This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 18
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
IU-MVS87.77 459.15 6085.53 2553.93 22784.64 379.07 1190.87 588.37 14
PC_three_145255.09 20384.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 12
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 12
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 39
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 23
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 23
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
test_part287.58 960.47 4283.42 12
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 65
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3689.70 1679.85 591.48 188.19 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FOURS186.12 3660.82 3788.18 183.61 6460.87 8481.50 16
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 22
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4885.58 9876.12 3184.94 6386.33 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6059.34 11979.37 1989.76 4559.84 1687.62 4976.69 2786.74 5387.68 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6177.08 2690.18 1587.87 30
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4388.32 3473.48 5387.03 4684.83 142
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6265.37 1378.78 2290.64 1958.63 2587.24 5379.00 1290.37 1485.26 130
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6577.39 2389.52 21
ZD-MVS86.64 2160.38 4382.70 8757.95 14678.10 2490.06 3656.12 4088.84 2674.05 4787.00 49
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7788.39 3279.34 890.52 1386.78 66
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5590.06 1378.42 1989.02 2387.69 37
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 57
test_fmvsm_n_192071.73 9471.14 9473.50 13272.52 27956.53 10175.60 19376.16 20748.11 29577.22 2885.56 12553.10 7277.43 25874.86 4077.14 15886.55 74
sasdasda74.67 5474.98 5073.71 12278.94 14250.56 20280.23 9783.87 5760.30 10077.15 2986.56 9659.65 1782.00 17566.01 10382.12 9088.58 10
canonicalmvs74.67 5474.98 5073.71 12278.94 14250.56 20280.23 9783.87 5760.30 10077.15 2986.56 9659.65 1782.00 17566.01 10382.12 9088.58 10
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5173.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 5
alignmvs73.86 6473.99 5973.45 13578.20 16550.50 20478.57 12482.43 8959.40 11776.57 3286.71 8956.42 3881.23 19265.84 10681.79 9688.62 8
旧先验276.08 18345.32 32576.55 3365.56 33658.75 164
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 7986.78 6880.66 489.64 1987.80 34
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7376.46 22051.83 18479.67 11085.08 3165.02 1975.84 3588.58 6059.42 2285.08 10972.75 5683.93 7390.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 21080.97 12565.13 1575.77 3690.88 1748.63 12486.66 7177.23 2488.17 3384.81 143
dcpmvs_274.55 5875.23 4872.48 15582.34 7753.34 15577.87 13881.46 10457.80 15075.49 3786.81 8462.22 1377.75 25471.09 6782.02 9386.34 80
MGCFI-Net72.45 8073.34 6869.81 21677.77 18243.21 28875.84 19181.18 11959.59 11575.45 3886.64 9057.74 2877.94 24963.92 12281.90 9588.30 15
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13560.76 1586.56 7467.86 8487.87 4186.06 93
fmvsm_l_conf0.5_n70.99 10670.82 9971.48 17771.45 29554.40 13877.18 16070.46 27448.67 28675.17 4086.86 8253.77 6376.86 26976.33 3077.51 15183.17 197
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9259.99 10675.10 4190.35 2847.66 13686.52 7671.64 6482.99 7984.47 152
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 5988.68 2776.48 2889.63 2087.16 55
test_prior281.75 8060.37 9675.01 4389.06 5256.22 3972.19 5988.96 24
test_fmvsmconf0.1_n72.81 7372.33 7674.24 10769.89 32255.81 11578.22 13075.40 22154.17 22475.00 4488.03 6853.82 6280.23 21678.08 2078.34 14386.69 68
TEST985.58 4361.59 2481.62 8281.26 11655.65 19174.93 4588.81 5653.70 6584.68 119
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8281.26 11655.86 18274.93 4588.81 5653.70 6584.68 11975.24 3888.33 3083.65 183
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16174.91 4788.19 6259.15 2387.68 4873.67 5187.45 4386.57 73
test_fmvsmconf_n73.01 7172.59 7374.27 10671.28 30255.88 11478.21 13175.56 21854.31 22274.86 4887.80 7254.72 5180.23 21678.07 2178.48 14086.70 67
h-mvs3372.71 7671.49 8576.40 5881.99 8259.58 5276.92 16776.74 20360.40 9374.81 4985.95 11745.54 16485.76 9470.41 7070.61 23983.86 171
hse-mvs271.04 10469.86 11674.60 9679.58 12657.12 9673.96 22675.25 22460.40 9374.81 4981.95 20145.54 16482.90 15270.41 7066.83 29183.77 176
test_885.40 4660.96 3481.54 8581.18 11955.86 18274.81 4988.80 5853.70 6584.45 123
agg_prior85.04 5059.96 4781.04 12374.68 5284.04 129
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5389.38 4955.30 4489.18 2174.19 4687.34 4486.38 76
test_fmvsmconf0.01_n72.17 8671.50 8474.16 10867.96 33955.58 12378.06 13574.67 23654.19 22374.54 5488.23 6150.35 10880.24 21578.07 2177.46 15286.65 71
nrg03072.96 7273.01 6972.84 14875.41 23550.24 20680.02 10182.89 8558.36 13774.44 5586.73 8758.90 2480.83 20265.84 10674.46 18387.44 46
casdiffmvspermissive74.80 5174.89 5274.53 9975.59 23250.37 20578.17 13285.06 3362.80 5874.40 5687.86 7057.88 2783.61 13969.46 7582.79 8689.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n_a70.50 11770.27 10971.18 18971.30 30154.09 14076.89 16869.87 27747.90 29974.37 5786.49 9953.07 7376.69 27475.41 3577.11 15982.76 204
TSAR-MVS + GP.74.90 5074.15 5877.17 4982.00 8158.77 7281.80 7978.57 16458.58 13274.32 5884.51 14555.94 4187.22 5467.11 9484.48 6885.52 115
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 7688.53 3074.79 4288.34 2986.63 72
MVS_030478.73 1678.75 1578.66 3080.82 10157.62 8385.31 3081.31 11370.51 274.17 6091.24 1454.99 4789.56 1782.29 288.13 3488.80 7
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8784.02 4856.32 17474.05 6188.98 5453.34 6987.92 4369.23 7688.42 2887.59 42
baseline74.61 5674.70 5374.34 10375.70 22849.99 21377.54 14884.63 4062.73 5973.98 6287.79 7357.67 3083.82 13569.49 7382.74 8789.20 6
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6390.50 2453.20 7088.35 3374.02 4887.05 4586.13 91
testdata64.66 28381.52 8752.93 16165.29 31346.09 31873.88 6487.46 7538.08 24366.26 33353.31 20478.48 14074.78 317
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize74.96 4974.39 5676.67 5482.20 7858.24 7783.67 5183.29 7658.41 13573.71 6690.14 3345.62 16185.99 8869.64 7282.85 8585.78 103
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6663.89 3773.60 6790.60 2054.85 5086.72 6977.20 2588.06 3785.74 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6890.56 2249.80 11188.24 3574.02 4887.03 4686.32 84
PHI-MVS75.87 4475.36 4577.41 4680.62 10755.91 11384.28 3985.78 2056.08 18073.41 6986.58 9550.94 10388.54 2970.79 6889.71 1787.79 35
CS-MVS76.25 4075.98 3977.06 5080.15 11655.63 12084.51 3583.90 5463.24 4573.30 7087.27 7955.06 4686.30 8471.78 6284.58 6589.25 4
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 7090.58 2149.90 10988.21 3673.78 5087.03 4686.29 87
test_fmvsmvis_n_192070.84 10970.38 10772.22 16271.16 30355.39 12775.86 18972.21 26149.03 28273.28 7286.17 10851.83 9077.29 26175.80 3278.05 14583.98 165
VDD-MVS72.50 7872.09 7873.75 12081.58 8649.69 21877.76 14377.63 18863.21 4773.21 7389.02 5342.14 19883.32 14361.72 14282.50 8888.25 17
fmvsm_s_conf0.1_n_a69.32 14968.44 14771.96 16370.91 30653.78 14578.12 13362.30 33649.35 27873.20 7486.55 9851.99 8776.79 27174.83 4168.68 27885.32 126
DELS-MVS74.76 5274.46 5575.65 7477.84 17952.25 17675.59 19484.17 4663.76 3873.15 7582.79 17659.58 2086.80 6767.24 9386.04 5887.89 26
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS-dyc-post74.57 5773.90 6076.58 5683.49 6559.87 4984.29 3781.36 10858.07 14173.14 7690.07 3444.74 17585.84 9268.20 7981.76 9784.03 162
RE-MVS-def73.71 6483.49 6559.87 4984.29 3781.36 10858.07 14173.14 7690.07 3443.06 19068.20 7981.76 9784.03 162
fmvsm_s_conf0.5_n_a69.54 14168.74 13871.93 16472.47 28153.82 14478.25 12862.26 33749.78 27473.12 7886.21 10652.66 7576.79 27175.02 3968.88 27385.18 131
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7989.97 4150.90 10487.48 5175.30 3686.85 5187.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 8088.88 5553.72 6489.06 2368.27 7888.04 3887.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n69.41 14768.60 14171.83 16771.07 30452.88 16377.85 14062.44 33449.58 27672.97 8186.22 10551.68 9376.48 27875.53 3470.10 25086.14 90
VDDNet71.81 9171.33 9073.26 14282.80 7547.60 24678.74 12075.27 22359.59 11572.94 8289.40 4841.51 20983.91 13358.75 16482.99 7988.26 16
test1277.76 4384.52 5858.41 7583.36 7372.93 8354.61 5388.05 3988.12 3586.81 64
fmvsm_s_conf0.5_n69.58 13968.84 13571.79 16972.31 28552.90 16277.90 13762.43 33549.97 27272.85 8485.90 11852.21 8376.49 27775.75 3370.26 24785.97 95
LFMVS71.78 9271.59 8272.32 16083.40 6746.38 25579.75 10871.08 26864.18 3272.80 8588.64 5942.58 19483.72 13657.41 17084.49 6786.86 62
EC-MVSNet75.84 4575.87 4275.74 7178.86 14452.65 16683.73 5086.08 1763.47 4272.77 8687.25 8053.13 7187.93 4271.97 6185.57 6186.66 70
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 6962.44 6472.68 8790.50 2448.18 12987.34 5273.59 5285.71 5984.76 146
ETV-MVS74.46 5973.84 6276.33 6079.27 13355.24 12979.22 11685.00 3664.97 2172.65 8879.46 25053.65 6887.87 4467.45 9082.91 8285.89 100
UA-Net73.13 6972.93 7073.76 11883.58 6451.66 18578.75 11977.66 18767.75 472.61 8989.42 4749.82 11083.29 14453.61 20183.14 7686.32 84
OPM-MVS74.73 5374.25 5776.19 6180.81 10259.01 6782.60 6683.64 6363.74 3972.52 9087.49 7447.18 14685.88 9169.47 7480.78 10283.66 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10385.71 2256.59 16972.46 9186.76 8556.89 3487.86 4566.36 9988.91 2583.64 184
MVS_Test72.45 8072.46 7572.42 15974.88 24148.50 23476.28 17983.14 8159.40 11772.46 9184.68 13755.66 4281.12 19365.98 10579.66 11987.63 40
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6161.71 7672.45 9390.34 2948.48 12788.13 3772.32 5886.85 5185.78 103
bld_raw_dy_0_6470.97 10769.31 12675.95 6579.93 12051.43 18880.93 9075.96 21253.39 23372.29 9483.29 16930.48 31888.53 3067.40 9180.11 11487.89 26
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9590.01 4047.95 13188.01 4071.55 6586.74 5386.37 78
X-MVStestdata70.21 12367.28 17479.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 956.49 40547.95 13188.01 4071.55 6586.74 5386.37 78
iter_conf05_1171.51 9770.02 11575.99 6379.93 12051.46 18777.37 15278.24 17854.95 20972.06 9782.87 17529.55 32688.61 2867.40 9187.81 4287.89 26
Effi-MVS+73.31 6872.54 7475.62 7577.87 17753.64 14779.62 11279.61 14361.63 7772.02 9882.61 18156.44 3785.97 8963.99 12179.07 13187.25 54
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9162.90 5271.77 9990.26 3146.61 15586.55 7571.71 6385.66 6084.97 139
diffmvspermissive70.69 11370.43 10571.46 17869.45 32748.95 22872.93 24278.46 17057.27 15571.69 10083.97 15651.48 9577.92 25170.70 6977.95 14787.53 44
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set72.42 8271.59 8274.91 8578.47 15554.02 14177.05 16379.33 14965.03 1871.68 10179.35 25352.75 7484.89 11566.46 9874.23 18785.83 102
MSLP-MVS++73.77 6573.47 6574.66 9283.02 7159.29 5882.30 7481.88 9659.34 11971.59 10286.83 8345.94 15983.65 13865.09 11285.22 6281.06 238
CS-MVS-test75.62 4775.31 4776.56 5780.63 10655.13 13083.88 4885.22 2862.05 7171.49 10386.03 11353.83 6186.36 8267.74 8586.91 5088.19 20
EI-MVSNet-UG-set71.92 9071.06 9674.52 10077.98 17553.56 14976.62 17279.16 15064.40 2771.18 10478.95 25852.19 8484.66 12165.47 11073.57 19885.32 126
MG-MVS73.96 6373.89 6174.16 10885.65 4249.69 21881.59 8481.29 11561.45 7871.05 10588.11 6351.77 9187.73 4761.05 14883.09 7785.05 136
patch_mono-269.85 13071.09 9566.16 26379.11 13954.80 13571.97 25874.31 24153.50 23270.90 10684.17 14957.63 3163.31 34266.17 10082.02 9380.38 249
VNet69.68 13670.19 11168.16 23979.73 12441.63 30470.53 27777.38 19360.37 9670.69 10786.63 9251.08 10077.09 26453.61 20181.69 10185.75 108
MVS_111021_HR74.02 6273.46 6675.69 7283.01 7260.63 4077.29 15778.40 17561.18 8270.58 10885.97 11554.18 5784.00 13267.52 8982.98 8182.45 210
HPM-MVS_fast74.30 6173.46 6676.80 5284.45 6059.04 6683.65 5281.05 12260.15 10370.43 10989.84 4341.09 21585.59 9767.61 8882.90 8385.77 106
CLD-MVS73.33 6772.68 7275.29 8278.82 14653.33 15678.23 12984.79 3961.30 8170.41 11081.04 21852.41 8087.12 5964.61 11782.49 8985.41 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
新几何170.76 19785.66 4161.13 3066.43 30544.68 32970.29 11186.64 9041.29 21175.23 28649.72 23281.75 9975.93 301
原ACMM174.69 9085.39 4759.40 5483.42 7051.47 25370.27 11286.61 9348.61 12586.51 7753.85 19987.96 3978.16 275
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7567.78 370.09 11386.34 10354.92 4988.90 2572.68 5784.55 6687.76 36
xiu_mvs_v1_base_debu68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
xiu_mvs_v1_base68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
xiu_mvs_v1_base_debi68.58 16367.28 17472.48 15578.19 16657.19 9175.28 19975.09 23051.61 24870.04 11481.41 21232.79 29779.02 23663.81 12477.31 15381.22 233
PS-MVSNAJss72.24 8471.21 9275.31 8078.50 15355.93 11281.63 8182.12 9356.24 17770.02 11785.68 12447.05 14884.34 12565.27 11174.41 18685.67 110
test_yl69.69 13469.13 12971.36 18378.37 16045.74 26274.71 21480.20 13657.91 14870.01 11883.83 15842.44 19582.87 15554.97 18879.72 11785.48 117
DCV-MVSNet69.69 13469.13 12971.36 18378.37 16045.74 26274.71 21480.20 13657.91 14870.01 11883.83 15842.44 19582.87 15554.97 18879.72 11785.48 117
xiu_mvs_v2_base70.52 11569.75 11772.84 14881.21 9655.63 12075.11 20478.92 15554.92 21069.96 12079.68 24547.00 15282.09 17461.60 14479.37 12380.81 243
Anonymous2024052969.91 12969.02 13272.56 15380.19 11447.65 24477.56 14780.99 12455.45 19669.88 12186.76 8539.24 23082.18 17354.04 19677.10 16087.85 31
PS-MVSNAJ70.51 11669.70 11972.93 14681.52 8755.79 11674.92 21079.00 15355.04 20869.88 12178.66 26047.05 14882.19 17261.61 14379.58 12080.83 242
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 12389.74 4645.43 16887.16 5772.01 6082.87 8485.14 132
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PCF-MVS61.88 870.95 10869.49 12375.35 7977.63 18755.71 11776.04 18681.81 9850.30 26869.66 12485.40 13152.51 7784.89 11551.82 21680.24 11285.45 119
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48270.50 11769.45 12573.66 12572.62 27650.03 21277.58 14580.51 13259.90 10769.52 12582.14 19747.53 13984.88 11765.07 11370.17 24886.09 92
MVSFormer71.50 9970.38 10774.88 8678.76 14757.15 9482.79 6178.48 16851.26 25769.49 12683.22 17043.99 18383.24 14566.06 10179.37 12384.23 157
lupinMVS69.57 14068.28 15073.44 13678.76 14757.15 9476.57 17373.29 25346.19 31769.49 12682.18 19343.99 18379.23 22864.66 11579.37 12383.93 166
V4268.65 16167.35 17272.56 15368.93 33350.18 20872.90 24379.47 14656.92 16069.45 12880.26 23446.29 15782.99 14964.07 11867.82 28384.53 149
v114470.42 11969.31 12673.76 11873.22 26450.64 19977.83 14181.43 10558.58 13269.40 12981.16 21547.53 13985.29 10864.01 12070.64 23785.34 125
jason69.65 13768.39 14973.43 13778.27 16456.88 9877.12 16173.71 24946.53 31469.34 13083.22 17043.37 18779.18 22964.77 11479.20 12884.23 157
jason: jason.
HQP_MVS74.31 6073.73 6376.06 6281.41 9056.31 10284.22 4084.01 4964.52 2569.27 13186.10 11045.26 17287.21 5568.16 8180.58 10684.65 147
plane_prior356.09 10863.92 3669.27 131
VPA-MVSNet69.02 15469.47 12467.69 24377.42 19841.00 30974.04 22479.68 14160.06 10469.26 13384.81 13651.06 10177.58 25654.44 19574.43 18584.48 151
Vis-MVSNetpermissive72.18 8571.37 8974.61 9581.29 9355.41 12680.90 9178.28 17760.73 8869.23 13488.09 6444.36 18082.65 16357.68 16781.75 9985.77 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EI-MVSNet69.27 15168.44 14771.73 17174.47 25249.39 22375.20 20278.45 17159.60 11269.16 13576.51 29751.29 9682.50 16759.86 15971.45 23183.30 189
MVSTER67.16 19565.58 20871.88 16670.37 31449.70 21670.25 28278.45 17151.52 25169.16 13580.37 23038.45 23782.50 16760.19 15371.46 23083.44 187
v119269.97 12868.68 13973.85 11373.19 26550.94 19277.68 14481.36 10857.51 15368.95 13780.85 22545.28 17185.33 10762.97 13170.37 24385.27 129
OMC-MVS71.40 10170.60 10273.78 11676.60 21653.15 15879.74 10979.78 13958.37 13668.75 13886.45 10145.43 16880.60 20662.58 13377.73 14887.58 43
Fast-Effi-MVS+70.28 12269.12 13173.73 12178.50 15351.50 18675.01 20779.46 14756.16 17968.59 13979.55 24853.97 5884.05 12853.34 20377.53 15085.65 112
v192192069.47 14468.17 15173.36 13973.06 26850.10 21077.39 15180.56 13056.58 17068.59 13980.37 23044.72 17684.98 11262.47 13669.82 25785.00 137
v14419269.71 13368.51 14273.33 14073.10 26750.13 20977.54 14880.64 12956.65 16368.57 14180.55 22846.87 15384.96 11462.98 13069.66 26284.89 141
TranMVSNet+NR-MVSNet70.36 12070.10 11471.17 19078.64 15142.97 29176.53 17481.16 12166.95 668.53 14285.42 13051.61 9483.07 14852.32 20969.70 26187.46 45
API-MVS72.17 8671.41 8774.45 10181.95 8357.22 8984.03 4580.38 13459.89 11068.40 14382.33 19049.64 11287.83 4651.87 21584.16 7278.30 273
BH-RMVSNet68.81 15767.42 16872.97 14580.11 11752.53 17174.26 22176.29 20658.48 13468.38 14484.20 14842.59 19383.83 13446.53 25975.91 17282.56 205
v124069.24 15267.91 15473.25 14373.02 27049.82 21477.21 15980.54 13156.43 17268.34 14580.51 22943.33 18884.99 11062.03 14069.77 26084.95 140
UniMVSNet_NR-MVSNet71.11 10371.00 9771.44 17979.20 13544.13 27876.02 18782.60 8866.48 1168.20 14684.60 14256.82 3582.82 15954.62 19270.43 24187.36 52
DU-MVS70.01 12669.53 12271.44 17978.05 17244.13 27875.01 20781.51 10364.37 2868.20 14684.52 14349.12 12182.82 15954.62 19270.43 24187.37 50
iter_conf0569.40 14867.62 15974.73 8877.84 17951.13 19079.28 11573.71 24954.62 21468.17 14883.59 16328.68 33687.16 5765.74 10876.95 16185.91 98
UniMVSNet (Re)70.63 11470.20 11071.89 16578.55 15245.29 26975.94 18882.92 8363.68 4068.16 14983.59 16353.89 6083.49 14253.97 19771.12 23486.89 61
Baseline_NR-MVSNet67.05 19767.56 16065.50 27575.65 22937.70 33775.42 19774.65 23759.90 10768.14 15083.15 17349.12 12177.20 26252.23 21069.78 25881.60 223
WR-MVS68.47 16768.47 14568.44 23680.20 11339.84 31573.75 23476.07 21064.68 2268.11 15183.63 16250.39 10779.14 23449.78 22969.66 26286.34 80
MAR-MVS71.51 9770.15 11275.60 7681.84 8459.39 5581.38 8682.90 8454.90 21168.08 15278.70 25947.73 13485.51 10051.68 21984.17 7181.88 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521166.84 20265.99 20169.40 22380.19 11442.21 29771.11 27171.31 26758.80 12667.90 15386.39 10229.83 32579.65 22149.60 23578.78 13586.33 82
TR-MVS66.59 20965.07 21471.17 19079.18 13649.63 22073.48 23675.20 22752.95 23667.90 15380.33 23339.81 22383.68 13743.20 29273.56 19980.20 251
HQP-NCC80.66 10382.31 7162.10 6867.85 155
ACMP_Plane80.66 10382.31 7162.10 6867.85 155
HQP4-MVS67.85 15586.93 6384.32 154
HQP-MVS73.45 6672.80 7175.40 7880.66 10354.94 13182.31 7183.90 5462.10 6867.85 15585.54 12845.46 16686.93 6367.04 9580.35 11084.32 154
MVS_111021_LR69.50 14368.78 13771.65 17478.38 15859.33 5674.82 21270.11 27658.08 14067.83 15984.68 13741.96 20076.34 28165.62 10977.54 14979.30 266
3Dnovator+66.72 475.84 4574.57 5479.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16089.24 5142.03 19989.38 1964.07 11886.50 5689.69 2
VPNet67.52 18668.11 15265.74 27279.18 13636.80 34672.17 25572.83 25662.04 7267.79 16185.83 12148.88 12376.60 27651.30 22072.97 21183.81 172
XVG-OURS68.76 16067.37 17072.90 14774.32 25757.22 8970.09 28378.81 15755.24 19967.79 16185.81 12336.54 26178.28 24562.04 13975.74 17583.19 194
GeoE71.01 10570.15 11273.60 13079.57 12752.17 17778.93 11878.12 18058.02 14367.76 16383.87 15752.36 8182.72 16156.90 17275.79 17485.92 97
FA-MVS(test-final)69.82 13168.48 14373.84 11478.44 15650.04 21175.58 19678.99 15458.16 13967.59 16482.14 19742.66 19285.63 9556.60 17376.19 17085.84 101
test22283.14 6858.68 7372.57 24963.45 32641.78 35067.56 16586.12 10937.13 25578.73 13774.98 313
CPTT-MVS72.78 7472.08 7974.87 8784.88 5761.41 2684.15 4377.86 18355.27 19867.51 16688.08 6541.93 20181.85 17869.04 7780.01 11581.35 231
v14868.24 17267.19 18071.40 18270.43 31247.77 24375.76 19277.03 19858.91 12467.36 16780.10 23748.60 12681.89 17760.01 15566.52 29484.53 149
FIs70.82 11171.43 8668.98 22978.33 16238.14 33176.96 16583.59 6561.02 8367.33 16886.73 8755.07 4581.64 18154.61 19479.22 12787.14 56
Anonymous2023121169.28 15068.47 14571.73 17180.28 10947.18 25079.98 10282.37 9054.61 21567.24 16984.01 15439.43 22682.41 17055.45 18672.83 21285.62 113
ECVR-MVScopyleft67.72 18367.51 16468.35 23779.46 12936.29 35474.79 21366.93 30158.72 12767.19 17088.05 6636.10 26281.38 18752.07 21284.25 6987.39 48
ACMM61.98 770.80 11269.73 11874.02 11080.59 10858.59 7482.68 6482.02 9555.46 19567.18 17184.39 14738.51 23683.17 14760.65 15076.10 17180.30 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_cas_vis1_n_192056.91 29756.71 29457.51 33059.13 38245.40 26863.58 33061.29 34236.24 37067.14 17271.85 33629.89 32456.69 37057.65 16863.58 31770.46 358
mvs_anonymous68.03 17567.51 16469.59 21972.08 28744.57 27671.99 25775.23 22551.67 24767.06 17382.57 18254.68 5277.94 24956.56 17475.71 17686.26 88
XVG-OURS-SEG-HR68.81 15767.47 16772.82 15074.40 25556.87 9970.59 27679.04 15254.77 21266.99 17486.01 11439.57 22578.21 24662.54 13473.33 20483.37 188
test111167.21 19067.14 18167.42 24679.24 13434.76 36173.89 23165.65 31058.71 12966.96 17587.95 6936.09 26380.53 20752.03 21383.79 7486.97 58
mvsmamba71.15 10269.54 12175.99 6377.61 19253.46 15281.95 7875.11 22957.73 15166.95 17685.96 11637.14 25487.56 5067.94 8375.49 17986.97 58
PAPR71.72 9570.82 9974.41 10281.20 9751.17 18979.55 11383.33 7455.81 18666.93 17784.61 14150.95 10286.06 8555.79 18179.20 12886.00 94
DP-MVS Recon72.15 8970.73 10176.40 5886.57 2457.99 7981.15 8982.96 8257.03 15866.78 17885.56 12544.50 17888.11 3851.77 21780.23 11383.10 198
UniMVSNet_ETH3D67.60 18567.07 18269.18 22877.39 19942.29 29574.18 22375.59 21760.37 9666.77 17986.06 11237.64 24578.93 24152.16 21173.49 20086.32 84
test250665.33 22464.61 21767.50 24479.46 12934.19 36674.43 22051.92 37358.72 12766.75 18088.05 6625.99 35680.92 20051.94 21484.25 6987.39 48
AUN-MVS68.45 16866.41 19174.57 9879.53 12857.08 9773.93 22975.23 22554.44 22066.69 18181.85 20337.10 25682.89 15362.07 13866.84 29083.75 177
LPG-MVS_test72.74 7571.74 8175.76 6980.22 11157.51 8682.55 6783.40 7161.32 7966.67 18287.33 7739.15 23186.59 7267.70 8677.30 15683.19 194
LGP-MVS_train75.76 6980.22 11157.51 8683.40 7161.32 7966.67 18287.33 7739.15 23186.59 7267.70 8677.30 15683.19 194
EIA-MVS71.78 9270.60 10275.30 8179.85 12253.54 15077.27 15883.26 7857.92 14766.49 18479.39 25152.07 8686.69 7060.05 15479.14 13085.66 111
IS-MVSNet71.57 9671.00 9773.27 14178.86 14445.63 26680.22 9978.69 16164.14 3566.46 18587.36 7649.30 11585.60 9650.26 22883.71 7588.59 9
v870.33 12169.28 12873.49 13373.15 26650.22 20778.62 12380.78 12860.79 8666.45 18682.11 19949.35 11484.98 11263.58 12768.71 27685.28 128
v1070.21 12369.02 13273.81 11573.51 26350.92 19478.74 12081.39 10660.05 10566.39 18781.83 20447.58 13885.41 10662.80 13268.86 27585.09 135
tt080567.77 18267.24 17869.34 22474.87 24240.08 31277.36 15381.37 10755.31 19766.33 18884.65 13937.35 24982.55 16655.65 18472.28 22285.39 124
PAPM_NR72.63 7771.80 8075.13 8481.72 8553.42 15479.91 10583.28 7759.14 12166.31 18985.90 11851.86 8986.06 8557.45 16980.62 10485.91 98
c3_l68.33 16967.56 16070.62 20070.87 30746.21 25874.47 21978.80 15856.22 17866.19 19078.53 26551.88 8881.40 18662.08 13769.04 27184.25 156
BH-untuned68.27 17067.29 17371.21 18779.74 12353.22 15776.06 18477.46 19257.19 15666.10 19181.61 20845.37 17083.50 14145.42 27576.68 16676.91 296
miper_ehance_all_eth68.03 17567.24 17870.40 20470.54 31046.21 25873.98 22578.68 16255.07 20666.05 19277.80 27652.16 8581.31 18961.53 14769.32 26583.67 180
ab-mvs66.65 20666.42 19067.37 24776.17 22341.73 30170.41 28076.14 20953.99 22665.98 19383.51 16649.48 11376.24 28248.60 24273.46 20284.14 160
EPP-MVSNet72.16 8871.31 9174.71 8978.68 15049.70 21682.10 7681.65 10060.40 9365.94 19485.84 12051.74 9286.37 8155.93 17879.55 12288.07 25
eth_miper_zixun_eth67.63 18466.28 19771.67 17371.60 29348.33 23673.68 23577.88 18255.80 18765.91 19578.62 26347.35 14582.88 15459.45 16166.25 29583.81 172
QAPM70.05 12568.81 13673.78 11676.54 21853.43 15383.23 5483.48 6752.89 23865.90 19686.29 10441.55 20886.49 7851.01 22278.40 14281.42 225
test_vis1_n_192058.86 28359.06 27458.25 32263.76 36243.14 28967.49 30366.36 30640.22 36165.89 19771.95 33531.04 31359.75 35659.94 15664.90 30471.85 345
FC-MVSNet-test69.80 13270.58 10467.46 24577.61 19234.73 36276.05 18583.19 7960.84 8565.88 19886.46 10054.52 5480.76 20552.52 20878.12 14486.91 60
IterMVS-LS69.22 15368.48 14371.43 18174.44 25449.40 22276.23 18077.55 18959.60 11265.85 19981.59 21051.28 9781.58 18459.87 15869.90 25683.30 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_Blended_VisFu71.45 10070.39 10674.65 9382.01 8058.82 7179.93 10480.35 13555.09 20365.82 20082.16 19649.17 11882.64 16460.34 15278.62 13982.50 209
miper_enhance_ethall67.11 19666.09 20070.17 20869.21 33045.98 26072.85 24478.41 17451.38 25465.65 20175.98 30551.17 9981.25 19060.82 14969.32 26583.29 191
RRT_MVS69.42 14667.49 16675.21 8378.01 17452.56 17082.23 7578.15 17955.84 18465.65 20185.07 13230.86 31586.83 6661.56 14670.00 25286.24 89
thisisatest053067.92 17965.78 20474.33 10476.29 22151.03 19176.89 16874.25 24353.67 23065.59 20381.76 20535.15 27085.50 10155.94 17772.47 21786.47 75
cl2267.47 18766.45 18770.54 20269.85 32346.49 25473.85 23277.35 19455.07 20665.51 20477.92 27247.64 13781.10 19461.58 14569.32 26584.01 164
3Dnovator64.47 572.49 7971.39 8875.79 6877.70 18358.99 6880.66 9583.15 8062.24 6665.46 20586.59 9442.38 19785.52 9959.59 16084.72 6482.85 203
test_djsdf69.45 14567.74 15574.58 9774.57 25154.92 13382.79 6178.48 16851.26 25765.41 20683.49 16738.37 23883.24 14566.06 10169.25 26885.56 114
FE-MVS65.91 21563.33 23373.63 12877.36 20051.95 18372.62 24775.81 21353.70 22965.31 20778.96 25728.81 33586.39 8043.93 28473.48 20182.55 206
TAMVS66.78 20465.27 21271.33 18679.16 13853.67 14673.84 23369.59 28152.32 24465.28 20881.72 20644.49 17977.40 26042.32 29978.66 13882.92 200
cl____67.18 19366.26 19869.94 21170.20 31545.74 26273.30 23776.83 20155.10 20165.27 20979.57 24747.39 14380.53 20759.41 16369.22 26983.53 186
DIV-MVS_self_test67.18 19366.26 19869.94 21170.20 31545.74 26273.29 23876.83 20155.10 20165.27 20979.58 24647.38 14480.53 20759.43 16269.22 26983.54 185
EPNet73.09 7072.16 7775.90 6775.95 22656.28 10483.05 5672.39 25966.53 1065.27 20987.00 8150.40 10685.47 10362.48 13586.32 5785.94 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu69.64 13867.53 16375.95 6576.10 22462.29 1580.20 10076.06 21159.83 11165.26 21277.09 28641.56 20784.02 13160.60 15171.09 23581.53 224
ACMP63.53 672.30 8371.20 9375.59 7780.28 10957.54 8482.74 6382.84 8660.58 9065.24 21386.18 10739.25 22986.03 8766.95 9776.79 16483.22 192
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS59.36 1066.60 20765.20 21370.81 19676.63 21548.75 23076.52 17580.04 13850.64 26565.24 21384.93 13439.15 23178.54 24236.77 32976.88 16385.14 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet266.93 20066.31 19668.79 23277.63 18742.98 29076.11 18277.47 19056.62 16665.22 21582.17 19541.85 20280.18 21847.05 25772.72 21683.20 193
SDMVSNet68.03 17568.10 15367.84 24177.13 20448.72 23265.32 32079.10 15158.02 14365.08 21682.55 18347.83 13373.40 29363.92 12273.92 19181.41 226
sd_testset64.46 23464.45 21864.51 28577.13 20442.25 29662.67 33472.11 26258.02 14365.08 21682.55 18341.22 21469.88 31447.32 25273.92 19181.41 226
GBi-Net67.21 19066.55 18569.19 22577.63 18743.33 28577.31 15477.83 18456.62 16665.04 21882.70 17741.85 20280.33 21247.18 25472.76 21383.92 167
test167.21 19066.55 18569.19 22577.63 18743.33 28577.31 15477.83 18456.62 16665.04 21882.70 17741.85 20280.33 21247.18 25472.76 21383.92 167
FMVSNet366.32 21265.61 20768.46 23576.48 21942.34 29474.98 20977.15 19755.83 18565.04 21881.16 21539.91 22080.14 21947.18 25472.76 21382.90 202
anonymousdsp67.00 19964.82 21673.57 13170.09 31856.13 10776.35 17777.35 19448.43 29164.99 22180.84 22633.01 29480.34 21164.66 11567.64 28584.23 157
BH-w/o66.85 20165.83 20369.90 21479.29 13152.46 17374.66 21676.65 20454.51 21964.85 22278.12 26645.59 16382.95 15143.26 29175.54 17874.27 322
CDS-MVSNet66.80 20365.37 20971.10 19278.98 14153.13 16073.27 23971.07 26952.15 24564.72 22380.23 23543.56 18677.10 26345.48 27378.88 13283.05 199
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GA-MVS65.53 22063.70 22771.02 19470.87 30748.10 23870.48 27874.40 23956.69 16264.70 22476.77 29133.66 28881.10 19455.42 18770.32 24583.87 170
tttt051767.83 18165.66 20674.33 10476.69 21350.82 19677.86 13973.99 24654.54 21864.64 22582.53 18635.06 27185.50 10155.71 18269.91 25586.67 69
FMVSNet166.70 20565.87 20269.19 22577.49 19643.33 28577.31 15477.83 18456.45 17164.60 22682.70 17738.08 24380.33 21246.08 26372.31 22183.92 167
AdaColmapbinary69.99 12768.66 14073.97 11284.94 5457.83 8082.63 6578.71 16056.28 17664.34 22784.14 15041.57 20687.06 6246.45 26078.88 13277.02 292
jajsoiax68.25 17166.45 18773.66 12575.62 23055.49 12580.82 9278.51 16752.33 24364.33 22884.11 15128.28 33981.81 18063.48 12870.62 23883.67 180
CostFormer64.04 23862.51 24268.61 23471.88 29045.77 26171.30 26670.60 27347.55 30364.31 22976.61 29541.63 20579.62 22349.74 23169.00 27280.42 247
UWE-MVS60.18 27459.78 26961.39 30777.67 18533.92 36969.04 29363.82 32348.56 28764.27 23077.64 28127.20 34770.40 31133.56 34976.24 16979.83 258
mvs_tets68.18 17366.36 19373.63 12875.61 23155.35 12880.77 9378.56 16552.48 24264.27 23084.10 15227.45 34581.84 17963.45 12970.56 24083.69 179
baseline163.81 24063.87 22463.62 28976.29 22136.36 34971.78 26167.29 29856.05 18164.23 23282.95 17447.11 14774.41 29047.30 25361.85 33180.10 254
PVSNet_BlendedMVS68.56 16667.72 15671.07 19377.03 20850.57 20074.50 21881.52 10153.66 23164.22 23379.72 24449.13 11982.87 15555.82 17973.92 19179.77 261
PVSNet_Blended68.59 16267.72 15671.19 18877.03 20850.57 20072.51 25081.52 10151.91 24664.22 23377.77 27949.13 11982.87 15555.82 17979.58 12080.14 253
thisisatest051565.83 21663.50 23072.82 15073.75 26149.50 22171.32 26573.12 25549.39 27763.82 23576.50 29934.95 27384.84 11853.20 20575.49 17984.13 161
test_fmvs1_n51.37 33150.35 33454.42 34552.85 38837.71 33661.16 34551.93 37228.15 38063.81 23669.73 35313.72 38353.95 38051.16 22160.65 34071.59 347
test_fmvs151.32 33350.48 33353.81 34753.57 38737.51 33860.63 34951.16 37528.02 38263.62 23769.23 35616.41 37953.93 38151.01 22260.70 33969.99 362
HyFIR lowres test65.67 21863.01 23773.67 12479.97 11955.65 11969.07 29275.52 21942.68 34863.53 23877.95 27040.43 21881.64 18146.01 26471.91 22583.73 178
CANet_DTU68.18 17367.71 15869.59 21974.83 24346.24 25778.66 12276.85 20059.60 11263.45 23982.09 20035.25 26977.41 25959.88 15778.76 13685.14 132
UGNet68.81 15767.39 16973.06 14478.33 16254.47 13779.77 10775.40 22160.45 9263.22 24084.40 14632.71 30180.91 20151.71 21880.56 10883.81 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS60.68 27161.67 25257.70 32970.43 31238.45 32964.19 32866.47 30448.05 29763.22 24080.86 22449.28 11660.47 35145.25 27767.28 28874.19 323
testing9164.46 23463.80 22566.47 25678.43 15740.06 31367.63 30069.59 28159.06 12263.18 24278.05 26834.05 28176.99 26648.30 24575.87 17382.37 212
CHOSEN 1792x268865.08 22862.84 23971.82 16881.49 8956.26 10566.32 30974.20 24440.53 35963.16 24378.65 26141.30 21077.80 25345.80 26674.09 18881.40 228
testing22262.29 25861.31 25765.25 28077.87 17738.53 32868.34 29566.31 30756.37 17363.15 24477.58 28228.47 33776.18 28437.04 32776.65 16781.05 239
testing9964.05 23763.29 23466.34 25878.17 16939.76 31767.33 30568.00 29458.60 13163.03 24578.10 26732.57 30676.94 26848.22 24675.58 17782.34 213
114514_t70.83 11069.56 12074.64 9486.21 3154.63 13682.34 7081.81 9848.22 29363.01 24685.83 12140.92 21687.10 6057.91 16679.79 11682.18 215
tpm262.07 26060.10 26867.99 24072.79 27343.86 28171.05 27366.85 30243.14 34562.77 24775.39 31238.32 23980.80 20341.69 30368.88 27379.32 265
NR-MVSNet69.54 14168.85 13471.59 17678.05 17243.81 28274.20 22280.86 12765.18 1462.76 24884.52 14352.35 8283.59 14050.96 22470.78 23687.37 50
OpenMVScopyleft61.03 968.85 15667.56 16072.70 15274.26 25853.99 14281.21 8881.34 11252.70 23962.75 24985.55 12738.86 23484.14 12748.41 24483.01 7879.97 255
v7n69.01 15567.36 17173.98 11172.51 28052.65 16678.54 12681.30 11460.26 10262.67 25081.62 20743.61 18584.49 12257.01 17168.70 27784.79 144
WR-MVS_H67.02 19866.92 18367.33 24977.95 17637.75 33577.57 14682.11 9462.03 7362.65 25182.48 18750.57 10579.46 22442.91 29564.01 31284.79 144
tfpn200view963.18 24862.18 24766.21 26276.85 21139.62 31871.96 25969.44 28456.63 16462.61 25279.83 24037.18 25179.17 23031.84 35873.25 20679.83 258
thres40063.31 24462.18 24766.72 25276.85 21139.62 31871.96 25969.44 28456.63 16462.61 25279.83 24037.18 25179.17 23031.84 35873.25 20681.36 229
MVS67.37 18866.33 19470.51 20375.46 23450.94 19273.95 22781.85 9741.57 35462.54 25478.57 26447.98 13085.47 10352.97 20682.05 9275.14 309
CP-MVSNet66.49 21066.41 19166.72 25277.67 18536.33 35176.83 17179.52 14562.45 6362.54 25483.47 16846.32 15678.37 24345.47 27463.43 31985.45 119
PEN-MVS66.60 20766.45 18767.04 25077.11 20636.56 34877.03 16480.42 13362.95 5062.51 25684.03 15346.69 15479.07 23544.22 27963.08 32285.51 116
thres100view90063.28 24662.41 24465.89 27077.31 20138.66 32672.65 24569.11 28857.07 15762.45 25781.03 21937.01 25879.17 23031.84 35873.25 20679.83 258
PS-CasMVS66.42 21166.32 19566.70 25477.60 19436.30 35376.94 16679.61 14362.36 6562.43 25883.66 16145.69 16078.37 24345.35 27663.26 32085.42 122
thres600view763.30 24562.27 24566.41 25777.18 20338.87 32472.35 25269.11 28856.98 15962.37 25980.96 22137.01 25879.00 23931.43 36573.05 21081.36 229
pm-mvs165.24 22564.97 21566.04 26772.38 28239.40 32172.62 24775.63 21655.53 19362.35 26083.18 17247.45 14176.47 27949.06 23966.54 29382.24 214
Fast-Effi-MVS+-dtu67.37 18865.33 21173.48 13472.94 27157.78 8277.47 15076.88 19957.60 15261.97 26176.85 29039.31 22780.49 21054.72 19170.28 24682.17 217
WTY-MVS59.75 27860.39 26657.85 32772.32 28437.83 33461.05 34664.18 32145.95 32261.91 26279.11 25647.01 15160.88 35042.50 29869.49 26474.83 315
thres20062.20 25961.16 26165.34 27875.38 23639.99 31469.60 28769.29 28655.64 19261.87 26376.99 28737.07 25778.96 24031.28 36673.28 20577.06 291
TransMVSNet (Re)64.72 22964.33 21965.87 27175.22 23738.56 32774.66 21675.08 23358.90 12561.79 26482.63 18051.18 9878.07 24843.63 28855.87 35880.99 240
WB-MVSnew59.66 27959.69 27059.56 31175.19 23935.78 35669.34 29064.28 32046.88 31261.76 26575.79 30640.61 21765.20 33732.16 35471.21 23277.70 282
DTE-MVSNet65.58 21965.34 21066.31 25976.06 22534.79 35976.43 17679.38 14862.55 6161.66 26683.83 15845.60 16279.15 23341.64 30660.88 33785.00 137
HY-MVS56.14 1364.55 23363.89 22266.55 25574.73 24641.02 30669.96 28474.43 23849.29 27961.66 26680.92 22247.43 14276.68 27544.91 27871.69 22781.94 219
CNLPA65.43 22164.02 22169.68 21778.73 14958.07 7877.82 14270.71 27251.49 25261.57 26883.58 16538.23 24170.82 30643.90 28570.10 25080.16 252
miper_lstm_enhance62.03 26160.88 26465.49 27666.71 34746.25 25656.29 36675.70 21550.68 26361.27 26975.48 31140.21 21968.03 32356.31 17665.25 30282.18 215
cascas65.98 21463.42 23173.64 12777.26 20252.58 16972.26 25477.21 19648.56 28761.21 27074.60 31832.57 30685.82 9350.38 22776.75 16582.52 208
ETVMVS59.51 28158.81 27561.58 30477.46 19734.87 35864.94 32559.35 34754.06 22561.08 27176.67 29229.54 32771.87 30232.16 35474.07 18978.01 281
PAPM67.92 17966.69 18471.63 17578.09 17049.02 22677.09 16281.24 11851.04 26060.91 27283.98 15547.71 13584.99 11040.81 30779.32 12680.90 241
IterMVS-SCA-FT62.49 25361.52 25465.40 27771.99 28950.80 19771.15 27069.63 28045.71 32360.61 27377.93 27137.45 24765.99 33455.67 18363.50 31879.42 264
1112_ss64.00 23963.36 23265.93 26979.28 13242.58 29371.35 26472.36 26046.41 31560.55 27477.89 27446.27 15873.28 29446.18 26269.97 25381.92 220
tfpnnormal62.47 25461.63 25364.99 28274.81 24439.01 32371.22 26773.72 24855.22 20060.21 27580.09 23841.26 21376.98 26730.02 37168.09 28178.97 270
testing1162.81 25161.90 25065.54 27478.38 15840.76 31067.59 30266.78 30355.48 19460.13 27677.11 28531.67 31276.79 27145.53 27174.45 18479.06 267
tpm57.34 29458.16 28354.86 34171.80 29234.77 36067.47 30456.04 36548.20 29460.10 27776.92 28837.17 25353.41 38240.76 30865.01 30376.40 299
ET-MVSNet_ETH3D67.96 17865.72 20574.68 9176.67 21455.62 12275.11 20474.74 23452.91 23760.03 27880.12 23633.68 28782.64 16461.86 14176.34 16885.78 103
131464.61 23263.21 23568.80 23171.87 29147.46 24773.95 22778.39 17642.88 34759.97 27976.60 29638.11 24279.39 22654.84 19072.32 22079.55 262
CL-MVSNet_self_test61.53 26660.94 26363.30 29268.95 33236.93 34567.60 30172.80 25755.67 19059.95 28076.63 29345.01 17472.22 30039.74 31462.09 33080.74 244
XVG-ACMP-BASELINE64.36 23662.23 24670.74 19872.35 28352.45 17470.80 27578.45 17153.84 22859.87 28181.10 21716.24 38079.32 22755.64 18571.76 22680.47 246
IterMVS62.79 25261.27 25867.35 24869.37 32852.04 18171.17 26868.24 29352.63 24159.82 28276.91 28937.32 25072.36 29752.80 20763.19 32177.66 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)63.69 24163.88 22363.14 29474.75 24531.04 38071.16 26963.64 32556.32 17459.80 28384.99 13344.51 17775.46 28539.12 31680.62 10482.92 200
test_fmvs248.69 34047.49 34552.29 35748.63 39433.06 37457.76 35948.05 38425.71 38659.76 28469.60 35411.57 38952.23 38649.45 23656.86 35371.58 348
pmmvs663.69 24162.82 24066.27 26170.63 30939.27 32273.13 24075.47 22052.69 24059.75 28582.30 19139.71 22477.03 26547.40 25164.35 31182.53 207
test_vis1_n49.89 33848.69 34053.50 35053.97 38637.38 33961.53 33947.33 38628.54 37959.62 28667.10 36713.52 38452.27 38549.07 23857.52 35070.84 356
pmmvs461.48 26859.39 27167.76 24271.57 29453.86 14371.42 26365.34 31244.20 33459.46 28777.92 27235.90 26474.71 28843.87 28664.87 30574.71 318
Patchmatch-RL test58.16 28855.49 30466.15 26467.92 34048.89 22960.66 34851.07 37747.86 30059.36 28862.71 37934.02 28372.27 29956.41 17559.40 34477.30 287
CR-MVSNet59.91 27657.90 28665.96 26869.96 32052.07 17965.31 32163.15 32942.48 34959.36 28874.84 31535.83 26570.75 30745.50 27264.65 30775.06 310
RPMNet61.53 26658.42 28070.86 19569.96 32052.07 17965.31 32181.36 10843.20 34459.36 28870.15 34935.37 26885.47 10336.42 33664.65 30775.06 310
SCA60.49 27258.38 28166.80 25174.14 26048.06 23963.35 33163.23 32849.13 28159.33 29172.10 33237.45 24774.27 29144.17 28062.57 32578.05 277
DP-MVS65.68 21763.66 22871.75 17084.93 5556.87 9980.74 9473.16 25453.06 23559.09 29282.35 18936.79 26085.94 9032.82 35269.96 25472.45 336
Test_1112_low_res62.32 25661.77 25164.00 28879.08 14039.53 32068.17 29670.17 27543.25 34359.03 29379.90 23944.08 18171.24 30543.79 28768.42 27981.25 232
PatchmatchNetpermissive59.84 27758.24 28264.65 28473.05 26946.70 25369.42 28962.18 33847.55 30358.88 29471.96 33434.49 27769.16 31642.99 29463.60 31678.07 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_040263.25 24761.01 26269.96 21080.00 11854.37 13976.86 17072.02 26354.58 21758.71 29580.79 22735.00 27284.36 12426.41 38464.71 30671.15 354
LTVRE_ROB55.42 1663.15 24961.23 26068.92 23076.57 21747.80 24159.92 35076.39 20554.35 22158.67 29682.46 18829.44 33081.49 18542.12 30071.14 23377.46 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
sss56.17 30556.57 29554.96 34066.93 34536.32 35257.94 35861.69 34041.67 35258.64 29775.32 31338.72 23556.25 37342.04 30166.19 29672.31 341
testing356.54 29955.92 30158.41 32177.52 19527.93 38869.72 28656.36 36154.75 21358.63 29877.80 27620.88 37471.75 30325.31 38662.25 32875.53 306
tpmrst58.24 28758.70 27856.84 33166.97 34434.32 36469.57 28861.14 34347.17 31058.58 29971.60 33741.28 21260.41 35249.20 23762.84 32375.78 303
IB-MVS56.42 1265.40 22362.73 24173.40 13874.89 24052.78 16573.09 24175.13 22855.69 18958.48 30073.73 32332.86 29686.32 8350.63 22570.11 24981.10 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet59.63 28059.14 27361.08 30974.47 25238.84 32575.20 20268.74 29031.15 37658.24 30176.51 29732.39 30868.58 31949.77 23065.84 29875.81 302
D2MVS62.30 25760.29 26768.34 23866.46 35048.42 23565.70 31273.42 25147.71 30158.16 30275.02 31430.51 31777.71 25553.96 19871.68 22878.90 271
RPSCF55.80 30854.22 31760.53 31065.13 35742.91 29264.30 32757.62 35536.84 36958.05 30382.28 19228.01 34056.24 37437.14 32658.61 34782.44 211
tpm cat159.25 28256.95 29166.15 26472.19 28646.96 25168.09 29765.76 30940.03 36357.81 30470.56 34438.32 23974.51 28938.26 32061.50 33477.00 293
gg-mvs-nofinetune57.86 29156.43 29762.18 30072.62 27635.35 35766.57 30656.33 36250.65 26457.64 30557.10 38530.65 31676.36 28037.38 32478.88 13274.82 316
ACMH+57.40 1166.12 21364.06 22072.30 16177.79 18152.83 16480.39 9678.03 18157.30 15457.47 30682.55 18327.68 34384.17 12645.54 27069.78 25879.90 256
dmvs_re56.77 29856.83 29356.61 33269.23 32941.02 30658.37 35564.18 32150.59 26657.45 30771.42 33835.54 26758.94 36037.23 32567.45 28669.87 363
MS-PatchMatch62.42 25561.46 25565.31 27975.21 23852.10 17872.05 25674.05 24546.41 31557.42 30874.36 31934.35 27977.57 25745.62 26973.67 19566.26 371
PVSNet50.76 1958.40 28657.39 28761.42 30575.53 23344.04 28061.43 34063.45 32647.04 31156.91 30973.61 32427.00 35064.76 33839.12 31672.40 21875.47 307
Patchmtry57.16 29556.47 29659.23 31469.17 33134.58 36362.98 33263.15 32944.53 33056.83 31074.84 31535.83 26568.71 31840.03 31160.91 33674.39 321
LS3D64.71 23062.50 24371.34 18579.72 12555.71 11779.82 10674.72 23548.50 29056.62 31184.62 14033.59 28982.34 17129.65 37375.23 18175.97 300
ACMH55.70 1565.20 22663.57 22970.07 20978.07 17152.01 18279.48 11479.69 14055.75 18856.59 31280.98 22027.12 34880.94 19842.90 29671.58 22977.25 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Syy-MVS56.00 30656.23 29955.32 33874.69 24726.44 39465.52 31557.49 35650.97 26156.52 31372.18 33039.89 22168.09 32124.20 38764.59 30971.44 350
myMVS_eth3d54.86 31554.61 31055.61 33774.69 24727.31 39165.52 31557.49 35650.97 26156.52 31372.18 33021.87 37268.09 32127.70 37964.59 30971.44 350
MVP-Stereo65.41 22263.80 22570.22 20577.62 19155.53 12476.30 17878.53 16650.59 26656.47 31578.65 26139.84 22282.68 16244.10 28372.12 22472.44 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVS_ROBcopyleft52.78 1860.03 27558.14 28465.69 27370.47 31144.82 27175.33 19870.86 27145.04 32656.06 31676.00 30226.89 35179.65 22135.36 34167.29 28772.60 333
EG-PatchMatch MVS64.71 23062.87 23870.22 20577.68 18453.48 15177.99 13678.82 15653.37 23456.03 31777.41 28424.75 36384.04 12946.37 26173.42 20373.14 328
PLCcopyleft56.13 1465.09 22763.21 23570.72 19981.04 9954.87 13478.57 12477.47 19048.51 28955.71 31881.89 20233.71 28679.71 22041.66 30470.37 24377.58 284
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPMVS53.96 31753.69 32054.79 34266.12 35331.96 37862.34 33749.05 38044.42 33355.54 31971.33 34030.22 32156.70 36941.65 30562.54 32675.71 304
MDTV_nov1_ep1357.00 29072.73 27438.26 33065.02 32464.73 31744.74 32855.46 32072.48 32832.61 30570.47 30837.47 32367.75 284
test-LLR58.15 28958.13 28558.22 32368.57 33444.80 27265.46 31757.92 35350.08 27055.44 32169.82 35132.62 30357.44 36649.66 23373.62 19672.41 338
test-mter56.42 30255.82 30258.22 32368.57 33444.80 27265.46 31757.92 35339.94 36455.44 32169.82 35121.92 36957.44 36649.66 23373.62 19672.41 338
ITE_SJBPF62.09 30166.16 35244.55 27764.32 31947.36 30655.31 32380.34 23219.27 37562.68 34536.29 33762.39 32779.04 268
MIMVSNet57.35 29357.07 28958.22 32374.21 25937.18 34062.46 33560.88 34448.88 28455.29 32475.99 30431.68 31162.04 34731.87 35772.35 21975.43 308
Anonymous2023120655.10 31455.30 30654.48 34369.81 32433.94 36862.91 33362.13 33941.08 35655.18 32575.65 30832.75 30056.59 37230.32 37067.86 28272.91 329
KD-MVS_2432*160053.45 32151.50 32959.30 31262.82 36637.14 34155.33 36771.79 26547.34 30755.09 32670.52 34521.91 37070.45 30935.72 33942.97 38370.31 359
miper_refine_blended53.45 32151.50 32959.30 31262.82 36637.14 34155.33 36771.79 26547.34 30755.09 32670.52 34521.91 37070.45 30935.72 33942.97 38370.31 359
pmmvs-eth3d58.81 28456.31 29866.30 26067.61 34152.42 17572.30 25364.76 31643.55 34054.94 32874.19 32128.95 33272.60 29643.31 28957.21 35273.88 326
baseline263.42 24361.26 25969.89 21572.55 27847.62 24571.54 26268.38 29250.11 26954.82 32975.55 31043.06 19080.96 19748.13 24767.16 28981.11 236
OurMVSNet-221017-061.37 26958.63 27969.61 21872.05 28848.06 23973.93 22972.51 25847.23 30954.74 33080.92 22221.49 37381.24 19148.57 24356.22 35779.53 263
GG-mvs-BLEND62.34 29971.36 30037.04 34469.20 29157.33 35854.73 33165.48 37330.37 31977.82 25234.82 34274.93 18272.17 342
tpmvs58.47 28556.95 29163.03 29670.20 31541.21 30567.90 29967.23 29949.62 27554.73 33170.84 34234.14 28076.24 28236.64 33361.29 33571.64 346
EPNet_dtu61.90 26261.97 24961.68 30272.89 27239.78 31675.85 19065.62 31155.09 20354.56 33379.36 25237.59 24667.02 32839.80 31376.95 16178.25 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT53.17 32553.44 32252.33 35668.29 33825.34 39858.21 35654.41 36844.46 33254.56 33369.05 35733.32 29160.94 34936.93 32861.76 33370.73 357
test0.0.03 153.32 32453.59 32152.50 35562.81 36829.45 38359.51 35154.11 36950.08 27054.40 33574.31 32032.62 30355.92 37530.50 36963.95 31472.15 343
ambc65.13 28163.72 36437.07 34347.66 38478.78 15954.37 33671.42 33811.24 39180.94 19845.64 26853.85 36577.38 286
SixPastTwentyTwo61.65 26558.80 27770.20 20775.80 22747.22 24975.59 19469.68 27954.61 21554.11 33779.26 25427.07 34982.96 15043.27 29049.79 37580.41 248
ppachtmachnet_test58.06 29055.38 30566.10 26669.51 32548.99 22768.01 29866.13 30844.50 33154.05 33870.74 34332.09 31072.34 29836.68 33256.71 35676.99 295
TESTMET0.1,155.28 31154.90 30856.42 33366.56 34843.67 28365.46 31756.27 36339.18 36653.83 33967.44 36324.21 36455.46 37748.04 24873.11 20970.13 361
pmmvs556.47 30155.68 30358.86 31861.41 37436.71 34766.37 30862.75 33140.38 36053.70 34076.62 29434.56 27567.05 32740.02 31265.27 30172.83 331
MSDG61.81 26459.23 27269.55 22272.64 27552.63 16870.45 27975.81 21351.38 25453.70 34076.11 30129.52 32881.08 19637.70 32265.79 29974.93 314
test_fmvs344.30 34742.55 35049.55 36242.83 39827.15 39353.03 37344.93 39022.03 39353.69 34264.94 3744.21 40349.63 38847.47 24949.82 37471.88 344
K. test v360.47 27357.11 28870.56 20173.74 26248.22 23775.10 20662.55 33258.27 13853.62 34376.31 30027.81 34281.59 18347.42 25039.18 38881.88 221
PM-MVS52.33 32750.19 33558.75 31962.10 37145.14 27065.75 31140.38 39643.60 33953.52 34472.65 3279.16 39665.87 33550.41 22654.18 36365.24 373
PMMVS53.96 31753.26 32356.04 33462.60 36950.92 19461.17 34456.09 36432.81 37453.51 34566.84 36834.04 28259.93 35544.14 28268.18 28057.27 383
PatchMatch-RL56.25 30454.55 31161.32 30877.06 20756.07 10965.57 31454.10 37044.13 33653.49 34671.27 34125.20 36066.78 32936.52 33563.66 31561.12 375
LCM-MVSNet-Re61.88 26361.35 25663.46 29074.58 25031.48 37961.42 34158.14 35258.71 12953.02 34779.55 24843.07 18976.80 27045.69 26777.96 14682.11 218
F-COLMAP63.05 25060.87 26569.58 22176.99 21053.63 14878.12 13376.16 20747.97 29852.41 34881.61 20827.87 34178.11 24740.07 31066.66 29277.00 293
test20.0353.87 31954.02 31853.41 35161.47 37328.11 38761.30 34259.21 34851.34 25652.09 34977.43 28333.29 29258.55 36229.76 37260.27 34273.58 327
testgi51.90 32852.37 32550.51 36160.39 38023.55 40158.42 35458.15 35149.03 28251.83 35079.21 25522.39 36755.59 37629.24 37562.64 32472.40 340
EU-MVSNet55.61 30954.41 31359.19 31665.41 35633.42 37172.44 25171.91 26428.81 37851.27 35173.87 32224.76 36269.08 31743.04 29358.20 34875.06 310
MDTV_nov1_ep13_2view25.89 39661.22 34340.10 36251.10 35232.97 29538.49 31878.61 272
COLMAP_ROBcopyleft52.97 1761.27 27058.81 27568.64 23374.63 24952.51 17278.42 12773.30 25249.92 27350.96 35381.51 21123.06 36679.40 22531.63 36265.85 29774.01 325
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
KD-MVS_self_test55.22 31253.89 31959.21 31557.80 38527.47 39057.75 36074.32 24047.38 30550.90 35470.00 35028.45 33870.30 31240.44 30957.92 34979.87 257
ADS-MVSNet251.33 33248.76 33959.07 31766.02 35444.60 27550.90 37759.76 34636.90 36750.74 35566.18 37126.38 35263.11 34327.17 38054.76 36169.50 365
ADS-MVSNet48.48 34147.77 34250.63 36066.02 35429.92 38250.90 37750.87 37936.90 36750.74 35566.18 37126.38 35252.47 38427.17 38054.76 36169.50 365
our_test_356.49 30054.42 31262.68 29869.51 32545.48 26766.08 31061.49 34144.11 33750.73 35769.60 35433.05 29368.15 32038.38 31956.86 35374.40 320
FMVSNet555.86 30754.93 30758.66 32071.05 30536.35 35064.18 32962.48 33346.76 31350.66 35874.73 31725.80 35764.04 34033.11 35065.57 30075.59 305
lessismore_v069.91 21371.42 29847.80 24150.90 37850.39 35975.56 30927.43 34681.33 18845.91 26534.10 39480.59 245
UnsupCasMVSNet_eth53.16 32652.47 32455.23 33959.45 38133.39 37259.43 35269.13 28745.98 31950.35 36072.32 32929.30 33158.26 36442.02 30244.30 38174.05 324
dmvs_testset50.16 33651.90 32644.94 36966.49 34911.78 40761.01 34751.50 37451.17 25950.30 36167.44 36339.28 22860.29 35322.38 38957.49 35162.76 374
dp51.89 32951.60 32852.77 35468.44 33732.45 37662.36 33654.57 36744.16 33549.31 36267.91 35928.87 33456.61 37133.89 34554.89 36069.24 368
Anonymous2024052155.30 31054.41 31357.96 32660.92 37941.73 30171.09 27271.06 27041.18 35548.65 36373.31 32516.93 37859.25 35842.54 29764.01 31272.90 330
JIA-IIPM51.56 33047.68 34463.21 29364.61 35950.73 19847.71 38358.77 35042.90 34648.46 36451.72 38924.97 36170.24 31336.06 33853.89 36468.64 369
USDC56.35 30354.24 31662.69 29764.74 35840.31 31165.05 32373.83 24743.93 33847.58 36577.71 28015.36 38275.05 28738.19 32161.81 33272.70 332
UnsupCasMVSNet_bld50.07 33748.87 33853.66 34860.97 37833.67 37057.62 36164.56 31839.47 36547.38 36664.02 37727.47 34459.32 35734.69 34343.68 38267.98 370
AllTest57.08 29654.65 30964.39 28671.44 29649.03 22469.92 28567.30 29645.97 32047.16 36779.77 24217.47 37667.56 32533.65 34659.16 34576.57 297
TestCases64.39 28671.44 29649.03 22467.30 29645.97 32047.16 36779.77 24217.47 37667.56 32533.65 34659.16 34576.57 297
CMPMVSbinary42.80 2157.81 29255.97 30063.32 29160.98 37747.38 24864.66 32669.50 28332.06 37546.83 36977.80 27629.50 32971.36 30448.68 24173.75 19471.21 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet155.17 31354.31 31557.77 32870.03 31932.01 37765.68 31364.81 31549.19 28046.75 37076.00 30225.53 35964.04 34028.65 37662.13 32977.26 289
mvsany_test139.38 35638.16 35943.02 37249.05 39234.28 36544.16 39125.94 40722.74 39146.57 37162.21 38023.85 36541.16 39933.01 35135.91 39153.63 386
PVSNet_043.31 2047.46 34445.64 34752.92 35367.60 34244.65 27454.06 37154.64 36641.59 35346.15 37258.75 38230.99 31458.66 36132.18 35324.81 39755.46 385
Patchmatch-test49.08 33948.28 34151.50 35964.40 36030.85 38145.68 38748.46 38335.60 37146.10 37372.10 33234.47 27846.37 39227.08 38260.65 34077.27 288
YYNet150.73 33448.96 33656.03 33561.10 37641.78 30051.94 37556.44 36040.94 35844.84 37467.80 36130.08 32255.08 37836.77 32950.71 37171.22 352
MDA-MVSNet_test_wron50.71 33548.95 33756.00 33661.17 37541.84 29951.90 37656.45 35940.96 35744.79 37567.84 36030.04 32355.07 37936.71 33150.69 37271.11 355
TDRefinement53.44 32350.72 33261.60 30364.31 36146.96 25170.89 27465.27 31441.78 35044.61 37677.98 26911.52 39066.36 33228.57 37751.59 36971.49 349
new-patchmatchnet47.56 34347.73 34347.06 36458.81 3839.37 41048.78 38159.21 34843.28 34244.22 37768.66 35825.67 35857.20 36831.57 36449.35 37674.62 319
test_vis1_rt41.35 35439.45 35647.03 36546.65 39737.86 33347.76 38238.65 39723.10 38944.21 37851.22 39111.20 39244.08 39439.27 31553.02 36659.14 378
N_pmnet39.35 35740.28 35536.54 38063.76 3621.62 41549.37 3800.76 41434.62 37343.61 37966.38 37026.25 35442.57 39626.02 38551.77 36865.44 372
CHOSEN 280x42047.83 34246.36 34652.24 35867.37 34349.78 21538.91 39543.11 39435.00 37243.27 38063.30 37828.95 33249.19 38936.53 33460.80 33857.76 382
TinyColmap54.14 31651.72 32761.40 30666.84 34641.97 29866.52 30768.51 29144.81 32742.69 38175.77 30711.66 38872.94 29531.96 35656.77 35569.27 367
MDA-MVSNet-bldmvs53.87 31950.81 33163.05 29566.25 35148.58 23356.93 36463.82 32348.09 29641.22 38270.48 34730.34 32068.00 32434.24 34445.92 38072.57 334
pmmvs344.92 34641.95 35353.86 34652.58 39043.55 28462.11 33846.90 38826.05 38540.63 38360.19 38111.08 39357.91 36531.83 36146.15 37960.11 376
LF4IMVS42.95 34942.26 35145.04 36748.30 39532.50 37554.80 36948.49 38228.03 38140.51 38470.16 3489.24 39543.89 39531.63 36249.18 37758.72 379
WB-MVS43.26 34843.41 34942.83 37363.32 36510.32 40958.17 35745.20 38945.42 32440.44 38567.26 36634.01 28458.98 35911.96 40124.88 39659.20 377
mvsany_test332.62 36330.57 36738.77 37836.16 40724.20 40038.10 39620.63 40919.14 39540.36 38657.43 3845.06 40036.63 40229.59 37428.66 39555.49 384
DSMNet-mixed39.30 35838.72 35741.03 37551.22 39119.66 40445.53 38831.35 40315.83 40039.80 38767.42 36522.19 36845.13 39322.43 38852.69 36758.31 380
test_f31.86 36531.05 36634.28 38132.33 41021.86 40232.34 39730.46 40416.02 39939.78 38855.45 3864.80 40132.36 40430.61 36837.66 39048.64 388
SSC-MVS41.96 35241.99 35241.90 37462.46 3709.28 41157.41 36244.32 39243.38 34138.30 38966.45 36932.67 30258.42 36310.98 40221.91 39957.99 381
MVS-HIRNet45.52 34544.48 34848.65 36368.49 33634.05 36759.41 35344.50 39127.03 38337.96 39050.47 39326.16 35564.10 33926.74 38359.52 34347.82 392
FPMVS42.18 35141.11 35445.39 36658.03 38441.01 30849.50 37953.81 37130.07 37733.71 39164.03 37511.69 38752.08 38714.01 39755.11 35943.09 394
test_vis3_rt32.09 36430.20 36837.76 37935.36 40827.48 38940.60 39428.29 40616.69 39832.52 39240.53 3971.96 40937.40 40133.64 34842.21 38548.39 389
new_pmnet34.13 36234.29 36333.64 38252.63 38918.23 40644.43 39033.90 40222.81 39030.89 39353.18 38710.48 39435.72 40320.77 39139.51 38746.98 393
LCM-MVSNet40.30 35535.88 36153.57 34942.24 39929.15 38445.21 38960.53 34522.23 39228.02 39450.98 3923.72 40561.78 34831.22 36738.76 38969.78 364
APD_test137.39 35934.94 36244.72 37048.88 39333.19 37352.95 37444.00 39319.49 39427.28 39558.59 3833.18 40752.84 38318.92 39241.17 38648.14 391
ANet_high41.38 35337.47 36053.11 35239.73 40424.45 39956.94 36369.69 27847.65 30226.04 39652.32 38812.44 38662.38 34621.80 39010.61 40572.49 335
testf131.46 36628.89 36939.16 37641.99 40128.78 38546.45 38537.56 39814.28 40121.10 39748.96 3941.48 41147.11 39013.63 39834.56 39241.60 395
APD_test231.46 36628.89 36939.16 37641.99 40128.78 38546.45 38537.56 39814.28 40121.10 39748.96 3941.48 41147.11 39013.63 39834.56 39241.60 395
PMVScopyleft28.69 2236.22 36033.29 36445.02 36836.82 40635.98 35554.68 37048.74 38126.31 38421.02 39951.61 3902.88 40860.10 3549.99 40547.58 37838.99 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS227.40 36825.91 37131.87 38439.46 4056.57 41231.17 39828.52 40523.96 38720.45 40048.94 3964.20 40437.94 40016.51 39419.97 40051.09 387
Gipumacopyleft34.77 36131.91 36543.33 37162.05 37237.87 33220.39 40067.03 30023.23 38818.41 40125.84 4014.24 40262.73 34414.71 39651.32 37029.38 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt9.43 37511.14 3784.30 3902.38 4134.40 41313.62 40216.08 4110.39 40715.89 40213.06 40415.80 3815.54 40912.63 40010.46 4062.95 404
MVEpermissive17.77 2321.41 37117.77 37632.34 38334.34 40925.44 39716.11 40124.11 40811.19 40313.22 40331.92 3991.58 41030.95 40510.47 40317.03 40140.62 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.68 37218.10 37524.41 38713.68 4123.11 41412.06 40342.37 3952.00 40611.97 40436.38 3985.77 39929.35 40615.06 39523.65 39840.76 397
DeepMVS_CXcopyleft12.03 38917.97 41110.91 40810.60 4127.46 40411.07 40528.36 4003.28 40611.29 4088.01 4079.74 40713.89 403
E-PMN23.77 36922.73 37326.90 38542.02 40020.67 40342.66 39235.70 40017.43 39610.28 40625.05 4026.42 39842.39 39710.28 40414.71 40217.63 401
EMVS22.97 37021.84 37426.36 38640.20 40319.53 40541.95 39334.64 40117.09 3979.73 40722.83 4037.29 39742.22 3989.18 40613.66 40317.32 402
wuyk23d13.32 37412.52 37715.71 38847.54 39626.27 39531.06 3991.98 4134.93 4055.18 4081.94 4080.45 41318.54 4076.81 40812.83 4042.33 405
EGC-MVSNET42.47 35038.48 35854.46 34474.33 25648.73 23170.33 28151.10 3760.03 4080.18 40967.78 36213.28 38566.49 33118.91 39350.36 37348.15 390
testmvs4.52 3786.03 3810.01 3920.01 4140.00 41753.86 3720.00 4150.01 4090.04 4100.27 4090.00 4150.00 4100.04 4090.00 4080.03 407
test1234.73 3776.30 3800.02 3910.01 4140.01 41656.36 3650.00 4150.01 4090.04 4100.21 4100.01 4140.00 4100.03 4100.00 4080.04 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
cdsmvs_eth3d_5k17.50 37323.34 3720.00 3930.00 4160.00 4170.00 40478.63 1630.00 4110.00 41282.18 19349.25 1170.00 4100.00 4110.00 4080.00 408
pcd_1.5k_mvsjas3.92 3795.23 3820.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 41147.05 1480.00 4100.00 4110.00 4080.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
ab-mvs-re6.49 3768.65 3790.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 41277.89 2740.00 4150.00 4100.00 4110.00 4080.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4170.00 4040.00 4150.00 4110.00 4120.00 4110.00 4150.00 4100.00 4110.00 4080.00 408
WAC-MVS27.31 39127.77 378
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 31
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 31
eth-test20.00 416
eth-test0.00 416
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 18
save fliter86.17 3361.30 2883.98 4779.66 14259.00 123
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 41
GSMVS78.05 277
sam_mvs134.74 27478.05 277
sam_mvs33.43 290
MTGPAbinary80.97 125
test_post168.67 2943.64 40632.39 30869.49 31544.17 280
test_post3.55 40733.90 28566.52 330
patchmatchnet-post64.03 37534.50 27674.27 291
MTMP86.03 1917.08 410
gm-plane-assit71.40 29941.72 30348.85 28573.31 32582.48 16948.90 240
test9_res75.28 3788.31 3283.81 172
agg_prior273.09 5587.93 4084.33 153
test_prior462.51 1482.08 77
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7986.38 76
新几何276.12 181
旧先验183.04 7053.15 15867.52 29587.85 7144.08 18180.76 10378.03 280
无先验79.66 11174.30 24248.40 29280.78 20453.62 20079.03 269
原ACMM279.02 117
testdata272.18 30146.95 258
segment_acmp54.23 56
testdata172.65 24560.50 91
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 172
plane_prior584.01 4987.21 5568.16 8180.58 10684.65 147
plane_prior486.10 110
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 109
n20.00 415
nn0.00 415
door-mid47.19 387
test1183.47 68
door47.60 385
HQP5-MVS54.94 131
BP-MVS67.04 95
HQP3-MVS83.90 5480.35 110
HQP2-MVS45.46 166
NP-MVS80.98 10056.05 11085.54 128
ACMMP++_ref74.07 189
ACMMP++72.16 223
Test By Simon48.33 128