This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4897.28 3185.90 15797.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
IU-MVS98.77 586.00 5096.84 6581.26 27097.26 795.50 2399.13 399.03 8
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11584.62 8096.15 5697.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6697.17 110
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PC_three_145282.47 23797.09 1097.07 5192.72 198.04 16392.70 5599.02 1298.86 11
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5197.11 4390.42 2796.95 1397.27 3889.53 1496.91 25494.38 2998.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 13685.43 6895.68 8696.43 9786.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 9797.16 114
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13584.98 7395.61 9396.28 11086.31 14596.75 1697.86 2187.40 3398.74 9597.07 897.02 9097.07 116
test_part298.55 1287.22 1996.40 17
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6799.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6196.62 8888.14 10096.10 2096.96 5589.09 1898.94 7894.48 2898.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9092.49 25583.62 11196.02 6995.72 15986.78 13496.04 2298.19 182.30 9498.43 12796.38 1395.42 12396.86 133
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17384.96 7496.15 5697.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7497.96 75
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8895.02 14983.67 10896.19 5196.10 12787.27 12295.98 2498.05 1383.07 8298.45 12296.68 1195.51 11796.88 132
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9793.75 21883.13 12696.02 6995.74 15687.68 11595.89 2598.17 282.78 8698.46 11896.71 1096.17 10996.98 125
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9695.62 12483.17 12496.14 5896.12 12588.13 10195.82 2698.04 1683.43 7598.48 11496.97 996.23 10896.92 129
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11395.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25784.80 7796.18 5396.82 6889.29 5995.68 2898.11 585.10 5698.99 7097.38 497.75 7897.86 82
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11696.52 8780.00 22194.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10796.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
9.1494.47 2097.79 4996.08 6297.44 1586.13 15595.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16395.05 3497.18 4587.31 3599.07 5391.90 8298.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-293.74 4794.32 2692.01 13497.54 5778.37 25993.40 21997.19 3588.02 10394.99 3597.21 4288.35 2198.44 12494.07 3298.09 6499.23 1
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23695.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35084.42 9396.06 6696.29 10789.06 6694.68 3698.13 379.22 13098.98 7497.22 597.24 8597.74 89
dcpmvs_293.49 5294.19 3691.38 16897.69 5476.78 29194.25 17496.29 10788.33 9094.46 3896.88 5888.07 2598.64 10093.62 3898.09 6498.73 17
旧先验293.36 22071.25 37494.37 3997.13 24086.74 148
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4196.90 5988.20 9894.33 4097.40 3384.75 6499.03 5893.35 4397.99 6898.48 30
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16493.93 25289.77 4794.21 4195.59 11587.35 3498.61 10592.72 5396.15 11097.83 85
ZD-MVS98.15 3486.62 3397.07 4583.63 20994.19 4296.91 5787.57 3199.26 4291.99 7698.44 52
alignmvs93.08 6792.50 7594.81 3295.62 12487.61 1495.99 7196.07 13089.77 4794.12 4394.87 13980.56 11398.66 9892.42 5893.10 17098.15 63
sasdasda93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15582.33 9298.62 10392.40 5992.86 17498.27 52
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15582.33 9298.62 10392.40 5992.86 17498.27 52
VNet92.24 8091.91 8193.24 7596.59 8283.43 11694.84 13696.44 9689.19 6394.08 4695.90 10177.85 14998.17 14588.90 12093.38 16498.13 64
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4796.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4896.58 7687.74 2799.44 2992.83 5098.40 5398.62 21
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4496.87 6286.96 12893.92 4997.47 2983.88 7298.96 7792.71 5497.87 7298.26 56
MGCFI-Net93.03 6892.63 7294.23 5395.62 12485.92 5796.08 6296.33 10589.86 4193.89 5094.66 15282.11 9998.50 11292.33 6492.82 17798.27 52
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4696.76 7587.46 11893.75 5197.43 3184.24 6899.01 6392.73 5197.80 7597.88 80
RE-MVS-def93.68 5297.92 4384.57 8296.28 4696.76 7587.46 11893.75 5197.43 3182.94 8392.73 5197.80 7597.88 80
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5397.21 4286.10 4599.49 2692.35 6298.77 2798.30 47
testdata90.49 20596.40 8977.89 27195.37 18872.51 36793.63 5496.69 6682.08 10197.65 18683.08 19297.39 8395.94 170
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5597.27 3885.22 5499.54 2092.21 6698.74 3198.56 25
MSLP-MVS++93.72 4894.08 3892.65 10897.31 6583.43 11695.79 8197.33 2590.03 3693.58 5596.96 5584.87 6297.76 17892.19 6898.66 4196.76 136
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17793.56 5796.28 8485.60 4999.31 3992.45 5698.79 2398.12 66
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5897.26 4085.04 5899.54 2092.35 6298.78 2598.50 27
CS-MVS94.12 3794.44 2293.17 7896.55 8483.08 13197.63 396.95 5491.71 1193.50 5996.21 8685.61 4898.24 14093.64 3798.17 5998.19 60
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6096.83 6185.48 5199.59 891.43 8998.40 5398.30 47
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10597.78 187.45 12093.26 6097.33 3684.62 6599.51 2490.75 10198.57 4898.32 46
UA-Net92.83 7192.54 7493.68 6896.10 10084.71 7995.66 8996.39 10191.92 793.22 6296.49 7983.16 7998.87 8284.47 17695.47 12097.45 101
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6397.04 5286.17 4499.62 292.40 5998.81 2298.52 26
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17196.97 5091.07 1393.14 6497.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
h-mvs3390.80 10190.15 10792.75 10296.01 10582.66 14795.43 9995.53 17489.80 4393.08 6595.64 11375.77 16699.00 6892.07 7278.05 35396.60 142
hse-mvs289.88 12889.34 12791.51 16294.83 16381.12 18793.94 19893.91 25589.80 4393.08 6593.60 19675.77 16697.66 18592.07 7277.07 36095.74 180
MVS_030494.60 1894.38 2595.23 1195.41 13287.49 1696.53 3892.75 27993.82 293.07 6797.84 2283.66 7499.59 897.61 298.76 2898.61 22
ETV-MVS92.74 7392.66 7192.97 9095.20 14284.04 10095.07 12296.51 9490.73 2292.96 6891.19 27584.06 6998.34 13391.72 8496.54 10296.54 147
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 6995.77 10885.02 5998.33 13593.03 4798.62 4598.13 64
EC-MVSNet93.44 5593.71 5192.63 10995.21 14182.43 15197.27 996.71 8290.57 2692.88 7095.80 10683.16 7998.16 14693.68 3698.14 6197.31 103
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7197.16 4785.02 5999.49 2691.99 7698.56 4998.47 33
X-MVStestdata88.31 17786.13 22394.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7123.41 40585.02 5999.49 2691.99 7698.56 4998.47 33
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13797.17 3986.26 14792.83 7397.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_cas_vis1_n_192088.83 16588.85 14388.78 26991.15 30576.72 29293.85 20394.93 21083.23 22392.81 7496.00 9661.17 33094.45 33691.67 8594.84 13295.17 199
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7496.97 5485.37 5399.24 4390.87 9998.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TEST997.53 5886.49 3794.07 18796.78 7281.61 26392.77 7696.20 8787.71 2899.12 51
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25492.77 7696.20 8787.63 2999.12 5192.14 7098.69 3697.94 76
CDPH-MVS92.83 7192.30 7794.44 4597.79 4986.11 4994.06 18996.66 8580.09 28392.77 7696.63 7386.62 3899.04 5787.40 13898.66 4198.17 62
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 7997.23 4185.20 5599.32 3892.15 6998.83 2198.25 57
test_897.49 6086.30 4594.02 19296.76 7581.86 25492.70 8096.20 8787.63 2999.02 61
test_prior294.12 18187.67 11692.63 8196.39 8286.62 3891.50 8798.67 40
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8296.80 6584.85 6399.17 4792.43 5798.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS90.74 10389.92 11593.20 7796.27 9383.02 13395.73 8393.86 25688.42 8992.53 8396.84 6062.09 31898.64 10090.95 9792.62 17997.93 78
EI-MVSNet-Vis-set93.01 6992.92 6693.29 7395.01 15083.51 11594.48 15695.77 15390.87 1592.52 8496.67 6884.50 6699.00 6891.99 7694.44 14597.36 102
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12697.12 4187.13 12492.51 8596.30 8389.24 1799.34 3493.46 3998.62 4598.73 17
iter_conf05_1189.88 12889.04 13592.41 11995.12 14681.63 16992.87 24592.45 28686.21 15092.48 8693.95 18159.05 34498.60 10790.50 10698.72 3296.99 123
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 16092.47 8797.13 4882.38 9099.07 5390.51 10598.40 5397.92 79
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22284.26 9595.83 7996.14 12289.00 7292.43 8897.50 2883.37 7898.72 9696.61 1297.44 8296.32 151
xiu_mvs_v1_base_debu90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
xiu_mvs_v1_base90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
xiu_mvs_v1_base_debi90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
agg_prior97.38 6385.92 5796.72 8192.16 9298.97 75
LFMVS90.08 11889.13 13292.95 9296.71 7782.32 15696.08 6289.91 35386.79 13392.15 9396.81 6362.60 31698.34 13387.18 14293.90 15198.19 60
EI-MVSNet-UG-set92.74 7392.62 7393.12 8094.86 16183.20 12394.40 16495.74 15690.71 2392.05 9496.60 7584.00 7098.99 7091.55 8693.63 15597.17 110
casdiffmvs_mvgpermissive92.96 7092.83 6893.35 7294.59 17483.40 11895.00 12696.34 10490.30 3092.05 9496.05 9583.43 7598.15 14792.07 7295.67 11498.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9697.19 4485.43 5299.56 1292.06 7598.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvs187.34 21287.56 17686.68 32390.59 32871.80 34894.01 19394.04 25078.30 31191.97 9795.22 12556.28 35693.71 35192.89 4994.71 13494.52 227
casdiffmvspermissive92.51 7692.43 7692.74 10394.41 18781.98 16194.54 15496.23 11689.57 5191.96 9896.17 9182.58 8898.01 16590.95 9795.45 12298.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs1_n87.03 22987.04 19086.97 31589.74 34671.86 34694.55 15394.43 23278.47 30791.95 9995.50 11651.16 37593.81 34993.02 4894.56 14095.26 196
test_vis1_n_192089.39 14589.84 11688.04 29092.97 24572.64 33994.71 14596.03 13586.18 15191.94 10096.56 7861.63 32195.74 31593.42 4195.11 13095.74 180
VDDNet89.56 13688.49 15392.76 10195.07 14882.09 15896.30 4493.19 26981.05 27591.88 10196.86 5961.16 33198.33 13588.43 12692.49 18397.84 84
baseline92.39 7992.29 7892.69 10794.46 18381.77 16694.14 18096.27 11189.22 6191.88 10196.00 9682.35 9197.99 16791.05 9295.27 12898.30 47
PS-MVSNAJ91.18 9790.92 9591.96 14095.26 13982.60 15092.09 27195.70 16086.27 14691.84 10392.46 23179.70 12398.99 7089.08 11895.86 11294.29 242
DELS-MVS93.43 5893.25 5993.97 5695.42 13185.04 7293.06 23897.13 4090.74 2191.84 10395.09 13386.32 4299.21 4591.22 9098.45 5197.65 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10597.17 4683.96 7199.55 1691.44 8898.64 4498.43 38
MVSFormer91.68 8991.30 8792.80 9993.86 21283.88 10395.96 7395.90 14484.66 19191.76 10694.91 13777.92 14697.30 22489.64 11297.11 8697.24 106
lupinMVS90.92 10090.21 10493.03 8693.86 21283.88 10392.81 24793.86 25679.84 28691.76 10694.29 16677.92 14698.04 16390.48 10897.11 8697.17 110
xiu_mvs_v2_base91.13 9890.89 9791.86 14894.97 15382.42 15292.24 26595.64 16786.11 15691.74 10893.14 21179.67 12698.89 8189.06 11995.46 12194.28 243
DPM-MVS92.58 7591.74 8395.08 1596.19 9589.31 592.66 25096.56 9383.44 21591.68 10995.04 13486.60 4098.99 7085.60 16297.92 7196.93 128
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23197.24 3288.76 7791.60 11095.85 10386.07 4698.66 9891.91 8098.16 6098.03 72
test_yl90.69 10590.02 11392.71 10495.72 11882.41 15494.11 18295.12 19885.63 16491.49 11194.70 14874.75 18198.42 12886.13 15592.53 18197.31 103
DCV-MVSNet90.69 10590.02 11392.71 10495.72 11882.41 15494.11 18295.12 19885.63 16491.49 11194.70 14874.75 18198.42 12886.13 15592.53 18197.31 103
jason90.80 10190.10 10892.90 9493.04 24183.53 11493.08 23694.15 24580.22 28091.41 11394.91 13776.87 15397.93 17290.28 10996.90 9397.24 106
jason: jason.
diffmvspermissive91.37 9391.23 8991.77 15493.09 23780.27 20892.36 25995.52 17587.03 12791.40 11494.93 13680.08 11797.44 20892.13 7194.56 14097.61 93
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 9491.11 9191.93 14294.37 18880.14 21293.46 21895.80 15186.46 14291.35 11593.77 19282.21 9798.09 15887.57 13694.95 13197.55 98
新几何193.10 8197.30 6684.35 9495.56 17071.09 37591.26 11696.24 8582.87 8598.86 8479.19 26398.10 6396.07 165
MVS_111021_LR92.47 7792.29 7892.98 8995.99 10984.43 9193.08 23696.09 12888.20 9891.12 11795.72 11181.33 10997.76 17891.74 8397.37 8496.75 137
test1294.34 5097.13 7086.15 4896.29 10791.04 11885.08 5799.01 6398.13 6297.86 82
MG-MVS91.77 8591.70 8492.00 13797.08 7180.03 21993.60 21395.18 19687.85 11190.89 11996.47 8082.06 10298.36 13085.07 16697.04 8997.62 92
test_vis1_n86.56 24486.49 21186.78 32288.51 35672.69 33694.68 14693.78 26079.55 29090.70 12095.31 12148.75 38093.28 35793.15 4593.99 14994.38 239
CANet93.54 5193.20 6194.55 4395.65 12285.73 6594.94 12996.69 8491.89 890.69 12195.88 10281.99 10499.54 2093.14 4697.95 7098.39 39
Effi-MVS+91.59 9091.11 9193.01 8794.35 19283.39 11994.60 15095.10 20087.10 12590.57 12293.10 21381.43 10898.07 16189.29 11694.48 14397.59 95
test250687.21 22186.28 21890.02 22995.62 12473.64 32796.25 4971.38 40587.89 10990.45 12396.65 7055.29 36298.09 15886.03 15796.94 9198.33 43
原ACMM192.01 13497.34 6481.05 18896.81 7078.89 29990.45 12395.92 10082.65 8798.84 8880.68 24298.26 5896.14 159
Vis-MVSNetpermissive91.75 8691.23 8993.29 7395.32 13483.78 10596.14 5895.98 13689.89 3990.45 12396.58 7675.09 17798.31 13884.75 17296.90 9397.78 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS91.99 8191.80 8292.55 11398.24 3181.98 16196.76 3096.49 9581.89 25390.24 12696.44 8178.59 13898.61 10589.68 11197.85 7397.06 117
ECVR-MVScopyleft89.09 15288.53 14990.77 19695.62 12475.89 30496.16 5484.22 38387.89 10990.20 12796.65 7063.19 31498.10 15085.90 15896.94 9198.33 43
test22296.55 8481.70 16792.22 26695.01 20368.36 38190.20 12796.14 9280.26 11697.80 7596.05 168
test111189.10 15088.64 14590.48 20795.53 12974.97 31396.08 6284.89 38188.13 10190.16 12996.65 7063.29 31298.10 15086.14 15396.90 9398.39 39
ACMMPcopyleft93.24 6392.88 6794.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13097.03 5381.44 10799.51 2490.85 10095.74 11398.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 5097.37 2184.15 19790.05 13195.66 11287.77 2699.15 5089.91 11098.27 5798.07 68
DP-MVS Recon91.95 8291.28 8893.96 5798.33 2785.92 5794.66 14896.66 8582.69 23590.03 13295.82 10582.30 9499.03 5884.57 17496.48 10596.91 130
FA-MVS(test-final)89.66 13288.91 13991.93 14294.57 17780.27 20891.36 28794.74 22484.87 18389.82 13392.61 22874.72 18498.47 11783.97 18293.53 15897.04 119
EPP-MVSNet91.70 8891.56 8592.13 13395.88 11280.50 20497.33 795.25 19286.15 15289.76 13495.60 11483.42 7798.32 13787.37 14093.25 16797.56 97
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10385.83 6194.89 13296.99 4889.02 7189.56 13597.37 3582.51 8999.38 3192.20 6798.30 5697.57 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS91.23 9590.62 10093.08 8396.27 9384.07 9893.52 21595.93 14086.95 12989.51 13696.13 9378.50 14098.35 13285.84 16092.90 17396.83 135
IS-MVSNet91.43 9191.09 9392.46 11795.87 11481.38 17996.95 1993.69 26289.72 4989.50 13795.98 9878.57 13997.77 17783.02 19496.50 10498.22 59
Anonymous20240521187.68 19386.13 22392.31 12696.66 7980.74 19894.87 13491.49 31880.47 27989.46 13895.44 11754.72 36498.23 14182.19 21189.89 21497.97 74
EIA-MVS91.95 8291.94 8091.98 13895.16 14380.01 22095.36 10096.73 7988.44 8789.34 13992.16 24183.82 7398.45 12289.35 11497.06 8897.48 99
PVSNet_Blended_VisFu91.38 9290.91 9692.80 9996.39 9083.17 12494.87 13496.66 8583.29 22089.27 14094.46 16080.29 11599.17 4787.57 13695.37 12496.05 168
API-MVS90.66 10790.07 10992.45 11896.36 9184.57 8296.06 6695.22 19582.39 23889.13 14194.27 16980.32 11498.46 11880.16 25096.71 9994.33 240
bld_raw_dy_0_6488.86 16087.75 17292.21 13195.12 14681.19 18595.56 9691.29 32385.30 17389.10 14294.38 16159.04 34598.44 12490.50 10689.43 22396.99 123
PVSNet_BlendedMVS89.98 12189.70 11790.82 19496.12 9781.25 18193.92 20096.83 6683.49 21489.10 14292.26 23981.04 11198.85 8686.72 15087.86 25392.35 323
PVSNet_Blended90.73 10490.32 10391.98 13896.12 9781.25 18192.55 25496.83 6682.04 24789.10 14292.56 22981.04 11198.85 8686.72 15095.91 11195.84 175
Anonymous2024052988.09 18386.59 20692.58 11296.53 8681.92 16395.99 7195.84 14974.11 35289.06 14595.21 12761.44 32498.81 8983.67 18887.47 25897.01 121
WTY-MVS89.60 13488.92 13891.67 15795.47 13081.15 18692.38 25894.78 22283.11 22489.06 14594.32 16478.67 13796.61 26781.57 22790.89 20097.24 106
XVG-OURS89.40 14488.70 14491.52 16194.06 20181.46 17691.27 29196.07 13086.14 15388.89 14795.77 10868.73 26897.26 23087.39 13989.96 21295.83 176
FE-MVS87.40 21086.02 22991.57 16094.56 17879.69 22990.27 30893.72 26180.57 27888.80 14891.62 26465.32 29898.59 10874.97 30494.33 14796.44 148
mvsany_test185.42 26685.30 25385.77 33387.95 36775.41 31087.61 35780.97 39176.82 32588.68 14995.83 10477.44 15090.82 37985.90 15886.51 26991.08 352
sss88.93 15988.26 16190.94 19294.05 20280.78 19791.71 27995.38 18681.55 26488.63 15093.91 18675.04 17895.47 32682.47 20491.61 18896.57 145
XVG-OURS-SEG-HR89.95 12489.45 12291.47 16594.00 20781.21 18491.87 27596.06 13285.78 15988.55 15195.73 11074.67 18597.27 22888.71 12389.64 22195.91 171
ab-mvs89.41 14288.35 15592.60 11095.15 14582.65 14892.20 26795.60 16983.97 20188.55 15193.70 19574.16 19398.21 14482.46 20589.37 22596.94 127
thisisatest053088.67 16787.61 17591.86 14894.87 16080.07 21594.63 14989.90 35484.00 20088.46 15393.78 19166.88 28398.46 11883.30 19092.65 17897.06 117
VPA-MVSNet89.62 13388.96 13691.60 15993.86 21282.89 13895.46 9897.33 2587.91 10688.43 15493.31 20374.17 19297.40 21787.32 14182.86 30394.52 227
nrg03091.08 9990.39 10193.17 7893.07 23886.91 2296.41 3996.26 11288.30 9288.37 15594.85 14282.19 9897.64 18991.09 9182.95 29894.96 207
tfpn200view987.58 20286.64 20290.41 21195.99 10978.64 25094.58 15191.98 30486.94 13088.09 15691.77 25769.18 26198.10 15070.13 33491.10 19394.48 235
thres40087.62 20086.64 20290.57 19995.99 10978.64 25094.58 15191.98 30486.94 13088.09 15691.77 25769.18 26198.10 15070.13 33491.10 19394.96 207
thres600view787.65 19586.67 20190.59 19896.08 10278.72 24894.88 13391.58 31487.06 12688.08 15892.30 23768.91 26598.10 15070.05 33791.10 19394.96 207
thres100view90087.63 19886.71 19990.38 21496.12 9778.55 25295.03 12591.58 31487.15 12388.06 15992.29 23868.91 26598.10 15070.13 33491.10 19394.48 235
tttt051788.61 16987.78 17191.11 18194.96 15477.81 27495.35 10189.69 35785.09 17988.05 16094.59 15766.93 28198.48 11483.27 19192.13 18697.03 120
thres20087.21 22186.24 22090.12 22395.36 13378.53 25393.26 22992.10 29886.42 14388.00 16191.11 28169.24 26098.00 16669.58 33891.04 19993.83 265
OPM-MVS90.12 11789.56 12091.82 15193.14 23583.90 10294.16 17995.74 15688.96 7387.86 16295.43 11972.48 21797.91 17388.10 13190.18 20993.65 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MAR-MVS90.30 11389.37 12693.07 8596.61 8184.48 8795.68 8695.67 16282.36 24087.85 16392.85 21876.63 15998.80 9080.01 25196.68 10095.91 171
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)89.59 13589.44 12390.03 22795.74 11775.85 30595.61 9390.80 33787.66 11787.83 16495.40 12076.79 15596.46 28078.37 26796.73 9897.80 86
CDS-MVSNet89.45 14088.51 15092.29 12893.62 22383.61 11393.01 23994.68 22781.95 24987.82 16593.24 20778.69 13696.99 24980.34 24793.23 16896.28 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS89.21 14888.29 15991.96 14093.71 21982.62 14993.30 22694.19 24382.22 24287.78 16693.94 18278.83 13396.95 25177.70 27692.98 17296.32 151
CANet_DTU90.26 11589.41 12592.81 9893.46 22883.01 13493.48 21694.47 23189.43 5487.76 16794.23 17070.54 24199.03 5884.97 16796.39 10696.38 150
HyFIR lowres test88.09 18386.81 19591.93 14296.00 10680.63 20090.01 31995.79 15273.42 35987.68 16892.10 24773.86 19897.96 16980.75 24091.70 18797.19 109
UGNet89.95 12488.95 13792.95 9294.51 18083.31 12095.70 8595.23 19389.37 5687.58 16993.94 18264.00 30698.78 9183.92 18396.31 10796.74 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
thisisatest051587.33 21385.99 23091.37 16993.49 22679.55 23190.63 30489.56 36080.17 28187.56 17090.86 28667.07 28098.28 13981.50 22893.02 17196.29 153
GeoE90.05 11989.43 12491.90 14795.16 14380.37 20795.80 8094.65 22883.90 20287.55 17194.75 14778.18 14497.62 19181.28 23093.63 15597.71 90
baseline188.10 18287.28 18490.57 19994.96 15480.07 21594.27 17391.29 32386.74 13587.41 17294.00 17876.77 15696.20 29380.77 23979.31 34995.44 189
CHOSEN 1792x268888.84 16287.69 17392.30 12796.14 9681.42 17890.01 31995.86 14874.52 34887.41 17293.94 18275.46 17498.36 13080.36 24695.53 11697.12 115
PAPM_NR91.22 9690.78 9992.52 11597.60 5681.46 17694.37 17096.24 11586.39 14487.41 17294.80 14582.06 10298.48 11482.80 20095.37 12497.61 93
EPNet91.79 8491.02 9494.10 5490.10 33885.25 7196.03 6892.05 30092.83 387.39 17595.78 10779.39 12899.01 6388.13 12997.48 8198.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
iter_conf0588.85 16188.08 16491.17 17794.27 19481.64 16895.18 11592.15 29786.23 14987.28 17694.07 17263.89 30997.55 19590.63 10289.00 23394.32 241
EI-MVSNet89.10 15088.86 14289.80 24091.84 27778.30 26193.70 21095.01 20385.73 16187.15 17795.28 12279.87 12097.21 23583.81 18587.36 26193.88 260
MVSTER88.84 16288.29 15990.51 20492.95 24680.44 20593.73 20795.01 20384.66 19187.15 17793.12 21272.79 21397.21 23587.86 13287.36 26193.87 261
mvsmamba89.96 12389.50 12191.33 17192.90 24881.82 16496.68 3392.37 28889.03 6987.00 17994.85 14273.05 20997.65 18691.03 9388.63 23794.51 229
VPNet88.20 18087.47 17990.39 21293.56 22579.46 23394.04 19095.54 17388.67 8186.96 18094.58 15869.33 25697.15 23784.05 18180.53 33694.56 225
AUN-MVS87.78 19186.54 20891.48 16494.82 16481.05 18893.91 20293.93 25283.00 22786.93 18193.53 19769.50 25397.67 18386.14 15377.12 35995.73 182
HY-MVS83.01 1289.03 15687.94 16892.29 12894.86 16182.77 13992.08 27294.49 23081.52 26586.93 18192.79 22478.32 14398.23 14179.93 25290.55 20395.88 173
HQP_MVS90.60 11190.19 10591.82 15194.70 16982.73 14395.85 7796.22 11790.81 1786.91 18394.86 14074.23 18998.12 14888.15 12789.99 21094.63 219
plane_prior382.75 14090.26 3386.91 183
BH-RMVSNet88.37 17587.48 17891.02 18695.28 13679.45 23492.89 24393.07 27185.45 16986.91 18394.84 14470.35 24297.76 17873.97 31094.59 13995.85 174
test_fmvs283.98 28984.03 27483.83 35187.16 37067.53 37593.93 19992.89 27477.62 31786.89 18693.53 19747.18 38492.02 36990.54 10386.51 26991.93 331
SDMVSNet90.19 11689.61 11991.93 14296.00 10683.09 13092.89 24395.98 13688.73 7886.85 18795.20 12872.09 22197.08 24288.90 12089.85 21695.63 185
sd_testset88.59 17187.85 17090.83 19396.00 10680.42 20692.35 26094.71 22588.73 7886.85 18795.20 12867.31 27596.43 28279.64 25689.85 21695.63 185
Fast-Effi-MVS+89.41 14288.64 14591.71 15694.74 16580.81 19693.54 21495.10 20083.11 22486.82 18990.67 29479.74 12297.75 18180.51 24593.55 15796.57 145
FIs90.51 11290.35 10290.99 18993.99 20880.98 19095.73 8397.54 489.15 6486.72 19094.68 15081.83 10697.24 23285.18 16588.31 24694.76 217
PAPR90.02 12089.27 13192.29 12895.78 11680.95 19292.68 24996.22 11781.91 25186.66 19193.75 19482.23 9698.44 12479.40 26294.79 13397.48 99
testing9187.11 22686.18 22189.92 23394.43 18675.38 31291.53 28492.27 29386.48 14086.50 19290.24 30161.19 32997.53 19782.10 21390.88 20196.84 134
PMMVS85.71 26284.96 26087.95 29288.90 35477.09 28788.68 34190.06 34972.32 36986.47 19390.76 29272.15 22094.40 33881.78 22393.49 16092.36 322
UniMVSNet_NR-MVSNet89.92 12689.29 12991.81 15393.39 23083.72 10694.43 16297.12 4189.80 4386.46 19493.32 20283.16 7997.23 23384.92 16881.02 32794.49 234
DU-MVS89.34 14788.50 15191.85 15093.04 24183.72 10694.47 15996.59 9089.50 5286.46 19493.29 20577.25 15197.23 23384.92 16881.02 32794.59 222
CostFormer85.77 26184.94 26188.26 28491.16 30472.58 34289.47 32991.04 33076.26 33186.45 19689.97 31270.74 23596.86 25782.35 20787.07 26695.34 195
UniMVSNet (Re)89.80 13089.07 13392.01 13493.60 22484.52 8594.78 14097.47 1189.26 6086.44 19792.32 23682.10 10097.39 22084.81 17180.84 33194.12 248
testing9986.72 23985.73 24489.69 24594.23 19574.91 31591.35 28890.97 33286.14 15386.36 19890.22 30259.41 34197.48 20182.24 21090.66 20296.69 140
TR-MVS86.78 23585.76 24189.82 23794.37 18878.41 25792.47 25592.83 27681.11 27486.36 19892.40 23368.73 26897.48 20173.75 31389.85 21693.57 279
AdaColmapbinary89.89 12789.07 13392.37 12397.41 6283.03 13294.42 16395.92 14182.81 23286.34 20094.65 15373.89 19799.02 6180.69 24195.51 11795.05 202
FC-MVSNet-test90.27 11490.18 10690.53 20193.71 21979.85 22695.77 8297.59 389.31 5886.27 20194.67 15181.93 10597.01 24884.26 17888.09 24994.71 218
UWE-MVS83.69 29683.09 28985.48 33593.06 23965.27 38190.92 29986.14 37479.90 28586.26 20290.72 29357.17 35395.81 31171.03 32892.62 17995.35 194
PS-MVSNAJss89.97 12289.62 11891.02 18691.90 27580.85 19595.26 11095.98 13686.26 14786.21 20394.29 16679.70 12397.65 18688.87 12288.10 24794.57 224
TAPA-MVS84.62 688.16 18187.01 19191.62 15896.64 8080.65 19994.39 16696.21 12076.38 32886.19 20495.44 11779.75 12198.08 16062.75 37295.29 12696.13 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CVMVSNet84.69 28284.79 26584.37 34691.84 27764.92 38293.70 21091.47 31966.19 38486.16 20595.28 12267.18 27993.33 35680.89 23890.42 20694.88 212
tpmrst85.35 26884.99 25886.43 32590.88 31967.88 37288.71 34091.43 32080.13 28286.08 20688.80 33273.05 20996.02 30082.48 20383.40 29795.40 191
ETVMVS84.43 28482.92 29388.97 26794.37 18874.67 31691.23 29388.35 36583.37 21886.06 20789.04 32655.38 36095.67 31767.12 35291.34 19196.58 144
ACMM84.12 989.14 14988.48 15491.12 17894.65 17281.22 18395.31 10396.12 12585.31 17285.92 20894.34 16270.19 24598.06 16285.65 16188.86 23594.08 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t89.51 13788.50 15192.54 11498.11 3681.99 16095.16 11896.36 10370.19 37885.81 20995.25 12476.70 15798.63 10282.07 21596.86 9697.00 122
testing22284.84 27983.32 28489.43 25594.15 20075.94 30391.09 29689.41 36184.90 18285.78 21089.44 32152.70 37296.28 29170.80 32991.57 18996.07 165
tpm84.73 28084.02 27586.87 32090.33 33468.90 36889.06 33689.94 35280.85 27685.75 21189.86 31468.54 27095.97 30277.76 27584.05 28795.75 179
Baseline_NR-MVSNet87.07 22786.63 20488.40 27991.44 29077.87 27294.23 17792.57 28484.12 19885.74 21292.08 24877.25 15196.04 29882.29 20979.94 34291.30 344
V4287.68 19386.86 19390.15 22190.58 32980.14 21294.24 17695.28 19183.66 20885.67 21391.33 27074.73 18397.41 21584.43 17781.83 31392.89 306
v114487.61 20186.79 19790.06 22691.01 30979.34 23893.95 19795.42 18583.36 21985.66 21491.31 27374.98 17997.42 21083.37 18982.06 30993.42 286
PatchT82.68 30281.27 30486.89 31990.09 33970.94 35984.06 38090.15 34674.91 34485.63 21583.57 37569.37 25494.87 33565.19 36188.50 24194.84 213
CR-MVSNet85.35 26883.76 27990.12 22390.58 32979.34 23885.24 37391.96 30678.27 31285.55 21687.87 34771.03 23095.61 31873.96 31189.36 22695.40 191
RPMNet83.95 29181.53 30291.21 17490.58 32979.34 23885.24 37396.76 7571.44 37385.55 21682.97 38070.87 23398.91 8061.01 37689.36 22695.40 191
v2v48287.84 18887.06 18890.17 21990.99 31079.23 24594.00 19595.13 19784.87 18385.53 21892.07 25074.45 18697.45 20584.71 17381.75 31593.85 264
TranMVSNet+NR-MVSNet88.84 16287.95 16791.49 16392.68 25383.01 13494.92 13196.31 10689.88 4085.53 21893.85 18976.63 15996.96 25081.91 21979.87 34494.50 232
v14419287.19 22386.35 21489.74 24190.64 32778.24 26393.92 20095.43 18381.93 25085.51 22091.05 28374.21 19197.45 20582.86 19781.56 31793.53 280
SCA86.32 25285.18 25589.73 24392.15 26476.60 29491.12 29591.69 31183.53 21385.50 22188.81 33066.79 28496.48 27776.65 28690.35 20796.12 161
RRT_MVS89.09 15288.62 14890.49 20592.85 24979.65 23096.41 3994.41 23488.22 9685.50 22194.77 14669.36 25597.31 22389.33 11586.73 26894.51 229
v119287.25 21786.33 21590.00 23190.76 32379.04 24693.80 20495.48 17682.57 23685.48 22391.18 27773.38 20797.42 21082.30 20882.06 30993.53 280
WR-MVS88.38 17487.67 17490.52 20393.30 23280.18 21093.26 22995.96 13988.57 8585.47 22492.81 22276.12 16196.91 25481.24 23182.29 30794.47 237
mvs_anonymous89.37 14689.32 12889.51 25393.47 22774.22 32291.65 28294.83 21882.91 23085.45 22593.79 19081.23 11096.36 28786.47 15294.09 14897.94 76
LPG-MVS_test89.45 14088.90 14091.12 17894.47 18181.49 17495.30 10596.14 12286.73 13685.45 22595.16 13069.89 24798.10 15087.70 13489.23 22993.77 271
LGP-MVS_train91.12 17894.47 18181.49 17496.14 12286.73 13685.45 22595.16 13069.89 24798.10 15087.70 13489.23 22993.77 271
Effi-MVS+-dtu88.65 16888.35 15589.54 25093.33 23176.39 29894.47 15994.36 23787.70 11485.43 22889.56 32073.45 20497.26 23085.57 16391.28 19294.97 204
v124086.78 23585.85 23689.56 24990.45 33377.79 27693.61 21295.37 18881.65 26085.43 22891.15 27971.50 22597.43 20981.47 22982.05 31193.47 284
HQP-NCC94.17 19794.39 16688.81 7485.43 228
ACMP_Plane94.17 19794.39 16688.81 7485.43 228
HQP4-MVS85.43 22897.96 16994.51 229
HQP-MVS89.80 13089.28 13091.34 17094.17 19781.56 17094.39 16696.04 13388.81 7485.43 22893.97 18073.83 19997.96 16987.11 14589.77 21994.50 232
CLD-MVS89.47 13988.90 14091.18 17694.22 19682.07 15992.13 26996.09 12887.90 10785.37 23492.45 23274.38 18797.56 19487.15 14390.43 20593.93 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D87.53 20486.37 21391.00 18892.44 25878.96 24794.74 14295.61 16884.07 19985.36 23594.52 15959.78 33997.34 22282.93 19587.88 25296.71 139
v192192086.97 23086.06 22889.69 24590.53 33278.11 26693.80 20495.43 18381.90 25285.33 23691.05 28372.66 21497.41 21582.05 21681.80 31493.53 280
test_djsdf89.03 15688.64 14590.21 21890.74 32479.28 24295.96 7395.90 14484.66 19185.33 23692.94 21774.02 19597.30 22489.64 11288.53 23994.05 254
GA-MVS86.61 24185.27 25490.66 19791.33 29878.71 24990.40 30793.81 25985.34 17185.12 23889.57 31961.25 32697.11 24180.99 23689.59 22296.15 158
testing1186.44 25085.35 25289.69 24594.29 19375.40 31191.30 28990.53 34084.76 18785.06 23990.13 30758.95 34797.45 20582.08 21491.09 19796.21 157
PatchmatchNetpermissive85.85 25984.70 26689.29 25791.76 28175.54 30888.49 34391.30 32281.63 26285.05 24088.70 33471.71 22296.24 29274.61 30789.05 23296.08 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS83.90 29382.70 29787.51 29990.23 33772.67 33788.62 34281.96 38981.37 26785.01 24188.34 33866.31 29194.45 33675.30 29987.12 26495.43 190
PVSNet78.82 1885.55 26384.65 26788.23 28694.72 16771.93 34587.12 36092.75 27978.80 30284.95 24290.53 29664.43 30496.71 26174.74 30593.86 15296.06 167
MDTV_nov1_ep1383.56 28291.69 28569.93 36587.75 35391.54 31678.60 30684.86 24388.90 32969.54 25296.03 29970.25 33188.93 234
WB-MVSnew83.77 29483.28 28585.26 34091.48 28971.03 35691.89 27387.98 36678.91 29784.78 24490.22 30269.11 26394.02 34564.70 36590.44 20490.71 354
IterMVS-LS88.36 17687.91 16989.70 24493.80 21578.29 26293.73 20795.08 20285.73 16184.75 24591.90 25579.88 11996.92 25383.83 18482.51 30493.89 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080586.92 23185.74 24390.48 20792.22 26279.98 22295.63 9294.88 21483.83 20584.74 24692.80 22357.61 35197.67 18385.48 16484.42 28393.79 266
tpm284.08 28882.94 29287.48 30291.39 29471.27 35289.23 33390.37 34271.95 37184.64 24789.33 32267.30 27696.55 27475.17 30087.09 26594.63 219
XXY-MVS87.65 19586.85 19490.03 22792.14 26580.60 20293.76 20695.23 19382.94 22984.60 24894.02 17674.27 18895.49 32581.04 23383.68 29194.01 256
MDTV_nov1_ep13_2view55.91 40287.62 35673.32 36084.59 24970.33 24374.65 30695.50 188
test-LLR85.87 25885.41 24887.25 30790.95 31271.67 35089.55 32589.88 35583.41 21684.54 25087.95 34467.25 27795.11 33181.82 22193.37 16594.97 204
test-mter84.54 28383.64 28187.25 30790.95 31271.67 35089.55 32589.88 35579.17 29484.54 25087.95 34455.56 35895.11 33181.82 22193.37 16594.97 204
miper_enhance_ethall86.90 23286.18 22189.06 26391.66 28677.58 28290.22 31494.82 21979.16 29584.48 25289.10 32579.19 13196.66 26284.06 18082.94 29992.94 304
BH-untuned88.60 17088.13 16390.01 23095.24 14078.50 25593.29 22794.15 24584.75 18884.46 25393.40 19975.76 16897.40 21777.59 27794.52 14294.12 248
CNLPA89.07 15487.98 16692.34 12496.87 7484.78 7894.08 18693.24 26781.41 26684.46 25395.13 13275.57 17396.62 26477.21 28193.84 15395.61 187
PCF-MVS84.11 1087.74 19286.08 22792.70 10694.02 20384.43 9189.27 33195.87 14773.62 35784.43 25594.33 16378.48 14198.86 8470.27 33094.45 14494.81 215
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 21585.98 23191.08 18294.01 20483.10 12795.14 11994.94 20683.57 21084.37 25691.64 26066.59 28896.34 28878.23 27185.36 27693.79 266
test187.26 21585.98 23191.08 18294.01 20483.10 12795.14 11994.94 20683.57 21084.37 25691.64 26066.59 28896.34 28878.23 27185.36 27693.79 266
FMVSNet387.40 21086.11 22591.30 17293.79 21783.64 11094.20 17894.81 22083.89 20384.37 25691.87 25668.45 27196.56 27278.23 27185.36 27693.70 276
v14887.04 22886.32 21689.21 25890.94 31477.26 28593.71 20994.43 23284.84 18584.36 25990.80 29076.04 16397.05 24682.12 21279.60 34693.31 288
c3_l87.14 22586.50 21089.04 26492.20 26377.26 28591.22 29494.70 22682.01 24884.34 26090.43 29878.81 13496.61 26783.70 18781.09 32493.25 291
miper_ehance_all_eth87.22 22086.62 20589.02 26592.13 26677.40 28490.91 30094.81 22081.28 26984.32 26190.08 30979.26 12996.62 26483.81 18582.94 29993.04 301
PatchMatch-RL86.77 23885.54 24590.47 21095.88 11282.71 14590.54 30592.31 29179.82 28784.32 26191.57 26868.77 26796.39 28473.16 31593.48 16292.32 324
3Dnovator86.66 591.73 8790.82 9894.44 4594.59 17486.37 4197.18 1297.02 4789.20 6284.31 26396.66 6973.74 20199.17 4786.74 14897.96 6997.79 87
jajsoiax88.24 17987.50 17790.48 20790.89 31880.14 21295.31 10395.65 16684.97 18184.24 26494.02 17665.31 29997.42 21088.56 12488.52 24093.89 258
mvs_tets88.06 18587.28 18490.38 21490.94 31479.88 22495.22 11295.66 16485.10 17884.21 26593.94 18263.53 31097.40 21788.50 12588.40 24493.87 261
eth_miper_zixun_eth86.50 24785.77 24088.68 27491.94 27275.81 30690.47 30694.89 21282.05 24584.05 26690.46 29775.96 16496.77 25882.76 20179.36 34893.46 285
3Dnovator+87.14 492.42 7891.37 8695.55 795.63 12388.73 697.07 1896.77 7490.84 1684.02 26796.62 7475.95 16599.34 3487.77 13397.68 7998.59 24
PLCcopyleft84.53 789.06 15588.03 16592.15 13297.27 6882.69 14694.29 17295.44 18279.71 28884.01 26894.18 17176.68 15898.75 9377.28 28093.41 16395.02 203
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
cl2286.78 23585.98 23189.18 26092.34 26077.62 28190.84 30194.13 24781.33 26883.97 26990.15 30673.96 19696.60 26984.19 17982.94 29993.33 287
FMVSNet287.19 22385.82 23791.30 17294.01 20483.67 10894.79 13994.94 20683.57 21083.88 27092.05 25166.59 28896.51 27577.56 27885.01 27993.73 274
anonymousdsp87.84 18887.09 18790.12 22389.13 35180.54 20394.67 14795.55 17182.05 24583.82 27192.12 24471.47 22697.15 23787.15 14387.80 25692.67 311
1112_ss88.42 17387.33 18291.72 15594.92 15780.98 19092.97 24194.54 22978.16 31583.82 27193.88 18778.78 13597.91 17379.45 25889.41 22496.26 155
WR-MVS_H87.80 19087.37 18189.10 26293.23 23378.12 26595.61 9397.30 2987.90 10783.72 27392.01 25279.65 12796.01 30176.36 28980.54 33593.16 296
BH-w/o87.57 20387.05 18989.12 26194.90 15977.90 27092.41 25693.51 26482.89 23183.70 27491.34 26975.75 16997.07 24475.49 29693.49 16092.39 321
ACMP84.23 889.01 15888.35 15590.99 18994.73 16681.27 18095.07 12295.89 14686.48 14083.67 27594.30 16569.33 25697.99 16787.10 14788.55 23893.72 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 24385.13 25690.98 19196.52 8781.50 17296.14 5896.16 12173.78 35583.65 27692.15 24263.26 31397.37 22182.82 19981.74 31694.06 253
v1087.25 21786.38 21289.85 23591.19 30179.50 23294.48 15695.45 18083.79 20683.62 27791.19 27575.13 17697.42 21081.94 21880.60 33392.63 313
v887.50 20786.71 19989.89 23491.37 29579.40 23594.50 15595.38 18684.81 18683.60 27891.33 27076.05 16297.42 21082.84 19880.51 33892.84 308
cascas86.43 25184.98 25990.80 19592.10 26880.92 19390.24 31295.91 14373.10 36283.57 27988.39 33765.15 30097.46 20484.90 17091.43 19094.03 255
Test_1112_low_res87.65 19586.51 20991.08 18294.94 15679.28 24291.77 27794.30 23976.04 33383.51 28092.37 23477.86 14897.73 18278.69 26689.13 23196.22 156
CP-MVSNet87.63 19887.26 18688.74 27393.12 23676.59 29595.29 10796.58 9188.43 8883.49 28192.98 21675.28 17595.83 30978.97 26481.15 32393.79 266
QAPM89.51 13788.15 16293.59 7094.92 15784.58 8196.82 2996.70 8378.43 30983.41 28296.19 9073.18 20899.30 4077.11 28396.54 10296.89 131
TESTMET0.1,183.74 29582.85 29586.42 32689.96 34271.21 35489.55 32587.88 36777.41 31983.37 28387.31 35256.71 35493.65 35380.62 24392.85 17694.40 238
cl____86.52 24685.78 23888.75 27192.03 27076.46 29690.74 30294.30 23981.83 25683.34 28490.78 29175.74 17196.57 27081.74 22481.54 31893.22 293
DIV-MVS_self_test86.53 24585.78 23888.75 27192.02 27176.45 29790.74 30294.30 23981.83 25683.34 28490.82 28975.75 16996.57 27081.73 22581.52 31993.24 292
PS-CasMVS87.32 21486.88 19288.63 27692.99 24476.33 30095.33 10296.61 8988.22 9683.30 28693.07 21473.03 21195.79 31378.36 26881.00 32993.75 273
gg-mvs-nofinetune81.77 30979.37 32488.99 26690.85 32077.73 27986.29 36579.63 39474.88 34683.19 28769.05 39560.34 33496.11 29775.46 29794.64 13893.11 298
XVG-ACMP-BASELINE86.00 25584.84 26489.45 25491.20 30078.00 26791.70 28095.55 17185.05 18082.97 28892.25 24054.49 36597.48 20182.93 19587.45 26092.89 306
LS3D87.89 18786.32 21692.59 11196.07 10382.92 13795.23 11194.92 21175.66 33582.89 28995.98 9872.48 21799.21 4568.43 34495.23 12995.64 184
PEN-MVS86.80 23486.27 21988.40 27992.32 26175.71 30795.18 11596.38 10287.97 10482.82 29093.15 21073.39 20695.92 30476.15 29379.03 35193.59 278
FMVSNet185.85 25984.11 27391.08 18292.81 25083.10 12795.14 11994.94 20681.64 26182.68 29191.64 26059.01 34696.34 28875.37 29883.78 28893.79 266
RPSCF85.07 27484.27 27187.48 30292.91 24770.62 36191.69 28192.46 28576.20 33282.67 29295.22 12563.94 30797.29 22777.51 27985.80 27394.53 226
Fast-Effi-MVS+-dtu87.44 20886.72 19889.63 24892.04 26977.68 28094.03 19193.94 25185.81 15882.42 29391.32 27270.33 24397.06 24580.33 24890.23 20894.14 247
v7n86.81 23385.76 24189.95 23290.72 32579.25 24495.07 12295.92 14184.45 19482.29 29490.86 28672.60 21697.53 19779.42 26180.52 33793.08 300
DTE-MVSNet86.11 25485.48 24787.98 29191.65 28774.92 31494.93 13095.75 15587.36 12182.26 29593.04 21572.85 21295.82 31074.04 30977.46 35793.20 294
ADS-MVSNet281.66 31279.71 32187.50 30091.35 29674.19 32383.33 38388.48 36472.90 36482.24 29685.77 36664.98 30193.20 35964.57 36683.74 28995.12 200
ADS-MVSNet81.56 31479.78 31886.90 31891.35 29671.82 34783.33 38389.16 36272.90 36482.24 29685.77 36664.98 30193.76 35064.57 36683.74 28995.12 200
JIA-IIPM81.04 32078.98 33287.25 30788.64 35573.48 32981.75 38889.61 35973.19 36182.05 29873.71 39266.07 29695.87 30771.18 32584.60 28292.41 320
F-COLMAP87.95 18686.80 19691.40 16796.35 9280.88 19494.73 14395.45 18079.65 28982.04 29994.61 15471.13 22898.50 11276.24 29291.05 19894.80 216
PAPM86.68 24085.39 24990.53 20193.05 24079.33 24189.79 32294.77 22378.82 30181.95 30093.24 20776.81 15497.30 22466.94 35493.16 16994.95 210
DP-MVS87.25 21785.36 25192.90 9497.65 5583.24 12194.81 13892.00 30274.99 34381.92 30195.00 13572.66 21499.05 5566.92 35692.33 18496.40 149
pm-mvs186.61 24185.54 24589.82 23791.44 29080.18 21095.28 10994.85 21683.84 20481.66 30292.62 22772.45 21996.48 27779.67 25578.06 35292.82 309
dmvs_re84.20 28783.22 28887.14 31391.83 27977.81 27490.04 31890.19 34584.70 19081.49 30389.17 32464.37 30591.13 37771.58 32185.65 27592.46 318
MVS87.44 20886.10 22691.44 16692.61 25483.62 11192.63 25195.66 16467.26 38281.47 30492.15 24277.95 14598.22 14379.71 25495.48 11992.47 317
IterMVS-SCA-FT85.45 26484.53 27088.18 28791.71 28376.87 29090.19 31592.65 28385.40 17081.44 30590.54 29566.79 28495.00 33481.04 23381.05 32592.66 312
CHOSEN 280x42085.15 27383.99 27688.65 27592.47 25678.40 25879.68 39392.76 27874.90 34581.41 30689.59 31869.85 24995.51 32279.92 25395.29 12692.03 329
miper_lstm_enhance85.27 27184.59 26987.31 30491.28 29974.63 31787.69 35494.09 24981.20 27381.36 30789.85 31574.97 18094.30 34181.03 23579.84 34593.01 302
Patchmtry82.71 30180.93 30788.06 28990.05 34076.37 29984.74 37891.96 30672.28 37081.32 30887.87 34771.03 23095.50 32468.97 34080.15 34092.32 324
dp81.47 31680.23 31385.17 34189.92 34365.49 37986.74 36290.10 34876.30 33081.10 30987.12 35762.81 31595.92 30468.13 34779.88 34394.09 251
tfpnnormal84.72 28183.23 28789.20 25992.79 25180.05 21794.48 15695.81 15082.38 23981.08 31091.21 27469.01 26496.95 25161.69 37480.59 33490.58 359
IterMVS84.88 27783.98 27787.60 29791.44 29076.03 30290.18 31692.41 28783.24 22281.06 31190.42 29966.60 28794.28 34279.46 25780.98 33092.48 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVScopyleft83.78 1188.74 16687.29 18393.08 8392.70 25285.39 6996.57 3696.43 9778.74 30480.85 31296.07 9469.64 25199.01 6378.01 27496.65 10194.83 214
pmmvs485.43 26583.86 27890.16 22090.02 34182.97 13690.27 30892.67 28275.93 33480.73 31391.74 25971.05 22995.73 31678.85 26583.46 29591.78 333
MIMVSNet82.59 30380.53 30888.76 27091.51 28878.32 26086.57 36490.13 34779.32 29180.70 31488.69 33552.98 37193.07 36166.03 35988.86 23594.90 211
IB-MVS80.51 1585.24 27283.26 28691.19 17592.13 26679.86 22591.75 27891.29 32383.28 22180.66 31588.49 33661.28 32598.46 11880.99 23679.46 34795.25 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND87.94 29389.73 34777.91 26987.80 35078.23 39880.58 31683.86 37359.88 33895.33 32871.20 32392.22 18590.60 358
EU-MVSNet81.32 31880.95 30682.42 35888.50 35863.67 38693.32 22291.33 32164.02 38780.57 31792.83 22061.21 32892.27 36776.34 29080.38 33991.32 343
tpmvs83.35 29982.07 29887.20 31191.07 30871.00 35888.31 34691.70 31078.91 29780.49 31887.18 35669.30 25997.08 24268.12 34883.56 29393.51 283
pmmvs584.21 28682.84 29688.34 28288.95 35376.94 28992.41 25691.91 30875.63 33680.28 31991.18 27764.59 30395.57 31977.09 28483.47 29492.53 315
tpm cat181.96 30680.27 31287.01 31491.09 30771.02 35787.38 35891.53 31766.25 38380.17 32086.35 36268.22 27396.15 29669.16 33982.29 30793.86 263
MS-PatchMatch85.05 27584.16 27287.73 29591.42 29378.51 25491.25 29293.53 26377.50 31880.15 32191.58 26661.99 31995.51 32275.69 29594.35 14689.16 370
131487.51 20586.57 20790.34 21692.42 25979.74 22892.63 25195.35 19078.35 31080.14 32291.62 26474.05 19497.15 23781.05 23293.53 15894.12 248
ITE_SJBPF88.24 28591.88 27677.05 28892.92 27385.54 16780.13 32393.30 20457.29 35296.20 29372.46 31884.71 28191.49 340
D2MVS85.90 25785.09 25788.35 28190.79 32177.42 28391.83 27695.70 16080.77 27780.08 32490.02 31066.74 28696.37 28581.88 22087.97 25191.26 345
NR-MVSNet88.58 17287.47 17991.93 14293.04 24184.16 9794.77 14196.25 11489.05 6780.04 32593.29 20579.02 13297.05 24681.71 22680.05 34194.59 222
baseline286.50 24785.39 24989.84 23691.12 30676.70 29391.88 27488.58 36382.35 24179.95 32690.95 28573.42 20597.63 19080.27 24989.95 21395.19 198
testing380.46 32579.59 32383.06 35493.44 22964.64 38393.33 22185.47 37884.34 19579.93 32790.84 28844.35 38892.39 36557.06 38687.56 25792.16 328
test0.0.03 182.41 30481.69 30084.59 34488.23 36272.89 33390.24 31287.83 36883.41 21679.86 32889.78 31667.25 27788.99 38765.18 36283.42 29691.90 332
CL-MVSNet_self_test81.74 31080.53 30885.36 33785.96 37672.45 34390.25 31093.07 27181.24 27179.85 32987.29 35370.93 23292.52 36466.95 35369.23 37891.11 350
TransMVSNet (Re)84.43 28483.06 29188.54 27791.72 28278.44 25695.18 11592.82 27782.73 23479.67 33092.12 24473.49 20395.96 30371.10 32768.73 38291.21 346
LTVRE_ROB82.13 1386.26 25384.90 26290.34 21694.44 18581.50 17292.31 26494.89 21283.03 22679.63 33192.67 22569.69 25097.79 17671.20 32386.26 27191.72 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-085.35 26884.64 26887.49 30190.77 32272.59 34194.01 19394.40 23584.72 18979.62 33293.17 20961.91 32096.72 25981.99 21781.16 32193.16 296
EPNet_dtu86.49 24985.94 23488.14 28890.24 33672.82 33494.11 18292.20 29586.66 13879.42 33392.36 23573.52 20295.81 31171.26 32293.66 15495.80 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LCM-MVSNet-Re88.30 17888.32 15888.27 28394.71 16872.41 34493.15 23290.98 33187.77 11279.25 33491.96 25378.35 14295.75 31483.04 19395.62 11596.65 141
test_fmvs377.67 34477.16 34179.22 36479.52 39461.14 39092.34 26191.64 31373.98 35378.86 33586.59 35827.38 39887.03 38988.12 13075.97 36489.50 364
Syy-MVS80.07 32979.78 31880.94 36191.92 27359.93 39289.75 32387.40 37281.72 25878.82 33687.20 35466.29 29291.29 37547.06 39387.84 25491.60 337
myMVS_eth3d79.67 33478.79 33382.32 35991.92 27364.08 38489.75 32387.40 37281.72 25878.82 33687.20 35445.33 38691.29 37559.09 38287.84 25491.60 337
pmmvs683.42 29781.60 30188.87 26888.01 36577.87 27294.96 12894.24 24274.67 34778.80 33891.09 28260.17 33696.49 27677.06 28575.40 36692.23 326
MVP-Stereo85.97 25684.86 26389.32 25690.92 31682.19 15792.11 27094.19 24378.76 30378.77 33991.63 26368.38 27296.56 27275.01 30393.95 15089.20 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG84.86 27883.09 28990.14 22293.80 21580.05 21789.18 33493.09 27078.89 29978.19 34091.91 25465.86 29797.27 22868.47 34388.45 24293.11 298
testgi80.94 32380.20 31483.18 35287.96 36666.29 37691.28 29090.70 33983.70 20778.12 34192.84 21951.37 37490.82 37963.34 36982.46 30592.43 319
ACMH+81.04 1485.05 27583.46 28389.82 23794.66 17179.37 23694.44 16194.12 24882.19 24378.04 34292.82 22158.23 34997.54 19673.77 31282.90 30292.54 314
COLMAP_ROBcopyleft80.39 1683.96 29082.04 29989.74 24195.28 13679.75 22794.25 17492.28 29275.17 34178.02 34393.77 19258.60 34897.84 17565.06 36485.92 27291.63 336
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ppachtmachnet_test81.84 30880.07 31687.15 31288.46 35974.43 32189.04 33792.16 29675.33 33977.75 34488.99 32766.20 29395.37 32765.12 36377.60 35591.65 335
Anonymous2023120681.03 32179.77 32084.82 34387.85 36870.26 36391.42 28692.08 29973.67 35677.75 34489.25 32362.43 31793.08 36061.50 37582.00 31291.12 349
SixPastTwentyTwo83.91 29282.90 29486.92 31790.99 31070.67 36093.48 21691.99 30385.54 16777.62 34692.11 24660.59 33396.87 25676.05 29477.75 35493.20 294
ACMH80.38 1785.36 26783.68 28090.39 21294.45 18480.63 20094.73 14394.85 21682.09 24477.24 34792.65 22660.01 33797.58 19272.25 31984.87 28092.96 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-RL test81.67 31179.96 31786.81 32185.42 38171.23 35382.17 38787.50 37178.47 30777.19 34882.50 38270.81 23493.48 35482.66 20272.89 37095.71 183
KD-MVS_2432*160078.50 34076.02 34785.93 33086.22 37474.47 31984.80 37692.33 28979.29 29276.98 34985.92 36453.81 36993.97 34667.39 35057.42 39489.36 365
miper_refine_blended78.50 34076.02 34785.93 33086.22 37474.47 31984.80 37692.33 28979.29 29276.98 34985.92 36453.81 36993.97 34667.39 35057.42 39489.36 365
our_test_381.93 30780.46 31086.33 32788.46 35973.48 32988.46 34491.11 32676.46 32676.69 35188.25 34066.89 28294.36 33968.75 34179.08 35091.14 348
Patchmatch-test81.37 31779.30 32587.58 29890.92 31674.16 32480.99 38987.68 37070.52 37776.63 35288.81 33071.21 22792.76 36360.01 38086.93 26795.83 176
KD-MVS_self_test80.20 32879.24 32683.07 35385.64 38065.29 38091.01 29893.93 25278.71 30576.32 35386.40 36159.20 34392.93 36272.59 31769.35 37791.00 353
FMVSNet581.52 31579.60 32287.27 30591.17 30277.95 26891.49 28592.26 29476.87 32476.16 35487.91 34651.67 37392.34 36667.74 34981.16 32191.52 339
AllTest83.42 29781.39 30389.52 25195.01 15077.79 27693.12 23390.89 33577.41 31976.12 35593.34 20054.08 36797.51 19968.31 34584.27 28593.26 289
TestCases89.52 25195.01 15077.79 27690.89 33577.41 31976.12 35593.34 20054.08 36797.51 19968.31 34584.27 28593.26 289
test_040281.30 31979.17 32987.67 29693.19 23478.17 26492.98 24091.71 30975.25 34076.02 35790.31 30059.23 34296.37 28550.22 39183.63 29288.47 376
DSMNet-mixed76.94 34676.29 34578.89 36583.10 38756.11 40187.78 35179.77 39360.65 39075.64 35888.71 33361.56 32388.34 38860.07 37989.29 22892.21 327
Anonymous2024052180.44 32679.21 32784.11 34985.75 37967.89 37192.86 24693.23 26875.61 33775.59 35987.47 35150.03 37694.33 34071.14 32681.21 32090.12 361
USDC82.76 30081.26 30587.26 30691.17 30274.55 31889.27 33193.39 26678.26 31375.30 36092.08 24854.43 36696.63 26371.64 32085.79 27490.61 356
TDRefinement79.81 33277.34 33787.22 31079.24 39575.48 30993.12 23392.03 30176.45 32775.01 36191.58 26649.19 37996.44 28170.22 33369.18 37989.75 363
LF4IMVS80.37 32779.07 33184.27 34886.64 37269.87 36689.39 33091.05 32976.38 32874.97 36290.00 31147.85 38294.25 34374.55 30880.82 33288.69 374
mvsany_test374.95 34973.26 35380.02 36374.61 39763.16 38885.53 37178.42 39674.16 35174.89 36386.46 35936.02 39389.09 38682.39 20666.91 38387.82 380
PM-MVS78.11 34276.12 34684.09 35083.54 38670.08 36488.97 33885.27 38079.93 28474.73 36486.43 36034.70 39493.48 35479.43 26072.06 37288.72 373
OpenMVS_ROBcopyleft74.94 1979.51 33577.03 34286.93 31687.00 37176.23 30192.33 26290.74 33868.93 38074.52 36588.23 34149.58 37896.62 26457.64 38484.29 28487.94 379
test20.0379.95 33179.08 33082.55 35685.79 37867.74 37391.09 29691.08 32781.23 27274.48 36689.96 31361.63 32190.15 38160.08 37876.38 36289.76 362
ambc83.06 35479.99 39363.51 38777.47 39492.86 27574.34 36784.45 37228.74 39595.06 33373.06 31668.89 38190.61 356
PVSNet_073.20 2077.22 34574.83 35184.37 34690.70 32671.10 35583.09 38589.67 35872.81 36673.93 36883.13 37760.79 33293.70 35268.54 34250.84 39888.30 377
pmmvs-eth3d80.97 32278.72 33487.74 29484.99 38379.97 22390.11 31791.65 31275.36 33873.51 36986.03 36359.45 34093.96 34875.17 30072.21 37189.29 368
K. test v381.59 31380.15 31585.91 33289.89 34469.42 36792.57 25387.71 36985.56 16673.44 37089.71 31755.58 35795.52 32177.17 28269.76 37692.78 310
EG-PatchMatch MVS82.37 30580.34 31188.46 27890.27 33579.35 23792.80 24894.33 23877.14 32373.26 37190.18 30547.47 38396.72 25970.25 33187.32 26389.30 367
lessismore_v086.04 32888.46 35968.78 36980.59 39273.01 37290.11 30855.39 35996.43 28275.06 30265.06 38692.90 305
MIMVSNet179.38 33677.28 33885.69 33486.35 37373.67 32691.61 28392.75 27978.11 31672.64 37388.12 34248.16 38191.97 37160.32 37777.49 35691.43 342
ET-MVSNet_ETH3D87.51 20585.91 23592.32 12593.70 22183.93 10192.33 26290.94 33384.16 19672.09 37492.52 23069.90 24695.85 30889.20 11788.36 24597.17 110
TinyColmap79.76 33377.69 33685.97 32991.71 28373.12 33189.55 32590.36 34375.03 34272.03 37590.19 30446.22 38596.19 29563.11 37081.03 32688.59 375
N_pmnet68.89 35668.44 35870.23 37689.07 35228.79 41388.06 34719.50 41369.47 37971.86 37684.93 36961.24 32791.75 37254.70 38877.15 35890.15 360
UnsupCasMVSNet_eth80.07 32978.27 33585.46 33685.24 38272.63 34088.45 34594.87 21582.99 22871.64 37788.07 34356.34 35591.75 37273.48 31463.36 38992.01 330
test_vis1_rt77.96 34376.46 34382.48 35785.89 37771.74 34990.25 31078.89 39571.03 37671.30 37881.35 38442.49 39091.05 37884.55 17582.37 30684.65 382
dmvs_testset74.57 35075.81 34970.86 37587.72 36940.47 40887.05 36177.90 40082.75 23371.15 37985.47 36867.98 27484.12 39745.26 39476.98 36188.00 378
test_f71.95 35370.87 35575.21 37174.21 39959.37 39485.07 37585.82 37665.25 38570.42 38083.13 37723.62 39982.93 39978.32 26971.94 37383.33 384
new-patchmatchnet76.41 34775.17 35080.13 36282.65 38959.61 39387.66 35591.08 32778.23 31469.85 38183.22 37654.76 36391.63 37464.14 36864.89 38789.16 370
MVS-HIRNet73.70 35172.20 35478.18 36891.81 28056.42 40082.94 38682.58 38755.24 39268.88 38266.48 39655.32 36195.13 33058.12 38388.42 24383.01 385
UnsupCasMVSNet_bld76.23 34873.27 35285.09 34283.79 38572.92 33285.65 37093.47 26571.52 37268.84 38379.08 38749.77 37793.21 35866.81 35860.52 39189.13 372
pmmvs371.81 35468.71 35781.11 36075.86 39670.42 36286.74 36283.66 38458.95 39168.64 38480.89 38536.93 39289.52 38463.10 37163.59 38883.39 383
CMPMVSbinary59.16 2180.52 32479.20 32884.48 34583.98 38467.63 37489.95 32193.84 25864.79 38666.81 38591.14 28057.93 35095.17 32976.25 29188.10 24790.65 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet72.15 35270.13 35678.20 36782.95 38865.68 37783.91 38182.40 38862.94 38964.47 38679.82 38642.85 38986.26 39357.41 38574.44 36782.65 387
YYNet179.22 33777.20 33985.28 33988.20 36472.66 33885.87 36790.05 35174.33 35062.70 38787.61 34966.09 29592.03 36866.94 35472.97 36991.15 347
WB-MVS67.92 35767.49 35969.21 37981.09 39041.17 40788.03 34878.00 39973.50 35862.63 38883.11 37963.94 30786.52 39125.66 40451.45 39779.94 390
MDA-MVSNet_test_wron79.21 33877.19 34085.29 33888.22 36372.77 33585.87 36790.06 34974.34 34962.62 38987.56 35066.14 29491.99 37066.90 35773.01 36891.10 351
SSC-MVS67.06 35866.56 36068.56 38180.54 39140.06 40987.77 35277.37 40272.38 36861.75 39082.66 38163.37 31186.45 39224.48 40548.69 40079.16 392
MDA-MVSNet-bldmvs78.85 33976.31 34486.46 32489.76 34573.88 32588.79 33990.42 34179.16 29559.18 39188.33 33960.20 33594.04 34462.00 37368.96 38091.48 341
APD_test169.04 35566.26 36177.36 37080.51 39262.79 38985.46 37283.51 38554.11 39459.14 39284.79 37123.40 40189.61 38355.22 38770.24 37579.68 391
LCM-MVSNet66.00 35962.16 36477.51 36964.51 40758.29 39583.87 38290.90 33448.17 39654.69 39373.31 39316.83 40786.75 39065.47 36061.67 39087.48 381
test_vis3_rt65.12 36062.60 36272.69 37371.44 40060.71 39187.17 35965.55 40663.80 38853.22 39465.65 39814.54 40889.44 38576.65 28665.38 38567.91 397
FPMVS64.63 36162.55 36370.88 37470.80 40156.71 39684.42 37984.42 38251.78 39549.57 39581.61 38323.49 40081.48 40040.61 40076.25 36374.46 393
PMMVS259.60 36356.40 36569.21 37968.83 40446.58 40573.02 39877.48 40155.07 39349.21 39672.95 39417.43 40680.04 40149.32 39244.33 40180.99 389
DeepMVS_CXcopyleft56.31 38674.23 39851.81 40356.67 41144.85 39748.54 39775.16 39027.87 39758.74 40740.92 39952.22 39658.39 400
testf159.54 36456.11 36769.85 37769.28 40256.61 39880.37 39176.55 40342.58 39945.68 39875.61 38811.26 40984.18 39543.20 39760.44 39268.75 395
APD_test259.54 36456.11 36769.85 37769.28 40256.61 39880.37 39176.55 40342.58 39945.68 39875.61 38811.26 40984.18 39543.20 39760.44 39268.75 395
test_method50.52 36948.47 37156.66 38552.26 41118.98 41541.51 40381.40 39010.10 40544.59 40075.01 39128.51 39668.16 40353.54 38949.31 39982.83 386
Gipumacopyleft57.99 36754.91 36967.24 38288.51 35665.59 37852.21 40190.33 34443.58 39842.84 40151.18 40220.29 40485.07 39434.77 40170.45 37451.05 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high58.88 36654.22 37072.86 37256.50 41056.67 39780.75 39086.00 37573.09 36337.39 40264.63 39922.17 40279.49 40243.51 39623.96 40482.43 388
tmp_tt35.64 37339.24 37524.84 38914.87 41323.90 41462.71 39951.51 4126.58 40736.66 40362.08 40044.37 38730.34 40952.40 39022.00 40620.27 404
PMVScopyleft47.18 2252.22 36848.46 37263.48 38345.72 41246.20 40673.41 39778.31 39741.03 40130.06 40465.68 3976.05 41183.43 39830.04 40265.86 38460.80 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 37038.59 37657.77 38456.52 40948.77 40455.38 40058.64 41029.33 40428.96 40552.65 4014.68 41264.62 40628.11 40333.07 40259.93 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 37142.29 37346.03 38765.58 40637.41 41073.51 39664.62 40733.99 40228.47 40647.87 40319.90 40567.91 40422.23 40624.45 40332.77 402
EMVS42.07 37241.12 37444.92 38863.45 40835.56 41273.65 39563.48 40833.05 40326.88 40745.45 40421.27 40367.14 40519.80 40723.02 40532.06 403
wuyk23d21.27 37520.48 37823.63 39068.59 40536.41 41149.57 4026.85 4149.37 4067.89 4084.46 4104.03 41331.37 40817.47 40816.07 4073.12 405
testmvs8.92 37611.52 3791.12 3921.06 4140.46 41786.02 3660.65 4150.62 4082.74 4099.52 4080.31 4150.45 4112.38 4090.39 4082.46 407
test1238.76 37711.22 3801.39 3910.85 4150.97 41685.76 3690.35 4160.54 4092.45 4108.14 4090.60 4140.48 4102.16 4100.17 4092.71 406
EGC-MVSNET61.97 36256.37 36678.77 36689.63 34873.50 32889.12 33582.79 3860.21 4101.24 41184.80 37039.48 39190.04 38244.13 39575.94 36572.79 394
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k22.14 37429.52 3770.00 3930.00 4160.00 4180.00 40495.76 1540.00 4110.00 41294.29 16675.66 1720.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.64 3798.86 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41179.70 1230.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.82 37810.43 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41293.88 1870.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS64.08 38459.14 381
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
eth-test20.00 416
eth-test0.00 416
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6598.99 1498.84 14
save fliter97.85 4685.63 6695.21 11396.82 6889.44 53
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
GSMVS96.12 161
sam_mvs171.70 22396.12 161
sam_mvs70.60 236
MTGPAbinary96.97 50
test_post188.00 3499.81 40769.31 25895.53 32076.65 286
test_post10.29 40670.57 24095.91 306
patchmatchnet-post83.76 37471.53 22496.48 277
MTMP96.16 5460.64 409
gm-plane-assit89.60 34968.00 37077.28 32288.99 32797.57 19379.44 259
test9_res91.91 8098.71 3398.07 68
agg_prior290.54 10398.68 3898.27 52
test_prior485.96 5494.11 182
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
新几何293.11 235
旧先验196.79 7681.81 16595.67 16296.81 6386.69 3797.66 8096.97 126
无先验93.28 22896.26 11273.95 35499.05 5580.56 24496.59 143
原ACMM292.94 242
testdata298.75 9378.30 270
segment_acmp87.16 36
testdata192.15 26887.94 105
plane_prior794.70 16982.74 142
plane_prior694.52 17982.75 14074.23 189
plane_prior596.22 11798.12 14888.15 12789.99 21094.63 219
plane_prior494.86 140
plane_prior295.85 7790.81 17
plane_prior194.59 174
plane_prior82.73 14395.21 11389.66 5089.88 215
n20.00 417
nn0.00 417
door-mid85.49 377
test1196.57 92
door85.33 379
HQP5-MVS81.56 170
BP-MVS87.11 145
HQP3-MVS96.04 13389.77 219
HQP2-MVS73.83 199
NP-MVS94.37 18882.42 15293.98 179
ACMMP++_ref87.47 258
ACMMP++88.01 250
Test By Simon80.02 118