This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 6198.87 5597.65 999.73 199.48 697.53 599.94 398.43 2199.81 1099.70 50
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 599.74 108
SD-MVS98.64 1498.68 598.53 9299.33 6598.36 4398.90 8298.85 6497.28 3199.72 399.39 1496.63 1697.60 32598.17 3199.85 399.64 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.71 2099.23 698.64 13795.28 12299.63 498.35 2799.81 1099.83 6
PC_three_145295.08 13699.60 599.16 6197.86 298.47 25897.52 7799.72 5199.74 34
test072699.72 1299.25 299.06 5398.88 4997.62 1199.56 699.50 497.42 7
TSAR-MVS + MP.98.78 698.62 799.24 4199.69 2598.28 4999.14 3998.66 13296.84 5399.56 699.31 3596.34 2099.70 11698.32 2899.73 4499.73 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17498.91 4397.58 1499.54 899.46 997.10 1099.94 397.64 6699.84 899.83 6
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_TWO98.87 5597.65 999.53 999.48 697.34 999.94 398.43 2199.80 1799.83 6
DVP-MVScopyleft99.03 298.83 399.63 399.72 1299.25 298.97 7198.58 14897.62 1199.45 1099.46 997.42 799.94 398.47 1899.81 1099.69 53
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 2999.45 1099.46 997.88 199.94 398.47 1899.86 199.85 3
MSP-MVS98.74 898.55 1099.29 3299.75 398.23 5099.26 2198.88 4997.52 1599.41 1298.78 11596.00 3599.79 9397.79 5499.59 7399.85 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS99.02 398.84 299.55 799.57 3398.96 1399.39 698.93 3797.38 2699.41 1299.54 196.66 1499.84 5498.86 299.85 399.87 1
SMA-MVScopyleft98.58 2398.25 3899.56 699.51 3999.04 1298.95 7598.80 8793.67 20199.37 1499.52 396.52 1899.89 3698.06 3799.81 1099.76 27
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP98.90 598.75 499.36 2299.22 9498.43 3499.10 4898.87 5597.38 2699.35 1599.40 1397.78 499.87 4597.77 5599.85 399.78 14
Skip Steuart: Steuart Systems R&D Blog.
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3199.46 5198.38 3698.21 20198.52 15997.95 399.32 1699.39 1496.22 2199.84 5497.72 5899.73 4499.67 63
SF-MVS98.59 2098.32 3399.41 1799.54 3598.71 1999.04 5598.81 7695.12 13199.32 1699.39 1496.22 2199.84 5497.72 5899.73 4499.67 63
test_part299.63 2999.18 899.27 18
abl_698.30 5398.03 5299.13 5599.56 3497.76 7699.13 4298.82 7096.14 8299.26 1999.37 2293.33 10599.93 1696.96 9699.67 5699.69 53
DeepPCF-MVS96.37 297.93 6598.48 1796.30 24899.00 11189.54 31897.43 27098.87 5598.16 299.26 1999.38 2196.12 2999.64 12798.30 2999.77 2799.72 42
APD-MVScopyleft98.35 4698.00 5499.42 1699.51 3998.72 1898.80 10898.82 7094.52 16099.23 2199.25 4395.54 5099.80 8196.52 12199.77 2799.74 34
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Regformer-298.69 1198.52 1299.19 4499.35 6098.01 6398.37 17898.81 7697.48 1899.21 2299.21 4896.13 2899.80 8198.40 2599.73 4499.75 29
Regformer-198.66 1298.51 1399.12 5899.35 6097.81 7598.37 17898.76 9997.49 1799.20 2399.21 4896.08 3099.79 9398.42 2399.73 4499.75 29
APD-MVS_3200maxsize98.53 3498.33 3299.15 5499.50 4197.92 6899.15 3898.81 7696.24 7799.20 2399.37 2295.30 6399.80 8197.73 5799.67 5699.72 42
SR-MVS-dyc-post98.54 3298.35 2499.13 5599.49 4597.86 6999.11 4598.80 8796.49 6899.17 2599.35 2895.34 6099.82 6597.72 5899.65 6099.71 46
RE-MVS-def98.34 2899.49 4597.86 6999.11 4598.80 8796.49 6899.17 2599.35 2895.29 6497.72 5899.65 6099.71 46
9.1498.06 5099.47 4898.71 12698.82 7094.36 16599.16 2799.29 3996.05 3399.81 7297.00 9299.71 52
ACMMP_NAP98.61 1798.30 3499.55 799.62 3098.95 1498.82 10198.81 7695.80 9499.16 2799.47 895.37 5899.92 2297.89 4799.75 3999.79 11
ETH3D-3000-0.198.35 4698.00 5499.38 1899.47 4898.68 2298.67 13698.84 6594.66 15599.11 2999.25 4395.46 5299.81 7296.80 11199.73 4499.63 75
SR-MVS98.57 2698.35 2499.24 4199.53 3698.18 5499.09 4998.82 7096.58 6499.10 3099.32 3395.39 5699.82 6597.70 6399.63 6699.72 42
Regformer-498.64 1498.53 1198.99 6499.43 5797.37 8898.40 17698.79 9297.46 2199.09 3199.31 3595.86 4399.80 8198.64 499.76 3399.79 11
Regformer-398.59 2098.50 1498.86 7499.43 5797.05 10298.40 17698.68 12197.43 2299.06 3299.31 3595.80 4499.77 10298.62 699.76 3399.78 14
test117298.56 2898.35 2499.16 5199.53 3697.94 6799.09 4998.83 6896.52 6799.05 3399.34 3195.34 6099.82 6597.86 4999.64 6499.73 38
PGM-MVS98.49 3698.23 4299.27 3999.72 1298.08 6098.99 6799.49 595.43 11299.03 3499.32 3395.56 4899.94 396.80 11199.77 2799.78 14
VNet97.79 7197.40 8398.96 6898.88 12097.55 8298.63 14298.93 3796.74 5899.02 3598.84 10890.33 16599.83 5798.53 1196.66 19199.50 93
xiu_mvs_v1_base_debu97.60 8097.56 7197.72 15098.35 15995.98 14697.86 24498.51 16297.13 4499.01 3698.40 15391.56 13799.80 8198.53 1198.68 13197.37 226
xiu_mvs_v1_base97.60 8097.56 7197.72 15098.35 15995.98 14697.86 24498.51 16297.13 4499.01 3698.40 15391.56 13799.80 8198.53 1198.68 13197.37 226
xiu_mvs_v1_base_debi97.60 8097.56 7197.72 15098.35 15995.98 14697.86 24498.51 16297.13 4499.01 3698.40 15391.56 13799.80 8198.53 1198.68 13197.37 226
TSAR-MVS + GP.98.38 4398.24 4198.81 7599.22 9497.25 9798.11 22098.29 20897.19 4098.99 3999.02 8196.22 2199.67 12398.52 1698.56 13999.51 91
HFP-MVS98.63 1698.40 1899.32 2999.72 1298.29 4799.23 2498.96 3296.10 8698.94 4099.17 5696.06 3199.92 2297.62 6799.78 2499.75 29
region2R98.61 1798.38 2099.29 3299.74 798.16 5699.23 2498.93 3796.15 8198.94 4099.17 5695.91 4099.94 397.55 7499.79 2099.78 14
#test#98.54 3298.27 3699.32 2999.72 1298.29 4798.98 7098.96 3295.65 10298.94 4099.17 5696.06 3199.92 2297.21 8799.78 2499.75 29
HPM-MVS_fast98.38 4398.13 4699.12 5899.75 397.86 6999.44 598.82 7094.46 16398.94 4099.20 5295.16 7099.74 10897.58 7099.85 399.77 21
ACMMPR98.59 2098.36 2299.29 3299.74 798.15 5799.23 2498.95 3496.10 8698.93 4499.19 5595.70 4599.94 397.62 6799.79 2099.78 14
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4899.25 8698.04 6198.50 16398.78 9597.72 698.92 4599.28 4095.27 6599.82 6597.55 7499.77 2799.69 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj98.33 5097.95 5699.47 1299.49 4598.70 2098.83 9898.86 6195.48 10998.91 4699.17 5695.48 5199.93 1695.80 14699.53 8799.76 27
DROMVSNet98.21 5698.11 4898.49 9698.34 16497.26 9699.61 198.43 17996.78 5598.87 4798.84 10893.72 10299.01 20198.91 199.50 9099.19 135
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7999.46 5196.49 12798.30 19298.69 11897.21 3898.84 4899.36 2695.41 5599.78 9798.62 699.65 6099.80 10
MSLP-MVS++98.56 2898.57 898.55 8899.26 8596.80 11298.71 12699.05 2497.28 3198.84 4899.28 4096.47 1999.40 15698.52 1699.70 5399.47 100
PHI-MVS98.34 4898.06 5099.18 4899.15 10298.12 5999.04 5599.09 2093.32 21498.83 5099.10 7096.54 1799.83 5797.70 6399.76 3399.59 82
MVSFormer97.57 8597.49 7797.84 13998.07 18795.76 16599.47 398.40 18494.98 13998.79 5198.83 11092.34 11698.41 27196.91 9899.59 7399.34 114
lupinMVS97.44 9397.22 9098.12 12398.07 18795.76 16597.68 25797.76 26994.50 16198.79 5198.61 13192.34 11699.30 16297.58 7099.59 7399.31 120
CDPH-MVS97.94 6397.49 7799.28 3699.47 4898.44 3297.91 23798.67 12992.57 24298.77 5398.85 10695.93 3999.72 11095.56 15699.69 5499.68 59
CNVR-MVS98.78 698.56 999.45 1599.32 6898.87 1698.47 16698.81 7697.72 698.76 5499.16 6197.05 1199.78 9798.06 3799.66 5999.69 53
EI-MVSNet-UG-set98.41 4198.34 2898.61 8499.45 5596.32 13698.28 19598.68 12197.17 4198.74 5599.37 2295.25 6799.79 9398.57 999.54 8699.73 38
diffmvs97.58 8497.40 8398.13 12198.32 16895.81 16498.06 22398.37 19196.20 7998.74 5598.89 10291.31 14699.25 16598.16 3298.52 14099.34 114
GST-MVS98.43 4098.12 4799.34 2499.72 1298.38 3699.09 4998.82 7095.71 9898.73 5799.06 7995.27 6599.93 1697.07 9199.63 6699.72 42
UA-Net97.96 5997.62 6798.98 6698.86 12297.47 8598.89 8699.08 2196.67 6198.72 5899.54 193.15 10899.81 7294.87 17298.83 12799.65 69
ETH3D cwj APD-0.1697.96 5997.52 7499.29 3299.05 10698.52 2898.33 18498.68 12193.18 21998.68 5999.13 6594.62 8299.83 5796.45 12399.55 8599.52 87
hse-mvs396.17 14595.62 15497.81 14399.03 10994.45 22098.64 14198.75 10297.48 1898.67 6098.72 12289.76 17299.86 5097.95 4181.59 34499.11 147
hse-mvs295.71 16495.30 16996.93 19698.50 15193.53 25298.36 18098.10 23997.48 1898.67 6097.99 19389.76 17299.02 19897.95 4180.91 34898.22 202
ZD-MVS99.46 5198.70 2098.79 9293.21 21898.67 6098.97 8895.70 4599.83 5796.07 13399.58 76
旧先验297.57 26591.30 28598.67 6099.80 8195.70 153
PS-MVSNAJ97.73 7397.77 6397.62 16098.68 13995.58 16997.34 27998.51 16297.29 3098.66 6497.88 20494.51 8699.90 3497.87 4899.17 11497.39 224
xiu_mvs_v2_base97.66 7797.70 6697.56 16498.61 14595.46 17597.44 26898.46 17297.15 4298.65 6598.15 18194.33 9399.80 8197.84 5298.66 13597.41 222
LFMVS95.86 15794.98 18398.47 9898.87 12196.32 13698.84 9796.02 33593.40 21198.62 6699.20 5274.99 34599.63 13097.72 5897.20 18199.46 104
HPM-MVScopyleft98.36 4598.10 4999.13 5599.74 797.82 7399.53 298.80 8794.63 15698.61 6798.97 8895.13 7199.77 10297.65 6599.83 999.79 11
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.26 11299.20 9795.36 17898.68 12191.89 26598.60 6899.10 7094.44 9199.82 6594.27 19599.44 9899.58 84
CP-MVS98.57 2698.36 2299.19 4499.66 2797.86 6999.34 1398.87 5595.96 8998.60 6899.13 6596.05 3399.94 397.77 5599.86 199.77 21
jason97.32 10197.08 9598.06 12897.45 23495.59 16897.87 24397.91 26494.79 14798.55 7098.83 11091.12 14999.23 16897.58 7099.60 7099.34 114
jason: jason.
MCST-MVS98.65 1398.37 2199.48 1199.60 3198.87 1698.41 17598.68 12197.04 4898.52 7198.80 11396.78 1399.83 5797.93 4399.61 6999.74 34
CS-MVS97.94 6397.90 5998.06 12898.04 19196.85 11199.04 5598.39 18796.17 8098.50 7298.29 16994.60 8399.02 19898.61 899.43 9998.30 200
XVS98.70 998.49 1699.34 2499.70 2398.35 4499.29 1798.88 4997.40 2398.46 7399.20 5295.90 4199.89 3697.85 5099.74 4299.78 14
X-MVStestdata94.06 26792.30 28799.34 2499.70 2398.35 4499.29 1798.88 4997.40 2398.46 7343.50 36595.90 4199.89 3697.85 5099.74 4299.78 14
MG-MVS97.81 7097.60 6898.44 10099.12 10495.97 15197.75 25398.78 9596.89 5298.46 7399.22 4793.90 10199.68 12294.81 17699.52 8999.67 63
NCCC98.61 1798.35 2499.38 1899.28 8298.61 2598.45 16798.76 9997.82 598.45 7698.93 9896.65 1599.83 5797.38 8299.41 10199.71 46
ETH3 D test640097.59 8397.01 9899.34 2499.40 5998.56 2698.20 20498.81 7691.63 27398.44 7798.85 10693.98 10099.82 6594.11 20199.69 5499.64 72
MVS_Test97.28 10297.00 9998.13 12198.33 16695.97 15198.74 11798.07 24894.27 16798.44 7798.07 18692.48 11499.26 16496.43 12598.19 15499.16 141
MVS_111021_LR98.34 4898.23 4298.67 8199.27 8396.90 10897.95 23399.58 397.14 4398.44 7799.01 8595.03 7499.62 13297.91 4499.75 3999.50 93
ETV-MVS97.96 5997.81 6298.40 10498.42 15597.27 9298.73 12198.55 15396.84 5398.38 8097.44 24395.39 5699.35 15997.62 6798.89 12298.58 189
VDDNet95.36 18494.53 20197.86 13898.10 18695.13 18998.85 9497.75 27090.46 30198.36 8199.39 1473.27 35199.64 12797.98 4096.58 19498.81 171
mPP-MVS98.51 3598.26 3799.25 4099.75 398.04 6199.28 1998.81 7696.24 7798.35 8299.23 4595.46 5299.94 397.42 8099.81 1099.77 21
DELS-MVS98.40 4298.20 4498.99 6499.00 11197.66 7797.75 25398.89 4697.71 898.33 8398.97 8894.97 7599.88 4498.42 2399.76 3399.42 110
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 3898.34 2898.88 7399.22 9497.32 8997.91 23799.58 397.20 3998.33 8399.00 8695.99 3699.64 12798.05 3999.76 3399.69 53
ZNCC-MVS98.49 3698.20 4499.35 2399.73 1198.39 3599.19 3498.86 6195.77 9598.31 8599.10 7095.46 5299.93 1697.57 7399.81 1099.74 34
CS-MVS-test97.90 6697.83 6198.11 12498.14 18396.49 12799.35 1198.40 18496.31 7698.27 8698.31 16694.42 9299.05 19098.07 3699.20 11198.80 172
HPM-MVS++copyleft98.58 2398.25 3899.55 799.50 4199.08 998.72 12598.66 13297.51 1698.15 8798.83 11095.70 4599.92 2297.53 7699.67 5699.66 67
新几何199.16 5199.34 6298.01 6398.69 11890.06 31098.13 8898.95 9694.60 8399.89 3691.97 26399.47 9399.59 82
API-MVS97.41 9697.25 8897.91 13698.70 13696.80 11298.82 10198.69 11894.53 15898.11 8998.28 17094.50 8999.57 13694.12 20099.49 9197.37 226
CPTT-MVS97.72 7497.32 8698.92 7099.64 2897.10 10199.12 4498.81 7692.34 25098.09 9099.08 7793.01 10999.92 2296.06 13699.77 2799.75 29
test1299.18 4899.16 10098.19 5398.53 15798.07 9195.13 7199.72 11099.56 8299.63 75
test22299.23 9397.17 10097.40 27198.66 13288.68 32698.05 9298.96 9494.14 9699.53 8799.61 77
DP-MVS Recon97.86 6897.46 7999.06 6299.53 3698.35 4498.33 18498.89 4692.62 23998.05 9298.94 9795.34 6099.65 12596.04 13799.42 10099.19 135
Vis-MVSNetpermissive97.42 9597.11 9398.34 10798.66 14096.23 13999.22 2899.00 2796.63 6398.04 9499.21 4888.05 21799.35 15996.01 13999.21 11099.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline97.64 7897.44 8198.25 11398.35 15996.20 14099.00 6598.32 19896.33 7598.03 9599.17 5691.35 14499.16 17498.10 3498.29 15399.39 111
test_yl97.22 10496.78 10998.54 9098.73 13196.60 12198.45 16798.31 20094.70 14998.02 9698.42 15190.80 15699.70 11696.81 10996.79 18899.34 114
DCV-MVSNet97.22 10496.78 10998.54 9098.73 13196.60 12198.45 16798.31 20094.70 14998.02 9698.42 15190.80 15699.70 11696.81 10996.79 18899.34 114
zzz-MVS98.55 3098.25 3899.46 1399.76 198.64 2398.55 15698.74 10497.27 3598.02 9699.39 1494.81 7899.96 197.91 4499.79 2099.77 21
MTAPA98.58 2398.29 3599.46 1399.76 198.64 2398.90 8298.74 10497.27 3598.02 9699.39 1494.81 7899.96 197.91 4499.79 2099.77 21
112197.37 9996.77 11399.16 5199.34 6297.99 6698.19 20898.68 12190.14 30998.01 10098.97 8894.80 8099.87 4593.36 22299.46 9699.61 77
sss97.39 9796.98 10198.61 8498.60 14696.61 12098.22 20098.93 3793.97 17998.01 10098.48 14591.98 12999.85 5196.45 12398.15 15599.39 111
alignmvs97.56 8697.07 9699.01 6398.66 14098.37 4298.83 9898.06 25396.74 5898.00 10297.65 22590.80 15699.48 15198.37 2696.56 19599.19 135
OMC-MVS97.55 8797.34 8598.20 11699.33 6595.92 15898.28 19598.59 14395.52 10897.97 10399.10 7093.28 10799.49 14795.09 16998.88 12399.19 135
VDD-MVS95.82 16095.23 17197.61 16198.84 12593.98 23598.68 13397.40 29895.02 13897.95 10499.34 3174.37 34999.78 9798.64 496.80 18799.08 152
casdiffmvs97.63 7997.41 8298.28 10998.33 16696.14 14398.82 10198.32 19896.38 7397.95 10499.21 4891.23 14899.23 16898.12 3398.37 14899.48 98
PVSNet_BlendedMVS96.73 12496.60 11997.12 18499.25 8695.35 18098.26 19899.26 894.28 16697.94 10697.46 24092.74 11299.81 7296.88 10493.32 25196.20 317
PVSNet_Blended97.38 9897.12 9298.14 11999.25 8695.35 18097.28 28499.26 893.13 22297.94 10698.21 17792.74 11299.81 7296.88 10499.40 10399.27 127
DPM-MVS97.55 8796.99 10099.23 4399.04 10898.55 2797.17 29298.35 19494.85 14697.93 10898.58 13695.07 7399.71 11592.60 24399.34 10699.43 108
MP-MVScopyleft98.33 5098.01 5399.28 3699.75 398.18 5499.22 2898.79 9296.13 8397.92 10999.23 4594.54 8599.94 396.74 11599.78 2499.73 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDTV_nov1_ep13_2view84.26 35096.89 31190.97 29597.90 11089.89 17193.91 20699.18 140
test_prior398.22 5597.90 5999.19 4499.31 7098.22 5197.80 24998.84 6596.12 8497.89 11198.69 12395.96 3799.70 11696.89 10199.60 7099.65 69
test_prior297.80 24996.12 8497.89 11198.69 12395.96 3796.89 10199.60 70
原ACMM198.65 8299.32 6896.62 11898.67 12993.27 21797.81 11398.97 8895.18 6999.83 5793.84 20899.46 9699.50 93
114514_t96.93 11796.27 13098.92 7099.50 4197.63 7998.85 9498.90 4484.80 34597.77 11499.11 6892.84 11099.66 12494.85 17399.77 2799.47 100
PMMVS96.60 12796.33 12897.41 17097.90 19993.93 23697.35 27898.41 18292.84 23497.76 11597.45 24291.10 15199.20 17196.26 12997.91 16299.11 147
PVSNet91.96 1896.35 13896.15 13496.96 19499.17 9892.05 27996.08 32998.68 12193.69 19797.75 11697.80 21588.86 19799.69 12194.26 19699.01 11799.15 142
TEST999.31 7098.50 3097.92 23598.73 10892.63 23897.74 11798.68 12596.20 2499.80 81
train_agg97.97 5897.52 7499.33 2899.31 7098.50 3097.92 23598.73 10892.98 22797.74 11798.68 12596.20 2499.80 8196.59 11799.57 7799.68 59
CANet98.05 5797.76 6498.90 7298.73 13197.27 9298.35 18198.78 9597.37 2897.72 11998.96 9491.53 14199.92 2298.79 399.65 6099.51 91
test_899.29 7898.44 3297.89 24198.72 11092.98 22797.70 12098.66 12896.20 2499.80 81
MP-MVS-pluss98.31 5297.92 5899.49 1099.72 1298.88 1598.43 17298.78 9594.10 17197.69 12199.42 1295.25 6799.92 2298.09 3599.80 1799.67 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs97.67 7697.23 8998.98 6698.70 13698.38 3699.34 1398.39 18796.76 5797.67 12297.40 24692.26 11999.49 14798.28 3096.28 20799.08 152
PVSNet_Blended_VisFu97.70 7597.46 7998.44 10099.27 8395.91 15998.63 14299.16 1794.48 16297.67 12298.88 10392.80 11199.91 3197.11 8999.12 11599.50 93
WTY-MVS97.37 9996.92 10398.72 7898.86 12296.89 11098.31 19098.71 11495.26 12397.67 12298.56 13992.21 12299.78 9795.89 14196.85 18699.48 98
Effi-MVS+97.12 11196.69 11598.39 10598.19 17796.72 11697.37 27598.43 17993.71 19497.65 12598.02 18992.20 12399.25 16596.87 10797.79 16799.19 135
thisisatest053096.01 15095.36 16397.97 13398.38 15795.52 17398.88 8994.19 35694.04 17397.64 12698.31 16683.82 29699.46 15395.29 16497.70 17298.93 165
tttt051796.07 14795.51 15797.78 14598.41 15694.84 20299.28 1994.33 35494.26 16897.64 12698.64 13084.05 28999.47 15295.34 16097.60 17599.03 155
HyFIR lowres test96.90 11996.49 12498.14 11999.33 6595.56 17097.38 27399.65 292.34 25097.61 12898.20 17889.29 18299.10 18696.97 9497.60 17599.77 21
ACMMPcopyleft98.23 5497.95 5699.09 6099.74 797.62 8099.03 5899.41 695.98 8897.60 12999.36 2694.45 9099.93 1697.14 8898.85 12699.70 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
agg_prior197.95 6297.51 7699.28 3699.30 7598.38 3697.81 24898.72 11093.16 22197.57 13098.66 12896.14 2799.81 7296.63 11699.56 8299.66 67
agg_prior99.30 7598.38 3698.72 11097.57 13099.81 72
tpmrst95.63 16995.69 15195.44 28097.54 22488.54 33396.97 30197.56 28093.50 20797.52 13296.93 28789.49 17699.16 17495.25 16696.42 20098.64 185
MDTV_nov1_ep1395.40 15897.48 22888.34 33696.85 31497.29 30293.74 19197.48 13397.26 25289.18 18599.05 19091.92 26497.43 178
EPMVS94.99 20594.48 20496.52 23197.22 24791.75 28597.23 28691.66 36294.11 17097.28 13496.81 29485.70 26098.84 22493.04 23297.28 18098.97 161
EIA-MVS97.75 7297.58 6998.27 11098.38 15796.44 13099.01 6398.60 14195.88 9197.26 13597.53 23694.97 7599.33 16197.38 8299.20 11199.05 154
IS-MVSNet97.22 10496.88 10498.25 11398.85 12496.36 13499.19 3497.97 25895.39 11497.23 13698.99 8791.11 15098.93 21294.60 18298.59 13799.47 100
EPP-MVSNet97.46 8997.28 8797.99 13298.64 14295.38 17799.33 1698.31 20093.61 20497.19 13799.07 7894.05 9799.23 16896.89 10198.43 14799.37 113
thisisatest051595.61 17294.89 18797.76 14798.15 18295.15 18796.77 31794.41 35292.95 22997.18 13897.43 24484.78 27599.45 15494.63 17997.73 17198.68 180
CANet_DTU96.96 11696.55 12198.21 11598.17 18196.07 14597.98 23198.21 21697.24 3797.13 13998.93 9886.88 24199.91 3195.00 17199.37 10598.66 183
CHOSEN 1792x268897.12 11196.80 10698.08 12699.30 7594.56 21898.05 22499.71 193.57 20597.09 14098.91 10188.17 21299.89 3696.87 10799.56 8299.81 9
PatchT93.06 28691.97 29196.35 24596.69 28192.67 27294.48 34997.08 30986.62 33497.08 14192.23 35187.94 21997.90 31578.89 35496.69 19098.49 191
PatchmatchNetpermissive95.71 16495.52 15696.29 24997.58 21990.72 30596.84 31597.52 28794.06 17297.08 14196.96 28389.24 18498.90 21792.03 26198.37 14899.26 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MAR-MVS96.91 11896.40 12698.45 9998.69 13896.90 10898.66 13998.68 12192.40 24997.07 14397.96 19691.54 14099.75 10693.68 21298.92 12098.69 179
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR97.46 8997.11 9398.50 9499.50 4196.41 13298.63 14298.60 14195.18 12797.06 14498.06 18794.26 9599.57 13693.80 21098.87 12599.52 87
TAMVS97.02 11496.79 10897.70 15398.06 18995.31 18298.52 15898.31 20093.95 18097.05 14598.61 13193.49 10498.52 25395.33 16197.81 16699.29 125
CSCG97.85 6997.74 6598.20 11699.67 2695.16 18599.22 2899.32 793.04 22597.02 14698.92 10095.36 5999.91 3197.43 7999.64 6499.52 87
CDS-MVSNet96.99 11596.69 11597.90 13798.05 19095.98 14698.20 20498.33 19793.67 20196.95 14798.49 14493.54 10398.42 26495.24 16797.74 17099.31 120
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XVG-OURS-SEG-HR96.51 13396.34 12797.02 18998.77 12993.76 24197.79 25198.50 16795.45 11196.94 14899.09 7587.87 22299.55 14396.76 11495.83 21797.74 215
CR-MVSNet94.76 22094.15 22496.59 22297.00 26293.43 25594.96 34397.56 28092.46 24396.93 14996.24 31388.15 21397.88 31987.38 31996.65 19298.46 192
RPMNet92.81 28891.34 29697.24 17697.00 26293.43 25594.96 34398.80 8782.27 34996.93 14992.12 35286.98 23999.82 6576.32 35896.65 19298.46 192
SCA95.46 17495.13 17596.46 23897.67 21291.29 29697.33 28097.60 27894.68 15296.92 15197.10 26183.97 29198.89 21892.59 24598.32 15299.20 132
PatchMatch-RL96.59 12996.03 13998.27 11099.31 7096.51 12697.91 23799.06 2293.72 19396.92 15198.06 18788.50 20699.65 12591.77 26799.00 11898.66 183
DeepC-MVS95.98 397.88 6797.58 6998.77 7699.25 8696.93 10698.83 9898.75 10296.96 5196.89 15399.50 490.46 16299.87 4597.84 5299.76 3399.52 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVG-OURS96.55 13296.41 12596.99 19098.75 13093.76 24197.50 26798.52 15995.67 10096.83 15499.30 3888.95 19699.53 14495.88 14296.26 20897.69 218
AdaColmapbinary97.15 11096.70 11498.48 9799.16 10096.69 11798.01 22898.89 4694.44 16496.83 15498.68 12590.69 15999.76 10494.36 19099.29 10998.98 160
CostFormer94.95 20994.73 19395.60 27597.28 24389.06 32597.53 26696.89 32389.66 31796.82 15696.72 29786.05 25598.95 21195.53 15796.13 21398.79 173
UGNet96.78 12396.30 12998.19 11898.24 17195.89 16198.88 8998.93 3797.39 2596.81 15797.84 20982.60 30099.90 3496.53 12099.49 9198.79 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA97.45 9297.03 9798.73 7799.05 10697.44 8798.07 22298.53 15795.32 12096.80 15898.53 14093.32 10699.72 11094.31 19499.31 10899.02 156
CHOSEN 280x42097.18 10897.18 9197.20 17898.81 12793.27 26295.78 33699.15 1895.25 12496.79 15998.11 18492.29 11899.07 18998.56 1099.85 399.25 129
HY-MVS93.96 896.82 12296.23 13398.57 8698.46 15497.00 10398.14 21598.21 21693.95 18096.72 16097.99 19391.58 13699.76 10494.51 18796.54 19698.95 164
PAPR96.84 12196.24 13298.65 8298.72 13596.92 10797.36 27798.57 14993.33 21396.67 16197.57 23394.30 9499.56 13891.05 27898.59 13799.47 100
Anonymous2024052995.10 19994.22 21897.75 14899.01 11094.26 22998.87 9198.83 6885.79 34296.64 16298.97 8878.73 32499.85 5196.27 12894.89 22199.12 146
thres600view795.49 17394.77 19097.67 15698.98 11495.02 19298.85 9496.90 32195.38 11596.63 16396.90 28884.29 28299.59 13488.65 31296.33 20298.40 194
thres100view90095.38 18194.70 19497.41 17098.98 11494.92 20098.87 9196.90 32195.38 11596.61 16496.88 28984.29 28299.56 13888.11 31396.29 20497.76 213
Vis-MVSNet (Re-imp)96.87 12096.55 12197.83 14098.73 13195.46 17599.20 3298.30 20694.96 14196.60 16598.87 10490.05 16898.59 24793.67 21498.60 13699.46 104
CVMVSNet95.43 17796.04 13893.57 31997.93 19783.62 35198.12 21898.59 14395.68 9996.56 16699.02 8187.51 22897.51 32993.56 21897.44 17799.60 80
RPSCF94.87 21495.40 15893.26 32598.89 11982.06 35698.33 18498.06 25390.30 30696.56 16699.26 4287.09 23699.49 14793.82 20996.32 20398.24 201
tfpn200view995.32 18894.62 19797.43 16998.94 11694.98 19698.68 13396.93 31995.33 11896.55 16896.53 30584.23 28599.56 13888.11 31396.29 20497.76 213
thres40095.38 18194.62 19797.65 15998.94 11694.98 19698.68 13396.93 31995.33 11896.55 16896.53 30584.23 28599.56 13888.11 31396.29 20498.40 194
thres20095.25 19094.57 19997.28 17598.81 12794.92 20098.20 20497.11 30895.24 12696.54 17096.22 31784.58 27999.53 14487.93 31796.50 19897.39 224
ab-mvs96.42 13695.71 14998.55 8898.63 14396.75 11597.88 24298.74 10493.84 18596.54 17098.18 18085.34 26799.75 10695.93 14096.35 20199.15 142
mvs-test196.60 12796.68 11796.37 24397.89 20091.81 28298.56 15498.10 23996.57 6596.52 17297.94 19890.81 15499.45 15495.72 14998.01 15997.86 212
Anonymous20240521195.28 18994.49 20397.67 15699.00 11193.75 24398.70 13097.04 31290.66 29796.49 17398.80 11378.13 32999.83 5796.21 13195.36 22099.44 107
ADS-MVSNet294.58 23294.40 21295.11 28998.00 19288.74 33096.04 33097.30 30190.15 30796.47 17496.64 30287.89 22097.56 32790.08 29097.06 18299.02 156
ADS-MVSNet95.00 20494.45 20896.63 21798.00 19291.91 28196.04 33097.74 27190.15 30796.47 17496.64 30287.89 22098.96 20790.08 29097.06 18299.02 156
Effi-MVS+-dtu96.29 14096.56 12095.51 27697.89 20090.22 31198.80 10898.10 23996.57 6596.45 17696.66 29990.81 15498.91 21495.72 14997.99 16097.40 223
PLCcopyleft95.07 497.20 10796.78 10998.44 10099.29 7896.31 13898.14 21598.76 9992.41 24896.39 17798.31 16694.92 7799.78 9794.06 20398.77 13099.23 130
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm94.13 26093.80 24795.12 28896.50 29087.91 34197.44 26895.89 34092.62 23996.37 17896.30 31284.13 28898.30 28493.24 22591.66 26999.14 144
TAPA-MVS93.98 795.35 18594.56 20097.74 14999.13 10394.83 20498.33 18498.64 13786.62 33496.29 17998.61 13194.00 9999.29 16380.00 35099.41 10199.09 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.84 15895.12 17698.01 13198.49 15395.98 14698.73 12197.03 31395.37 11796.22 18098.19 17989.96 17099.16 17494.60 18287.48 32198.90 167
tpm294.19 25693.76 25295.46 27997.23 24689.04 32697.31 28296.85 32787.08 33396.21 18196.79 29583.75 29798.74 23392.43 25396.23 21098.59 187
F-COLMAP97.09 11396.80 10697.97 13399.45 5594.95 19998.55 15698.62 14093.02 22696.17 18298.58 13694.01 9899.81 7293.95 20598.90 12199.14 144
GeoE96.58 13196.07 13698.10 12598.35 15995.89 16199.34 1398.12 23493.12 22396.09 18398.87 10489.71 17498.97 20392.95 23598.08 15899.43 108
JIA-IIPM93.35 27792.49 28495.92 26296.48 29290.65 30695.01 34296.96 31785.93 34096.08 18487.33 35687.70 22698.78 23191.35 27395.58 21998.34 197
BH-RMVSNet95.92 15595.32 16797.69 15498.32 16894.64 21098.19 20897.45 29494.56 15796.03 18598.61 13185.02 27099.12 18090.68 28399.06 11699.30 123
dp94.15 25993.90 24094.90 29597.31 24286.82 34796.97 30197.19 30791.22 29096.02 18696.61 30485.51 26399.02 19890.00 29494.30 22398.85 168
EPNet97.28 10296.87 10598.51 9394.98 33296.14 14398.90 8297.02 31598.28 195.99 18799.11 6891.36 14399.89 3696.98 9399.19 11399.50 93
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D97.16 10996.66 11898.68 8098.53 15097.19 9998.93 7998.90 4492.83 23595.99 18799.37 2292.12 12599.87 4593.67 21499.57 7798.97 161
AUN-MVS94.53 23693.73 25496.92 19998.50 15193.52 25398.34 18298.10 23993.83 18795.94 18997.98 19585.59 26299.03 19594.35 19180.94 34798.22 202
TR-MVS94.94 21194.20 21997.17 18197.75 20694.14 23297.59 26397.02 31592.28 25595.75 19097.64 22783.88 29398.96 20789.77 29696.15 21298.40 194
VPA-MVSNet95.75 16295.11 17797.69 15497.24 24597.27 9298.94 7799.23 1295.13 13095.51 19197.32 24985.73 25998.91 21497.33 8489.55 29696.89 250
HQP_MVS96.14 14695.90 14296.85 20297.42 23594.60 21698.80 10898.56 15197.28 3195.34 19298.28 17087.09 23699.03 19596.07 13394.27 22496.92 242
plane_prior394.61 21497.02 4995.34 192
DWT-MVSNet_test94.82 21594.36 21396.20 25297.35 24090.79 30398.34 18296.57 33492.91 23195.33 19496.44 30982.00 30299.12 18094.52 18695.78 21898.70 178
Fast-Effi-MVS+96.28 14295.70 15098.03 13098.29 17095.97 15198.58 14898.25 21491.74 26895.29 19597.23 25591.03 15399.15 17792.90 23797.96 16198.97 161
EI-MVSNet95.96 15295.83 14496.36 24497.93 19793.70 24798.12 21898.27 20993.70 19695.07 19699.02 8192.23 12198.54 25194.68 17893.46 24696.84 256
MVSTER96.06 14895.72 14697.08 18798.23 17295.93 15798.73 12198.27 20994.86 14595.07 19698.09 18588.21 21098.54 25196.59 11793.46 24696.79 260
OPM-MVS95.69 16795.33 16696.76 20696.16 30594.63 21198.43 17298.39 18796.64 6295.02 19898.78 11585.15 26999.05 19095.21 16894.20 22796.60 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RRT_MVS96.04 14995.53 15597.56 16497.07 26097.32 8998.57 15398.09 24495.15 12995.02 19898.44 14888.20 21198.58 24996.17 13293.09 25596.79 260
Fast-Effi-MVS+-dtu95.87 15695.85 14395.91 26397.74 20991.74 28698.69 13298.15 23095.56 10594.92 20097.68 22488.98 19498.79 23093.19 22797.78 16897.20 230
TESTMET0.1,194.18 25893.69 25795.63 27496.92 26789.12 32496.91 30694.78 34993.17 22094.88 20196.45 30878.52 32598.92 21393.09 22998.50 14298.85 168
VPNet94.99 20594.19 22097.40 17297.16 25496.57 12398.71 12698.97 3095.67 10094.84 20298.24 17680.36 31598.67 23996.46 12287.32 32496.96 239
1112_ss96.63 12696.00 14098.50 9498.56 14796.37 13398.18 21298.10 23992.92 23094.84 20298.43 14992.14 12499.58 13594.35 19196.51 19799.56 86
test-LLR95.10 19994.87 18895.80 26896.77 27589.70 31596.91 30695.21 34495.11 13294.83 20495.72 32787.71 22498.97 20393.06 23098.50 14298.72 176
test-mter94.08 26593.51 26495.80 26896.77 27589.70 31596.91 30695.21 34492.89 23294.83 20495.72 32777.69 33298.97 20393.06 23098.50 14298.72 176
Test_1112_low_res96.34 13995.66 15398.36 10698.56 14795.94 15497.71 25598.07 24892.10 26094.79 20697.29 25191.75 13399.56 13894.17 19896.50 19899.58 84
GA-MVS94.81 21794.03 22997.14 18297.15 25593.86 23896.76 31897.58 27994.00 17794.76 20797.04 27480.91 31098.48 25591.79 26696.25 20999.09 149
bset_n11_16_dypcd94.89 21394.27 21696.76 20694.41 33995.15 18795.67 33795.64 34295.53 10694.65 20897.52 23787.10 23598.29 28796.58 11991.35 27196.83 258
BH-untuned95.95 15395.72 14696.65 21498.55 14992.26 27598.23 19997.79 26893.73 19294.62 20998.01 19188.97 19599.00 20293.04 23298.51 14198.68 180
test_djsdf96.00 15195.69 15196.93 19695.72 31895.49 17499.47 398.40 18494.98 13994.58 21097.86 20689.16 18698.41 27196.91 9894.12 23296.88 251
cascas94.63 22893.86 24396.93 19696.91 26994.27 22896.00 33398.51 16285.55 34394.54 21196.23 31584.20 28798.87 22195.80 14696.98 18597.66 219
DP-MVS96.59 12995.93 14198.57 8699.34 6296.19 14298.70 13098.39 18789.45 32094.52 21299.35 2891.85 13199.85 5192.89 23998.88 12399.68 59
gg-mvs-nofinetune92.21 29490.58 30197.13 18396.75 27895.09 19095.85 33489.40 36585.43 34494.50 21381.98 35980.80 31398.40 27792.16 25598.33 15197.88 210
mvs_anonymous96.70 12596.53 12397.18 18098.19 17793.78 24098.31 19098.19 21994.01 17694.47 21498.27 17392.08 12798.46 25997.39 8197.91 16299.31 120
HQP-NCC97.20 24998.05 22496.43 7094.45 215
ACMP_Plane97.20 24998.05 22496.43 7094.45 215
HQP4-MVS94.45 21598.96 20796.87 253
HQP-MVS95.72 16395.40 15896.69 21297.20 24994.25 23098.05 22498.46 17296.43 7094.45 21597.73 21886.75 24298.96 20795.30 16294.18 22896.86 255
MSDG95.93 15495.30 16997.83 14098.90 11895.36 17896.83 31698.37 19191.32 28494.43 21998.73 12190.27 16699.60 13390.05 29298.82 12898.52 190
nrg03096.28 14295.72 14697.96 13596.90 27098.15 5799.39 698.31 20095.47 11094.42 22098.35 15992.09 12698.69 23597.50 7889.05 30497.04 234
CLD-MVS95.62 17095.34 16496.46 23897.52 22793.75 24397.27 28598.46 17295.53 10694.42 22098.00 19286.21 25298.97 20396.25 13094.37 22296.66 279
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test95.62 17095.34 16496.47 23597.46 23093.54 25098.99 6798.54 15594.67 15394.36 22298.77 11785.39 26499.11 18395.71 15194.15 23096.76 264
LGP-MVS_train96.47 23597.46 23093.54 25098.54 15594.67 15394.36 22298.77 11785.39 26499.11 18395.71 15194.15 23096.76 264
v14419294.39 24593.70 25696.48 23496.06 30894.35 22698.58 14898.16 22991.45 27794.33 22497.02 27687.50 23098.45 26091.08 27589.11 30396.63 281
V4294.78 21994.14 22596.70 21196.33 29895.22 18498.97 7198.09 24492.32 25294.31 22597.06 27188.39 20798.55 25092.90 23788.87 30896.34 311
ACMM93.85 995.69 16795.38 16296.61 21997.61 21693.84 23998.91 8198.44 17695.25 12494.28 22698.47 14686.04 25799.12 18095.50 15893.95 23796.87 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS95.46 17495.21 17296.22 25198.12 18493.72 24698.32 18998.13 23393.71 19494.26 22797.31 25092.24 12098.10 29994.63 17990.12 28796.84 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192094.20 25593.47 26696.40 24295.98 31194.08 23398.52 15898.15 23091.33 28394.25 22897.20 25886.41 24998.42 26490.04 29389.39 30096.69 278
BH-w/o95.38 18195.08 17896.26 25098.34 16491.79 28397.70 25697.43 29692.87 23394.24 22997.22 25688.66 20098.84 22491.55 27197.70 17298.16 205
XVG-ACMP-BASELINE94.54 23594.14 22595.75 27196.55 28791.65 28898.11 22098.44 17694.96 14194.22 23097.90 20179.18 32299.11 18394.05 20493.85 23996.48 305
v114494.59 23193.92 23896.60 22196.21 30094.78 20898.59 14698.14 23291.86 26794.21 23197.02 27687.97 21898.41 27191.72 26889.57 29496.61 283
v119294.32 24893.58 26196.53 23096.10 30694.45 22098.50 16398.17 22791.54 27594.19 23297.06 27186.95 24098.43 26390.14 28889.57 29496.70 273
PAPM94.95 20994.00 23397.78 14597.04 26195.65 16796.03 33298.25 21491.23 28994.19 23297.80 21591.27 14798.86 22382.61 34497.61 17498.84 170
Patchmatch-test94.42 24393.68 25896.63 21797.60 21791.76 28494.83 34797.49 29189.45 32094.14 23497.10 26188.99 19198.83 22685.37 33398.13 15699.29 125
v124094.06 26793.29 27196.34 24696.03 31093.90 23798.44 17098.17 22791.18 29294.13 23597.01 27886.05 25598.42 26489.13 30989.50 29896.70 273
GBi-Net94.49 23993.80 24796.56 22698.21 17495.00 19398.82 10198.18 22292.46 24394.09 23697.07 26881.16 30797.95 31192.08 25792.14 26296.72 269
test194.49 23993.80 24796.56 22698.21 17495.00 19398.82 10198.18 22292.46 24394.09 23697.07 26881.16 30797.95 31192.08 25792.14 26296.72 269
FMVSNet394.97 20894.26 21797.11 18598.18 17996.62 11898.56 15498.26 21393.67 20194.09 23697.10 26184.25 28498.01 30792.08 25792.14 26296.70 273
MIMVSNet93.26 28192.21 28896.41 24197.73 21093.13 26795.65 33897.03 31391.27 28894.04 23996.06 32075.33 34397.19 33386.56 32396.23 21098.92 166
FIs96.51 13396.12 13597.67 15697.13 25697.54 8399.36 999.22 1495.89 9094.03 24098.35 15991.98 12998.44 26296.40 12692.76 25897.01 235
v2v48294.69 22194.03 22996.65 21496.17 30394.79 20798.67 13698.08 24692.72 23694.00 24197.16 25987.69 22798.45 26092.91 23688.87 30896.72 269
FC-MVSNet-test96.42 13696.05 13797.53 16696.95 26597.27 9299.36 999.23 1295.83 9393.93 24298.37 15792.00 12898.32 28096.02 13892.72 25997.00 236
UniMVSNet (Re)95.78 16195.19 17397.58 16296.99 26497.47 8598.79 11299.18 1695.60 10393.92 24397.04 27491.68 13498.48 25595.80 14687.66 32096.79 260
miper_enhance_ethall95.10 19994.75 19296.12 25697.53 22693.73 24596.61 32398.08 24692.20 25993.89 24496.65 30192.44 11598.30 28494.21 19791.16 27696.34 311
UniMVSNet_NR-MVSNet95.71 16495.15 17497.40 17296.84 27396.97 10498.74 11799.24 1095.16 12893.88 24597.72 22091.68 13498.31 28295.81 14487.25 32596.92 242
DU-MVS95.42 17894.76 19197.40 17296.53 28896.97 10498.66 13998.99 2995.43 11293.88 24597.69 22188.57 20298.31 28295.81 14487.25 32596.92 242
Baseline_NR-MVSNet94.35 24693.81 24695.96 26196.20 30194.05 23498.61 14596.67 33291.44 27893.85 24797.60 23088.57 20298.14 29694.39 18986.93 32895.68 329
PS-MVSNAJss96.43 13596.26 13196.92 19995.84 31695.08 19199.16 3798.50 16795.87 9293.84 24898.34 16394.51 8698.61 24396.88 10493.45 24897.06 233
UniMVSNet_ETH3D94.24 25393.33 26996.97 19397.19 25293.38 25998.74 11798.57 14991.21 29193.81 24998.58 13672.85 35298.77 23295.05 17093.93 23898.77 175
MVS_030492.81 28892.01 29095.23 28497.46 23091.33 29498.17 21398.81 7691.13 29393.80 25095.68 33066.08 35898.06 30490.79 28096.13 21396.32 314
tpmvs94.60 22994.36 21395.33 28397.46 23088.60 33296.88 31297.68 27291.29 28693.80 25096.42 31088.58 20199.24 16791.06 27696.04 21598.17 204
3Dnovator94.51 597.46 8996.93 10299.07 6197.78 20597.64 7899.35 1199.06 2297.02 4993.75 25299.16 6189.25 18399.92 2297.22 8699.75 3999.64 72
eth_miper_zixun_eth94.68 22394.41 21195.47 27897.64 21491.71 28796.73 32098.07 24892.71 23793.64 25397.21 25790.54 16198.17 29493.38 22089.76 29196.54 293
ITE_SJBPF95.44 28097.42 23591.32 29597.50 28995.09 13593.59 25498.35 15981.70 30598.88 22089.71 29893.39 25096.12 319
TranMVSNet+NR-MVSNet95.14 19794.48 20497.11 18596.45 29396.36 13499.03 5899.03 2595.04 13793.58 25597.93 19988.27 20998.03 30694.13 19986.90 33096.95 241
COLMAP_ROBcopyleft93.27 1295.33 18794.87 18896.71 20999.29 7893.24 26498.58 14898.11 23789.92 31293.57 25699.10 7086.37 25099.79 9390.78 28198.10 15797.09 231
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm cat193.36 27692.80 27895.07 29197.58 21987.97 34096.76 31897.86 26682.17 35093.53 25796.04 32186.13 25399.13 17989.24 30795.87 21698.10 206
AllTest95.24 19194.65 19696.99 19099.25 8693.21 26598.59 14698.18 22291.36 28093.52 25898.77 11784.67 27799.72 11089.70 29997.87 16498.02 208
TestCases96.99 19099.25 8693.21 26598.18 22291.36 28093.52 25898.77 11784.67 27799.72 11089.70 29997.87 16498.02 208
miper_ehance_all_eth95.01 20394.69 19595.97 26097.70 21193.31 26197.02 29998.07 24892.23 25693.51 26096.96 28391.85 13198.15 29593.68 21291.16 27696.44 308
FMVSNet294.47 24193.61 26097.04 18898.21 17496.43 13198.79 11298.27 20992.46 24393.50 26197.09 26581.16 30798.00 30991.09 27491.93 26596.70 273
v14894.29 25093.76 25295.91 26396.10 30692.93 27098.58 14897.97 25892.59 24193.47 26296.95 28588.53 20598.32 28092.56 24787.06 32796.49 304
cl_fuxian94.79 21894.43 21095.89 26597.75 20693.12 26897.16 29398.03 25592.23 25693.46 26397.05 27391.39 14298.01 30793.58 21789.21 30296.53 295
RRT_test8_iter0594.56 23394.19 22095.67 27397.60 21791.34 29298.93 7998.42 18194.75 14893.39 26497.87 20579.00 32398.61 24396.78 11390.99 27997.07 232
pmmvs494.69 22193.99 23596.81 20495.74 31795.94 15497.40 27197.67 27390.42 30393.37 26597.59 23189.08 18998.20 29292.97 23491.67 26896.30 315
PCF-MVS93.45 1194.68 22393.43 26798.42 10398.62 14496.77 11495.48 34198.20 21884.63 34693.34 26698.32 16588.55 20499.81 7284.80 33798.96 11998.68 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl-mvsnet294.68 22394.19 22096.13 25598.11 18593.60 24896.94 30398.31 20092.43 24793.32 26796.87 29186.51 24598.28 28994.10 20291.16 27696.51 301
XXY-MVS95.20 19494.45 20897.46 16796.75 27896.56 12498.86 9398.65 13693.30 21693.27 26898.27 17384.85 27498.87 22194.82 17591.26 27596.96 239
jajsoiax95.45 17695.03 18096.73 20895.42 32994.63 21199.14 3998.52 15995.74 9693.22 26998.36 15883.87 29498.65 24196.95 9794.04 23396.91 247
mvs_tets95.41 18095.00 18196.65 21495.58 32294.42 22299.00 6598.55 15395.73 9793.21 27098.38 15683.45 29898.63 24297.09 9094.00 23596.91 247
anonymousdsp95.42 17894.91 18696.94 19595.10 33195.90 16099.14 3998.41 18293.75 18993.16 27197.46 24087.50 23098.41 27195.63 15594.03 23496.50 303
v894.47 24193.77 25096.57 22596.36 29694.83 20499.05 5498.19 21991.92 26493.16 27196.97 28188.82 19998.48 25591.69 26987.79 31896.39 309
WR-MVS95.15 19694.46 20697.22 17796.67 28396.45 12998.21 20198.81 7694.15 16993.16 27197.69 22187.51 22898.30 28495.29 16488.62 31096.90 249
EPNet_dtu95.21 19394.95 18595.99 25896.17 30390.45 30998.16 21497.27 30496.77 5693.14 27498.33 16490.34 16498.42 26485.57 33098.81 12999.09 149
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM96.29 14095.40 15898.96 6897.85 20297.60 8199.23 2498.93 3789.76 31593.11 27599.02 8189.11 18899.93 1691.99 26299.62 6899.34 114
GG-mvs-BLEND96.59 22296.34 29794.98 19696.51 32688.58 36693.10 27694.34 34380.34 31698.05 30589.53 30296.99 18496.74 266
v1094.29 25093.55 26296.51 23296.39 29594.80 20698.99 6798.19 21991.35 28293.02 27796.99 27988.09 21598.41 27190.50 28588.41 31296.33 313
3Dnovator+94.38 697.43 9496.78 10999.38 1897.83 20398.52 2899.37 898.71 11497.09 4792.99 27899.13 6589.36 18099.89 3696.97 9499.57 7799.71 46
D2MVS95.18 19595.08 17895.48 27797.10 25892.07 27898.30 19299.13 1994.02 17592.90 27996.73 29689.48 17798.73 23494.48 18893.60 24595.65 330
Patchmtry93.22 28292.35 28695.84 26796.77 27593.09 26994.66 34897.56 28087.37 33292.90 27996.24 31388.15 21397.90 31587.37 32090.10 28896.53 295
cl-mvsnet194.52 23794.03 22995.99 25897.57 22393.38 25997.05 29797.94 26191.74 26892.81 28197.10 26189.12 18798.07 30392.60 24390.30 28596.53 295
Anonymous2023121194.10 26393.26 27296.61 21999.11 10594.28 22799.01 6398.88 4986.43 33692.81 28197.57 23381.66 30698.68 23894.83 17489.02 30696.88 251
cl-mvsnet____94.51 23894.01 23296.02 25797.58 21993.40 25897.05 29797.96 26091.73 27092.76 28397.08 26789.06 19098.13 29792.61 24290.29 28696.52 298
miper_lstm_enhance94.33 24794.07 22895.11 28997.75 20690.97 30097.22 28798.03 25591.67 27292.76 28396.97 28190.03 16997.78 32192.51 25089.64 29396.56 290
v7n94.19 25693.43 26796.47 23595.90 31394.38 22599.26 2198.34 19691.99 26292.76 28397.13 26088.31 20898.52 25389.48 30487.70 31996.52 298
MVS94.67 22693.54 26398.08 12696.88 27196.56 12498.19 20898.50 16778.05 35492.69 28698.02 18991.07 15299.63 13090.09 28998.36 15098.04 207
DSMNet-mixed92.52 29292.58 28392.33 33094.15 34182.65 35498.30 19294.26 35589.08 32492.65 28795.73 32585.01 27195.76 35086.24 32597.76 16998.59 187
EU-MVSNet93.66 27294.14 22592.25 33195.96 31283.38 35298.52 15898.12 23494.69 15192.61 28898.13 18387.36 23396.39 34891.82 26590.00 28996.98 237
IterMVS-SCA-FT94.11 26293.87 24294.85 29797.98 19690.56 30897.18 29098.11 23793.75 18992.58 28997.48 23983.97 29197.41 33092.48 25291.30 27396.58 286
pmmvs593.65 27492.97 27695.68 27295.49 32592.37 27498.20 20497.28 30389.66 31792.58 28997.26 25282.14 30198.09 30193.18 22890.95 28096.58 286
WR-MVS_H95.05 20294.46 20696.81 20496.86 27295.82 16399.24 2399.24 1093.87 18492.53 29196.84 29390.37 16398.24 29193.24 22587.93 31796.38 310
ACMP93.49 1095.34 18694.98 18396.43 24097.67 21293.48 25498.73 12198.44 17694.94 14492.53 29198.53 14084.50 28199.14 17895.48 15994.00 23596.66 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part194.82 21593.82 24597.82 14298.84 12597.82 7399.03 5898.81 7692.31 25492.51 29397.89 20381.96 30398.67 23994.80 17788.24 31396.98 237
test0.0.03 194.08 26593.51 26495.80 26895.53 32492.89 27197.38 27395.97 33795.11 13292.51 29396.66 29987.71 22496.94 33787.03 32193.67 24197.57 220
IB-MVS91.98 1793.27 28091.97 29197.19 17997.47 22993.41 25797.09 29695.99 33693.32 21492.47 29595.73 32578.06 33099.53 14494.59 18482.98 33998.62 186
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS94.09 26493.85 24494.80 30097.99 19490.35 31097.18 29098.12 23493.68 19992.46 29697.34 24784.05 28997.41 33092.51 25091.33 27296.62 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet94.94 21194.30 21596.83 20396.72 28095.56 17099.11 4598.95 3493.89 18292.42 29797.90 20187.19 23498.12 29894.32 19388.21 31496.82 259
PS-CasMVS94.67 22693.99 23596.71 20996.68 28295.26 18399.13 4299.03 2593.68 19992.33 29897.95 19785.35 26698.10 29993.59 21688.16 31696.79 260
FMVSNet193.19 28492.07 28996.56 22697.54 22495.00 19398.82 10198.18 22290.38 30492.27 29997.07 26873.68 35097.95 31189.36 30691.30 27396.72 269
PEN-MVS94.42 24393.73 25496.49 23396.28 29994.84 20299.17 3699.00 2793.51 20692.23 30097.83 21286.10 25497.90 31592.55 24886.92 32996.74 266
OurMVSNet-221017-094.21 25494.00 23394.85 29795.60 32189.22 32398.89 8697.43 29695.29 12192.18 30198.52 14382.86 29998.59 24793.46 21991.76 26796.74 266
MS-PatchMatch93.84 27193.63 25994.46 31196.18 30289.45 31997.76 25298.27 20992.23 25692.13 30297.49 23879.50 31998.69 23589.75 29799.38 10495.25 334
ppachtmachnet_test93.22 28292.63 28294.97 29395.45 32790.84 30196.88 31297.88 26590.60 29892.08 30397.26 25288.08 21697.86 32085.12 33490.33 28496.22 316
131496.25 14495.73 14597.79 14497.13 25695.55 17298.19 20898.59 14393.47 20892.03 30497.82 21391.33 14599.49 14794.62 18198.44 14598.32 199
baseline295.11 19894.52 20296.87 20196.65 28493.56 24998.27 19794.10 35893.45 20992.02 30597.43 24487.45 23299.19 17293.88 20797.41 17997.87 211
DTE-MVSNet93.98 26993.26 27296.14 25496.06 30894.39 22499.20 3298.86 6193.06 22491.78 30697.81 21485.87 25897.58 32690.53 28486.17 33496.46 307
LF4IMVS93.14 28592.79 27994.20 31495.88 31488.67 33197.66 25997.07 31093.81 18891.71 30797.65 22577.96 33198.81 22891.47 27291.92 26695.12 337
our_test_393.65 27493.30 27094.69 30295.45 32789.68 31796.91 30697.65 27491.97 26391.66 30896.88 28989.67 17597.93 31488.02 31691.49 27096.48 305
testgi93.06 28692.45 28594.88 29696.43 29489.90 31298.75 11497.54 28695.60 10391.63 30997.91 20074.46 34897.02 33586.10 32693.67 24197.72 217
tfpnnormal93.66 27292.70 28196.55 22996.94 26695.94 15498.97 7199.19 1591.04 29491.38 31097.34 24784.94 27298.61 24385.45 33289.02 30695.11 338
LTVRE_ROB92.95 1594.60 22993.90 24096.68 21397.41 23894.42 22298.52 15898.59 14391.69 27191.21 31198.35 15984.87 27399.04 19491.06 27693.44 24996.60 284
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft93.04 1395.83 15995.00 18198.32 10897.18 25397.32 8999.21 3198.97 3089.96 31191.14 31299.05 8086.64 24499.92 2293.38 22099.47 9397.73 216
pm-mvs193.94 27093.06 27496.59 22296.49 29195.16 18598.95 7598.03 25592.32 25291.08 31397.84 20984.54 28098.41 27192.16 25586.13 33696.19 318
MVS-HIRNet89.46 31788.40 31692.64 32897.58 21982.15 35594.16 35293.05 36175.73 35690.90 31482.52 35879.42 32098.33 27983.53 34298.68 13197.43 221
FMVSNet591.81 29590.92 29894.49 30897.21 24892.09 27798.00 23097.55 28589.31 32290.86 31595.61 33174.48 34795.32 35385.57 33089.70 29296.07 321
USDC93.33 27992.71 28095.21 28596.83 27490.83 30296.91 30697.50 28993.84 18590.72 31698.14 18277.69 33298.82 22789.51 30393.21 25495.97 323
MVP-Stereo94.28 25293.92 23895.35 28294.95 33392.60 27397.97 23297.65 27491.61 27490.68 31797.09 26586.32 25198.42 26489.70 29999.34 10695.02 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+92.99 1494.30 24993.77 25095.88 26697.81 20492.04 28098.71 12698.37 19193.99 17890.60 31898.47 14680.86 31299.05 19092.75 24192.40 26196.55 292
CL-MVSNet_2432*160090.11 31089.14 31393.02 32791.86 35388.23 33896.51 32698.07 24890.49 29990.49 31994.41 33984.75 27695.34 35280.79 34874.95 35595.50 331
DIV-MVS_2432*160090.38 30889.38 31193.40 32292.85 35088.94 32897.95 23397.94 26190.35 30590.25 32093.96 34479.82 31795.94 34984.62 33976.69 35395.33 333
Anonymous2023120691.66 29791.10 29793.33 32394.02 34587.35 34498.58 14897.26 30590.48 30090.16 32196.31 31183.83 29596.53 34679.36 35289.90 29096.12 319
SixPastTwentyTwo93.34 27892.86 27794.75 30195.67 31989.41 32198.75 11496.67 33293.89 18290.15 32298.25 17580.87 31198.27 29090.90 27990.64 28296.57 288
PVSNet_088.72 1991.28 30090.03 30695.00 29297.99 19487.29 34594.84 34698.50 16792.06 26189.86 32395.19 33379.81 31899.39 15792.27 25469.79 35898.33 198
ACMH92.88 1694.55 23493.95 23796.34 24697.63 21593.26 26398.81 10798.49 17193.43 21089.74 32498.53 14081.91 30499.08 18893.69 21193.30 25296.70 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs691.77 29690.63 30095.17 28794.69 33891.24 29798.67 13697.92 26386.14 33889.62 32597.56 23575.79 34298.34 27890.75 28284.56 33895.94 324
TinyColmap92.31 29391.53 29494.65 30496.92 26789.75 31496.92 30496.68 33190.45 30289.62 32597.85 20876.06 34198.81 22886.74 32292.51 26095.41 332
Anonymous2024052191.18 30190.44 30293.42 32093.70 34688.47 33498.94 7797.56 28088.46 32789.56 32795.08 33677.15 33896.97 33683.92 34089.55 29694.82 343
TransMVSNet (Re)92.67 29091.51 29596.15 25396.58 28694.65 20998.90 8296.73 32890.86 29689.46 32897.86 20685.62 26198.09 30186.45 32481.12 34595.71 328
NR-MVSNet94.98 20794.16 22397.44 16896.53 28897.22 9898.74 11798.95 3494.96 14189.25 32997.69 22189.32 18198.18 29394.59 18487.40 32396.92 242
LCM-MVSNet-Re95.22 19295.32 16794.91 29498.18 17987.85 34298.75 11495.66 34195.11 13288.96 33096.85 29290.26 16797.65 32395.65 15498.44 14599.22 131
KD-MVS_2432*160089.61 31587.96 31994.54 30694.06 34391.59 28995.59 33997.63 27689.87 31388.95 33194.38 34178.28 32796.82 33884.83 33568.05 35995.21 335
miper_refine_blended89.61 31587.96 31994.54 30694.06 34391.59 28995.59 33997.63 27689.87 31388.95 33194.38 34178.28 32796.82 33884.83 33568.05 35995.21 335
TDRefinement91.06 30389.68 30895.21 28585.35 36191.49 29198.51 16297.07 31091.47 27688.83 33397.84 20977.31 33699.09 18792.79 24077.98 35195.04 340
N_pmnet87.12 32287.77 32185.17 34095.46 32661.92 36597.37 27570.66 37185.83 34188.73 33496.04 32185.33 26897.76 32280.02 34990.48 28395.84 325
test_040291.32 29990.27 30494.48 30996.60 28591.12 29898.50 16397.22 30686.10 33988.30 33596.98 28077.65 33497.99 31078.13 35692.94 25794.34 345
test20.0390.89 30590.38 30392.43 32993.48 34788.14 33998.33 18497.56 28093.40 21187.96 33696.71 29880.69 31494.13 35879.15 35386.17 33495.01 342
MIMVSNet189.67 31488.28 31893.82 31792.81 35191.08 29998.01 22897.45 29487.95 32987.90 33795.87 32367.63 35694.56 35778.73 35588.18 31595.83 326
Patchmatch-RL test91.49 29890.85 29993.41 32191.37 35484.40 34992.81 35395.93 33991.87 26687.25 33894.87 33788.99 19196.53 34692.54 24982.00 34199.30 123
pmmvs386.67 32384.86 32692.11 33288.16 35887.19 34696.63 32294.75 35079.88 35287.22 33992.75 34966.56 35795.20 35481.24 34776.56 35493.96 351
K. test v392.55 29191.91 29394.48 30995.64 32089.24 32299.07 5294.88 34894.04 17386.78 34097.59 23177.64 33597.64 32492.08 25789.43 29996.57 288
lessismore_v094.45 31294.93 33488.44 33591.03 36386.77 34197.64 22776.23 34098.42 26490.31 28785.64 33796.51 301
ambc89.49 33686.66 35975.78 35992.66 35496.72 32986.55 34292.50 35046.01 36397.90 31590.32 28682.09 34094.80 344
PM-MVS87.77 32086.55 32491.40 33491.03 35683.36 35396.92 30495.18 34691.28 28786.48 34393.42 34653.27 36296.74 34089.43 30581.97 34294.11 348
OpenMVS_ROBcopyleft86.42 2089.00 31887.43 32393.69 31893.08 34989.42 32097.91 23796.89 32378.58 35385.86 34494.69 33869.48 35498.29 28777.13 35793.29 25393.36 354
UnsupCasMVSNet_eth90.99 30489.92 30794.19 31594.08 34289.83 31397.13 29598.67 12993.69 19785.83 34596.19 31875.15 34496.74 34089.14 30879.41 34996.00 322
new_pmnet90.06 31189.00 31593.22 32694.18 34088.32 33796.42 32896.89 32386.19 33785.67 34693.62 34577.18 33797.10 33481.61 34689.29 30194.23 346
EG-PatchMatch MVS91.13 30290.12 30594.17 31694.73 33789.00 32798.13 21797.81 26789.22 32385.32 34796.46 30767.71 35598.42 26487.89 31893.82 24095.08 339
pmmvs-eth3d90.36 30989.05 31494.32 31391.10 35592.12 27697.63 26296.95 31888.86 32584.91 34893.13 34778.32 32696.74 34088.70 31181.81 34394.09 349
DeepMVS_CXcopyleft86.78 33797.09 25972.30 36195.17 34775.92 35584.34 34995.19 33370.58 35395.35 35179.98 35189.04 30592.68 355
new-patchmatchnet88.50 31987.45 32291.67 33390.31 35785.89 34897.16 29397.33 30089.47 31983.63 35092.77 34876.38 33995.06 35582.70 34377.29 35294.06 350
UnsupCasMVSNet_bld87.17 32185.12 32593.31 32491.94 35288.77 32994.92 34598.30 20684.30 34782.30 35190.04 35363.96 36097.25 33285.85 32974.47 35793.93 352
CMPMVSbinary66.06 2189.70 31389.67 30989.78 33593.19 34876.56 35897.00 30098.35 19480.97 35181.57 35297.75 21774.75 34698.61 24389.85 29593.63 24394.17 347
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_method79.03 32478.17 32781.63 34286.06 36054.40 37082.75 36196.89 32339.54 36580.98 35395.57 33258.37 36194.73 35684.74 33878.61 35095.75 327
ET-MVSNet_ETH3D94.13 26092.98 27597.58 16298.22 17396.20 14097.31 28295.37 34394.53 15879.56 35497.63 22986.51 24597.53 32896.91 9890.74 28199.02 156
LCM-MVSNet78.70 32576.24 33086.08 33877.26 36771.99 36294.34 35096.72 32961.62 36076.53 35589.33 35433.91 36992.78 36081.85 34574.60 35693.46 353
PMMVS277.95 32775.44 33185.46 33982.54 36274.95 36094.23 35193.08 36072.80 35774.68 35687.38 35536.36 36891.56 36173.95 35963.94 36189.87 356
Gipumacopyleft78.40 32676.75 32983.38 34195.54 32380.43 35779.42 36297.40 29864.67 35973.46 35780.82 36045.65 36493.14 35966.32 36187.43 32276.56 362
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet190.70 30789.39 31094.62 30594.79 33690.65 30697.20 28897.46 29287.54 33172.54 35895.74 32486.51 24596.66 34486.00 32786.76 33296.54 293
MDA-MVSNet_test_wron90.71 30689.38 31194.68 30394.83 33590.78 30497.19 28997.46 29287.60 33072.41 35995.72 32786.51 24596.71 34385.92 32886.80 33196.56 290
MDA-MVSNet-bldmvs89.97 31288.35 31794.83 29995.21 33091.34 29297.64 26097.51 28888.36 32871.17 36096.13 31979.22 32196.63 34583.65 34186.27 33396.52 298
FPMVS77.62 32877.14 32879.05 34479.25 36560.97 36695.79 33595.94 33865.96 35867.93 36194.40 34037.73 36788.88 36368.83 36088.46 31187.29 357
tmp_tt68.90 33066.97 33274.68 34650.78 37159.95 36787.13 35883.47 36938.80 36662.21 36296.23 31564.70 35976.91 36888.91 31030.49 36687.19 358
E-PMN64.94 33264.25 33467.02 34882.28 36359.36 36891.83 35685.63 36752.69 36260.22 36377.28 36241.06 36680.12 36646.15 36541.14 36361.57 364
EMVS64.07 33363.26 33666.53 34981.73 36458.81 36991.85 35584.75 36851.93 36459.09 36475.13 36343.32 36579.09 36742.03 36639.47 36461.69 363
MVEpermissive62.14 2263.28 33459.38 33774.99 34574.33 36865.47 36485.55 35980.50 37052.02 36351.10 36575.00 36410.91 37480.50 36551.60 36453.40 36278.99 360
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 32965.37 33380.22 34365.99 36971.96 36390.91 35790.09 36482.62 34849.93 36678.39 36129.36 37081.75 36462.49 36238.52 36586.95 359
PMVScopyleft61.03 2365.95 33163.57 33573.09 34757.90 37051.22 37185.05 36093.93 35954.45 36144.32 36783.57 35713.22 37189.15 36258.68 36381.00 34678.91 361
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs21.48 33724.95 34011.09 35214.89 3726.47 37496.56 3249.87 3737.55 36817.93 36839.02 3669.43 3755.90 37116.56 36912.72 36820.91 366
test12320.95 33823.72 34112.64 35113.54 3738.19 37396.55 3256.13 3747.48 36916.74 36937.98 36712.97 3726.05 37016.69 3685.43 36923.68 365
wuyk23d30.17 33530.18 33930.16 35078.61 36643.29 37266.79 36314.21 37217.31 36714.82 37011.93 37011.55 37341.43 36937.08 36719.30 3675.76 367
uanet_test0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
cdsmvs_eth3d_5k23.98 33631.98 3380.00 3530.00 3740.00 3750.00 36498.59 1430.00 3700.00 37198.61 13190.60 1600.00 3720.00 3700.00 3700.00 368
pcd_1.5k_mvsjas7.88 34010.50 3430.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 37194.51 860.00 3720.00 3700.00 3700.00 368
sosnet-low-res0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
sosnet0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
uncertanet0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
Regformer0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
ab-mvs-re8.20 33910.94 3420.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 37198.43 1490.00 3760.00 3720.00 3700.00 3700.00 368
uanet0.00 3410.00 3440.00 3530.00 3740.00 3750.00 3640.00 3750.00 3700.00 3710.00 3710.00 3760.00 3720.00 3700.00 3700.00 368
No_MVS99.62 599.17 9899.08 998.63 13999.94 398.53 1199.80 1799.86 2
eth-test20.00 374
eth-test0.00 374
OPU-MVS99.37 2199.24 9299.05 1199.02 6199.16 6197.81 399.37 15897.24 8599.73 4499.70 50
save fliter99.46 5198.38 3698.21 20198.71 11497.95 3
test_0728_SECOND99.71 199.72 1299.35 198.97 7198.88 4999.94 398.47 1899.81 1099.84 5
GSMVS99.20 132
sam_mvs189.45 17899.20 132
sam_mvs88.99 191
MTGPAbinary98.74 104
test_post196.68 32130.43 36987.85 22398.69 23592.59 245
test_post31.83 36888.83 19898.91 214
patchmatchnet-post95.10 33589.42 17998.89 218
MTMP98.89 8694.14 357
gm-plane-assit95.88 31487.47 34389.74 31696.94 28699.19 17293.32 224
test9_res96.39 12799.57 7799.69 53
agg_prior295.87 14399.57 7799.68 59
test_prior498.01 6397.86 244
test_prior99.19 4499.31 7098.22 5198.84 6599.70 11699.65 69
新几何297.64 260
旧先验199.29 7897.48 8498.70 11799.09 7595.56 4899.47 9399.61 77
无先验97.58 26498.72 11091.38 27999.87 4593.36 22299.60 80
原ACMM297.67 258
testdata299.89 3691.65 270
segment_acmp96.85 12
testdata197.32 28196.34 74
plane_prior797.42 23594.63 211
plane_prior697.35 24094.61 21487.09 236
plane_prior598.56 15199.03 19596.07 13394.27 22496.92 242
plane_prior498.28 170
plane_prior298.80 10897.28 31
plane_prior197.37 239
plane_prior94.60 21698.44 17096.74 5894.22 226
n20.00 375
nn0.00 375
door-mid94.37 353
test1198.66 132
door94.64 351
HQP5-MVS94.25 230
BP-MVS95.30 162
HQP3-MVS98.46 17294.18 228
HQP2-MVS86.75 242
NP-MVS97.28 24394.51 21997.73 218
ACMMP++_ref92.97 256
ACMMP++93.61 244
Test By Simon94.64 81