SED-MVS | | | 99.09 1 | 98.91 1 | 99.63 3 | 99.71 20 | 99.24 4 | 99.02 61 | 98.87 55 | 97.65 9 | 99.73 1 | 99.48 6 | 97.53 5 | 99.94 3 | 98.43 21 | 99.81 10 | 99.70 50 |
|
test_241102_ONE | | | | | | 99.71 20 | 99.24 4 | | 98.87 55 | 97.62 11 | 99.73 1 | 99.39 14 | 97.53 5 | 99.74 108 | | | |
|
SD-MVS | | | 98.64 14 | 98.68 5 | 98.53 92 | 99.33 65 | 98.36 43 | 98.90 82 | 98.85 64 | 97.28 31 | 99.72 3 | 99.39 14 | 96.63 16 | 97.60 325 | 98.17 31 | 99.85 3 | 99.64 72 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
IU-MVS | | | | | | 99.71 20 | 99.23 6 | | 98.64 137 | 95.28 122 | 99.63 4 | | | | 98.35 27 | 99.81 10 | 99.83 6 |
|
PC_three_1452 | | | | | | | | | | 95.08 136 | 99.60 5 | 99.16 61 | 97.86 2 | 98.47 258 | 97.52 77 | 99.72 51 | 99.74 34 |
|
test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 53 | 98.88 49 | 97.62 11 | 99.56 6 | 99.50 4 | 97.42 7 | | | | |
|
TSAR-MVS + MP. | | | 98.78 6 | 98.62 7 | 99.24 41 | 99.69 25 | 98.28 49 | 99.14 39 | 98.66 132 | 96.84 53 | 99.56 6 | 99.31 35 | 96.34 20 | 99.70 116 | 98.32 28 | 99.73 44 | 99.73 38 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPE-MVS |  | | 98.92 4 | 98.67 6 | 99.65 2 | 99.58 32 | 99.20 7 | 98.42 174 | 98.91 43 | 97.58 14 | 99.54 8 | 99.46 9 | 97.10 10 | 99.94 3 | 97.64 66 | 99.84 8 | 99.83 6 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_241102_TWO | | | | | | | | | 98.87 55 | 97.65 9 | 99.53 9 | 99.48 6 | 97.34 9 | 99.94 3 | 98.43 21 | 99.80 17 | 99.83 6 |
|
DVP-MVS |  | | 99.03 2 | 98.83 3 | 99.63 3 | 99.72 12 | 99.25 2 | 98.97 71 | 98.58 148 | 97.62 11 | 99.45 10 | 99.46 9 | 97.42 7 | 99.94 3 | 98.47 18 | 99.81 10 | 99.69 53 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 97.32 29 | 99.45 10 | 99.46 9 | 97.88 1 | 99.94 3 | 98.47 18 | 99.86 1 | 99.85 3 |
|
MSP-MVS | | | 98.74 8 | 98.55 10 | 99.29 32 | 99.75 3 | 98.23 50 | 99.26 21 | 98.88 49 | 97.52 15 | 99.41 12 | 98.78 115 | 96.00 35 | 99.79 93 | 97.79 54 | 99.59 73 | 99.85 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 99.02 3 | 98.84 2 | 99.55 7 | 99.57 33 | 98.96 13 | 99.39 6 | 98.93 37 | 97.38 26 | 99.41 12 | 99.54 1 | 96.66 14 | 99.84 54 | 98.86 2 | 99.85 3 | 99.87 1 |
|
SMA-MVS |  | | 98.58 23 | 98.25 38 | 99.56 6 | 99.51 39 | 99.04 12 | 98.95 75 | 98.80 87 | 93.67 201 | 99.37 14 | 99.52 3 | 96.52 18 | 99.89 36 | 98.06 37 | 99.81 10 | 99.76 27 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SteuartSystems-ACMMP | | | 98.90 5 | 98.75 4 | 99.36 22 | 99.22 94 | 98.43 34 | 99.10 48 | 98.87 55 | 97.38 26 | 99.35 15 | 99.40 13 | 97.78 4 | 99.87 45 | 97.77 55 | 99.85 3 | 99.78 14 |
Skip Steuart: Steuart Systems R&D Blog. |
xxxxxxxxxxxxxcwj | | | 98.70 9 | 98.50 14 | 99.30 31 | 99.46 51 | 98.38 36 | 98.21 201 | 98.52 159 | 97.95 3 | 99.32 16 | 99.39 14 | 96.22 21 | 99.84 54 | 97.72 58 | 99.73 44 | 99.67 63 |
|
SF-MVS | | | 98.59 20 | 98.32 33 | 99.41 17 | 99.54 35 | 98.71 19 | 99.04 55 | 98.81 76 | 95.12 131 | 99.32 16 | 99.39 14 | 96.22 21 | 99.84 54 | 97.72 58 | 99.73 44 | 99.67 63 |
|
test_part2 | | | | | | 99.63 29 | 99.18 8 | | | | 99.27 18 | | | | | | |
|
abl_6 | | | 98.30 53 | 98.03 52 | 99.13 55 | 99.56 34 | 97.76 76 | 99.13 42 | 98.82 70 | 96.14 82 | 99.26 19 | 99.37 22 | 93.33 105 | 99.93 16 | 96.96 96 | 99.67 56 | 99.69 53 |
|
DeepPCF-MVS | | 96.37 2 | 97.93 65 | 98.48 17 | 96.30 248 | 99.00 111 | 89.54 318 | 97.43 270 | 98.87 55 | 98.16 2 | 99.26 19 | 99.38 21 | 96.12 29 | 99.64 127 | 98.30 29 | 99.77 27 | 99.72 42 |
|
APD-MVS |  | | 98.35 46 | 98.00 54 | 99.42 16 | 99.51 39 | 98.72 18 | 98.80 108 | 98.82 70 | 94.52 160 | 99.23 21 | 99.25 43 | 95.54 50 | 99.80 81 | 96.52 121 | 99.77 27 | 99.74 34 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Regformer-2 | | | 98.69 11 | 98.52 12 | 99.19 44 | 99.35 60 | 98.01 63 | 98.37 178 | 98.81 76 | 97.48 18 | 99.21 22 | 99.21 48 | 96.13 28 | 99.80 81 | 98.40 25 | 99.73 44 | 99.75 29 |
|
Regformer-1 | | | 98.66 12 | 98.51 13 | 99.12 58 | 99.35 60 | 97.81 75 | 98.37 178 | 98.76 99 | 97.49 17 | 99.20 23 | 99.21 48 | 96.08 30 | 99.79 93 | 98.42 23 | 99.73 44 | 99.75 29 |
|
APD-MVS_3200maxsize | | | 98.53 34 | 98.33 32 | 99.15 54 | 99.50 41 | 97.92 68 | 99.15 38 | 98.81 76 | 96.24 77 | 99.20 23 | 99.37 22 | 95.30 63 | 99.80 81 | 97.73 57 | 99.67 56 | 99.72 42 |
|
SR-MVS-dyc-post | | | 98.54 32 | 98.35 24 | 99.13 55 | 99.49 45 | 97.86 69 | 99.11 45 | 98.80 87 | 96.49 68 | 99.17 25 | 99.35 28 | 95.34 60 | 99.82 65 | 97.72 58 | 99.65 60 | 99.71 46 |
|
RE-MVS-def | | | | 98.34 28 | | 99.49 45 | 97.86 69 | 99.11 45 | 98.80 87 | 96.49 68 | 99.17 25 | 99.35 28 | 95.29 64 | | 97.72 58 | 99.65 60 | 99.71 46 |
|
9.14 | | | | 98.06 50 | | 99.47 48 | | 98.71 126 | 98.82 70 | 94.36 165 | 99.16 27 | 99.29 39 | 96.05 33 | 99.81 72 | 97.00 92 | 99.71 52 | |
|
ACMMP_NAP | | | 98.61 17 | 98.30 34 | 99.55 7 | 99.62 30 | 98.95 14 | 98.82 101 | 98.81 76 | 95.80 94 | 99.16 27 | 99.47 8 | 95.37 58 | 99.92 22 | 97.89 47 | 99.75 39 | 99.79 11 |
|
ETH3D-3000-0.1 | | | 98.35 46 | 98.00 54 | 99.38 18 | 99.47 48 | 98.68 22 | 98.67 136 | 98.84 65 | 94.66 155 | 99.11 29 | 99.25 43 | 95.46 52 | 99.81 72 | 96.80 111 | 99.73 44 | 99.63 75 |
|
SR-MVS | | | 98.57 26 | 98.35 24 | 99.24 41 | 99.53 36 | 98.18 54 | 99.09 49 | 98.82 70 | 96.58 64 | 99.10 30 | 99.32 33 | 95.39 56 | 99.82 65 | 97.70 63 | 99.63 66 | 99.72 42 |
|
Regformer-4 | | | 98.64 14 | 98.53 11 | 98.99 64 | 99.43 57 | 97.37 88 | 98.40 176 | 98.79 92 | 97.46 21 | 99.09 31 | 99.31 35 | 95.86 43 | 99.80 81 | 98.64 4 | 99.76 33 | 99.79 11 |
|
Regformer-3 | | | 98.59 20 | 98.50 14 | 98.86 74 | 99.43 57 | 97.05 102 | 98.40 176 | 98.68 121 | 97.43 22 | 99.06 32 | 99.31 35 | 95.80 44 | 99.77 102 | 98.62 6 | 99.76 33 | 99.78 14 |
|
test1172 | | | 98.56 28 | 98.35 24 | 99.16 51 | 99.53 36 | 97.94 67 | 99.09 49 | 98.83 68 | 96.52 67 | 99.05 33 | 99.34 31 | 95.34 60 | 99.82 65 | 97.86 49 | 99.64 64 | 99.73 38 |
|
PGM-MVS | | | 98.49 36 | 98.23 42 | 99.27 39 | 99.72 12 | 98.08 60 | 98.99 67 | 99.49 5 | 95.43 112 | 99.03 34 | 99.32 33 | 95.56 48 | 99.94 3 | 96.80 111 | 99.77 27 | 99.78 14 |
|
VNet | | | 97.79 71 | 97.40 83 | 98.96 68 | 98.88 120 | 97.55 82 | 98.63 142 | 98.93 37 | 96.74 58 | 99.02 35 | 98.84 108 | 90.33 165 | 99.83 57 | 98.53 11 | 96.66 191 | 99.50 93 |
|
xiu_mvs_v1_base_debu | | | 97.60 80 | 97.56 71 | 97.72 150 | 98.35 159 | 95.98 146 | 97.86 244 | 98.51 162 | 97.13 44 | 99.01 36 | 98.40 153 | 91.56 137 | 99.80 81 | 98.53 11 | 98.68 131 | 97.37 226 |
|
xiu_mvs_v1_base | | | 97.60 80 | 97.56 71 | 97.72 150 | 98.35 159 | 95.98 146 | 97.86 244 | 98.51 162 | 97.13 44 | 99.01 36 | 98.40 153 | 91.56 137 | 99.80 81 | 98.53 11 | 98.68 131 | 97.37 226 |
|
xiu_mvs_v1_base_debi | | | 97.60 80 | 97.56 71 | 97.72 150 | 98.35 159 | 95.98 146 | 97.86 244 | 98.51 162 | 97.13 44 | 99.01 36 | 98.40 153 | 91.56 137 | 99.80 81 | 98.53 11 | 98.68 131 | 97.37 226 |
|
TSAR-MVS + GP. | | | 98.38 43 | 98.24 41 | 98.81 75 | 99.22 94 | 97.25 97 | 98.11 220 | 98.29 208 | 97.19 40 | 98.99 39 | 99.02 81 | 96.22 21 | 99.67 123 | 98.52 16 | 98.56 139 | 99.51 91 |
|
HFP-MVS | | | 98.63 16 | 98.40 18 | 99.32 29 | 99.72 12 | 98.29 47 | 99.23 24 | 98.96 32 | 96.10 86 | 98.94 40 | 99.17 56 | 96.06 31 | 99.92 22 | 97.62 67 | 99.78 24 | 99.75 29 |
|
region2R | | | 98.61 17 | 98.38 20 | 99.29 32 | 99.74 7 | 98.16 56 | 99.23 24 | 98.93 37 | 96.15 81 | 98.94 40 | 99.17 56 | 95.91 40 | 99.94 3 | 97.55 74 | 99.79 20 | 99.78 14 |
|
#test# | | | 98.54 32 | 98.27 36 | 99.32 29 | 99.72 12 | 98.29 47 | 98.98 70 | 98.96 32 | 95.65 102 | 98.94 40 | 99.17 56 | 96.06 31 | 99.92 22 | 97.21 87 | 99.78 24 | 99.75 29 |
|
HPM-MVS_fast | | | 98.38 43 | 98.13 46 | 99.12 58 | 99.75 3 | 97.86 69 | 99.44 5 | 98.82 70 | 94.46 163 | 98.94 40 | 99.20 52 | 95.16 70 | 99.74 108 | 97.58 70 | 99.85 3 | 99.77 21 |
|
ACMMPR | | | 98.59 20 | 98.36 22 | 99.29 32 | 99.74 7 | 98.15 57 | 99.23 24 | 98.95 34 | 96.10 86 | 98.93 44 | 99.19 55 | 95.70 45 | 99.94 3 | 97.62 67 | 99.79 20 | 99.78 14 |
|
DeepC-MVS_fast | | 96.70 1 | 98.55 30 | 98.34 28 | 99.18 48 | 99.25 86 | 98.04 61 | 98.50 163 | 98.78 95 | 97.72 6 | 98.92 45 | 99.28 40 | 95.27 65 | 99.82 65 | 97.55 74 | 99.77 27 | 99.69 53 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
testtj | | | 98.33 50 | 97.95 56 | 99.47 12 | 99.49 45 | 98.70 20 | 98.83 98 | 98.86 61 | 95.48 109 | 98.91 46 | 99.17 56 | 95.48 51 | 99.93 16 | 95.80 146 | 99.53 87 | 99.76 27 |
|
DROMVSNet | | | 98.21 56 | 98.11 48 | 98.49 96 | 98.34 164 | 97.26 96 | 99.61 1 | 98.43 179 | 96.78 55 | 98.87 47 | 98.84 108 | 93.72 102 | 99.01 201 | 98.91 1 | 99.50 90 | 99.19 135 |
|
EI-MVSNet-Vis-set | | | 98.47 38 | 98.39 19 | 98.69 79 | 99.46 51 | 96.49 127 | 98.30 192 | 98.69 118 | 97.21 38 | 98.84 48 | 99.36 26 | 95.41 55 | 99.78 97 | 98.62 6 | 99.65 60 | 99.80 10 |
|
MSLP-MVS++ | | | 98.56 28 | 98.57 8 | 98.55 88 | 99.26 85 | 96.80 112 | 98.71 126 | 99.05 24 | 97.28 31 | 98.84 48 | 99.28 40 | 96.47 19 | 99.40 156 | 98.52 16 | 99.70 53 | 99.47 100 |
|
PHI-MVS | | | 98.34 48 | 98.06 50 | 99.18 48 | 99.15 102 | 98.12 59 | 99.04 55 | 99.09 20 | 93.32 214 | 98.83 50 | 99.10 70 | 96.54 17 | 99.83 57 | 97.70 63 | 99.76 33 | 99.59 82 |
|
MVSFormer | | | 97.57 85 | 97.49 77 | 97.84 139 | 98.07 187 | 95.76 165 | 99.47 3 | 98.40 184 | 94.98 139 | 98.79 51 | 98.83 110 | 92.34 116 | 98.41 271 | 96.91 98 | 99.59 73 | 99.34 114 |
|
lupinMVS | | | 97.44 93 | 97.22 90 | 98.12 123 | 98.07 187 | 95.76 165 | 97.68 257 | 97.76 269 | 94.50 161 | 98.79 51 | 98.61 131 | 92.34 116 | 99.30 162 | 97.58 70 | 99.59 73 | 99.31 120 |
|
CDPH-MVS | | | 97.94 63 | 97.49 77 | 99.28 36 | 99.47 48 | 98.44 32 | 97.91 237 | 98.67 129 | 92.57 242 | 98.77 53 | 98.85 106 | 95.93 39 | 99.72 110 | 95.56 156 | 99.69 54 | 99.68 59 |
|
CNVR-MVS | | | 98.78 6 | 98.56 9 | 99.45 15 | 99.32 68 | 98.87 16 | 98.47 166 | 98.81 76 | 97.72 6 | 98.76 54 | 99.16 61 | 97.05 11 | 99.78 97 | 98.06 37 | 99.66 59 | 99.69 53 |
|
EI-MVSNet-UG-set | | | 98.41 41 | 98.34 28 | 98.61 84 | 99.45 55 | 96.32 136 | 98.28 195 | 98.68 121 | 97.17 41 | 98.74 55 | 99.37 22 | 95.25 67 | 99.79 93 | 98.57 9 | 99.54 86 | 99.73 38 |
|
diffmvs | | | 97.58 84 | 97.40 83 | 98.13 121 | 98.32 168 | 95.81 164 | 98.06 223 | 98.37 191 | 96.20 79 | 98.74 55 | 98.89 102 | 91.31 146 | 99.25 165 | 98.16 32 | 98.52 140 | 99.34 114 |
|
GST-MVS | | | 98.43 40 | 98.12 47 | 99.34 24 | 99.72 12 | 98.38 36 | 99.09 49 | 98.82 70 | 95.71 98 | 98.73 57 | 99.06 79 | 95.27 65 | 99.93 16 | 97.07 91 | 99.63 66 | 99.72 42 |
|
UA-Net | | | 97.96 59 | 97.62 67 | 98.98 66 | 98.86 122 | 97.47 85 | 98.89 86 | 99.08 21 | 96.67 61 | 98.72 58 | 99.54 1 | 93.15 108 | 99.81 72 | 94.87 172 | 98.83 127 | 99.65 69 |
|
ETH3D cwj APD-0.16 | | | 97.96 59 | 97.52 74 | 99.29 32 | 99.05 106 | 98.52 28 | 98.33 184 | 98.68 121 | 93.18 219 | 98.68 59 | 99.13 65 | 94.62 82 | 99.83 57 | 96.45 123 | 99.55 85 | 99.52 87 |
|
hse-mvs3 | | | 96.17 145 | 95.62 154 | 97.81 143 | 99.03 109 | 94.45 220 | 98.64 141 | 98.75 102 | 97.48 18 | 98.67 60 | 98.72 122 | 89.76 172 | 99.86 50 | 97.95 41 | 81.59 344 | 99.11 147 |
|
hse-mvs2 | | | 95.71 164 | 95.30 169 | 96.93 196 | 98.50 151 | 93.53 252 | 98.36 180 | 98.10 239 | 97.48 18 | 98.67 60 | 97.99 193 | 89.76 172 | 99.02 198 | 97.95 41 | 80.91 348 | 98.22 202 |
|
ZD-MVS | | | | | | 99.46 51 | 98.70 20 | | 98.79 92 | 93.21 218 | 98.67 60 | 98.97 88 | 95.70 45 | 99.83 57 | 96.07 133 | 99.58 76 | |
|
旧先验2 | | | | | | | | 97.57 265 | | 91.30 285 | 98.67 60 | | | 99.80 81 | 95.70 153 | | |
|
PS-MVSNAJ | | | 97.73 73 | 97.77 63 | 97.62 160 | 98.68 139 | 95.58 169 | 97.34 279 | 98.51 162 | 97.29 30 | 98.66 64 | 97.88 204 | 94.51 86 | 99.90 34 | 97.87 48 | 99.17 114 | 97.39 224 |
|
xiu_mvs_v2_base | | | 97.66 77 | 97.70 66 | 97.56 164 | 98.61 145 | 95.46 175 | 97.44 268 | 98.46 172 | 97.15 42 | 98.65 65 | 98.15 181 | 94.33 93 | 99.80 81 | 97.84 52 | 98.66 135 | 97.41 222 |
|
LFMVS | | | 95.86 157 | 94.98 183 | 98.47 98 | 98.87 121 | 96.32 136 | 98.84 97 | 96.02 335 | 93.40 211 | 98.62 66 | 99.20 52 | 74.99 345 | 99.63 130 | 97.72 58 | 97.20 181 | 99.46 104 |
|
HPM-MVS |  | | 98.36 45 | 98.10 49 | 99.13 55 | 99.74 7 | 97.82 73 | 99.53 2 | 98.80 87 | 94.63 156 | 98.61 67 | 98.97 88 | 95.13 71 | 99.77 102 | 97.65 65 | 99.83 9 | 99.79 11 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
testdata | | | | | 98.26 112 | 99.20 97 | 95.36 178 | | 98.68 121 | 91.89 265 | 98.60 68 | 99.10 70 | 94.44 91 | 99.82 65 | 94.27 195 | 99.44 98 | 99.58 84 |
|
CP-MVS | | | 98.57 26 | 98.36 22 | 99.19 44 | 99.66 27 | 97.86 69 | 99.34 13 | 98.87 55 | 95.96 89 | 98.60 68 | 99.13 65 | 96.05 33 | 99.94 3 | 97.77 55 | 99.86 1 | 99.77 21 |
|
jason | | | 97.32 101 | 97.08 95 | 98.06 128 | 97.45 234 | 95.59 168 | 97.87 243 | 97.91 264 | 94.79 147 | 98.55 70 | 98.83 110 | 91.12 149 | 99.23 168 | 97.58 70 | 99.60 70 | 99.34 114 |
jason: jason. |
MCST-MVS | | | 98.65 13 | 98.37 21 | 99.48 11 | 99.60 31 | 98.87 16 | 98.41 175 | 98.68 121 | 97.04 48 | 98.52 71 | 98.80 113 | 96.78 13 | 99.83 57 | 97.93 43 | 99.61 69 | 99.74 34 |
|
CS-MVS | | | 97.94 63 | 97.90 59 | 98.06 128 | 98.04 191 | 96.85 111 | 99.04 55 | 98.39 187 | 96.17 80 | 98.50 72 | 98.29 169 | 94.60 83 | 99.02 198 | 98.61 8 | 99.43 99 | 98.30 200 |
|
XVS | | | 98.70 9 | 98.49 16 | 99.34 24 | 99.70 23 | 98.35 44 | 99.29 17 | 98.88 49 | 97.40 23 | 98.46 73 | 99.20 52 | 95.90 41 | 99.89 36 | 97.85 50 | 99.74 42 | 99.78 14 |
|
X-MVStestdata | | | 94.06 267 | 92.30 287 | 99.34 24 | 99.70 23 | 98.35 44 | 99.29 17 | 98.88 49 | 97.40 23 | 98.46 73 | 43.50 365 | 95.90 41 | 99.89 36 | 97.85 50 | 99.74 42 | 99.78 14 |
|
MG-MVS | | | 97.81 70 | 97.60 68 | 98.44 100 | 99.12 104 | 95.97 151 | 97.75 253 | 98.78 95 | 96.89 52 | 98.46 73 | 99.22 47 | 93.90 101 | 99.68 122 | 94.81 176 | 99.52 89 | 99.67 63 |
|
NCCC | | | 98.61 17 | 98.35 24 | 99.38 18 | 99.28 82 | 98.61 25 | 98.45 167 | 98.76 99 | 97.82 5 | 98.45 76 | 98.93 98 | 96.65 15 | 99.83 57 | 97.38 82 | 99.41 101 | 99.71 46 |
|
ETH3 D test6400 | | | 97.59 83 | 97.01 98 | 99.34 24 | 99.40 59 | 98.56 26 | 98.20 204 | 98.81 76 | 91.63 273 | 98.44 77 | 98.85 106 | 93.98 100 | 99.82 65 | 94.11 201 | 99.69 54 | 99.64 72 |
|
MVS_Test | | | 97.28 102 | 97.00 99 | 98.13 121 | 98.33 166 | 95.97 151 | 98.74 117 | 98.07 248 | 94.27 167 | 98.44 77 | 98.07 186 | 92.48 114 | 99.26 164 | 96.43 125 | 98.19 154 | 99.16 141 |
|
MVS_111021_LR | | | 98.34 48 | 98.23 42 | 98.67 81 | 99.27 83 | 96.90 108 | 97.95 233 | 99.58 3 | 97.14 43 | 98.44 77 | 99.01 85 | 95.03 74 | 99.62 132 | 97.91 44 | 99.75 39 | 99.50 93 |
|
ETV-MVS | | | 97.96 59 | 97.81 62 | 98.40 104 | 98.42 155 | 97.27 92 | 98.73 121 | 98.55 153 | 96.84 53 | 98.38 80 | 97.44 243 | 95.39 56 | 99.35 159 | 97.62 67 | 98.89 122 | 98.58 189 |
|
VDDNet | | | 95.36 184 | 94.53 201 | 97.86 138 | 98.10 186 | 95.13 189 | 98.85 94 | 97.75 270 | 90.46 301 | 98.36 81 | 99.39 14 | 73.27 351 | 99.64 127 | 97.98 40 | 96.58 194 | 98.81 171 |
|
mPP-MVS | | | 98.51 35 | 98.26 37 | 99.25 40 | 99.75 3 | 98.04 61 | 99.28 19 | 98.81 76 | 96.24 77 | 98.35 82 | 99.23 45 | 95.46 52 | 99.94 3 | 97.42 80 | 99.81 10 | 99.77 21 |
|
DELS-MVS | | | 98.40 42 | 98.20 44 | 98.99 64 | 99.00 111 | 97.66 77 | 97.75 253 | 98.89 46 | 97.71 8 | 98.33 83 | 98.97 88 | 94.97 75 | 99.88 44 | 98.42 23 | 99.76 33 | 99.42 110 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_HR | | | 98.47 38 | 98.34 28 | 98.88 73 | 99.22 94 | 97.32 89 | 97.91 237 | 99.58 3 | 97.20 39 | 98.33 83 | 99.00 86 | 95.99 36 | 99.64 127 | 98.05 39 | 99.76 33 | 99.69 53 |
|
ZNCC-MVS | | | 98.49 36 | 98.20 44 | 99.35 23 | 99.73 11 | 98.39 35 | 99.19 34 | 98.86 61 | 95.77 95 | 98.31 85 | 99.10 70 | 95.46 52 | 99.93 16 | 97.57 73 | 99.81 10 | 99.74 34 |
|
CS-MVS-test | | | 97.90 66 | 97.83 61 | 98.11 124 | 98.14 183 | 96.49 127 | 99.35 11 | 98.40 184 | 96.31 76 | 98.27 86 | 98.31 166 | 94.42 92 | 99.05 190 | 98.07 36 | 99.20 111 | 98.80 172 |
|
HPM-MVS++ |  | | 98.58 23 | 98.25 38 | 99.55 7 | 99.50 41 | 99.08 9 | 98.72 125 | 98.66 132 | 97.51 16 | 98.15 87 | 98.83 110 | 95.70 45 | 99.92 22 | 97.53 76 | 99.67 56 | 99.66 67 |
|
新几何1 | | | | | 99.16 51 | 99.34 62 | 98.01 63 | | 98.69 118 | 90.06 310 | 98.13 88 | 98.95 96 | 94.60 83 | 99.89 36 | 91.97 263 | 99.47 93 | 99.59 82 |
|
API-MVS | | | 97.41 96 | 97.25 88 | 97.91 136 | 98.70 136 | 96.80 112 | 98.82 101 | 98.69 118 | 94.53 158 | 98.11 89 | 98.28 170 | 94.50 89 | 99.57 136 | 94.12 200 | 99.49 91 | 97.37 226 |
|
CPTT-MVS | | | 97.72 74 | 97.32 86 | 98.92 70 | 99.64 28 | 97.10 101 | 99.12 44 | 98.81 76 | 92.34 250 | 98.09 90 | 99.08 77 | 93.01 109 | 99.92 22 | 96.06 136 | 99.77 27 | 99.75 29 |
|
test12 | | | | | 99.18 48 | 99.16 100 | 98.19 53 | | 98.53 157 | | 98.07 91 | | 95.13 71 | 99.72 110 | | 99.56 82 | 99.63 75 |
|
test222 | | | | | | 99.23 93 | 97.17 100 | 97.40 271 | 98.66 132 | 88.68 326 | 98.05 92 | 98.96 94 | 94.14 96 | | | 99.53 87 | 99.61 77 |
|
DP-MVS Recon | | | 97.86 68 | 97.46 79 | 99.06 62 | 99.53 36 | 98.35 44 | 98.33 184 | 98.89 46 | 92.62 239 | 98.05 92 | 98.94 97 | 95.34 60 | 99.65 125 | 96.04 137 | 99.42 100 | 99.19 135 |
|
Vis-MVSNet |  | | 97.42 95 | 97.11 93 | 98.34 107 | 98.66 140 | 96.23 139 | 99.22 28 | 99.00 27 | 96.63 63 | 98.04 94 | 99.21 48 | 88.05 217 | 99.35 159 | 96.01 139 | 99.21 110 | 99.45 106 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
baseline | | | 97.64 78 | 97.44 81 | 98.25 113 | 98.35 159 | 96.20 140 | 99.00 65 | 98.32 198 | 96.33 75 | 98.03 95 | 99.17 56 | 91.35 144 | 99.16 174 | 98.10 34 | 98.29 153 | 99.39 111 |
|
test_yl | | | 97.22 104 | 96.78 109 | 98.54 90 | 98.73 131 | 96.60 121 | 98.45 167 | 98.31 200 | 94.70 149 | 98.02 96 | 98.42 151 | 90.80 156 | 99.70 116 | 96.81 109 | 96.79 188 | 99.34 114 |
|
DCV-MVSNet | | | 97.22 104 | 96.78 109 | 98.54 90 | 98.73 131 | 96.60 121 | 98.45 167 | 98.31 200 | 94.70 149 | 98.02 96 | 98.42 151 | 90.80 156 | 99.70 116 | 96.81 109 | 96.79 188 | 99.34 114 |
|
zzz-MVS | | | 98.55 30 | 98.25 38 | 99.46 13 | 99.76 1 | 98.64 23 | 98.55 156 | 98.74 104 | 97.27 35 | 98.02 96 | 99.39 14 | 94.81 78 | 99.96 1 | 97.91 44 | 99.79 20 | 99.77 21 |
|
MTAPA | | | 98.58 23 | 98.29 35 | 99.46 13 | 99.76 1 | 98.64 23 | 98.90 82 | 98.74 104 | 97.27 35 | 98.02 96 | 99.39 14 | 94.81 78 | 99.96 1 | 97.91 44 | 99.79 20 | 99.77 21 |
|
1121 | | | 97.37 99 | 96.77 113 | 99.16 51 | 99.34 62 | 97.99 66 | 98.19 208 | 98.68 121 | 90.14 309 | 98.01 100 | 98.97 88 | 94.80 80 | 99.87 45 | 93.36 222 | 99.46 96 | 99.61 77 |
|
sss | | | 97.39 97 | 96.98 101 | 98.61 84 | 98.60 146 | 96.61 120 | 98.22 200 | 98.93 37 | 93.97 179 | 98.01 100 | 98.48 145 | 91.98 129 | 99.85 51 | 96.45 123 | 98.15 155 | 99.39 111 |
|
alignmvs | | | 97.56 86 | 97.07 96 | 99.01 63 | 98.66 140 | 98.37 42 | 98.83 98 | 98.06 253 | 96.74 58 | 98.00 102 | 97.65 225 | 90.80 156 | 99.48 151 | 98.37 26 | 96.56 195 | 99.19 135 |
|
OMC-MVS | | | 97.55 87 | 97.34 85 | 98.20 116 | 99.33 65 | 95.92 158 | 98.28 195 | 98.59 143 | 95.52 108 | 97.97 103 | 99.10 70 | 93.28 107 | 99.49 147 | 95.09 169 | 98.88 123 | 99.19 135 |
|
VDD-MVS | | | 95.82 160 | 95.23 171 | 97.61 161 | 98.84 125 | 93.98 235 | 98.68 133 | 97.40 298 | 95.02 138 | 97.95 104 | 99.34 31 | 74.37 349 | 99.78 97 | 98.64 4 | 96.80 187 | 99.08 152 |
|
casdiffmvs | | | 97.63 79 | 97.41 82 | 98.28 109 | 98.33 166 | 96.14 143 | 98.82 101 | 98.32 198 | 96.38 73 | 97.95 104 | 99.21 48 | 91.23 148 | 99.23 168 | 98.12 33 | 98.37 148 | 99.48 98 |
|
PVSNet_BlendedMVS | | | 96.73 124 | 96.60 119 | 97.12 184 | 99.25 86 | 95.35 180 | 98.26 198 | 99.26 8 | 94.28 166 | 97.94 106 | 97.46 240 | 92.74 112 | 99.81 72 | 96.88 104 | 93.32 251 | 96.20 317 |
|
PVSNet_Blended | | | 97.38 98 | 97.12 92 | 98.14 119 | 99.25 86 | 95.35 180 | 97.28 284 | 99.26 8 | 93.13 222 | 97.94 106 | 98.21 177 | 92.74 112 | 99.81 72 | 96.88 104 | 99.40 103 | 99.27 127 |
|
DPM-MVS | | | 97.55 87 | 96.99 100 | 99.23 43 | 99.04 108 | 98.55 27 | 97.17 292 | 98.35 194 | 94.85 146 | 97.93 108 | 98.58 136 | 95.07 73 | 99.71 115 | 92.60 243 | 99.34 106 | 99.43 108 |
|
MP-MVS |  | | 98.33 50 | 98.01 53 | 99.28 36 | 99.75 3 | 98.18 54 | 99.22 28 | 98.79 92 | 96.13 83 | 97.92 109 | 99.23 45 | 94.54 85 | 99.94 3 | 96.74 115 | 99.78 24 | 99.73 38 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MDTV_nov1_ep13_2view | | | | | | | 84.26 350 | 96.89 311 | | 90.97 295 | 97.90 110 | | 89.89 171 | | 93.91 206 | | 99.18 140 |
|
test_prior3 | | | 98.22 55 | 97.90 59 | 99.19 44 | 99.31 70 | 98.22 51 | 97.80 249 | 98.84 65 | 96.12 84 | 97.89 111 | 98.69 123 | 95.96 37 | 99.70 116 | 96.89 101 | 99.60 70 | 99.65 69 |
|
test_prior2 | | | | | | | | 97.80 249 | | 96.12 84 | 97.89 111 | 98.69 123 | 95.96 37 | | 96.89 101 | 99.60 70 | |
|
原ACMM1 | | | | | 98.65 82 | 99.32 68 | 96.62 118 | | 98.67 129 | 93.27 217 | 97.81 113 | 98.97 88 | 95.18 69 | 99.83 57 | 93.84 208 | 99.46 96 | 99.50 93 |
|
114514_t | | | 96.93 117 | 96.27 130 | 98.92 70 | 99.50 41 | 97.63 79 | 98.85 94 | 98.90 44 | 84.80 345 | 97.77 114 | 99.11 68 | 92.84 110 | 99.66 124 | 94.85 173 | 99.77 27 | 99.47 100 |
|
PMMVS | | | 96.60 127 | 96.33 128 | 97.41 170 | 97.90 199 | 93.93 236 | 97.35 278 | 98.41 182 | 92.84 234 | 97.76 115 | 97.45 242 | 91.10 151 | 99.20 171 | 96.26 129 | 97.91 162 | 99.11 147 |
|
PVSNet | | 91.96 18 | 96.35 138 | 96.15 134 | 96.96 194 | 99.17 98 | 92.05 279 | 96.08 329 | 98.68 121 | 93.69 197 | 97.75 116 | 97.80 215 | 88.86 197 | 99.69 121 | 94.26 196 | 99.01 117 | 99.15 142 |
|
TEST9 | | | | | | 99.31 70 | 98.50 30 | 97.92 235 | 98.73 108 | 92.63 238 | 97.74 117 | 98.68 125 | 96.20 24 | 99.80 81 | | | |
|
train_agg | | | 97.97 58 | 97.52 74 | 99.33 28 | 99.31 70 | 98.50 30 | 97.92 235 | 98.73 108 | 92.98 227 | 97.74 117 | 98.68 125 | 96.20 24 | 99.80 81 | 96.59 117 | 99.57 77 | 99.68 59 |
|
CANet | | | 98.05 57 | 97.76 64 | 98.90 72 | 98.73 131 | 97.27 92 | 98.35 181 | 98.78 95 | 97.37 28 | 97.72 119 | 98.96 94 | 91.53 141 | 99.92 22 | 98.79 3 | 99.65 60 | 99.51 91 |
|
test_8 | | | | | | 99.29 78 | 98.44 32 | 97.89 241 | 98.72 110 | 92.98 227 | 97.70 120 | 98.66 128 | 96.20 24 | 99.80 81 | | | |
|
MP-MVS-pluss | | | 98.31 52 | 97.92 58 | 99.49 10 | 99.72 12 | 98.88 15 | 98.43 172 | 98.78 95 | 94.10 171 | 97.69 121 | 99.42 12 | 95.25 67 | 99.92 22 | 98.09 35 | 99.80 17 | 99.67 63 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
canonicalmvs | | | 97.67 76 | 97.23 89 | 98.98 66 | 98.70 136 | 98.38 36 | 99.34 13 | 98.39 187 | 96.76 57 | 97.67 122 | 97.40 246 | 92.26 119 | 99.49 147 | 98.28 30 | 96.28 207 | 99.08 152 |
|
PVSNet_Blended_VisFu | | | 97.70 75 | 97.46 79 | 98.44 100 | 99.27 83 | 95.91 159 | 98.63 142 | 99.16 17 | 94.48 162 | 97.67 122 | 98.88 103 | 92.80 111 | 99.91 31 | 97.11 89 | 99.12 115 | 99.50 93 |
|
WTY-MVS | | | 97.37 99 | 96.92 103 | 98.72 78 | 98.86 122 | 96.89 110 | 98.31 190 | 98.71 114 | 95.26 123 | 97.67 122 | 98.56 139 | 92.21 122 | 99.78 97 | 95.89 141 | 96.85 186 | 99.48 98 |
|
Effi-MVS+ | | | 97.12 111 | 96.69 115 | 98.39 105 | 98.19 177 | 96.72 116 | 97.37 275 | 98.43 179 | 93.71 194 | 97.65 125 | 98.02 189 | 92.20 123 | 99.25 165 | 96.87 107 | 97.79 167 | 99.19 135 |
|
thisisatest0530 | | | 96.01 150 | 95.36 163 | 97.97 133 | 98.38 157 | 95.52 173 | 98.88 89 | 94.19 356 | 94.04 173 | 97.64 126 | 98.31 166 | 83.82 296 | 99.46 153 | 95.29 164 | 97.70 172 | 98.93 165 |
|
tttt0517 | | | 96.07 147 | 95.51 157 | 97.78 145 | 98.41 156 | 94.84 202 | 99.28 19 | 94.33 354 | 94.26 168 | 97.64 126 | 98.64 130 | 84.05 289 | 99.47 152 | 95.34 160 | 97.60 175 | 99.03 155 |
|
HyFIR lowres test | | | 96.90 119 | 96.49 124 | 98.14 119 | 99.33 65 | 95.56 170 | 97.38 273 | 99.65 2 | 92.34 250 | 97.61 128 | 98.20 178 | 89.29 182 | 99.10 186 | 96.97 94 | 97.60 175 | 99.77 21 |
|
ACMMP |  | | 98.23 54 | 97.95 56 | 99.09 60 | 99.74 7 | 97.62 80 | 99.03 58 | 99.41 6 | 95.98 88 | 97.60 129 | 99.36 26 | 94.45 90 | 99.93 16 | 97.14 88 | 98.85 126 | 99.70 50 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
agg_prior1 | | | 97.95 62 | 97.51 76 | 99.28 36 | 99.30 75 | 98.38 36 | 97.81 248 | 98.72 110 | 93.16 221 | 97.57 130 | 98.66 128 | 96.14 27 | 99.81 72 | 96.63 116 | 99.56 82 | 99.66 67 |
|
agg_prior | | | | | | 99.30 75 | 98.38 36 | | 98.72 110 | | 97.57 130 | | | 99.81 72 | | | |
|
tpmrst | | | 95.63 169 | 95.69 151 | 95.44 280 | 97.54 224 | 88.54 333 | 96.97 301 | 97.56 280 | 93.50 207 | 97.52 132 | 96.93 287 | 89.49 176 | 99.16 174 | 95.25 166 | 96.42 200 | 98.64 185 |
|
MDTV_nov1_ep13 | | | | 95.40 158 | | 97.48 228 | 88.34 336 | 96.85 314 | 97.29 302 | 93.74 191 | 97.48 133 | 97.26 252 | 89.18 185 | 99.05 190 | 91.92 264 | 97.43 178 | |
|
EPMVS | | | 94.99 205 | 94.48 204 | 96.52 231 | 97.22 247 | 91.75 285 | 97.23 286 | 91.66 362 | 94.11 170 | 97.28 134 | 96.81 294 | 85.70 260 | 98.84 224 | 93.04 232 | 97.28 180 | 98.97 161 |
|
EIA-MVS | | | 97.75 72 | 97.58 69 | 98.27 110 | 98.38 157 | 96.44 130 | 99.01 63 | 98.60 141 | 95.88 91 | 97.26 135 | 97.53 236 | 94.97 75 | 99.33 161 | 97.38 82 | 99.20 111 | 99.05 154 |
|
IS-MVSNet | | | 97.22 104 | 96.88 104 | 98.25 113 | 98.85 124 | 96.36 134 | 99.19 34 | 97.97 258 | 95.39 114 | 97.23 136 | 98.99 87 | 91.11 150 | 98.93 212 | 94.60 182 | 98.59 137 | 99.47 100 |
|
EPP-MVSNet | | | 97.46 89 | 97.28 87 | 97.99 132 | 98.64 142 | 95.38 177 | 99.33 16 | 98.31 200 | 93.61 204 | 97.19 137 | 99.07 78 | 94.05 97 | 99.23 168 | 96.89 101 | 98.43 147 | 99.37 113 |
|
thisisatest0515 | | | 95.61 172 | 94.89 187 | 97.76 147 | 98.15 182 | 95.15 187 | 96.77 317 | 94.41 352 | 92.95 229 | 97.18 138 | 97.43 244 | 84.78 275 | 99.45 154 | 94.63 179 | 97.73 171 | 98.68 180 |
|
CANet_DTU | | | 96.96 116 | 96.55 121 | 98.21 115 | 98.17 181 | 96.07 145 | 97.98 231 | 98.21 216 | 97.24 37 | 97.13 139 | 98.93 98 | 86.88 241 | 99.91 31 | 95.00 171 | 99.37 105 | 98.66 183 |
|
CHOSEN 1792x2688 | | | 97.12 111 | 96.80 106 | 98.08 126 | 99.30 75 | 94.56 218 | 98.05 224 | 99.71 1 | 93.57 205 | 97.09 140 | 98.91 101 | 88.17 212 | 99.89 36 | 96.87 107 | 99.56 82 | 99.81 9 |
|
PatchT | | | 93.06 286 | 91.97 291 | 96.35 245 | 96.69 281 | 92.67 272 | 94.48 349 | 97.08 309 | 86.62 334 | 97.08 141 | 92.23 351 | 87.94 219 | 97.90 315 | 78.89 354 | 96.69 190 | 98.49 191 |
|
PatchmatchNet |  | | 95.71 164 | 95.52 156 | 96.29 249 | 97.58 219 | 90.72 305 | 96.84 315 | 97.52 287 | 94.06 172 | 97.08 141 | 96.96 283 | 89.24 184 | 98.90 217 | 92.03 261 | 98.37 148 | 99.26 128 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MAR-MVS | | | 96.91 118 | 96.40 126 | 98.45 99 | 98.69 138 | 96.90 108 | 98.66 139 | 98.68 121 | 92.40 249 | 97.07 143 | 97.96 196 | 91.54 140 | 99.75 106 | 93.68 212 | 98.92 120 | 98.69 179 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PAPM_NR | | | 97.46 89 | 97.11 93 | 98.50 94 | 99.50 41 | 96.41 132 | 98.63 142 | 98.60 141 | 95.18 127 | 97.06 144 | 98.06 187 | 94.26 95 | 99.57 136 | 93.80 210 | 98.87 125 | 99.52 87 |
|
TAMVS | | | 97.02 114 | 96.79 108 | 97.70 153 | 98.06 189 | 95.31 182 | 98.52 158 | 98.31 200 | 93.95 180 | 97.05 145 | 98.61 131 | 93.49 104 | 98.52 253 | 95.33 161 | 97.81 166 | 99.29 125 |
|
CSCG | | | 97.85 69 | 97.74 65 | 98.20 116 | 99.67 26 | 95.16 185 | 99.22 28 | 99.32 7 | 93.04 225 | 97.02 146 | 98.92 100 | 95.36 59 | 99.91 31 | 97.43 79 | 99.64 64 | 99.52 87 |
|
CDS-MVSNet | | | 96.99 115 | 96.69 115 | 97.90 137 | 98.05 190 | 95.98 146 | 98.20 204 | 98.33 197 | 93.67 201 | 96.95 147 | 98.49 144 | 93.54 103 | 98.42 264 | 95.24 167 | 97.74 170 | 99.31 120 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
XVG-OURS-SEG-HR | | | 96.51 133 | 96.34 127 | 97.02 189 | 98.77 129 | 93.76 241 | 97.79 251 | 98.50 167 | 95.45 111 | 96.94 148 | 99.09 75 | 87.87 222 | 99.55 143 | 96.76 114 | 95.83 217 | 97.74 215 |
|
CR-MVSNet | | | 94.76 220 | 94.15 224 | 96.59 222 | 97.00 262 | 93.43 255 | 94.96 343 | 97.56 280 | 92.46 243 | 96.93 149 | 96.24 313 | 88.15 213 | 97.88 319 | 87.38 319 | 96.65 192 | 98.46 192 |
|
RPMNet | | | 92.81 288 | 91.34 296 | 97.24 176 | 97.00 262 | 93.43 255 | 94.96 343 | 98.80 87 | 82.27 349 | 96.93 149 | 92.12 352 | 86.98 239 | 99.82 65 | 76.32 358 | 96.65 192 | 98.46 192 |
|
SCA | | | 95.46 174 | 95.13 175 | 96.46 238 | 97.67 212 | 91.29 296 | 97.33 280 | 97.60 278 | 94.68 152 | 96.92 151 | 97.10 261 | 83.97 291 | 98.89 218 | 92.59 245 | 98.32 152 | 99.20 132 |
|
PatchMatch-RL | | | 96.59 129 | 96.03 139 | 98.27 110 | 99.31 70 | 96.51 126 | 97.91 237 | 99.06 22 | 93.72 193 | 96.92 151 | 98.06 187 | 88.50 206 | 99.65 125 | 91.77 267 | 99.00 118 | 98.66 183 |
|
DeepC-MVS | | 95.98 3 | 97.88 67 | 97.58 69 | 98.77 76 | 99.25 86 | 96.93 106 | 98.83 98 | 98.75 102 | 96.96 51 | 96.89 153 | 99.50 4 | 90.46 162 | 99.87 45 | 97.84 52 | 99.76 33 | 99.52 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVG-OURS | | | 96.55 132 | 96.41 125 | 96.99 190 | 98.75 130 | 93.76 241 | 97.50 267 | 98.52 159 | 95.67 100 | 96.83 154 | 99.30 38 | 88.95 196 | 99.53 144 | 95.88 142 | 96.26 208 | 97.69 218 |
|
AdaColmap |  | | 97.15 110 | 96.70 114 | 98.48 97 | 99.16 100 | 96.69 117 | 98.01 228 | 98.89 46 | 94.44 164 | 96.83 154 | 98.68 125 | 90.69 159 | 99.76 104 | 94.36 190 | 99.29 109 | 98.98 160 |
|
CostFormer | | | 94.95 209 | 94.73 193 | 95.60 275 | 97.28 243 | 89.06 325 | 97.53 266 | 96.89 323 | 89.66 317 | 96.82 156 | 96.72 297 | 86.05 255 | 98.95 211 | 95.53 157 | 96.13 213 | 98.79 173 |
|
UGNet | | | 96.78 123 | 96.30 129 | 98.19 118 | 98.24 171 | 95.89 161 | 98.88 89 | 98.93 37 | 97.39 25 | 96.81 157 | 97.84 209 | 82.60 300 | 99.90 34 | 96.53 120 | 99.49 91 | 98.79 173 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CNLPA | | | 97.45 92 | 97.03 97 | 98.73 77 | 99.05 106 | 97.44 87 | 98.07 222 | 98.53 157 | 95.32 120 | 96.80 158 | 98.53 140 | 93.32 106 | 99.72 110 | 94.31 194 | 99.31 108 | 99.02 156 |
|
CHOSEN 280x420 | | | 97.18 108 | 97.18 91 | 97.20 178 | 98.81 127 | 93.27 262 | 95.78 336 | 99.15 18 | 95.25 124 | 96.79 159 | 98.11 184 | 92.29 118 | 99.07 189 | 98.56 10 | 99.85 3 | 99.25 129 |
|
HY-MVS | | 93.96 8 | 96.82 122 | 96.23 133 | 98.57 86 | 98.46 154 | 97.00 103 | 98.14 215 | 98.21 216 | 93.95 180 | 96.72 160 | 97.99 193 | 91.58 136 | 99.76 104 | 94.51 187 | 96.54 196 | 98.95 164 |
|
PAPR | | | 96.84 121 | 96.24 132 | 98.65 82 | 98.72 135 | 96.92 107 | 97.36 277 | 98.57 149 | 93.33 213 | 96.67 161 | 97.57 233 | 94.30 94 | 99.56 138 | 91.05 278 | 98.59 137 | 99.47 100 |
|
Anonymous20240529 | | | 95.10 199 | 94.22 218 | 97.75 148 | 99.01 110 | 94.26 229 | 98.87 91 | 98.83 68 | 85.79 342 | 96.64 162 | 98.97 88 | 78.73 324 | 99.85 51 | 96.27 128 | 94.89 221 | 99.12 146 |
|
thres600view7 | | | 95.49 173 | 94.77 190 | 97.67 156 | 98.98 114 | 95.02 192 | 98.85 94 | 96.90 321 | 95.38 115 | 96.63 163 | 96.90 288 | 84.29 282 | 99.59 134 | 88.65 312 | 96.33 202 | 98.40 194 |
|
thres100view900 | | | 95.38 181 | 94.70 194 | 97.41 170 | 98.98 114 | 94.92 200 | 98.87 91 | 96.90 321 | 95.38 115 | 96.61 164 | 96.88 289 | 84.29 282 | 99.56 138 | 88.11 313 | 96.29 204 | 97.76 213 |
|
Vis-MVSNet (Re-imp) | | | 96.87 120 | 96.55 121 | 97.83 140 | 98.73 131 | 95.46 175 | 99.20 32 | 98.30 206 | 94.96 141 | 96.60 165 | 98.87 104 | 90.05 168 | 98.59 247 | 93.67 214 | 98.60 136 | 99.46 104 |
|
CVMVSNet | | | 95.43 177 | 96.04 138 | 93.57 319 | 97.93 197 | 83.62 351 | 98.12 218 | 98.59 143 | 95.68 99 | 96.56 166 | 99.02 81 | 87.51 228 | 97.51 329 | 93.56 218 | 97.44 177 | 99.60 80 |
|
RPSCF | | | 94.87 214 | 95.40 158 | 93.26 325 | 98.89 119 | 82.06 356 | 98.33 184 | 98.06 253 | 90.30 306 | 96.56 166 | 99.26 42 | 87.09 236 | 99.49 147 | 93.82 209 | 96.32 203 | 98.24 201 |
|
tfpn200view9 | | | 95.32 188 | 94.62 197 | 97.43 169 | 98.94 116 | 94.98 196 | 98.68 133 | 96.93 319 | 95.33 118 | 96.55 168 | 96.53 305 | 84.23 285 | 99.56 138 | 88.11 313 | 96.29 204 | 97.76 213 |
|
thres400 | | | 95.38 181 | 94.62 197 | 97.65 159 | 98.94 116 | 94.98 196 | 98.68 133 | 96.93 319 | 95.33 118 | 96.55 168 | 96.53 305 | 84.23 285 | 99.56 138 | 88.11 313 | 96.29 204 | 98.40 194 |
|
thres200 | | | 95.25 190 | 94.57 199 | 97.28 175 | 98.81 127 | 94.92 200 | 98.20 204 | 97.11 308 | 95.24 126 | 96.54 170 | 96.22 317 | 84.58 279 | 99.53 144 | 87.93 317 | 96.50 198 | 97.39 224 |
|
ab-mvs | | | 96.42 136 | 95.71 149 | 98.55 88 | 98.63 143 | 96.75 115 | 97.88 242 | 98.74 104 | 93.84 185 | 96.54 170 | 98.18 180 | 85.34 267 | 99.75 106 | 95.93 140 | 96.35 201 | 99.15 142 |
|
mvs-test1 | | | 96.60 127 | 96.68 117 | 96.37 243 | 97.89 200 | 91.81 282 | 98.56 154 | 98.10 239 | 96.57 65 | 96.52 172 | 97.94 198 | 90.81 154 | 99.45 154 | 95.72 149 | 98.01 159 | 97.86 212 |
|
Anonymous202405211 | | | 95.28 189 | 94.49 203 | 97.67 156 | 99.00 111 | 93.75 243 | 98.70 130 | 97.04 312 | 90.66 297 | 96.49 173 | 98.80 113 | 78.13 329 | 99.83 57 | 96.21 131 | 95.36 220 | 99.44 107 |
|
ADS-MVSNet2 | | | 94.58 232 | 94.40 212 | 95.11 289 | 98.00 192 | 88.74 330 | 96.04 330 | 97.30 301 | 90.15 307 | 96.47 174 | 96.64 302 | 87.89 220 | 97.56 327 | 90.08 290 | 97.06 182 | 99.02 156 |
|
ADS-MVSNet | | | 95.00 204 | 94.45 208 | 96.63 217 | 98.00 192 | 91.91 281 | 96.04 330 | 97.74 271 | 90.15 307 | 96.47 174 | 96.64 302 | 87.89 220 | 98.96 207 | 90.08 290 | 97.06 182 | 99.02 156 |
|
Effi-MVS+-dtu | | | 96.29 140 | 96.56 120 | 95.51 276 | 97.89 200 | 90.22 311 | 98.80 108 | 98.10 239 | 96.57 65 | 96.45 176 | 96.66 299 | 90.81 154 | 98.91 214 | 95.72 149 | 97.99 160 | 97.40 223 |
|
PLC |  | 95.07 4 | 97.20 107 | 96.78 109 | 98.44 100 | 99.29 78 | 96.31 138 | 98.14 215 | 98.76 99 | 92.41 248 | 96.39 177 | 98.31 166 | 94.92 77 | 99.78 97 | 94.06 203 | 98.77 130 | 99.23 130 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
tpm | | | 94.13 260 | 93.80 247 | 95.12 288 | 96.50 290 | 87.91 341 | 97.44 268 | 95.89 340 | 92.62 239 | 96.37 178 | 96.30 312 | 84.13 288 | 98.30 284 | 93.24 225 | 91.66 269 | 99.14 144 |
|
TAPA-MVS | | 93.98 7 | 95.35 185 | 94.56 200 | 97.74 149 | 99.13 103 | 94.83 204 | 98.33 184 | 98.64 137 | 86.62 334 | 96.29 179 | 98.61 131 | 94.00 99 | 99.29 163 | 80.00 350 | 99.41 101 | 99.09 149 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
baseline1 | | | 95.84 158 | 95.12 176 | 98.01 131 | 98.49 153 | 95.98 146 | 98.73 121 | 97.03 313 | 95.37 117 | 96.22 180 | 98.19 179 | 89.96 170 | 99.16 174 | 94.60 182 | 87.48 321 | 98.90 167 |
|
tpm2 | | | 94.19 256 | 93.76 252 | 95.46 279 | 97.23 246 | 89.04 326 | 97.31 282 | 96.85 327 | 87.08 333 | 96.21 181 | 96.79 295 | 83.75 297 | 98.74 233 | 92.43 253 | 96.23 210 | 98.59 187 |
|
F-COLMAP | | | 97.09 113 | 96.80 106 | 97.97 133 | 99.45 55 | 94.95 199 | 98.55 156 | 98.62 140 | 93.02 226 | 96.17 182 | 98.58 136 | 94.01 98 | 99.81 72 | 93.95 205 | 98.90 121 | 99.14 144 |
|
GeoE | | | 96.58 131 | 96.07 136 | 98.10 125 | 98.35 159 | 95.89 161 | 99.34 13 | 98.12 234 | 93.12 223 | 96.09 183 | 98.87 104 | 89.71 174 | 98.97 203 | 92.95 235 | 98.08 158 | 99.43 108 |
|
JIA-IIPM | | | 93.35 277 | 92.49 284 | 95.92 262 | 96.48 292 | 90.65 306 | 95.01 342 | 96.96 317 | 85.93 340 | 96.08 184 | 87.33 356 | 87.70 226 | 98.78 231 | 91.35 273 | 95.58 219 | 98.34 197 |
|
BH-RMVSNet | | | 95.92 155 | 95.32 167 | 97.69 154 | 98.32 168 | 94.64 210 | 98.19 208 | 97.45 294 | 94.56 157 | 96.03 185 | 98.61 131 | 85.02 270 | 99.12 180 | 90.68 283 | 99.06 116 | 99.30 123 |
|
dp | | | 94.15 259 | 93.90 240 | 94.90 295 | 97.31 242 | 86.82 347 | 96.97 301 | 97.19 307 | 91.22 290 | 96.02 186 | 96.61 304 | 85.51 263 | 99.02 198 | 90.00 294 | 94.30 223 | 98.85 168 |
|
EPNet | | | 97.28 102 | 96.87 105 | 98.51 93 | 94.98 332 | 96.14 143 | 98.90 82 | 97.02 315 | 98.28 1 | 95.99 187 | 99.11 68 | 91.36 143 | 99.89 36 | 96.98 93 | 99.19 113 | 99.50 93 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LS3D | | | 97.16 109 | 96.66 118 | 98.68 80 | 98.53 150 | 97.19 99 | 98.93 79 | 98.90 44 | 92.83 235 | 95.99 187 | 99.37 22 | 92.12 125 | 99.87 45 | 93.67 214 | 99.57 77 | 98.97 161 |
|
AUN-MVS | | | 94.53 236 | 93.73 254 | 96.92 199 | 98.50 151 | 93.52 253 | 98.34 182 | 98.10 239 | 93.83 187 | 95.94 189 | 97.98 195 | 85.59 262 | 99.03 195 | 94.35 191 | 80.94 347 | 98.22 202 |
|
TR-MVS | | | 94.94 211 | 94.20 219 | 97.17 181 | 97.75 206 | 94.14 232 | 97.59 263 | 97.02 315 | 92.28 255 | 95.75 190 | 97.64 227 | 83.88 293 | 98.96 207 | 89.77 296 | 96.15 212 | 98.40 194 |
|
VPA-MVSNet | | | 95.75 162 | 95.11 177 | 97.69 154 | 97.24 245 | 97.27 92 | 98.94 77 | 99.23 12 | 95.13 130 | 95.51 191 | 97.32 249 | 85.73 259 | 98.91 214 | 97.33 84 | 89.55 296 | 96.89 250 |
|
HQP_MVS | | | 96.14 146 | 95.90 142 | 96.85 202 | 97.42 235 | 94.60 216 | 98.80 108 | 98.56 151 | 97.28 31 | 95.34 192 | 98.28 170 | 87.09 236 | 99.03 195 | 96.07 133 | 94.27 224 | 96.92 242 |
|
plane_prior3 | | | | | | | 94.61 214 | | | 97.02 49 | 95.34 192 | | | | | | |
|
DWT-MVSNet_test | | | 94.82 215 | 94.36 213 | 96.20 252 | 97.35 240 | 90.79 303 | 98.34 182 | 96.57 334 | 92.91 231 | 95.33 194 | 96.44 309 | 82.00 302 | 99.12 180 | 94.52 186 | 95.78 218 | 98.70 178 |
|
Fast-Effi-MVS+ | | | 96.28 142 | 95.70 150 | 98.03 130 | 98.29 170 | 95.97 151 | 98.58 148 | 98.25 214 | 91.74 268 | 95.29 195 | 97.23 255 | 91.03 153 | 99.15 177 | 92.90 237 | 97.96 161 | 98.97 161 |
|
EI-MVSNet | | | 95.96 152 | 95.83 144 | 96.36 244 | 97.93 197 | 93.70 247 | 98.12 218 | 98.27 209 | 93.70 196 | 95.07 196 | 99.02 81 | 92.23 121 | 98.54 251 | 94.68 178 | 93.46 246 | 96.84 256 |
|
MVSTER | | | 96.06 148 | 95.72 146 | 97.08 187 | 98.23 172 | 95.93 157 | 98.73 121 | 98.27 209 | 94.86 145 | 95.07 196 | 98.09 185 | 88.21 210 | 98.54 251 | 96.59 117 | 93.46 246 | 96.79 260 |
|
OPM-MVS | | | 95.69 167 | 95.33 166 | 96.76 206 | 96.16 305 | 94.63 211 | 98.43 172 | 98.39 187 | 96.64 62 | 95.02 198 | 98.78 115 | 85.15 269 | 99.05 190 | 95.21 168 | 94.20 227 | 96.60 284 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
RRT_MVS | | | 96.04 149 | 95.53 155 | 97.56 164 | 97.07 260 | 97.32 89 | 98.57 153 | 98.09 244 | 95.15 129 | 95.02 198 | 98.44 148 | 88.20 211 | 98.58 249 | 96.17 132 | 93.09 255 | 96.79 260 |
|
Fast-Effi-MVS+-dtu | | | 95.87 156 | 95.85 143 | 95.91 263 | 97.74 209 | 91.74 286 | 98.69 132 | 98.15 230 | 95.56 105 | 94.92 200 | 97.68 224 | 88.98 194 | 98.79 230 | 93.19 227 | 97.78 168 | 97.20 230 |
|
TESTMET0.1,1 | | | 94.18 258 | 93.69 257 | 95.63 274 | 96.92 267 | 89.12 324 | 96.91 306 | 94.78 349 | 93.17 220 | 94.88 201 | 96.45 308 | 78.52 325 | 98.92 213 | 93.09 229 | 98.50 142 | 98.85 168 |
|
VPNet | | | 94.99 205 | 94.19 220 | 97.40 172 | 97.16 254 | 96.57 123 | 98.71 126 | 98.97 30 | 95.67 100 | 94.84 202 | 98.24 176 | 80.36 315 | 98.67 239 | 96.46 122 | 87.32 324 | 96.96 239 |
|
1112_ss | | | 96.63 126 | 96.00 140 | 98.50 94 | 98.56 147 | 96.37 133 | 98.18 212 | 98.10 239 | 92.92 230 | 94.84 202 | 98.43 149 | 92.14 124 | 99.58 135 | 94.35 191 | 96.51 197 | 99.56 86 |
|
test-LLR | | | 95.10 199 | 94.87 188 | 95.80 268 | 96.77 275 | 89.70 315 | 96.91 306 | 95.21 344 | 95.11 132 | 94.83 204 | 95.72 327 | 87.71 224 | 98.97 203 | 93.06 230 | 98.50 142 | 98.72 176 |
|
test-mter | | | 94.08 265 | 93.51 264 | 95.80 268 | 96.77 275 | 89.70 315 | 96.91 306 | 95.21 344 | 92.89 232 | 94.83 204 | 95.72 327 | 77.69 332 | 98.97 203 | 93.06 230 | 98.50 142 | 98.72 176 |
|
Test_1112_low_res | | | 96.34 139 | 95.66 153 | 98.36 106 | 98.56 147 | 95.94 154 | 97.71 255 | 98.07 248 | 92.10 260 | 94.79 206 | 97.29 251 | 91.75 133 | 99.56 138 | 94.17 198 | 96.50 198 | 99.58 84 |
|
GA-MVS | | | 94.81 217 | 94.03 229 | 97.14 182 | 97.15 255 | 93.86 238 | 96.76 318 | 97.58 279 | 94.00 177 | 94.76 207 | 97.04 274 | 80.91 310 | 98.48 255 | 91.79 266 | 96.25 209 | 99.09 149 |
|
bset_n11_16_dypcd | | | 94.89 213 | 94.27 216 | 96.76 206 | 94.41 339 | 95.15 187 | 95.67 337 | 95.64 342 | 95.53 106 | 94.65 208 | 97.52 237 | 87.10 235 | 98.29 287 | 96.58 119 | 91.35 271 | 96.83 258 |
|
BH-untuned | | | 95.95 153 | 95.72 146 | 96.65 214 | 98.55 149 | 92.26 275 | 98.23 199 | 97.79 268 | 93.73 192 | 94.62 209 | 98.01 191 | 88.97 195 | 99.00 202 | 93.04 232 | 98.51 141 | 98.68 180 |
|
test_djsdf | | | 96.00 151 | 95.69 151 | 96.93 196 | 95.72 318 | 95.49 174 | 99.47 3 | 98.40 184 | 94.98 139 | 94.58 210 | 97.86 206 | 89.16 186 | 98.41 271 | 96.91 98 | 94.12 232 | 96.88 251 |
|
cascas | | | 94.63 228 | 93.86 243 | 96.93 196 | 96.91 269 | 94.27 228 | 96.00 333 | 98.51 162 | 85.55 343 | 94.54 211 | 96.23 315 | 84.20 287 | 98.87 221 | 95.80 146 | 96.98 185 | 97.66 219 |
|
DP-MVS | | | 96.59 129 | 95.93 141 | 98.57 86 | 99.34 62 | 96.19 142 | 98.70 130 | 98.39 187 | 89.45 320 | 94.52 212 | 99.35 28 | 91.85 131 | 99.85 51 | 92.89 239 | 98.88 123 | 99.68 59 |
|
gg-mvs-nofinetune | | | 92.21 294 | 90.58 301 | 97.13 183 | 96.75 278 | 95.09 190 | 95.85 334 | 89.40 365 | 85.43 344 | 94.50 213 | 81.98 359 | 80.80 313 | 98.40 277 | 92.16 255 | 98.33 151 | 97.88 210 |
|
mvs_anonymous | | | 96.70 125 | 96.53 123 | 97.18 180 | 98.19 177 | 93.78 240 | 98.31 190 | 98.19 219 | 94.01 176 | 94.47 214 | 98.27 173 | 92.08 127 | 98.46 259 | 97.39 81 | 97.91 162 | 99.31 120 |
|
HQP-NCC | | | | | | 97.20 249 | | 98.05 224 | | 96.43 70 | 94.45 215 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 249 | | 98.05 224 | | 96.43 70 | 94.45 215 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 215 | | | 98.96 207 | | | 96.87 253 |
|
HQP-MVS | | | 95.72 163 | 95.40 158 | 96.69 212 | 97.20 249 | 94.25 230 | 98.05 224 | 98.46 172 | 96.43 70 | 94.45 215 | 97.73 218 | 86.75 242 | 98.96 207 | 95.30 162 | 94.18 228 | 96.86 255 |
|
MSDG | | | 95.93 154 | 95.30 169 | 97.83 140 | 98.90 118 | 95.36 178 | 96.83 316 | 98.37 191 | 91.32 284 | 94.43 219 | 98.73 121 | 90.27 166 | 99.60 133 | 90.05 292 | 98.82 128 | 98.52 190 |
|
nrg030 | | | 96.28 142 | 95.72 146 | 97.96 135 | 96.90 270 | 98.15 57 | 99.39 6 | 98.31 200 | 95.47 110 | 94.42 220 | 98.35 159 | 92.09 126 | 98.69 235 | 97.50 78 | 89.05 304 | 97.04 234 |
|
CLD-MVS | | | 95.62 170 | 95.34 164 | 96.46 238 | 97.52 227 | 93.75 243 | 97.27 285 | 98.46 172 | 95.53 106 | 94.42 220 | 98.00 192 | 86.21 252 | 98.97 203 | 96.25 130 | 94.37 222 | 96.66 279 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LPG-MVS_test | | | 95.62 170 | 95.34 164 | 96.47 235 | 97.46 230 | 93.54 250 | 98.99 67 | 98.54 155 | 94.67 153 | 94.36 222 | 98.77 117 | 85.39 264 | 99.11 183 | 95.71 151 | 94.15 230 | 96.76 264 |
|
LGP-MVS_train | | | | | 96.47 235 | 97.46 230 | 93.54 250 | | 98.54 155 | 94.67 153 | 94.36 222 | 98.77 117 | 85.39 264 | 99.11 183 | 95.71 151 | 94.15 230 | 96.76 264 |
|
v144192 | | | 94.39 245 | 93.70 256 | 96.48 234 | 96.06 308 | 94.35 226 | 98.58 148 | 98.16 229 | 91.45 277 | 94.33 224 | 97.02 276 | 87.50 230 | 98.45 260 | 91.08 275 | 89.11 303 | 96.63 281 |
|
V42 | | | 94.78 219 | 94.14 225 | 96.70 211 | 96.33 298 | 95.22 184 | 98.97 71 | 98.09 244 | 92.32 252 | 94.31 225 | 97.06 271 | 88.39 207 | 98.55 250 | 92.90 237 | 88.87 308 | 96.34 311 |
|
ACMM | | 93.85 9 | 95.69 167 | 95.38 162 | 96.61 219 | 97.61 216 | 93.84 239 | 98.91 81 | 98.44 176 | 95.25 124 | 94.28 226 | 98.47 146 | 86.04 257 | 99.12 180 | 95.50 158 | 93.95 237 | 96.87 253 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS-LS | | | 95.46 174 | 95.21 172 | 96.22 251 | 98.12 184 | 93.72 246 | 98.32 189 | 98.13 233 | 93.71 194 | 94.26 227 | 97.31 250 | 92.24 120 | 98.10 299 | 94.63 179 | 90.12 287 | 96.84 256 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1921920 | | | 94.20 255 | 93.47 266 | 96.40 242 | 95.98 311 | 94.08 233 | 98.52 158 | 98.15 230 | 91.33 283 | 94.25 228 | 97.20 258 | 86.41 249 | 98.42 264 | 90.04 293 | 89.39 300 | 96.69 278 |
|
BH-w/o | | | 95.38 181 | 95.08 178 | 96.26 250 | 98.34 164 | 91.79 283 | 97.70 256 | 97.43 296 | 92.87 233 | 94.24 229 | 97.22 256 | 88.66 200 | 98.84 224 | 91.55 271 | 97.70 172 | 98.16 205 |
|
XVG-ACMP-BASELINE | | | 94.54 235 | 94.14 225 | 95.75 271 | 96.55 287 | 91.65 288 | 98.11 220 | 98.44 176 | 94.96 141 | 94.22 230 | 97.90 201 | 79.18 322 | 99.11 183 | 94.05 204 | 93.85 239 | 96.48 305 |
|
v1144 | | | 94.59 231 | 93.92 238 | 96.60 221 | 96.21 300 | 94.78 208 | 98.59 146 | 98.14 232 | 91.86 267 | 94.21 231 | 97.02 276 | 87.97 218 | 98.41 271 | 91.72 268 | 89.57 294 | 96.61 283 |
|
v1192 | | | 94.32 248 | 93.58 261 | 96.53 230 | 96.10 306 | 94.45 220 | 98.50 163 | 98.17 227 | 91.54 275 | 94.19 232 | 97.06 271 | 86.95 240 | 98.43 263 | 90.14 288 | 89.57 294 | 96.70 273 |
|
PAPM | | | 94.95 209 | 94.00 233 | 97.78 145 | 97.04 261 | 95.65 167 | 96.03 332 | 98.25 214 | 91.23 289 | 94.19 232 | 97.80 215 | 91.27 147 | 98.86 223 | 82.61 344 | 97.61 174 | 98.84 170 |
|
Patchmatch-test | | | 94.42 243 | 93.68 258 | 96.63 217 | 97.60 217 | 91.76 284 | 94.83 347 | 97.49 291 | 89.45 320 | 94.14 234 | 97.10 261 | 88.99 191 | 98.83 226 | 85.37 333 | 98.13 156 | 99.29 125 |
|
v1240 | | | 94.06 267 | 93.29 271 | 96.34 246 | 96.03 310 | 93.90 237 | 98.44 170 | 98.17 227 | 91.18 292 | 94.13 235 | 97.01 278 | 86.05 255 | 98.42 264 | 89.13 309 | 89.50 298 | 96.70 273 |
|
GBi-Net | | | 94.49 239 | 93.80 247 | 96.56 226 | 98.21 174 | 95.00 193 | 98.82 101 | 98.18 222 | 92.46 243 | 94.09 236 | 97.07 268 | 81.16 307 | 97.95 311 | 92.08 257 | 92.14 262 | 96.72 269 |
|
test1 | | | 94.49 239 | 93.80 247 | 96.56 226 | 98.21 174 | 95.00 193 | 98.82 101 | 98.18 222 | 92.46 243 | 94.09 236 | 97.07 268 | 81.16 307 | 97.95 311 | 92.08 257 | 92.14 262 | 96.72 269 |
|
FMVSNet3 | | | 94.97 208 | 94.26 217 | 97.11 185 | 98.18 179 | 96.62 118 | 98.56 154 | 98.26 213 | 93.67 201 | 94.09 236 | 97.10 261 | 84.25 284 | 98.01 307 | 92.08 257 | 92.14 262 | 96.70 273 |
|
MIMVSNet | | | 93.26 281 | 92.21 288 | 96.41 241 | 97.73 210 | 93.13 267 | 95.65 338 | 97.03 313 | 91.27 288 | 94.04 239 | 96.06 320 | 75.33 343 | 97.19 333 | 86.56 323 | 96.23 210 | 98.92 166 |
|
FIs | | | 96.51 133 | 96.12 135 | 97.67 156 | 97.13 256 | 97.54 83 | 99.36 9 | 99.22 14 | 95.89 90 | 94.03 240 | 98.35 159 | 91.98 129 | 98.44 262 | 96.40 126 | 92.76 258 | 97.01 235 |
|
v2v482 | | | 94.69 221 | 94.03 229 | 96.65 214 | 96.17 303 | 94.79 207 | 98.67 136 | 98.08 246 | 92.72 236 | 94.00 241 | 97.16 259 | 87.69 227 | 98.45 260 | 92.91 236 | 88.87 308 | 96.72 269 |
|
FC-MVSNet-test | | | 96.42 136 | 96.05 137 | 97.53 166 | 96.95 265 | 97.27 92 | 99.36 9 | 99.23 12 | 95.83 93 | 93.93 242 | 98.37 157 | 92.00 128 | 98.32 280 | 96.02 138 | 92.72 259 | 97.00 236 |
|
UniMVSNet (Re) | | | 95.78 161 | 95.19 173 | 97.58 162 | 96.99 264 | 97.47 85 | 98.79 112 | 99.18 16 | 95.60 103 | 93.92 243 | 97.04 274 | 91.68 134 | 98.48 255 | 95.80 146 | 87.66 320 | 96.79 260 |
|
miper_enhance_ethall | | | 95.10 199 | 94.75 192 | 96.12 256 | 97.53 226 | 93.73 245 | 96.61 323 | 98.08 246 | 92.20 259 | 93.89 244 | 96.65 301 | 92.44 115 | 98.30 284 | 94.21 197 | 91.16 276 | 96.34 311 |
|
UniMVSNet_NR-MVSNet | | | 95.71 164 | 95.15 174 | 97.40 172 | 96.84 273 | 96.97 104 | 98.74 117 | 99.24 10 | 95.16 128 | 93.88 245 | 97.72 220 | 91.68 134 | 98.31 282 | 95.81 144 | 87.25 325 | 96.92 242 |
|
DU-MVS | | | 95.42 178 | 94.76 191 | 97.40 172 | 96.53 288 | 96.97 104 | 98.66 139 | 98.99 29 | 95.43 112 | 93.88 245 | 97.69 221 | 88.57 202 | 98.31 282 | 95.81 144 | 87.25 325 | 96.92 242 |
|
Baseline_NR-MVSNet | | | 94.35 246 | 93.81 246 | 95.96 261 | 96.20 301 | 94.05 234 | 98.61 145 | 96.67 332 | 91.44 278 | 93.85 247 | 97.60 230 | 88.57 202 | 98.14 296 | 94.39 189 | 86.93 328 | 95.68 329 |
|
PS-MVSNAJss | | | 96.43 135 | 96.26 131 | 96.92 199 | 95.84 316 | 95.08 191 | 99.16 37 | 98.50 167 | 95.87 92 | 93.84 248 | 98.34 163 | 94.51 86 | 98.61 243 | 96.88 104 | 93.45 248 | 97.06 233 |
|
UniMVSNet_ETH3D | | | 94.24 253 | 93.33 269 | 96.97 193 | 97.19 252 | 93.38 259 | 98.74 117 | 98.57 149 | 91.21 291 | 93.81 249 | 98.58 136 | 72.85 352 | 98.77 232 | 95.05 170 | 93.93 238 | 98.77 175 |
|
MVS_0304 | | | 92.81 288 | 92.01 290 | 95.23 284 | 97.46 230 | 91.33 294 | 98.17 213 | 98.81 76 | 91.13 293 | 93.80 250 | 95.68 330 | 66.08 358 | 98.06 304 | 90.79 280 | 96.13 213 | 96.32 314 |
|
tpmvs | | | 94.60 229 | 94.36 213 | 95.33 283 | 97.46 230 | 88.60 332 | 96.88 312 | 97.68 272 | 91.29 286 | 93.80 250 | 96.42 310 | 88.58 201 | 99.24 167 | 91.06 276 | 96.04 215 | 98.17 204 |
|
3Dnovator | | 94.51 5 | 97.46 89 | 96.93 102 | 99.07 61 | 97.78 205 | 97.64 78 | 99.35 11 | 99.06 22 | 97.02 49 | 93.75 252 | 99.16 61 | 89.25 183 | 99.92 22 | 97.22 86 | 99.75 39 | 99.64 72 |
|
eth_miper_zixun_eth | | | 94.68 223 | 94.41 211 | 95.47 278 | 97.64 214 | 91.71 287 | 96.73 320 | 98.07 248 | 92.71 237 | 93.64 253 | 97.21 257 | 90.54 161 | 98.17 294 | 93.38 220 | 89.76 291 | 96.54 293 |
|
ITE_SJBPF | | | | | 95.44 280 | 97.42 235 | 91.32 295 | | 97.50 289 | 95.09 135 | 93.59 254 | 98.35 159 | 81.70 305 | 98.88 220 | 89.71 298 | 93.39 250 | 96.12 319 |
|
TranMVSNet+NR-MVSNet | | | 95.14 197 | 94.48 204 | 97.11 185 | 96.45 293 | 96.36 134 | 99.03 58 | 99.03 25 | 95.04 137 | 93.58 255 | 97.93 199 | 88.27 209 | 98.03 306 | 94.13 199 | 86.90 330 | 96.95 241 |
|
COLMAP_ROB |  | 93.27 12 | 95.33 187 | 94.87 188 | 96.71 209 | 99.29 78 | 93.24 264 | 98.58 148 | 98.11 237 | 89.92 312 | 93.57 256 | 99.10 70 | 86.37 250 | 99.79 93 | 90.78 281 | 98.10 157 | 97.09 231 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
tpm cat1 | | | 93.36 276 | 92.80 278 | 95.07 291 | 97.58 219 | 87.97 340 | 96.76 318 | 97.86 266 | 82.17 350 | 93.53 257 | 96.04 321 | 86.13 253 | 99.13 179 | 89.24 307 | 95.87 216 | 98.10 206 |
|
AllTest | | | 95.24 191 | 94.65 196 | 96.99 190 | 99.25 86 | 93.21 265 | 98.59 146 | 98.18 222 | 91.36 280 | 93.52 258 | 98.77 117 | 84.67 277 | 99.72 110 | 89.70 299 | 97.87 164 | 98.02 208 |
|
TestCases | | | | | 96.99 190 | 99.25 86 | 93.21 265 | | 98.18 222 | 91.36 280 | 93.52 258 | 98.77 117 | 84.67 277 | 99.72 110 | 89.70 299 | 97.87 164 | 98.02 208 |
|
miper_ehance_all_eth | | | 95.01 203 | 94.69 195 | 95.97 260 | 97.70 211 | 93.31 261 | 97.02 299 | 98.07 248 | 92.23 256 | 93.51 260 | 96.96 283 | 91.85 131 | 98.15 295 | 93.68 212 | 91.16 276 | 96.44 308 |
|
FMVSNet2 | | | 94.47 241 | 93.61 260 | 97.04 188 | 98.21 174 | 96.43 131 | 98.79 112 | 98.27 209 | 92.46 243 | 93.50 261 | 97.09 265 | 81.16 307 | 98.00 309 | 91.09 274 | 91.93 265 | 96.70 273 |
|
v148 | | | 94.29 250 | 93.76 252 | 95.91 263 | 96.10 306 | 92.93 270 | 98.58 148 | 97.97 258 | 92.59 241 | 93.47 262 | 96.95 285 | 88.53 205 | 98.32 280 | 92.56 247 | 87.06 327 | 96.49 304 |
|
cl_fuxian | | | 94.79 218 | 94.43 210 | 95.89 265 | 97.75 206 | 93.12 268 | 97.16 293 | 98.03 255 | 92.23 256 | 93.46 263 | 97.05 273 | 91.39 142 | 98.01 307 | 93.58 217 | 89.21 302 | 96.53 295 |
|
RRT_test8_iter05 | | | 94.56 233 | 94.19 220 | 95.67 273 | 97.60 217 | 91.34 292 | 98.93 79 | 98.42 181 | 94.75 148 | 93.39 264 | 97.87 205 | 79.00 323 | 98.61 243 | 96.78 113 | 90.99 279 | 97.07 232 |
|
pmmvs4 | | | 94.69 221 | 93.99 235 | 96.81 204 | 95.74 317 | 95.94 154 | 97.40 271 | 97.67 273 | 90.42 303 | 93.37 265 | 97.59 231 | 89.08 189 | 98.20 292 | 92.97 234 | 91.67 268 | 96.30 315 |
|
PCF-MVS | | 93.45 11 | 94.68 223 | 93.43 267 | 98.42 103 | 98.62 144 | 96.77 114 | 95.48 341 | 98.20 218 | 84.63 346 | 93.34 266 | 98.32 165 | 88.55 204 | 99.81 72 | 84.80 337 | 98.96 119 | 98.68 180 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
cl-mvsnet2 | | | 94.68 223 | 94.19 220 | 96.13 255 | 98.11 185 | 93.60 248 | 96.94 303 | 98.31 200 | 92.43 247 | 93.32 267 | 96.87 291 | 86.51 245 | 98.28 289 | 94.10 202 | 91.16 276 | 96.51 301 |
|
XXY-MVS | | | 95.20 194 | 94.45 208 | 97.46 167 | 96.75 278 | 96.56 124 | 98.86 93 | 98.65 136 | 93.30 216 | 93.27 268 | 98.27 173 | 84.85 274 | 98.87 221 | 94.82 175 | 91.26 275 | 96.96 239 |
|
jajsoiax | | | 95.45 176 | 95.03 180 | 96.73 208 | 95.42 329 | 94.63 211 | 99.14 39 | 98.52 159 | 95.74 96 | 93.22 269 | 98.36 158 | 83.87 294 | 98.65 241 | 96.95 97 | 94.04 233 | 96.91 247 |
|
mvs_tets | | | 95.41 180 | 95.00 181 | 96.65 214 | 95.58 322 | 94.42 222 | 99.00 65 | 98.55 153 | 95.73 97 | 93.21 270 | 98.38 156 | 83.45 298 | 98.63 242 | 97.09 90 | 94.00 235 | 96.91 247 |
|
anonymousdsp | | | 95.42 178 | 94.91 186 | 96.94 195 | 95.10 331 | 95.90 160 | 99.14 39 | 98.41 182 | 93.75 189 | 93.16 271 | 97.46 240 | 87.50 230 | 98.41 271 | 95.63 155 | 94.03 234 | 96.50 303 |
|
v8 | | | 94.47 241 | 93.77 250 | 96.57 225 | 96.36 296 | 94.83 204 | 99.05 54 | 98.19 219 | 91.92 264 | 93.16 271 | 96.97 281 | 88.82 199 | 98.48 255 | 91.69 269 | 87.79 318 | 96.39 309 |
|
WR-MVS | | | 95.15 196 | 94.46 206 | 97.22 177 | 96.67 283 | 96.45 129 | 98.21 201 | 98.81 76 | 94.15 169 | 93.16 271 | 97.69 221 | 87.51 228 | 98.30 284 | 95.29 164 | 88.62 310 | 96.90 249 |
|
EPNet_dtu | | | 95.21 193 | 94.95 185 | 95.99 258 | 96.17 303 | 90.45 309 | 98.16 214 | 97.27 304 | 96.77 56 | 93.14 274 | 98.33 164 | 90.34 164 | 98.42 264 | 85.57 330 | 98.81 129 | 99.09 149 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
QAPM | | | 96.29 140 | 95.40 158 | 98.96 68 | 97.85 202 | 97.60 81 | 99.23 24 | 98.93 37 | 89.76 315 | 93.11 275 | 99.02 81 | 89.11 188 | 99.93 16 | 91.99 262 | 99.62 68 | 99.34 114 |
|
GG-mvs-BLEND | | | | | 96.59 222 | 96.34 297 | 94.98 196 | 96.51 326 | 88.58 366 | | 93.10 276 | 94.34 343 | 80.34 316 | 98.05 305 | 89.53 302 | 96.99 184 | 96.74 266 |
|
v10 | | | 94.29 250 | 93.55 262 | 96.51 232 | 96.39 295 | 94.80 206 | 98.99 67 | 98.19 219 | 91.35 282 | 93.02 277 | 96.99 279 | 88.09 215 | 98.41 271 | 90.50 285 | 88.41 312 | 96.33 313 |
|
3Dnovator+ | | 94.38 6 | 97.43 94 | 96.78 109 | 99.38 18 | 97.83 203 | 98.52 28 | 99.37 8 | 98.71 114 | 97.09 47 | 92.99 278 | 99.13 65 | 89.36 180 | 99.89 36 | 96.97 94 | 99.57 77 | 99.71 46 |
|
D2MVS | | | 95.18 195 | 95.08 178 | 95.48 277 | 97.10 258 | 92.07 278 | 98.30 192 | 99.13 19 | 94.02 175 | 92.90 279 | 96.73 296 | 89.48 177 | 98.73 234 | 94.48 188 | 93.60 245 | 95.65 330 |
|
Patchmtry | | | 93.22 282 | 92.35 286 | 95.84 267 | 96.77 275 | 93.09 269 | 94.66 348 | 97.56 280 | 87.37 332 | 92.90 279 | 96.24 313 | 88.15 213 | 97.90 315 | 87.37 320 | 90.10 288 | 96.53 295 |
|
cl-mvsnet1 | | | 94.52 237 | 94.03 229 | 95.99 258 | 97.57 223 | 93.38 259 | 97.05 297 | 97.94 261 | 91.74 268 | 92.81 281 | 97.10 261 | 89.12 187 | 98.07 303 | 92.60 243 | 90.30 285 | 96.53 295 |
|
Anonymous20231211 | | | 94.10 263 | 93.26 272 | 96.61 219 | 99.11 105 | 94.28 227 | 99.01 63 | 98.88 49 | 86.43 336 | 92.81 281 | 97.57 233 | 81.66 306 | 98.68 238 | 94.83 174 | 89.02 306 | 96.88 251 |
|
cl-mvsnet____ | | | 94.51 238 | 94.01 232 | 96.02 257 | 97.58 219 | 93.40 258 | 97.05 297 | 97.96 260 | 91.73 270 | 92.76 283 | 97.08 267 | 89.06 190 | 98.13 297 | 92.61 242 | 90.29 286 | 96.52 298 |
|
miper_lstm_enhance | | | 94.33 247 | 94.07 228 | 95.11 289 | 97.75 206 | 90.97 300 | 97.22 287 | 98.03 255 | 91.67 272 | 92.76 283 | 96.97 281 | 90.03 169 | 97.78 321 | 92.51 250 | 89.64 293 | 96.56 290 |
|
v7n | | | 94.19 256 | 93.43 267 | 96.47 235 | 95.90 313 | 94.38 225 | 99.26 21 | 98.34 196 | 91.99 262 | 92.76 283 | 97.13 260 | 88.31 208 | 98.52 253 | 89.48 304 | 87.70 319 | 96.52 298 |
|
MVS | | | 94.67 226 | 93.54 263 | 98.08 126 | 96.88 271 | 96.56 124 | 98.19 208 | 98.50 167 | 78.05 354 | 92.69 286 | 98.02 189 | 91.07 152 | 99.63 130 | 90.09 289 | 98.36 150 | 98.04 207 |
|
DSMNet-mixed | | | 92.52 292 | 92.58 283 | 92.33 330 | 94.15 341 | 82.65 354 | 98.30 192 | 94.26 355 | 89.08 324 | 92.65 287 | 95.73 325 | 85.01 271 | 95.76 350 | 86.24 325 | 97.76 169 | 98.59 187 |
|
EU-MVSNet | | | 93.66 272 | 94.14 225 | 92.25 331 | 95.96 312 | 83.38 352 | 98.52 158 | 98.12 234 | 94.69 151 | 92.61 288 | 98.13 183 | 87.36 233 | 96.39 348 | 91.82 265 | 90.00 289 | 96.98 237 |
|
IterMVS-SCA-FT | | | 94.11 262 | 93.87 242 | 94.85 297 | 97.98 196 | 90.56 308 | 97.18 290 | 98.11 237 | 93.75 189 | 92.58 289 | 97.48 239 | 83.97 291 | 97.41 330 | 92.48 252 | 91.30 273 | 96.58 286 |
|
pmmvs5 | | | 93.65 274 | 92.97 276 | 95.68 272 | 95.49 325 | 92.37 274 | 98.20 204 | 97.28 303 | 89.66 317 | 92.58 289 | 97.26 252 | 82.14 301 | 98.09 301 | 93.18 228 | 90.95 280 | 96.58 286 |
|
WR-MVS_H | | | 95.05 202 | 94.46 206 | 96.81 204 | 96.86 272 | 95.82 163 | 99.24 23 | 99.24 10 | 93.87 184 | 92.53 291 | 96.84 293 | 90.37 163 | 98.24 291 | 93.24 225 | 87.93 317 | 96.38 310 |
|
ACMP | | 93.49 10 | 95.34 186 | 94.98 183 | 96.43 240 | 97.67 212 | 93.48 254 | 98.73 121 | 98.44 176 | 94.94 144 | 92.53 291 | 98.53 140 | 84.50 281 | 99.14 178 | 95.48 159 | 94.00 235 | 96.66 279 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test_part1 | | | 94.82 215 | 93.82 245 | 97.82 142 | 98.84 125 | 97.82 73 | 99.03 58 | 98.81 76 | 92.31 254 | 92.51 293 | 97.89 203 | 81.96 303 | 98.67 239 | 94.80 177 | 88.24 313 | 96.98 237 |
|
test0.0.03 1 | | | 94.08 265 | 93.51 264 | 95.80 268 | 95.53 324 | 92.89 271 | 97.38 273 | 95.97 337 | 95.11 132 | 92.51 293 | 96.66 299 | 87.71 224 | 96.94 337 | 87.03 321 | 93.67 241 | 97.57 220 |
|
IB-MVS | | 91.98 17 | 93.27 280 | 91.97 291 | 97.19 179 | 97.47 229 | 93.41 257 | 97.09 296 | 95.99 336 | 93.32 214 | 92.47 295 | 95.73 325 | 78.06 330 | 99.53 144 | 94.59 184 | 82.98 339 | 98.62 186 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
IterMVS | | | 94.09 264 | 93.85 244 | 94.80 300 | 97.99 194 | 90.35 310 | 97.18 290 | 98.12 234 | 93.68 199 | 92.46 296 | 97.34 247 | 84.05 289 | 97.41 330 | 92.51 250 | 91.33 272 | 96.62 282 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CP-MVSNet | | | 94.94 211 | 94.30 215 | 96.83 203 | 96.72 280 | 95.56 170 | 99.11 45 | 98.95 34 | 93.89 182 | 92.42 297 | 97.90 201 | 87.19 234 | 98.12 298 | 94.32 193 | 88.21 314 | 96.82 259 |
|
PS-CasMVS | | | 94.67 226 | 93.99 235 | 96.71 209 | 96.68 282 | 95.26 183 | 99.13 42 | 99.03 25 | 93.68 199 | 92.33 298 | 97.95 197 | 85.35 266 | 98.10 299 | 93.59 216 | 88.16 316 | 96.79 260 |
|
FMVSNet1 | | | 93.19 284 | 92.07 289 | 96.56 226 | 97.54 224 | 95.00 193 | 98.82 101 | 98.18 222 | 90.38 304 | 92.27 299 | 97.07 268 | 73.68 350 | 97.95 311 | 89.36 306 | 91.30 273 | 96.72 269 |
|
PEN-MVS | | | 94.42 243 | 93.73 254 | 96.49 233 | 96.28 299 | 94.84 202 | 99.17 36 | 99.00 27 | 93.51 206 | 92.23 300 | 97.83 212 | 86.10 254 | 97.90 315 | 92.55 248 | 86.92 329 | 96.74 266 |
|
OurMVSNet-221017-0 | | | 94.21 254 | 94.00 233 | 94.85 297 | 95.60 321 | 89.22 323 | 98.89 86 | 97.43 296 | 95.29 121 | 92.18 301 | 98.52 143 | 82.86 299 | 98.59 247 | 93.46 219 | 91.76 267 | 96.74 266 |
|
MS-PatchMatch | | | 93.84 271 | 93.63 259 | 94.46 311 | 96.18 302 | 89.45 319 | 97.76 252 | 98.27 209 | 92.23 256 | 92.13 302 | 97.49 238 | 79.50 319 | 98.69 235 | 89.75 297 | 99.38 104 | 95.25 334 |
|
ppachtmachnet_test | | | 93.22 282 | 92.63 282 | 94.97 293 | 95.45 327 | 90.84 301 | 96.88 312 | 97.88 265 | 90.60 298 | 92.08 303 | 97.26 252 | 88.08 216 | 97.86 320 | 85.12 334 | 90.33 284 | 96.22 316 |
|
1314 | | | 96.25 144 | 95.73 145 | 97.79 144 | 97.13 256 | 95.55 172 | 98.19 208 | 98.59 143 | 93.47 208 | 92.03 304 | 97.82 213 | 91.33 145 | 99.49 147 | 94.62 181 | 98.44 145 | 98.32 199 |
|
baseline2 | | | 95.11 198 | 94.52 202 | 96.87 201 | 96.65 284 | 93.56 249 | 98.27 197 | 94.10 358 | 93.45 209 | 92.02 305 | 97.43 244 | 87.45 232 | 99.19 172 | 93.88 207 | 97.41 179 | 97.87 211 |
|
DTE-MVSNet | | | 93.98 269 | 93.26 272 | 96.14 254 | 96.06 308 | 94.39 224 | 99.20 32 | 98.86 61 | 93.06 224 | 91.78 306 | 97.81 214 | 85.87 258 | 97.58 326 | 90.53 284 | 86.17 334 | 96.46 307 |
|
LF4IMVS | | | 93.14 285 | 92.79 279 | 94.20 314 | 95.88 314 | 88.67 331 | 97.66 259 | 97.07 310 | 93.81 188 | 91.71 307 | 97.65 225 | 77.96 331 | 98.81 228 | 91.47 272 | 91.92 266 | 95.12 337 |
|
our_test_3 | | | 93.65 274 | 93.30 270 | 94.69 302 | 95.45 327 | 89.68 317 | 96.91 306 | 97.65 274 | 91.97 263 | 91.66 308 | 96.88 289 | 89.67 175 | 97.93 314 | 88.02 316 | 91.49 270 | 96.48 305 |
|
testgi | | | 93.06 286 | 92.45 285 | 94.88 296 | 96.43 294 | 89.90 312 | 98.75 114 | 97.54 286 | 95.60 103 | 91.63 309 | 97.91 200 | 74.46 348 | 97.02 335 | 86.10 326 | 93.67 241 | 97.72 217 |
|
tfpnnormal | | | 93.66 272 | 92.70 281 | 96.55 229 | 96.94 266 | 95.94 154 | 98.97 71 | 99.19 15 | 91.04 294 | 91.38 310 | 97.34 247 | 84.94 272 | 98.61 243 | 85.45 332 | 89.02 306 | 95.11 338 |
|
LTVRE_ROB | | 92.95 15 | 94.60 229 | 93.90 240 | 96.68 213 | 97.41 238 | 94.42 222 | 98.52 158 | 98.59 143 | 91.69 271 | 91.21 311 | 98.35 159 | 84.87 273 | 99.04 194 | 91.06 276 | 93.44 249 | 96.60 284 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
OpenMVS |  | 93.04 13 | 95.83 159 | 95.00 181 | 98.32 108 | 97.18 253 | 97.32 89 | 99.21 31 | 98.97 30 | 89.96 311 | 91.14 312 | 99.05 80 | 86.64 244 | 99.92 22 | 93.38 220 | 99.47 93 | 97.73 216 |
|
pm-mvs1 | | | 93.94 270 | 93.06 274 | 96.59 222 | 96.49 291 | 95.16 185 | 98.95 75 | 98.03 255 | 92.32 252 | 91.08 313 | 97.84 209 | 84.54 280 | 98.41 271 | 92.16 255 | 86.13 336 | 96.19 318 |
|
MVS-HIRNet | | | 89.46 317 | 88.40 316 | 92.64 328 | 97.58 219 | 82.15 355 | 94.16 352 | 93.05 361 | 75.73 356 | 90.90 314 | 82.52 358 | 79.42 320 | 98.33 279 | 83.53 342 | 98.68 131 | 97.43 221 |
|
FMVSNet5 | | | 91.81 295 | 90.92 298 | 94.49 308 | 97.21 248 | 92.09 277 | 98.00 230 | 97.55 285 | 89.31 322 | 90.86 315 | 95.61 331 | 74.48 347 | 95.32 353 | 85.57 330 | 89.70 292 | 96.07 321 |
|
USDC | | | 93.33 279 | 92.71 280 | 95.21 285 | 96.83 274 | 90.83 302 | 96.91 306 | 97.50 289 | 93.84 185 | 90.72 316 | 98.14 182 | 77.69 332 | 98.82 227 | 89.51 303 | 93.21 254 | 95.97 323 |
|
MVP-Stereo | | | 94.28 252 | 93.92 238 | 95.35 282 | 94.95 333 | 92.60 273 | 97.97 232 | 97.65 274 | 91.61 274 | 90.68 317 | 97.09 265 | 86.32 251 | 98.42 264 | 89.70 299 | 99.34 106 | 95.02 341 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
ACMH+ | | 92.99 14 | 94.30 249 | 93.77 250 | 95.88 266 | 97.81 204 | 92.04 280 | 98.71 126 | 98.37 191 | 93.99 178 | 90.60 318 | 98.47 146 | 80.86 312 | 99.05 190 | 92.75 241 | 92.40 261 | 96.55 292 |
|
CL-MVSNet_2432*1600 | | | 90.11 310 | 89.14 313 | 93.02 327 | 91.86 353 | 88.23 338 | 96.51 326 | 98.07 248 | 90.49 299 | 90.49 319 | 94.41 339 | 84.75 276 | 95.34 352 | 80.79 348 | 74.95 355 | 95.50 331 |
|
DIV-MVS_2432*1600 | | | 90.38 308 | 89.38 311 | 93.40 322 | 92.85 350 | 88.94 328 | 97.95 233 | 97.94 261 | 90.35 305 | 90.25 320 | 93.96 344 | 79.82 317 | 95.94 349 | 84.62 339 | 76.69 353 | 95.33 333 |
|
Anonymous20231206 | | | 91.66 297 | 91.10 297 | 93.33 323 | 94.02 345 | 87.35 344 | 98.58 148 | 97.26 305 | 90.48 300 | 90.16 321 | 96.31 311 | 83.83 295 | 96.53 346 | 79.36 352 | 89.90 290 | 96.12 319 |
|
SixPastTwentyTwo | | | 93.34 278 | 92.86 277 | 94.75 301 | 95.67 319 | 89.41 321 | 98.75 114 | 96.67 332 | 93.89 182 | 90.15 322 | 98.25 175 | 80.87 311 | 98.27 290 | 90.90 279 | 90.64 282 | 96.57 288 |
|
PVSNet_0 | | 88.72 19 | 91.28 300 | 90.03 306 | 95.00 292 | 97.99 194 | 87.29 345 | 94.84 346 | 98.50 167 | 92.06 261 | 89.86 323 | 95.19 333 | 79.81 318 | 99.39 157 | 92.27 254 | 69.79 358 | 98.33 198 |
|
ACMH | | 92.88 16 | 94.55 234 | 93.95 237 | 96.34 246 | 97.63 215 | 93.26 263 | 98.81 107 | 98.49 171 | 93.43 210 | 89.74 324 | 98.53 140 | 81.91 304 | 99.08 188 | 93.69 211 | 93.30 252 | 96.70 273 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs6 | | | 91.77 296 | 90.63 300 | 95.17 287 | 94.69 338 | 91.24 297 | 98.67 136 | 97.92 263 | 86.14 338 | 89.62 325 | 97.56 235 | 75.79 342 | 98.34 278 | 90.75 282 | 84.56 338 | 95.94 324 |
|
TinyColmap | | | 92.31 293 | 91.53 294 | 94.65 304 | 96.92 267 | 89.75 314 | 96.92 304 | 96.68 331 | 90.45 302 | 89.62 325 | 97.85 208 | 76.06 341 | 98.81 228 | 86.74 322 | 92.51 260 | 95.41 332 |
|
Anonymous20240521 | | | 91.18 301 | 90.44 302 | 93.42 320 | 93.70 346 | 88.47 334 | 98.94 77 | 97.56 280 | 88.46 327 | 89.56 327 | 95.08 336 | 77.15 338 | 96.97 336 | 83.92 340 | 89.55 296 | 94.82 343 |
|
TransMVSNet (Re) | | | 92.67 290 | 91.51 295 | 96.15 253 | 96.58 286 | 94.65 209 | 98.90 82 | 96.73 328 | 90.86 296 | 89.46 328 | 97.86 206 | 85.62 261 | 98.09 301 | 86.45 324 | 81.12 345 | 95.71 328 |
|
NR-MVSNet | | | 94.98 207 | 94.16 223 | 97.44 168 | 96.53 288 | 97.22 98 | 98.74 117 | 98.95 34 | 94.96 141 | 89.25 329 | 97.69 221 | 89.32 181 | 98.18 293 | 94.59 184 | 87.40 323 | 96.92 242 |
|
LCM-MVSNet-Re | | | 95.22 192 | 95.32 167 | 94.91 294 | 98.18 179 | 87.85 342 | 98.75 114 | 95.66 341 | 95.11 132 | 88.96 330 | 96.85 292 | 90.26 167 | 97.65 323 | 95.65 154 | 98.44 145 | 99.22 131 |
|
KD-MVS_2432*1600 | | | 89.61 315 | 87.96 319 | 94.54 306 | 94.06 343 | 91.59 289 | 95.59 339 | 97.63 276 | 89.87 313 | 88.95 331 | 94.38 341 | 78.28 327 | 96.82 338 | 84.83 335 | 68.05 359 | 95.21 335 |
|
miper_refine_blended | | | 89.61 315 | 87.96 319 | 94.54 306 | 94.06 343 | 91.59 289 | 95.59 339 | 97.63 276 | 89.87 313 | 88.95 331 | 94.38 341 | 78.28 327 | 96.82 338 | 84.83 335 | 68.05 359 | 95.21 335 |
|
TDRefinement | | | 91.06 303 | 89.68 308 | 95.21 285 | 85.35 361 | 91.49 291 | 98.51 162 | 97.07 310 | 91.47 276 | 88.83 333 | 97.84 209 | 77.31 336 | 99.09 187 | 92.79 240 | 77.98 351 | 95.04 340 |
|
N_pmnet | | | 87.12 322 | 87.77 321 | 85.17 340 | 95.46 326 | 61.92 365 | 97.37 275 | 70.66 371 | 85.83 341 | 88.73 334 | 96.04 321 | 85.33 268 | 97.76 322 | 80.02 349 | 90.48 283 | 95.84 325 |
|
test_0402 | | | 91.32 299 | 90.27 304 | 94.48 309 | 96.60 285 | 91.12 298 | 98.50 163 | 97.22 306 | 86.10 339 | 88.30 335 | 96.98 280 | 77.65 334 | 97.99 310 | 78.13 356 | 92.94 257 | 94.34 345 |
|
test20.03 | | | 90.89 305 | 90.38 303 | 92.43 329 | 93.48 347 | 88.14 339 | 98.33 184 | 97.56 280 | 93.40 211 | 87.96 336 | 96.71 298 | 80.69 314 | 94.13 358 | 79.15 353 | 86.17 334 | 95.01 342 |
|
MIMVSNet1 | | | 89.67 314 | 88.28 318 | 93.82 317 | 92.81 351 | 91.08 299 | 98.01 228 | 97.45 294 | 87.95 329 | 87.90 337 | 95.87 323 | 67.63 356 | 94.56 357 | 78.73 355 | 88.18 315 | 95.83 326 |
|
Patchmatch-RL test | | | 91.49 298 | 90.85 299 | 93.41 321 | 91.37 354 | 84.40 349 | 92.81 353 | 95.93 339 | 91.87 266 | 87.25 338 | 94.87 337 | 88.99 191 | 96.53 346 | 92.54 249 | 82.00 341 | 99.30 123 |
|
pmmvs3 | | | 86.67 323 | 84.86 326 | 92.11 332 | 88.16 358 | 87.19 346 | 96.63 322 | 94.75 350 | 79.88 352 | 87.22 339 | 92.75 349 | 66.56 357 | 95.20 354 | 81.24 347 | 76.56 354 | 93.96 351 |
|
K. test v3 | | | 92.55 291 | 91.91 293 | 94.48 309 | 95.64 320 | 89.24 322 | 99.07 52 | 94.88 348 | 94.04 173 | 86.78 340 | 97.59 231 | 77.64 335 | 97.64 324 | 92.08 257 | 89.43 299 | 96.57 288 |
|
lessismore_v0 | | | | | 94.45 312 | 94.93 334 | 88.44 335 | | 91.03 363 | | 86.77 341 | 97.64 227 | 76.23 340 | 98.42 264 | 90.31 287 | 85.64 337 | 96.51 301 |
|
ambc | | | | | 89.49 336 | 86.66 359 | 75.78 359 | 92.66 354 | 96.72 329 | | 86.55 342 | 92.50 350 | 46.01 363 | 97.90 315 | 90.32 286 | 82.09 340 | 94.80 344 |
|
PM-MVS | | | 87.77 320 | 86.55 324 | 91.40 334 | 91.03 356 | 83.36 353 | 96.92 304 | 95.18 346 | 91.28 287 | 86.48 343 | 93.42 346 | 53.27 362 | 96.74 340 | 89.43 305 | 81.97 342 | 94.11 348 |
|
OpenMVS_ROB |  | 86.42 20 | 89.00 318 | 87.43 323 | 93.69 318 | 93.08 349 | 89.42 320 | 97.91 237 | 96.89 323 | 78.58 353 | 85.86 344 | 94.69 338 | 69.48 354 | 98.29 287 | 77.13 357 | 93.29 253 | 93.36 354 |
|
UnsupCasMVSNet_eth | | | 90.99 304 | 89.92 307 | 94.19 315 | 94.08 342 | 89.83 313 | 97.13 295 | 98.67 129 | 93.69 197 | 85.83 345 | 96.19 318 | 75.15 344 | 96.74 340 | 89.14 308 | 79.41 349 | 96.00 322 |
|
new_pmnet | | | 90.06 311 | 89.00 315 | 93.22 326 | 94.18 340 | 88.32 337 | 96.42 328 | 96.89 323 | 86.19 337 | 85.67 346 | 93.62 345 | 77.18 337 | 97.10 334 | 81.61 346 | 89.29 301 | 94.23 346 |
|
EG-PatchMatch MVS | | | 91.13 302 | 90.12 305 | 94.17 316 | 94.73 337 | 89.00 327 | 98.13 217 | 97.81 267 | 89.22 323 | 85.32 347 | 96.46 307 | 67.71 355 | 98.42 264 | 87.89 318 | 93.82 240 | 95.08 339 |
|
pmmvs-eth3d | | | 90.36 309 | 89.05 314 | 94.32 313 | 91.10 355 | 92.12 276 | 97.63 262 | 96.95 318 | 88.86 325 | 84.91 348 | 93.13 347 | 78.32 326 | 96.74 340 | 88.70 311 | 81.81 343 | 94.09 349 |
|
DeepMVS_CX |  | | | | 86.78 337 | 97.09 259 | 72.30 361 | | 95.17 347 | 75.92 355 | 84.34 349 | 95.19 333 | 70.58 353 | 95.35 351 | 79.98 351 | 89.04 305 | 92.68 355 |
|
new-patchmatchnet | | | 88.50 319 | 87.45 322 | 91.67 333 | 90.31 357 | 85.89 348 | 97.16 293 | 97.33 300 | 89.47 319 | 83.63 350 | 92.77 348 | 76.38 339 | 95.06 355 | 82.70 343 | 77.29 352 | 94.06 350 |
|
UnsupCasMVSNet_bld | | | 87.17 321 | 85.12 325 | 93.31 324 | 91.94 352 | 88.77 329 | 94.92 345 | 98.30 206 | 84.30 347 | 82.30 351 | 90.04 353 | 63.96 360 | 97.25 332 | 85.85 329 | 74.47 357 | 93.93 352 |
|
CMPMVS |  | 66.06 21 | 89.70 313 | 89.67 309 | 89.78 335 | 93.19 348 | 76.56 358 | 97.00 300 | 98.35 194 | 80.97 351 | 81.57 352 | 97.75 217 | 74.75 346 | 98.61 243 | 89.85 295 | 93.63 243 | 94.17 347 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_method | | | 79.03 324 | 78.17 327 | 81.63 342 | 86.06 360 | 54.40 370 | 82.75 361 | 96.89 323 | 39.54 365 | 80.98 353 | 95.57 332 | 58.37 361 | 94.73 356 | 84.74 338 | 78.61 350 | 95.75 327 |
|
ET-MVSNet_ETH3D | | | 94.13 260 | 92.98 275 | 97.58 162 | 98.22 173 | 96.20 140 | 97.31 282 | 95.37 343 | 94.53 158 | 79.56 354 | 97.63 229 | 86.51 245 | 97.53 328 | 96.91 98 | 90.74 281 | 99.02 156 |
|
LCM-MVSNet | | | 78.70 325 | 76.24 330 | 86.08 338 | 77.26 367 | 71.99 362 | 94.34 350 | 96.72 329 | 61.62 360 | 76.53 355 | 89.33 354 | 33.91 369 | 92.78 360 | 81.85 345 | 74.60 356 | 93.46 353 |
|
PMMVS2 | | | 77.95 327 | 75.44 331 | 85.46 339 | 82.54 362 | 74.95 360 | 94.23 351 | 93.08 360 | 72.80 357 | 74.68 356 | 87.38 355 | 36.36 368 | 91.56 361 | 73.95 359 | 63.94 361 | 89.87 356 |
|
Gipuma |  | | 78.40 326 | 76.75 329 | 83.38 341 | 95.54 323 | 80.43 357 | 79.42 362 | 97.40 298 | 64.67 359 | 73.46 357 | 80.82 360 | 45.65 364 | 93.14 359 | 66.32 361 | 87.43 322 | 76.56 362 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
YYNet1 | | | 90.70 307 | 89.39 310 | 94.62 305 | 94.79 336 | 90.65 306 | 97.20 288 | 97.46 292 | 87.54 331 | 72.54 358 | 95.74 324 | 86.51 245 | 96.66 344 | 86.00 327 | 86.76 332 | 96.54 293 |
|
MDA-MVSNet_test_wron | | | 90.71 306 | 89.38 311 | 94.68 303 | 94.83 335 | 90.78 304 | 97.19 289 | 97.46 292 | 87.60 330 | 72.41 359 | 95.72 327 | 86.51 245 | 96.71 343 | 85.92 328 | 86.80 331 | 96.56 290 |
|
MDA-MVSNet-bldmvs | | | 89.97 312 | 88.35 317 | 94.83 299 | 95.21 330 | 91.34 292 | 97.64 260 | 97.51 288 | 88.36 328 | 71.17 360 | 96.13 319 | 79.22 321 | 96.63 345 | 83.65 341 | 86.27 333 | 96.52 298 |
|
FPMVS | | | 77.62 328 | 77.14 328 | 79.05 344 | 79.25 365 | 60.97 366 | 95.79 335 | 95.94 338 | 65.96 358 | 67.93 361 | 94.40 340 | 37.73 367 | 88.88 363 | 68.83 360 | 88.46 311 | 87.29 357 |
|
tmp_tt | | | 68.90 330 | 66.97 332 | 74.68 346 | 50.78 371 | 59.95 367 | 87.13 358 | 83.47 369 | 38.80 366 | 62.21 362 | 96.23 315 | 64.70 359 | 76.91 368 | 88.91 310 | 30.49 366 | 87.19 358 |
|
E-PMN | | | 64.94 332 | 64.25 334 | 67.02 348 | 82.28 363 | 59.36 368 | 91.83 356 | 85.63 367 | 52.69 362 | 60.22 363 | 77.28 362 | 41.06 366 | 80.12 366 | 46.15 365 | 41.14 363 | 61.57 364 |
|
EMVS | | | 64.07 333 | 63.26 336 | 66.53 349 | 81.73 364 | 58.81 369 | 91.85 355 | 84.75 368 | 51.93 364 | 59.09 364 | 75.13 363 | 43.32 365 | 79.09 367 | 42.03 366 | 39.47 364 | 61.69 363 |
|
MVE |  | 62.14 22 | 63.28 334 | 59.38 337 | 74.99 345 | 74.33 368 | 65.47 364 | 85.55 359 | 80.50 370 | 52.02 363 | 51.10 365 | 75.00 364 | 10.91 374 | 80.50 365 | 51.60 364 | 53.40 362 | 78.99 360 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 69.08 329 | 65.37 333 | 80.22 343 | 65.99 369 | 71.96 363 | 90.91 357 | 90.09 364 | 82.62 348 | 49.93 366 | 78.39 361 | 29.36 370 | 81.75 364 | 62.49 362 | 38.52 365 | 86.95 359 |
|
PMVS |  | 61.03 23 | 65.95 331 | 63.57 335 | 73.09 347 | 57.90 370 | 51.22 371 | 85.05 360 | 93.93 359 | 54.45 361 | 44.32 367 | 83.57 357 | 13.22 371 | 89.15 362 | 58.68 363 | 81.00 346 | 78.91 361 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
testmvs | | | 21.48 337 | 24.95 340 | 11.09 352 | 14.89 372 | 6.47 374 | 96.56 324 | 9.87 373 | 7.55 368 | 17.93 368 | 39.02 366 | 9.43 375 | 5.90 371 | 16.56 369 | 12.72 368 | 20.91 366 |
|
test123 | | | 20.95 338 | 23.72 341 | 12.64 351 | 13.54 373 | 8.19 373 | 96.55 325 | 6.13 374 | 7.48 369 | 16.74 369 | 37.98 367 | 12.97 372 | 6.05 370 | 16.69 368 | 5.43 369 | 23.68 365 |
|
wuyk23d | | | 30.17 335 | 30.18 339 | 30.16 350 | 78.61 366 | 43.29 372 | 66.79 363 | 14.21 372 | 17.31 367 | 14.82 370 | 11.93 370 | 11.55 373 | 41.43 369 | 37.08 367 | 19.30 367 | 5.76 367 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
cdsmvs_eth3d_5k | | | 23.98 336 | 31.98 338 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 98.59 143 | 0.00 370 | 0.00 371 | 98.61 131 | 90.60 160 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
pcd_1.5k_mvsjas | | | 7.88 340 | 10.50 343 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 94.51 86 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
ab-mvs-re | | | 8.20 339 | 10.94 342 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 98.43 149 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
No_MVS | | | | | 99.62 5 | 99.17 98 | 99.08 9 | | 98.63 139 | | | | | 99.94 3 | 98.53 11 | 99.80 17 | 99.86 2 |
|
eth-test2 | | | | | | 0.00 374 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 374 | | | | | | | | | | | |
|
OPU-MVS | | | | | 99.37 21 | 99.24 92 | 99.05 11 | 99.02 61 | | | | 99.16 61 | 97.81 3 | 99.37 158 | 97.24 85 | 99.73 44 | 99.70 50 |
|
save fliter | | | | | | 99.46 51 | 98.38 36 | 98.21 201 | 98.71 114 | 97.95 3 | | | | | | | |
|
test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 71 | 98.88 49 | | | | | 99.94 3 | 98.47 18 | 99.81 10 | 99.84 5 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 132 |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 178 | | | | 99.20 132 |
|
sam_mvs | | | | | | | | | | | | | 88.99 191 | | | | |
|
MTGPA |  | | | | | | | | 98.74 104 | | | | | | | | |
|
test_post1 | | | | | | | | 96.68 321 | | | | 30.43 369 | 87.85 223 | 98.69 235 | 92.59 245 | | |
|
test_post | | | | | | | | | | | | 31.83 368 | 88.83 198 | 98.91 214 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 335 | 89.42 179 | 98.89 218 | | | |
|
MTMP | | | | | | | | 98.89 86 | 94.14 357 | | | | | | | | |
|
gm-plane-assit | | | | | | 95.88 314 | 87.47 343 | | | 89.74 316 | | 96.94 286 | | 99.19 172 | 93.32 224 | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 127 | 99.57 77 | 99.69 53 |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 143 | 99.57 77 | 99.68 59 |
|
test_prior4 | | | | | | | 98.01 63 | 97.86 244 | | | | | | | | | |
|
test_prior | | | | | 99.19 44 | 99.31 70 | 98.22 51 | | 98.84 65 | | | | | 99.70 116 | | | 99.65 69 |
|
新几何2 | | | | | | | | 97.64 260 | | | | | | | | | |
|
旧先验1 | | | | | | 99.29 78 | 97.48 84 | | 98.70 117 | | | 99.09 75 | 95.56 48 | | | 99.47 93 | 99.61 77 |
|
无先验 | | | | | | | | 97.58 264 | 98.72 110 | 91.38 279 | | | | 99.87 45 | 93.36 222 | | 99.60 80 |
|
原ACMM2 | | | | | | | | 97.67 258 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.89 36 | 91.65 270 | | |
|
segment_acmp | | | | | | | | | | | | | 96.85 12 | | | | |
|
testdata1 | | | | | | | | 97.32 281 | | 96.34 74 | | | | | | | |
|
plane_prior7 | | | | | | 97.42 235 | 94.63 211 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.35 240 | 94.61 214 | | | | | | 87.09 236 | | | | |
|
plane_prior5 | | | | | | | | | 98.56 151 | | | | | 99.03 195 | 96.07 133 | 94.27 224 | 96.92 242 |
|
plane_prior4 | | | | | | | | | | | | 98.28 170 | | | | | |
|
plane_prior2 | | | | | | | | 98.80 108 | | 97.28 31 | | | | | | | |
|
plane_prior1 | | | | | | 97.37 239 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.60 216 | 98.44 170 | | 96.74 58 | | | | | | 94.22 226 | |
|
n2 | | | | | | | | | 0.00 375 | | | | | | | | |
|
nn | | | | | | | | | 0.00 375 | | | | | | | | |
|
door-mid | | | | | | | | | 94.37 353 | | | | | | | | |
|
test11 | | | | | | | | | 98.66 132 | | | | | | | | |
|
door | | | | | | | | | 94.64 351 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.25 230 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 162 | | |
|
HQP3-MVS | | | | | | | | | 98.46 172 | | | | | | | 94.18 228 | |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 242 | | | | |
|
NP-MVS | | | | | | 97.28 243 | 94.51 219 | | | | | 97.73 218 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 256 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 244 | |
|
Test By Simon | | | | | | | | | | | | | 94.64 81 | | | | |
|