.37 33488.99 27090.85 32977.73 28286.29 37879.63 40774.88 35783.19 29669.05 40960.34 34596.11 30675.46 30794.64 14793.11 307
FMVSNet185.85 26684.11 28391.08 18792.81 25983.10 13395.14 12394.94 21581.64 27082.68 30091.64 26759.01 35596.34 29775.37 30883.78 29593.79 274
EPMVS83.90 30382.70 30787.51 30890.23 34672.67 34688.62 35381.96 40281.37 27785.01 24988.34 35066.31 30094.45 34775.30 30987.12 27195.43 199
pmmvs-eth3d80.97 33378.72 34587.74 30284.99 39379.97 22790.11 32691.65 32375.36 34973.51 38186.03 37659.45 35193.96 35975.17 31072.21 38089.29 380
tpm284.08 29882.94 30287.48 31191.39 30371.27 36389.23 34490.37 35271.95 38284.64 25589.33 33367.30 28596.55 28275.17 31087.09 27294.63 229
lessismore_v086.04 33988.46 36968.78 38180.59 40573.01 38490.11 31855.39 36996.43 29175.06 31265.06 39692.90 314
MVP-Stereo85.97 26384.86 27089.32 26090.92 32582.19 16492.11 27894.19 25278.76 31478.77 35091.63 27068.38 28196.56 28075.01 31393.95 15989.20 381
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FE-MVS87.40 21586.02 23591.57 16694.56 18379.69 23390.27 31693.72 27080.57 28888.80 15691.62 27165.32 30798.59 11574.97 31494.33 15696.44 156
PVSNet78.82 1885.55 27084.65 27488.23 29294.72 17271.93 35487.12 37392.75 29278.80 31384.95 25090.53 30564.43 31396.71 26874.74 31593.86 16196.06 176
MDTV_nov1_ep13_2view55.91 41587.62 36973.32 37184.59 25770.33 25074.65 31695.50 197
PatchmatchNetpermissive85.85 26684.70 27389.29 26191.76 29075.54 31388.49 35491.30 33381.63 27185.05 24888.70 34671.71 22996.24 30174.61 31789.05 24196.08 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
LF4IMVS80.37 33879.07 34284.27 35986.64 38269.87 37889.39 34191.05 33976.38 33974.97 37490.00 32147.85 39394.25 35474.55 31880.82 34088.69 387
DTE-MVSNet86.11 26185.48 25487.98 29791.65 29674.92 31994.93 13495.75 16387.36 12882.26 30593.04 22072.85 21995.82 32074.04 31977.46 36693.20 303
BH-RMVSNet88.37 18087.48 18391.02 19195.28 14179.45 23792.89 25293.07 28285.45 17486.91 19094.84 15270.35 24997.76 18473.97 32094.59 14895.85 183
CR-MVSNet85.35 27683.76 28990.12 22790.58 33879.34 24185.24 38691.96 31678.27 32385.55 22487.87 35971.03 23795.61 32873.96 32189.36 23595.40 200
mvs5depth80.98 33279.15 34086.45 33584.57 39473.29 33887.79 36391.67 32280.52 28982.20 30889.72 32755.14 37395.93 31373.93 32266.83 39390.12 371
ACMH+81.04 1485.05 28383.46 29389.82 24194.66 17679.37 23994.44 16694.12 25782.19 25178.04 35392.82 22658.23 35897.54 20073.77 32382.90 30992.54 323
TR-MVS86.78 24185.76 24889.82 24194.37 19578.41 26092.47 26392.83 28881.11 28486.36 20592.40 23868.73 27797.48 20573.75 32489.85 22693.57 287
UnsupCasMVSNet_eth80.07 34078.27 34685.46 34785.24 39272.63 34988.45 35694.87 22482.99 23571.64 38988.07 35556.34 36591.75 38373.48 32563.36 39992.01 339
PatchMatch-RL86.77 24485.54 25290.47 21495.88 11782.71 15290.54 31392.31 30279.82 29884.32 26991.57 27568.77 27696.39 29373.16 32693.48 17192.32 333
ambc83.06 36579.99 40663.51 40077.47 40992.86 28774.34 37984.45 38528.74 41095.06 34373.06 32768.89 39090.61 365
KD-MVS_self_test80.20 33979.24 33683.07 36485.64 39065.29 39391.01 30693.93 26178.71 31676.32 36486.40 37459.20 35492.93 37372.59 32869.35 38691.00 362
ITE_SJBPF88.24 29191.88 28577.05 29192.92 28585.54 17280.13 33493.30 20957.29 36296.20 30272.46 32984.71 28791.49 349
ACMH80.38 1785.36 27583.68 29090.39 21694.45 19180.63 20494.73 14894.85 22582.09 25277.24 35892.65 23160.01 34897.58 19772.25 33084.87 28692.96 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
USDC82.76 31081.26 31587.26 31691.17 31174.55 32389.27 34293.39 27578.26 32475.30 37292.08 25354.43 37796.63 27171.64 33185.79 28090.61 365
dmvs_re84.20 29783.22 29887.14 32391.83 28877.81 27790.04 32890.19 35584.70 19681.49 31489.17 33564.37 31491.13 38871.58 33285.65 28192.46 327
EPNet_dtu86.49 25585.94 24088.14 29490.24 34572.82 34394.11 18992.20 30686.66 14579.42 34492.36 24073.52 20995.81 32171.26 33393.66 16395.80 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND87.94 29989.73 35677.91 27287.80 36278.23 41180.58 32783.86 38659.88 34995.33 33871.20 33492.22 19490.60 367
LTVRE_ROB82.13 1386.26 26084.90 26990.34 22094.44 19281.50 17792.31 27294.89 22183.03 23379.63 34292.67 23069.69 25897.79 18271.20 33486.26 27791.72 343
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM81.04 33078.98 34387.25 31788.64 36573.48 33681.75 40289.61 37073.19 37282.05 30973.71 40566.07 30595.87 31771.18 33684.60 28892.41 329
Anonymous2024052180.44 33779.21 33784.11 36085.75 38967.89 38392.86 25493.23 27875.61 34875.59 37187.47 36350.03 38794.33 35171.14 33781.21 32890.12 371
TransMVSNet (Re)84.43 29483.06 30188.54 28191.72 29178.44 25995.18 12092.82 29082.73 24179.67 34192.12 24973.49 21095.96 31271.10 33868.73 39191.21 355
UWE-MVS83.69 30683.09 29985.48 34693.06 25065.27 39490.92 30786.14 38679.90 29686.26 20990.72 30257.17 36395.81 32171.03 33992.62 18895.35 203
testing22284.84 28983.32 29489.43 25994.15 20875.94 30791.09 30489.41 37284.90 18785.78 21889.44 33252.70 38396.28 30070.80 34091.57 19996.07 174
PCF-MVS84.11 1087.74 19786.08 23392.70 11394.02 21284.43 9589.27 34295.87 15573.62 36884.43 26394.33 16978.48 14798.86 8770.27 34194.45 15394.81 225
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EG-PatchMatch MVS82.37 31580.34 32188.46 28290.27 34479.35 24092.80 25694.33 24677.14 33473.26 38390.18 31547.47 39496.72 26670.25 34287.32 27089.30 378
MDTV_nov1_ep1383.56 29291.69 29469.93 37787.75 36691.54 32778.60 31784.86 25188.90 34169.54 26196.03 30870.25 34288.93 242
TDRefinement79.81 34377.34 34887.22 32079.24 40875.48 31493.12 24192.03 31176.45 33875.01 37391.58 27349.19 39096.44 29070.22 34469.18 38889.75 374
thres100view90087.63 20386.71 20490.38 21896.12 10278.55 25595.03 12991.58 32587.15 13088.06 16892.29 24368.91 27498.10 15670.13 34591.10 20394.48 243
tfpn200view987.58 20786.64 20790.41 21595.99 11478.64 25394.58 15691.98 31486.94 13788.09 16591.77 26369.18 27098.10 15670.13 34591.10 20394.48 243
thres40087.62 20586.64 20790.57 20495.99 11478.64 25394.58 15691.98 31486.94 13788.09 16591.77 26369.18 27098.10 15670.13 34591.10 20394.96 217
thres600view787.65 20086.67 20690.59 20396.08 10778.72 25194.88 13791.58 32587.06 13388.08 16792.30 24268.91 27498.10 15670.05 34891.10 20394.96 217
thres20087.21 22686.24 22690.12 22795.36 13878.53 25693.26 23792.10 30886.42 15088.00 17091.11 28869.24 26998.00 17269.58 34991.04 20993.83 273
tpm cat181.96 31680.27 32287.01 32491.09 31671.02 36887.38 37191.53 32866.25 39680.17 33186.35 37568.22 28296.15 30569.16 35082.29 31593.86 271
Patchmtry82.71 31180.93 31788.06 29590.05 34976.37 30384.74 39191.96 31672.28 38181.32 31987.87 35971.03 23795.50 33468.97 35180.15 34892.32 333
our_test_381.93 31780.46 32086.33 33888.46 36973.48 33688.46 35591.11 33676.46 33776.69 36288.25 35266.89 29194.36 35068.75 35279.08 35991.14 357
PVSNet_073.20 2077.22 35674.83 36284.37 35790.70 33571.10 36683.09 39889.67 36872.81 37773.93 38083.13 39060.79 34393.70 36368.54 35350.84 41188.30 390
MSDG84.86 28883.09 29990.14 22693.80 22480.05 22189.18 34593.09 28178.89 31078.19 35191.91 26065.86 30697.27 23268.47 35488.45 24993.11 307
LS3D87.89 19286.32 22292.59 11896.07 10882.92 14495.23 11694.92 22075.66 34682.89 29895.98 10172.48 22499.21 4868.43 35595.23 13695.64 193
AllTest83.42 30781.39 31389.52 25595.01 15477.79 27993.12 24190.89 34577.41 33076.12 36693.34 20554.08 37897.51 20368.31 35684.27 29193.26 297
TestCases89.52 25595.01 15477.79 27990.89 34577.41 33076.12 36693.34 20554.08 37897.51 20368.31 35684.27 29193.26 297
dp81.47 32680.23 32385.17 35289.92 35265.49 39286.74 37590.10 35876.30 34181.10 32087.12 36962.81 32395.92 31468.13 35879.88 35194.09 258
tpmvs83.35 30982.07 30887.20 32191.07 31771.00 36988.31 35791.70 32078.91 30880.49 32987.18 36869.30 26797.08 24768.12 35983.56 30093.51 291
FMVSNet581.52 32579.60 33287.27 31591.17 31177.95 27191.49 29392.26 30576.87 33576.16 36587.91 35851.67 38492.34 37767.74 36081.16 32991.52 348
KD-MVS_2432*160078.50 35176.02 35885.93 34186.22 38474.47 32484.80 38992.33 30079.29 30376.98 36085.92 37753.81 38093.97 35767.39 36157.42 40689.36 376
miper_refine_blended78.50 35176.02 35885.93 34186.22 38474.47 32484.80 38992.33 30079.29 30376.98 36085.92 37753.81 38093.97 35767.39 36157.42 40689.36 376
ETVMVS84.43 29482.92 30388.97 27194.37 19574.67 32191.23 30188.35 37683.37 22586.06 21489.04 33755.38 37095.67 32767.12 36391.34 20196.58 152
CL-MVSNet_self_test81.74 32080.53 31885.36 34885.96 38672.45 35290.25 31893.07 28281.24 28179.85 34087.29 36570.93 23992.52 37566.95 36469.23 38791.11 359
YYNet179.22 34877.20 35085.28 35088.20 37472.66 34785.87 38090.05 36174.33 36162.70 40087.61 36166.09 30492.03 37966.94 36572.97 37891.15 356
PAPM86.68 24685.39 25690.53 20693.05 25179.33 24489.79 33294.77 23278.82 31281.95 31193.24 21276.81 16097.30 22866.94 36593.16 17894.95 220
DP-MVS87.25 22285.36 25892.90 10197.65 5883.24 12794.81 14392.00 31274.99 35481.92 31295.00 14372.66 22199.05 5866.92 36792.33 19396.40 157
MDA-MVSNet_test_wron79.21 34977.19 35185.29 34988.22 37372.77 34485.87 38090.06 35974.34 36062.62 40287.56 36266.14 30391.99 38166.90 36873.01 37791.10 360
UnsupCasMVSNet_bld76.23 36073.27 36485.09 35383.79 39672.92 34185.65 38393.47 27471.52 38368.84 39579.08 40049.77 38893.21 36966.81 36960.52 40389.13 384
ttmdpeth76.55 35874.64 36382.29 37282.25 40267.81 38589.76 33385.69 38970.35 38975.76 36991.69 26646.88 39689.77 39466.16 37063.23 40089.30 378
MIMVSNet82.59 31380.53 31888.76 27491.51 29778.32 26386.57 37790.13 35779.32 30280.70 32588.69 34752.98 38293.07 37266.03 37188.86 24394.90 221
LCM-MVSNet66.00 37262.16 37777.51 38264.51 42258.29 40883.87 39590.90 34448.17 41154.69 40873.31 40616.83 42286.75 40265.47 37261.67 40287.48 394
PatchT82.68 31281.27 31486.89 32990.09 34870.94 37084.06 39390.15 35674.91 35585.63 22383.57 38869.37 26394.87 34665.19 37388.50 24894.84 223
test0.0.03 182.41 31481.69 31084.59 35588.23 37272.89 34290.24 32087.83 37983.41 22379.86 33989.78 32667.25 28688.99 39965.18 37483.42 30391.90 341
ppachtmachnet_test81.84 31880.07 32687.15 32288.46 36974.43 32689.04 34892.16 30775.33 35077.75 35588.99 33966.20 30295.37 33765.12 37577.60 36491.65 344
COLMAP_ROBcopyleft80.39 1683.96 30082.04 30989.74 24595.28 14179.75 23194.25 18092.28 30375.17 35278.02 35493.77 19758.60 35797.84 18165.06 37685.92 27891.63 345
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVSnew83.77 30483.28 29585.26 35191.48 29871.03 36791.89 28187.98 37778.91 30884.78 25290.22 31269.11 27294.02 35664.70 37790.44 21490.71 363
ADS-MVSNet281.66 32279.71 33187.50 30991.35 30574.19 32883.33 39688.48 37572.90 37582.24 30685.77 37964.98 31093.20 37064.57 37883.74 29695.12 209
ADS-MVSNet81.56 32479.78 32886.90 32891.35 30571.82 35683.33 39689.16 37372.90 37582.24 30685.77 37964.98 31093.76 36164.57 37883.74 29695.12 209
new-patchmatchnet76.41 35975.17 36180.13 37582.65 40159.61 40687.66 36891.08 33778.23 32569.85 39383.22 38954.76 37491.63 38564.14 38064.89 39789.16 382
testgi80.94 33480.20 32483.18 36387.96 37666.29 38991.28 29890.70 34983.70 21478.12 35292.84 22451.37 38590.82 39063.34 38182.46 31392.43 328
TinyColmap79.76 34477.69 34785.97 34091.71 29273.12 33989.55 33690.36 35375.03 35372.03 38790.19 31446.22 39896.19 30463.11 38281.03 33488.59 388
pmmvs371.81 36768.71 37081.11 37375.86 41170.42 37486.74 37583.66 39758.95 40668.64 39680.89 39836.93 40789.52 39663.10 38363.59 39883.39 396
TAPA-MVS84.62 688.16 18687.01 19691.62 16496.64 8380.65 20394.39 17196.21 12676.38 33986.19 21195.44 12479.75 12798.08 16662.75 38495.29 13396.13 169
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MDA-MVSNet-bldmvs78.85 35076.31 35586.46 33489.76 35473.88 33088.79 35090.42 35179.16 30659.18 40588.33 35160.20 34694.04 35562.00 38568.96 38991.48 350
tfpnnormal84.72 29183.23 29789.20 26392.79 26080.05 22194.48 16195.81 15882.38 24681.08 32191.21 28169.01 27396.95 25861.69 38680.59 34290.58 368
Anonymous2023120681.03 33179.77 33084.82 35487.85 37870.26 37591.42 29492.08 30973.67 36777.75 35589.25 33462.43 32593.08 37161.50 38782.00 32091.12 358
RPMNet83.95 30181.53 31291.21 18090.58 33879.34 24185.24 38696.76 7871.44 38485.55 22482.97 39370.87 24098.91 8361.01 38889.36 23595.40 200
MIMVSNet179.38 34777.28 34985.69 34586.35 38373.67 33391.61 29192.75 29278.11 32772.64 38588.12 35448.16 39291.97 38260.32 38977.49 36591.43 351
test20.0379.95 34279.08 34182.55 36785.79 38867.74 38691.09 30491.08 33781.23 28274.48 37889.96 32361.63 33090.15 39260.08 39076.38 37189.76 373
DSMNet-mixed76.94 35776.29 35678.89 37883.10 39956.11 41487.78 36479.77 40660.65 40475.64 37088.71 34561.56 33388.34 40060.07 39189.29 23792.21 336
Patchmatch-test81.37 32779.30 33587.58 30790.92 32574.16 32980.99 40387.68 38170.52 38876.63 36388.81 34271.21 23492.76 37460.01 39286.93 27495.83 185
WAC-MVS64.08 39759.14 393
myMVS_eth3d79.67 34578.79 34482.32 37191.92 28264.08 39789.75 33487.40 38381.72 26778.82 34787.20 36645.33 39991.29 38659.09 39487.84 26191.60 346
MVStest172.91 36469.70 36982.54 36878.14 40973.05 34088.21 35886.21 38560.69 40364.70 39890.53 30546.44 39785.70 40658.78 39553.62 40888.87 385
MVS-HIRNet73.70 36372.20 36678.18 38191.81 28956.42 41382.94 39982.58 40055.24 40768.88 39466.48 41055.32 37195.13 34058.12 39688.42 25083.01 398
OpenMVS_ROBcopyleft74.94 1979.51 34677.03 35386.93 32687.00 38176.23 30592.33 27090.74 34868.93 39274.52 37788.23 35349.58 38996.62 27257.64 39784.29 29087.94 392
new_pmnet72.15 36570.13 36878.20 38082.95 40065.68 39083.91 39482.40 40162.94 40264.47 39979.82 39942.85 40286.26 40557.41 39874.44 37682.65 400
testing380.46 33679.59 33383.06 36593.44 23964.64 39693.33 22985.47 39184.34 20279.93 33890.84 29544.35 40192.39 37657.06 39987.56 26492.16 337
APD_test169.04 36866.26 37477.36 38380.51 40562.79 40285.46 38583.51 39854.11 40959.14 40684.79 38423.40 41689.61 39555.22 40070.24 38479.68 404
N_pmnet68.89 36968.44 37170.23 38989.07 36228.79 42888.06 35919.50 42869.47 39171.86 38884.93 38261.24 33891.75 38354.70 40177.15 36790.15 370
test_method50.52 38448.47 38656.66 39952.26 42618.98 43041.51 41881.40 40310.10 42044.59 41575.01 40428.51 41168.16 41753.54 40249.31 41282.83 399
tmp_tt35.64 38839.24 39024.84 40414.87 42823.90 42962.71 41451.51 4256.58 42236.66 41862.08 41544.37 40030.34 42452.40 40322.00 42120.27 419
test_040281.30 32979.17 33987.67 30593.19 24478.17 26792.98 24891.71 31975.25 35176.02 36890.31 31059.23 35396.37 29450.22 40483.63 29988.47 389
PMMVS259.60 37656.40 37969.21 39268.83 41946.58 41873.02 41377.48 41455.07 40849.21 41172.95 40717.43 42180.04 41449.32 40544.33 41480.99 402
Syy-MVS80.07 34079.78 32880.94 37491.92 28259.93 40589.75 33487.40 38381.72 26778.82 34787.20 36666.29 30191.29 38647.06 40687.84 26191.60 346
dmvs_testset74.57 36275.81 36070.86 38887.72 37940.47 42387.05 37477.90 41382.75 24071.15 39185.47 38167.98 28384.12 41045.26 40776.98 37088.00 391
EGC-MVSNET61.97 37556.37 38078.77 37989.63 35773.50 33589.12 34682.79 3990.21 4251.24 42684.80 38339.48 40490.04 39344.13 40875.94 37472.79 407
ANet_high58.88 37954.22 38472.86 38556.50 42556.67 41080.75 40486.00 38773.09 37437.39 41764.63 41322.17 41779.49 41543.51 40923.96 41982.43 401
testf159.54 37756.11 38169.85 39069.28 41756.61 41180.37 40576.55 41642.58 41445.68 41375.61 40111.26 42484.18 40843.20 41060.44 40468.75 408
APD_test259.54 37756.11 38169.85 39069.28 41756.61 41180.37 40576.55 41642.58 41445.68 41375.61 40111.26 42484.18 40843.20 41060.44 40468.75 408
DeepMVS_CXcopyleft56.31 40074.23 41351.81 41656.67 42444.85 41248.54 41275.16 40327.87 41258.74 42240.92 41252.22 40958.39 414
FPMVS64.63 37462.55 37670.88 38770.80 41656.71 40984.42 39284.42 39551.78 41049.57 41081.61 39623.49 41581.48 41340.61 41376.25 37274.46 406
Gipumacopyleft57.99 38154.91 38367.24 39588.51 36665.59 39152.21 41690.33 35443.58 41342.84 41651.18 41720.29 41985.07 40734.77 41470.45 38351.05 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
dongtai58.82 38058.24 37860.56 39783.13 39845.09 42182.32 40048.22 42767.61 39461.70 40469.15 40838.75 40576.05 41632.01 41541.31 41560.55 412
PMVScopyleft47.18 2252.22 38348.46 38763.48 39645.72 42746.20 41973.41 41278.31 41041.03 41630.06 41965.68 4116.05 42683.43 41130.04 41665.86 39460.80 411
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 38538.59 39157.77 39856.52 42448.77 41755.38 41558.64 42329.33 41928.96 42052.65 4164.68 42764.62 42028.11 41733.07 41759.93 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS67.92 37067.49 37269.21 39281.09 40341.17 42288.03 36078.00 41273.50 36962.63 40183.11 39263.94 31686.52 40325.66 41851.45 41079.94 403
SSC-MVS67.06 37166.56 37368.56 39480.54 40440.06 42487.77 36577.37 41572.38 37961.75 40382.66 39463.37 31986.45 40424.48 41948.69 41379.16 405
E-PMN43.23 38642.29 38846.03 40265.58 42137.41 42573.51 41164.62 42033.99 41728.47 42147.87 41819.90 42067.91 41822.23 42024.45 41832.77 417
kuosan53.51 38253.30 38554.13 40176.06 41045.36 42080.11 40748.36 42659.63 40554.84 40763.43 41437.41 40662.07 42120.73 42139.10 41654.96 415
EMVS42.07 38741.12 38944.92 40363.45 42335.56 42773.65 41063.48 42133.05 41826.88 42245.45 41921.27 41867.14 41919.80 42223.02 42032.06 418
wuyk23d21.27 39020.48 39323.63 40568.59 42036.41 42649.57 4176.85 4299.37 4217.89 4234.46 4254.03 42831.37 42317.47 42316.07 4223.12 420
testmvs8.92 39111.52 3941.12 4071.06 4290.46 43286.02 3790.65 4300.62 4232.74 4249.52 4230.31 4300.45 4262.38 4240.39 4232.46 422
test1238.76 39211.22 3951.39 4060.85 4300.97 43185.76 3820.35 4310.54 4242.45 4258.14 4240.60 4290.48 4252.16 4250.17 4242.71 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k22.14 38929.52 3920.00 4080.00 4310.00 4330.00 41995.76 1620.00 4260.00 42794.29 17275.66 1780.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.64 3948.86 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42679.70 1290.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.82 39310.43 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42793.88 1920.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
FOURS198.86 185.54 6798.29 197.49 689.79 5096.29 18
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1491.45 11
eth-test20.00 431
eth-test0.00 431
test_241102_ONE98.77 585.99 5297.44 1590.26 3497.71 197.96 2092.31 499.38 31
save fliter97.85 4985.63 6695.21 11896.82 7189.44 58
test072698.78 385.93 5597.19 1197.47 1190.27 3297.64 498.13 491.47 8
GSMVS96.12 170
test_part298.55 1287.22 1996.40 17
sam_mvs171.70 23096.12 170
sam_mvs70.60 243
MTGPAbinary96.97 53
test_post10.29 42170.57 24795.91 316
patchmatchnet-post83.76 38771.53 23196.48 286
MTMP96.16 5260.64 422
TEST997.53 6186.49 3794.07 19496.78 7581.61 27292.77 8296.20 9087.71 2899.12 54
test_897.49 6386.30 4594.02 19996.76 7881.86 26392.70 8696.20 9087.63 2999.02 64
agg_prior97.38 6685.92 5796.72 8492.16 9898.97 78
test_prior485.96 5494.11 189
test_prior93.82 6597.29 7084.49 9096.88 6498.87 8598.11 72
新几何293.11 243
旧先验196.79 7981.81 17195.67 17096.81 6686.69 3997.66 8496.97 134
原ACMM292.94 250
test22296.55 8881.70 17392.22 27495.01 21268.36 39390.20 13496.14 9580.26 12297.80 7996.05 177
segment_acmp87.16 36
testdata192.15 27687.94 110
test1294.34 5297.13 7386.15 4896.29 11391.04 12485.08 6199.01 6698.13 6697.86 88
plane_prior794.70 17482.74 149
plane_prior694.52 18582.75 14774.23 196
plane_prior494.86 149
plane_prior382.75 14790.26 3486.91 190
plane_prior295.85 8190.81 17
plane_prior194.59 179
plane_prior82.73 15095.21 11889.66 5589.88 225
n20.00 432
nn0.00 432
door-mid85.49 390
test1196.57 95
door85.33 392
HQP5-MVS81.56 175
HQP-NCC94.17 20594.39 17188.81 7985.43 235
ACMP_Plane94.17 20594.39 17188.81 7985.43 235
HQP4-MVS85.43 23597.96 17594.51 239
HQP3-MVS96.04 14089.77 229
HQP2-MVS73.83 206
NP-MVS94.37 19582.42 15993.98 185
ACMMP++_ref87.47 265
ACMMP++88.01 257
Test By Simon80.02 124