This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
test_vis1_n97.92 21497.44 24899.34 12199.53 15098.08 21899.74 4299.49 13099.15 10100.00 199.94 479.51 36299.98 899.88 299.76 9699.97 2
test_vis1_n_192098.63 14498.40 15199.31 12899.86 2097.94 22999.67 6099.62 3399.43 199.99 299.91 1187.29 342100.00 199.92 199.92 1399.98 1
test_fmvs1_n98.41 15698.14 16699.21 14699.82 3797.71 24199.74 4299.49 13099.32 499.99 299.95 285.32 34999.97 1499.82 399.84 6399.96 3
test_fmvs198.88 10998.79 11199.16 15199.69 9597.61 24399.55 12399.49 13099.32 499.98 499.91 1191.41 29899.96 2299.82 399.92 1399.90 4
dcpmvs_299.23 6399.58 298.16 27299.83 3594.68 33299.76 3699.52 8999.07 2399.98 499.88 2698.56 6999.93 7099.67 899.98 299.87 17
mvsany_test199.50 1299.46 1499.62 6999.61 12999.09 12298.94 30999.48 14299.10 1699.96 699.91 1198.85 3999.96 2299.72 599.58 12399.82 40
SED-MVS99.61 299.52 699.88 599.84 3199.90 299.60 9099.48 14299.08 2199.91 799.81 7699.20 799.96 2298.91 8399.85 5599.79 60
test_241102_ONE99.84 3199.90 299.48 14299.07 2399.91 799.74 12799.20 799.76 177
EI-MVSNet-UG-set99.58 499.57 399.64 6499.78 4799.14 11799.60 9099.45 18099.01 2899.90 999.83 5698.98 2399.93 7099.59 1199.95 899.86 19
EI-MVSNet-Vis-set99.58 499.56 599.64 6499.78 4799.15 11699.61 8999.45 18099.01 2899.89 1099.82 6399.01 1899.92 8099.56 1499.95 899.85 22
DVP-MVS++99.59 399.50 899.88 599.51 15699.88 899.87 999.51 10398.99 3399.88 1199.81 7699.27 599.96 2298.85 9699.80 8399.81 47
test_241102_TWO99.48 14299.08 2199.88 1199.81 7698.94 2999.96 2298.91 8399.84 6399.88 12
DPE-MVScopyleft99.46 2399.32 3299.91 299.78 4799.88 899.36 20999.51 10398.73 6199.88 1199.84 5298.72 5899.96 2298.16 17699.87 4099.88 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS99.41 3899.52 699.05 16299.74 7199.68 4899.46 16799.52 8999.11 1599.88 1199.91 1199.43 197.70 35998.72 11499.93 1299.77 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS99.66 199.57 399.92 199.77 5399.89 499.75 3999.56 5799.02 2699.88 1199.85 4299.18 1099.96 2299.22 5399.92 1399.90 4
test072699.85 2599.89 499.62 8399.50 12299.10 1699.86 1699.82 6398.94 29
Vis-MVSNetpermissive99.12 8198.97 8799.56 7999.78 4799.10 12199.68 5799.66 2698.49 7799.86 1699.87 3294.77 20699.84 13599.19 5599.41 13499.74 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PC_three_145298.18 11599.84 1899.70 14299.31 398.52 34298.30 16799.80 8399.81 47
IU-MVS99.84 3199.88 899.32 25198.30 9699.84 1898.86 9499.85 5599.89 6
xiu_mvs_v1_base_debu99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
xiu_mvs_v1_base99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
xiu_mvs_v1_base_debi99.29 5399.27 4899.34 12199.63 11998.97 13999.12 26699.51 10398.86 4899.84 1899.47 23998.18 9199.99 299.50 2099.31 14399.08 200
DeepPCF-MVS98.18 398.81 12499.37 2297.12 31899.60 13491.75 35698.61 33999.44 18899.35 299.83 2399.85 4298.70 6099.81 15799.02 7199.91 1899.81 47
TSAR-MVS + GP.99.36 4599.36 2499.36 12099.67 10098.61 18399.07 27699.33 24199.00 3199.82 2499.81 7699.06 1699.84 13599.09 6499.42 13399.65 113
FOURS199.91 199.93 199.87 999.56 5799.10 1699.81 25
DVP-MVScopyleft99.57 799.47 1299.88 599.85 2599.89 499.57 10899.37 22499.10 1699.81 2599.80 8998.94 2999.96 2298.93 8099.86 4899.81 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 3399.81 2599.80 8999.09 1499.96 2298.85 9699.90 2599.88 12
MVSFormer99.17 6899.12 6499.29 13699.51 15698.94 15199.88 499.46 16997.55 18499.80 2899.65 17097.39 11099.28 27799.03 6999.85 5599.65 113
lupinMVS99.13 7599.01 8299.46 10799.51 15698.94 15199.05 28199.16 28397.86 15099.80 2899.56 20797.39 11099.86 12398.94 7899.85 5599.58 137
tttt051798.42 15498.14 16699.28 13899.66 10898.38 20699.74 4296.85 36397.68 17299.79 3099.74 12791.39 29999.89 11198.83 10299.56 12499.57 138
APD-MVS_3200maxsize99.48 1899.35 2699.85 2599.76 5699.83 1699.63 7799.54 7398.36 9099.79 3099.82 6398.86 3899.95 4898.62 12799.81 7999.78 66
jason99.13 7599.03 7599.45 10899.46 17798.87 15899.12 26699.26 26898.03 13999.79 3099.65 17097.02 12499.85 12999.02 7199.90 2599.65 113
jason: jason.
SteuartSystems-ACMMP99.54 899.42 1599.87 1199.82 3799.81 2599.59 9699.51 10398.62 6799.79 3099.83 5699.28 499.97 1498.48 14999.90 2599.84 26
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast98.69 199.49 1499.39 1999.77 4599.63 11999.59 6299.36 20999.46 16999.07 2399.79 3099.82 6398.85 3999.92 8098.68 12199.87 4099.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS99.50 1299.48 1099.54 8299.76 5699.42 8599.90 199.55 6598.56 7199.78 3599.70 14298.65 6599.79 16699.65 999.78 9099.41 174
SMA-MVScopyleft99.44 2999.30 4099.85 2599.73 7899.83 1699.56 11499.47 16097.45 19599.78 3599.82 6399.18 1099.91 9098.79 10799.89 3499.81 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5399.63 7799.39 21098.91 4699.78 3599.85 4299.36 299.94 5798.84 9999.88 3799.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test250696.81 28796.65 28597.29 31499.74 7192.21 35599.60 9085.06 38299.13 1299.77 3899.93 687.82 34099.85 12999.38 3299.38 13599.80 56
test_part299.81 4199.83 1699.77 38
MSP-MVS99.42 3499.27 4899.88 599.89 899.80 2799.67 6099.50 12298.70 6399.77 3899.49 23198.21 8999.95 4898.46 15399.77 9399.88 12
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UA-Net99.42 3499.29 4499.80 3899.62 12599.55 6899.50 14599.70 1598.79 5899.77 3899.96 197.45 10999.96 2298.92 8299.90 2599.89 6
APD-MVScopyleft99.27 5699.08 6999.84 3199.75 6499.79 3099.50 14599.50 12297.16 22199.77 3899.82 6398.78 4799.94 5797.56 22999.86 4899.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post99.45 2599.31 3899.85 2599.76 5699.82 2299.63 7799.52 8998.38 8699.76 4399.82 6398.53 7199.95 4898.61 13099.81 7999.77 68
RE-MVS-def99.34 2899.76 5699.82 2299.63 7799.52 8998.38 8699.76 4399.82 6398.75 5498.61 13099.81 7999.77 68
ACMMP_NAP99.47 2199.34 2899.88 599.87 1599.86 1399.47 16499.48 14298.05 13699.76 4399.86 3798.82 4399.93 7098.82 10699.91 1899.84 26
HPM-MVS_fast99.51 1199.40 1899.85 2599.91 199.79 3099.76 3699.56 5797.72 16899.76 4399.75 12299.13 1299.92 8099.07 6799.92 1399.85 22
VNet99.11 8598.90 9699.73 5199.52 15499.56 6699.41 18699.39 21099.01 2899.74 4799.78 10695.56 17499.92 8099.52 1898.18 21399.72 89
patch_mono-299.26 5899.62 198.16 27299.81 4194.59 33399.52 13499.64 3299.33 399.73 4899.90 1699.00 2299.99 299.69 699.98 299.89 6
SR-MVS99.43 3299.29 4499.86 2099.75 6499.83 1699.59 9699.62 3398.21 10899.73 4899.79 10098.68 6199.96 2298.44 15499.77 9399.79 60
thisisatest053098.35 16298.03 18199.31 12899.63 11998.56 18699.54 12796.75 36597.53 18899.73 4899.65 17091.25 30299.89 11198.62 12799.56 12499.48 159
CS-MVS-test99.49 1499.48 1099.54 8299.78 4799.30 9699.89 299.58 4998.56 7199.73 4899.69 15298.55 7099.82 15299.69 699.85 5599.48 159
DROMVSNet99.44 2999.39 1999.58 7599.56 14499.49 7899.88 499.58 4998.38 8699.73 4899.69 15298.20 9099.70 20299.64 1099.82 7699.54 142
diffmvspermissive99.14 7399.02 7899.51 9899.61 12998.96 14399.28 23099.49 13098.46 7999.72 5399.71 13896.50 14199.88 11699.31 4299.11 15899.67 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SF-MVS99.38 4399.24 5399.79 4199.79 4599.68 4899.57 10899.54 7397.82 15999.71 5499.80 8998.95 2799.93 7098.19 17299.84 6399.74 78
xiu_mvs_v2_base99.26 5899.25 5299.29 13699.53 15098.91 15599.02 29099.45 18098.80 5799.71 5499.26 29298.94 2999.98 899.34 3999.23 14898.98 214
PS-MVSNAJ99.32 4999.32 3299.30 13399.57 14098.94 15198.97 30399.46 16998.92 4599.71 5499.24 29499.01 1899.98 899.35 3599.66 11498.97 215
PGM-MVS99.45 2599.31 3899.86 2099.87 1599.78 3699.58 10499.65 3197.84 15499.71 5499.80 8999.12 1399.97 1498.33 16399.87 4099.83 35
114514_t98.93 10598.67 12199.72 5299.85 2599.53 7399.62 8399.59 4492.65 34899.71 5499.78 10698.06 9699.90 10198.84 9999.91 1899.74 78
PVSNet_Blended_VisFu99.36 4599.28 4699.61 7099.86 2099.07 12799.47 16499.93 297.66 17599.71 5499.86 3797.73 10499.96 2299.47 2799.82 7699.79 60
MTAPA99.52 1099.39 1999.89 499.90 499.86 1399.66 6599.47 16098.79 5899.68 6099.81 7698.43 7899.97 1498.88 8699.90 2599.83 35
HFP-MVS99.49 1499.37 2299.86 2099.87 1599.80 2799.66 6599.67 2298.15 11799.68 6099.69 15299.06 1699.96 2298.69 11999.87 4099.84 26
VDDNet97.55 26397.02 28099.16 15199.49 16798.12 21799.38 20399.30 25995.35 31699.68 6099.90 1682.62 35799.93 7099.31 4298.13 21799.42 172
HPM-MVScopyleft99.42 3499.28 4699.83 3299.90 499.72 4299.81 2099.54 7397.59 17999.68 6099.63 18298.91 3499.94 5798.58 13699.91 1899.84 26
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS97.73 24597.35 26098.88 19399.47 17697.12 25799.34 21798.85 32098.19 11199.67 6499.85 4282.98 35599.92 8099.49 2498.32 20699.60 129
ACMMPR99.49 1499.36 2499.86 2099.87 1599.79 3099.66 6599.67 2298.15 11799.67 6499.69 15298.95 2799.96 2298.69 11999.87 4099.84 26
PVSNet_BlendedMVS98.86 11398.80 10899.03 16499.76 5698.79 16999.28 23099.91 397.42 20099.67 6499.37 26497.53 10799.88 11698.98 7497.29 25898.42 316
PVSNet_Blended99.08 9098.97 8799.42 11399.76 5698.79 16998.78 32599.91 396.74 25299.67 6499.49 23197.53 10799.88 11698.98 7499.85 5599.60 129
sss99.17 6899.05 7199.53 9099.62 12598.97 13999.36 20999.62 3397.83 15599.67 6499.65 17097.37 11399.95 4899.19 5599.19 15199.68 103
ECVR-MVScopyleft98.04 19498.05 17998.00 28499.74 7194.37 33699.59 9694.98 37299.13 1299.66 6999.93 690.67 30899.84 13599.40 3199.38 13599.80 56
h-mvs3397.70 25197.28 27098.97 17499.70 9297.27 25199.36 20999.45 18098.94 4299.66 6999.64 17694.93 19399.99 299.48 2584.36 36199.65 113
hse-mvs297.50 26897.14 27698.59 22599.49 16797.05 26499.28 23099.22 27498.94 4299.66 6999.42 24994.93 19399.65 21799.48 2583.80 36399.08 200
region2R99.48 1899.35 2699.87 1199.88 1199.80 2799.65 7199.66 2698.13 12099.66 6999.68 15898.96 2499.96 2298.62 12799.87 4099.84 26
RPSCF98.22 17098.62 13296.99 32099.82 3791.58 35799.72 4699.44 18896.61 26499.66 6999.89 2095.92 16199.82 15297.46 23999.10 16199.57 138
OMC-MVS99.08 9099.04 7399.20 14799.67 10098.22 21199.28 23099.52 8998.07 13199.66 6999.81 7697.79 10299.78 17197.79 20499.81 7999.60 129
test111198.04 19498.11 17097.83 29499.74 7193.82 34199.58 10495.40 37199.12 1499.65 7599.93 690.73 30799.84 13599.43 3099.38 13599.82 40
test_one_060199.81 4199.88 899.49 13098.97 3999.65 7599.81 7699.09 14
LFMVS97.90 21797.35 26099.54 8299.52 15499.01 13499.39 19898.24 34997.10 22999.65 7599.79 10084.79 35199.91 9099.28 4798.38 20199.69 99
MVS_111021_LR99.41 3899.33 3099.65 5999.77 5399.51 7798.94 30999.85 698.82 5399.65 7599.74 12798.51 7399.80 16398.83 10299.89 3499.64 120
9.1499.10 6699.72 8299.40 19499.51 10397.53 18899.64 7999.78 10698.84 4199.91 9097.63 22099.82 76
GST-MVS99.40 4199.24 5399.85 2599.86 2099.79 3099.60 9099.67 2297.97 14299.63 8099.68 15898.52 7299.95 4898.38 15799.86 4899.81 47
CPTT-MVS99.11 8598.90 9699.74 4999.80 4499.46 8299.59 9699.49 13097.03 23599.63 8099.69 15297.27 11699.96 2297.82 20299.84 6399.81 47
ACMMPcopyleft99.45 2599.32 3299.82 3399.89 899.67 5199.62 8399.69 1898.12 12199.63 8099.84 5298.73 5799.96 2298.55 14599.83 7299.81 47
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 5199.19 5899.64 6499.82 3799.23 10499.62 8399.55 6598.94 4299.63 8099.95 295.82 16699.94 5799.37 3499.97 599.73 83
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FE-MVS98.48 14998.17 16399.40 11599.54 14998.96 14399.68 5798.81 32495.54 31499.62 8499.70 14293.82 24199.93 7097.35 24599.46 13099.32 184
CHOSEN 280x42099.12 8199.13 6399.08 15799.66 10897.89 23098.43 34999.71 1398.88 4799.62 8499.76 11996.63 13799.70 20299.46 2899.99 199.66 109
PHI-MVS99.30 5199.17 6099.70 5399.56 14499.52 7699.58 10499.80 897.12 22599.62 8499.73 13398.58 6799.90 10198.61 13099.91 1899.68 103
test_yl98.86 11398.63 12799.54 8299.49 16799.18 10899.50 14599.07 29598.22 10699.61 8799.51 22595.37 18099.84 13598.60 13398.33 20299.59 133
DCV-MVSNet98.86 11398.63 12799.54 8299.49 16799.18 10899.50 14599.07 29598.22 10699.61 8799.51 22595.37 18099.84 13598.60 13398.33 20299.59 133
MG-MVS99.13 7599.02 7899.45 10899.57 14098.63 18099.07 27699.34 23498.99 3399.61 8799.82 6397.98 9899.87 12097.00 26599.80 8399.85 22
MP-MVS-pluss99.37 4499.20 5799.88 599.90 499.87 1299.30 22499.52 8997.18 21999.60 9099.79 10098.79 4699.95 4898.83 10299.91 1899.83 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CDPH-MVS99.13 7598.91 9599.80 3899.75 6499.71 4499.15 26199.41 19996.60 26699.60 9099.55 21098.83 4299.90 10197.48 23699.83 7299.78 66
EPP-MVSNet99.13 7598.99 8399.53 9099.65 11499.06 12899.81 2099.33 24197.43 19899.60 9099.88 2697.14 11899.84 13599.13 6098.94 17299.69 99
HyFIR lowres test99.11 8598.92 9399.65 5999.90 499.37 8999.02 29099.91 397.67 17499.59 9399.75 12295.90 16399.73 18699.53 1699.02 16999.86 19
FA-MVS(test-final)98.75 13198.53 14499.41 11499.55 14899.05 13099.80 2499.01 30096.59 26899.58 9499.59 19695.39 17999.90 10197.78 20599.49 12999.28 187
MVS_Test99.10 8898.97 8799.48 10299.49 16799.14 11799.67 6099.34 23497.31 20899.58 9499.76 11997.65 10699.82 15298.87 8999.07 16499.46 167
MDTV_nov1_ep13_2view95.18 32499.35 21496.84 24899.58 9495.19 18997.82 20299.46 167
DELS-MVS99.48 1899.42 1599.65 5999.72 8299.40 8899.05 28199.66 2699.14 1199.57 9799.80 8998.46 7699.94 5799.57 1399.84 6399.60 129
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZD-MVS99.71 8799.79 3099.61 3696.84 24899.56 9899.54 21598.58 6799.96 2296.93 27299.75 98
CR-MVSNet98.17 17797.93 19398.87 19799.18 24598.49 19799.22 25299.33 24196.96 23999.56 9899.38 26194.33 22499.00 32094.83 32198.58 19299.14 192
RPMNet96.72 28995.90 30099.19 14899.18 24598.49 19799.22 25299.52 8988.72 36199.56 9897.38 35594.08 23499.95 4886.87 36698.58 19299.14 192
IS-MVSNet99.05 9398.87 10099.57 7799.73 7899.32 9299.75 3999.20 27898.02 14099.56 9899.86 3796.54 14099.67 20998.09 17999.13 15799.73 83
ZNCC-MVS99.47 2199.33 3099.87 1199.87 1599.81 2599.64 7399.67 2298.08 13099.55 10299.64 17698.91 3499.96 2298.72 11499.90 2599.82 40
thisisatest051598.14 18097.79 20499.19 14899.50 16598.50 19698.61 33996.82 36496.95 24199.54 10399.43 24791.66 29499.86 12398.08 18399.51 12899.22 190
MVS_111021_HR99.41 3899.32 3299.66 5599.72 8299.47 8198.95 30799.85 698.82 5399.54 10399.73 13398.51 7399.74 18098.91 8399.88 3799.77 68
CP-MVS99.45 2599.32 3299.85 2599.83 3599.75 3999.69 5199.52 8998.07 13199.53 10599.63 18298.93 3399.97 1498.74 11199.91 1899.83 35
WTY-MVS99.06 9298.88 9999.61 7099.62 12599.16 11199.37 20599.56 5798.04 13799.53 10599.62 18796.84 13099.94 5798.85 9698.49 19999.72 89
MCST-MVS99.43 3299.30 4099.82 3399.79 4599.74 4199.29 22899.40 20798.79 5899.52 10799.62 18798.91 3499.90 10198.64 12599.75 9899.82 40
PatchT97.03 28496.44 29098.79 21398.99 28098.34 20799.16 25899.07 29592.13 34999.52 10797.31 35894.54 21998.98 32288.54 36098.73 18899.03 208
CANet99.25 6199.14 6299.59 7299.41 18899.16 11199.35 21499.57 5298.82 5399.51 10999.61 19196.46 14299.95 4899.59 1199.98 299.65 113
mPP-MVS99.44 2999.30 4099.86 2099.88 1199.79 3099.69 5199.48 14298.12 12199.50 11099.75 12298.78 4799.97 1498.57 13999.89 3499.83 35
PatchMatch-RL98.84 12398.62 13299.52 9699.71 8799.28 9899.06 27999.77 997.74 16799.50 11099.53 21995.41 17899.84 13597.17 25899.64 11799.44 170
PVSNet96.02 1798.85 12098.84 10598.89 19199.73 7897.28 25098.32 35599.60 4197.86 15099.50 11099.57 20496.75 13499.86 12398.56 14299.70 10899.54 142
LS3D99.27 5699.12 6499.74 4999.18 24599.75 3999.56 11499.57 5298.45 8099.49 11399.85 4297.77 10399.94 5798.33 16399.84 6399.52 148
MP-MVScopyleft99.33 4899.15 6199.87 1199.88 1199.82 2299.66 6599.46 16998.09 12699.48 11499.74 12798.29 8699.96 2297.93 19299.87 4099.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
旧先验298.96 30496.70 25599.47 11599.94 5798.19 172
MSDG98.98 10198.80 10899.53 9099.76 5699.19 10698.75 32899.55 6597.25 21399.47 11599.77 11397.82 10199.87 12096.93 27299.90 2599.54 142
CDS-MVSNet99.09 8999.03 7599.25 14199.42 18598.73 17299.45 16899.46 16998.11 12399.46 11799.77 11398.01 9799.37 25898.70 11698.92 17599.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSLP-MVS++99.46 2399.47 1299.44 11299.60 13499.16 11199.41 18699.71 1398.98 3699.45 11899.78 10699.19 999.54 23499.28 4799.84 6399.63 123
XVG-OURS98.73 13398.68 12098.88 19399.70 9297.73 23798.92 31199.55 6598.52 7599.45 11899.84 5295.27 18499.91 9098.08 18398.84 18199.00 211
casdiffmvs_mvgpermissive99.15 7199.02 7899.55 8199.66 10899.09 12299.64 7399.56 5798.26 10099.45 11899.87 3296.03 15599.81 15799.54 1599.15 15599.73 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpmrst98.33 16398.48 14697.90 29099.16 25394.78 33099.31 22299.11 28897.27 21199.45 11899.59 19695.33 18299.84 13598.48 14998.61 18999.09 199
TAMVS99.12 8199.08 6999.24 14399.46 17798.55 18799.51 13999.46 16998.09 12699.45 11899.82 6398.34 8499.51 23598.70 11698.93 17399.67 106
ETV-MVS99.26 5899.21 5699.40 11599.46 17799.30 9699.56 11499.52 8998.52 7599.44 12399.27 29098.41 8199.86 12399.10 6399.59 12299.04 207
CANet_DTU98.97 10398.87 10099.25 14199.33 20898.42 20599.08 27599.30 25999.16 999.43 12499.75 12295.27 18499.97 1498.56 14299.95 899.36 179
SCA98.19 17498.16 16498.27 26799.30 21695.55 31299.07 27698.97 30497.57 18299.43 12499.57 20492.72 26399.74 18097.58 22499.20 15099.52 148
testdata99.54 8299.75 6498.95 14899.51 10397.07 23199.43 12499.70 14298.87 3799.94 5797.76 20899.64 11799.72 89
DPM-MVS98.95 10498.71 11799.66 5599.63 11999.55 6898.64 33899.10 28997.93 14599.42 12799.55 21098.67 6399.80 16395.80 30299.68 11299.61 127
XVG-OURS-SEG-HR98.69 13798.62 13298.89 19199.71 8797.74 23699.12 26699.54 7398.44 8399.42 12799.71 13894.20 22899.92 8098.54 14698.90 17799.00 211
baseline99.15 7199.02 7899.53 9099.66 10899.14 11799.72 4699.48 14298.35 9199.42 12799.84 5296.07 15399.79 16699.51 1999.14 15699.67 106
DP-MVS Recon99.12 8198.95 9199.65 5999.74 7199.70 4699.27 23599.57 5296.40 28399.42 12799.68 15898.75 5499.80 16397.98 18999.72 10499.44 170
Effi-MVS+-dtu98.78 12898.89 9898.47 24499.33 20896.91 27799.57 10899.30 25998.47 7899.41 13198.99 32096.78 13299.74 18098.73 11399.38 13598.74 237
casdiffmvspermissive99.13 7598.98 8699.56 7999.65 11499.16 11199.56 11499.50 12298.33 9499.41 13199.86 3795.92 16199.83 14699.45 2999.16 15299.70 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet97.73 24597.45 24398.57 22999.45 18297.50 24599.02 29098.98 30396.11 30399.41 13199.14 30590.28 31098.74 33995.74 30398.93 17399.47 165
CSCG99.32 4999.32 3299.32 12799.85 2598.29 20899.71 4899.66 2698.11 12399.41 13199.80 8998.37 8399.96 2298.99 7399.96 799.72 89
F-COLMAP99.19 6499.04 7399.64 6499.78 4799.27 10099.42 18499.54 7397.29 21099.41 13199.59 19698.42 8099.93 7098.19 17299.69 10999.73 83
EIA-MVS99.18 6699.09 6899.45 10899.49 16799.18 10899.67 6099.53 8497.66 17599.40 13699.44 24598.10 9499.81 15798.94 7899.62 12099.35 180
mvsmamba98.92 10698.87 10099.08 15799.07 26899.16 11199.88 499.51 10398.15 11799.40 13699.89 2097.12 11999.33 26899.38 3297.40 25498.73 239
MDTV_nov1_ep1398.32 15699.11 26094.44 33599.27 23598.74 33197.51 19099.40 13699.62 18794.78 20399.76 17797.59 22398.81 185
iter_conf_final98.71 13498.61 13898.99 17099.49 16798.96 14399.63 7799.41 19998.19 11199.39 13999.77 11394.82 19999.38 25399.30 4597.52 23898.64 275
CVMVSNet98.57 14698.67 12198.30 26299.35 20295.59 31199.50 14599.55 6598.60 6999.39 13999.83 5694.48 22099.45 23998.75 11098.56 19599.85 22
CNVR-MVS99.42 3499.30 4099.78 4399.62 12599.71 4499.26 24399.52 8998.82 5399.39 13999.71 13898.96 2499.85 12998.59 13599.80 8399.77 68
Effi-MVS+98.81 12498.59 13999.48 10299.46 17799.12 12098.08 36199.50 12297.50 19199.38 14299.41 25396.37 14699.81 15799.11 6298.54 19699.51 154
mvs_anonymous99.03 9698.99 8399.16 15199.38 19798.52 19399.51 13999.38 21697.79 16099.38 14299.81 7697.30 11499.45 23999.35 3598.99 17099.51 154
iter_conf0598.55 14798.44 14798.87 19799.34 20698.60 18499.55 12399.42 19698.21 10899.37 14499.77 11393.55 24699.38 25399.30 4597.48 24698.63 283
XVS99.53 999.42 1599.87 1199.85 2599.83 1699.69 5199.68 1998.98 3699.37 14499.74 12798.81 4499.94 5798.79 10799.86 4899.84 26
X-MVStestdata96.55 29195.45 30899.87 1199.85 2599.83 1699.69 5199.68 1998.98 3699.37 14464.01 37898.81 4499.94 5798.79 10799.86 4899.84 26
PatchmatchNetpermissive98.31 16498.36 15298.19 27099.16 25395.32 32099.27 23598.92 31097.37 20499.37 14499.58 20094.90 19699.70 20297.43 24299.21 14999.54 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AllTest98.87 11098.72 11599.31 12899.86 2098.48 19999.56 11499.61 3697.85 15299.36 14899.85 4295.95 15899.85 12996.66 28599.83 7299.59 133
TestCases99.31 12899.86 2098.48 19999.61 3697.85 15299.36 14899.85 4295.95 15899.85 12996.66 28599.83 7299.59 133
Vis-MVSNet (Re-imp)98.87 11098.72 11599.31 12899.71 8798.88 15799.80 2499.44 18897.91 14799.36 14899.78 10695.49 17799.43 24897.91 19399.11 15899.62 125
alignmvs98.81 12498.56 14299.58 7599.43 18399.42 8599.51 13998.96 30698.61 6899.35 15198.92 32894.78 20399.77 17399.35 3598.11 21899.54 142
VPA-MVSNet98.29 16797.95 19099.30 13399.16 25399.54 7099.50 14599.58 4998.27 9999.35 15199.37 26492.53 27299.65 21799.35 3594.46 31798.72 240
AdaColmapbinary99.01 10098.80 10899.66 5599.56 14499.54 7099.18 25699.70 1598.18 11599.35 15199.63 18296.32 14799.90 10197.48 23699.77 9399.55 140
test22299.75 6499.49 7898.91 31399.49 13096.42 28199.34 15499.65 17098.28 8799.69 10999.72 89
API-MVS99.04 9499.03 7599.06 16099.40 19399.31 9599.55 12399.56 5798.54 7399.33 15599.39 26098.76 5199.78 17196.98 26799.78 9098.07 335
bld_raw_dy_0_6498.69 13798.58 14098.99 17098.88 29398.96 14399.80 2499.41 19997.91 14799.32 15699.87 3295.70 17199.31 27499.09 6497.27 25998.71 242
v14419297.92 21497.60 22898.87 19798.83 30398.65 17899.55 12399.34 23496.20 29499.32 15699.40 25694.36 22399.26 28196.37 29395.03 30998.70 247
GeoE98.85 12098.62 13299.53 9099.61 12999.08 12599.80 2499.51 10397.10 22999.31 15899.78 10695.23 18899.77 17398.21 17099.03 16799.75 74
canonicalmvs99.02 9798.86 10399.51 9899.42 18599.32 9299.80 2499.48 14298.63 6699.31 15898.81 33197.09 12199.75 17999.27 5097.90 22299.47 165
V4298.06 18897.79 20498.86 20198.98 28398.84 16299.69 5199.34 23496.53 27099.30 16099.37 26494.67 21299.32 27197.57 22894.66 31498.42 316
ab-mvs98.86 11398.63 12799.54 8299.64 11699.19 10699.44 17399.54 7397.77 16299.30 16099.81 7694.20 22899.93 7099.17 5898.82 18399.49 158
TAPA-MVS97.07 1597.74 24497.34 26398.94 17899.70 9297.53 24499.25 24599.51 10391.90 35099.30 16099.63 18298.78 4799.64 22088.09 36299.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何199.75 4799.75 6499.59 6299.54 7396.76 25199.29 16399.64 17698.43 7899.94 5796.92 27499.66 11499.72 89
test_fmvs297.25 27897.30 26897.09 31999.43 18393.31 34999.73 4598.87 31998.83 5299.28 16499.80 8984.45 35299.66 21297.88 19597.45 24898.30 324
VPNet97.84 22697.44 24899.01 16699.21 23898.94 15199.48 15999.57 5298.38 8699.28 16499.73 13388.89 32599.39 25199.19 5593.27 33398.71 242
HY-MVS97.30 798.85 12098.64 12699.47 10599.42 18599.08 12599.62 8399.36 22597.39 20399.28 16499.68 15896.44 14499.92 8098.37 15998.22 20899.40 176
PAPM_NR99.04 9498.84 10599.66 5599.74 7199.44 8499.39 19899.38 21697.70 17099.28 16499.28 28798.34 8499.85 12996.96 26999.45 13199.69 99
HPM-MVS++copyleft99.39 4299.23 5599.87 1199.75 6499.84 1599.43 17799.51 10398.68 6599.27 16899.53 21998.64 6699.96 2298.44 15499.80 8399.79 60
v124097.69 25297.32 26698.79 21398.85 30198.43 20399.48 15999.36 22596.11 30399.27 16899.36 26793.76 24499.24 28494.46 32495.23 30498.70 247
thres600view797.86 22297.51 23698.92 18299.72 8297.95 22799.59 9698.74 33197.94 14499.27 16898.62 33791.75 28899.86 12393.73 33398.19 21298.96 217
PLCcopyleft97.94 499.02 9798.85 10499.53 9099.66 10899.01 13499.24 24799.52 8996.85 24799.27 16899.48 23698.25 8899.91 9097.76 20899.62 12099.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres100view90097.76 23897.45 24398.69 22099.72 8297.86 23399.59 9698.74 33197.93 14599.26 17298.62 33791.75 28899.83 14693.22 33898.18 21398.37 322
EPMVS97.82 23197.65 22398.35 25798.88 29395.98 30499.49 15594.71 37497.57 18299.26 17299.48 23692.46 27799.71 19697.87 19799.08 16399.35 180
Fast-Effi-MVS+-dtu98.77 13098.83 10798.60 22499.41 18896.99 27199.52 13499.49 13098.11 12399.24 17499.34 27396.96 12899.79 16697.95 19199.45 13199.02 210
v192192097.80 23597.45 24398.84 20598.80 30498.53 18999.52 13499.34 23496.15 30099.24 17499.47 23993.98 23699.29 27695.40 31295.13 30798.69 251
LPG-MVS_test98.22 17098.13 16898.49 23899.33 20897.05 26499.58 10499.55 6597.46 19299.24 17499.83 5692.58 27099.72 19098.09 17997.51 24098.68 256
LGP-MVS_train98.49 23899.33 20897.05 26499.55 6597.46 19299.24 17499.83 5692.58 27099.72 19098.09 17997.51 24098.68 256
v114497.98 20597.69 21998.85 20498.87 29798.66 17799.54 12799.35 23096.27 28999.23 17899.35 27094.67 21299.23 28596.73 28095.16 30698.68 256
Anonymous2024052998.09 18597.68 22099.34 12199.66 10898.44 20299.40 19499.43 19493.67 33899.22 17999.89 2090.23 31499.93 7099.26 5198.33 20299.66 109
OPM-MVS98.19 17498.10 17198.45 24698.88 29397.07 26299.28 23099.38 21698.57 7099.22 17999.81 7692.12 28199.66 21298.08 18397.54 23798.61 295
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_djsdf98.67 14098.57 14198.98 17298.70 31998.91 15599.88 499.46 16997.55 18499.22 17999.88 2695.73 16999.28 27799.03 6997.62 23098.75 234
test1299.75 4799.64 11699.61 6099.29 26399.21 18298.38 8299.89 11199.74 10199.74 78
NCCC99.34 4799.19 5899.79 4199.61 12999.65 5699.30 22499.48 14298.86 4899.21 18299.63 18298.72 5899.90 10198.25 16899.63 11999.80 56
PMMVS98.80 12798.62 13299.34 12199.27 22598.70 17498.76 32799.31 25597.34 20599.21 18299.07 31197.20 11799.82 15298.56 14298.87 17899.52 148
v119297.81 23397.44 24898.91 18698.88 29398.68 17599.51 13999.34 23496.18 29699.20 18599.34 27394.03 23599.36 26295.32 31495.18 30598.69 251
EI-MVSNet98.67 14098.67 12198.68 22199.35 20297.97 22399.50 14599.38 21696.93 24499.20 18599.83 5697.87 9999.36 26298.38 15797.56 23598.71 242
MVSTER98.49 14898.32 15699.00 16899.35 20299.02 13299.54 12799.38 21697.41 20199.20 18599.73 13393.86 24099.36 26298.87 8997.56 23598.62 286
Anonymous20240521198.30 16697.98 18699.26 14099.57 14098.16 21399.41 18698.55 34396.03 30899.19 18899.74 12791.87 28599.92 8099.16 5998.29 20799.70 97
v2v48298.06 18897.77 20998.92 18298.90 29098.82 16699.57 10899.36 22596.65 25999.19 18899.35 27094.20 22899.25 28297.72 21494.97 31098.69 251
CNLPA99.14 7398.99 8399.59 7299.58 13899.41 8799.16 25899.44 18898.45 8099.19 18899.49 23198.08 9599.89 11197.73 21299.75 9899.48 159
UGNet98.87 11098.69 11999.40 11599.22 23698.72 17399.44 17399.68 1999.24 799.18 19199.42 24992.74 26299.96 2299.34 3999.94 1199.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpn200view997.72 24797.38 25698.72 21899.69 9597.96 22599.50 14598.73 33697.83 15599.17 19298.45 34291.67 29299.83 14693.22 33898.18 21398.37 322
thres40097.77 23797.38 25698.92 18299.69 9597.96 22599.50 14598.73 33697.83 15599.17 19298.45 34291.67 29299.83 14693.22 33898.18 21398.96 217
Test_1112_low_res98.89 10898.66 12499.57 7799.69 9598.95 14899.03 28799.47 16096.98 23799.15 19499.23 29596.77 13399.89 11198.83 10298.78 18699.86 19
baseline198.31 16497.95 19099.38 11999.50 16598.74 17199.59 9698.93 30898.41 8499.14 19599.60 19494.59 21599.79 16698.48 14993.29 33299.61 127
1112_ss98.98 10198.77 11299.59 7299.68 9999.02 13299.25 24599.48 14297.23 21699.13 19699.58 20096.93 12999.90 10198.87 8998.78 18699.84 26
CLD-MVS98.16 17898.10 17198.33 25899.29 22096.82 28098.75 32899.44 18897.83 15599.13 19699.55 21092.92 25699.67 20998.32 16597.69 22798.48 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
原ACMM199.65 5999.73 7899.33 9199.47 16097.46 19299.12 19899.66 16998.67 6399.91 9097.70 21799.69 10999.71 96
tpm97.67 25797.55 23098.03 27999.02 27795.01 32699.43 17798.54 34496.44 27999.12 19899.34 27391.83 28799.60 22897.75 21096.46 27499.48 159
HQP_MVS98.27 16998.22 16298.44 24999.29 22096.97 27399.39 19899.47 16098.97 3999.11 20099.61 19192.71 26599.69 20797.78 20597.63 22898.67 263
plane_prior397.00 27098.69 6499.11 200
CHOSEN 1792x268899.19 6499.10 6699.45 10899.89 898.52 19399.39 19899.94 198.73 6199.11 20099.89 2095.50 17699.94 5799.50 2099.97 599.89 6
v897.95 21097.63 22698.93 18098.95 28798.81 16899.80 2499.41 19996.03 30899.10 20399.42 24994.92 19599.30 27596.94 27194.08 32598.66 271
ADS-MVSNet298.02 19898.07 17897.87 29199.33 20895.19 32399.23 24899.08 29296.24 29199.10 20399.67 16494.11 23298.93 33296.81 27799.05 16599.48 159
ADS-MVSNet98.20 17398.08 17598.56 23299.33 20896.48 29299.23 24899.15 28496.24 29199.10 20399.67 16494.11 23299.71 19696.81 27799.05 16599.48 159
thres20097.61 26197.28 27098.62 22399.64 11698.03 21999.26 24398.74 33197.68 17299.09 20698.32 34691.66 29499.81 15792.88 34298.22 20898.03 338
dp97.75 24297.80 20397.59 30599.10 26393.71 34499.32 22098.88 31796.48 27699.08 20799.55 21092.67 26899.82 15296.52 28898.58 19299.24 189
GBi-Net97.68 25497.48 23898.29 26399.51 15697.26 25399.43 17799.48 14296.49 27299.07 20899.32 28090.26 31198.98 32297.10 26096.65 26998.62 286
test197.68 25497.48 23898.29 26399.51 15697.26 25399.43 17799.48 14296.49 27299.07 20899.32 28090.26 31198.98 32297.10 26096.65 26998.62 286
FMVSNet398.03 19697.76 21398.84 20599.39 19698.98 13699.40 19499.38 21696.67 25799.07 20899.28 28792.93 25598.98 32297.10 26096.65 26998.56 302
IterMVS-LS98.46 15198.42 14998.58 22899.59 13698.00 22199.37 20599.43 19496.94 24399.07 20899.59 19697.87 9999.03 31598.32 16595.62 29698.71 242
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs498.13 18197.90 19598.81 21098.61 32898.87 15898.99 29799.21 27796.44 27999.06 21299.58 20095.90 16399.11 30697.18 25796.11 28298.46 313
XVG-ACMP-BASELINE97.83 22897.71 21898.20 26999.11 26096.33 29799.41 18699.52 8998.06 13599.05 21399.50 22889.64 32099.73 18697.73 21297.38 25698.53 303
CostFormer97.72 24797.73 21697.71 30199.15 25694.02 34099.54 12799.02 29994.67 32999.04 21499.35 27092.35 28099.77 17398.50 14897.94 22199.34 182
DP-MVS99.16 7098.95 9199.78 4399.77 5399.53 7399.41 18699.50 12297.03 23599.04 21499.88 2697.39 11099.92 8098.66 12399.90 2599.87 17
ACMM97.58 598.37 16198.34 15498.48 24099.41 18897.10 25899.56 11499.45 18098.53 7499.04 21499.85 4293.00 25499.71 19698.74 11197.45 24898.64 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+98.70 13598.43 14899.51 9899.51 15699.28 9899.52 13499.47 16096.11 30399.01 21799.34 27396.20 15199.84 13597.88 19598.82 18399.39 177
nrg03098.64 14398.42 14999.28 13899.05 27499.69 4799.81 2099.46 16998.04 13799.01 21799.82 6396.69 13699.38 25399.34 3994.59 31698.78 227
test_prior298.96 30498.34 9299.01 21799.52 22298.68 6197.96 19099.74 101
MAR-MVS98.86 11398.63 12799.54 8299.37 19999.66 5399.45 16899.54 7396.61 26499.01 21799.40 25697.09 12199.86 12397.68 21999.53 12799.10 195
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJss98.92 10698.92 9398.90 18898.78 30898.53 18999.78 3199.54 7398.07 13199.00 22199.76 11999.01 1899.37 25899.13 6097.23 26098.81 224
PAPR98.63 14498.34 15499.51 9899.40 19399.03 13198.80 32399.36 22596.33 28499.00 22199.12 30998.46 7699.84 13595.23 31599.37 14299.66 109
D2MVS98.41 15698.50 14598.15 27599.26 22796.62 28799.40 19499.61 3697.71 16998.98 22399.36 26796.04 15499.67 20998.70 11697.41 25398.15 332
v1097.85 22397.52 23498.86 20198.99 28098.67 17699.75 3999.41 19995.70 31298.98 22399.41 25394.75 20899.23 28596.01 29894.63 31598.67 263
miper_enhance_ethall98.16 17898.08 17598.41 25198.96 28697.72 23898.45 34899.32 25196.95 24198.97 22599.17 30197.06 12399.22 28897.86 19895.99 28598.29 325
UniMVSNet (Re)98.29 16798.00 18499.13 15599.00 27999.36 9099.49 15599.51 10397.95 14398.97 22599.13 30696.30 14899.38 25398.36 16193.34 33198.66 271
TEST999.67 10099.65 5699.05 28199.41 19996.22 29398.95 22799.49 23198.77 5099.91 90
train_agg99.02 9798.77 11299.77 4599.67 10099.65 5699.05 28199.41 19996.28 28798.95 22799.49 23198.76 5199.91 9097.63 22099.72 10499.75 74
RRT_MVS98.70 13598.66 12498.83 20798.90 29098.45 20199.89 299.28 26597.76 16398.94 22999.92 1096.98 12699.25 28299.28 4797.00 26698.80 225
BH-RMVSNet98.41 15698.08 17599.40 11599.41 18898.83 16599.30 22498.77 32797.70 17098.94 22999.65 17092.91 25899.74 18096.52 28899.55 12699.64 120
test_899.67 10099.61 6099.03 28799.41 19996.28 28798.93 23199.48 23698.76 5199.91 90
3Dnovator97.25 999.24 6299.05 7199.81 3699.12 25899.66 5399.84 1399.74 1099.09 2098.92 23299.90 1695.94 16099.98 898.95 7799.92 1399.79 60
v7n97.87 22097.52 23498.92 18298.76 31298.58 18599.84 1399.46 16996.20 29498.91 23399.70 14294.89 19799.44 24496.03 29793.89 32798.75 234
JIA-IIPM97.50 26897.02 28098.93 18098.73 31497.80 23599.30 22498.97 30491.73 35198.91 23394.86 36595.10 19099.71 19697.58 22497.98 22099.28 187
v14897.79 23697.55 23098.50 23798.74 31397.72 23899.54 12799.33 24196.26 29098.90 23599.51 22594.68 21199.14 29897.83 20193.15 33598.63 283
GA-MVS97.85 22397.47 24099.00 16899.38 19797.99 22298.57 34299.15 28497.04 23498.90 23599.30 28389.83 31799.38 25396.70 28298.33 20299.62 125
tpm297.44 27397.34 26397.74 30099.15 25694.36 33799.45 16898.94 30793.45 34398.90 23599.44 24591.35 30099.59 22997.31 24698.07 21999.29 186
tt080597.97 20897.77 20998.57 22999.59 13696.61 28899.45 16899.08 29298.21 10898.88 23899.80 8988.66 32899.70 20298.58 13697.72 22699.39 177
miper_ehance_all_eth98.18 17698.10 17198.41 25199.23 23397.72 23898.72 33199.31 25596.60 26698.88 23899.29 28597.29 11599.13 30197.60 22295.99 28598.38 321
eth_miper_zixun_eth98.05 19397.96 18898.33 25899.26 22797.38 24898.56 34499.31 25596.65 25998.88 23899.52 22296.58 13899.12 30597.39 24495.53 29998.47 309
cl2297.85 22397.64 22598.48 24099.09 26597.87 23198.60 34199.33 24197.11 22898.87 24199.22 29692.38 27999.17 29798.21 17095.99 28598.42 316
agg_prior99.67 10099.62 5999.40 20798.87 24199.91 90
anonymousdsp98.44 15298.28 15998.94 17898.50 33498.96 14399.77 3399.50 12297.07 23198.87 24199.77 11394.76 20799.28 27798.66 12397.60 23198.57 301
DSMNet-mixed97.25 27897.35 26096.95 32397.84 34493.61 34799.57 10896.63 36796.13 30298.87 24198.61 33994.59 21597.70 35995.08 31798.86 17999.55 140
FMVSNet297.72 24797.36 25898.80 21299.51 15698.84 16299.45 16899.42 19696.49 27298.86 24599.29 28590.26 31198.98 32296.44 29096.56 27298.58 300
c3_l98.12 18398.04 18098.38 25599.30 21697.69 24298.81 32299.33 24196.67 25798.83 24699.34 27397.11 12098.99 32197.58 22495.34 30298.48 307
ITE_SJBPF98.08 27799.29 22096.37 29598.92 31098.34 9298.83 24699.75 12291.09 30399.62 22695.82 30097.40 25498.25 328
Anonymous2023121197.88 21897.54 23398.90 18899.71 8798.53 18999.48 15999.57 5294.16 33498.81 24899.68 15893.23 25099.42 24998.84 9994.42 31998.76 232
Patchmtry97.75 24297.40 25598.81 21099.10 26398.87 15899.11 27299.33 24194.83 32698.81 24899.38 26194.33 22499.02 31796.10 29595.57 29798.53 303
miper_lstm_enhance98.00 20397.91 19498.28 26699.34 20697.43 24798.88 31599.36 22596.48 27698.80 25099.55 21095.98 15698.91 33397.27 24895.50 30098.51 305
BH-untuned98.42 15498.36 15298.59 22599.49 16796.70 28399.27 23599.13 28797.24 21598.80 25099.38 26195.75 16899.74 18097.07 26399.16 15299.33 183
FIs98.78 12898.63 12799.23 14599.18 24599.54 7099.83 1699.59 4498.28 9798.79 25299.81 7696.75 13499.37 25899.08 6696.38 27698.78 227
OurMVSNet-221017-097.88 21897.77 20998.19 27098.71 31896.53 29099.88 499.00 30197.79 16098.78 25399.94 491.68 29199.35 26597.21 25196.99 26798.69 251
MVS-HIRNet95.75 30795.16 31197.51 30899.30 21693.69 34598.88 31595.78 36985.09 36498.78 25392.65 36791.29 30199.37 25894.85 32099.85 5599.46 167
tpmvs97.98 20598.02 18397.84 29399.04 27594.73 33199.31 22299.20 27896.10 30798.76 25599.42 24994.94 19299.81 15796.97 26898.45 20098.97 215
Patchmatch-test97.93 21197.65 22398.77 21599.18 24597.07 26299.03 28799.14 28696.16 29898.74 25699.57 20494.56 21799.72 19093.36 33799.11 15899.52 148
QAPM98.67 14098.30 15899.80 3899.20 24099.67 5199.77 3399.72 1194.74 32898.73 25799.90 1695.78 16799.98 896.96 26999.88 3799.76 73
3Dnovator+97.12 1399.18 6698.97 8799.82 3399.17 25199.68 4899.81 2099.51 10399.20 898.72 25899.89 2095.68 17299.97 1498.86 9499.86 4899.81 47
IterMVS-SCA-FT97.82 23197.75 21498.06 27899.57 14096.36 29699.02 29099.49 13097.18 21998.71 25999.72 13792.72 26399.14 29897.44 24195.86 29098.67 263
UniMVSNet_NR-MVSNet98.22 17097.97 18798.96 17598.92 28998.98 13699.48 15999.53 8497.76 16398.71 25999.46 24396.43 14599.22 28898.57 13992.87 33898.69 251
DU-MVS98.08 18797.79 20498.96 17598.87 29798.98 13699.41 18699.45 18097.87 14998.71 25999.50 22894.82 19999.22 28898.57 13992.87 33898.68 256
tpm cat197.39 27497.36 25897.50 30999.17 25193.73 34399.43 17799.31 25591.27 35298.71 25999.08 31094.31 22699.77 17396.41 29298.50 19899.00 211
XXY-MVS98.38 16098.09 17499.24 14399.26 22799.32 9299.56 11499.55 6597.45 19598.71 25999.83 5693.23 25099.63 22598.88 8696.32 27898.76 232
IterMVS97.83 22897.77 20998.02 28199.58 13896.27 29999.02 29099.48 14297.22 21798.71 25999.70 14292.75 26099.13 30197.46 23996.00 28498.67 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test98.75 13198.62 13299.15 15499.08 26799.45 8399.86 1299.60 4198.23 10598.70 26599.82 6396.80 13199.22 28899.07 6796.38 27698.79 226
COLMAP_ROBcopyleft97.56 698.86 11398.75 11499.17 15099.88 1198.53 18999.34 21799.59 4497.55 18498.70 26599.89 2095.83 16599.90 10198.10 17899.90 2599.08 200
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TR-MVS97.76 23897.41 25498.82 20899.06 27197.87 23198.87 31798.56 34296.63 26398.68 26799.22 29692.49 27399.65 21795.40 31297.79 22498.95 219
WR-MVS98.06 18897.73 21699.06 16098.86 30099.25 10299.19 25599.35 23097.30 20998.66 26899.43 24793.94 23799.21 29398.58 13694.28 32198.71 242
HQP-NCC99.19 24298.98 30098.24 10298.66 268
ACMP_Plane99.19 24298.98 30098.24 10298.66 268
HQP4-MVS98.66 26899.64 22098.64 275
HQP-MVS98.02 19897.90 19598.37 25699.19 24296.83 27898.98 30099.39 21098.24 10298.66 26899.40 25692.47 27499.64 22097.19 25597.58 23398.64 275
LF4IMVS97.52 26597.46 24297.70 30298.98 28395.55 31299.29 22898.82 32398.07 13198.66 26899.64 17689.97 31699.61 22797.01 26496.68 26897.94 345
mvs_tets98.40 15998.23 16198.91 18698.67 32298.51 19599.66 6599.53 8498.19 11198.65 27499.81 7692.75 26099.44 24499.31 4297.48 24698.77 230
TESTMET0.1,197.55 26397.27 27398.40 25398.93 28896.53 29098.67 33497.61 35996.96 23998.64 27599.28 28788.63 33099.45 23997.30 24799.38 13599.21 191
jajsoiax98.43 15398.28 15998.88 19398.60 32998.43 20399.82 1799.53 8498.19 11198.63 27699.80 8993.22 25299.44 24499.22 5397.50 24298.77 230
Baseline_NR-MVSNet97.76 23897.45 24398.68 22199.09 26598.29 20899.41 18698.85 32095.65 31398.63 27699.67 16494.82 19999.10 30898.07 18692.89 33798.64 275
EPNet98.86 11398.71 11799.30 13397.20 35698.18 21299.62 8398.91 31399.28 698.63 27699.81 7695.96 15799.99 299.24 5299.72 10499.73 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-LLR98.06 18897.90 19598.55 23498.79 30597.10 25898.67 33497.75 35697.34 20598.61 27998.85 32994.45 22199.45 23997.25 24999.38 13599.10 195
test-mter97.49 27197.13 27798.55 23498.79 30597.10 25898.67 33497.75 35696.65 25998.61 27998.85 32988.23 33499.45 23997.25 24999.38 13599.10 195
DIV-MVS_self_test98.01 20197.85 20198.48 24099.24 23297.95 22798.71 33299.35 23096.50 27198.60 28199.54 21595.72 17099.03 31597.21 25195.77 29198.46 313
cl____98.01 20197.84 20298.55 23499.25 23197.97 22398.71 33299.34 23496.47 27898.59 28299.54 21595.65 17399.21 29397.21 25195.77 29198.46 313
FMVSNet196.84 28696.36 29198.29 26399.32 21497.26 25399.43 17799.48 14295.11 32098.55 28399.32 28083.95 35498.98 32295.81 30196.26 27998.62 286
UniMVSNet_ETH3D97.32 27696.81 28398.87 19799.40 19397.46 24699.51 13999.53 8495.86 31198.54 28499.77 11382.44 35899.66 21298.68 12197.52 23899.50 157
AUN-MVS96.88 28596.31 29298.59 22599.48 17597.04 26799.27 23599.22 27497.44 19798.51 28599.41 25391.97 28399.66 21297.71 21583.83 36299.07 205
PCF-MVS97.08 1497.66 25897.06 27999.47 10599.61 12999.09 12298.04 36299.25 27091.24 35398.51 28599.70 14294.55 21899.91 9092.76 34599.85 5599.42 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet97.93 21197.66 22298.76 21698.78 30898.62 18199.65 7199.49 13097.76 16398.49 28799.60 19494.23 22798.97 32998.00 18892.90 33698.70 247
CP-MVSNet98.09 18597.78 20799.01 16698.97 28599.24 10399.67 6099.46 16997.25 21398.48 28899.64 17693.79 24299.06 31198.63 12694.10 32498.74 237
ACMP97.20 1198.06 18897.94 19298.45 24699.37 19997.01 26999.44 17399.49 13097.54 18798.45 28999.79 10091.95 28499.72 19097.91 19397.49 24598.62 286
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_030496.79 28896.52 28897.59 30599.22 23694.92 32999.04 28699.59 4496.49 27298.43 29098.99 32080.48 36199.39 25197.15 25999.27 14698.47 309
cascas97.69 25297.43 25298.48 24098.60 32997.30 24998.18 36099.39 21092.96 34698.41 29198.78 33393.77 24399.27 28098.16 17698.61 18998.86 221
WR-MVS_H98.13 18197.87 20098.90 18899.02 27798.84 16299.70 4999.59 4497.27 21198.40 29299.19 30095.53 17599.23 28598.34 16293.78 32898.61 295
BH-w/o98.00 20397.89 19998.32 26099.35 20296.20 30199.01 29598.90 31596.42 28198.38 29399.00 31995.26 18699.72 19096.06 29698.61 18999.03 208
pmmvs597.52 26597.30 26898.16 27298.57 33196.73 28299.27 23598.90 31596.14 30198.37 29499.53 21991.54 29799.14 29897.51 23395.87 28998.63 283
EU-MVSNet97.98 20598.03 18197.81 29798.72 31696.65 28699.66 6599.66 2698.09 12698.35 29599.82 6395.25 18798.01 35297.41 24395.30 30398.78 227
FMVSNet596.43 29596.19 29497.15 31599.11 26095.89 30699.32 22099.52 8994.47 33398.34 29699.07 31187.54 34197.07 36392.61 34695.72 29498.47 309
PS-CasMVS97.93 21197.59 22998.95 17798.99 28099.06 12899.68 5799.52 8997.13 22398.31 29799.68 15892.44 27899.05 31298.51 14794.08 32598.75 234
USDC97.34 27597.20 27497.75 29999.07 26895.20 32298.51 34699.04 29897.99 14198.31 29799.86 3789.02 32399.55 23395.67 30797.36 25798.49 306
PEN-MVS97.76 23897.44 24898.72 21898.77 31198.54 18899.78 3199.51 10397.06 23398.29 29999.64 17692.63 26998.89 33598.09 17993.16 33498.72 240
tfpnnormal97.84 22697.47 24098.98 17299.20 24099.22 10599.64 7399.61 3696.32 28598.27 30099.70 14293.35 24999.44 24495.69 30595.40 30198.27 326
ppachtmachnet_test97.49 27197.45 24397.61 30498.62 32695.24 32198.80 32399.46 16996.11 30398.22 30199.62 18796.45 14398.97 32993.77 33295.97 28898.61 295
our_test_397.65 25997.68 22097.55 30798.62 32694.97 32798.84 31999.30 25996.83 25098.19 30299.34 27397.01 12599.02 31795.00 31996.01 28398.64 275
LTVRE_ROB97.16 1298.02 19897.90 19598.40 25399.23 23396.80 28199.70 4999.60 4197.12 22598.18 30399.70 14291.73 29099.72 19098.39 15697.45 24898.68 256
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH97.28 898.10 18497.99 18598.44 24999.41 18896.96 27599.60 9099.56 5798.09 12698.15 30499.91 1190.87 30699.70 20298.88 8697.45 24898.67 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MS-PatchMatch97.24 28097.32 26696.99 32098.45 33693.51 34898.82 32199.32 25197.41 20198.13 30599.30 28388.99 32499.56 23195.68 30699.80 8397.90 348
MVS97.28 27796.55 28799.48 10298.78 30898.95 14899.27 23599.39 21083.53 36598.08 30699.54 21596.97 12799.87 12094.23 32899.16 15299.63 123
PAPM97.59 26297.09 27899.07 15999.06 27198.26 21098.30 35699.10 28994.88 32598.08 30699.34 27396.27 14999.64 22089.87 35598.92 17599.31 185
OpenMVScopyleft96.50 1698.47 15098.12 16999.52 9699.04 27599.53 7399.82 1799.72 1194.56 33198.08 30699.88 2694.73 20999.98 897.47 23899.76 9699.06 206
gg-mvs-nofinetune96.17 30095.32 31098.73 21798.79 30598.14 21599.38 20394.09 37591.07 35598.07 30991.04 37189.62 32199.35 26596.75 27999.09 16298.68 256
test0.0.03 197.71 25097.42 25398.56 23298.41 33797.82 23498.78 32598.63 34097.34 20598.05 31098.98 32394.45 22198.98 32295.04 31897.15 26498.89 220
APD_test195.87 30496.49 28994.00 33899.53 15084.01 36599.54 12799.32 25195.91 31097.99 31199.85 4285.49 34899.88 11691.96 34898.84 18198.12 333
131498.68 13998.54 14399.11 15698.89 29298.65 17899.27 23599.49 13096.89 24597.99 31199.56 20797.72 10599.83 14697.74 21199.27 14698.84 223
DTE-MVSNet97.51 26797.19 27598.46 24598.63 32598.13 21699.84 1399.48 14296.68 25697.97 31399.67 16492.92 25698.56 34196.88 27692.60 34198.70 247
SixPastTwentyTwo97.50 26897.33 26598.03 27998.65 32396.23 30099.77 3398.68 33997.14 22297.90 31499.93 690.45 30999.18 29697.00 26596.43 27598.67 263
pm-mvs197.68 25497.28 27098.88 19399.06 27198.62 18199.50 14599.45 18096.32 28597.87 31599.79 10092.47 27499.35 26597.54 23193.54 33098.67 263
testgi97.65 25997.50 23798.13 27699.36 20196.45 29399.42 18499.48 14297.76 16397.87 31599.45 24491.09 30398.81 33694.53 32398.52 19799.13 194
EPNet_dtu98.03 19697.96 18898.23 26898.27 33895.54 31499.23 24898.75 32899.02 2697.82 31799.71 13896.11 15299.48 23693.04 34199.65 11699.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap97.12 28296.89 28297.83 29499.07 26895.52 31598.57 34298.74 33197.58 18197.81 31899.79 10088.16 33599.56 23195.10 31697.21 26198.39 320
ACMH+97.24 1097.92 21497.78 20798.32 26099.46 17796.68 28599.56 11499.54 7398.41 8497.79 31999.87 3290.18 31599.66 21298.05 18797.18 26398.62 286
N_pmnet94.95 31595.83 30292.31 34498.47 33579.33 37299.12 26692.81 37993.87 33697.68 32099.13 30693.87 23999.01 31991.38 35096.19 28098.59 299
KD-MVS_2432*160094.62 31693.72 32297.31 31297.19 35795.82 30798.34 35299.20 27895.00 32397.57 32198.35 34487.95 33798.10 34992.87 34377.00 36998.01 339
miper_refine_blended94.62 31693.72 32297.31 31297.19 35795.82 30798.34 35299.20 27895.00 32397.57 32198.35 34487.95 33798.10 34992.87 34377.00 36998.01 339
PVSNet_094.43 1996.09 30295.47 30797.94 28799.31 21594.34 33897.81 36399.70 1597.12 22597.46 32398.75 33489.71 31899.79 16697.69 21881.69 36599.68 103
pmmvs696.53 29296.09 29697.82 29698.69 32095.47 31699.37 20599.47 16093.46 34297.41 32499.78 10687.06 34399.33 26896.92 27492.70 34098.65 273
new_pmnet96.38 29696.03 29797.41 31098.13 34195.16 32599.05 28199.20 27893.94 33597.39 32598.79 33291.61 29699.04 31390.43 35395.77 29198.05 337
CL-MVSNet_self_test94.49 31893.97 32196.08 33396.16 36193.67 34698.33 35499.38 21695.13 31897.33 32698.15 34892.69 26796.57 36688.67 35979.87 36797.99 342
IB-MVS95.67 1896.22 29795.44 30998.57 22999.21 23896.70 28398.65 33797.74 35896.71 25497.27 32798.54 34086.03 34599.92 8098.47 15286.30 35999.10 195
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 24698.55 33298.16 21399.43 17793.68 37697.23 32898.46 34189.30 32299.22 28895.43 31198.22 20897.98 343
MVP-Stereo97.81 23397.75 21497.99 28597.53 34996.60 28998.96 30498.85 32097.22 21797.23 32899.36 26795.28 18399.46 23895.51 30999.78 9097.92 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2024052196.20 29995.89 30197.13 31797.72 34894.96 32899.79 3099.29 26393.01 34597.20 33099.03 31689.69 31998.36 34591.16 35196.13 28198.07 335
TransMVSNet (Re)97.15 28196.58 28698.86 20199.12 25898.85 16199.49 15598.91 31395.48 31597.16 33199.80 8993.38 24899.11 30694.16 33091.73 34398.62 286
KD-MVS_self_test95.00 31394.34 31896.96 32297.07 35995.39 31999.56 11499.44 18895.11 32097.13 33297.32 35791.86 28697.27 36290.35 35481.23 36698.23 330
NR-MVSNet97.97 20897.61 22799.02 16598.87 29799.26 10199.47 16499.42 19697.63 17797.08 33399.50 22895.07 19199.13 30197.86 19893.59 32998.68 256
Anonymous2023120696.22 29796.03 29796.79 32797.31 35494.14 33999.63 7799.08 29296.17 29797.04 33499.06 31393.94 23797.76 35886.96 36595.06 30898.47 309
test_040296.64 29096.24 29397.85 29298.85 30196.43 29499.44 17399.26 26893.52 34096.98 33599.52 22288.52 33199.20 29592.58 34797.50 24297.93 346
MIMVSNet195.51 30895.04 31296.92 32497.38 35195.60 31099.52 13499.50 12293.65 33996.97 33699.17 30185.28 35096.56 36788.36 36195.55 29898.60 298
TDRefinement95.42 31094.57 31697.97 28689.83 37596.11 30399.48 15998.75 32896.74 25296.68 33799.88 2688.65 32999.71 19698.37 15982.74 36498.09 334
baseline297.87 22097.55 23098.82 20899.18 24598.02 22099.41 18696.58 36896.97 23896.51 33899.17 30193.43 24799.57 23097.71 21599.03 16798.86 221
pmmvs394.09 32293.25 32696.60 32994.76 36994.49 33498.92 31198.18 35289.66 35696.48 33998.06 35086.28 34497.33 36189.68 35687.20 35897.97 344
DeepMVS_CXcopyleft93.34 34199.29 22082.27 36899.22 27485.15 36396.33 34099.05 31490.97 30599.73 18693.57 33597.77 22598.01 339
LCM-MVSNet-Re97.83 22898.15 16596.87 32599.30 21692.25 35499.59 9698.26 34797.43 19896.20 34199.13 30696.27 14998.73 34098.17 17598.99 17099.64 120
test20.0396.12 30195.96 29996.63 32897.44 35095.45 31799.51 13999.38 21696.55 26996.16 34299.25 29393.76 24496.17 36887.35 36494.22 32298.27 326
K. test v397.10 28396.79 28498.01 28298.72 31696.33 29799.87 997.05 36297.59 17996.16 34299.80 8988.71 32699.04 31396.69 28396.55 27398.65 273
UnsupCasMVSNet_eth96.44 29496.12 29597.40 31198.65 32395.65 30999.36 20999.51 10397.13 22396.04 34498.99 32088.40 33298.17 34896.71 28190.27 35198.40 319
test_method91.10 32891.36 33090.31 34995.85 36273.72 37994.89 36899.25 27068.39 37195.82 34599.02 31880.50 36098.95 33193.64 33494.89 31398.25 328
lessismore_v097.79 29898.69 32095.44 31894.75 37395.71 34699.87 3288.69 32799.32 27195.89 29994.93 31298.62 286
test_vis1_rt95.81 30695.65 30596.32 33299.67 10091.35 35899.49 15596.74 36698.25 10195.24 34798.10 34974.96 36399.90 10199.53 1698.85 18097.70 351
Patchmatch-RL test95.84 30595.81 30395.95 33495.61 36490.57 35998.24 35798.39 34695.10 32295.20 34898.67 33694.78 20397.77 35796.28 29490.02 35299.51 154
test_fmvs392.10 32691.77 32993.08 34296.19 36086.25 36399.82 1798.62 34196.65 25995.19 34996.90 35955.05 37495.93 37096.63 28790.92 34997.06 358
ambc93.06 34392.68 37182.36 36798.47 34798.73 33695.09 35097.41 35455.55 37299.10 30896.42 29191.32 34497.71 349
PM-MVS92.96 32592.23 32895.14 33695.61 36489.98 36199.37 20598.21 35094.80 32795.04 35197.69 35265.06 36797.90 35594.30 32589.98 35397.54 355
OpenMVS_ROBcopyleft92.34 2094.38 32093.70 32496.41 33197.38 35193.17 35099.06 27998.75 32886.58 36294.84 35298.26 34781.53 35999.32 27189.01 35897.87 22396.76 359
mvsany_test393.77 32393.45 32594.74 33795.78 36388.01 36299.64 7398.25 34898.28 9794.31 35397.97 35168.89 36698.51 34397.50 23490.37 35097.71 349
EG-PatchMatch MVS95.97 30395.69 30496.81 32697.78 34592.79 35299.16 25898.93 30896.16 29894.08 35499.22 29682.72 35699.47 23795.67 30797.50 24298.17 331
test_f91.90 32791.26 33193.84 33995.52 36785.92 36499.69 5198.53 34595.31 31793.87 35596.37 36255.33 37398.27 34695.70 30490.98 34897.32 357
pmmvs-eth3d95.34 31294.73 31497.15 31595.53 36695.94 30599.35 21499.10 28995.13 31893.55 35697.54 35388.15 33697.91 35494.58 32289.69 35497.61 352
new-patchmatchnet94.48 31994.08 31995.67 33595.08 36892.41 35399.18 25699.28 26594.55 33293.49 35797.37 35687.86 33997.01 36491.57 34988.36 35597.61 352
UnsupCasMVSNet_bld93.53 32492.51 32796.58 33097.38 35193.82 34198.24 35799.48 14291.10 35493.10 35896.66 36074.89 36498.37 34494.03 33187.71 35797.56 354
Gipumacopyleft90.99 32990.15 33493.51 34098.73 31490.12 36093.98 36999.45 18079.32 36792.28 35994.91 36469.61 36597.98 35387.42 36395.67 29592.45 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary69.68 2394.13 32194.90 31391.84 34597.24 35580.01 37198.52 34599.48 14289.01 35991.99 36099.67 16485.67 34799.13 30195.44 31097.03 26596.39 361
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testf190.42 33090.68 33289.65 35097.78 34573.97 37799.13 26498.81 32489.62 35791.80 36198.93 32662.23 37098.80 33786.61 36791.17 34596.19 362
APD_test290.42 33090.68 33289.65 35097.78 34573.97 37799.13 26498.81 32489.62 35791.80 36198.93 32662.23 37098.80 33786.61 36791.17 34596.19 362
PMMVS286.87 33385.37 33791.35 34790.21 37483.80 36698.89 31497.45 36183.13 36691.67 36395.03 36348.49 37694.70 37185.86 36977.62 36895.54 364
LCM-MVSNet86.80 33485.22 33891.53 34687.81 37680.96 37098.23 35998.99 30271.05 36990.13 36496.51 36148.45 37796.88 36590.51 35285.30 36096.76 359
ET-MVSNet_ETH3D96.49 29395.64 30699.05 16299.53 15098.82 16698.84 31997.51 36097.63 17784.77 36599.21 29992.09 28298.91 33398.98 7492.21 34299.41 174
E-PMN80.61 33879.88 34082.81 35590.75 37376.38 37597.69 36495.76 37066.44 37383.52 36692.25 36862.54 36987.16 37568.53 37461.40 37284.89 373
FPMVS84.93 33585.65 33682.75 35686.77 37763.39 38198.35 35198.92 31074.11 36883.39 36798.98 32350.85 37592.40 37384.54 37094.97 31092.46 366
EMVS80.02 33979.22 34182.43 35791.19 37276.40 37497.55 36692.49 38066.36 37483.01 36891.27 37064.63 36885.79 37665.82 37560.65 37385.08 372
test_vis3_rt87.04 33285.81 33590.73 34893.99 37081.96 36999.76 3690.23 38192.81 34781.35 36991.56 36940.06 37899.07 31094.27 32788.23 35691.15 369
YYNet195.36 31194.51 31797.92 28897.89 34397.10 25899.10 27499.23 27393.26 34480.77 37099.04 31592.81 25998.02 35194.30 32594.18 32398.64 275
MDA-MVSNet_test_wron95.45 30994.60 31598.01 28298.16 34097.21 25699.11 27299.24 27293.49 34180.73 37198.98 32393.02 25398.18 34794.22 32994.45 31898.64 275
MDA-MVSNet-bldmvs94.96 31493.98 32097.92 28898.24 33997.27 25199.15 26199.33 24193.80 33780.09 37299.03 31688.31 33397.86 35693.49 33694.36 32098.62 286
tmp_tt82.80 33681.52 33986.66 35266.61 38268.44 38092.79 37197.92 35468.96 37080.04 37399.85 4285.77 34696.15 36997.86 19843.89 37595.39 365
MVEpermissive76.82 2176.91 34174.31 34584.70 35385.38 37976.05 37696.88 36793.17 37767.39 37271.28 37489.01 37321.66 38487.69 37471.74 37372.29 37190.35 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 34074.86 34484.62 35475.88 38077.61 37397.63 36593.15 37888.81 36064.27 37589.29 37236.51 37983.93 37775.89 37252.31 37492.33 368
PMVScopyleft70.75 2275.98 34274.97 34379.01 35870.98 38155.18 38293.37 37098.21 35065.08 37561.78 37693.83 36621.74 38392.53 37278.59 37191.12 34789.34 371
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12339.01 34542.50 34728.53 36039.17 38320.91 38498.75 32819.17 38519.83 37838.57 37766.67 37533.16 38015.42 37937.50 37829.66 37749.26 374
testmvs39.17 34443.78 34625.37 36136.04 38416.84 38598.36 35026.56 38320.06 37738.51 37867.32 37429.64 38115.30 38037.59 37739.90 37643.98 375
wuyk23d40.18 34341.29 34836.84 35986.18 37849.12 38379.73 37222.81 38427.64 37625.46 37928.45 37921.98 38248.89 37855.80 37623.56 37812.51 376
EGC-MVSNET82.80 33677.86 34297.62 30397.91 34296.12 30299.33 21999.28 2658.40 37925.05 38099.27 29084.11 35399.33 26889.20 35798.22 20897.42 356
test_blank0.13 3490.17 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3811.57 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.64 34632.85 3490.00 3620.00 3850.00 3860.00 37399.51 1030.00 3800.00 38199.56 20796.58 1380.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas8.27 34811.03 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 38199.01 180.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.30 34711.06 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.58 2000.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.02 3500.03 3530.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.27 3810.00 3850.00 3810.00 3790.00 3790.00 377
MSC_two_6792asdad99.87 1199.51 15699.76 3799.33 24199.96 2298.87 8999.84 6399.89 6
No_MVS99.87 1199.51 15699.76 3799.33 24199.96 2298.87 8999.84 6399.89 6
eth-test20.00 385
eth-test0.00 385
OPU-MVS99.64 6499.56 14499.72 4299.60 9099.70 14299.27 599.42 24998.24 16999.80 8399.79 60
save fliter99.76 5699.59 6299.14 26399.40 20799.00 31
test_0728_SECOND99.91 299.84 3199.89 499.57 10899.51 10399.96 2298.93 8099.86 4899.88 12
GSMVS99.52 148
sam_mvs194.86 19899.52 148
sam_mvs94.72 210
MTGPAbinary99.47 160
test_post199.23 24865.14 37794.18 23199.71 19697.58 224
test_post65.99 37694.65 21499.73 186
patchmatchnet-post98.70 33594.79 20299.74 180
MTMP99.54 12798.88 317
gm-plane-assit98.54 33392.96 35194.65 33099.15 30499.64 22097.56 229
test9_res97.49 23599.72 10499.75 74
agg_prior297.21 25199.73 10399.75 74
test_prior499.56 6698.99 297
test_prior99.68 5499.67 10099.48 8099.56 5799.83 14699.74 78
新几何299.01 295
旧先验199.74 7199.59 6299.54 7399.69 15298.47 7599.68 11299.73 83
无先验98.99 29799.51 10396.89 24599.93 7097.53 23299.72 89
原ACMM298.95 307
testdata299.95 4896.67 284
segment_acmp98.96 24
testdata198.85 31898.32 95
plane_prior799.29 22097.03 268
plane_prior699.27 22596.98 27292.71 265
plane_prior599.47 16099.69 20797.78 20597.63 22898.67 263
plane_prior499.61 191
plane_prior299.39 19898.97 39
plane_prior199.26 227
plane_prior96.97 27399.21 25498.45 8097.60 231
n20.00 386
nn0.00 386
door-mid98.05 353
test1199.35 230
door97.92 354
HQP5-MVS96.83 278
BP-MVS97.19 255
HQP3-MVS99.39 21097.58 233
HQP2-MVS92.47 274
NP-MVS99.23 23396.92 27699.40 256
ACMMP++_ref97.19 262
ACMMP++97.43 252
Test By Simon98.75 54