This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS95.91 296.28 294.80 3098.77 585.99 4997.13 1497.44 1490.31 2697.71 198.07 492.31 499.58 895.66 499.13 398.84 13
test_241102_ONE98.77 585.99 4997.44 1490.26 3197.71 197.96 1092.31 499.38 29
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3588.48 896.26 4597.28 2985.90 13897.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072698.78 385.93 5297.19 1197.47 1090.27 2997.64 498.13 191.47 8
DVP-MVS++95.98 196.36 194.82 2897.78 5186.00 4798.29 197.49 590.75 1797.62 598.06 692.59 299.61 395.64 699.02 1298.86 10
test_241102_TWO97.44 1490.31 2697.62 598.07 491.46 1099.58 895.66 499.12 698.98 9
IU-MVS98.77 586.00 4796.84 6381.26 24297.26 795.50 1099.13 399.03 7
DPE-MVScopyleft95.57 495.67 495.25 998.36 2587.28 1595.56 8297.51 489.13 5897.14 897.91 1191.64 799.62 194.61 1499.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PC_three_145282.47 21197.09 997.07 3892.72 198.04 14692.70 4299.02 1298.86 10
DVP-MVScopyleft95.67 396.02 394.64 3698.78 385.93 5297.09 1696.73 7690.27 2997.04 1098.05 891.47 899.55 1495.62 899.08 798.45 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 1797.04 1098.05 892.09 699.55 1495.64 699.13 399.13 2
SD-MVS94.96 1295.33 893.88 5497.25 6986.69 2596.19 4897.11 4190.42 2596.95 1297.27 2589.53 1496.91 23494.38 1698.85 1998.03 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_one_060198.58 1185.83 5797.44 1491.05 1296.78 1398.06 691.45 11
test_part298.55 1287.22 1696.40 14
FOURS198.86 185.54 6398.29 197.49 589.79 4196.29 15
APDe-MVS95.46 595.64 594.91 1998.26 2886.29 4397.46 697.40 1989.03 6196.20 1698.10 289.39 1699.34 3295.88 399.03 1199.10 4
MSP-MVS95.42 695.56 694.98 1798.49 1786.52 3396.91 2597.47 1091.73 896.10 1796.69 5389.90 1299.30 3894.70 1298.04 6399.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.94.85 1394.94 1194.58 3998.25 2986.33 3996.11 5396.62 8588.14 8996.10 1796.96 4289.09 1898.94 7394.48 1598.68 3598.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS94.97 1194.90 1395.20 1097.84 4787.76 996.65 3497.48 987.76 10195.71 1997.70 1388.28 2399.35 3193.89 2298.78 2598.48 28
DeepPCF-MVS89.96 194.20 2994.77 1492.49 10196.52 8780.00 20494.00 18197.08 4290.05 3395.65 2097.29 2489.66 1398.97 7093.95 2098.71 3098.50 25
SteuartSystems-ACMMP95.20 895.32 994.85 2396.99 7286.33 3997.33 797.30 2791.38 1095.39 2197.46 1788.98 1999.40 2894.12 1898.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS95.40 795.37 795.50 798.11 3688.51 795.29 9296.96 5092.09 495.32 2297.08 3689.49 1599.33 3595.10 1198.85 1998.66 19
ACMMP_NAP94.74 1594.56 1695.28 898.02 4187.70 1095.68 7497.34 2188.28 8295.30 2397.67 1485.90 4399.54 1893.91 2198.95 1598.60 21
9.1494.47 1797.79 4996.08 5497.44 1486.13 13695.10 2497.40 2088.34 2299.22 4293.25 3198.70 32
APD-MVScopyleft94.24 2594.07 3294.75 3398.06 3986.90 2095.88 6496.94 5385.68 14495.05 2597.18 3287.31 3399.07 5191.90 6798.61 4498.28 48
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-293.74 3994.32 2092.01 11797.54 5778.37 24293.40 20497.19 3388.02 9194.99 2697.21 2988.35 2198.44 10994.07 1998.09 6199.23 1
dcpmvs_293.49 4394.19 2991.38 15197.69 5476.78 27494.25 16096.29 10188.33 7994.46 2796.88 4588.07 2598.64 9193.62 2598.09 6198.73 16
旧先验293.36 20571.25 34394.37 2897.13 22186.74 131
SR-MVS94.23 2694.17 3094.43 4498.21 3285.78 5996.40 3996.90 5788.20 8794.33 2997.40 2084.75 5999.03 5693.35 3097.99 6498.48 28
TSAR-MVS + GP.93.66 4193.41 4594.41 4696.59 8286.78 2394.40 15093.93 23589.77 4294.21 3095.59 10187.35 3298.61 9592.72 4096.15 9897.83 79
ZD-MVS98.15 3486.62 3097.07 4383.63 18694.19 3196.91 4487.57 3199.26 4091.99 6198.44 49
alignmvs93.08 5392.50 6094.81 2995.62 11987.61 1295.99 5996.07 11989.77 4294.12 3294.87 12380.56 9998.66 8992.42 4593.10 15598.15 59
canonicalmvs93.27 5092.75 5694.85 2395.70 11687.66 1196.33 4096.41 9590.00 3594.09 3394.60 13882.33 8198.62 9492.40 4692.86 15998.27 50
VNet92.24 6591.91 6693.24 6596.59 8283.43 10394.84 12296.44 9389.19 5694.08 3495.90 8777.85 13498.17 12888.90 10393.38 14998.13 60
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 2989.65 495.92 6396.96 5091.75 794.02 3596.83 4888.12 2499.55 1493.41 2998.94 1698.28 48
NCCC94.81 1494.69 1595.17 1297.83 4887.46 1495.66 7696.93 5492.34 293.94 3696.58 6387.74 2799.44 2792.83 3798.40 5098.62 20
APD-MVS_3200maxsize93.78 3893.77 4093.80 5897.92 4384.19 8596.30 4196.87 6086.96 11593.92 3797.47 1683.88 6798.96 7292.71 4197.87 6898.26 52
SR-MVS-dyc-post93.82 3793.82 3793.82 5697.92 4384.57 7396.28 4396.76 7287.46 10593.75 3897.43 1884.24 6399.01 6192.73 3897.80 7097.88 75
RE-MVS-def93.68 4397.92 4384.57 7396.28 4396.76 7287.46 10593.75 3897.43 1882.94 7492.73 3897.80 7097.88 75
HFP-MVS94.52 1694.40 1994.86 2298.61 1086.81 2296.94 2097.34 2188.63 7193.65 4097.21 2986.10 4199.49 2492.35 4898.77 2798.30 45
testdata90.49 18796.40 8977.89 25495.37 17472.51 33793.63 4196.69 5382.08 8797.65 16983.08 17597.39 7695.94 148
region2R94.43 2094.27 2594.92 1898.65 886.67 2796.92 2497.23 3288.60 7393.58 4297.27 2585.22 5099.54 1892.21 5198.74 2998.56 23
MSLP-MVS++93.72 4094.08 3192.65 9397.31 6583.43 10395.79 6897.33 2390.03 3493.58 4296.96 4284.87 5797.76 16192.19 5398.66 3896.76 119
PHI-MVS93.89 3693.65 4494.62 3896.84 7586.43 3696.69 3297.49 585.15 15893.56 4496.28 7185.60 4599.31 3792.45 4398.79 2398.12 62
ACMMPR94.43 2094.28 2394.91 1998.63 986.69 2596.94 2097.32 2588.63 7193.53 4597.26 2785.04 5399.54 1892.35 4898.78 2598.50 25
CS-MVS94.12 3094.44 1893.17 6896.55 8483.08 11597.63 396.95 5291.71 993.50 4696.21 7385.61 4498.24 12393.64 2498.17 5698.19 56
GST-MVS94.21 2793.97 3594.90 2198.41 2286.82 2196.54 3697.19 3388.24 8393.26 4796.83 4885.48 4799.59 791.43 7398.40 5098.30 45
PGM-MVS93.96 3593.72 4194.68 3598.43 2086.22 4495.30 9097.78 187.45 10793.26 4797.33 2384.62 6099.51 2290.75 8598.57 4598.32 44
UA-Net92.83 5692.54 5993.68 6096.10 10084.71 7195.66 7696.39 9691.92 593.22 4996.49 6683.16 7198.87 7784.47 15995.47 10797.45 94
ZNCC-MVS94.47 1794.28 2395.03 1498.52 1586.96 1796.85 2897.32 2588.24 8393.15 5097.04 3986.17 4099.62 192.40 4698.81 2298.52 24
MTAPA94.42 2294.22 2695.00 1698.42 2186.95 1894.36 15796.97 4891.07 1193.14 5197.56 1584.30 6299.56 1093.43 2798.75 2898.47 31
h-mvs3390.80 8690.15 9292.75 8796.01 10482.66 13295.43 8495.53 16089.80 3893.08 5295.64 9975.77 15199.00 6592.07 5778.05 32596.60 124
hse-mvs289.88 11289.34 11191.51 14594.83 15181.12 17093.94 18493.91 23889.80 3893.08 5293.60 17875.77 15197.66 16892.07 5777.07 33295.74 158
ETV-MVS92.74 5892.66 5792.97 7895.20 13284.04 8995.07 10896.51 9190.73 2092.96 5491.19 25784.06 6498.34 11691.72 6996.54 9296.54 128
CS-MVS-test94.02 3294.29 2293.24 6596.69 7883.24 10897.49 596.92 5592.14 392.90 5595.77 9485.02 5498.33 11893.03 3498.62 4298.13 60
DROMVSNet93.44 4593.71 4292.63 9495.21 13182.43 13697.27 996.71 7990.57 2492.88 5695.80 9283.16 7198.16 12993.68 2398.14 5897.31 96
XVS94.45 1894.32 2094.85 2398.54 1386.60 3196.93 2297.19 3390.66 2292.85 5797.16 3485.02 5499.49 2491.99 6198.56 4698.47 31
X-MVStestdata88.31 15886.13 20494.85 2398.54 1386.60 3196.93 2297.19 3390.66 2292.85 5723.41 37485.02 5499.49 2491.99 6198.56 4698.47 31
MP-MVS-pluss94.21 2794.00 3494.85 2398.17 3386.65 2894.82 12397.17 3786.26 13092.83 5997.87 1285.57 4699.56 1094.37 1798.92 1798.34 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepC-MVS_fast89.43 294.04 3193.79 3894.80 3097.48 6186.78 2395.65 7896.89 5889.40 5092.81 6096.97 4185.37 4999.24 4190.87 8398.69 3398.38 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TEST997.53 5886.49 3494.07 17396.78 6981.61 23592.77 6196.20 7487.71 2899.12 49
train_agg93.44 4593.08 5094.52 4197.53 5886.49 3494.07 17396.78 6981.86 22892.77 6196.20 7487.63 2999.12 4992.14 5598.69 3397.94 71
CDPH-MVS92.83 5692.30 6294.44 4297.79 4986.11 4694.06 17596.66 8280.09 25592.77 6196.63 6086.62 3699.04 5587.40 12198.66 3898.17 58
CP-MVS94.34 2394.21 2794.74 3498.39 2386.64 2997.60 497.24 3088.53 7592.73 6497.23 2885.20 5199.32 3692.15 5498.83 2198.25 53
test_897.49 6086.30 4294.02 17896.76 7281.86 22892.70 6596.20 7487.63 2999.02 59
test_prior294.12 16787.67 10392.63 6696.39 6986.62 3691.50 7198.67 37
HPM-MVScopyleft94.02 3293.88 3694.43 4498.39 2385.78 5997.25 1097.07 4386.90 11992.62 6796.80 5284.85 5899.17 4592.43 4498.65 4098.33 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS90.74 8889.92 10093.20 6796.27 9383.02 11795.73 7193.86 23988.42 7892.53 6896.84 4762.09 29798.64 9190.95 8192.62 16297.93 73
EI-MVSNet-Vis-set93.01 5492.92 5393.29 6395.01 13883.51 10294.48 14295.77 14190.87 1392.52 6996.67 5584.50 6199.00 6591.99 6194.44 13097.36 95
MCST-MVS94.45 1894.20 2895.19 1198.46 1987.50 1395.00 11297.12 3987.13 11192.51 7096.30 7089.24 1799.34 3293.46 2698.62 4298.73 16
HPM-MVS_fast93.40 4893.22 4893.94 5398.36 2584.83 6997.15 1396.80 6885.77 14192.47 7197.13 3582.38 7999.07 5190.51 9098.40 5097.92 74
xiu_mvs_v1_base_debu90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
xiu_mvs_v1_base90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
xiu_mvs_v1_base_debi90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
agg_prior97.38 6385.92 5496.72 7892.16 7598.97 70
LFMVS90.08 10289.13 11692.95 7996.71 7782.32 14196.08 5489.91 33186.79 12092.15 7696.81 5062.60 29598.34 11687.18 12593.90 13698.19 56
EI-MVSNet-UG-set92.74 5892.62 5893.12 7094.86 14983.20 11094.40 15095.74 14490.71 2192.05 7796.60 6284.00 6598.99 6791.55 7093.63 14097.17 103
casdiffmvs_mvgpermissive92.96 5592.83 5593.35 6294.59 16183.40 10595.00 11296.34 9990.30 2892.05 7796.05 8283.43 6998.15 13092.07 5795.67 10298.49 27
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft94.25 2494.07 3294.77 3298.47 1886.31 4196.71 3196.98 4789.04 6091.98 7997.19 3185.43 4899.56 1092.06 6098.79 2398.44 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvs187.34 19487.56 15786.68 30090.59 30171.80 32594.01 17994.04 23378.30 28291.97 8095.22 11156.28 32893.71 32792.89 3694.71 11994.52 201
casdiffmvspermissive92.51 6192.43 6192.74 8894.41 17381.98 14694.54 14096.23 10889.57 4691.96 8196.17 7882.58 7798.01 14890.95 8195.45 10998.23 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs1_n87.03 21087.04 17186.97 29289.74 31971.86 32394.55 13994.43 21678.47 27891.95 8295.50 10251.16 34593.81 32593.02 3594.56 12595.26 171
test_vis1_n_192089.39 12989.84 10188.04 26892.97 22372.64 31694.71 13196.03 12486.18 13391.94 8396.56 6561.63 30095.74 29393.42 2895.11 11695.74 158
VDDNet89.56 11988.49 13692.76 8695.07 13782.09 14396.30 4193.19 25381.05 24791.88 8496.86 4661.16 30898.33 11888.43 10892.49 16597.84 78
baseline92.39 6492.29 6392.69 9294.46 17081.77 15194.14 16696.27 10389.22 5491.88 8496.00 8382.35 8097.99 15091.05 7695.27 11498.30 45
PS-MVSNAJ91.18 8290.92 8091.96 12395.26 12982.60 13592.09 25395.70 14686.27 12991.84 8692.46 21379.70 10998.99 6789.08 10195.86 10094.29 217
DELS-MVS93.43 4793.25 4793.97 5195.42 12485.04 6793.06 22397.13 3890.74 1991.84 8695.09 11786.32 3999.21 4391.22 7498.45 4897.65 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mPP-MVS93.99 3493.78 3994.63 3798.50 1685.90 5696.87 2696.91 5688.70 6991.83 8897.17 3383.96 6699.55 1491.44 7298.64 4198.43 36
MVSFormer91.68 7491.30 7292.80 8493.86 19483.88 9295.96 6195.90 13284.66 16991.76 8994.91 12177.92 13197.30 20589.64 9597.11 7897.24 99
lupinMVS90.92 8590.21 8993.03 7593.86 19483.88 9292.81 23093.86 23979.84 25891.76 8994.29 14877.92 13198.04 14690.48 9197.11 7897.17 103
xiu_mvs_v2_base91.13 8390.89 8291.86 13094.97 14182.42 13792.24 24795.64 15386.11 13791.74 9193.14 19379.67 11298.89 7689.06 10295.46 10894.28 218
DPM-MVS92.58 6091.74 6895.08 1396.19 9589.31 592.66 23396.56 9083.44 19291.68 9295.04 11886.60 3898.99 6785.60 14597.92 6796.93 115
MVS_111021_HR93.45 4493.31 4693.84 5596.99 7284.84 6893.24 21697.24 3088.76 6891.60 9395.85 8986.07 4298.66 8991.91 6598.16 5798.03 68
test_yl90.69 9090.02 9892.71 8995.72 11482.41 13994.11 16895.12 18485.63 14691.49 9494.70 13274.75 16698.42 11186.13 13892.53 16397.31 96
DCV-MVSNet90.69 9090.02 9892.71 8995.72 11482.41 13994.11 16895.12 18485.63 14691.49 9494.70 13274.75 16698.42 11186.13 13892.53 16397.31 96
jason90.80 8690.10 9392.90 8193.04 21983.53 10193.08 22194.15 22880.22 25291.41 9694.91 12176.87 13897.93 15590.28 9296.90 8497.24 99
jason: jason.
diffmvspermissive91.37 7891.23 7491.77 13693.09 21680.27 19092.36 24295.52 16187.03 11491.40 9794.93 12080.08 10397.44 18992.13 5694.56 12597.61 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test91.31 7991.11 7691.93 12594.37 17480.14 19593.46 20395.80 13986.46 12691.35 9893.77 17482.21 8498.09 14187.57 11994.95 11797.55 91
新几何193.10 7197.30 6684.35 8495.56 15671.09 34491.26 9996.24 7282.87 7598.86 7979.19 24298.10 6096.07 144
MVS_111021_LR92.47 6292.29 6392.98 7795.99 10684.43 8293.08 22196.09 11788.20 8791.12 10095.72 9781.33 9597.76 16191.74 6897.37 7796.75 120
test1294.34 4797.13 7086.15 4596.29 10191.04 10185.08 5299.01 6198.13 5997.86 77
MG-MVS91.77 7091.70 6992.00 12097.08 7180.03 20293.60 19895.18 18287.85 9990.89 10296.47 6782.06 8898.36 11385.07 14997.04 8197.62 85
test_vis1_n86.56 22486.49 19386.78 29988.51 32872.69 31394.68 13293.78 24379.55 26290.70 10395.31 10748.75 35093.28 33393.15 3293.99 13494.38 213
CANet93.54 4293.20 4994.55 4095.65 11785.73 6194.94 11596.69 8191.89 690.69 10495.88 8881.99 9099.54 1893.14 3397.95 6698.39 37
Effi-MVS+91.59 7591.11 7693.01 7694.35 17783.39 10694.60 13695.10 18687.10 11290.57 10593.10 19581.43 9498.07 14489.29 9994.48 12897.59 88
test250687.21 20386.28 20090.02 21295.62 11973.64 30496.25 4671.38 37487.89 9790.45 10696.65 5755.29 33398.09 14186.03 14096.94 8298.33 41
原ACMM192.01 11797.34 6481.05 17196.81 6778.89 27090.45 10695.92 8682.65 7698.84 8380.68 22298.26 5596.14 138
Vis-MVSNetpermissive91.75 7191.23 7493.29 6395.32 12683.78 9496.14 5195.98 12589.89 3690.45 10696.58 6375.09 16298.31 12184.75 15596.90 8497.78 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS91.99 6691.80 6792.55 9898.24 3181.98 14696.76 3096.49 9281.89 22790.24 10996.44 6878.59 12398.61 9589.68 9497.85 6997.06 107
ECVR-MVScopyleft89.09 13688.53 13290.77 17895.62 11975.89 28596.16 4984.22 35587.89 9790.20 11096.65 5763.19 29398.10 13385.90 14196.94 8298.33 41
test22296.55 8481.70 15292.22 24895.01 18968.36 35090.20 11096.14 7980.26 10297.80 7096.05 146
test111189.10 13488.64 12890.48 18995.53 12274.97 29296.08 5484.89 35388.13 9090.16 11296.65 5763.29 29198.10 13386.14 13696.90 8498.39 37
ACMMPcopyleft93.24 5192.88 5494.30 4898.09 3885.33 6596.86 2797.45 1388.33 7990.15 11397.03 4081.44 9399.51 2290.85 8495.74 10198.04 67
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 5293.05 5193.76 5998.04 4084.07 8796.22 4797.37 2084.15 17490.05 11495.66 9887.77 2699.15 4889.91 9398.27 5498.07 64
DP-MVS Recon91.95 6791.28 7393.96 5298.33 2785.92 5494.66 13496.66 8282.69 20990.03 11595.82 9182.30 8299.03 5684.57 15796.48 9596.91 116
FA-MVS(test-final)89.66 11588.91 12291.93 12594.57 16480.27 19091.36 26794.74 20984.87 16389.82 11692.61 21074.72 16998.47 10483.97 16593.53 14397.04 109
EPP-MVSNet91.70 7391.56 7092.13 11695.88 10980.50 18797.33 795.25 17886.15 13489.76 11795.60 10083.42 7098.32 12087.37 12393.25 15297.56 90
DeepC-MVS88.79 393.31 4992.99 5294.26 4996.07 10285.83 5794.89 11896.99 4689.02 6389.56 11897.37 2282.51 7899.38 2992.20 5298.30 5397.57 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS91.23 8090.62 8593.08 7296.27 9384.07 8793.52 20095.93 12886.95 11689.51 11996.13 8078.50 12598.35 11585.84 14392.90 15896.83 118
IS-MVSNet91.43 7691.09 7892.46 10295.87 11181.38 16396.95 1993.69 24689.72 4489.50 12095.98 8478.57 12497.77 16083.02 17796.50 9498.22 55
Anonymous20240521187.68 17486.13 20492.31 11096.66 7980.74 18194.87 12091.49 30080.47 25189.46 12195.44 10354.72 33598.23 12482.19 19389.89 19097.97 70
EIA-MVS91.95 6791.94 6591.98 12195.16 13380.01 20395.36 8596.73 7688.44 7689.34 12292.16 22383.82 6898.45 10889.35 9797.06 8097.48 92
PVSNet_Blended_VisFu91.38 7790.91 8192.80 8496.39 9083.17 11194.87 12096.66 8283.29 19689.27 12394.46 14280.29 10199.17 4587.57 11995.37 11096.05 146
API-MVS90.66 9290.07 9492.45 10396.36 9184.57 7396.06 5795.22 18182.39 21289.13 12494.27 15180.32 10098.46 10580.16 23096.71 8994.33 214
PVSNet_BlendedMVS89.98 10589.70 10290.82 17696.12 9781.25 16593.92 18696.83 6483.49 19189.10 12592.26 22181.04 9798.85 8186.72 13387.86 22892.35 298
PVSNet_Blended90.73 8990.32 8891.98 12196.12 9781.25 16592.55 23796.83 6482.04 22189.10 12592.56 21181.04 9798.85 8186.72 13395.91 9995.84 153
Anonymous2024052988.09 16486.59 18892.58 9796.53 8681.92 14895.99 5995.84 13774.11 32389.06 12795.21 11361.44 30398.81 8483.67 17187.47 23197.01 111
WTY-MVS89.60 11788.92 12191.67 13995.47 12381.15 16992.38 24194.78 20783.11 19989.06 12794.32 14678.67 12296.61 24881.57 20790.89 17997.24 99
XVG-OURS89.40 12888.70 12691.52 14494.06 18381.46 16091.27 26996.07 11986.14 13588.89 12995.77 9468.73 25197.26 21187.39 12289.96 18895.83 154
FE-MVS87.40 19286.02 21091.57 14394.56 16579.69 21290.27 28393.72 24580.57 25088.80 13091.62 24665.32 27998.59 9774.97 28494.33 13296.44 129
mvsany_test185.42 24585.30 23285.77 31087.95 33975.41 29187.61 32780.97 36376.82 29688.68 13195.83 9077.44 13590.82 35185.90 14186.51 24291.08 325
sss88.93 14388.26 14490.94 17594.05 18480.78 18091.71 26095.38 17281.55 23688.63 13293.91 16875.04 16395.47 30482.47 18791.61 17096.57 126
XVG-OURS-SEG-HR89.95 10889.45 10691.47 14894.00 18981.21 16891.87 25696.06 12185.78 14088.55 13395.73 9674.67 17097.27 20988.71 10589.64 19595.91 149
ab-mvs89.41 12688.35 13892.60 9595.15 13582.65 13392.20 24995.60 15583.97 17888.55 13393.70 17774.16 17898.21 12782.46 18889.37 19896.94 114
thisisatest053088.67 14987.61 15691.86 13094.87 14880.07 19894.63 13589.90 33284.00 17788.46 13593.78 17366.88 26598.46 10583.30 17392.65 16197.06 107
VPA-MVSNet89.62 11688.96 11991.60 14193.86 19482.89 12395.46 8397.33 2387.91 9488.43 13693.31 18574.17 17797.40 19887.32 12482.86 27594.52 201
nrg03091.08 8490.39 8693.17 6893.07 21786.91 1996.41 3796.26 10488.30 8188.37 13794.85 12682.19 8597.64 17291.09 7582.95 27094.96 181
tfpn200view987.58 18486.64 18490.41 19395.99 10678.64 23394.58 13791.98 28686.94 11788.09 13891.77 23969.18 24598.10 13370.13 31191.10 17394.48 209
thres40087.62 18186.64 18490.57 18195.99 10678.64 23394.58 13791.98 28686.94 11788.09 13891.77 23969.18 24598.10 13370.13 31191.10 17394.96 181
thres600view787.65 17686.67 18390.59 18096.08 10178.72 23194.88 11991.58 29687.06 11388.08 14092.30 21968.91 24898.10 13370.05 31491.10 17394.96 181
thres100view90087.63 17986.71 18190.38 19696.12 9778.55 23595.03 11191.58 29687.15 11088.06 14192.29 22068.91 24898.10 13370.13 31191.10 17394.48 209
tttt051788.61 15187.78 15391.11 16494.96 14277.81 25795.35 8689.69 33585.09 16088.05 14294.59 13966.93 26398.48 10283.27 17492.13 16897.03 110
thres20087.21 20386.24 20290.12 20695.36 12578.53 23693.26 21392.10 28086.42 12788.00 14391.11 26369.24 24498.00 14969.58 31591.04 17893.83 240
OPM-MVS90.12 10189.56 10491.82 13393.14 21483.90 9194.16 16595.74 14488.96 6487.86 14495.43 10572.48 20297.91 15688.10 11390.18 18593.65 253
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MAR-MVS90.30 9889.37 11093.07 7496.61 8184.48 7895.68 7495.67 14882.36 21487.85 14592.85 20076.63 14498.80 8580.01 23196.68 9095.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)89.59 11889.44 10790.03 21095.74 11375.85 28695.61 8090.80 31787.66 10487.83 14695.40 10676.79 14096.46 26178.37 24696.73 8897.80 80
CDS-MVSNet89.45 12388.51 13392.29 11293.62 20383.61 10093.01 22494.68 21181.95 22387.82 14793.24 18978.69 12196.99 22980.34 22793.23 15396.28 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS89.21 13288.29 14291.96 12393.71 20082.62 13493.30 21094.19 22682.22 21687.78 14893.94 16478.83 11896.95 23177.70 25592.98 15796.32 132
CANet_DTU90.26 10089.41 10992.81 8393.46 20883.01 11893.48 20194.47 21589.43 4987.76 14994.23 15270.54 22599.03 5684.97 15096.39 9696.38 131
HyFIR lowres test88.09 16486.81 17691.93 12596.00 10580.63 18390.01 29395.79 14073.42 32987.68 15092.10 22973.86 18397.96 15280.75 22091.70 16997.19 102
UGNet89.95 10888.95 12092.95 7994.51 16783.31 10795.70 7395.23 17989.37 5187.58 15193.94 16464.00 28698.78 8683.92 16696.31 9796.74 121
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
thisisatest051587.33 19585.99 21191.37 15293.49 20679.55 21490.63 27989.56 33880.17 25387.56 15290.86 26867.07 26298.28 12281.50 20893.02 15696.29 133
GeoE90.05 10389.43 10891.90 12995.16 13380.37 18995.80 6794.65 21283.90 17987.55 15394.75 13178.18 12997.62 17481.28 21093.63 14097.71 83
baseline188.10 16387.28 16590.57 18194.96 14280.07 19894.27 15991.29 30586.74 12187.41 15494.00 16176.77 14196.20 27280.77 21979.31 32195.44 165
CHOSEN 1792x268888.84 14587.69 15492.30 11196.14 9681.42 16290.01 29395.86 13674.52 31987.41 15493.94 16475.46 15998.36 11380.36 22695.53 10497.12 106
PAPM_NR91.22 8190.78 8492.52 10097.60 5681.46 16094.37 15696.24 10786.39 12887.41 15494.80 12982.06 8898.48 10282.80 18395.37 11097.61 86
EPNet91.79 6991.02 7994.10 5090.10 31185.25 6696.03 5892.05 28292.83 187.39 15795.78 9379.39 11499.01 6188.13 11197.48 7598.05 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
iter_conf0588.85 14488.08 14791.17 16094.27 17881.64 15395.18 10092.15 27886.23 13287.28 15894.07 15463.89 28997.55 17890.63 8689.00 20794.32 215
EI-MVSNet89.10 13488.86 12589.80 22291.84 25178.30 24493.70 19595.01 18985.73 14287.15 15995.28 10879.87 10697.21 21683.81 16887.36 23493.88 235
MVSTER88.84 14588.29 14290.51 18692.95 22480.44 18893.73 19295.01 18984.66 16987.15 15993.12 19472.79 19897.21 21687.86 11487.36 23493.87 236
iter_conf_final89.42 12588.69 12791.60 14195.12 13682.93 12195.75 7092.14 27987.32 10987.12 16194.07 15467.09 26197.55 17890.61 8789.01 20694.32 215
mvsmamba89.96 10789.50 10591.33 15492.90 22681.82 14996.68 3392.37 27089.03 6187.00 16294.85 12673.05 19497.65 16991.03 7788.63 21194.51 203
VPNet88.20 16187.47 16090.39 19493.56 20579.46 21694.04 17695.54 15988.67 7086.96 16394.58 14069.33 24097.15 21884.05 16480.53 30894.56 199
AUN-MVS87.78 17286.54 19091.48 14794.82 15281.05 17193.91 18893.93 23583.00 20286.93 16493.53 17969.50 23797.67 16686.14 13677.12 33195.73 160
HY-MVS83.01 1289.03 14087.94 15192.29 11294.86 14982.77 12492.08 25494.49 21481.52 23786.93 16492.79 20678.32 12898.23 12479.93 23290.55 18095.88 151
HQP_MVS90.60 9690.19 9091.82 13394.70 15782.73 12895.85 6596.22 10990.81 1586.91 16694.86 12474.23 17498.12 13188.15 10989.99 18694.63 193
plane_prior382.75 12590.26 3186.91 166
BH-RMVSNet88.37 15687.48 15991.02 16995.28 12779.45 21792.89 22893.07 25585.45 15186.91 16694.84 12870.35 22697.76 16173.97 29094.59 12495.85 152
test_fmvs283.98 26584.03 25383.83 32687.16 34167.53 35193.93 18592.89 25877.62 28886.89 16993.53 17947.18 35592.02 34490.54 8886.51 24291.93 305
Fast-Effi-MVS+89.41 12688.64 12891.71 13894.74 15380.81 17993.54 19995.10 18683.11 19986.82 17090.67 27479.74 10897.75 16480.51 22593.55 14296.57 126
FIs90.51 9790.35 8790.99 17293.99 19080.98 17395.73 7197.54 389.15 5786.72 17194.68 13481.83 9297.24 21385.18 14888.31 22094.76 191
PAPR90.02 10489.27 11592.29 11295.78 11280.95 17592.68 23296.22 10981.91 22586.66 17293.75 17682.23 8398.44 10979.40 24194.79 11897.48 92
PMMVS85.71 24184.96 23987.95 27088.90 32677.09 27088.68 31390.06 32772.32 33886.47 17390.76 27372.15 20594.40 31581.78 20393.49 14592.36 297
UniMVSNet_NR-MVSNet89.92 11089.29 11391.81 13593.39 20983.72 9594.43 14897.12 3989.80 3886.46 17493.32 18483.16 7197.23 21484.92 15181.02 29994.49 208
DU-MVS89.34 13188.50 13491.85 13293.04 21983.72 9594.47 14596.59 8789.50 4786.46 17493.29 18777.25 13697.23 21484.92 15181.02 29994.59 196
CostFormer85.77 24084.94 24088.26 26191.16 27772.58 31989.47 30191.04 31176.26 30286.45 17689.97 28870.74 21996.86 23782.35 19087.07 23995.34 170
UniMVSNet (Re)89.80 11389.07 11792.01 11793.60 20484.52 7694.78 12697.47 1089.26 5386.44 17792.32 21882.10 8697.39 20184.81 15480.84 30394.12 223
TR-MVS86.78 21685.76 22289.82 21994.37 17478.41 24092.47 23892.83 26081.11 24686.36 17892.40 21568.73 25197.48 18473.75 29389.85 19293.57 255
AdaColmapbinary89.89 11189.07 11792.37 10797.41 6283.03 11694.42 14995.92 12982.81 20786.34 17994.65 13673.89 18299.02 5980.69 22195.51 10595.05 176
FC-MVSNet-test90.27 9990.18 9190.53 18393.71 20079.85 20995.77 6997.59 289.31 5286.27 18094.67 13581.93 9197.01 22884.26 16188.09 22494.71 192
PS-MVSNAJss89.97 10689.62 10391.02 16991.90 24980.85 17895.26 9595.98 12586.26 13086.21 18194.29 14879.70 10997.65 16988.87 10488.10 22294.57 198
TAPA-MVS84.62 688.16 16287.01 17291.62 14096.64 8080.65 18294.39 15296.21 11276.38 29986.19 18295.44 10379.75 10798.08 14362.75 34795.29 11296.13 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CVMVSNet84.69 26084.79 24484.37 32191.84 25164.92 35793.70 19591.47 30166.19 35386.16 18395.28 10867.18 26093.33 33280.89 21890.42 18294.88 186
tpmrst85.35 24784.99 23786.43 30290.88 29167.88 34888.71 31291.43 30280.13 25486.08 18488.80 30573.05 19496.02 27982.48 18683.40 26995.40 167
ACMM84.12 989.14 13388.48 13791.12 16194.65 16081.22 16795.31 8896.12 11685.31 15485.92 18594.34 14470.19 22998.06 14585.65 14488.86 20994.08 227
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t89.51 12088.50 13492.54 9998.11 3681.99 14595.16 10396.36 9870.19 34785.81 18695.25 11076.70 14298.63 9382.07 19596.86 8797.00 112
tpm84.73 25884.02 25486.87 29790.33 30768.90 34489.06 30889.94 33080.85 24885.75 18789.86 29068.54 25395.97 28177.76 25484.05 25995.75 157
Baseline_NR-MVSNet87.07 20886.63 18688.40 25691.44 26377.87 25594.23 16392.57 26784.12 17585.74 18892.08 23077.25 13696.04 27782.29 19279.94 31491.30 316
V4287.68 17486.86 17490.15 20490.58 30280.14 19594.24 16295.28 17783.66 18585.67 18991.33 25274.73 16897.41 19684.43 16081.83 28592.89 282
v114487.61 18286.79 17890.06 20991.01 28179.34 22193.95 18395.42 17183.36 19585.66 19091.31 25574.98 16497.42 19183.37 17282.06 28193.42 262
PatchT82.68 27781.27 27986.89 29690.09 31270.94 33584.06 34990.15 32474.91 31585.63 19183.57 34669.37 23894.87 31365.19 33788.50 21594.84 187
bld_raw_dy_0_6487.60 18386.73 17990.21 20091.72 25580.26 19295.09 10788.61 34085.68 14485.55 19294.38 14363.93 28896.66 24287.73 11687.84 22993.72 250
CR-MVSNet85.35 24783.76 25890.12 20690.58 30279.34 22185.24 34291.96 28878.27 28385.55 19287.87 32071.03 21495.61 29573.96 29189.36 19995.40 167
RPMNet83.95 26781.53 27791.21 15790.58 30279.34 22185.24 34296.76 7271.44 34285.55 19282.97 35070.87 21798.91 7561.01 35189.36 19995.40 167
v2v48287.84 16987.06 16990.17 20290.99 28279.23 22894.00 18195.13 18384.87 16385.53 19592.07 23274.45 17197.45 18784.71 15681.75 28793.85 239
TranMVSNet+NR-MVSNet88.84 14587.95 15091.49 14692.68 23183.01 11894.92 11796.31 10089.88 3785.53 19593.85 17176.63 14496.96 23081.91 19979.87 31694.50 206
v14419287.19 20586.35 19689.74 22390.64 29978.24 24693.92 18695.43 16981.93 22485.51 19791.05 26574.21 17697.45 18782.86 18081.56 28993.53 256
SCA86.32 23185.18 23489.73 22592.15 24076.60 27691.12 27291.69 29383.53 19085.50 19888.81 30366.79 26696.48 25876.65 26590.35 18396.12 140
RRT_MVS89.09 13688.62 13190.49 18792.85 22779.65 21396.41 3794.41 21888.22 8585.50 19894.77 13069.36 23997.31 20489.33 9886.73 24194.51 203
v119287.25 19986.33 19790.00 21490.76 29579.04 22993.80 18995.48 16282.57 21085.48 20091.18 25973.38 19297.42 19182.30 19182.06 28193.53 256
WR-MVS88.38 15587.67 15590.52 18593.30 21180.18 19393.26 21395.96 12788.57 7485.47 20192.81 20476.12 14696.91 23481.24 21182.29 27994.47 211
mvs_anonymous89.37 13089.32 11289.51 23393.47 20774.22 29991.65 26394.83 20382.91 20585.45 20293.79 17281.23 9696.36 26786.47 13594.09 13397.94 71
LPG-MVS_test89.45 12388.90 12391.12 16194.47 16881.49 15895.30 9096.14 11486.73 12285.45 20295.16 11469.89 23198.10 13387.70 11789.23 20293.77 246
LGP-MVS_train91.12 16194.47 16881.49 15896.14 11486.73 12285.45 20295.16 11469.89 23198.10 13387.70 11789.23 20293.77 246
Effi-MVS+-dtu88.65 15088.35 13889.54 23093.33 21076.39 28094.47 14594.36 22087.70 10285.43 20589.56 29673.45 18997.26 21185.57 14691.28 17294.97 178
v124086.78 21685.85 21789.56 22990.45 30677.79 25893.61 19795.37 17481.65 23285.43 20591.15 26171.50 20997.43 19081.47 20982.05 28393.47 260
HQP-NCC94.17 18094.39 15288.81 6585.43 205
ACMP_Plane94.17 18094.39 15288.81 6585.43 205
HQP4-MVS85.43 20597.96 15294.51 203
HQP-MVS89.80 11389.28 11491.34 15394.17 18081.56 15494.39 15296.04 12288.81 6585.43 20593.97 16373.83 18497.96 15287.11 12889.77 19394.50 206
CLD-MVS89.47 12288.90 12391.18 15994.22 17982.07 14492.13 25196.09 11787.90 9585.37 21192.45 21474.38 17297.56 17787.15 12690.43 18193.93 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D87.53 18686.37 19591.00 17192.44 23478.96 23094.74 12895.61 15484.07 17685.36 21294.52 14159.78 31697.34 20382.93 17887.88 22796.71 122
v192192086.97 21186.06 20989.69 22790.53 30578.11 24993.80 18995.43 16981.90 22685.33 21391.05 26572.66 19997.41 19682.05 19681.80 28693.53 256
test_djsdf89.03 14088.64 12890.21 20090.74 29679.28 22595.96 6195.90 13284.66 16985.33 21392.94 19974.02 18097.30 20589.64 9588.53 21394.05 229
GA-MVS86.61 22185.27 23390.66 17991.33 27178.71 23290.40 28293.81 24285.34 15385.12 21589.57 29561.25 30597.11 22280.99 21689.59 19696.15 137
PatchmatchNetpermissive85.85 23884.70 24589.29 23691.76 25475.54 28988.49 31591.30 30481.63 23485.05 21688.70 30771.71 20696.24 27174.61 28789.05 20596.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS83.90 26982.70 27187.51 27790.23 31072.67 31488.62 31481.96 36181.37 23985.01 21788.34 31166.31 27394.45 31475.30 27987.12 23795.43 166
PVSNet78.82 1885.55 24284.65 24688.23 26394.72 15571.93 32287.12 33092.75 26378.80 27384.95 21890.53 27664.43 28596.71 24174.74 28593.86 13796.06 145
MDTV_nov1_ep1383.56 26191.69 25969.93 34187.75 32391.54 29878.60 27784.86 21988.90 30269.54 23696.03 27870.25 30888.93 208
IterMVS-LS88.36 15787.91 15289.70 22693.80 19778.29 24593.73 19295.08 18885.73 14284.75 22091.90 23779.88 10596.92 23383.83 16782.51 27693.89 233
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080586.92 21285.74 22490.48 18992.22 23879.98 20595.63 7994.88 19983.83 18284.74 22192.80 20557.61 32497.67 16685.48 14784.42 25593.79 241
tpm284.08 26482.94 26787.48 28091.39 26771.27 32989.23 30590.37 32171.95 34084.64 22289.33 29767.30 25796.55 25575.17 28087.09 23894.63 193
XXY-MVS87.65 17686.85 17590.03 21092.14 24180.60 18593.76 19195.23 17982.94 20484.60 22394.02 15974.27 17395.49 30381.04 21383.68 26394.01 231
MDTV_nov1_ep13_2view55.91 37387.62 32673.32 33084.59 22470.33 22774.65 28695.50 164
test-LLR85.87 23785.41 22887.25 28590.95 28471.67 32789.55 29789.88 33383.41 19384.54 22587.95 31767.25 25895.11 30981.82 20193.37 15094.97 178
test-mter84.54 26183.64 26087.25 28590.95 28471.67 32789.55 29789.88 33379.17 26684.54 22587.95 31755.56 33095.11 30981.82 20193.37 15094.97 178
miper_enhance_ethall86.90 21386.18 20389.06 24291.66 26077.58 26490.22 28994.82 20479.16 26784.48 22789.10 29979.19 11696.66 24284.06 16382.94 27192.94 280
BH-untuned88.60 15288.13 14690.01 21395.24 13078.50 23893.29 21194.15 22884.75 16784.46 22893.40 18175.76 15397.40 19877.59 25694.52 12794.12 223
CNLPA89.07 13887.98 14992.34 10896.87 7484.78 7094.08 17293.24 25181.41 23884.46 22895.13 11675.57 15896.62 24577.21 26093.84 13895.61 163
PCF-MVS84.11 1087.74 17386.08 20892.70 9194.02 18584.43 8289.27 30395.87 13573.62 32884.43 23094.33 14578.48 12698.86 7970.27 30794.45 12994.81 189
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 19785.98 21291.08 16594.01 18683.10 11295.14 10494.94 19283.57 18784.37 23191.64 24266.59 27096.34 26878.23 25085.36 24893.79 241
test187.26 19785.98 21291.08 16594.01 18683.10 11295.14 10494.94 19283.57 18784.37 23191.64 24266.59 27096.34 26878.23 25085.36 24893.79 241
FMVSNet387.40 19286.11 20691.30 15593.79 19983.64 9894.20 16494.81 20583.89 18084.37 23191.87 23868.45 25496.56 25378.23 25085.36 24893.70 252
v14887.04 20986.32 19889.21 23790.94 28677.26 26893.71 19494.43 21684.84 16584.36 23490.80 27176.04 14897.05 22682.12 19479.60 31893.31 264
c3_l87.14 20786.50 19289.04 24392.20 23977.26 26891.22 27194.70 21082.01 22284.34 23590.43 27878.81 11996.61 24883.70 17081.09 29693.25 267
miper_ehance_all_eth87.22 20286.62 18789.02 24492.13 24277.40 26790.91 27594.81 20581.28 24184.32 23690.08 28579.26 11596.62 24583.81 16882.94 27193.04 277
PatchMatch-RL86.77 21985.54 22590.47 19295.88 10982.71 13090.54 28092.31 27379.82 25984.32 23691.57 25068.77 25096.39 26473.16 29593.48 14792.32 299
3Dnovator86.66 591.73 7290.82 8394.44 4294.59 16186.37 3897.18 1297.02 4589.20 5584.31 23896.66 5673.74 18699.17 4586.74 13197.96 6597.79 81
jajsoiax88.24 16087.50 15890.48 18990.89 29080.14 19595.31 8895.65 15284.97 16284.24 23994.02 15965.31 28097.42 19188.56 10688.52 21493.89 233
mvs_tets88.06 16687.28 16590.38 19690.94 28679.88 20795.22 9795.66 15085.10 15984.21 24093.94 16463.53 29097.40 19888.50 10788.40 21893.87 236
eth_miper_zixun_eth86.50 22785.77 22188.68 25191.94 24875.81 28790.47 28194.89 19782.05 21984.05 24190.46 27775.96 14996.77 23882.76 18479.36 32093.46 261
3Dnovator+87.14 492.42 6391.37 7195.55 695.63 11888.73 697.07 1896.77 7190.84 1484.02 24296.62 6175.95 15099.34 3287.77 11597.68 7398.59 22
PLCcopyleft84.53 789.06 13988.03 14892.15 11597.27 6882.69 13194.29 15895.44 16879.71 26084.01 24394.18 15376.68 14398.75 8777.28 25993.41 14895.02 177
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
cl2286.78 21685.98 21289.18 23992.34 23677.62 26390.84 27694.13 23081.33 24083.97 24490.15 28373.96 18196.60 25084.19 16282.94 27193.33 263
FMVSNet287.19 20585.82 21891.30 15594.01 18683.67 9794.79 12594.94 19283.57 18783.88 24592.05 23366.59 27096.51 25677.56 25785.01 25193.73 249
anonymousdsp87.84 16987.09 16890.12 20689.13 32380.54 18694.67 13395.55 15782.05 21983.82 24692.12 22671.47 21097.15 21887.15 12687.80 23092.67 287
1112_ss88.42 15487.33 16391.72 13794.92 14580.98 17392.97 22694.54 21378.16 28683.82 24693.88 16978.78 12097.91 15679.45 23789.41 19796.26 135
WR-MVS_H87.80 17187.37 16289.10 24193.23 21278.12 24895.61 8097.30 2787.90 9583.72 24892.01 23479.65 11396.01 28076.36 26880.54 30793.16 272
BH-w/o87.57 18587.05 17089.12 24094.90 14777.90 25392.41 23993.51 24882.89 20683.70 24991.34 25175.75 15497.07 22475.49 27693.49 14592.39 296
ACMP84.23 889.01 14288.35 13890.99 17294.73 15481.27 16495.07 10895.89 13486.48 12583.67 25094.30 14769.33 24097.99 15087.10 13088.55 21293.72 250
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 22385.13 23590.98 17496.52 8781.50 15696.14 5196.16 11373.78 32683.65 25192.15 22463.26 29297.37 20282.82 18281.74 28894.06 228
v1087.25 19986.38 19489.85 21791.19 27479.50 21594.48 14295.45 16683.79 18383.62 25291.19 25775.13 16197.42 19181.94 19880.60 30592.63 289
v887.50 18986.71 18189.89 21691.37 26879.40 21894.50 14195.38 17284.81 16683.60 25391.33 25276.05 14797.42 19182.84 18180.51 31092.84 284
cascas86.43 23084.98 23890.80 17792.10 24480.92 17690.24 28795.91 13173.10 33283.57 25488.39 31065.15 28197.46 18684.90 15391.43 17194.03 230
Test_1112_low_res87.65 17686.51 19191.08 16594.94 14479.28 22591.77 25894.30 22276.04 30483.51 25592.37 21677.86 13397.73 16578.69 24589.13 20496.22 136
CP-MVSNet87.63 17987.26 16788.74 25093.12 21576.59 27795.29 9296.58 8888.43 7783.49 25692.98 19875.28 16095.83 28878.97 24381.15 29593.79 241
QAPM89.51 12088.15 14593.59 6194.92 14584.58 7296.82 2996.70 8078.43 28083.41 25796.19 7773.18 19399.30 3877.11 26296.54 9296.89 117
TESTMET0.1,183.74 27082.85 26986.42 30389.96 31571.21 33189.55 29787.88 34377.41 29083.37 25887.31 32556.71 32693.65 32980.62 22392.85 16094.40 212
cl____86.52 22685.78 21988.75 24892.03 24676.46 27890.74 27794.30 22281.83 23083.34 25990.78 27275.74 15696.57 25181.74 20481.54 29093.22 269
DIV-MVS_self_test86.53 22585.78 21988.75 24892.02 24776.45 27990.74 27794.30 22281.83 23083.34 25990.82 27075.75 15496.57 25181.73 20581.52 29193.24 268
PS-CasMVS87.32 19686.88 17388.63 25392.99 22276.33 28295.33 8796.61 8688.22 8583.30 26193.07 19673.03 19695.79 29178.36 24781.00 30193.75 248
gg-mvs-nofinetune81.77 28479.37 29788.99 24590.85 29277.73 26186.29 33479.63 36674.88 31783.19 26269.05 36460.34 31196.11 27675.46 27794.64 12393.11 274
XVG-ACMP-BASELINE86.00 23484.84 24389.45 23491.20 27378.00 25091.70 26195.55 15785.05 16182.97 26392.25 22254.49 33697.48 18482.93 17887.45 23392.89 282
LS3D87.89 16886.32 19892.59 9696.07 10282.92 12295.23 9694.92 19675.66 30682.89 26495.98 8472.48 20299.21 4368.43 32195.23 11595.64 162
PEN-MVS86.80 21586.27 20188.40 25692.32 23775.71 28895.18 10096.38 9787.97 9282.82 26593.15 19273.39 19195.92 28376.15 27279.03 32393.59 254
FMVSNet185.85 23884.11 25291.08 16592.81 22883.10 11295.14 10494.94 19281.64 23382.68 26691.64 24259.01 32096.34 26875.37 27883.78 26093.79 241
RPSCF85.07 25384.27 25087.48 28092.91 22570.62 33791.69 26292.46 26876.20 30382.67 26795.22 11163.94 28797.29 20877.51 25885.80 24694.53 200
Fast-Effi-MVS+-dtu87.44 19086.72 18089.63 22892.04 24577.68 26294.03 17793.94 23485.81 13982.42 26891.32 25470.33 22797.06 22580.33 22890.23 18494.14 222
v7n86.81 21485.76 22289.95 21590.72 29779.25 22795.07 10895.92 12984.45 17282.29 26990.86 26872.60 20197.53 18179.42 24080.52 30993.08 276
DTE-MVSNet86.11 23385.48 22787.98 26991.65 26174.92 29394.93 11695.75 14387.36 10882.26 27093.04 19772.85 19795.82 28974.04 28977.46 32993.20 270
ADS-MVSNet281.66 28779.71 29587.50 27891.35 26974.19 30083.33 35288.48 34272.90 33482.24 27185.77 33864.98 28293.20 33564.57 34183.74 26195.12 174
ADS-MVSNet81.56 28979.78 29386.90 29591.35 26971.82 32483.33 35289.16 33972.90 33482.24 27185.77 33864.98 28293.76 32664.57 34183.74 26195.12 174
JIA-IIPM81.04 29578.98 30587.25 28588.64 32773.48 30681.75 35789.61 33773.19 33182.05 27373.71 36166.07 27795.87 28671.18 30484.60 25492.41 295
F-COLMAP87.95 16786.80 17791.40 15096.35 9280.88 17794.73 12995.45 16679.65 26182.04 27494.61 13771.13 21298.50 10176.24 27191.05 17794.80 190
PAPM86.68 22085.39 22990.53 18393.05 21879.33 22489.79 29694.77 20878.82 27281.95 27593.24 18976.81 13997.30 20566.94 33093.16 15494.95 184
DP-MVS87.25 19985.36 23192.90 8197.65 5583.24 10894.81 12492.00 28474.99 31481.92 27695.00 11972.66 19999.05 5366.92 33292.33 16696.40 130
pm-mvs186.61 22185.54 22589.82 21991.44 26380.18 19395.28 9494.85 20183.84 18181.66 27792.62 20972.45 20496.48 25879.67 23578.06 32492.82 285
MVS87.44 19086.10 20791.44 14992.61 23283.62 9992.63 23495.66 15067.26 35181.47 27892.15 22477.95 13098.22 12679.71 23495.48 10692.47 293
IterMVS-SCA-FT85.45 24384.53 24988.18 26491.71 25776.87 27390.19 29092.65 26685.40 15281.44 27990.54 27566.79 26695.00 31281.04 21381.05 29792.66 288
CHOSEN 280x42085.15 25283.99 25588.65 25292.47 23378.40 24179.68 36292.76 26274.90 31681.41 28089.59 29469.85 23395.51 30079.92 23395.29 11292.03 303
miper_lstm_enhance85.27 25084.59 24887.31 28291.28 27274.63 29487.69 32494.09 23281.20 24581.36 28189.85 29174.97 16594.30 31881.03 21579.84 31793.01 278
Patchmtry82.71 27680.93 28288.06 26790.05 31376.37 28184.74 34791.96 28872.28 33981.32 28287.87 32071.03 21495.50 30268.97 31780.15 31292.32 299
dp81.47 29180.23 28885.17 31689.92 31665.49 35586.74 33190.10 32676.30 30181.10 28387.12 32962.81 29495.92 28368.13 32479.88 31594.09 226
tfpnnormal84.72 25983.23 26489.20 23892.79 22980.05 20094.48 14295.81 13882.38 21381.08 28491.21 25669.01 24796.95 23161.69 34980.59 30690.58 331
IterMVS84.88 25683.98 25687.60 27591.44 26376.03 28490.18 29192.41 26983.24 19881.06 28590.42 27966.60 26994.28 31979.46 23680.98 30292.48 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVScopyleft83.78 1188.74 14887.29 16493.08 7292.70 23085.39 6496.57 3596.43 9478.74 27580.85 28696.07 8169.64 23599.01 6178.01 25396.65 9194.83 188
pmmvs485.43 24483.86 25790.16 20390.02 31482.97 12090.27 28392.67 26575.93 30580.73 28791.74 24171.05 21395.73 29478.85 24483.46 26791.78 307
MIMVSNet82.59 27880.53 28388.76 24791.51 26278.32 24386.57 33390.13 32579.32 26380.70 28888.69 30852.98 34293.07 33766.03 33588.86 20994.90 185
IB-MVS80.51 1585.24 25183.26 26391.19 15892.13 24279.86 20891.75 25991.29 30583.28 19780.66 28988.49 30961.28 30498.46 10580.99 21679.46 31995.25 172
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND87.94 27189.73 32077.91 25287.80 32178.23 37080.58 29083.86 34459.88 31595.33 30671.20 30292.22 16790.60 330
EU-MVSNet81.32 29380.95 28182.42 33288.50 33063.67 35893.32 20691.33 30364.02 35680.57 29192.83 20261.21 30792.27 34276.34 26980.38 31191.32 315
tpmvs83.35 27482.07 27287.20 28991.07 28071.00 33488.31 31891.70 29278.91 26980.49 29287.18 32869.30 24397.08 22368.12 32583.56 26593.51 259
MVS_030483.46 27181.92 27488.10 26690.63 30077.49 26593.26 21393.75 24480.04 25680.44 29387.24 32747.94 35295.55 29775.79 27488.16 22191.26 317
pmmvs584.21 26382.84 27088.34 25988.95 32576.94 27292.41 23991.91 29075.63 30780.28 29491.18 25964.59 28495.57 29677.09 26383.47 26692.53 291
tpm cat181.96 28180.27 28787.01 29191.09 27971.02 33387.38 32891.53 29966.25 35280.17 29586.35 33468.22 25696.15 27569.16 31682.29 27993.86 238
MS-PatchMatch85.05 25484.16 25187.73 27391.42 26678.51 23791.25 27093.53 24777.50 28980.15 29691.58 24861.99 29895.51 30075.69 27594.35 13189.16 342
131487.51 18786.57 18990.34 19892.42 23579.74 21192.63 23495.35 17678.35 28180.14 29791.62 24674.05 17997.15 21881.05 21293.53 14394.12 223
ITE_SJBPF88.24 26291.88 25077.05 27192.92 25785.54 14980.13 29893.30 18657.29 32596.20 27272.46 29884.71 25391.49 312
D2MVS85.90 23685.09 23688.35 25890.79 29377.42 26691.83 25795.70 14680.77 24980.08 29990.02 28666.74 26896.37 26581.88 20087.97 22691.26 317
NR-MVSNet88.58 15387.47 16091.93 12593.04 21984.16 8694.77 12796.25 10689.05 5980.04 30093.29 18779.02 11797.05 22681.71 20680.05 31394.59 196
baseline286.50 22785.39 22989.84 21891.12 27876.70 27591.88 25588.58 34182.35 21579.95 30190.95 26773.42 19097.63 17380.27 22989.95 18995.19 173
test0.0.03 182.41 27981.69 27584.59 31988.23 33472.89 31090.24 28787.83 34483.41 19379.86 30289.78 29267.25 25888.99 35965.18 33883.42 26891.90 306
CL-MVSNet_self_test81.74 28580.53 28385.36 31385.96 34772.45 32090.25 28593.07 25581.24 24379.85 30387.29 32670.93 21692.52 34066.95 32969.23 34991.11 323
TransMVSNet (Re)84.43 26283.06 26688.54 25491.72 25578.44 23995.18 10092.82 26182.73 20879.67 30492.12 22673.49 18895.96 28271.10 30668.73 35391.21 319
LTVRE_ROB82.13 1386.26 23284.90 24190.34 19894.44 17281.50 15692.31 24694.89 19783.03 20179.63 30592.67 20769.69 23497.79 15971.20 30286.26 24491.72 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-085.35 24784.64 24787.49 27990.77 29472.59 31894.01 17994.40 21984.72 16879.62 30693.17 19161.91 29996.72 23981.99 19781.16 29393.16 272
EPNet_dtu86.49 22985.94 21588.14 26590.24 30972.82 31194.11 16892.20 27686.66 12479.42 30792.36 21773.52 18795.81 29071.26 30193.66 13995.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LCM-MVSNet-Re88.30 15988.32 14188.27 26094.71 15672.41 32193.15 21790.98 31287.77 10079.25 30891.96 23578.35 12795.75 29283.04 17695.62 10396.65 123
test_fmvs377.67 31677.16 31379.22 33679.52 36361.14 36292.34 24391.64 29573.98 32478.86 30986.59 33027.38 36787.03 36188.12 11275.97 33589.50 336
pmmvs683.42 27281.60 27688.87 24688.01 33777.87 25594.96 11494.24 22574.67 31878.80 31091.09 26460.17 31396.49 25777.06 26475.40 33792.23 301
MVP-Stereo85.97 23584.86 24289.32 23590.92 28882.19 14292.11 25294.19 22678.76 27478.77 31191.63 24568.38 25596.56 25375.01 28393.95 13589.20 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG84.86 25783.09 26590.14 20593.80 19780.05 20089.18 30693.09 25478.89 27078.19 31291.91 23665.86 27897.27 20968.47 32088.45 21693.11 274
testgi80.94 29880.20 28983.18 32787.96 33866.29 35291.28 26890.70 31983.70 18478.12 31392.84 20151.37 34490.82 35163.34 34482.46 27792.43 294
ACMH+81.04 1485.05 25483.46 26289.82 21994.66 15979.37 21994.44 14794.12 23182.19 21778.04 31492.82 20358.23 32297.54 18073.77 29282.90 27492.54 290
COLMAP_ROBcopyleft80.39 1683.96 26682.04 27389.74 22395.28 12779.75 21094.25 16092.28 27475.17 31278.02 31593.77 17458.60 32197.84 15865.06 34085.92 24591.63 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ppachtmachnet_test81.84 28380.07 29187.15 29088.46 33174.43 29889.04 30992.16 27775.33 31077.75 31688.99 30066.20 27495.37 30565.12 33977.60 32791.65 309
Anonymous2023120681.03 29679.77 29484.82 31887.85 34070.26 33991.42 26692.08 28173.67 32777.75 31689.25 29862.43 29693.08 33661.50 35082.00 28491.12 322
SixPastTwentyTwo83.91 26882.90 26886.92 29490.99 28270.67 33693.48 20191.99 28585.54 14977.62 31892.11 22860.59 31096.87 23676.05 27377.75 32693.20 270
ACMH80.38 1785.36 24683.68 25990.39 19494.45 17180.63 18394.73 12994.85 20182.09 21877.24 31992.65 20860.01 31497.58 17572.25 29984.87 25292.96 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-RL test81.67 28679.96 29286.81 29885.42 35271.23 33082.17 35687.50 34778.47 27877.19 32082.50 35170.81 21893.48 33082.66 18572.89 34195.71 161
KD-MVS_2432*160078.50 31276.02 31985.93 30786.22 34574.47 29684.80 34592.33 27179.29 26476.98 32185.92 33653.81 34093.97 32267.39 32757.42 36589.36 337
miper_refine_blended78.50 31276.02 31985.93 30786.22 34574.47 29684.80 34592.33 27179.29 26476.98 32185.92 33653.81 34093.97 32267.39 32757.42 36589.36 337
our_test_381.93 28280.46 28586.33 30488.46 33173.48 30688.46 31691.11 30776.46 29776.69 32388.25 31366.89 26494.36 31668.75 31879.08 32291.14 321
Patchmatch-test81.37 29279.30 29887.58 27690.92 28874.16 30180.99 35887.68 34670.52 34676.63 32488.81 30371.21 21192.76 33960.01 35586.93 24095.83 154
KD-MVS_self_test80.20 30279.24 29983.07 32885.64 35165.29 35691.01 27493.93 23578.71 27676.32 32586.40 33359.20 31992.93 33872.59 29769.35 34891.00 326
FMVSNet581.52 29079.60 29687.27 28391.17 27577.95 25191.49 26592.26 27576.87 29576.16 32687.91 31951.67 34392.34 34167.74 32681.16 29391.52 311
AllTest83.42 27281.39 27889.52 23195.01 13877.79 25893.12 21890.89 31577.41 29076.12 32793.34 18254.08 33897.51 18268.31 32284.27 25793.26 265
TestCases89.52 23195.01 13877.79 25890.89 31577.41 29076.12 32793.34 18254.08 33897.51 18268.31 32284.27 25793.26 265
test_040281.30 29479.17 30287.67 27493.19 21378.17 24792.98 22591.71 29175.25 31176.02 32990.31 28059.23 31896.37 26550.22 36383.63 26488.47 348
DSMNet-mixed76.94 31876.29 31778.89 33783.10 35856.11 37287.78 32279.77 36560.65 35975.64 33088.71 30661.56 30288.34 36060.07 35489.29 20192.21 302
Anonymous2024052180.44 30079.21 30084.11 32485.75 35067.89 34792.86 22993.23 25275.61 30875.59 33187.47 32450.03 34694.33 31771.14 30581.21 29290.12 333
USDC82.76 27581.26 28087.26 28491.17 27574.55 29589.27 30393.39 25078.26 28475.30 33292.08 23054.43 33796.63 24471.64 30085.79 24790.61 328
TDRefinement79.81 30577.34 30987.22 28879.24 36475.48 29093.12 21892.03 28376.45 29875.01 33391.58 24849.19 34996.44 26270.22 31069.18 35089.75 335
LF4IMVS80.37 30179.07 30484.27 32386.64 34369.87 34289.39 30291.05 31076.38 29974.97 33490.00 28747.85 35394.25 32074.55 28880.82 30488.69 346
mvsany_test374.95 32173.26 32480.02 33574.61 36663.16 36085.53 34078.42 36874.16 32274.89 33586.46 33136.02 36289.09 35882.39 18966.91 35487.82 351
PM-MVS78.11 31476.12 31884.09 32583.54 35770.08 34088.97 31085.27 35279.93 25774.73 33686.43 33234.70 36393.48 33079.43 23972.06 34388.72 345
OpenMVS_ROBcopyleft74.94 1979.51 30777.03 31486.93 29387.00 34276.23 28392.33 24490.74 31868.93 34974.52 33788.23 31449.58 34896.62 24557.64 35784.29 25687.94 350
test20.0379.95 30479.08 30382.55 33085.79 34967.74 34991.09 27391.08 30881.23 24474.48 33889.96 28961.63 30090.15 35360.08 35376.38 33389.76 334
ambc83.06 32979.99 36263.51 35977.47 36392.86 25974.34 33984.45 34328.74 36495.06 31173.06 29668.89 35290.61 328
PVSNet_073.20 2077.22 31774.83 32284.37 32190.70 29871.10 33283.09 35489.67 33672.81 33673.93 34083.13 34860.79 30993.70 32868.54 31950.84 36888.30 349
pmmvs-eth3d80.97 29778.72 30687.74 27284.99 35479.97 20690.11 29291.65 29475.36 30973.51 34186.03 33559.45 31793.96 32475.17 28072.21 34289.29 340
K. test v381.59 28880.15 29085.91 30989.89 31769.42 34392.57 23687.71 34585.56 14873.44 34289.71 29355.58 32995.52 29977.17 26169.76 34792.78 286
EG-PatchMatch MVS82.37 28080.34 28688.46 25590.27 30879.35 22092.80 23194.33 22177.14 29473.26 34390.18 28247.47 35496.72 23970.25 30887.32 23689.30 339
lessismore_v086.04 30588.46 33168.78 34580.59 36473.01 34490.11 28455.39 33196.43 26375.06 28265.06 35792.90 281
MIMVSNet179.38 30877.28 31085.69 31186.35 34473.67 30391.61 26492.75 26378.11 28772.64 34588.12 31548.16 35191.97 34660.32 35277.49 32891.43 314
ET-MVSNet_ETH3D87.51 18785.91 21692.32 10993.70 20283.93 9092.33 24490.94 31384.16 17372.09 34692.52 21269.90 23095.85 28789.20 10088.36 21997.17 103
TinyColmap79.76 30677.69 30885.97 30691.71 25773.12 30889.55 29790.36 32275.03 31372.03 34790.19 28146.22 35696.19 27463.11 34581.03 29888.59 347
N_pmnet68.89 32768.44 32970.23 34789.07 32428.79 38188.06 31919.50 38269.47 34871.86 34884.93 34061.24 30691.75 34754.70 36077.15 33090.15 332
UnsupCasMVSNet_eth80.07 30378.27 30785.46 31285.24 35372.63 31788.45 31794.87 20082.99 20371.64 34988.07 31656.34 32791.75 34773.48 29463.36 36092.01 304
test_vis1_rt77.96 31576.46 31582.48 33185.89 34871.74 32690.25 28578.89 36771.03 34571.30 35081.35 35342.49 35991.05 35084.55 15882.37 27884.65 353
test_f71.95 32470.87 32675.21 34374.21 36859.37 36585.07 34485.82 34965.25 35470.42 35183.13 34823.62 36882.93 36878.32 24871.94 34483.33 355
new-patchmatchnet76.41 31975.17 32180.13 33482.65 36059.61 36487.66 32591.08 30878.23 28569.85 35283.22 34754.76 33491.63 34964.14 34364.89 35889.16 342
MVS-HIRNet73.70 32272.20 32578.18 34091.81 25356.42 37182.94 35582.58 35955.24 36168.88 35366.48 36555.32 33295.13 30858.12 35688.42 21783.01 356
UnsupCasMVSNet_bld76.23 32073.27 32385.09 31783.79 35672.92 30985.65 33993.47 24971.52 34168.84 35479.08 35649.77 34793.21 33466.81 33460.52 36289.13 344
pmmvs371.81 32568.71 32881.11 33375.86 36570.42 33886.74 33183.66 35658.95 36068.64 35580.89 35436.93 36189.52 35663.10 34663.59 35983.39 354
CMPMVSbinary59.16 2180.52 29979.20 30184.48 32083.98 35567.63 35089.95 29593.84 24164.79 35566.81 35691.14 26257.93 32395.17 30776.25 27088.10 22290.65 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet72.15 32370.13 32778.20 33982.95 35965.68 35383.91 35082.40 36062.94 35864.47 35779.82 35542.85 35886.26 36357.41 35874.44 33882.65 358
YYNet179.22 30977.20 31185.28 31588.20 33672.66 31585.87 33690.05 32974.33 32162.70 35887.61 32266.09 27692.03 34366.94 33072.97 34091.15 320
MDA-MVSNet_test_wron79.21 31077.19 31285.29 31488.22 33572.77 31285.87 33690.06 32774.34 32062.62 35987.56 32366.14 27591.99 34566.90 33373.01 33991.10 324
MDA-MVSNet-bldmvs78.85 31176.31 31686.46 30189.76 31873.88 30288.79 31190.42 32079.16 26759.18 36088.33 31260.20 31294.04 32162.00 34868.96 35191.48 313
APD_test169.04 32666.26 33077.36 34280.51 36162.79 36185.46 34183.51 35754.11 36359.14 36184.79 34223.40 37089.61 35555.22 35970.24 34679.68 361
LCM-MVSNet66.00 32862.16 33377.51 34164.51 37658.29 36683.87 35190.90 31448.17 36554.69 36273.31 36216.83 37686.75 36265.47 33661.67 36187.48 352
test_vis3_rt65.12 32962.60 33172.69 34571.44 36960.71 36387.17 32965.55 37563.80 35753.22 36365.65 36714.54 37789.44 35776.65 26565.38 35667.91 366
FPMVS64.63 33062.55 33270.88 34670.80 37056.71 36784.42 34884.42 35451.78 36449.57 36481.61 35223.49 36981.48 36940.61 37076.25 33474.46 362
PMMVS259.60 33256.40 33469.21 35068.83 37346.58 37673.02 36777.48 37155.07 36249.21 36572.95 36317.43 37580.04 37049.32 36444.33 37080.99 360
DeepMVS_CXcopyleft56.31 35574.23 36751.81 37456.67 38044.85 36648.54 36675.16 35927.87 36658.74 37640.92 36952.22 36758.39 369
testf159.54 33356.11 33669.85 34869.28 37156.61 36980.37 36076.55 37242.58 36845.68 36775.61 35711.26 37884.18 36543.20 36760.44 36368.75 364
APD_test259.54 33356.11 33669.85 34869.28 37156.61 36980.37 36076.55 37242.58 36845.68 36775.61 35711.26 37884.18 36543.20 36760.44 36368.75 364
test_method50.52 33848.47 34056.66 35452.26 38018.98 38341.51 37281.40 36210.10 37444.59 36975.01 36028.51 36568.16 37253.54 36149.31 36982.83 357
Gipumacopyleft57.99 33654.91 33867.24 35188.51 32865.59 35452.21 37090.33 32343.58 36742.84 37051.18 37120.29 37385.07 36434.77 37170.45 34551.05 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high58.88 33554.22 33972.86 34456.50 37956.67 36880.75 35986.00 34873.09 33337.39 37164.63 36822.17 37179.49 37143.51 36623.96 37382.43 359
tmp_tt35.64 34239.24 34424.84 35814.87 38223.90 38262.71 36851.51 3816.58 37636.66 37262.08 36944.37 35730.34 37852.40 36222.00 37520.27 373
PMVScopyleft47.18 2252.22 33748.46 34163.48 35245.72 38146.20 37773.41 36678.31 36941.03 37030.06 37365.68 3666.05 38083.43 36730.04 37265.86 35560.80 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 33938.59 34557.77 35356.52 37848.77 37555.38 36958.64 37929.33 37328.96 37452.65 3704.68 38164.62 37528.11 37333.07 37159.93 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 34042.29 34246.03 35665.58 37537.41 37873.51 36564.62 37633.99 37128.47 37547.87 37219.90 37467.91 37322.23 37424.45 37232.77 371
EMVS42.07 34141.12 34344.92 35763.45 37735.56 38073.65 36463.48 37733.05 37226.88 37645.45 37321.27 37267.14 37419.80 37523.02 37432.06 372
wuyk23d21.27 34420.48 34723.63 35968.59 37436.41 37949.57 3716.85 3839.37 3757.89 3774.46 3794.03 38231.37 37717.47 37616.07 3763.12 374
testmvs8.92 34511.52 3481.12 3611.06 3830.46 38586.02 3350.65 3840.62 3772.74 3789.52 3770.31 3840.45 3802.38 3770.39 3772.46 376
test1238.76 34611.22 3491.39 3600.85 3840.97 38485.76 3380.35 3850.54 3782.45 3798.14 3780.60 3830.48 3792.16 3780.17 3782.71 375
EGC-MVSNET61.97 33156.37 33578.77 33889.63 32173.50 30589.12 30782.79 3580.21 3791.24 38084.80 34139.48 36090.04 35444.13 36575.94 33672.79 363
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k22.14 34329.52 3460.00 3620.00 3850.00 3860.00 37395.76 1420.00 3800.00 38194.29 14875.66 1570.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.64 3488.86 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38079.70 1090.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.82 34710.43 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38193.88 1690.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6199.61 396.03 199.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6199.61 396.03 199.06 999.07 5
eth-test20.00 385
eth-test0.00 385
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 3692.59 298.94 7392.25 5098.99 1498.84 13
save fliter97.85 4685.63 6295.21 9896.82 6689.44 48
test_0728_SECOND95.01 1598.79 286.43 3697.09 1697.49 599.61 395.62 899.08 798.99 8
GSMVS96.12 140
sam_mvs171.70 20796.12 140
sam_mvs70.60 220
MTGPAbinary96.97 48
test_post188.00 3209.81 37669.31 24295.53 29876.65 265
test_post10.29 37570.57 22495.91 285
patchmatchnet-post83.76 34571.53 20896.48 258
MTMP96.16 4960.64 378
gm-plane-assit89.60 32268.00 34677.28 29388.99 30097.57 17679.44 238
test9_res91.91 6598.71 3098.07 64
agg_prior290.54 8898.68 3598.27 50
test_prior485.96 5194.11 168
test_prior93.82 5697.29 6784.49 7796.88 5998.87 7798.11 63
新几何293.11 220
旧先验196.79 7681.81 15095.67 14896.81 5086.69 3597.66 7496.97 113
无先验93.28 21296.26 10473.95 32599.05 5380.56 22496.59 125
原ACMM292.94 227
testdata298.75 8778.30 249
segment_acmp87.16 34
testdata192.15 25087.94 93
plane_prior794.70 15782.74 127
plane_prior694.52 16682.75 12574.23 174
plane_prior596.22 10998.12 13188.15 10989.99 18694.63 193
plane_prior494.86 124
plane_prior295.85 6590.81 15
plane_prior194.59 161
plane_prior82.73 12895.21 9889.66 4589.88 191
n20.00 386
nn0.00 386
door-mid85.49 350
test1196.57 89
door85.33 351
HQP5-MVS81.56 154
BP-MVS87.11 128
HQP3-MVS96.04 12289.77 193
HQP2-MVS73.83 184
NP-MVS94.37 17482.42 13793.98 162
ACMMP++_ref87.47 231
ACMMP++88.01 225
Test By Simon80.02 104