This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19267.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 5186.15 4384.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20865.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+77.84 485.48 5384.47 6888.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline84.93 6284.98 6084.80 9287.30 20665.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
PC_three_145268.21 24092.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
IS-MVSNet83.15 8782.81 8784.18 11689.94 10963.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test250677.30 21976.49 21579.74 24690.08 10252.02 35287.86 15263.10 38474.88 10480.16 12792.79 7938.29 35392.35 19868.74 20292.50 7294.86 17
ECVR-MVScopyleft79.61 15779.26 14880.67 22890.08 10254.69 33687.89 15077.44 34374.88 10480.27 12492.79 7948.96 29292.45 19268.55 20392.50 7294.86 17
IU-MVS95.30 271.25 5792.95 5166.81 25092.39 688.94 1696.63 494.85 19
test111179.43 16479.18 15280.15 23889.99 10753.31 34987.33 16477.05 34675.04 10180.23 12692.77 8148.97 29192.33 20068.87 20092.40 7494.81 20
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
VDD-MVS83.01 9282.36 9384.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24693.91 13177.05 11988.70 12294.57 29
VDDNet81.52 11580.67 11884.05 12890.44 9564.13 21489.73 8285.91 25071.11 17583.18 9093.48 5850.54 27093.49 15073.40 15688.25 12894.54 30
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 23984.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet83.40 8383.02 8384.57 9690.13 10064.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14477.83 18188.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39667.45 9596.60 3383.06 6394.50 5094.07 47
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24669.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22569.93 8388.65 12190.78 12769.97 20088.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 29069.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
Anonymous20240521178.25 19277.01 20181.99 19491.03 8260.67 26784.77 23083.90 27770.65 18780.00 12891.20 11141.08 34391.43 23565.21 23185.26 16393.85 57
LFMVS81.82 10781.23 10883.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24593.43 15571.98 16989.95 10793.85 57
Effi-MVS+83.62 7883.08 8185.24 7588.38 16667.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
Anonymous2024052980.19 14978.89 15784.10 11890.60 9164.75 20188.95 10790.90 12365.97 26780.59 12291.17 11349.97 27593.73 14269.16 19782.70 20493.81 60
MVS_Test83.15 8783.06 8283.41 14986.86 21263.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
test_fmvsmconf0.01_n84.73 6584.52 6785.34 7280.25 33069.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
GeoE81.71 10981.01 11383.80 13989.51 11964.45 20888.97 10688.73 19971.27 17278.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
diffmvspermissive82.10 10081.88 10282.76 18283.00 28863.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
VNet82.21 9982.41 9181.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
patch_mono-283.65 7584.54 6580.99 22090.06 10665.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32782.15 7592.15 7593.64 71
EIA-MVS83.31 8682.80 8884.82 9089.59 11565.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
fmvsm_s_conf0.1_n83.56 7983.38 7784.10 11884.86 24867.28 14889.40 9383.01 29370.67 18487.08 3893.96 5068.38 8791.45 23488.56 2284.50 17193.56 75
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
mvs_anonymous79.42 16579.11 15380.34 23484.45 25657.97 29482.59 27387.62 22167.40 24976.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
fmvsm_s_conf0.5_n83.80 7283.71 7384.07 12386.69 21867.31 14789.46 8983.07 29271.09 17686.96 4193.70 5569.02 8391.47 23388.79 1884.62 17093.44 80
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
EPNet83.72 7482.92 8686.14 5984.22 25969.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive83.46 8182.80 8885.43 7190.25 9868.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D79.10 17478.24 17281.70 19986.85 21360.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28191.56 22667.98 20782.15 20893.29 85
EI-MVSNet-Vis-set84.19 6783.81 7285.31 7388.18 17167.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16893.28 86
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.1_n_a83.32 8582.99 8484.28 11183.79 26868.07 12989.34 9582.85 29769.80 20487.36 3694.06 4268.34 8891.56 22687.95 2783.46 19393.21 90
PAPM_NR83.02 9182.41 9184.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
OMC-MVS82.69 9481.97 10184.85 8988.75 15367.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
fmvsm_s_conf0.5_n_a83.63 7783.41 7684.28 11186.14 22468.12 12789.43 9082.87 29670.27 19487.27 3793.80 5469.09 7891.58 22488.21 2683.65 18793.14 93
PAPR81.66 11380.89 11583.99 13390.27 9764.00 21586.76 18391.77 10168.84 23077.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
thisisatest053079.40 16677.76 18684.31 10987.69 19165.10 19487.36 16284.26 27370.04 19777.42 17688.26 18849.94 27694.79 9770.20 18484.70 16993.03 97
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23285.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
EI-MVSNet-UG-set83.81 7183.38 7785.09 8087.87 18167.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18092.99 100
tttt051779.40 16677.91 17883.90 13888.10 17463.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27894.89 9270.18 18583.18 19792.96 101
test9_res84.90 4295.70 2692.87 102
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
agg_prior282.91 6695.45 3092.70 105
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ET-MVSNet_ETH3D78.63 18576.63 21484.64 9586.73 21769.47 9285.01 22584.61 26569.54 21066.51 33086.59 23450.16 27391.75 21976.26 12884.24 17892.69 107
Vis-MVSNet (Re-imp)78.36 19178.45 16578.07 27388.64 15751.78 35686.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
test_fmvsmvis_n_192084.02 6983.87 7184.49 10184.12 26169.37 9788.15 14087.96 21270.01 19883.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
FA-MVS(test-final)80.96 12479.91 13284.10 11888.30 16965.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
test_yl81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
nrg03083.88 7083.53 7484.96 8486.77 21669.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24492.50 114
MG-MVS83.41 8283.45 7583.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
FIs82.07 10282.42 9081.04 21988.80 15058.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16592.44 118
FC-MVSNet-test81.52 11582.02 9980.03 24088.42 16555.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17192.33 119
Fast-Effi-MVS+80.81 12879.92 13183.47 14588.85 14564.51 20485.53 21789.39 16770.79 18178.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18787.85 18262.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30192.30 121
ab-mvs79.51 16078.97 15681.14 21688.46 16360.91 26383.84 25289.24 17570.36 19079.03 13888.87 16963.23 13690.21 26065.12 23282.57 20592.28 122
CANet_DTU80.61 13679.87 13382.83 17485.60 23263.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
UniMVSNet_NR-MVSNet81.88 10581.54 10582.92 17188.46 16363.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27492.25 123
fmvsm_l_conf0.5_n84.47 6684.54 6584.27 11385.42 23568.81 10588.49 12587.26 22968.08 24188.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
DU-MVS81.12 12280.52 12182.90 17287.80 18563.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27492.20 126
NR-MVSNet80.23 14779.38 14382.78 18087.80 18563.34 23186.31 19491.09 12079.01 2672.17 26989.07 16267.20 9892.81 18566.08 22575.65 28792.20 126
TAPA-MVS73.13 979.15 17277.94 17782.79 17989.59 11562.99 24188.16 13991.51 10765.77 26877.14 18791.09 11560.91 17793.21 16350.26 33787.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_l_conf0.5_n_a84.13 6884.16 7084.06 12585.38 23668.40 12088.34 13286.85 23767.48 24887.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
3Dnovator76.31 583.38 8482.31 9486.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
MVSFormer82.85 9382.05 9885.24 7587.35 20070.21 7790.50 6290.38 13768.55 23481.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
jason81.39 11880.29 12684.70 9486.63 21969.90 8585.95 20386.77 23863.24 29481.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
mvsmamba81.69 11080.74 11684.56 9787.45 19966.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19192.04 134
HyFIR lowres test77.53 21475.40 23183.94 13689.59 11566.62 16080.36 29888.64 20156.29 35376.45 20085.17 26957.64 20393.28 15861.34 26583.10 19891.91 135
XVG-OURS-SEG-HR80.81 12879.76 13583.96 13585.60 23268.78 10783.54 26090.50 13470.66 18676.71 19491.66 9660.69 18091.26 23976.94 12081.58 21591.83 136
lupinMVS81.39 11880.27 12784.76 9387.35 20070.21 7785.55 21586.41 24262.85 30181.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
WR-MVS79.49 16179.22 15080.27 23688.79 15158.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26391.80 138
h-mvs3383.15 8782.19 9586.02 6190.56 9270.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29191.72 139
UniMVSNet (Re)81.60 11481.11 11083.09 16288.38 16664.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27391.60 140
UGNet80.83 12779.59 13984.54 9888.04 17768.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28593.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS80.41 14179.23 14983.97 13485.64 23169.02 10183.03 27190.39 13671.09 17677.63 17391.49 10454.62 22691.35 23775.71 13483.47 19291.54 142
RRT_MVS80.35 14579.22 15083.74 14087.63 19365.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29094.25 11776.84 12179.20 24691.51 143
LCM-MVSNet-Re77.05 22276.94 20477.36 28387.20 20851.60 35780.06 30180.46 32075.20 9767.69 31286.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
DP-MVS Recon83.11 9082.09 9786.15 5894.44 1970.92 6888.79 11392.20 8170.53 18879.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
PS-MVSNAJss82.07 10281.31 10684.34 10886.51 22067.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20791.49 146
thisisatest051577.33 21875.38 23283.18 15885.27 23863.80 21982.11 27783.27 28765.06 27575.91 21383.84 29049.54 28094.27 11367.24 21586.19 15491.48 147
DPM-MVS84.93 6284.29 6986.84 4790.20 9973.04 2387.12 16993.04 3869.80 20482.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
iter_conf0580.00 15378.70 15983.91 13787.84 18365.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32694.56 10279.28 9784.28 17791.33 149
HQP_MVS83.64 7683.14 8085.14 7790.08 10268.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
GA-MVS76.87 22675.17 23681.97 19582.75 29462.58 24381.44 28686.35 24572.16 15974.74 24382.89 30346.20 31092.02 20968.85 20181.09 22091.30 152
VPA-MVSNet80.60 13780.55 12080.76 22688.07 17660.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24591.23 153
Effi-MVS+-dtu80.03 15178.57 16384.42 10485.13 24368.74 11088.77 11488.10 20874.99 10274.97 24083.49 29657.27 20893.36 15673.53 15380.88 22291.18 154
v2v48280.23 14779.29 14783.05 16583.62 27164.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27191.18 154
FE-MVS77.78 20775.68 22584.08 12288.09 17566.00 17083.13 26687.79 21868.42 23878.01 16685.23 26745.50 31895.12 7859.11 28185.83 16191.11 156
iter_conf_final80.63 13579.35 14584.46 10289.36 12667.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31194.56 10279.59 9684.48 17491.11 156
Anonymous2023121178.97 17877.69 18982.81 17690.54 9364.29 21190.11 7291.51 10765.01 27776.16 21288.13 19550.56 26993.03 17969.68 19277.56 26191.11 156
hse-mvs281.72 10880.94 11484.07 12388.72 15467.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 31991.06 159
AUN-MVS79.21 17177.60 19184.05 12888.71 15567.61 13985.84 20887.26 22969.08 22377.23 18288.14 19453.20 23993.47 15275.50 13973.45 31891.06 159
HQP4-MVS77.24 18195.11 8091.03 161
HQP-MVS82.61 9682.02 9984.37 10589.33 12766.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
RPSCF73.23 26871.46 26978.54 26682.50 30059.85 27782.18 27682.84 29858.96 33471.15 27989.41 15745.48 31984.77 31958.82 28571.83 33091.02 163
test_djsdf80.30 14679.32 14683.27 15383.98 26565.37 18990.50 6290.38 13768.55 23476.19 20888.70 17256.44 21393.46 15378.98 9980.14 23490.97 164
PCF-MVS73.52 780.38 14278.84 15885.01 8287.71 18968.99 10283.65 25591.46 11163.00 29877.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPNet78.69 18478.66 16178.76 26188.31 16855.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26590.88 166
CPTT-MVS83.73 7383.33 7984.92 8793.28 4970.86 6992.09 3790.38 13768.75 23179.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
tt080578.73 18277.83 18181.43 20585.17 23960.30 27389.41 9290.90 12371.21 17377.17 18688.73 17146.38 30593.21 16372.57 16678.96 24790.79 168
CLD-MVS82.31 9881.65 10484.29 11088.47 16267.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v119279.59 15978.43 16783.07 16483.55 27364.52 20386.93 17590.58 13170.83 18077.78 17085.90 25059.15 19293.94 12773.96 15077.19 26490.76 170
IterMVS-LS80.06 15079.38 14382.11 19185.89 22763.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 26890.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14079.98 13082.12 19084.28 25763.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 22890.74 172
v192192079.22 17078.03 17582.80 17783.30 27863.94 21786.80 17990.33 14169.91 20277.48 17585.53 26058.44 19693.75 14073.60 15276.85 26990.71 173
QAPM80.88 12579.50 14185.03 8188.01 17968.97 10391.59 4392.00 8766.63 25975.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
v14419279.47 16278.37 16882.78 18083.35 27663.96 21686.96 17390.36 14069.99 19977.50 17485.67 25760.66 18193.77 13874.27 14776.58 27290.62 175
v124078.99 17777.78 18482.64 18383.21 28063.54 22586.62 18690.30 14369.74 20977.33 17885.68 25657.04 21093.76 13973.13 16076.92 26690.62 175
v114480.03 15179.03 15483.01 16783.78 26964.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26290.60 177
1112_ss77.40 21776.43 21780.32 23589.11 14260.41 27283.65 25587.72 22062.13 31073.05 25986.72 22662.58 14689.97 26262.11 25780.80 22490.59 178
CP-MVSNet78.22 19378.34 16977.84 27587.83 18454.54 33887.94 14791.17 11677.65 3873.48 25488.49 18062.24 15388.43 28862.19 25474.07 31090.55 179
PS-CasMVS78.01 20278.09 17477.77 27787.71 18954.39 34088.02 14391.22 11377.50 4673.26 25688.64 17560.73 17888.41 28961.88 25873.88 31490.53 180
CDS-MVSNet79.07 17577.70 18883.17 15987.60 19468.23 12584.40 24486.20 24667.49 24776.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS78.89 18077.51 19383.03 16687.80 18567.79 13584.72 23185.05 26067.63 24476.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 181
PEN-MVS77.73 20877.69 18977.84 27587.07 21153.91 34387.91 14991.18 11577.56 4373.14 25888.82 17061.23 17189.17 27559.95 27372.37 32590.43 183
Test_1112_low_res76.40 23475.44 22979.27 25589.28 13258.09 29081.69 28187.07 23359.53 32972.48 26586.67 23161.30 16989.33 27260.81 26980.15 23390.41 184
HY-MVS69.67 1277.95 20377.15 19980.36 23387.57 19860.21 27583.37 26287.78 21966.11 26375.37 22687.06 22163.27 13490.48 25761.38 26482.43 20690.40 185
CHOSEN 1792x268877.63 21375.69 22483.44 14689.98 10868.58 11878.70 31887.50 22456.38 35275.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 186
SDMVSNet80.38 14280.18 12880.99 22089.03 14364.94 19780.45 29789.40 16675.19 9876.61 19889.98 13760.61 18387.69 29776.83 12383.55 18990.33 187
sd_testset77.70 21177.40 19478.60 26489.03 14360.02 27679.00 31485.83 25275.19 9876.61 19889.98 13754.81 21985.46 31362.63 25183.55 18990.33 187
114514_t80.68 13479.51 14084.20 11594.09 3867.27 14989.64 8591.11 11958.75 33774.08 25090.72 12458.10 19895.04 8569.70 19189.42 11390.30 189
eth_miper_zixun_eth77.92 20476.69 21281.61 20283.00 28861.98 25183.15 26589.20 17769.52 21174.86 24284.35 28361.76 15892.56 18971.50 17372.89 32390.28 190
PVSNet_Blended_VisFu82.62 9581.83 10384.96 8490.80 8969.76 8788.74 11791.70 10269.39 21278.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 191
MVS_111021_LR82.61 9682.11 9684.11 11788.82 14871.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 192
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 193
mvs_tets79.13 17377.77 18583.22 15784.70 25066.37 16489.17 9890.19 14669.38 21375.40 22589.46 15344.17 32493.15 17076.78 12480.70 22690.14 194
BH-RMVSNet79.61 15778.44 16683.14 16089.38 12565.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 195
c3_l78.75 18177.91 17881.26 21182.89 29261.56 25784.09 25089.13 18169.97 20075.56 21884.29 28466.36 10692.09 20773.47 15575.48 29190.12 196
v7n78.97 17877.58 19283.14 16083.45 27565.51 18288.32 13391.21 11473.69 13072.41 26686.32 24457.93 19993.81 13569.18 19675.65 28790.11 197
jajsoiax79.29 16977.96 17683.27 15384.68 25166.57 16289.25 9790.16 14769.20 21975.46 22289.49 15045.75 31693.13 17276.84 12180.80 22490.11 197
v14878.72 18377.80 18381.47 20482.73 29561.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31590.09 199
GBi-Net78.40 18977.40 19481.40 20787.60 19463.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 23890.09 199
test178.40 18977.40 19481.40 20787.60 19463.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 23890.09 199
FMVSNet177.44 21576.12 22181.40 20786.81 21563.01 23888.39 12889.28 17070.49 18974.39 24787.28 21049.06 28991.11 24260.91 26778.52 25090.09 199
WR-MVS_H78.51 18878.49 16478.56 26588.02 17856.38 32088.43 12692.67 6177.14 5473.89 25187.55 20566.25 10889.24 27458.92 28373.55 31790.06 203
DTE-MVSNet76.99 22376.80 20777.54 28286.24 22253.06 35187.52 15890.66 12977.08 5772.50 26488.67 17460.48 18589.52 26957.33 29970.74 33690.05 204
v879.97 15479.02 15582.80 17784.09 26264.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29690.00 205
thres600view776.50 23075.44 22979.68 24889.40 12357.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25591.89 21448.05 35083.72 18690.00 205
thres40076.50 23075.37 23379.86 24389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24791.95 21148.33 34583.75 18390.00 205
cl2278.07 19977.01 20181.23 21282.37 30461.83 25483.55 25987.98 21168.96 22875.06 23883.87 28861.40 16791.88 21573.53 15376.39 27689.98 208
OPM-MVS83.50 8082.95 8585.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 209
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline275.70 24273.83 25181.30 21083.26 27961.79 25582.57 27480.65 31666.81 25066.88 32183.42 29757.86 20192.19 20463.47 24179.57 23889.91 210
v1079.74 15678.67 16082.97 17084.06 26364.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 28989.90 211
MVSTER79.01 17677.88 18082.38 18883.07 28564.80 20084.08 25188.95 18969.01 22778.69 14587.17 21754.70 22492.43 19374.69 14280.57 22889.89 212
ACMP74.13 681.51 11780.57 11984.36 10689.42 12268.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 19989.86 213
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test82.08 10181.27 10784.50 9989.23 13468.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18189.83 214
LGP-MVS_train84.50 9989.23 13468.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18189.83 214
V4279.38 16878.24 17282.83 17481.10 32265.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29389.81 216
MAR-MVS81.84 10680.70 11785.27 7491.32 7971.53 5489.82 7790.92 12269.77 20678.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DIV-MVS_self_test77.72 20976.76 20980.58 22982.48 30260.48 27083.09 26787.86 21669.22 21774.38 24885.24 26662.10 15591.53 22971.09 17675.40 29689.74 218
cl____77.72 20976.76 20980.58 22982.49 30160.48 27083.09 26787.87 21569.22 21774.38 24885.22 26862.10 15591.53 22971.09 17675.41 29589.73 219
miper_ehance_all_eth78.59 18777.76 18681.08 21882.66 29761.56 25783.65 25589.15 17968.87 22975.55 21983.79 29266.49 10492.03 20873.25 15876.39 27689.64 220
anonymousdsp78.60 18677.15 19982.98 16980.51 32867.08 15387.24 16789.53 16365.66 27075.16 23487.19 21652.52 24092.25 20277.17 11879.34 24389.61 221
FMVSNet278.20 19577.21 19881.20 21487.60 19462.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24289.61 221
baseline176.98 22476.75 21177.66 27888.13 17255.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29663.30 24471.18 33489.55 223
FMVSNet377.88 20576.85 20680.97 22286.84 21462.36 24586.52 18988.77 19471.13 17475.34 22786.66 23254.07 23191.10 24562.72 24779.57 23889.45 224
miper_enhance_ethall77.87 20676.86 20580.92 22381.65 31161.38 25982.68 27288.98 18665.52 27275.47 22082.30 31165.76 11692.00 21072.95 16176.39 27689.39 225
cascas76.72 22874.64 23982.99 16885.78 22965.88 17482.33 27589.21 17660.85 31872.74 26181.02 32247.28 29993.75 14067.48 21285.02 16489.34 226
bld_raw_dy_0_6477.29 22075.98 22281.22 21385.04 24565.47 18488.14 14277.56 34069.20 21973.77 25289.40 15942.24 33788.85 28476.78 12481.64 21489.33 227
Fast-Effi-MVS+-dtu78.02 20176.49 21582.62 18483.16 28466.96 15786.94 17487.45 22672.45 15271.49 27684.17 28554.79 22391.58 22467.61 21080.31 23189.30 228
IB-MVS68.01 1575.85 24173.36 25583.31 15184.76 24966.03 16883.38 26185.06 25970.21 19669.40 29881.05 32145.76 31594.66 10165.10 23375.49 29089.25 229
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90076.50 23075.55 22879.33 25489.52 11856.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25591.95 21148.33 34583.75 18389.07 230
tfpn200view976.42 23375.37 23379.55 25389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24791.95 21148.33 34583.75 18389.07 230
xiu_mvs_v1_base_debu80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
xiu_mvs_v1_base80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
xiu_mvs_v1_base_debi80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
EPNet_dtu75.46 24674.86 23777.23 28682.57 29954.60 33786.89 17683.09 29171.64 16266.25 33285.86 25255.99 21488.04 29354.92 31286.55 14889.05 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs177.25 22176.68 21378.93 25984.22 25958.62 28686.41 19188.36 20571.37 17173.31 25588.01 19661.22 17289.15 27664.24 23873.01 32289.03 236
PVSNet_Blended80.98 12380.34 12482.90 17288.85 14565.40 18684.43 24292.00 8767.62 24578.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 237
PAPM77.68 21276.40 21881.51 20387.29 20761.85 25383.78 25389.59 16264.74 27971.23 27788.70 17262.59 14593.66 14352.66 32387.03 14189.01 237
WTY-MVS75.65 24375.68 22575.57 29886.40 22156.82 31177.92 32882.40 30165.10 27476.18 20987.72 19863.13 14180.90 34160.31 27181.96 21089.00 239
无先验87.48 15988.98 18660.00 32494.12 12167.28 21488.97 240
GSMVS88.96 241
sam_mvs151.32 26188.96 241
SCA74.22 25672.33 26479.91 24284.05 26462.17 24979.96 30479.29 33266.30 26272.38 26780.13 33151.95 25388.60 28659.25 27977.67 26088.96 241
miper_lstm_enhance74.11 25773.11 25877.13 28780.11 33259.62 28072.23 35586.92 23666.76 25270.40 28382.92 30256.93 21182.92 33169.06 19872.63 32488.87 244
ACMM73.20 880.78 13379.84 13483.58 14389.31 13068.37 12189.99 7391.60 10470.28 19377.25 18089.66 14453.37 23793.53 14974.24 14882.85 20088.85 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs674.69 25273.39 25478.61 26381.38 31757.48 30386.64 18587.95 21364.99 27870.18 28686.61 23350.43 27189.52 26962.12 25670.18 33888.83 246
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29281.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 247
CNLPA78.08 19876.79 20881.97 19590.40 9671.07 6287.59 15784.55 26666.03 26672.38 26789.64 14557.56 20486.04 30759.61 27683.35 19488.79 248
K. test v371.19 28168.51 29379.21 25783.04 28757.78 29984.35 24576.91 34772.90 15162.99 35182.86 30439.27 34891.09 24761.65 26152.66 37888.75 249
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 250
PatchmatchNetpermissive73.12 26971.33 27278.49 26883.18 28260.85 26479.63 30678.57 33564.13 28671.73 27379.81 33651.20 26285.97 30857.40 29876.36 28188.66 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SixPastTwentyTwo73.37 26471.26 27479.70 24785.08 24457.89 29685.57 21183.56 28271.03 17865.66 33485.88 25142.10 33892.57 18859.11 28163.34 36088.65 252
PS-MVSNAJ81.69 11081.02 11283.70 14189.51 11968.21 12684.28 24690.09 14970.79 18181.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 253
xiu_mvs_v2_base81.69 11081.05 11183.60 14289.15 13768.03 13184.46 24090.02 15070.67 18481.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 254
CostFormer75.24 25073.90 24979.27 25582.65 29858.27 28980.80 28982.73 29961.57 31375.33 23083.13 30155.52 21591.07 24864.98 23478.34 25588.45 255
lessismore_v078.97 25881.01 32357.15 30765.99 37861.16 35682.82 30539.12 34991.34 23859.67 27546.92 38488.43 256
OpenMVScopyleft72.83 1079.77 15578.33 17084.09 12185.17 23969.91 8490.57 6090.97 12166.70 25372.17 26991.91 9154.70 22493.96 12461.81 26090.95 9188.41 257
OurMVSNet-221017-074.26 25572.42 26379.80 24583.76 27059.59 28185.92 20586.64 23966.39 26166.96 32087.58 20239.46 34791.60 22365.76 22869.27 34188.22 258
LS3D76.95 22574.82 23883.37 15090.45 9467.36 14689.15 10286.94 23561.87 31269.52 29790.61 12651.71 25894.53 10546.38 35786.71 14688.21 259
XVG-ACMP-BASELINE76.11 23874.27 24681.62 20083.20 28164.67 20283.60 25889.75 15869.75 20771.85 27287.09 21932.78 36592.11 20669.99 18880.43 23088.09 260
tpm273.26 26771.46 26978.63 26283.34 27756.71 31480.65 29380.40 32156.63 35173.55 25382.02 31651.80 25791.24 24056.35 30878.42 25387.95 261
MDTV_nov1_ep13_2view37.79 39175.16 34455.10 35666.53 32749.34 28453.98 31687.94 262
Patchmatch-test64.82 32963.24 33069.57 34179.42 34449.82 36763.49 38369.05 37351.98 36559.95 36180.13 33150.91 26470.98 38140.66 37173.57 31687.90 263
PLCcopyleft70.83 1178.05 20076.37 21983.08 16391.88 7467.80 13488.19 13789.46 16564.33 28569.87 29488.38 18353.66 23493.58 14458.86 28482.73 20287.86 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm72.37 27671.71 26874.35 31182.19 30552.00 35379.22 31177.29 34464.56 28172.95 26083.68 29551.35 26083.26 33058.33 29075.80 28587.81 265
Patchmatch-RL test70.24 29367.78 30677.61 28077.43 35259.57 28271.16 35870.33 36762.94 30068.65 30572.77 37050.62 26885.49 31269.58 19366.58 35187.77 266
F-COLMAP76.38 23574.33 24582.50 18689.28 13266.95 15888.41 12789.03 18364.05 28966.83 32288.61 17646.78 30392.89 18157.48 29678.55 24987.67 267
Baseline_NR-MVSNet78.15 19778.33 17077.61 28085.79 22856.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 29887.63 268
CL-MVSNet_self_test72.37 27671.46 26975.09 30379.49 34353.53 34580.76 29185.01 26169.12 22270.51 28182.05 31557.92 20084.13 32252.27 32566.00 35487.60 269
ACMH+68.96 1476.01 23974.01 24782.03 19388.60 15865.31 19088.86 11087.55 22270.25 19567.75 31187.47 20841.27 34193.19 16858.37 28975.94 28487.60 269
131476.53 22975.30 23580.21 23783.93 26662.32 24784.66 23288.81 19260.23 32270.16 28884.07 28755.30 21790.73 25467.37 21383.21 19687.59 271
API-MVS81.99 10481.23 10884.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 272
AdaColmapbinary80.58 13979.42 14284.06 12593.09 5468.91 10489.36 9488.97 18869.27 21575.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 273
PVSNet_BlendedMVS80.60 13780.02 12982.36 18988.85 14565.40 18686.16 19992.00 8769.34 21478.11 16386.09 24966.02 11294.27 11371.52 17182.06 20987.39 274
sss73.60 26273.64 25373.51 31782.80 29355.01 33476.12 33581.69 30862.47 30774.68 24485.85 25357.32 20778.11 35260.86 26880.93 22187.39 274
IterMVS-SCA-FT75.43 24773.87 25080.11 23982.69 29664.85 19981.57 28383.47 28469.16 22170.49 28284.15 28651.95 25388.15 29169.23 19572.14 32887.34 276
PVSNet64.34 1872.08 27870.87 27775.69 29686.21 22356.44 31874.37 34980.73 31562.06 31170.17 28782.23 31342.86 33183.31 32954.77 31384.45 17587.32 277
新几何183.42 14793.13 5270.71 7185.48 25657.43 34781.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 278
TR-MVS77.44 21576.18 22081.20 21488.24 17063.24 23384.61 23586.40 24367.55 24677.81 16986.48 24054.10 23093.15 17057.75 29582.72 20387.20 279
TransMVSNet (Re)75.39 24974.56 24177.86 27485.50 23457.10 30886.78 18186.09 24972.17 15871.53 27587.34 20963.01 14289.31 27356.84 30461.83 36287.17 280
ACMH67.68 1675.89 24073.93 24881.77 19888.71 15566.61 16188.62 12289.01 18569.81 20366.78 32386.70 23041.95 34091.51 23155.64 31078.14 25687.17 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
KD-MVS_self_test68.81 30367.59 31072.46 32574.29 36545.45 37477.93 32787.00 23463.12 29563.99 34678.99 34442.32 33484.77 31956.55 30764.09 35987.16 282
EPMVS69.02 30268.16 29771.59 32979.61 34149.80 36877.40 33066.93 37662.82 30370.01 28979.05 34045.79 31477.86 35456.58 30675.26 30087.13 283
CR-MVSNet73.37 26471.27 27379.67 24981.32 32065.19 19175.92 33780.30 32259.92 32572.73 26281.19 31952.50 24186.69 30259.84 27477.71 25887.11 284
RPMNet73.51 26370.49 28082.58 18581.32 32065.19 19175.92 33792.27 7657.60 34572.73 26276.45 35852.30 24495.43 6548.14 34977.71 25887.11 284
test_vis1_n_192075.52 24575.78 22374.75 30879.84 33657.44 30483.26 26385.52 25562.83 30279.34 13686.17 24745.10 32079.71 34578.75 10181.21 21987.10 286
XXY-MVS75.41 24875.56 22774.96 30483.59 27257.82 29880.59 29483.87 27866.54 26074.93 24188.31 18563.24 13580.09 34462.16 25576.85 26986.97 287
tpmrst72.39 27472.13 26573.18 32180.54 32749.91 36679.91 30579.08 33363.11 29671.69 27479.95 33355.32 21682.77 33265.66 22973.89 31386.87 288
thres20075.55 24474.47 24378.82 26087.78 18857.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25091.75 21947.41 35283.64 18886.86 289
ITE_SJBPF78.22 27081.77 31060.57 26883.30 28669.25 21667.54 31387.20 21536.33 35987.28 30054.34 31574.62 30786.80 290
test22291.50 7768.26 12484.16 24883.20 29054.63 35879.74 12991.63 9958.97 19391.42 8586.77 291
MIMVSNet70.69 28869.30 28774.88 30584.52 25456.35 32175.87 33979.42 33064.59 28067.76 31082.41 30941.10 34281.54 33846.64 35681.34 21686.75 292
BH-untuned79.47 16278.60 16282.05 19289.19 13665.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 293
LTVRE_ROB69.57 1376.25 23674.54 24281.41 20688.60 15864.38 21079.24 31089.12 18270.76 18369.79 29687.86 19749.09 28893.20 16656.21 30980.16 23286.65 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata79.97 24190.90 8664.21 21284.71 26359.27 33185.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 295
MIMVSNet168.58 30666.78 31673.98 31480.07 33351.82 35580.77 29084.37 26864.40 28359.75 36282.16 31436.47 35883.63 32642.73 36770.33 33786.48 296
tfpnnormal74.39 25373.16 25778.08 27286.10 22658.05 29184.65 23487.53 22370.32 19271.22 27885.63 25854.97 21889.86 26343.03 36675.02 30386.32 297
D2MVS74.82 25173.21 25679.64 25079.81 33762.56 24480.34 29987.35 22764.37 28468.86 30382.66 30746.37 30690.10 26167.91 20881.24 21886.25 298
tpm cat170.57 28968.31 29577.35 28482.41 30357.95 29578.08 32580.22 32452.04 36368.54 30777.66 35352.00 25287.84 29551.77 32672.07 32986.25 298
CVMVSNet72.99 27172.58 26174.25 31284.28 25750.85 36286.41 19183.45 28544.56 37473.23 25787.54 20649.38 28385.70 30965.90 22678.44 25286.19 300
AllTest70.96 28468.09 29979.58 25185.15 24163.62 22184.58 23679.83 32662.31 30860.32 35986.73 22432.02 36688.96 28150.28 33571.57 33286.15 301
TestCases79.58 25185.15 24163.62 22179.83 32662.31 30860.32 35986.73 22432.02 36688.96 28150.28 33571.57 33286.15 301
test-LLR72.94 27272.43 26274.48 30981.35 31858.04 29278.38 32177.46 34166.66 25469.95 29279.00 34248.06 29579.24 34666.13 22284.83 16686.15 301
test-mter71.41 28070.39 28374.48 30981.35 31858.04 29278.38 32177.46 34160.32 32169.95 29279.00 34236.08 36079.24 34666.13 22284.83 16686.15 301
IterMVS74.29 25472.94 25978.35 26981.53 31463.49 22781.58 28282.49 30068.06 24269.99 29183.69 29451.66 25985.54 31165.85 22771.64 33186.01 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS76.78 22774.57 24083.42 14793.29 4869.46 9488.55 12483.70 27963.98 29170.20 28588.89 16854.01 23294.80 9646.66 35481.88 21286.01 305
ppachtmachnet_test70.04 29567.34 31278.14 27179.80 33861.13 26079.19 31280.59 31759.16 33265.27 33779.29 33946.75 30487.29 29949.33 34166.72 34986.00 307
test_fmvs1_n70.86 28670.24 28472.73 32372.51 37755.28 33181.27 28779.71 32851.49 36778.73 14384.87 27427.54 37577.02 35776.06 13079.97 23685.88 308
Patchmtry70.74 28769.16 29075.49 30080.72 32454.07 34274.94 34880.30 32258.34 33870.01 28981.19 31952.50 24186.54 30353.37 32071.09 33585.87 309
test_fmvs268.35 31067.48 31170.98 33769.50 38051.95 35480.05 30276.38 34949.33 37074.65 24584.38 28123.30 38175.40 37274.51 14475.17 30285.60 310
ambc75.24 30273.16 37250.51 36463.05 38487.47 22564.28 34377.81 35217.80 38689.73 26657.88 29460.64 36685.49 311
UnsupCasMVSNet_eth67.33 31565.99 31971.37 33173.48 37051.47 35975.16 34485.19 25865.20 27360.78 35780.93 32642.35 33377.20 35657.12 30053.69 37785.44 312
PatchT68.46 30967.85 30270.29 33980.70 32543.93 38172.47 35474.88 35460.15 32370.55 28076.57 35749.94 27681.59 33750.58 33174.83 30585.34 313
Anonymous2024052168.80 30467.22 31373.55 31674.33 36454.11 34183.18 26485.61 25458.15 34061.68 35480.94 32430.71 37181.27 34057.00 30273.34 32185.28 314
test_cas_vis1_n_192073.76 26173.74 25273.81 31575.90 35759.77 27880.51 29582.40 30158.30 33981.62 11085.69 25544.35 32376.41 36376.29 12778.61 24885.23 315
ADS-MVSNet266.20 32663.33 32974.82 30679.92 33458.75 28567.55 37275.19 35353.37 36065.25 33875.86 36142.32 33480.53 34341.57 36968.91 34385.18 316
ADS-MVSNet64.36 33062.88 33368.78 34779.92 33447.17 37167.55 37271.18 36653.37 36065.25 33875.86 36142.32 33473.99 37741.57 36968.91 34385.18 316
FMVSNet569.50 29967.96 30074.15 31382.97 29155.35 33080.01 30382.12 30462.56 30663.02 34981.53 31836.92 35781.92 33648.42 34474.06 31185.17 318
pmmvs571.55 27970.20 28575.61 29777.83 35056.39 31981.74 28080.89 31257.76 34367.46 31584.49 27849.26 28685.32 31557.08 30175.29 29985.11 319
testing368.56 30767.67 30871.22 33587.33 20542.87 38383.06 27071.54 36570.36 19069.08 30284.38 28130.33 37285.69 31037.50 37775.45 29485.09 320
CMPMVSbinary51.72 2170.19 29468.16 29776.28 29273.15 37357.55 30279.47 30883.92 27648.02 37156.48 37284.81 27543.13 32986.42 30562.67 25081.81 21384.89 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi66.67 32066.53 31767.08 35375.62 36041.69 38875.93 33676.50 34866.11 26365.20 34086.59 23435.72 36174.71 37443.71 36473.38 32084.84 322
MSDG73.36 26670.99 27580.49 23184.51 25565.80 17780.71 29286.13 24865.70 26965.46 33583.74 29344.60 32190.91 25051.13 33076.89 26784.74 323
pmmvs474.03 25971.91 26680.39 23281.96 30768.32 12281.45 28582.14 30359.32 33069.87 29485.13 27052.40 24388.13 29260.21 27274.74 30684.73 324
gg-mvs-nofinetune69.95 29667.96 30075.94 29483.07 28554.51 33977.23 33270.29 36863.11 29670.32 28462.33 37943.62 32788.69 28553.88 31787.76 13184.62 325
test_fmvs170.93 28570.52 27972.16 32673.71 36755.05 33380.82 28878.77 33451.21 36878.58 14984.41 28031.20 37076.94 35875.88 13380.12 23584.47 326
BH-w/o78.21 19477.33 19780.84 22488.81 14965.13 19384.87 22887.85 21769.75 20774.52 24684.74 27761.34 16893.11 17358.24 29185.84 16084.27 327
MVS78.19 19676.99 20381.78 19785.66 23066.99 15484.66 23290.47 13555.08 35772.02 27185.27 26563.83 13094.11 12266.10 22489.80 10984.24 328
COLMAP_ROBcopyleft66.92 1773.01 27070.41 28280.81 22587.13 21065.63 18088.30 13484.19 27462.96 29963.80 34887.69 20038.04 35492.56 18946.66 35474.91 30484.24 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet61.73 33661.73 33761.70 35972.74 37524.50 40069.16 36878.03 33761.40 31456.72 37175.53 36438.42 35176.48 36245.95 35957.67 36984.13 330
TESTMET0.1,169.89 29769.00 29172.55 32479.27 34656.85 31078.38 32174.71 35757.64 34468.09 30977.19 35537.75 35576.70 35963.92 23984.09 17984.10 331
test_fmvs363.36 33361.82 33667.98 35062.51 38746.96 37377.37 33174.03 35945.24 37367.50 31478.79 34512.16 39272.98 38072.77 16466.02 35383.99 332
our_test_369.14 30167.00 31475.57 29879.80 33858.80 28477.96 32677.81 33859.55 32862.90 35278.25 34947.43 29783.97 32351.71 32767.58 34883.93 333
test_vis1_n69.85 29869.21 28971.77 32872.66 37655.27 33281.48 28476.21 35052.03 36475.30 23183.20 30028.97 37376.22 36574.60 14378.41 25483.81 334
tpmvs71.09 28369.29 28876.49 29182.04 30656.04 32478.92 31681.37 31164.05 28967.18 31978.28 34849.74 27989.77 26449.67 34072.37 32583.67 335
test20.0367.45 31466.95 31568.94 34475.48 36144.84 37977.50 32977.67 33966.66 25463.01 35083.80 29147.02 30178.40 35042.53 36868.86 34583.58 336
test0.0.03 168.00 31267.69 30768.90 34577.55 35147.43 37075.70 34072.95 36466.66 25466.56 32682.29 31248.06 29575.87 36744.97 36374.51 30883.41 337
Anonymous2023120668.60 30567.80 30571.02 33680.23 33150.75 36378.30 32480.47 31956.79 35066.11 33382.63 30846.35 30778.95 34843.62 36575.70 28683.36 338
EU-MVSNet68.53 30867.61 30971.31 33478.51 34947.01 37284.47 23884.27 27242.27 37766.44 33184.79 27640.44 34583.76 32458.76 28668.54 34683.17 339
dp66.80 31865.43 32070.90 33879.74 34048.82 36975.12 34674.77 35559.61 32764.08 34577.23 35442.89 33080.72 34248.86 34366.58 35183.16 340
pmmvs-eth3d70.50 29167.83 30478.52 26777.37 35366.18 16781.82 27881.51 30958.90 33563.90 34780.42 32942.69 33286.28 30658.56 28765.30 35683.11 341
YYNet165.03 32762.91 33271.38 33075.85 35856.60 31669.12 36974.66 35857.28 34854.12 37577.87 35145.85 31374.48 37549.95 33861.52 36483.05 342
MDA-MVSNet-bldmvs66.68 31963.66 32875.75 29579.28 34560.56 26973.92 35178.35 33664.43 28250.13 38079.87 33544.02 32583.67 32546.10 35856.86 37083.03 343
MDA-MVSNet_test_wron65.03 32762.92 33171.37 33175.93 35656.73 31269.09 37074.73 35657.28 34854.03 37677.89 35045.88 31274.39 37649.89 33961.55 36382.99 344
USDC70.33 29268.37 29476.21 29380.60 32656.23 32279.19 31286.49 24160.89 31761.29 35585.47 26231.78 36889.47 27153.37 32076.21 28282.94 345
Syy-MVS68.05 31167.85 30268.67 34884.68 25140.97 38978.62 31973.08 36266.65 25766.74 32479.46 33752.11 24982.30 33432.89 38176.38 27982.75 346
myMVS_eth3d67.02 31766.29 31869.21 34384.68 25142.58 38478.62 31973.08 36266.65 25766.74 32479.46 33731.53 36982.30 33439.43 37476.38 27982.75 346
OpenMVS_ROBcopyleft64.09 1970.56 29068.19 29677.65 27980.26 32959.41 28385.01 22582.96 29558.76 33665.43 33682.33 31037.63 35691.23 24145.34 36276.03 28382.32 348
JIA-IIPM66.32 32362.82 33476.82 28977.09 35461.72 25665.34 37975.38 35258.04 34264.51 34262.32 38042.05 33986.51 30451.45 32969.22 34282.21 349
dmvs_re71.14 28270.58 27872.80 32281.96 30759.68 27975.60 34179.34 33168.55 23469.27 30180.72 32749.42 28276.54 36052.56 32477.79 25782.19 350
EG-PatchMatch MVS74.04 25871.82 26780.71 22784.92 24767.42 14385.86 20788.08 20966.04 26564.22 34483.85 28935.10 36292.56 18957.44 29780.83 22382.16 351
MVP-Stereo76.12 23774.46 24481.13 21785.37 23769.79 8684.42 24387.95 21365.03 27667.46 31585.33 26453.28 23891.73 22158.01 29383.27 19581.85 352
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement67.49 31364.34 32376.92 28873.47 37161.07 26184.86 22982.98 29459.77 32658.30 36685.13 27026.06 37687.89 29447.92 35160.59 36781.81 353
GG-mvs-BLEND75.38 30181.59 31355.80 32679.32 30969.63 37067.19 31873.67 36843.24 32888.90 28350.41 33284.50 17181.45 354
KD-MVS_2432*160066.22 32463.89 32673.21 31875.47 36253.42 34770.76 36184.35 26964.10 28766.52 32878.52 34634.55 36384.98 31650.40 33350.33 38181.23 355
miper_refine_blended66.22 32463.89 32673.21 31875.47 36253.42 34770.76 36184.35 26964.10 28766.52 32878.52 34634.55 36384.98 31650.40 33350.33 38181.23 355
test_040272.79 27370.44 28179.84 24488.13 17265.99 17185.93 20484.29 27165.57 27167.40 31785.49 26146.92 30292.61 18735.88 37874.38 30980.94 357
UnsupCasMVSNet_bld63.70 33261.53 33870.21 34073.69 36851.39 36072.82 35381.89 30555.63 35557.81 36871.80 37238.67 35078.61 34949.26 34252.21 37980.63 358
LCM-MVSNet54.25 34349.68 35367.97 35153.73 39545.28 37766.85 37580.78 31435.96 38539.45 38662.23 3818.70 39678.06 35348.24 34851.20 38080.57 359
N_pmnet52.79 34853.26 34751.40 37378.99 3477.68 40569.52 3653.89 40451.63 36657.01 37074.98 36540.83 34465.96 38837.78 37664.67 35780.56 360
TinyColmap67.30 31664.81 32174.76 30781.92 30956.68 31580.29 30081.49 31060.33 32056.27 37383.22 29824.77 37887.66 29845.52 36069.47 34079.95 361
PM-MVS66.41 32264.14 32473.20 32073.92 36656.45 31778.97 31564.96 38263.88 29364.72 34180.24 33019.84 38483.44 32866.24 22164.52 35879.71 362
ANet_high50.57 35246.10 35663.99 35648.67 39839.13 39070.99 36080.85 31361.39 31531.18 38857.70 38617.02 38773.65 37931.22 38315.89 39679.18 363
LF4IMVS64.02 33162.19 33569.50 34270.90 37853.29 35076.13 33477.18 34552.65 36258.59 36480.98 32323.55 38076.52 36153.06 32266.66 35078.68 364
PatchMatch-RL72.38 27570.90 27676.80 29088.60 15867.38 14579.53 30776.17 35162.75 30469.36 29982.00 31745.51 31784.89 31853.62 31880.58 22778.12 365
MS-PatchMatch73.83 26072.67 26077.30 28583.87 26766.02 16981.82 27884.66 26461.37 31668.61 30682.82 30547.29 29888.21 29059.27 27884.32 17677.68 366
DSMNet-mixed57.77 34156.90 34360.38 36167.70 38235.61 39269.18 36753.97 39332.30 38957.49 36979.88 33440.39 34668.57 38638.78 37572.37 32576.97 367
CHOSEN 280x42066.51 32164.71 32271.90 32781.45 31563.52 22657.98 38668.95 37453.57 35962.59 35376.70 35646.22 30975.29 37355.25 31179.68 23776.88 368
mvsany_test353.99 34451.45 34961.61 36055.51 39144.74 38063.52 38245.41 39943.69 37658.11 36776.45 35817.99 38563.76 39054.77 31347.59 38376.34 369
dmvs_testset62.63 33464.11 32558.19 36378.55 34824.76 39975.28 34265.94 37967.91 24360.34 35876.01 36053.56 23573.94 37831.79 38267.65 34775.88 370
mvsany_test162.30 33561.26 33965.41 35569.52 37954.86 33566.86 37449.78 39546.65 37268.50 30883.21 29949.15 28766.28 38756.93 30360.77 36575.11 371
PMMVS69.34 30068.67 29271.35 33375.67 35962.03 25075.17 34373.46 36050.00 36968.68 30479.05 34052.07 25178.13 35161.16 26682.77 20173.90 372
test_vis1_rt60.28 33858.42 34165.84 35467.25 38355.60 32970.44 36360.94 38744.33 37559.00 36366.64 37724.91 37768.67 38562.80 24669.48 33973.25 373
pmmvs357.79 34054.26 34568.37 34964.02 38656.72 31375.12 34665.17 38040.20 37952.93 37769.86 37620.36 38375.48 37045.45 36155.25 37672.90 374
PVSNet_057.27 2061.67 33759.27 34068.85 34679.61 34157.44 30468.01 37173.44 36155.93 35458.54 36570.41 37544.58 32277.55 35547.01 35335.91 38771.55 375
WB-MVS54.94 34254.72 34455.60 36973.50 36920.90 40174.27 35061.19 38659.16 33250.61 37974.15 36647.19 30075.78 36817.31 39335.07 38870.12 376
SSC-MVS53.88 34553.59 34654.75 37172.87 37419.59 40273.84 35260.53 38857.58 34649.18 38173.45 36946.34 30875.47 37116.20 39632.28 39069.20 377
test_f52.09 34950.82 35055.90 36753.82 39442.31 38759.42 38558.31 39136.45 38456.12 37470.96 37412.18 39157.79 39253.51 31956.57 37267.60 378
PMMVS240.82 35838.86 36146.69 37453.84 39316.45 40348.61 38949.92 39437.49 38231.67 38760.97 3828.14 39856.42 39328.42 38530.72 39167.19 379
new_pmnet50.91 35150.29 35152.78 37268.58 38134.94 39463.71 38156.63 39239.73 38044.95 38265.47 37821.93 38258.48 39134.98 37956.62 37164.92 380
MVS-HIRNet59.14 33957.67 34263.57 35781.65 31143.50 38271.73 35665.06 38139.59 38151.43 37857.73 38538.34 35282.58 33339.53 37273.95 31264.62 381
APD_test153.31 34749.93 35263.42 35865.68 38450.13 36571.59 35766.90 37734.43 38640.58 38571.56 3738.65 39776.27 36434.64 38055.36 37563.86 382
test_method31.52 36029.28 36438.23 37627.03 4026.50 40620.94 39462.21 3854.05 39722.35 39552.50 38913.33 38947.58 39627.04 38734.04 38960.62 383
EGC-MVSNET52.07 35047.05 35467.14 35283.51 27460.71 26680.50 29667.75 3750.07 3990.43 40075.85 36324.26 37981.54 33828.82 38462.25 36159.16 384
test_vis3_rt49.26 35347.02 35556.00 36654.30 39245.27 37866.76 37648.08 39636.83 38344.38 38353.20 3887.17 39964.07 38956.77 30555.66 37358.65 385
FPMVS53.68 34651.64 34859.81 36265.08 38551.03 36169.48 36669.58 37141.46 37840.67 38472.32 37116.46 38870.00 38424.24 39065.42 35558.40 386
testf145.72 35441.96 35757.00 36456.90 38945.32 37566.14 37759.26 38926.19 39030.89 38960.96 3834.14 40070.64 38226.39 38846.73 38555.04 387
APD_test245.72 35441.96 35757.00 36456.90 38945.32 37566.14 37759.26 38926.19 39030.89 38960.96 3834.14 40070.64 38226.39 38846.73 38555.04 387
PMVScopyleft37.38 2244.16 35740.28 36055.82 36840.82 40042.54 38665.12 38063.99 38334.43 38624.48 39257.12 3873.92 40276.17 36617.10 39455.52 37448.75 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 36225.89 36643.81 37544.55 39935.46 39328.87 39339.07 40018.20 39418.58 39640.18 3912.68 40347.37 39717.07 39523.78 39348.60 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 35641.86 35955.16 37077.03 35551.52 35832.50 39280.52 31832.46 38827.12 39135.02 3929.52 39575.50 36922.31 39160.21 36838.45 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 37940.17 40126.90 39724.59 40317.44 39523.95 39348.61 3909.77 39426.48 39818.06 39224.47 39228.83 392
E-PMN31.77 35930.64 36235.15 37752.87 39627.67 39657.09 38747.86 39724.64 39216.40 39733.05 39311.23 39354.90 39414.46 39718.15 39422.87 393
EMVS30.81 36129.65 36334.27 37850.96 39725.95 39856.58 38846.80 39824.01 39315.53 39830.68 39412.47 39054.43 39512.81 39817.05 39522.43 394
tmp_tt18.61 36421.40 36710.23 3814.82 40310.11 40434.70 39130.74 4021.48 39823.91 39426.07 39528.42 37413.41 40027.12 38615.35 3977.17 395
wuyk23d16.82 36515.94 36819.46 38058.74 38831.45 39539.22 3903.74 4056.84 3966.04 3992.70 3991.27 40424.29 39910.54 39914.40 3982.63 396
test1236.12 3678.11 3700.14 3820.06 4050.09 40771.05 3590.03 4070.04 4010.25 4021.30 4010.05 4050.03 4020.21 4010.01 4000.29 397
testmvs6.04 3688.02 3710.10 3830.08 4040.03 40869.74 3640.04 4060.05 4000.31 4011.68 4000.02 4060.04 4010.24 4000.02 3990.25 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k19.96 36326.61 3650.00 3840.00 4060.00 4090.00 39589.26 1730.00 4020.00 40388.61 17661.62 1610.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.26 3697.02 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40263.15 1380.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.23 3669.64 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40386.72 2260.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS42.58 38439.46 373
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 406
eth-test0.00 406
ZD-MVS94.38 2572.22 4492.67 6170.98 17987.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_part295.06 872.65 3291.80 13
sam_mvs50.01 274
MTGPAbinary92.02 85
test_post178.90 3175.43 39848.81 29485.44 31459.25 279
test_post5.46 39750.36 27284.24 321
patchmatchnet-post74.00 36751.12 26388.60 286
MTMP92.18 3532.83 401
gm-plane-assit81.40 31653.83 34462.72 30580.94 32492.39 19563.40 243
TEST993.26 5072.96 2588.75 11591.89 9368.44 23785.00 5793.10 6774.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23284.87 6193.10 6774.43 2695.16 76
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
旧先验286.56 18858.10 34187.04 3988.98 27974.07 149
新几何286.29 196
原ACMM286.86 177
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior790.08 10268.51 119
plane_prior689.84 11168.70 11460.42 186
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 110
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 408
nn0.00 408
door-mid69.98 369
test1192.23 79
door69.44 372
HQP5-MVS66.98 155
HQP-NCC89.33 12789.17 9876.41 7277.23 182
ACMP_Plane89.33 12789.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP3-MVS92.19 8285.99 158
HQP2-MVS60.17 189
NP-MVS89.62 11468.32 12290.24 132
MDTV_nov1_ep1369.97 28683.18 28253.48 34677.10 33380.18 32560.45 31969.33 30080.44 32848.89 29386.90 30151.60 32878.51 251
ACMMP++_ref81.95 211
ACMMP++81.25 217
Test By Simon64.33 125