This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n97.65 797.75 697.34 5598.21 9592.75 8397.83 8798.73 995.04 3199.30 198.84 2393.34 2299.78 3899.32 299.13 8399.50 43
test_fmvsm_n_192097.55 1197.89 396.53 8898.41 7791.73 11698.01 6099.02 196.37 499.30 198.92 1392.39 4199.79 3699.16 499.46 4198.08 179
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 6298.25 8992.59 8997.81 9198.68 1394.93 3399.24 398.87 1893.52 2099.79 3699.32 299.21 7499.40 57
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 3995.13 2699.19 498.89 1695.54 599.85 1897.52 2899.66 1099.56 31
test_241102_ONE99.42 795.30 1798.27 3995.09 2999.19 498.81 2495.54 599.65 61
SD-MVS97.41 1797.53 1197.06 7398.57 7294.46 3497.92 7598.14 6794.82 4199.01 698.55 3594.18 1497.41 33796.94 4199.64 1499.32 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test072699.45 395.36 1398.31 2798.29 3494.92 3598.99 798.92 1395.08 8
IU-MVS99.42 795.39 1197.94 10790.40 20798.94 897.41 3599.66 1099.74 8
fmvsm_s_conf0.1_n_a96.40 6396.47 5796.16 12295.48 26190.69 16497.91 7698.33 2994.07 7198.93 999.14 187.44 12599.61 7298.63 1398.32 12098.18 168
DVP-MVS++98.06 197.99 198.28 998.67 6195.39 1199.29 198.28 3694.78 4498.93 998.87 1896.04 299.86 997.45 3299.58 2399.59 24
test_241102_TWO98.27 3995.13 2698.93 998.89 1694.99 1199.85 1897.52 2899.65 1399.74 8
test_fmvsmconf_n97.49 1597.56 997.29 5897.44 14792.37 9597.91 7698.88 495.83 898.92 1299.05 591.45 5799.80 3399.12 599.46 4199.69 12
fmvsm_s_conf0.5_n_a96.75 4996.93 3296.20 12097.64 13490.72 16398.00 6198.73 994.55 5598.91 1399.08 388.22 10699.63 7098.91 998.37 11898.25 163
PC_three_145290.77 18698.89 1498.28 6896.24 198.35 23195.76 8499.58 2399.59 24
SMA-MVScopyleft97.35 1997.03 2798.30 899.06 3895.42 1097.94 7398.18 6090.57 20198.85 1598.94 1293.33 2399.83 2696.72 4899.68 499.63 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_s_conf0.1_n96.58 5896.77 4496.01 13296.67 19290.25 17697.91 7698.38 2394.48 5998.84 1699.14 188.06 10899.62 7198.82 1198.60 10898.15 172
fmvsm_s_conf0.5_n96.85 4197.13 1996.04 12898.07 10890.28 17597.97 6998.76 894.93 3398.84 1699.06 488.80 9799.65 6199.06 698.63 10698.18 168
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 11994.92 3598.73 1898.87 1895.08 899.84 2397.52 2899.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 4498.73 1898.87 1895.87 499.84 2397.45 3299.72 299.77 2
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16698.35 2795.16 2598.71 2098.80 2595.05 1099.89 396.70 4999.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.97.42 1697.33 1897.69 4199.25 2794.24 4198.07 5597.85 11993.72 8298.57 2198.35 5493.69 1899.40 11397.06 3999.46 4199.44 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3495.55 1698.56 2297.81 10493.90 1599.65 6196.62 5099.21 7499.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS199.55 193.34 6699.29 198.35 2794.98 3298.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2698.48 2498.87 1895.16 7
test_fmvsmconf0.1_n97.09 2797.06 2297.19 6795.67 25392.21 10297.95 7298.27 3995.78 1298.40 2599.00 789.99 8499.78 3899.06 699.41 5399.59 24
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4698.30 2698.90 1593.77 1799.68 5797.93 1699.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS97.39 1897.13 1998.17 1599.02 4295.28 1998.23 3998.27 3992.37 13598.27 2798.65 3193.33 2399.72 4896.49 5599.52 3099.51 40
balanced_conf0396.84 4396.89 3496.68 7997.63 13692.22 10198.17 4897.82 12594.44 6198.23 2897.36 13690.97 7199.22 13097.74 1999.66 1098.61 132
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 8094.25 4098.43 2298.27 3995.34 2098.11 2998.56 3394.53 1299.71 4996.57 5399.62 1799.65 17
Skip Steuart: Steuart Systems R&D Blog.
test_vis1_n_192094.17 12694.58 10792.91 28797.42 14882.02 35497.83 8797.85 11994.68 4998.10 3098.49 4070.15 34899.32 12097.91 1798.82 9897.40 215
test_part299.28 2595.74 898.10 30
APD-MVScopyleft96.95 3496.60 5098.01 2099.03 4194.93 2797.72 10298.10 7591.50 15998.01 3298.32 6292.33 4299.58 8094.85 10999.51 3399.53 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
reproduce_model97.51 1497.51 1397.50 4998.99 4693.01 7797.79 9398.21 5195.73 1397.99 3399.03 692.63 3699.82 2897.80 1899.42 5099.67 13
patch_mono-296.83 4497.44 1695.01 18199.05 3985.39 30896.98 18598.77 794.70 4897.99 3398.66 2993.61 1999.91 197.67 2499.50 3599.72 11
DeepPCF-MVS93.97 196.61 5697.09 2195.15 17398.09 10486.63 28496.00 26398.15 6595.43 1797.95 3598.56 3393.40 2199.36 11796.77 4599.48 3999.45 50
ACMMP_NAP97.20 2396.86 3598.23 1199.09 3495.16 2297.60 12098.19 5892.82 12697.93 3698.74 2891.60 5599.86 996.26 5899.52 3099.67 13
reproduce-ours97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
our_new_method97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
9.1496.75 4598.93 5097.73 9998.23 5091.28 17097.88 3798.44 4693.00 2699.65 6195.76 8499.47 40
CNVR-MVS97.68 697.44 1698.37 798.90 5395.86 697.27 15898.08 7795.81 997.87 4098.31 6394.26 1399.68 5797.02 4099.49 3899.57 28
test_vis1_n92.37 19892.26 18392.72 29594.75 30982.64 34498.02 5996.80 24291.18 17497.77 4197.93 9158.02 39698.29 23697.63 2598.21 12497.23 224
test_cas_vis1_n_192094.48 12094.55 11194.28 22596.78 18586.45 28997.63 11797.64 14593.32 10197.68 4298.36 5373.75 32599.08 15596.73 4799.05 8997.31 220
test_fmvsmconf0.01_n96.15 7095.85 7497.03 7492.66 36991.83 11597.97 6997.84 12395.57 1597.53 4399.00 784.20 16999.76 4198.82 1199.08 8799.48 47
MM97.29 2296.98 2998.23 1198.01 11195.03 2698.07 5595.76 29497.78 197.52 4498.80 2588.09 10799.86 999.44 199.37 6199.80 1
VNet95.89 7995.45 8297.21 6598.07 10892.94 8097.50 13198.15 6593.87 7897.52 4497.61 12285.29 15399.53 9495.81 8395.27 19699.16 76
SR-MVS97.01 3296.86 3597.47 5199.09 3493.27 7097.98 6398.07 8293.75 8197.45 4698.48 4391.43 5999.59 7796.22 6199.27 6799.54 36
APD-MVS_3200maxsize96.81 4596.71 4797.12 6999.01 4592.31 9897.98 6398.06 8593.11 11297.44 4798.55 3590.93 7299.55 9096.06 7199.25 7199.51 40
TSAR-MVS + GP.96.69 5396.49 5597.27 6198.31 8493.39 6296.79 20096.72 24594.17 6997.44 4797.66 11592.76 3199.33 11896.86 4497.76 14099.08 87
SR-MVS-dyc-post96.88 3896.80 4297.11 7099.02 4292.34 9697.98 6398.03 9493.52 9397.43 4998.51 3891.40 6099.56 8896.05 7299.26 6999.43 54
RE-MVS-def96.72 4699.02 4292.34 9697.98 6398.03 9493.52 9397.43 4998.51 3890.71 7696.05 7299.26 6999.43 54
dcpmvs_296.37 6597.05 2594.31 22398.96 4984.11 32997.56 12497.51 16293.92 7697.43 4998.52 3792.75 3299.32 12097.32 3799.50 3599.51 40
MVSMamba_PlusPlus96.51 5996.48 5696.59 8598.07 10891.97 11198.14 4997.79 12790.43 20597.34 5297.52 12991.29 6399.19 13398.12 1599.64 1498.60 133
旧先验295.94 26681.66 37697.34 5298.82 18292.26 159
MSLP-MVS++96.94 3597.06 2296.59 8598.72 5891.86 11497.67 10898.49 1994.66 5197.24 5498.41 4992.31 4498.94 17196.61 5199.46 4198.96 98
HFP-MVS97.14 2696.92 3397.83 2699.42 794.12 4698.52 1598.32 3093.21 10397.18 5598.29 6692.08 4699.83 2695.63 9199.59 1999.54 36
MVS_030496.74 5096.31 6498.02 1996.87 17494.65 3097.58 12194.39 35496.47 397.16 5698.39 5087.53 12199.87 798.97 899.41 5399.55 34
ACMMPR97.07 2996.84 3797.79 3099.44 693.88 5298.52 1598.31 3193.21 10397.15 5798.33 6091.35 6199.86 995.63 9199.59 1999.62 20
region2R97.07 2996.84 3797.77 3399.46 293.79 5498.52 1598.24 4793.19 10697.14 5898.34 5791.59 5699.87 795.46 9799.59 1999.64 18
PGM-MVS96.81 4596.53 5397.65 4299.35 2093.53 6097.65 11198.98 292.22 13797.14 5898.44 4691.17 6799.85 1894.35 12499.46 4199.57 28
PHI-MVS96.77 4796.46 6097.71 4098.40 7894.07 4898.21 4298.45 2289.86 21897.11 6098.01 8692.52 3999.69 5596.03 7599.53 2999.36 63
NCCC97.30 2197.03 2798.11 1798.77 5695.06 2597.34 15198.04 9295.96 697.09 6197.88 9593.18 2599.71 4995.84 8299.17 7899.56 31
CS-MVS96.86 3997.06 2296.26 11598.16 10191.16 14899.09 397.87 11495.30 2197.06 6298.03 8391.72 5098.71 19997.10 3899.17 7898.90 108
ZD-MVS99.05 3994.59 3298.08 7789.22 23997.03 6398.10 7692.52 3999.65 6194.58 12199.31 65
testdata95.46 16598.18 10088.90 22497.66 14182.73 36897.03 6398.07 7990.06 8298.85 18089.67 21598.98 9398.64 131
SPE-MVS-test96.89 3797.04 2696.45 9998.29 8591.66 12299.03 497.85 11995.84 796.90 6597.97 8991.24 6498.75 19296.92 4299.33 6398.94 101
mvsany_test193.93 14093.98 12393.78 25394.94 29986.80 27794.62 32092.55 38588.77 26096.85 6698.49 4088.98 9398.08 25895.03 10595.62 19096.46 245
GDP-MVS95.62 8695.13 9497.09 7196.79 18493.26 7197.89 7997.83 12493.58 8696.80 6797.82 10383.06 19199.16 14094.40 12397.95 13498.87 114
test_fmvs193.21 16393.53 13592.25 30896.55 20381.20 36197.40 14596.96 22590.68 19196.80 6798.04 8269.25 35498.40 22497.58 2798.50 11197.16 225
test_fmvs1_n92.73 18892.88 15792.29 30696.08 23981.05 36297.98 6397.08 21290.72 18996.79 6998.18 7363.07 38798.45 22197.62 2698.42 11797.36 216
HPM-MVS_fast96.51 5996.27 6697.22 6499.32 2292.74 8498.74 998.06 8590.57 20196.77 7098.35 5490.21 8199.53 9494.80 11499.63 1699.38 61
h-mvs3394.15 12893.52 13796.04 12897.81 12490.22 17797.62 11997.58 15395.19 2396.74 7197.45 13083.67 17799.61 7295.85 8079.73 37698.29 162
hse-mvs293.45 15692.99 15294.81 19497.02 16888.59 23096.69 21196.47 26395.19 2396.74 7196.16 20483.67 17798.48 22095.85 8079.13 38097.35 218
GST-MVS96.85 4196.52 5497.82 2799.36 1894.14 4598.29 2998.13 6892.72 12896.70 7398.06 8091.35 6199.86 994.83 11199.28 6699.47 49
xiu_mvs_v1_base_debu95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
xiu_mvs_v1_base95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
xiu_mvs_v1_base_debi95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
CDPH-MVS95.97 7695.38 8797.77 3398.93 5094.44 3596.35 24197.88 11286.98 30896.65 7797.89 9391.99 4899.47 10592.26 15999.46 4199.39 59
EC-MVSNet96.42 6296.47 5796.26 11597.01 16991.52 12898.89 597.75 13094.42 6296.64 7897.68 11289.32 8998.60 20997.45 3299.11 8698.67 130
UA-Net95.95 7795.53 7897.20 6697.67 13092.98 7997.65 11198.13 6894.81 4296.61 7998.35 5488.87 9599.51 9990.36 20197.35 15199.11 84
HPM-MVS++copyleft97.34 2096.97 3098.47 599.08 3696.16 497.55 12897.97 10495.59 1496.61 7997.89 9392.57 3899.84 2395.95 7799.51 3399.40 57
XVS97.18 2496.96 3197.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8198.29 6691.70 5299.80 3395.66 8699.40 5599.62 20
X-MVStestdata91.71 22389.67 28797.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8132.69 42091.70 5299.80 3395.66 8699.40 5599.62 20
DeepC-MVS_fast93.89 296.93 3696.64 4997.78 3198.64 6794.30 3797.41 14198.04 9294.81 4296.59 8198.37 5291.24 6499.64 6995.16 10299.52 3099.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ95.37 9295.33 8995.49 16197.35 14990.66 16695.31 29997.48 16693.85 7996.51 8495.70 23188.65 10099.65 6194.80 11498.27 12296.17 251
EI-MVSNet-Vis-set96.51 5996.47 5796.63 8298.24 9091.20 14396.89 19197.73 13394.74 4796.49 8598.49 4090.88 7499.58 8096.44 5698.32 12099.13 80
ETV-MVS96.02 7395.89 7396.40 10297.16 15592.44 9397.47 13797.77 12994.55 5596.48 8694.51 28591.23 6698.92 17395.65 8998.19 12597.82 194
alignmvs95.87 8195.23 9197.78 3197.56 14595.19 2197.86 8197.17 20494.39 6596.47 8796.40 19285.89 14699.20 13296.21 6595.11 20198.95 100
xiu_mvs_v2_base95.32 9495.29 9095.40 16697.22 15190.50 16995.44 29397.44 18093.70 8496.46 8896.18 20188.59 10399.53 9494.79 11697.81 13796.17 251
CP-MVS97.02 3196.81 4197.64 4499.33 2193.54 5998.80 898.28 3692.99 11596.45 8998.30 6591.90 4999.85 1895.61 9399.68 499.54 36
HPM-MVScopyleft96.69 5396.45 6197.40 5399.36 1893.11 7598.87 698.06 8591.17 17596.40 9097.99 8790.99 7099.58 8095.61 9399.61 1899.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ZNCC-MVS96.96 3396.67 4897.85 2599.37 1694.12 4698.49 1998.18 6092.64 13196.39 9198.18 7391.61 5499.88 495.59 9699.55 2699.57 28
BP-MVS195.89 7995.49 7997.08 7296.67 19293.20 7298.08 5396.32 26994.56 5496.32 9297.84 10184.07 17299.15 14296.75 4698.78 10098.90 108
diffmvspermissive95.25 9695.13 9495.63 15196.43 21789.34 20895.99 26497.35 19392.83 12596.31 9397.37 13586.44 13898.67 20296.26 5897.19 15998.87 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LFMVS93.60 15092.63 16896.52 8998.13 10391.27 13897.94 7393.39 37490.57 20196.29 9498.31 6369.00 35599.16 14094.18 12695.87 18399.12 83
sasdasda96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14994.52 5796.27 9596.12 20687.65 11699.18 13696.20 6694.82 20598.91 105
canonicalmvs96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14994.52 5796.27 9596.12 20687.65 11699.18 13696.20 6694.82 20598.91 105
MVSFormer95.37 9295.16 9395.99 13396.34 22291.21 14198.22 4097.57 15491.42 16396.22 9797.32 13786.20 14397.92 28994.07 12799.05 8998.85 116
lupinMVS94.99 10694.56 10896.29 11396.34 22291.21 14195.83 27296.27 27388.93 25196.22 9796.88 16286.20 14398.85 18095.27 9999.05 8998.82 120
MGCFI-Net95.94 7895.40 8697.56 4897.59 14094.62 3198.21 4297.57 15494.41 6396.17 9996.16 20487.54 12099.17 13896.19 6894.73 21098.91 105
EI-MVSNet-UG-set96.34 6696.30 6596.47 9698.20 9690.93 15596.86 19397.72 13594.67 5096.16 10098.46 4490.43 7999.58 8096.23 6097.96 13398.90 108
MTAPA97.08 2896.78 4397.97 2399.37 1694.42 3697.24 16098.08 7795.07 3096.11 10198.59 3290.88 7499.90 296.18 7099.50 3599.58 27
test_fmvsmvis_n_192096.70 5196.84 3796.31 10996.62 19491.73 11697.98 6398.30 3296.19 596.10 10298.95 1189.42 8899.76 4198.90 1099.08 8797.43 213
MCST-MVS97.18 2496.84 3798.20 1499.30 2495.35 1597.12 17398.07 8293.54 9196.08 10397.69 11193.86 1699.71 4996.50 5499.39 5799.55 34
TEST998.70 5994.19 4296.41 23398.02 9788.17 27696.03 10497.56 12692.74 3399.59 77
train_agg96.30 6795.83 7597.72 3898.70 5994.19 4296.41 23398.02 9788.58 26396.03 10497.56 12692.73 3499.59 7795.04 10499.37 6199.39 59
test_prior296.35 24192.80 12796.03 10497.59 12392.01 4795.01 10699.38 58
jason94.84 11194.39 11796.18 12195.52 25990.93 15596.09 25896.52 26089.28 23796.01 10797.32 13784.70 16098.77 19095.15 10398.91 9798.85 116
jason: jason.
test_898.67 6194.06 4996.37 24098.01 10088.58 26395.98 10897.55 12892.73 3499.58 80
mPP-MVS96.86 3996.60 5097.64 4499.40 1193.44 6198.50 1898.09 7693.27 10295.95 10998.33 6091.04 6999.88 495.20 10099.57 2599.60 23
DELS-MVS96.61 5696.38 6397.30 5797.79 12593.19 7395.96 26598.18 6095.23 2295.87 11097.65 11691.45 5799.70 5495.87 7899.44 4799.00 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VDD-MVS93.82 14493.08 15096.02 13097.88 12189.96 18697.72 10295.85 29092.43 13395.86 11198.44 4668.42 36299.39 11496.31 5794.85 20398.71 127
MVS_111021_HR96.68 5596.58 5296.99 7598.46 7392.31 9896.20 25498.90 394.30 6895.86 11197.74 10992.33 4299.38 11696.04 7499.42 5099.28 68
MVS_111021_LR96.24 6996.19 6896.39 10498.23 9491.35 13696.24 25298.79 693.99 7495.80 11397.65 11689.92 8699.24 12895.87 7899.20 7698.58 135
VDDNet93.05 17292.07 18696.02 13096.84 17790.39 17498.08 5395.85 29086.22 32395.79 11498.46 4467.59 36599.19 13394.92 10894.85 20398.47 147
新几何197.32 5698.60 6893.59 5897.75 13081.58 37795.75 11597.85 9990.04 8399.67 5986.50 28299.13 8398.69 128
test_yl94.78 11394.23 11996.43 10097.74 12791.22 13996.85 19497.10 20991.23 17295.71 11696.93 15784.30 16699.31 12293.10 14795.12 19998.75 122
DCV-MVSNet94.78 11394.23 11996.43 10097.74 12791.22 13996.85 19497.10 20991.23 17295.71 11696.93 15784.30 16699.31 12293.10 14795.12 19998.75 122
agg_prior98.67 6193.79 5498.00 10195.68 11899.57 87
MG-MVS95.61 8795.38 8796.31 10998.42 7690.53 16896.04 26097.48 16693.47 9595.67 11998.10 7689.17 9199.25 12791.27 18698.77 10199.13 80
baseline95.58 8895.42 8596.08 12496.78 18590.41 17397.16 17097.45 17693.69 8595.65 12097.85 9987.29 12898.68 20195.66 8697.25 15799.13 80
MVS_Test94.89 10994.62 10595.68 14996.83 17989.55 19796.70 20997.17 20491.17 17595.60 12196.11 21087.87 11398.76 19193.01 15497.17 16098.72 125
DPM-MVS95.69 8394.92 9898.01 2098.08 10795.71 995.27 30297.62 14890.43 20595.55 12297.07 15291.72 5099.50 10289.62 21798.94 9598.82 120
MP-MVS-pluss96.70 5196.27 6697.98 2299.23 3094.71 2996.96 18798.06 8590.67 19295.55 12298.78 2791.07 6899.86 996.58 5299.55 2699.38 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4796.45 6197.72 3899.39 1393.80 5398.41 2398.06 8593.37 9895.54 12498.34 5790.59 7899.88 494.83 11199.54 2899.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test1297.65 4298.46 7394.26 3997.66 14195.52 12590.89 7399.46 10699.25 7199.22 73
casdiffmvspermissive95.64 8595.49 7996.08 12496.76 19090.45 17197.29 15797.44 18094.00 7395.46 12697.98 8887.52 12398.73 19595.64 9097.33 15299.08 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test22298.24 9092.21 10295.33 29797.60 14979.22 39095.25 12797.84 10188.80 9799.15 8198.72 125
test250691.60 22990.78 23694.04 23597.66 13283.81 33298.27 3275.53 42193.43 9695.23 12898.21 7067.21 36899.07 15993.01 15498.49 11299.25 71
原ACMM196.38 10598.59 6991.09 15097.89 11087.41 30095.22 12997.68 11290.25 8099.54 9287.95 25099.12 8598.49 144
CPTT-MVS95.57 8995.19 9296.70 7899.27 2691.48 13098.33 2698.11 7387.79 28995.17 13098.03 8387.09 13199.61 7293.51 13999.42 5099.02 90
casdiffmvs_mvgpermissive95.81 8295.57 7796.51 9296.87 17491.49 12997.50 13197.56 15893.99 7495.13 13197.92 9287.89 11298.78 18795.97 7697.33 15299.26 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS Recon95.68 8495.12 9697.37 5499.19 3194.19 4297.03 17798.08 7788.35 27295.09 13297.65 11689.97 8599.48 10492.08 16898.59 10998.44 152
RRT-MVS94.51 11894.35 11894.98 18496.40 21886.55 28797.56 12497.41 18593.19 10694.93 13397.04 15479.12 26599.30 12496.19 6897.32 15499.09 86
Vis-MVSNetpermissive95.23 9794.81 10096.51 9297.18 15491.58 12698.26 3498.12 7094.38 6694.90 13498.15 7582.28 21098.92 17391.45 18398.58 11099.01 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet96.39 6496.02 7097.50 4997.62 13793.38 6397.02 17997.96 10595.42 1894.86 13597.81 10487.38 12799.82 2896.88 4399.20 7699.29 66
API-MVS94.84 11194.49 11395.90 13597.90 12092.00 11097.80 9297.48 16689.19 24094.81 13696.71 16888.84 9699.17 13888.91 23798.76 10296.53 240
mvsmamba94.57 11794.14 12195.87 13697.03 16789.93 18797.84 8595.85 29091.34 16694.79 13796.80 16480.67 23698.81 18494.85 10998.12 12998.85 116
OMC-MVS95.09 10194.70 10496.25 11898.46 7391.28 13796.43 23197.57 15492.04 14694.77 13897.96 9087.01 13299.09 15291.31 18596.77 16698.36 159
ECVR-MVScopyleft93.19 16592.73 16594.57 20997.66 13285.41 30698.21 4288.23 40693.43 9694.70 13998.21 7072.57 32999.07 15993.05 15198.49 11299.25 71
WTY-MVS94.71 11594.02 12296.79 7797.71 12992.05 10896.59 22497.35 19390.61 19894.64 14096.93 15786.41 13999.39 11491.20 18894.71 21198.94 101
test111193.19 16592.82 15994.30 22497.58 14484.56 32398.21 4289.02 40493.53 9294.58 14198.21 7072.69 32899.05 16293.06 15098.48 11499.28 68
ACMMPcopyleft96.27 6895.93 7197.28 6099.24 2892.62 8798.25 3598.81 592.99 11594.56 14298.39 5088.96 9499.85 1894.57 12297.63 14199.36 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mamv494.66 11696.10 6990.37 35298.01 11173.41 40096.82 19897.78 12889.95 21694.52 14397.43 13392.91 2799.09 15298.28 1499.16 8098.60 133
Effi-MVS+94.93 10794.45 11596.36 10796.61 19591.47 13196.41 23397.41 18591.02 18194.50 14495.92 21587.53 12198.78 18793.89 13396.81 16598.84 119
sss94.51 11893.80 12696.64 8097.07 16091.97 11196.32 24498.06 8588.94 25094.50 14496.78 16584.60 16199.27 12691.90 16996.02 17998.68 129
mmtdpeth89.70 30588.96 30391.90 31695.84 24884.42 32497.46 13995.53 31090.27 20894.46 14690.50 37769.74 35398.95 16997.39 3669.48 40292.34 379
PVSNet_BlendedMVS94.06 13493.92 12494.47 21298.27 8689.46 20396.73 20598.36 2490.17 21094.36 14795.24 25388.02 10999.58 8093.44 14190.72 27794.36 347
PVSNet_Blended94.87 11094.56 10895.81 14098.27 8689.46 20395.47 29298.36 2488.84 25494.36 14796.09 21188.02 10999.58 8093.44 14198.18 12698.40 155
PMMVS92.86 18292.34 18094.42 21694.92 30086.73 28094.53 32496.38 26784.78 34694.27 14995.12 25883.13 18898.40 22491.47 18296.49 17498.12 174
EPP-MVSNet95.22 9895.04 9795.76 14197.49 14689.56 19698.67 1097.00 22390.69 19094.24 15097.62 12189.79 8798.81 18493.39 14496.49 17498.92 104
FA-MVS(test-final)93.52 15492.92 15595.31 16896.77 18788.54 23394.82 31696.21 27889.61 22694.20 15195.25 25283.24 18499.14 14590.01 20596.16 17898.25 163
PVSNet_Blended_VisFu95.27 9594.91 9996.38 10598.20 9690.86 15797.27 15898.25 4590.21 20994.18 15297.27 14187.48 12499.73 4593.53 13897.77 13998.55 136
FE-MVS92.05 21391.05 22595.08 17796.83 17987.93 25193.91 35095.70 29786.30 32094.15 15394.97 26076.59 29899.21 13184.10 31596.86 16398.09 178
thisisatest053093.03 17392.21 18495.49 16197.07 16089.11 22097.49 13692.19 38790.16 21194.09 15496.41 19176.43 30299.05 16290.38 20095.68 18998.31 161
XVG-OURS-SEG-HR93.86 14393.55 13394.81 19497.06 16388.53 23495.28 30097.45 17691.68 15594.08 15597.68 11282.41 20898.90 17693.84 13592.47 24696.98 228
XVG-OURS93.72 14893.35 14594.80 19797.07 16088.61 22994.79 31797.46 17191.97 14993.99 15697.86 9881.74 22198.88 17792.64 15892.67 24596.92 232
IS-MVSNet94.90 10894.52 11296.05 12797.67 13090.56 16798.44 2196.22 27693.21 10393.99 15697.74 10985.55 15198.45 22189.98 20697.86 13599.14 79
CSCG96.05 7295.91 7296.46 9899.24 2890.47 17098.30 2898.57 1889.01 24693.97 15897.57 12492.62 3799.76 4194.66 11799.27 6799.15 78
EIA-MVS95.53 9095.47 8195.71 14897.06 16389.63 19297.82 8997.87 11493.57 8793.92 15995.04 25990.61 7798.95 16994.62 11998.68 10498.54 137
tttt051792.96 17692.33 18194.87 19197.11 15887.16 27197.97 6992.09 38890.63 19693.88 16097.01 15676.50 29999.06 16190.29 20395.45 19398.38 157
HyFIR lowres test93.66 14992.92 15595.87 13698.24 9089.88 18894.58 32298.49 1985.06 34193.78 16195.78 22682.86 19698.67 20291.77 17495.71 18899.07 89
CHOSEN 1792x268894.15 12893.51 13896.06 12698.27 8689.38 20695.18 30898.48 2185.60 33193.76 16297.11 15083.15 18799.61 7291.33 18498.72 10399.19 74
Anonymous20240521192.07 21290.83 23595.76 14198.19 9888.75 22697.58 12195.00 33286.00 32693.64 16397.45 13066.24 37799.53 9490.68 19792.71 24399.01 93
CDS-MVSNet94.14 13193.54 13495.93 13496.18 22991.46 13296.33 24397.04 21988.97 24993.56 16496.51 18687.55 11997.89 29389.80 21195.95 18198.44 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MDTV_nov1_ep13_2view70.35 40493.10 37183.88 35693.55 16582.47 20786.25 28598.38 157
Anonymous2024052991.98 21590.73 24195.73 14698.14 10289.40 20597.99 6297.72 13579.63 38893.54 16697.41 13469.94 35099.56 8891.04 19191.11 27098.22 165
CANet_DTU94.37 12193.65 13096.55 8796.46 21592.13 10696.21 25396.67 25294.38 6693.53 16797.03 15579.34 26199.71 4990.76 19498.45 11697.82 194
tpmrst91.44 24091.32 21391.79 32295.15 28879.20 38593.42 36495.37 31488.55 26693.49 16893.67 33082.49 20698.27 23790.41 19989.34 29197.90 187
TAMVS94.01 13793.46 14095.64 15096.16 23190.45 17196.71 20896.89 23589.27 23893.46 16996.92 16087.29 12897.94 28688.70 24195.74 18698.53 138
thisisatest051592.29 20391.30 21595.25 17096.60 19688.90 22494.36 33292.32 38687.92 28293.43 17094.57 28177.28 29499.00 16689.42 22295.86 18497.86 190
DeepC-MVS93.07 396.06 7195.66 7697.29 5897.96 11493.17 7497.30 15698.06 8593.92 7693.38 17198.66 2986.83 13399.73 4595.60 9599.22 7398.96 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres600view792.49 19391.60 20395.18 17297.91 11989.47 20197.65 11194.66 34592.18 14393.33 17294.91 26478.06 28799.10 14981.61 33894.06 22696.98 228
thres100view90092.43 19491.58 20494.98 18497.92 11889.37 20797.71 10494.66 34592.20 13993.31 17394.90 26578.06 28799.08 15581.40 34194.08 22296.48 243
thres20092.23 20791.39 21094.75 20197.61 13889.03 22196.60 22395.09 32992.08 14593.28 17494.00 31678.39 28199.04 16581.26 34794.18 21896.19 250
tfpn200view992.38 19791.52 20794.95 18897.85 12289.29 21197.41 14194.88 33992.19 14193.27 17594.46 29078.17 28399.08 15581.40 34194.08 22296.48 243
thres40092.42 19591.52 20795.12 17697.85 12289.29 21197.41 14194.88 33992.19 14193.27 17594.46 29078.17 28399.08 15581.40 34194.08 22296.98 228
ab-mvs93.57 15292.55 17296.64 8097.28 15091.96 11395.40 29497.45 17689.81 22293.22 17796.28 19779.62 25899.46 10690.74 19593.11 23798.50 142
Vis-MVSNet (Re-imp)94.15 12893.88 12594.95 18897.61 13887.92 25298.10 5195.80 29392.22 13793.02 17897.45 13084.53 16397.91 29288.24 24597.97 13299.02 90
114514_t93.95 13893.06 15196.63 8299.07 3791.61 12397.46 13997.96 10577.99 39493.00 17997.57 12486.14 14599.33 11889.22 22999.15 8198.94 101
UGNet94.04 13693.28 14796.31 10996.85 17691.19 14497.88 8097.68 14094.40 6493.00 17996.18 20173.39 32799.61 7291.72 17598.46 11598.13 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HY-MVS89.66 993.87 14292.95 15496.63 8297.10 15992.49 9295.64 28596.64 25389.05 24593.00 17995.79 22585.77 14999.45 10889.16 23394.35 21397.96 184
PVSNet86.66 1892.24 20691.74 20093.73 25497.77 12683.69 33692.88 37496.72 24587.91 28393.00 17994.86 26778.51 27899.05 16286.53 28097.45 14898.47 147
MAR-MVS94.22 12493.46 14096.51 9298.00 11392.19 10597.67 10897.47 16988.13 27993.00 17995.84 21984.86 15999.51 9987.99 24998.17 12797.83 193
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR95.01 10294.59 10696.26 11598.89 5490.68 16597.24 16097.73 13391.80 15192.93 18496.62 18289.13 9299.14 14589.21 23097.78 13898.97 97
MDTV_nov1_ep1390.76 23795.22 28380.33 37193.03 37295.28 31988.14 27892.84 18593.83 32081.34 22598.08 25882.86 32794.34 214
CostFormer91.18 25890.70 24392.62 29994.84 30581.76 35694.09 34394.43 35284.15 35292.72 18693.77 32479.43 26098.20 24290.70 19692.18 25297.90 187
EPNet95.20 9994.56 10897.14 6892.80 36692.68 8697.85 8494.87 34296.64 292.46 18797.80 10686.23 14099.65 6193.72 13798.62 10799.10 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet90.82 27189.77 28393.95 24294.45 32287.19 26990.23 39595.68 30186.89 31092.40 18892.36 36080.91 23297.05 34981.09 34893.95 22797.60 206
RPMNet88.98 31187.05 32594.77 19994.45 32287.19 26990.23 39598.03 9477.87 39692.40 18887.55 40080.17 24799.51 9968.84 40193.95 22797.60 206
EPMVS90.70 27689.81 28193.37 27194.73 31184.21 32793.67 35888.02 40789.50 23092.38 19093.49 33677.82 29197.78 30386.03 29292.68 24498.11 177
baseline192.82 18591.90 19395.55 15797.20 15390.77 16197.19 16794.58 34892.20 13992.36 19196.34 19584.16 17098.21 24189.20 23183.90 35697.68 200
PatchT88.87 31587.42 31993.22 27794.08 33385.10 31489.51 40094.64 34781.92 37392.36 19188.15 39680.05 24997.01 35272.43 39293.65 23297.54 209
UWE-MVS89.91 29789.48 29391.21 33595.88 24278.23 39094.91 31590.26 40089.11 24292.35 19394.52 28468.76 35797.96 28183.95 31995.59 19197.42 214
ETVMVS90.52 28289.14 30194.67 20396.81 18387.85 25695.91 26893.97 36589.71 22492.34 19492.48 35565.41 38297.96 28181.37 34494.27 21698.21 166
PAPR94.18 12593.42 14496.48 9597.64 13491.42 13495.55 28797.71 13988.99 24792.34 19495.82 22189.19 9099.11 14886.14 28897.38 14998.90 108
SCA91.84 22091.18 22293.83 24995.59 25584.95 31994.72 31895.58 30690.82 18492.25 19693.69 32775.80 30698.10 25386.20 28695.98 18098.45 149
CVMVSNet91.23 25391.75 19889.67 36095.77 24974.69 39696.44 22994.88 33985.81 32892.18 19797.64 11979.07 26695.58 37988.06 24895.86 18498.74 124
AUN-MVS91.76 22290.75 23994.81 19497.00 17088.57 23196.65 21596.49 26289.63 22592.15 19896.12 20678.66 27698.50 21790.83 19279.18 37997.36 216
AdaColmapbinary94.34 12293.68 12996.31 10998.59 6991.68 12196.59 22497.81 12689.87 21792.15 19897.06 15383.62 17999.54 9289.34 22498.07 13097.70 199
GeoE93.89 14193.28 14795.72 14796.96 17289.75 19198.24 3896.92 23289.47 23192.12 20097.21 14584.42 16498.39 22887.71 25696.50 17399.01 93
PatchmatchNetpermissive91.91 21791.35 21193.59 26295.38 26784.11 32993.15 36995.39 31289.54 22892.10 20193.68 32982.82 19898.13 24884.81 30795.32 19598.52 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet93.24 16292.48 17795.51 15995.70 25192.39 9497.86 8198.66 1692.30 13692.09 20295.37 24580.49 24098.40 22493.95 13085.86 32395.75 273
tpm90.25 28989.74 28691.76 32593.92 33679.73 37993.98 34493.54 37288.28 27391.99 20393.25 34377.51 29397.44 33487.30 27087.94 30398.12 174
UBG91.55 23490.76 23793.94 24496.52 20885.06 31595.22 30594.54 34990.47 20491.98 20492.71 34972.02 33298.74 19488.10 24795.26 19798.01 182
CNLPA94.28 12393.53 13596.52 8998.38 8192.55 9096.59 22496.88 23690.13 21391.91 20597.24 14385.21 15499.09 15287.64 26297.83 13697.92 186
testing9191.90 21891.02 22694.53 21196.54 20486.55 28795.86 27095.64 30391.77 15291.89 20693.47 33869.94 35098.86 17890.23 20493.86 22998.18 168
BH-RMVSNet92.72 18991.97 19194.97 18697.16 15587.99 25096.15 25695.60 30490.62 19791.87 20797.15 14978.41 28098.57 21383.16 32497.60 14298.36 159
PatchMatch-RL92.90 18092.02 18995.56 15598.19 9890.80 15995.27 30297.18 20287.96 28191.86 20895.68 23280.44 24198.99 16784.01 31797.54 14396.89 233
SDMVSNet94.17 12693.61 13195.86 13898.09 10491.37 13597.35 15098.20 5393.18 10891.79 20997.28 13979.13 26498.93 17294.61 12092.84 24097.28 221
sd_testset93.10 16992.45 17895.05 17898.09 10489.21 21596.89 19197.64 14593.18 10891.79 20997.28 13975.35 31198.65 20488.99 23592.84 24097.28 221
testing9991.62 22890.72 24294.32 22196.48 21286.11 29895.81 27394.76 34391.55 15791.75 21193.44 33968.55 36098.82 18290.43 19893.69 23098.04 181
testing22290.31 28688.96 30394.35 21896.54 20487.29 26395.50 29093.84 36990.97 18291.75 21192.96 34662.18 39298.00 27282.86 32794.08 22297.76 196
OPM-MVS93.28 16192.76 16194.82 19294.63 31590.77 16196.65 21597.18 20293.72 8291.68 21397.26 14279.33 26298.63 20692.13 16592.28 24895.07 310
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm289.96 29689.21 29892.23 30994.91 30281.25 35993.78 35394.42 35380.62 38491.56 21493.44 33976.44 30197.94 28685.60 29892.08 25697.49 210
TAPA-MVS90.10 792.30 20291.22 22095.56 15598.33 8389.60 19496.79 20097.65 14381.83 37491.52 21597.23 14487.94 11198.91 17571.31 39698.37 11898.17 171
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvs289.77 30489.93 27689.31 36693.68 34576.37 39397.64 11595.90 28789.84 22191.49 21696.26 19958.77 39597.10 34794.65 11891.13 26994.46 343
TR-MVS91.48 23990.59 24794.16 22996.40 21887.33 26295.67 28095.34 31887.68 29491.46 21795.52 24176.77 29798.35 23182.85 32993.61 23496.79 236
RPSCF90.75 27390.86 23190.42 35196.84 17776.29 39495.61 28696.34 26883.89 35591.38 21897.87 9676.45 30098.78 18787.16 27492.23 24996.20 249
PLCcopyleft91.00 694.11 13293.43 14296.13 12398.58 7191.15 14996.69 21197.39 18787.29 30391.37 21996.71 16888.39 10499.52 9887.33 26997.13 16197.73 197
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42093.12 16892.72 16694.34 22096.71 19187.27 26590.29 39497.72 13586.61 31591.34 22095.29 24784.29 16898.41 22393.25 14598.94 9597.35 218
HQP_MVS93.78 14693.43 14294.82 19296.21 22689.99 18297.74 9797.51 16294.85 3791.34 22096.64 17581.32 22698.60 20993.02 15292.23 24995.86 261
plane_prior390.00 18094.46 6091.34 220
Fast-Effi-MVS+93.46 15592.75 16395.59 15496.77 18790.03 17996.81 19997.13 20688.19 27591.30 22394.27 30286.21 14298.63 20687.66 26196.46 17698.12 174
EI-MVSNet93.03 17392.88 15793.48 26795.77 24986.98 27496.44 22997.12 20790.66 19491.30 22397.64 11986.56 13598.05 26589.91 20890.55 27995.41 286
MVSTER93.20 16492.81 16094.37 21796.56 20189.59 19597.06 17697.12 20791.24 17191.30 22395.96 21382.02 21598.05 26593.48 14090.55 27995.47 283
ADS-MVSNet289.45 30788.59 30992.03 31295.86 24382.26 35290.93 39094.32 35983.23 36591.28 22691.81 36979.01 27195.99 36879.52 35691.39 26597.84 191
ADS-MVSNet89.89 29988.68 30893.53 26595.86 24384.89 32090.93 39095.07 33083.23 36591.28 22691.81 36979.01 27197.85 29579.52 35691.39 26597.84 191
testing1191.68 22690.75 23994.47 21296.53 20686.56 28695.76 27794.51 35191.10 17991.24 22893.59 33368.59 35998.86 17891.10 18994.29 21598.00 183
nrg03094.05 13593.31 14696.27 11495.22 28394.59 3298.34 2597.46 17192.93 12291.21 22996.64 17587.23 13098.22 24094.99 10785.80 32495.98 260
Effi-MVS+-dtu93.08 17093.21 14992.68 29896.02 24083.25 33997.14 17296.72 24593.85 7991.20 23093.44 33983.08 18998.30 23591.69 17895.73 18796.50 242
VPNet92.23 20791.31 21494.99 18295.56 25790.96 15397.22 16597.86 11892.96 12190.96 23196.62 18275.06 31298.20 24291.90 16983.65 35895.80 267
JIA-IIPM88.26 32287.04 32691.91 31593.52 34981.42 35889.38 40194.38 35580.84 38190.93 23280.74 40879.22 26397.92 28982.76 33191.62 26096.38 246
MonoMVSNet91.92 21691.77 19692.37 30292.94 36383.11 34097.09 17595.55 30792.91 12390.85 23394.55 28281.27 22896.52 36293.01 15487.76 30597.47 212
WB-MVSnew89.88 30089.56 29090.82 34394.57 31983.06 34195.65 28492.85 38087.86 28590.83 23494.10 31179.66 25796.88 35676.34 37494.19 21792.54 376
test-LLR91.42 24191.19 22192.12 31094.59 31680.66 36594.29 33792.98 37891.11 17790.76 23592.37 35779.02 26998.07 26288.81 23896.74 16797.63 201
test-mter90.19 29389.54 29192.12 31094.59 31680.66 36594.29 33792.98 37887.68 29490.76 23592.37 35767.67 36498.07 26288.81 23896.74 16797.63 201
ACMM89.79 892.96 17692.50 17694.35 21896.30 22488.71 22797.58 12197.36 19291.40 16590.53 23796.65 17479.77 25498.75 19291.24 18791.64 25995.59 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
F-COLMAP93.58 15192.98 15395.37 16798.40 7888.98 22297.18 16897.29 19887.75 29290.49 23897.10 15185.21 15499.50 10286.70 27996.72 16997.63 201
TESTMET0.1,190.06 29589.42 29491.97 31394.41 32480.62 36794.29 33791.97 39087.28 30490.44 23992.47 35668.79 35697.67 31288.50 24496.60 17297.61 205
FIs94.09 13393.70 12895.27 16995.70 25192.03 10998.10 5198.68 1393.36 10090.39 24096.70 17087.63 11897.94 28692.25 16190.50 28195.84 264
GA-MVS91.38 24390.31 25694.59 20494.65 31487.62 26094.34 33396.19 27990.73 18890.35 24193.83 32071.84 33497.96 28187.22 27193.61 23498.21 166
LS3D93.57 15292.61 17096.47 9697.59 14091.61 12397.67 10897.72 13585.17 33990.29 24298.34 5784.60 16199.73 4583.85 32298.27 12298.06 180
FC-MVSNet-test93.94 13993.57 13295.04 17995.48 26191.45 13398.12 5098.71 1193.37 9890.23 24396.70 17087.66 11597.85 29591.49 18190.39 28295.83 265
HQP-NCC95.86 24396.65 21593.55 8890.14 244
ACMP_Plane95.86 24396.65 21593.55 8890.14 244
HQP4-MVS90.14 24498.50 21795.78 269
HQP-MVS93.19 16592.74 16494.54 21095.86 24389.33 20996.65 21597.39 18793.55 8890.14 24495.87 21780.95 23098.50 21792.13 16592.10 25495.78 269
UniMVSNet_NR-MVSNet93.37 15892.67 16795.47 16495.34 27292.83 8197.17 16998.58 1792.98 12090.13 24895.80 22288.37 10597.85 29591.71 17683.93 35395.73 275
DU-MVS92.90 18092.04 18795.49 16194.95 29792.83 8197.16 17098.24 4793.02 11490.13 24895.71 22983.47 18097.85 29591.71 17683.93 35395.78 269
LPG-MVS_test92.94 17892.56 17194.10 23196.16 23188.26 24197.65 11197.46 17191.29 16790.12 25097.16 14779.05 26798.73 19592.25 16191.89 25795.31 296
LGP-MVS_train94.10 23196.16 23188.26 24197.46 17191.29 16790.12 25097.16 14779.05 26798.73 19592.25 16191.89 25795.31 296
UniMVSNet (Re)93.31 16092.55 17295.61 15395.39 26693.34 6697.39 14698.71 1193.14 11190.10 25294.83 26987.71 11498.03 26991.67 17983.99 35295.46 284
mvs_anonymous93.82 14493.74 12794.06 23396.44 21685.41 30695.81 27397.05 21789.85 22090.09 25396.36 19487.44 12597.75 30793.97 12996.69 17099.02 90
test_djsdf93.07 17192.76 16194.00 23793.49 35188.70 22898.22 4097.57 15491.42 16390.08 25495.55 23982.85 19797.92 28994.07 12791.58 26195.40 289
dp88.90 31488.26 31490.81 34494.58 31876.62 39292.85 37594.93 33685.12 34090.07 25593.07 34475.81 30598.12 25180.53 35187.42 31097.71 198
PS-MVSNAJss93.74 14793.51 13894.44 21493.91 33789.28 21397.75 9697.56 15892.50 13289.94 25696.54 18588.65 10098.18 24593.83 13690.90 27595.86 261
UniMVSNet_ETH3D91.34 24890.22 26494.68 20294.86 30487.86 25597.23 16497.46 17187.99 28089.90 25796.92 16066.35 37598.23 23990.30 20290.99 27397.96 184
CLD-MVS92.98 17592.53 17494.32 22196.12 23689.20 21695.28 30097.47 16992.66 12989.90 25795.62 23580.58 23898.40 22492.73 15792.40 24795.38 291
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
gg-mvs-nofinetune87.82 32585.61 33794.44 21494.46 32189.27 21491.21 38984.61 41580.88 38089.89 25974.98 41171.50 33697.53 32685.75 29797.21 15896.51 241
1112_ss93.37 15892.42 17996.21 11997.05 16590.99 15196.31 24596.72 24586.87 31189.83 26096.69 17286.51 13799.14 14588.12 24693.67 23198.50 142
BH-untuned92.94 17892.62 16993.92 24797.22 15186.16 29796.40 23796.25 27590.06 21489.79 26196.17 20383.19 18598.35 23187.19 27297.27 15697.24 223
V4291.58 23290.87 23093.73 25494.05 33488.50 23597.32 15496.97 22488.80 25989.71 26294.33 29782.54 20498.05 26589.01 23485.07 33694.64 340
Baseline_NR-MVSNet91.20 25590.62 24592.95 28693.83 34088.03 24997.01 18295.12 32888.42 27089.70 26395.13 25783.47 18097.44 33489.66 21683.24 36193.37 364
v14419291.06 26190.28 25893.39 27093.66 34687.23 26896.83 19797.07 21487.43 29989.69 26494.28 30181.48 22498.00 27287.18 27384.92 34094.93 318
v114491.37 24590.60 24693.68 25993.89 33888.23 24396.84 19697.03 22188.37 27189.69 26494.39 29282.04 21497.98 27487.80 25385.37 32994.84 324
Test_1112_low_res92.84 18491.84 19595.85 13997.04 16689.97 18595.53 28996.64 25385.38 33489.65 26695.18 25485.86 14799.10 14987.70 25793.58 23698.49 144
v119291.07 26090.23 26293.58 26393.70 34387.82 25796.73 20597.07 21487.77 29089.58 26794.32 29980.90 23497.97 27786.52 28185.48 32794.95 314
v124090.70 27689.85 27993.23 27693.51 35086.80 27796.61 22197.02 22287.16 30689.58 26794.31 30079.55 25997.98 27485.52 29985.44 32894.90 321
TranMVSNet+NR-MVSNet92.50 19191.63 20295.14 17494.76 30892.07 10797.53 12998.11 7392.90 12489.56 26996.12 20683.16 18697.60 32089.30 22583.20 36295.75 273
v2v48291.59 23090.85 23393.80 25193.87 33988.17 24696.94 18896.88 23689.54 22889.53 27094.90 26581.70 22298.02 27089.25 22885.04 33895.20 304
v192192090.85 27090.03 27393.29 27493.55 34786.96 27696.74 20497.04 21987.36 30189.52 27194.34 29680.23 24697.97 27786.27 28485.21 33394.94 316
IterMVS-LS92.29 20391.94 19293.34 27296.25 22586.97 27596.57 22797.05 21790.67 19289.50 27294.80 27186.59 13497.64 31589.91 20886.11 32295.40 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cascas91.20 25590.08 26894.58 20894.97 29589.16 21993.65 35997.59 15279.90 38789.40 27392.92 34775.36 31098.36 23092.14 16494.75 20896.23 247
XVG-ACMP-BASELINE90.93 26890.21 26593.09 28194.31 32885.89 29995.33 29797.26 19991.06 18089.38 27495.44 24468.61 35898.60 20989.46 22091.05 27194.79 332
GBi-Net91.35 24690.27 25994.59 20496.51 20991.18 14597.50 13196.93 22888.82 25689.35 27594.51 28573.87 32197.29 34386.12 28988.82 29495.31 296
test191.35 24690.27 25994.59 20496.51 20991.18 14597.50 13196.93 22888.82 25689.35 27594.51 28573.87 32197.29 34386.12 28988.82 29495.31 296
FMVSNet391.78 22190.69 24495.03 18096.53 20692.27 10097.02 17996.93 22889.79 22389.35 27594.65 27877.01 29597.47 33186.12 28988.82 29495.35 293
WR-MVS92.34 19991.53 20694.77 19995.13 29090.83 15896.40 23797.98 10391.88 15089.29 27895.54 24082.50 20597.80 30189.79 21285.27 33295.69 276
DP-MVS92.76 18791.51 20996.52 8998.77 5690.99 15197.38 14896.08 28282.38 37089.29 27897.87 9683.77 17599.69 5581.37 34496.69 17098.89 112
BH-w/o92.14 21191.75 19893.31 27396.99 17185.73 30195.67 28095.69 29988.73 26189.26 28094.82 27082.97 19498.07 26285.26 30396.32 17796.13 255
3Dnovator91.36 595.19 10094.44 11697.44 5296.56 20193.36 6598.65 1198.36 2494.12 7089.25 28198.06 8082.20 21299.77 4093.41 14399.32 6499.18 75
tt080591.09 25990.07 27194.16 22995.61 25488.31 23897.56 12496.51 26189.56 22789.17 28295.64 23467.08 37298.38 22991.07 19088.44 30095.80 267
miper_enhance_ethall91.54 23691.01 22793.15 27995.35 27187.07 27393.97 34596.90 23386.79 31289.17 28293.43 34286.55 13697.64 31589.97 20786.93 31494.74 336
Fast-Effi-MVS+-dtu92.29 20391.99 19093.21 27895.27 27985.52 30497.03 17796.63 25692.09 14489.11 28495.14 25680.33 24498.08 25887.54 26594.74 20996.03 259
WBMVS90.69 27889.99 27492.81 29296.48 21285.00 31695.21 30796.30 27189.46 23289.04 28594.05 31472.45 33197.82 29989.46 22087.41 31195.61 278
XXY-MVS92.16 20991.23 21994.95 18894.75 30990.94 15497.47 13797.43 18389.14 24188.90 28696.43 19079.71 25598.24 23889.56 21887.68 30695.67 277
PCF-MVS89.48 1191.56 23389.95 27596.36 10796.60 19692.52 9192.51 37997.26 19979.41 38988.90 28696.56 18484.04 17399.55 9077.01 37397.30 15597.01 227
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_ehance_all_eth91.59 23091.13 22392.97 28595.55 25886.57 28594.47 32696.88 23687.77 29088.88 28894.01 31586.22 14197.54 32489.49 21986.93 31494.79 332
jajsoiax92.42 19591.89 19494.03 23693.33 35788.50 23597.73 9997.53 16092.00 14888.85 28996.50 18775.62 30998.11 25293.88 13491.56 26295.48 281
eth_miper_zixun_eth91.02 26390.59 24792.34 30595.33 27584.35 32594.10 34296.90 23388.56 26588.84 29094.33 29784.08 17197.60 32088.77 24084.37 34995.06 311
c3_l91.38 24390.89 22992.88 28995.58 25686.30 29294.68 31996.84 24088.17 27688.83 29194.23 30585.65 15097.47 33189.36 22384.63 34294.89 322
mvs_tets92.31 20191.76 19793.94 24493.41 35488.29 23997.63 11797.53 16092.04 14688.76 29296.45 18974.62 31798.09 25793.91 13291.48 26395.45 285
v14890.99 26490.38 25392.81 29293.83 34085.80 30096.78 20296.68 25089.45 23388.75 29393.93 31982.96 19597.82 29987.83 25283.25 36094.80 330
FMVSNet291.31 24990.08 26894.99 18296.51 20992.21 10297.41 14196.95 22688.82 25688.62 29494.75 27373.87 32197.42 33685.20 30488.55 29995.35 293
PAPM91.52 23790.30 25795.20 17195.30 27889.83 18993.38 36596.85 23986.26 32288.59 29595.80 22284.88 15898.15 24775.67 37895.93 18297.63 201
cl2291.21 25490.56 24993.14 28096.09 23886.80 27794.41 33096.58 25987.80 28888.58 29693.99 31780.85 23597.62 31889.87 21086.93 31494.99 313
3Dnovator+91.43 495.40 9194.48 11498.16 1696.90 17395.34 1698.48 2097.87 11494.65 5288.53 29798.02 8583.69 17699.71 4993.18 14698.96 9499.44 52
dmvs_re90.21 29189.50 29292.35 30395.47 26485.15 31295.70 27994.37 35690.94 18388.42 29893.57 33474.63 31695.67 37682.80 33089.57 28996.22 248
anonymousdsp92.16 20991.55 20593.97 24092.58 37189.55 19797.51 13097.42 18489.42 23488.40 29994.84 26880.66 23797.88 29491.87 17191.28 26794.48 342
reproduce_monomvs91.30 25091.10 22491.92 31496.82 18182.48 34897.01 18297.49 16594.64 5388.35 30095.27 25070.53 34398.10 25395.20 10084.60 34495.19 307
WR-MVS_H92.00 21491.35 21193.95 24295.09 29289.47 20198.04 5898.68 1391.46 16188.34 30194.68 27685.86 14797.56 32285.77 29684.24 35094.82 327
v891.29 25290.53 25093.57 26494.15 33088.12 24897.34 15197.06 21688.99 24788.32 30294.26 30483.08 18998.01 27187.62 26383.92 35594.57 341
ACMP89.59 1092.62 19092.14 18594.05 23496.40 21888.20 24497.36 14997.25 20191.52 15888.30 30396.64 17578.46 27998.72 19891.86 17291.48 26395.23 303
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1091.04 26290.23 26293.49 26694.12 33188.16 24797.32 15497.08 21288.26 27488.29 30494.22 30782.17 21397.97 27786.45 28384.12 35194.33 348
QAPM93.45 15692.27 18296.98 7696.77 18792.62 8798.39 2498.12 7084.50 34988.27 30597.77 10782.39 20999.81 3085.40 30198.81 9998.51 141
Anonymous2023121190.63 27989.42 29494.27 22698.24 9089.19 21898.05 5797.89 11079.95 38688.25 30694.96 26172.56 33098.13 24889.70 21485.14 33495.49 280
CP-MVSNet91.89 21991.24 21893.82 25095.05 29388.57 23197.82 8998.19 5891.70 15488.21 30795.76 22781.96 21697.52 32887.86 25184.65 34195.37 292
DIV-MVS_self_test90.97 26690.33 25492.88 28995.36 27086.19 29694.46 32896.63 25687.82 28688.18 30894.23 30582.99 19297.53 32687.72 25485.57 32694.93 318
cl____90.96 26790.32 25592.89 28895.37 26986.21 29594.46 32896.64 25387.82 28688.15 30994.18 30882.98 19397.54 32487.70 25785.59 32594.92 320
tpmvs89.83 30389.15 30091.89 31794.92 30080.30 37293.11 37095.46 31186.28 32188.08 31092.65 35080.44 24198.52 21681.47 34089.92 28596.84 234
PS-CasMVS91.55 23490.84 23493.69 25894.96 29688.28 24097.84 8598.24 4791.46 16188.04 31195.80 22279.67 25697.48 33087.02 27684.54 34795.31 296
MIMVSNet88.50 31986.76 32993.72 25694.84 30587.77 25891.39 38594.05 36286.41 31887.99 31292.59 35363.27 38695.82 37377.44 36792.84 24097.57 208
GG-mvs-BLEND93.62 26093.69 34489.20 21692.39 38183.33 41787.98 31389.84 38571.00 34096.87 35782.08 33795.40 19494.80 330
miper_lstm_enhance90.50 28490.06 27291.83 31995.33 27583.74 33393.86 35196.70 24987.56 29787.79 31493.81 32383.45 18296.92 35587.39 26784.62 34394.82 327
PEN-MVS91.20 25590.44 25193.48 26794.49 32087.91 25497.76 9598.18 6091.29 16787.78 31595.74 22880.35 24397.33 34185.46 30082.96 36395.19 307
ITE_SJBPF92.43 30195.34 27285.37 30995.92 28591.47 16087.75 31696.39 19371.00 34097.96 28182.36 33589.86 28693.97 356
v7n90.76 27289.86 27893.45 26993.54 34887.60 26197.70 10797.37 19088.85 25387.65 31794.08 31381.08 22998.10 25384.68 30983.79 35794.66 339
Patchmtry88.64 31887.25 32192.78 29494.09 33286.64 28189.82 39995.68 30180.81 38287.63 31892.36 36080.91 23297.03 35078.86 36285.12 33594.67 338
testing387.67 32786.88 32890.05 35696.14 23480.71 36497.10 17492.85 38090.15 21287.54 31994.55 28255.70 40194.10 39273.77 38894.10 22195.35 293
pmmvs490.93 26889.85 27994.17 22893.34 35690.79 16094.60 32196.02 28384.62 34787.45 32095.15 25581.88 21997.45 33387.70 25787.87 30494.27 352
tpm cat188.36 32087.21 32391.81 32195.13 29080.55 36892.58 37895.70 29774.97 40087.45 32091.96 36778.01 28998.17 24680.39 35288.74 29796.72 238
FMVSNet189.88 30088.31 31294.59 20495.41 26591.18 14597.50 13196.93 22886.62 31487.41 32294.51 28565.94 38097.29 34383.04 32687.43 30995.31 296
IterMVS-SCA-FT90.31 28689.81 28191.82 32095.52 25984.20 32894.30 33696.15 28090.61 19887.39 32394.27 30275.80 30696.44 36387.34 26886.88 31894.82 327
MVS91.71 22390.44 25195.51 15995.20 28591.59 12596.04 26097.45 17673.44 40487.36 32495.60 23685.42 15299.10 14985.97 29397.46 14495.83 265
EU-MVSNet88.72 31788.90 30588.20 37093.15 36074.21 39796.63 22094.22 36185.18 33887.32 32595.97 21276.16 30394.98 38585.27 30286.17 32095.41 286
IterMVS90.15 29489.67 28791.61 32795.48 26183.72 33494.33 33496.12 28189.99 21587.31 32694.15 31075.78 30896.27 36686.97 27786.89 31794.83 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs589.86 30288.87 30692.82 29192.86 36486.23 29496.26 24895.39 31284.24 35187.12 32794.51 28574.27 31997.36 34087.61 26487.57 30794.86 323
DTE-MVSNet90.56 28089.75 28593.01 28393.95 33587.25 26697.64 11597.65 14390.74 18787.12 32795.68 23279.97 25197.00 35383.33 32381.66 36994.78 334
mvs5depth86.53 33685.08 34390.87 34188.74 39982.52 34791.91 38394.23 36086.35 31987.11 32993.70 32666.52 37397.76 30681.37 34475.80 38992.31 381
Patchmatch-test89.42 30887.99 31593.70 25795.27 27985.11 31388.98 40294.37 35681.11 37887.10 33093.69 32782.28 21097.50 32974.37 38494.76 20798.48 146
IB-MVS87.33 1789.91 29788.28 31394.79 19895.26 28287.70 25995.12 31093.95 36689.35 23687.03 33192.49 35470.74 34299.19 13389.18 23281.37 37097.49 210
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet_dtu91.71 22391.28 21692.99 28493.76 34283.71 33596.69 21195.28 31993.15 11087.02 33295.95 21483.37 18397.38 33979.46 35996.84 16497.88 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Syy-MVS87.13 33287.02 32787.47 37395.16 28673.21 40195.00 31293.93 36788.55 26686.96 33391.99 36575.90 30494.00 39361.59 40794.11 21995.20 304
myMVS_eth3d87.18 33186.38 33189.58 36195.16 28679.53 38095.00 31293.93 36788.55 26686.96 33391.99 36556.23 40094.00 39375.47 38094.11 21995.20 304
baseline291.63 22790.86 23193.94 24494.33 32686.32 29195.92 26791.64 39289.37 23586.94 33594.69 27581.62 22398.69 20088.64 24294.57 21296.81 235
MSDG91.42 24190.24 26194.96 18797.15 15788.91 22393.69 35796.32 26985.72 33086.93 33696.47 18880.24 24598.98 16880.57 35095.05 20296.98 228
test0.0.03 189.37 30988.70 30791.41 33292.47 37385.63 30295.22 30592.70 38391.11 17786.91 33793.65 33179.02 26993.19 40178.00 36689.18 29295.41 286
COLMAP_ROBcopyleft87.81 1590.40 28589.28 29793.79 25297.95 11587.13 27296.92 18995.89 28982.83 36786.88 33897.18 14673.77 32499.29 12578.44 36493.62 23394.95 314
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
D2MVS91.30 25090.95 22892.35 30394.71 31285.52 30496.18 25598.21 5188.89 25286.60 33993.82 32279.92 25297.95 28589.29 22690.95 27493.56 360
OurMVSNet-221017-090.51 28390.19 26691.44 33193.41 35481.25 35996.98 18596.28 27291.68 15586.55 34096.30 19674.20 32097.98 27488.96 23687.40 31295.09 309
MS-PatchMatch90.27 28889.77 28391.78 32394.33 32684.72 32295.55 28796.73 24486.17 32486.36 34195.28 24971.28 33897.80 30184.09 31698.14 12892.81 370
131492.81 18692.03 18895.14 17495.33 27589.52 20096.04 26097.44 18087.72 29386.25 34295.33 24683.84 17498.79 18689.26 22797.05 16297.11 226
tfpnnormal89.70 30588.40 31193.60 26195.15 28890.10 17897.56 12498.16 6487.28 30486.16 34394.63 27977.57 29298.05 26574.48 38284.59 34592.65 373
pm-mvs190.72 27589.65 28993.96 24194.29 32989.63 19297.79 9396.82 24189.07 24386.12 34495.48 24378.61 27797.78 30386.97 27781.67 36894.46 343
OpenMVScopyleft89.19 1292.86 18291.68 20196.40 10295.34 27292.73 8598.27 3298.12 7084.86 34485.78 34597.75 10878.89 27499.74 4487.50 26698.65 10596.73 237
LTVRE_ROB88.41 1390.99 26489.92 27794.19 22796.18 22989.55 19796.31 24597.09 21187.88 28485.67 34695.91 21678.79 27598.57 21381.50 33989.98 28494.44 345
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testgi87.97 32387.21 32390.24 35492.86 36480.76 36396.67 21494.97 33491.74 15385.52 34795.83 22062.66 39094.47 38976.25 37588.36 30195.48 281
AllTest90.23 29088.98 30293.98 23897.94 11686.64 28196.51 22895.54 30885.38 33485.49 34896.77 16670.28 34599.15 14280.02 35492.87 23896.15 253
TestCases93.98 23897.94 11686.64 28195.54 30885.38 33485.49 34896.77 16670.28 34599.15 14280.02 35492.87 23896.15 253
DSMNet-mixed86.34 34086.12 33587.00 37789.88 39070.43 40394.93 31490.08 40177.97 39585.42 35092.78 34874.44 31893.96 39574.43 38395.14 19896.62 239
ppachtmachnet_test88.35 32187.29 32091.53 32892.45 37483.57 33793.75 35495.97 28484.28 35085.32 35194.18 30879.00 27396.93 35475.71 37784.99 33994.10 353
CL-MVSNet_self_test86.31 34185.15 34289.80 35988.83 39781.74 35793.93 34896.22 27686.67 31385.03 35290.80 37678.09 28694.50 38774.92 38171.86 39893.15 366
our_test_388.78 31687.98 31691.20 33792.45 37482.53 34693.61 36195.69 29985.77 32984.88 35393.71 32579.99 25096.78 36079.47 35886.24 31994.28 351
MVP-Stereo90.74 27490.08 26892.71 29693.19 35988.20 24495.86 27096.27 27386.07 32584.86 35494.76 27277.84 29097.75 30783.88 32198.01 13192.17 385
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+87.92 1490.20 29289.18 29993.25 27596.48 21286.45 28996.99 18496.68 25088.83 25584.79 35596.22 20070.16 34798.53 21584.42 31388.04 30294.77 335
NR-MVSNet92.34 19991.27 21795.53 15894.95 29793.05 7697.39 14698.07 8292.65 13084.46 35695.71 22985.00 15797.77 30589.71 21383.52 35995.78 269
LF4IMVS87.94 32487.25 32189.98 35792.38 37680.05 37794.38 33195.25 32287.59 29684.34 35794.74 27464.31 38497.66 31484.83 30687.45 30892.23 382
LCM-MVSNet-Re92.50 19192.52 17592.44 30096.82 18181.89 35596.92 18993.71 37192.41 13484.30 35894.60 28085.08 15697.03 35091.51 18097.36 15098.40 155
TransMVSNet (Re)88.94 31287.56 31893.08 28294.35 32588.45 23797.73 9995.23 32387.47 29884.26 35995.29 24779.86 25397.33 34179.44 36074.44 39393.45 363
Anonymous2023120687.09 33386.14 33489.93 35891.22 38280.35 37096.11 25795.35 31583.57 36284.16 36093.02 34573.54 32695.61 37772.16 39386.14 32193.84 358
SixPastTwentyTwo89.15 31088.54 31090.98 33993.49 35180.28 37396.70 20994.70 34490.78 18584.15 36195.57 23771.78 33597.71 31084.63 31085.07 33694.94 316
test_fmvs383.21 35983.02 35683.78 38286.77 40668.34 40896.76 20394.91 33786.49 31684.14 36289.48 38736.04 41491.73 40491.86 17280.77 37391.26 394
TDRefinement86.53 33684.76 34891.85 31882.23 41484.25 32696.38 23995.35 31584.97 34384.09 36394.94 26265.76 38198.34 23484.60 31174.52 39292.97 367
KD-MVS_self_test85.95 34684.95 34588.96 36789.55 39379.11 38695.13 30996.42 26585.91 32784.07 36490.48 37870.03 34994.82 38680.04 35372.94 39692.94 368
pmmvs687.81 32686.19 33392.69 29791.32 38186.30 29297.34 15196.41 26680.59 38584.05 36594.37 29467.37 36797.67 31284.75 30879.51 37894.09 355
ACMH87.59 1690.53 28189.42 29493.87 24896.21 22687.92 25297.24 16096.94 22788.45 26983.91 36696.27 19871.92 33398.62 20884.43 31289.43 29095.05 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet587.29 33085.79 33691.78 32394.80 30787.28 26495.49 29195.28 31984.09 35383.85 36791.82 36862.95 38894.17 39178.48 36385.34 33193.91 357
USDC88.94 31287.83 31792.27 30794.66 31384.96 31893.86 35195.90 28787.34 30283.40 36895.56 23867.43 36698.19 24482.64 33489.67 28893.66 359
ttmdpeth85.91 34784.76 34889.36 36489.14 39480.25 37495.66 28393.16 37783.77 35883.39 36995.26 25166.24 37795.26 38480.65 34975.57 39092.57 374
Anonymous2024052186.42 33985.44 33889.34 36590.33 38679.79 37896.73 20595.92 28583.71 36083.25 37091.36 37363.92 38596.01 36778.39 36585.36 33092.22 383
KD-MVS_2432*160084.81 35482.64 35891.31 33391.07 38385.34 31091.22 38795.75 29585.56 33283.09 37190.21 38167.21 36895.89 36977.18 37162.48 41192.69 371
miper_refine_blended84.81 35482.64 35891.31 33391.07 38385.34 31091.22 38795.75 29585.56 33283.09 37190.21 38167.21 36895.89 36977.18 37162.48 41192.69 371
PVSNet_082.17 1985.46 35183.64 35490.92 34095.27 27979.49 38290.55 39395.60 30483.76 35983.00 37389.95 38371.09 33997.97 27782.75 33260.79 41395.31 296
mvsany_test383.59 35782.44 36187.03 37683.80 40973.82 39893.70 35590.92 39886.42 31782.51 37490.26 38046.76 40995.71 37490.82 19376.76 38691.57 389
test_040286.46 33884.79 34791.45 33095.02 29485.55 30396.29 24794.89 33880.90 37982.21 37593.97 31868.21 36397.29 34362.98 40588.68 29891.51 390
Patchmatch-RL test87.38 32986.24 33290.81 34488.74 39978.40 38988.12 40793.17 37687.11 30782.17 37689.29 38881.95 21795.60 37888.64 24277.02 38498.41 154
TinyColmap86.82 33585.35 34191.21 33594.91 30282.99 34293.94 34794.02 36483.58 36181.56 37794.68 27662.34 39198.13 24875.78 37687.35 31392.52 377
test20.0386.14 34485.40 34088.35 36890.12 38780.06 37695.90 26995.20 32488.59 26281.29 37893.62 33271.43 33792.65 40271.26 39781.17 37192.34 379
N_pmnet78.73 36978.71 37078.79 38792.80 36646.50 42694.14 34143.71 42878.61 39280.83 37991.66 37174.94 31496.36 36467.24 40284.45 34893.50 361
MVS-HIRNet82.47 36281.21 36586.26 37995.38 26769.21 40688.96 40389.49 40266.28 40880.79 38074.08 41368.48 36197.39 33871.93 39495.47 19292.18 384
PM-MVS83.48 35881.86 36488.31 36987.83 40377.59 39193.43 36391.75 39186.91 30980.63 38189.91 38444.42 41095.84 37285.17 30576.73 38791.50 391
ambc86.56 37883.60 41170.00 40585.69 40994.97 33480.60 38288.45 39237.42 41396.84 35882.69 33375.44 39192.86 369
MIMVSNet184.93 35383.05 35590.56 34989.56 39284.84 32195.40 29495.35 31583.91 35480.38 38392.21 36457.23 39793.34 39970.69 39982.75 36693.50 361
lessismore_v090.45 35091.96 37979.09 38787.19 41080.32 38494.39 29266.31 37697.55 32384.00 31876.84 38594.70 337
K. test v387.64 32886.75 33090.32 35393.02 36279.48 38396.61 22192.08 38990.66 19480.25 38594.09 31267.21 36896.65 36185.96 29480.83 37294.83 325
OpenMVS_ROBcopyleft81.14 2084.42 35682.28 36290.83 34290.06 38884.05 33195.73 27894.04 36373.89 40380.17 38691.53 37259.15 39497.64 31566.92 40389.05 29390.80 396
EG-PatchMatch MVS87.02 33485.44 33891.76 32592.67 36885.00 31696.08 25996.45 26483.41 36479.52 38793.49 33657.10 39897.72 30979.34 36190.87 27692.56 375
pmmvs-eth3d86.22 34284.45 35091.53 32888.34 40187.25 26694.47 32695.01 33183.47 36379.51 38889.61 38669.75 35295.71 37483.13 32576.73 38791.64 387
test_vis1_rt86.16 34385.06 34489.46 36293.47 35380.46 36996.41 23386.61 41285.22 33779.15 38988.64 39152.41 40497.06 34893.08 14990.57 27890.87 395
pmmvs379.97 36777.50 37287.39 37482.80 41379.38 38492.70 37790.75 39970.69 40578.66 39087.47 40151.34 40593.40 39873.39 39069.65 40189.38 400
UnsupCasMVSNet_eth85.99 34584.45 35090.62 34889.97 38982.40 35193.62 36097.37 19089.86 21878.59 39192.37 35765.25 38395.35 38382.27 33670.75 39994.10 353
dmvs_testset81.38 36582.60 36077.73 38891.74 38051.49 42393.03 37284.21 41689.07 24378.28 39291.25 37476.97 29688.53 41156.57 41182.24 36793.16 365
test_f80.57 36679.62 36883.41 38383.38 41267.80 41093.57 36293.72 37080.80 38377.91 39387.63 39933.40 41592.08 40387.14 27579.04 38190.34 398
new-patchmatchnet83.18 36081.87 36387.11 37586.88 40575.99 39593.70 35595.18 32585.02 34277.30 39488.40 39365.99 37993.88 39674.19 38670.18 40091.47 392
UnsupCasMVSNet_bld82.13 36479.46 36990.14 35588.00 40282.47 34990.89 39296.62 25878.94 39175.61 39584.40 40656.63 39996.31 36577.30 37066.77 40791.63 388
ET-MVSNet_ETH3D91.49 23890.11 26795.63 15196.40 21891.57 12795.34 29693.48 37390.60 20075.58 39695.49 24280.08 24896.79 35994.25 12589.76 28798.52 139
new_pmnet82.89 36181.12 36688.18 37189.63 39180.18 37591.77 38492.57 38476.79 39875.56 39788.23 39561.22 39394.48 38871.43 39582.92 36489.87 399
dongtai69.99 37669.33 37871.98 39788.78 39861.64 41789.86 39859.93 42775.67 39974.96 39885.45 40350.19 40681.66 41643.86 41555.27 41472.63 412
APD_test179.31 36877.70 37184.14 38189.11 39669.07 40792.36 38291.50 39369.07 40673.87 39992.63 35239.93 41294.32 39070.54 40080.25 37489.02 401
CMPMVSbinary62.92 2185.62 35084.92 34687.74 37289.14 39473.12 40294.17 34096.80 24273.98 40173.65 40094.93 26366.36 37497.61 31983.95 31991.28 26792.48 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVStest182.38 36380.04 36789.37 36387.63 40482.83 34395.03 31193.37 37573.90 40273.50 40194.35 29562.89 38993.25 40073.80 38765.92 40892.04 386
WB-MVS76.77 37076.63 37377.18 38985.32 40756.82 42194.53 32489.39 40382.66 36971.35 40289.18 38975.03 31388.88 40935.42 41866.79 40685.84 403
SSC-MVS76.05 37175.83 37476.72 39384.77 40856.22 42294.32 33588.96 40581.82 37570.52 40388.91 39074.79 31588.71 41033.69 41964.71 40985.23 404
YYNet185.87 34884.23 35290.78 34792.38 37682.46 35093.17 36795.14 32782.12 37267.69 40492.36 36078.16 28595.50 38177.31 36979.73 37694.39 346
kuosan65.27 38264.66 38467.11 40083.80 40961.32 41888.53 40460.77 42668.22 40767.67 40580.52 40949.12 40770.76 42229.67 42153.64 41669.26 414
MDA-MVSNet_test_wron85.87 34884.23 35290.80 34692.38 37682.57 34593.17 36795.15 32682.15 37167.65 40692.33 36378.20 28295.51 38077.33 36879.74 37594.31 350
DeepMVS_CXcopyleft74.68 39690.84 38564.34 41481.61 41965.34 40967.47 40788.01 39848.60 40880.13 41862.33 40673.68 39579.58 408
LCM-MVSNet72.55 37369.39 37782.03 38470.81 42465.42 41390.12 39794.36 35855.02 41465.88 40881.72 40724.16 42289.96 40574.32 38568.10 40590.71 397
test_method66.11 38164.89 38369.79 39872.62 42235.23 43065.19 41792.83 38220.35 42065.20 40988.08 39743.14 41182.70 41573.12 39163.46 41091.45 393
MDA-MVSNet-bldmvs85.00 35282.95 35791.17 33893.13 36183.33 33894.56 32395.00 33284.57 34865.13 41092.65 35070.45 34495.85 37173.57 38977.49 38394.33 348
PMMVS270.19 37566.92 37980.01 38576.35 41865.67 41286.22 40887.58 40964.83 41062.38 41180.29 41026.78 42088.49 41263.79 40454.07 41585.88 402
testf169.31 37766.76 38076.94 39178.61 41661.93 41588.27 40586.11 41355.62 41259.69 41285.31 40420.19 42489.32 40657.62 40869.44 40379.58 408
APD_test269.31 37766.76 38076.94 39178.61 41661.93 41588.27 40586.11 41355.62 41259.69 41285.31 40420.19 42489.32 40657.62 40869.44 40379.58 408
test_vis3_rt72.73 37270.55 37579.27 38680.02 41568.13 40993.92 34974.30 42376.90 39758.99 41473.58 41420.29 42395.37 38284.16 31472.80 39774.31 411
FPMVS71.27 37469.85 37675.50 39474.64 41959.03 41991.30 38691.50 39358.80 41157.92 41588.28 39429.98 41885.53 41453.43 41282.84 36581.95 407
Gipumacopyleft67.86 38065.41 38275.18 39592.66 36973.45 39966.50 41694.52 35053.33 41557.80 41666.07 41630.81 41689.20 40848.15 41478.88 38262.90 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt51.94 38853.82 38846.29 40433.73 42845.30 42878.32 41467.24 42518.02 42150.93 41787.05 40252.99 40353.11 42370.76 39825.29 42140.46 419
ANet_high63.94 38359.58 38677.02 39061.24 42666.06 41185.66 41087.93 40878.53 39342.94 41871.04 41525.42 42180.71 41752.60 41330.83 41984.28 405
E-PMN53.28 38552.56 38955.43 40274.43 42047.13 42583.63 41276.30 42042.23 41742.59 41962.22 41828.57 41974.40 41931.53 42031.51 41844.78 417
EMVS52.08 38751.31 39054.39 40372.62 42245.39 42783.84 41175.51 42241.13 41840.77 42059.65 41930.08 41773.60 42028.31 42229.90 42044.18 418
MVEpermissive50.73 2353.25 38648.81 39166.58 40165.34 42557.50 42072.49 41570.94 42440.15 41939.28 42163.51 4176.89 42873.48 42138.29 41742.38 41768.76 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft53.92 2258.58 38455.40 38768.12 39951.00 42748.64 42478.86 41387.10 41146.77 41635.84 42274.28 4128.76 42686.34 41342.07 41673.91 39469.38 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 38924.57 39326.74 40573.98 42139.89 42957.88 4189.80 42912.27 42210.39 4236.97 4257.03 42736.44 42425.43 42317.39 4223.89 422
testmvs13.36 39116.33 3944.48 4075.04 4292.26 43293.18 3663.28 4302.70 4238.24 42421.66 4212.29 4302.19 4257.58 4242.96 4239.00 421
test12313.04 39215.66 3955.18 4064.51 4303.45 43192.50 3801.81 4312.50 4247.58 42520.15 4223.67 4292.18 4267.13 4251.07 4249.90 420
EGC-MVSNET68.77 37963.01 38586.07 38092.49 37282.24 35393.96 34690.96 3970.71 4252.62 42690.89 37553.66 40293.46 39757.25 41084.55 34682.51 406
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.24 39030.99 3920.00 4080.00 4310.00 4330.00 41997.63 1470.00 4260.00 42796.88 16284.38 1650.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.39 3949.85 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42688.65 1000.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.06 39310.74 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42796.69 1720.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.53 38075.56 379
MSC_two_6792asdad98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
No_MVS98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
eth-test20.00 431
eth-test0.00 431
OPU-MVS98.55 398.82 5596.86 398.25 3598.26 6996.04 299.24 12895.36 9899.59 1999.56 31
save fliter98.91 5294.28 3897.02 17998.02 9795.35 19
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3699.86 997.52 2899.67 699.75 6
GSMVS98.45 149
sam_mvs182.76 19998.45 149
sam_mvs81.94 218
MTGPAbinary98.08 77
test_post192.81 37616.58 42480.53 23997.68 31186.20 286
test_post17.58 42381.76 22098.08 258
patchmatchnet-post90.45 37982.65 20398.10 253
MTMP97.86 8182.03 418
gm-plane-assit93.22 35878.89 38884.82 34593.52 33598.64 20587.72 254
test9_res94.81 11399.38 5899.45 50
agg_prior293.94 13199.38 5899.50 43
test_prior493.66 5796.42 232
test_prior97.23 6398.67 6192.99 7898.00 10199.41 11299.29 66
新几何295.79 275
旧先验198.38 8193.38 6397.75 13098.09 7892.30 4599.01 9299.16 76
无先验95.79 27597.87 11483.87 35799.65 6187.68 26098.89 112
原ACMM295.67 280
testdata299.67 5985.96 294
segment_acmp92.89 30
testdata195.26 30493.10 113
plane_prior796.21 22689.98 184
plane_prior696.10 23790.00 18081.32 226
plane_prior597.51 16298.60 20993.02 15292.23 24995.86 261
plane_prior496.64 175
plane_prior297.74 9794.85 37
plane_prior196.14 234
plane_prior89.99 18297.24 16094.06 7292.16 253
n20.00 432
nn0.00 432
door-mid91.06 396
test1197.88 112
door91.13 395
HQP5-MVS89.33 209
BP-MVS92.13 165
HQP3-MVS97.39 18792.10 254
HQP2-MVS80.95 230
NP-MVS95.99 24189.81 19095.87 217
ACMMP++_ref90.30 283
ACMMP++91.02 272
Test By Simon88.73 99