This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
test_0728_THIRD97.32 3199.45 1199.46 1197.88 199.94 398.47 1999.86 199.85 4
PC_three_145295.08 14299.60 599.16 6697.86 298.47 26397.52 7999.72 5299.74 35
DVP-MVS++99.08 298.89 299.64 399.17 10099.23 799.69 198.88 5097.32 3199.53 999.47 897.81 399.94 398.47 1999.72 5299.74 35
OPU-MVS99.37 2399.24 9499.05 1499.02 6699.16 6697.81 399.37 16397.24 8799.73 4599.70 52
SteuartSystems-ACMMP98.90 698.75 599.36 2499.22 9698.43 3899.10 5098.87 5797.38 2899.35 1799.40 1597.78 599.87 4797.77 5799.85 399.78 15
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.66 2899.25 298.86 6397.55 1599.20 2599.47 897.57 6
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 6698.87 5797.65 999.73 199.48 697.53 799.94 398.43 2399.81 1099.70 52
test_241102_ONE99.71 2199.24 598.87 5797.62 1199.73 199.39 1697.53 799.74 110
DVP-MVScopyleft99.03 398.83 499.63 499.72 1399.25 298.97 7698.58 15297.62 1199.45 1199.46 1197.42 999.94 398.47 1999.81 1099.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1399.25 299.06 5598.88 5097.62 1199.56 699.50 497.42 9
test_241102_TWO98.87 5797.65 999.53 999.48 697.34 1199.94 398.43 2399.80 1799.83 7
DPE-MVScopyleft98.92 598.67 799.65 299.58 3499.20 998.42 17998.91 4497.58 1499.54 899.46 1197.10 1299.94 397.64 6899.84 899.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.78 798.56 1099.45 1799.32 7098.87 1998.47 17198.81 7997.72 698.76 5799.16 6697.05 1399.78 9998.06 3999.66 6199.69 55
segment_acmp96.85 14
MCST-MVS98.65 1498.37 2299.48 1399.60 3398.87 1998.41 18098.68 12497.04 5198.52 7498.80 11896.78 1599.83 5997.93 4599.61 7199.74 35
APDe-MVS99.02 498.84 399.55 999.57 3598.96 1699.39 898.93 3897.38 2899.41 1399.54 196.66 1699.84 5698.86 299.85 399.87 1
NCCC98.61 1898.35 2599.38 2099.28 8498.61 2998.45 17298.76 10297.82 598.45 7998.93 10396.65 1799.83 5997.38 8499.41 10399.71 48
SD-MVS98.64 1598.68 698.53 9499.33 6798.36 4798.90 8798.85 6797.28 3499.72 399.39 1696.63 1897.60 33098.17 3399.85 399.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS98.34 4998.06 5199.18 5099.15 10698.12 6399.04 5899.09 2093.32 22098.83 5399.10 7596.54 1999.83 5997.70 6599.76 3499.59 85
SMA-MVScopyleft98.58 2498.25 3999.56 899.51 4199.04 1598.95 8098.80 9093.67 20799.37 1699.52 396.52 2099.89 3898.06 3999.81 1099.76 28
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++98.56 2998.57 998.55 9099.26 8796.80 11698.71 13199.05 2497.28 3498.84 5199.28 4296.47 2199.40 16198.52 1799.70 5599.47 105
TSAR-MVS + MP.98.78 798.62 899.24 4399.69 2698.28 5399.14 4198.66 13596.84 5999.56 699.31 3796.34 2299.70 11898.32 3099.73 4599.73 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj98.70 1098.50 1599.30 3399.46 5398.38 4098.21 20698.52 16397.95 399.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
SF-MVS98.59 2198.32 3499.41 1999.54 3798.71 2299.04 5898.81 7995.12 13799.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
TSAR-MVS + GP.98.38 4498.24 4298.81 7799.22 9697.25 10198.11 22598.29 21297.19 4398.99 4299.02 8696.22 2399.67 12598.52 1798.56 14499.51 96
TEST999.31 7298.50 3497.92 24098.73 11192.63 24497.74 12398.68 13096.20 2699.80 83
train_agg97.97 5997.52 7599.33 3099.31 7298.50 3497.92 24098.73 11192.98 23397.74 12398.68 13096.20 2699.80 8396.59 12299.57 7999.68 61
test_899.29 8098.44 3697.89 24698.72 11392.98 23397.70 12698.66 13396.20 2699.80 83
agg_prior197.95 6397.51 7799.28 3899.30 7798.38 4097.81 25398.72 11393.16 22797.57 13698.66 13396.14 2999.81 7496.63 12199.56 8499.66 69
Regformer-298.69 1298.52 1399.19 4699.35 6298.01 6798.37 18398.81 7997.48 1999.21 2499.21 5396.13 3099.80 8398.40 2799.73 4599.75 30
DeepPCF-MVS96.37 297.93 6698.48 1896.30 25299.00 11789.54 32597.43 27698.87 5798.16 299.26 2199.38 2396.12 3199.64 12998.30 3199.77 2899.72 44
Regformer-198.66 1398.51 1499.12 6099.35 6297.81 7998.37 18398.76 10297.49 1899.20 2599.21 5396.08 3299.79 9598.42 2599.73 4599.75 30
HFP-MVS98.63 1798.40 1999.32 3199.72 1398.29 5199.23 2698.96 3296.10 9298.94 4399.17 6196.06 3399.92 2497.62 6999.78 2599.75 30
#test#98.54 3398.27 3799.32 3199.72 1398.29 5198.98 7598.96 3295.65 10898.94 4399.17 6196.06 3399.92 2497.21 8999.78 2599.75 30
9.1498.06 5199.47 5098.71 13198.82 7394.36 17199.16 3099.29 4196.05 3599.81 7497.00 9499.71 54
CP-MVS98.57 2798.36 2399.19 4699.66 2897.86 7399.34 1598.87 5795.96 9598.60 7199.13 7096.05 3599.94 397.77 5799.86 199.77 22
MSP-MVS98.74 998.55 1199.29 3499.75 498.23 5499.26 2398.88 5097.52 1699.41 1398.78 12096.00 3799.79 9597.79 5699.59 7599.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_111021_HR98.47 3998.34 2998.88 7599.22 9697.32 9397.91 24299.58 397.20 4298.33 8799.00 9195.99 3899.64 12998.05 4199.76 3499.69 55
test_prior398.22 5697.90 6099.19 4699.31 7298.22 5597.80 25498.84 6896.12 9097.89 11798.69 12895.96 3999.70 11896.89 10499.60 7299.65 71
test_prior297.80 25496.12 9097.89 11798.69 12895.96 3996.89 10499.60 72
CDPH-MVS97.94 6497.49 7899.28 3899.47 5098.44 3697.91 24298.67 13292.57 24898.77 5698.85 11195.93 4199.72 11295.56 16199.69 5699.68 61
region2R98.61 1898.38 2199.29 3499.74 898.16 6099.23 2698.93 3896.15 8798.94 4399.17 6195.91 4299.94 397.55 7699.79 2199.78 15
XVS98.70 1098.49 1799.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7699.20 5795.90 4399.89 3897.85 5299.74 4399.78 15
X-MVStestdata94.06 27192.30 29199.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7643.50 37195.90 4399.89 3897.85 5299.74 4399.78 15
Regformer-498.64 1598.53 1298.99 6699.43 5997.37 9298.40 18198.79 9597.46 2299.09 3499.31 3795.86 4599.80 8398.64 499.76 3499.79 12
Regformer-398.59 2198.50 1598.86 7699.43 5997.05 10698.40 18198.68 12497.43 2499.06 3599.31 3795.80 4699.77 10498.62 699.76 3499.78 15
ZD-MVS99.46 5398.70 2398.79 9593.21 22498.67 6398.97 9395.70 4799.83 5996.07 13899.58 78
HPM-MVS++copyleft98.58 2498.25 3999.55 999.50 4399.08 1198.72 13098.66 13597.51 1798.15 9198.83 11595.70 4799.92 2497.53 7899.67 5899.66 69
ACMMPR98.59 2198.36 2399.29 3499.74 898.15 6199.23 2698.95 3496.10 9298.93 4799.19 6095.70 4799.94 397.62 6999.79 2199.78 15
旧先验199.29 8097.48 8898.70 12099.09 8095.56 5099.47 9599.61 80
PGM-MVS98.49 3798.23 4399.27 4199.72 1398.08 6498.99 7299.49 595.43 11899.03 3799.32 3595.56 5099.94 396.80 11599.77 2899.78 15
APD-MVScopyleft98.35 4798.00 5599.42 1899.51 4198.72 2198.80 11398.82 7394.52 16699.23 2399.25 4895.54 5299.80 8396.52 12699.77 2899.74 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj98.33 5197.95 5799.47 1499.49 4798.70 2398.83 10398.86 6395.48 11598.91 4999.17 6195.48 5399.93 1895.80 15199.53 8999.76 28
ZNCC-MVS98.49 3798.20 4599.35 2599.73 1298.39 3999.19 3698.86 6395.77 10198.31 8999.10 7595.46 5499.93 1897.57 7599.81 1099.74 35
ETH3D-3000-0.198.35 4798.00 5599.38 2099.47 5098.68 2598.67 14198.84 6894.66 16199.11 3299.25 4895.46 5499.81 7496.80 11599.73 4599.63 77
mPP-MVS98.51 3698.26 3899.25 4299.75 498.04 6599.28 2198.81 7996.24 8398.35 8699.23 5095.46 5499.94 397.42 8299.81 1099.77 22
EI-MVSNet-Vis-set98.47 3998.39 2098.69 8199.46 5396.49 13198.30 19798.69 12197.21 4198.84 5199.36 2895.41 5799.78 9998.62 699.65 6299.80 11
ETV-MVS97.96 6097.81 6398.40 10698.42 16297.27 9698.73 12698.55 15796.84 5998.38 8397.44 24895.39 5899.35 16497.62 6998.89 12798.58 194
SR-MVS98.57 2798.35 2599.24 4399.53 3898.18 5899.09 5198.82 7396.58 7099.10 3399.32 3595.39 5899.82 6797.70 6599.63 6899.72 44
ACMMP_NAP98.61 1898.30 3599.55 999.62 3298.95 1798.82 10698.81 7995.80 10099.16 3099.47 895.37 6099.92 2497.89 4999.75 4099.79 12
CSCG97.85 7097.74 6698.20 11899.67 2795.16 18999.22 3099.32 793.04 23197.02 15298.92 10595.36 6199.91 3397.43 8199.64 6699.52 92
test117298.56 2998.35 2599.16 5399.53 3897.94 7199.09 5198.83 7196.52 7399.05 3699.34 3395.34 6299.82 6797.86 5199.64 6699.73 40
SR-MVS-dyc-post98.54 3398.35 2599.13 5799.49 4797.86 7399.11 4798.80 9096.49 7499.17 2899.35 3095.34 6299.82 6797.72 6099.65 6299.71 48
DP-MVS Recon97.86 6997.46 8099.06 6499.53 3898.35 4898.33 18998.89 4792.62 24598.05 9798.94 10295.34 6299.65 12796.04 14299.42 10299.19 140
APD-MVS_3200maxsize98.53 3598.33 3399.15 5699.50 4397.92 7299.15 4098.81 7996.24 8399.20 2599.37 2495.30 6599.80 8397.73 5999.67 5899.72 44
RE-MVS-def98.34 2999.49 4797.86 7399.11 4798.80 9096.49 7499.17 2899.35 3095.29 6697.72 6099.65 6299.71 48
GST-MVS98.43 4198.12 4899.34 2699.72 1398.38 4099.09 5198.82 7395.71 10498.73 6099.06 8495.27 6799.93 1897.07 9399.63 6899.72 44
DeepC-MVS_fast96.70 198.55 3198.34 2999.18 5099.25 8898.04 6598.50 16898.78 9897.72 698.92 4899.28 4295.27 6799.82 6797.55 7699.77 2899.69 55
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss98.31 5397.92 5999.49 1299.72 1398.88 1898.43 17798.78 9894.10 17797.69 12799.42 1495.25 6999.92 2498.09 3799.80 1799.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.41 4298.34 2998.61 8699.45 5796.32 14098.28 20098.68 12497.17 4498.74 5899.37 2495.25 6999.79 9598.57 999.54 8899.73 40
原ACMM198.65 8499.32 7096.62 12298.67 13293.27 22397.81 11998.97 9395.18 7199.83 5993.84 21399.46 9899.50 98
HPM-MVS_fast98.38 4498.13 4799.12 6099.75 497.86 7399.44 798.82 7394.46 16998.94 4399.20 5795.16 7299.74 11097.58 7299.85 399.77 22
test1299.18 5099.16 10498.19 5798.53 16198.07 9695.13 7399.72 11299.56 8499.63 77
HPM-MVScopyleft98.36 4698.10 5099.13 5799.74 897.82 7799.53 498.80 9094.63 16298.61 7098.97 9395.13 7399.77 10497.65 6799.83 999.79 12
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS97.55 8896.99 10199.23 4599.04 11298.55 3197.17 29898.35 19894.85 15297.93 11498.58 14195.07 7599.71 11792.60 24899.34 10899.43 113
MVS_111021_LR98.34 4998.23 4398.67 8399.27 8596.90 11297.95 23899.58 397.14 4698.44 8099.01 9095.03 7699.62 13497.91 4699.75 4099.50 98
EIA-MVS97.75 7397.58 7098.27 11298.38 16496.44 13499.01 6898.60 14595.88 9797.26 14197.53 24194.97 7799.33 16697.38 8499.20 11399.05 159
DELS-MVS98.40 4398.20 4598.99 6699.00 11797.66 8197.75 25898.89 4797.71 898.33 8798.97 9394.97 7799.88 4698.42 2599.76 3499.42 115
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft95.07 497.20 10896.78 11098.44 10299.29 8096.31 14298.14 22098.76 10292.41 25496.39 18398.31 17194.92 7999.78 9994.06 20898.77 13599.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
zzz-MVS98.55 3198.25 3999.46 1599.76 298.64 2798.55 16198.74 10797.27 3898.02 10299.39 1694.81 8099.96 197.91 4699.79 2199.77 22
MTAPA98.58 2498.29 3699.46 1599.76 298.64 2798.90 8798.74 10797.27 3898.02 10299.39 1694.81 8099.96 197.91 4699.79 2199.77 22
112197.37 10096.77 11499.16 5399.34 6497.99 7098.19 21398.68 12490.14 31598.01 10698.97 9394.80 8299.87 4793.36 22799.46 9899.61 80
Test By Simon94.64 83
ETH3D cwj APD-0.1697.96 6097.52 7599.29 3499.05 11098.52 3298.33 18998.68 12493.18 22598.68 6299.13 7094.62 8499.83 5996.45 12899.55 8799.52 92
CS-MVS97.94 6497.90 6098.06 13098.04 19896.85 11599.04 5898.39 19196.17 8698.50 7598.29 17494.60 8599.02 20398.61 899.43 10198.30 205
新几何199.16 5399.34 6498.01 6798.69 12190.06 31698.13 9298.95 10194.60 8599.89 3891.97 26899.47 9599.59 85
MP-MVScopyleft98.33 5198.01 5499.28 3899.75 498.18 5899.22 3098.79 9596.13 8997.92 11599.23 5094.54 8799.94 396.74 12099.78 2599.73 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pcd_1.5k_mvsjas7.88 34510.50 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37794.51 880.00 3780.00 3760.00 3760.00 374
PS-MVSNAJss96.43 13696.26 13296.92 20195.84 32395.08 19599.16 3998.50 17195.87 9893.84 25498.34 16894.51 8898.61 24896.88 10793.45 25397.06 238
PS-MVSNAJ97.73 7497.77 6497.62 16298.68 14695.58 17397.34 28598.51 16697.29 3398.66 6797.88 20994.51 8899.90 3697.87 5099.17 11697.39 229
API-MVS97.41 9797.25 8997.91 13898.70 14396.80 11698.82 10698.69 12194.53 16498.11 9398.28 17594.50 9199.57 13894.12 20599.49 9397.37 231
ACMMPcopyleft98.23 5597.95 5799.09 6299.74 897.62 8499.03 6299.41 695.98 9497.60 13599.36 2894.45 9299.93 1897.14 9098.85 13199.70 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
testdata98.26 11499.20 9995.36 18298.68 12491.89 27198.60 7199.10 7594.44 9399.82 6794.27 20099.44 10099.58 89
CS-MVS-test97.90 6797.83 6298.11 12698.14 19096.49 13199.35 1398.40 18896.31 8298.27 9098.31 17194.42 9499.05 19598.07 3899.20 11398.80 177
xiu_mvs_v2_base97.66 7897.70 6797.56 16698.61 15295.46 17997.44 27498.46 17697.15 4598.65 6898.15 18694.33 9599.80 8397.84 5498.66 14097.41 227
PAPR96.84 12296.24 13398.65 8498.72 14296.92 11197.36 28398.57 15393.33 21996.67 16797.57 23894.30 9699.56 14091.05 28398.59 14299.47 105
PAPM_NR97.46 9097.11 9498.50 9699.50 4396.41 13698.63 14798.60 14595.18 13397.06 15098.06 19294.26 9799.57 13893.80 21598.87 13099.52 92
test22299.23 9597.17 10497.40 27798.66 13588.68 33298.05 9798.96 9994.14 9899.53 8999.61 80
EPP-MVSNet97.46 9097.28 8897.99 13498.64 14995.38 18199.33 1898.31 20493.61 21097.19 14399.07 8394.05 9999.23 17396.89 10498.43 15299.37 118
F-COLMAP97.09 11496.80 10797.97 13599.45 5794.95 20398.55 16198.62 14493.02 23296.17 18898.58 14194.01 10099.81 7493.95 21098.90 12699.14 149
TAPA-MVS93.98 795.35 18894.56 20397.74 15199.13 10794.83 20898.33 18998.64 14086.62 34096.29 18598.61 13694.00 10199.29 16880.00 35599.41 10399.09 154
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640097.59 8497.01 9999.34 2699.40 6198.56 3098.20 20998.81 7991.63 27998.44 8098.85 11193.98 10299.82 6794.11 20699.69 5699.64 74
MG-MVS97.81 7197.60 6998.44 10299.12 10895.97 15597.75 25898.78 9896.89 5898.46 7699.22 5293.90 10399.68 12494.81 18199.52 9199.67 65
DROMVSNet98.21 5798.11 4998.49 9898.34 17197.26 10099.61 398.43 18396.78 6198.87 5098.84 11393.72 10499.01 20698.91 199.50 9299.19 140
CDS-MVSNet96.99 11696.69 11697.90 13998.05 19795.98 15098.20 20998.33 20193.67 20796.95 15398.49 14993.54 10598.42 26995.24 17297.74 17599.31 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS97.02 11596.79 10997.70 15598.06 19695.31 18698.52 16398.31 20493.95 18697.05 15198.61 13693.49 10698.52 25895.33 16697.81 17199.29 130
abl_698.30 5498.03 5399.13 5799.56 3697.76 8099.13 4498.82 7396.14 8899.26 2199.37 2493.33 10799.93 1896.96 9899.67 5899.69 55
CNLPA97.45 9397.03 9898.73 7999.05 11097.44 9198.07 22798.53 16195.32 12696.80 16498.53 14593.32 10899.72 11294.31 19999.31 11099.02 161
OMC-MVS97.55 8897.34 8698.20 11899.33 6795.92 16298.28 20098.59 14795.52 11497.97 10999.10 7593.28 10999.49 15195.09 17498.88 12899.19 140
UA-Net97.96 6097.62 6898.98 6898.86 12997.47 8998.89 9199.08 2196.67 6798.72 6199.54 193.15 11099.81 7494.87 17798.83 13299.65 71
CPTT-MVS97.72 7597.32 8798.92 7299.64 3097.10 10599.12 4698.81 7992.34 25698.09 9599.08 8293.01 11199.92 2496.06 14199.77 2899.75 30
114514_t96.93 11896.27 13198.92 7299.50 4397.63 8398.85 9998.90 4584.80 35197.77 12099.11 7392.84 11299.66 12694.85 17899.77 2899.47 105
PVSNet_Blended_VisFu97.70 7697.46 8098.44 10299.27 8595.91 16398.63 14799.16 1794.48 16897.67 12898.88 10892.80 11399.91 3397.11 9199.12 11799.50 98
PVSNet_BlendedMVS96.73 12596.60 12097.12 18699.25 8895.35 18498.26 20399.26 894.28 17297.94 11297.46 24592.74 11499.81 7496.88 10793.32 25696.20 322
PVSNet_Blended97.38 9997.12 9398.14 12199.25 8895.35 18497.28 29099.26 893.13 22897.94 11298.21 18292.74 11499.81 7496.88 10799.40 10599.27 132
MVS_Test97.28 10397.00 10098.13 12398.33 17395.97 15598.74 12298.07 25294.27 17398.44 8098.07 19192.48 11699.26 16996.43 13098.19 15999.16 146
miper_enhance_ethall95.10 20294.75 19596.12 26097.53 23393.73 24996.61 32998.08 25092.20 26593.89 25096.65 30692.44 11798.30 28994.21 20291.16 28296.34 316
MVSFormer97.57 8697.49 7897.84 14198.07 19495.76 16999.47 598.40 18894.98 14598.79 5498.83 11592.34 11898.41 27696.91 10099.59 7599.34 119
lupinMVS97.44 9497.22 9198.12 12598.07 19495.76 16997.68 26297.76 27394.50 16798.79 5498.61 13692.34 11899.30 16797.58 7299.59 7599.31 125
CHOSEN 280x42097.18 10997.18 9297.20 18098.81 13493.27 26695.78 34299.15 1895.25 13096.79 16598.11 18992.29 12099.07 19498.56 1099.85 399.25 134
canonicalmvs97.67 7797.23 9098.98 6898.70 14398.38 4099.34 1598.39 19196.76 6397.67 12897.40 25192.26 12199.49 15198.28 3296.28 21299.08 157
IterMVS-LS95.46 17795.21 17596.22 25598.12 19193.72 25098.32 19498.13 23793.71 20094.26 23397.31 25592.24 12298.10 30494.63 18490.12 29396.84 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 15395.83 14596.36 24897.93 20493.70 25198.12 22398.27 21393.70 20295.07 20299.02 8692.23 12398.54 25694.68 18393.46 25196.84 261
WTY-MVS97.37 10096.92 10498.72 8098.86 12996.89 11498.31 19598.71 11795.26 12997.67 12898.56 14492.21 12499.78 9995.89 14696.85 19199.48 103
Effi-MVS+97.12 11296.69 11698.39 10798.19 18496.72 12097.37 28198.43 18393.71 20097.65 13198.02 19492.20 12599.25 17096.87 11097.79 17299.19 140
1112_ss96.63 12796.00 14198.50 9698.56 15496.37 13798.18 21798.10 24392.92 23694.84 20898.43 15492.14 12699.58 13794.35 19696.51 20299.56 91
LS3D97.16 11096.66 11998.68 8298.53 15797.19 10398.93 8498.90 4592.83 24195.99 19399.37 2492.12 12799.87 4793.67 21999.57 7998.97 166
nrg03096.28 14395.72 14897.96 13796.90 27798.15 6199.39 898.31 20495.47 11694.42 22698.35 16492.09 12898.69 24097.50 8089.05 31097.04 239
mvs_anonymous96.70 12696.53 12497.18 18298.19 18493.78 24498.31 19598.19 22394.01 18294.47 22098.27 17892.08 12998.46 26497.39 8397.91 16799.31 125
FC-MVSNet-test96.42 13796.05 13897.53 16896.95 27297.27 9699.36 1199.23 1295.83 9993.93 24898.37 16292.00 13098.32 28596.02 14392.72 26497.00 241
FIs96.51 13496.12 13697.67 15897.13 26397.54 8799.36 1199.22 1495.89 9694.03 24698.35 16491.98 13198.44 26796.40 13192.76 26397.01 240
sss97.39 9896.98 10298.61 8698.60 15396.61 12498.22 20598.93 3893.97 18598.01 10698.48 15091.98 13199.85 5396.45 12898.15 16099.39 116
miper_ehance_all_eth95.01 20694.69 19895.97 26597.70 21893.31 26597.02 30598.07 25292.23 26293.51 26696.96 28891.85 13398.15 30093.68 21791.16 28296.44 313
DP-MVS96.59 13095.93 14298.57 8899.34 6496.19 14698.70 13598.39 19189.45 32694.52 21899.35 3091.85 13399.85 5392.89 24498.88 12899.68 61
Test_1112_low_res96.34 14095.66 15698.36 10898.56 15495.94 15897.71 26098.07 25292.10 26694.79 21297.29 25691.75 13599.56 14094.17 20396.50 20399.58 89
UniMVSNet_NR-MVSNet95.71 16795.15 17797.40 17496.84 28096.97 10898.74 12299.24 1095.16 13493.88 25197.72 22591.68 13698.31 28795.81 14987.25 33196.92 247
UniMVSNet (Re)95.78 16495.19 17697.58 16496.99 27197.47 8998.79 11799.18 1695.60 10993.92 24997.04 27991.68 13698.48 26095.80 15187.66 32696.79 265
HY-MVS93.96 896.82 12396.23 13498.57 8898.46 16197.00 10798.14 22098.21 22093.95 18696.72 16697.99 19891.58 13899.76 10694.51 19296.54 20198.95 169
xiu_mvs_v1_base_debu97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
xiu_mvs_v1_base97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
xiu_mvs_v1_base_debi97.60 8197.56 7297.72 15298.35 16695.98 15097.86 24998.51 16697.13 4799.01 3998.40 15891.56 13999.80 8398.53 1198.68 13697.37 231
MAR-MVS96.91 11996.40 12798.45 10198.69 14596.90 11298.66 14498.68 12492.40 25597.07 14997.96 20191.54 14299.75 10893.68 21798.92 12598.69 184
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet98.05 5897.76 6598.90 7498.73 13897.27 9698.35 18698.78 9897.37 3097.72 12598.96 9991.53 14399.92 2498.79 399.65 6299.51 96
c3_l94.79 22194.43 21395.89 27097.75 21393.12 27297.16 29998.03 25992.23 26293.46 26997.05 27891.39 14498.01 31293.58 22289.21 30896.53 300
EPNet97.28 10396.87 10698.51 9594.98 33996.14 14798.90 8797.02 31998.28 195.99 19399.11 7391.36 14599.89 3896.98 9599.19 11599.50 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.64 7997.44 8298.25 11598.35 16696.20 14499.00 7098.32 20296.33 8198.03 10099.17 6191.35 14699.16 17998.10 3698.29 15899.39 116
131496.25 14595.73 14797.79 14697.13 26395.55 17698.19 21398.59 14793.47 21492.03 31097.82 21891.33 14799.49 15194.62 18698.44 15098.32 204
diffmvs97.58 8597.40 8498.13 12398.32 17595.81 16898.06 22898.37 19596.20 8598.74 5898.89 10791.31 14899.25 17098.16 3498.52 14599.34 119
PAPM94.95 21294.00 23697.78 14797.04 26895.65 17196.03 33898.25 21891.23 29594.19 23897.80 22091.27 14998.86 22882.61 34997.61 17998.84 175
casdiffmvs97.63 8097.41 8398.28 11198.33 17396.14 14798.82 10698.32 20296.38 7997.95 11099.21 5391.23 15099.23 17398.12 3598.37 15399.48 103
jason97.32 10297.08 9698.06 13097.45 24195.59 17297.87 24897.91 26894.79 15398.55 7398.83 11591.12 15199.23 17397.58 7299.60 7299.34 119
jason: jason.
IS-MVSNet97.22 10596.88 10598.25 11598.85 13196.36 13899.19 3697.97 26295.39 12097.23 14298.99 9291.11 15298.93 21794.60 18798.59 14299.47 105
PMMVS96.60 12896.33 12997.41 17297.90 20693.93 24097.35 28498.41 18692.84 24097.76 12197.45 24791.10 15399.20 17696.26 13497.91 16799.11 152
MVS94.67 22993.54 26798.08 12896.88 27896.56 12898.19 21398.50 17178.05 36092.69 29298.02 19491.07 15499.63 13290.09 29498.36 15598.04 212
Fast-Effi-MVS+96.28 14395.70 15398.03 13298.29 17795.97 15598.58 15398.25 21891.74 27495.29 20197.23 26091.03 15599.15 18292.90 24297.96 16698.97 166
Effi-MVS+-dtu96.29 14196.56 12195.51 28197.89 20790.22 31698.80 11398.10 24396.57 7196.45 18296.66 30490.81 15698.91 21995.72 15497.99 16597.40 228
mvs-test196.60 12896.68 11896.37 24797.89 20791.81 28698.56 15998.10 24396.57 7196.52 17897.94 20390.81 15699.45 15995.72 15498.01 16497.86 217
test_yl97.22 10596.78 11098.54 9298.73 13896.60 12598.45 17298.31 20494.70 15598.02 10298.42 15690.80 15899.70 11896.81 11396.79 19399.34 119
DCV-MVSNet97.22 10596.78 11098.54 9298.73 13896.60 12598.45 17298.31 20494.70 15598.02 10298.42 15690.80 15899.70 11896.81 11396.79 19399.34 119
alignmvs97.56 8797.07 9799.01 6598.66 14798.37 4698.83 10398.06 25796.74 6498.00 10897.65 23090.80 15899.48 15598.37 2896.56 20099.19 140
AdaColmapbinary97.15 11196.70 11598.48 9999.16 10496.69 12198.01 23398.89 4794.44 17096.83 16098.68 13090.69 16199.76 10694.36 19599.29 11198.98 165
cdsmvs_eth3d_5k23.98 34131.98 3430.00 3590.00 3820.00 3830.00 37098.59 1470.00 3770.00 37898.61 13690.60 1620.00 3780.00 3760.00 3760.00 374
eth_miper_zixun_eth94.68 22694.41 21495.47 28397.64 22191.71 29196.73 32698.07 25292.71 24393.64 25997.21 26290.54 16398.17 29993.38 22589.76 29796.54 298
DeepC-MVS95.98 397.88 6897.58 7098.77 7899.25 8896.93 11098.83 10398.75 10596.96 5596.89 15999.50 490.46 16499.87 4797.84 5499.76 3499.52 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H95.05 20594.46 20996.81 20696.86 27995.82 16799.24 2599.24 1093.87 19092.53 29796.84 29890.37 16598.24 29693.24 23087.93 32396.38 315
EPNet_dtu95.21 19694.95 18895.99 26396.17 31090.45 31498.16 21997.27 30896.77 6293.14 28098.33 16990.34 16698.42 26985.57 33598.81 13499.09 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VNet97.79 7297.40 8498.96 7098.88 12797.55 8698.63 14798.93 3896.74 6499.02 3898.84 11390.33 16799.83 5998.53 1196.66 19699.50 98
MSDG95.93 15795.30 17297.83 14298.90 12595.36 18296.83 32298.37 19591.32 29094.43 22598.73 12690.27 16899.60 13590.05 29798.82 13398.52 195
LCM-MVSNet-Re95.22 19595.32 17094.91 29998.18 18687.85 35098.75 11995.66 34695.11 13888.96 33696.85 29790.26 16997.65 32895.65 15998.44 15099.22 136
Vis-MVSNet (Re-imp)96.87 12196.55 12297.83 14298.73 13895.46 17999.20 3498.30 21094.96 14796.60 17198.87 10990.05 17098.59 25293.67 21998.60 14199.46 109
miper_lstm_enhance94.33 25194.07 23195.11 29497.75 21390.97 30497.22 29398.03 25991.67 27892.76 28996.97 28690.03 17197.78 32692.51 25589.64 29996.56 295
baseline195.84 16195.12 17998.01 13398.49 16095.98 15098.73 12697.03 31795.37 12396.22 18698.19 18489.96 17299.16 17994.60 18787.48 32798.90 172
MDTV_nov1_ep13_2view84.26 35896.89 31790.97 30197.90 11689.89 17393.91 21199.18 145
h-mvs3396.17 14695.62 15797.81 14599.03 11394.45 22498.64 14698.75 10597.48 1998.67 6398.72 12789.76 17499.86 5297.95 4381.59 35099.11 152
hse-mvs295.71 16795.30 17296.93 19898.50 15893.53 25698.36 18598.10 24397.48 1998.67 6397.99 19889.76 17499.02 20397.95 4380.91 35498.22 207
GeoE96.58 13296.07 13798.10 12798.35 16695.89 16599.34 1598.12 23893.12 22996.09 18998.87 10989.71 17698.97 20892.95 24098.08 16399.43 113
our_test_393.65 27893.30 27494.69 30795.45 33489.68 32396.91 31297.65 27891.97 26991.66 31496.88 29489.67 17797.93 31988.02 32191.49 27696.48 310
tpmrst95.63 17295.69 15495.44 28597.54 23188.54 34196.97 30797.56 28493.50 21397.52 13896.93 29289.49 17899.16 17995.25 17196.42 20598.64 190
D2MVS95.18 19895.08 18195.48 28297.10 26592.07 28298.30 19799.13 1994.02 18192.90 28596.73 30189.48 17998.73 23994.48 19393.60 25095.65 335
sam_mvs189.45 18099.20 137
patchmatchnet-post95.10 34189.42 18198.89 223
3Dnovator+94.38 697.43 9596.78 11099.38 2097.83 21098.52 3299.37 1098.71 11797.09 5092.99 28499.13 7089.36 18299.89 3896.97 9699.57 7999.71 48
NR-MVSNet94.98 21094.16 22697.44 17096.53 29597.22 10298.74 12298.95 3494.96 14789.25 33597.69 22689.32 18398.18 29894.59 18987.40 32996.92 247
HyFIR lowres test96.90 12096.49 12598.14 12199.33 6795.56 17497.38 27999.65 292.34 25697.61 13498.20 18389.29 18499.10 19196.97 9697.60 18099.77 22
3Dnovator94.51 597.46 9096.93 10399.07 6397.78 21297.64 8299.35 1399.06 2297.02 5293.75 25899.16 6689.25 18599.92 2497.22 8899.75 4099.64 74
PatchmatchNetpermissive95.71 16795.52 15996.29 25397.58 22690.72 31096.84 32197.52 29194.06 17897.08 14796.96 28889.24 18698.90 22292.03 26698.37 15399.26 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1395.40 16197.48 23588.34 34496.85 32097.29 30693.74 19797.48 13997.26 25789.18 18799.05 19591.92 26997.43 183
test_djsdf96.00 15295.69 15496.93 19895.72 32595.49 17899.47 598.40 18894.98 14594.58 21697.86 21189.16 18898.41 27696.91 10094.12 23796.88 256
DIV-MVS_self_test94.52 24094.03 23295.99 26397.57 23093.38 26397.05 30397.94 26591.74 27492.81 28797.10 26689.12 18998.07 30892.60 24890.30 29196.53 300
QAPM96.29 14195.40 16198.96 7097.85 20997.60 8599.23 2698.93 3889.76 32193.11 28199.02 8689.11 19099.93 1891.99 26799.62 7099.34 119
pmmvs494.69 22493.99 23896.81 20695.74 32495.94 15897.40 27797.67 27790.42 30993.37 27197.59 23689.08 19198.20 29792.97 23991.67 27496.30 320
cl____94.51 24194.01 23596.02 26297.58 22693.40 26297.05 30397.96 26491.73 27692.76 28997.08 27289.06 19298.13 30292.61 24790.29 29296.52 303
sam_mvs88.99 193
Patchmatch-test94.42 24793.68 26296.63 22097.60 22491.76 28894.83 35397.49 29589.45 32694.14 24097.10 26688.99 19398.83 23185.37 33898.13 16199.29 130
Patchmatch-RL test91.49 30290.85 30393.41 32691.37 36284.40 35792.81 35995.93 34491.87 27287.25 34494.87 34388.99 19396.53 35192.54 25482.00 34799.30 128
Fast-Effi-MVS+-dtu95.87 15995.85 14495.91 26897.74 21691.74 29098.69 13798.15 23495.56 11194.92 20697.68 22988.98 19698.79 23593.19 23297.78 17397.20 235
BH-untuned95.95 15495.72 14896.65 21698.55 15692.26 27998.23 20497.79 27293.73 19894.62 21598.01 19688.97 19799.00 20793.04 23798.51 14698.68 185
XVG-OURS96.55 13396.41 12696.99 19298.75 13793.76 24597.50 27398.52 16395.67 10696.83 16099.30 4088.95 19899.53 14695.88 14796.26 21397.69 223
PVSNet91.96 1896.35 13996.15 13596.96 19699.17 10092.05 28396.08 33598.68 12493.69 20397.75 12297.80 22088.86 19999.69 12394.26 20199.01 12299.15 147
test_post31.83 37488.83 20098.91 219
v894.47 24493.77 25496.57 22896.36 30394.83 20899.05 5798.19 22391.92 27093.16 27796.97 28688.82 20198.48 26091.69 27487.79 32496.39 314
BH-w/o95.38 18495.08 18196.26 25498.34 17191.79 28797.70 26197.43 30092.87 23994.24 23597.22 26188.66 20298.84 22991.55 27697.70 17798.16 210
tpmvs94.60 23294.36 21695.33 28897.46 23788.60 34096.88 31897.68 27691.29 29293.80 25696.42 31588.58 20399.24 17291.06 28196.04 22098.17 209
DU-MVS95.42 18194.76 19497.40 17496.53 29596.97 10898.66 14498.99 2995.43 11893.88 25197.69 22688.57 20498.31 28795.81 14987.25 33196.92 247
Baseline_NR-MVSNet94.35 25093.81 25095.96 26696.20 30894.05 23898.61 15096.67 33691.44 28493.85 25397.60 23588.57 20498.14 30194.39 19486.93 33495.68 334
PCF-MVS93.45 1194.68 22693.43 27198.42 10598.62 15196.77 11895.48 34798.20 22284.63 35293.34 27298.32 17088.55 20699.81 7484.80 34298.96 12498.68 185
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14894.29 25493.76 25695.91 26896.10 31392.93 27498.58 15397.97 26292.59 24793.47 26896.95 29088.53 20798.32 28592.56 25287.06 33396.49 309
PatchMatch-RL96.59 13096.03 14098.27 11299.31 7296.51 13097.91 24299.06 2293.72 19996.92 15798.06 19288.50 20899.65 12791.77 27299.00 12398.66 188
V4294.78 22294.14 22896.70 21396.33 30595.22 18898.97 7698.09 24892.32 25894.31 23197.06 27688.39 20998.55 25592.90 24288.87 31496.34 316
v7n94.19 26093.43 27196.47 23895.90 32094.38 22999.26 2398.34 20091.99 26892.76 28997.13 26588.31 21098.52 25889.48 30987.70 32596.52 303
TranMVSNet+NR-MVSNet95.14 20094.48 20797.11 18796.45 30096.36 13899.03 6299.03 2595.04 14393.58 26197.93 20488.27 21198.03 31194.13 20486.90 33696.95 246
MVSTER96.06 14995.72 14897.08 18998.23 17995.93 16198.73 12698.27 21394.86 15195.07 20298.09 19088.21 21298.54 25696.59 12293.46 25196.79 265
RRT_MVS96.04 15095.53 15897.56 16697.07 26797.32 9398.57 15898.09 24895.15 13595.02 20498.44 15388.20 21398.58 25496.17 13793.09 26096.79 265
CHOSEN 1792x268897.12 11296.80 10798.08 12899.30 7794.56 22298.05 22999.71 193.57 21197.09 14698.91 10688.17 21499.89 3896.87 11099.56 8499.81 10
CR-MVSNet94.76 22394.15 22796.59 22597.00 26993.43 25994.96 34997.56 28492.46 24996.93 15596.24 31888.15 21597.88 32487.38 32496.65 19798.46 197
Patchmtry93.22 28692.35 29095.84 27296.77 28293.09 27394.66 35497.56 28487.37 33892.90 28596.24 31888.15 21597.90 32087.37 32590.10 29496.53 300
v1094.29 25493.55 26696.51 23596.39 30294.80 21098.99 7298.19 22391.35 28893.02 28396.99 28488.09 21798.41 27690.50 29088.41 31896.33 318
ppachtmachnet_test93.22 28692.63 28694.97 29895.45 33490.84 30696.88 31897.88 26990.60 30492.08 30997.26 25788.08 21897.86 32585.12 33990.33 29096.22 321
Vis-MVSNetpermissive97.42 9697.11 9498.34 10998.66 14796.23 14399.22 3099.00 2796.63 6998.04 9999.21 5388.05 21999.35 16496.01 14499.21 11299.45 111
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v114494.59 23493.92 24196.60 22496.21 30794.78 21298.59 15198.14 23691.86 27394.21 23797.02 28187.97 22098.41 27691.72 27389.57 30096.61 288
PatchT93.06 29091.97 29596.35 24996.69 28892.67 27694.48 35597.08 31386.62 34097.08 14792.23 35787.94 22197.90 32078.89 35996.69 19598.49 196
ADS-MVSNet294.58 23594.40 21595.11 29498.00 19988.74 33896.04 33697.30 30590.15 31396.47 18096.64 30787.89 22297.56 33290.08 29597.06 18799.02 161
ADS-MVSNet95.00 20794.45 21196.63 22098.00 19991.91 28596.04 33697.74 27590.15 31396.47 18096.64 30787.89 22298.96 21290.08 29597.06 18799.02 161
XVG-OURS-SEG-HR96.51 13496.34 12897.02 19198.77 13693.76 24597.79 25698.50 17195.45 11796.94 15499.09 8087.87 22499.55 14596.76 11995.83 22297.74 220
test_post196.68 32730.43 37587.85 22598.69 24092.59 250
test-LLR95.10 20294.87 19195.80 27396.77 28289.70 32196.91 31295.21 34995.11 13894.83 21095.72 33387.71 22698.97 20893.06 23598.50 14798.72 181
test0.0.03 194.08 26993.51 26895.80 27395.53 33192.89 27597.38 27995.97 34295.11 13892.51 29996.66 30487.71 22696.94 34287.03 32693.67 24697.57 225
JIA-IIPM93.35 28192.49 28895.92 26796.48 29990.65 31195.01 34896.96 32185.93 34696.08 19087.33 36287.70 22898.78 23691.35 27895.58 22498.34 202
v2v48294.69 22494.03 23296.65 21696.17 31094.79 21198.67 14198.08 25092.72 24294.00 24797.16 26487.69 22998.45 26592.91 24188.87 31496.72 274
CVMVSNet95.43 18096.04 13993.57 32497.93 20483.62 35998.12 22398.59 14795.68 10596.56 17299.02 8687.51 23097.51 33493.56 22397.44 18299.60 83
WR-MVS95.15 19994.46 20997.22 17996.67 29096.45 13398.21 20698.81 7994.15 17593.16 27797.69 22687.51 23098.30 28995.29 16988.62 31696.90 254
anonymousdsp95.42 18194.91 18996.94 19795.10 33895.90 16499.14 4198.41 18693.75 19593.16 27797.46 24587.50 23298.41 27695.63 16094.03 23996.50 308
v14419294.39 24993.70 26096.48 23796.06 31594.35 23098.58 15398.16 23391.45 28394.33 23097.02 28187.50 23298.45 26591.08 28089.11 30996.63 286
baseline295.11 20194.52 20596.87 20396.65 29193.56 25398.27 20294.10 36393.45 21592.02 31197.43 24987.45 23499.19 17793.88 21297.41 18497.87 216
EU-MVSNet93.66 27694.14 22892.25 33795.96 31983.38 36098.52 16398.12 23894.69 15792.61 29498.13 18887.36 23596.39 35391.82 27090.00 29596.98 242
CP-MVSNet94.94 21494.30 21896.83 20596.72 28795.56 17499.11 4798.95 3493.89 18892.42 30397.90 20687.19 23698.12 30394.32 19888.21 32096.82 264
bset_n11_16_dypcd94.89 21694.27 21996.76 20894.41 34795.15 19195.67 34395.64 34795.53 11294.65 21497.52 24287.10 23798.29 29296.58 12491.35 27796.83 263
HQP_MVS96.14 14795.90 14396.85 20497.42 24294.60 22098.80 11398.56 15597.28 3495.34 19898.28 17587.09 23899.03 20096.07 13894.27 22996.92 247
plane_prior697.35 24794.61 21887.09 238
RPSCF94.87 21795.40 16193.26 33098.89 12682.06 36498.33 18998.06 25790.30 31296.56 17299.26 4587.09 23899.49 15193.82 21496.32 20898.24 206
RPMNet92.81 29291.34 30097.24 17897.00 26993.43 25994.96 34998.80 9082.27 35596.93 15592.12 35886.98 24199.82 6776.32 36396.65 19798.46 197
v119294.32 25293.58 26596.53 23396.10 31394.45 22498.50 16898.17 23191.54 28194.19 23897.06 27686.95 24298.43 26890.14 29389.57 30096.70 278
CANet_DTU96.96 11796.55 12298.21 11798.17 18896.07 14997.98 23698.21 22097.24 4097.13 14598.93 10386.88 24399.91 3395.00 17699.37 10798.66 188
HQP2-MVS86.75 244
HQP-MVS95.72 16695.40 16196.69 21497.20 25694.25 23498.05 22998.46 17696.43 7694.45 22197.73 22386.75 24498.96 21295.30 16794.18 23396.86 260
OpenMVScopyleft93.04 1395.83 16295.00 18498.32 11097.18 26097.32 9399.21 3398.97 3089.96 31791.14 31899.05 8586.64 24699.92 2493.38 22599.47 9597.73 221
cl2294.68 22694.19 22396.13 25998.11 19293.60 25296.94 30998.31 20492.43 25393.32 27396.87 29686.51 24798.28 29494.10 20791.16 28296.51 306
ET-MVSNet_ETH3D94.13 26492.98 27997.58 16498.22 18096.20 14497.31 28895.37 34894.53 16479.56 36097.63 23486.51 24797.53 33396.91 10090.74 28799.02 161
YYNet190.70 31189.39 31494.62 31094.79 34490.65 31197.20 29497.46 29687.54 33772.54 36495.74 32986.51 24796.66 34986.00 33286.76 33896.54 298
MDA-MVSNet_test_wron90.71 31089.38 31594.68 30894.83 34290.78 30997.19 29597.46 29687.60 33672.41 36595.72 33386.51 24796.71 34885.92 33386.80 33796.56 295
v192192094.20 25993.47 27096.40 24695.98 31894.08 23798.52 16398.15 23491.33 28994.25 23497.20 26386.41 25198.42 26990.04 29889.39 30696.69 283
COLMAP_ROBcopyleft93.27 1295.33 19094.87 19196.71 21199.29 8093.24 26898.58 15398.11 24189.92 31893.57 26299.10 7586.37 25299.79 9590.78 28698.10 16297.09 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVP-Stereo94.28 25693.92 24195.35 28794.95 34092.60 27797.97 23797.65 27891.61 28090.68 32397.09 27086.32 25398.42 26989.70 30499.34 10895.02 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CLD-MVS95.62 17395.34 16796.46 24197.52 23493.75 24797.27 29198.46 17695.53 11294.42 22698.00 19786.21 25498.97 20896.25 13594.37 22796.66 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat193.36 28092.80 28295.07 29697.58 22687.97 34896.76 32497.86 27082.17 35693.53 26396.04 32686.13 25599.13 18489.24 31295.87 22198.10 211
PEN-MVS94.42 24793.73 25896.49 23696.28 30694.84 20699.17 3899.00 2793.51 21292.23 30697.83 21786.10 25697.90 32092.55 25386.92 33596.74 271
v124094.06 27193.29 27596.34 25096.03 31793.90 24198.44 17598.17 23191.18 29894.13 24197.01 28386.05 25798.42 26989.13 31489.50 30496.70 278
CostFormer94.95 21294.73 19695.60 28097.28 25089.06 33297.53 27296.89 32789.66 32396.82 16296.72 30286.05 25798.95 21695.53 16296.13 21898.79 178
ACMM93.85 995.69 17095.38 16596.61 22297.61 22393.84 24398.91 8698.44 18095.25 13094.28 23298.47 15186.04 25999.12 18595.50 16393.95 24296.87 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet93.98 27393.26 27696.14 25896.06 31594.39 22899.20 3498.86 6393.06 23091.78 31297.81 21985.87 26097.58 33190.53 28986.17 34096.46 312
VPA-MVSNet95.75 16595.11 18097.69 15697.24 25297.27 9698.94 8299.23 1295.13 13695.51 19797.32 25485.73 26198.91 21997.33 8689.55 30296.89 255
EPMVS94.99 20894.48 20796.52 23497.22 25491.75 28997.23 29291.66 36994.11 17697.28 14096.81 29985.70 26298.84 22993.04 23797.28 18598.97 166
TransMVSNet (Re)92.67 29491.51 29996.15 25796.58 29394.65 21398.90 8796.73 33290.86 30289.46 33497.86 21185.62 26398.09 30686.45 32981.12 35195.71 333
AUN-MVS94.53 23993.73 25896.92 20198.50 15893.52 25798.34 18798.10 24393.83 19395.94 19597.98 20085.59 26499.03 20094.35 19680.94 35398.22 207
dp94.15 26393.90 24494.90 30097.31 24986.82 35596.97 30797.19 31191.22 29696.02 19296.61 30985.51 26599.02 20390.00 29994.30 22898.85 173
LPG-MVS_test95.62 17395.34 16796.47 23897.46 23793.54 25498.99 7298.54 15994.67 15994.36 22898.77 12285.39 26699.11 18895.71 15694.15 23596.76 269
LGP-MVS_train96.47 23897.46 23793.54 25498.54 15994.67 15994.36 22898.77 12285.39 26699.11 18895.71 15694.15 23596.76 269
PS-CasMVS94.67 22993.99 23896.71 21196.68 28995.26 18799.13 4499.03 2593.68 20592.33 30497.95 20285.35 26898.10 30493.59 22188.16 32296.79 265
ab-mvs96.42 13795.71 15198.55 9098.63 15096.75 11997.88 24798.74 10793.84 19196.54 17698.18 18585.34 26999.75 10895.93 14596.35 20699.15 147
N_pmnet87.12 32687.77 32585.17 34695.46 33361.92 37397.37 28170.66 37985.83 34788.73 34096.04 32685.33 27097.76 32780.02 35490.48 28995.84 330
OPM-MVS95.69 17095.33 16996.76 20896.16 31294.63 21598.43 17798.39 19196.64 6895.02 20498.78 12085.15 27199.05 19595.21 17394.20 23296.60 289
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-RMVSNet95.92 15895.32 17097.69 15698.32 17594.64 21498.19 21397.45 29894.56 16396.03 19198.61 13685.02 27299.12 18590.68 28899.06 11899.30 128
DSMNet-mixed92.52 29692.58 28792.33 33594.15 34982.65 36298.30 19794.26 36089.08 33092.65 29395.73 33185.01 27395.76 35686.24 33097.76 17498.59 192
tfpnnormal93.66 27692.70 28596.55 23296.94 27395.94 15898.97 7699.19 1591.04 30091.38 31697.34 25284.94 27498.61 24885.45 33789.02 31295.11 343
LTVRE_ROB92.95 1594.60 23293.90 24496.68 21597.41 24594.42 22698.52 16398.59 14791.69 27791.21 31798.35 16484.87 27599.04 19991.06 28193.44 25496.60 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XXY-MVS95.20 19794.45 21197.46 16996.75 28596.56 12898.86 9898.65 13993.30 22293.27 27498.27 17884.85 27698.87 22694.82 18091.26 28196.96 244
thisisatest051595.61 17594.89 19097.76 14998.15 18995.15 19196.77 32394.41 35792.95 23597.18 14497.43 24984.78 27799.45 15994.63 18497.73 17698.68 185
CL-MVSNet_self_test90.11 31489.14 31793.02 33291.86 36188.23 34696.51 33298.07 25290.49 30590.49 32594.41 34584.75 27895.34 35880.79 35374.95 36195.50 336
AllTest95.24 19494.65 19996.99 19299.25 8893.21 26998.59 15198.18 22691.36 28693.52 26498.77 12284.67 27999.72 11289.70 30497.87 16998.02 213
TestCases96.99 19299.25 8893.21 26998.18 22691.36 28693.52 26498.77 12284.67 27999.72 11289.70 30497.87 16998.02 213
thres20095.25 19394.57 20297.28 17798.81 13494.92 20498.20 20997.11 31295.24 13296.54 17696.22 32284.58 28199.53 14687.93 32296.50 20397.39 229
pm-mvs193.94 27493.06 27896.59 22596.49 29895.16 18998.95 8098.03 25992.32 25891.08 31997.84 21484.54 28298.41 27692.16 26086.13 34296.19 323
ACMP93.49 1095.34 18994.98 18696.43 24397.67 21993.48 25898.73 12698.44 18094.94 15092.53 29798.53 14584.50 28399.14 18395.48 16494.00 24096.66 284
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres100view90095.38 18494.70 19797.41 17298.98 12194.92 20498.87 9696.90 32595.38 12196.61 17096.88 29484.29 28499.56 14088.11 31896.29 20997.76 218
thres600view795.49 17694.77 19397.67 15898.98 12195.02 19698.85 9996.90 32595.38 12196.63 16996.90 29384.29 28499.59 13688.65 31796.33 20798.40 199
FMVSNet394.97 21194.26 22097.11 18798.18 18696.62 12298.56 15998.26 21793.67 20794.09 24297.10 26684.25 28698.01 31292.08 26292.14 26796.70 278
tfpn200view995.32 19194.62 20097.43 17198.94 12394.98 20098.68 13896.93 32395.33 12496.55 17496.53 31084.23 28799.56 14088.11 31896.29 20997.76 218
thres40095.38 18494.62 20097.65 16198.94 12394.98 20098.68 13896.93 32395.33 12496.55 17496.53 31084.23 28799.56 14088.11 31896.29 20998.40 199
cascas94.63 23193.86 24796.93 19896.91 27694.27 23296.00 33998.51 16685.55 34994.54 21796.23 32084.20 28998.87 22695.80 15196.98 19097.66 224
tpm94.13 26493.80 25195.12 29396.50 29787.91 34997.44 27495.89 34592.62 24596.37 18496.30 31784.13 29098.30 28993.24 23091.66 27599.14 149
tttt051796.07 14895.51 16097.78 14798.41 16394.84 20699.28 2194.33 35994.26 17497.64 13298.64 13584.05 29199.47 15795.34 16597.60 18099.03 160
IterMVS94.09 26893.85 24894.80 30597.99 20190.35 31597.18 29698.12 23893.68 20592.46 30297.34 25284.05 29197.41 33592.51 25591.33 27896.62 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 26693.87 24694.85 30297.98 20390.56 31397.18 29698.11 24193.75 19592.58 29597.48 24483.97 29397.41 33592.48 25791.30 27996.58 291
SCA95.46 17795.13 17896.46 24197.67 21991.29 30097.33 28697.60 28294.68 15896.92 15797.10 26683.97 29398.89 22392.59 25098.32 15799.20 137
TR-MVS94.94 21494.20 22297.17 18397.75 21394.14 23697.59 26997.02 31992.28 26195.75 19697.64 23283.88 29598.96 21289.77 30196.15 21798.40 199
jajsoiax95.45 17995.03 18396.73 21095.42 33694.63 21599.14 4198.52 16395.74 10293.22 27598.36 16383.87 29698.65 24696.95 9994.04 23896.91 252
Anonymous2023120691.66 30191.10 30193.33 32894.02 35387.35 35298.58 15397.26 30990.48 30690.16 32796.31 31683.83 29796.53 35179.36 35789.90 29696.12 324
thisisatest053096.01 15195.36 16697.97 13598.38 16495.52 17798.88 9494.19 36194.04 17997.64 13298.31 17183.82 29899.46 15895.29 16997.70 17798.93 170
tpm294.19 26093.76 25695.46 28497.23 25389.04 33397.31 28896.85 33187.08 33996.21 18796.79 30083.75 29998.74 23892.43 25896.23 21598.59 192
mvs_tets95.41 18395.00 18496.65 21695.58 32994.42 22699.00 7098.55 15795.73 10393.21 27698.38 16183.45 30098.63 24797.09 9294.00 24096.91 252
OurMVSNet-221017-094.21 25894.00 23694.85 30295.60 32889.22 33098.89 9197.43 30095.29 12792.18 30798.52 14882.86 30198.59 25293.46 22491.76 27296.74 271
UGNet96.78 12496.30 13098.19 12098.24 17895.89 16598.88 9498.93 3897.39 2796.81 16397.84 21482.60 30299.90 3696.53 12599.49 9398.79 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs593.65 27892.97 28095.68 27795.49 33292.37 27898.20 20997.28 30789.66 32392.58 29597.26 25782.14 30398.09 30693.18 23390.95 28696.58 291
DWT-MVSNet_test94.82 21894.36 21696.20 25697.35 24790.79 30898.34 18796.57 33892.91 23795.33 20096.44 31482.00 30499.12 18594.52 19195.78 22398.70 183
test_part194.82 21893.82 24997.82 14498.84 13297.82 7799.03 6298.81 7992.31 26092.51 29997.89 20881.96 30598.67 24494.80 18288.24 31996.98 242
ACMH92.88 1694.55 23793.95 24096.34 25097.63 22293.26 26798.81 11298.49 17593.43 21689.74 33098.53 14581.91 30699.08 19393.69 21693.30 25796.70 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF95.44 28597.42 24291.32 29997.50 29395.09 14193.59 26098.35 16481.70 30798.88 22589.71 30393.39 25596.12 324
Anonymous2023121194.10 26793.26 27696.61 22299.11 10994.28 23199.01 6898.88 5086.43 34292.81 28797.57 23881.66 30898.68 24394.83 17989.02 31296.88 256
test111195.94 15695.78 14696.41 24498.99 12090.12 31799.04 5892.45 36796.99 5498.03 10099.27 4481.40 30999.48 15596.87 11099.04 11999.63 77
ECVR-MVScopyleft95.95 15495.71 15196.65 21699.02 11490.86 30599.03 6291.80 36896.96 5598.10 9499.26 4581.31 31099.51 15096.90 10399.04 11999.59 85
GBi-Net94.49 24293.80 25196.56 22998.21 18195.00 19798.82 10698.18 22692.46 24994.09 24297.07 27381.16 31197.95 31692.08 26292.14 26796.72 274
test194.49 24293.80 25196.56 22998.21 18195.00 19798.82 10698.18 22692.46 24994.09 24297.07 27381.16 31197.95 31692.08 26292.14 26796.72 274
FMVSNet294.47 24493.61 26497.04 19098.21 18196.43 13598.79 11798.27 21392.46 24993.50 26797.09 27081.16 31198.00 31491.09 27991.93 27096.70 278
GA-MVS94.81 22094.03 23297.14 18497.15 26293.86 24296.76 32497.58 28394.00 18394.76 21397.04 27980.91 31498.48 26091.79 27196.25 21499.09 154
SixPastTwentyTwo93.34 28292.86 28194.75 30695.67 32689.41 32898.75 11996.67 33693.89 18890.15 32898.25 18080.87 31598.27 29590.90 28490.64 28896.57 293
ACMH+92.99 1494.30 25393.77 25495.88 27197.81 21192.04 28498.71 13198.37 19593.99 18490.60 32498.47 15180.86 31699.05 19592.75 24692.40 26696.55 297
gg-mvs-nofinetune92.21 29890.58 30597.13 18596.75 28595.09 19495.85 34089.40 37285.43 35094.50 21981.98 36580.80 31798.40 28292.16 26098.33 15697.88 215
test20.0390.89 30990.38 30792.43 33493.48 35588.14 34798.33 18997.56 28493.40 21787.96 34296.71 30380.69 31894.13 36479.15 35886.17 34095.01 347
VPNet94.99 20894.19 22397.40 17497.16 26196.57 12798.71 13198.97 3095.67 10694.84 20898.24 18180.36 31998.67 24496.46 12787.32 33096.96 244
GG-mvs-BLEND96.59 22596.34 30494.98 20096.51 33288.58 37393.10 28294.34 34980.34 32098.05 31089.53 30796.99 18996.74 271
KD-MVS_self_test90.38 31289.38 31593.40 32792.85 35888.94 33697.95 23897.94 26590.35 31190.25 32693.96 35079.82 32195.94 35584.62 34476.69 35995.33 338
PVSNet_088.72 1991.28 30490.03 31095.00 29797.99 20187.29 35394.84 35298.50 17192.06 26789.86 32995.19 33979.81 32299.39 16292.27 25969.79 36498.33 203
MS-PatchMatch93.84 27593.63 26394.46 31696.18 30989.45 32697.76 25798.27 21392.23 26292.13 30897.49 24379.50 32398.69 24089.75 30299.38 10695.25 339
MVS-HIRNet89.46 32188.40 32092.64 33397.58 22682.15 36394.16 35893.05 36675.73 36290.90 32082.52 36479.42 32498.33 28483.53 34798.68 13697.43 226
MDA-MVSNet-bldmvs89.97 31688.35 32194.83 30495.21 33791.34 29697.64 26597.51 29288.36 33471.17 36696.13 32479.22 32596.63 35083.65 34686.27 33996.52 303
XVG-ACMP-BASELINE94.54 23894.14 22895.75 27696.55 29491.65 29298.11 22598.44 18094.96 14794.22 23697.90 20679.18 32699.11 18894.05 20993.85 24496.48 310
RRT_test8_iter0594.56 23694.19 22395.67 27897.60 22491.34 29698.93 8498.42 18594.75 15493.39 27097.87 21079.00 32798.61 24896.78 11790.99 28597.07 237
Anonymous2024052995.10 20294.22 22197.75 15099.01 11694.26 23398.87 9698.83 7185.79 34896.64 16898.97 9378.73 32899.85 5396.27 13394.89 22699.12 151
TESTMET0.1,194.18 26293.69 26195.63 27996.92 27489.12 33196.91 31294.78 35493.17 22694.88 20796.45 31378.52 32998.92 21893.09 23498.50 14798.85 173
pmmvs-eth3d90.36 31389.05 31894.32 31891.10 36392.12 28097.63 26896.95 32288.86 33184.91 35493.13 35378.32 33096.74 34588.70 31681.81 34994.09 354
KD-MVS_2432*160089.61 31987.96 32394.54 31194.06 35191.59 29395.59 34597.63 28089.87 31988.95 33794.38 34778.28 33196.82 34384.83 34068.05 36595.21 340
miper_refine_blended89.61 31987.96 32394.54 31194.06 35191.59 29395.59 34597.63 28089.87 31988.95 33794.38 34778.28 33196.82 34384.83 34068.05 36595.21 340
Anonymous20240521195.28 19294.49 20697.67 15899.00 11793.75 24798.70 13597.04 31690.66 30396.49 17998.80 11878.13 33399.83 5996.21 13695.36 22599.44 112
IB-MVS91.98 1793.27 28491.97 29597.19 18197.47 23693.41 26197.09 30295.99 34193.32 22092.47 30195.73 33178.06 33499.53 14694.59 18982.98 34598.62 191
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LF4IMVS93.14 28992.79 28394.20 31995.88 32188.67 33997.66 26497.07 31493.81 19491.71 31397.65 23077.96 33598.81 23391.47 27791.92 27195.12 342
test-mter94.08 26993.51 26895.80 27396.77 28289.70 32196.91 31295.21 34992.89 23894.83 21095.72 33377.69 33698.97 20893.06 23598.50 14798.72 181
USDC93.33 28392.71 28495.21 29096.83 28190.83 30796.91 31297.50 29393.84 19190.72 32298.14 18777.69 33698.82 23289.51 30893.21 25995.97 328
test_040291.32 30390.27 30894.48 31496.60 29291.12 30298.50 16897.22 31086.10 34588.30 34196.98 28577.65 33897.99 31578.13 36192.94 26294.34 350
K. test v392.55 29591.91 29794.48 31495.64 32789.24 32999.07 5494.88 35394.04 17986.78 34697.59 23677.64 33997.64 32992.08 26289.43 30596.57 293
TDRefinement91.06 30789.68 31295.21 29085.35 36991.49 29598.51 16797.07 31491.47 28288.83 33997.84 21477.31 34099.09 19292.79 24577.98 35795.04 345
test250694.44 24693.91 24396.04 26199.02 11488.99 33599.06 5579.47 37896.96 5598.36 8499.26 4577.21 34199.52 14996.78 11799.04 11999.59 85
new_pmnet90.06 31589.00 31993.22 33194.18 34888.32 34596.42 33496.89 32786.19 34385.67 35293.62 35177.18 34297.10 33981.61 35189.29 30794.23 351
Anonymous2024052191.18 30590.44 30693.42 32593.70 35488.47 34298.94 8297.56 28488.46 33389.56 33395.08 34277.15 34396.97 34183.92 34589.55 30294.82 348
new-patchmatchnet88.50 32387.45 32691.67 33990.31 36585.89 35697.16 29997.33 30489.47 32583.63 35692.77 35476.38 34495.06 36182.70 34877.29 35894.06 355
lessismore_v094.45 31794.93 34188.44 34391.03 37086.77 34797.64 23276.23 34598.42 26990.31 29285.64 34396.51 306
TinyColmap92.31 29791.53 29894.65 30996.92 27489.75 32096.92 31096.68 33590.45 30889.62 33197.85 21376.06 34698.81 23386.74 32792.51 26595.41 337
pmmvs691.77 30090.63 30495.17 29294.69 34691.24 30198.67 14197.92 26786.14 34489.62 33197.56 24075.79 34798.34 28390.75 28784.56 34495.94 329
MIMVSNet93.26 28592.21 29296.41 24497.73 21793.13 27195.65 34497.03 31791.27 29494.04 24596.06 32575.33 34897.19 33886.56 32896.23 21598.92 171
UnsupCasMVSNet_eth90.99 30889.92 31194.19 32094.08 35089.83 31997.13 30198.67 13293.69 20385.83 35196.19 32375.15 34996.74 34589.14 31379.41 35596.00 327
LFMVS95.86 16094.98 18698.47 10098.87 12896.32 14098.84 10296.02 34093.40 21798.62 6999.20 5774.99 35099.63 13297.72 6097.20 18699.46 109
CMPMVSbinary66.06 2189.70 31789.67 31389.78 34193.19 35676.56 36697.00 30698.35 19880.97 35781.57 35897.75 22274.75 35198.61 24889.85 30093.63 24894.17 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet591.81 29990.92 30294.49 31397.21 25592.09 28198.00 23597.55 28989.31 32890.86 32195.61 33774.48 35295.32 35985.57 33589.70 29896.07 326
testgi93.06 29092.45 28994.88 30196.43 30189.90 31898.75 11997.54 29095.60 10991.63 31597.91 20574.46 35397.02 34086.10 33193.67 24697.72 222
VDD-MVS95.82 16395.23 17497.61 16398.84 13293.98 23998.68 13897.40 30295.02 14497.95 11099.34 3374.37 35499.78 9998.64 496.80 19299.08 157
FMVSNet193.19 28892.07 29396.56 22997.54 23195.00 19798.82 10698.18 22690.38 31092.27 30597.07 27373.68 35597.95 31689.36 31191.30 27996.72 274
VDDNet95.36 18794.53 20497.86 14098.10 19395.13 19398.85 9997.75 27490.46 30798.36 8499.39 1673.27 35699.64 12997.98 4296.58 19998.81 176
UniMVSNet_ETH3D94.24 25793.33 27396.97 19597.19 25993.38 26398.74 12298.57 15391.21 29793.81 25598.58 14172.85 35798.77 23795.05 17593.93 24398.77 180
DeepMVS_CXcopyleft86.78 34397.09 26672.30 36995.17 35275.92 36184.34 35595.19 33970.58 35895.35 35779.98 35689.04 31192.68 360
OpenMVS_ROBcopyleft86.42 2089.00 32287.43 32793.69 32393.08 35789.42 32797.91 24296.89 32778.58 35985.86 35094.69 34469.48 35998.29 29277.13 36293.29 25893.36 359
EGC-MVSNET75.22 33369.54 33692.28 33694.81 34389.58 32497.64 26596.50 3391.82 3765.57 37795.74 32968.21 36096.26 35473.80 36591.71 27390.99 361
EG-PatchMatch MVS91.13 30690.12 30994.17 32194.73 34589.00 33498.13 22297.81 27189.22 32985.32 35396.46 31267.71 36198.42 26987.89 32393.82 24595.08 344
MIMVSNet189.67 31888.28 32293.82 32292.81 35991.08 30398.01 23397.45 29887.95 33587.90 34395.87 32867.63 36294.56 36378.73 36088.18 32195.83 331
pmmvs386.67 32784.86 33092.11 33888.16 36687.19 35496.63 32894.75 35579.88 35887.22 34592.75 35566.56 36395.20 36081.24 35276.56 36093.96 356
MVS_030492.81 29292.01 29495.23 28997.46 23791.33 29898.17 21898.81 7991.13 29993.80 25695.68 33666.08 36498.06 30990.79 28596.13 21896.32 319
tmp_tt68.90 33566.97 33774.68 35250.78 37959.95 37587.13 36483.47 37638.80 37262.21 36896.23 32064.70 36576.91 37488.91 31530.49 37287.19 364
UnsupCasMVSNet_bld87.17 32585.12 32993.31 32991.94 36088.77 33794.92 35198.30 21084.30 35382.30 35790.04 35963.96 36697.25 33785.85 33474.47 36393.93 357
test_method79.03 32878.17 33181.63 34886.06 36854.40 37882.75 36796.89 32739.54 37180.98 35995.57 33858.37 36794.73 36284.74 34378.61 35695.75 332
PM-MVS87.77 32486.55 32891.40 34091.03 36483.36 36196.92 31095.18 35191.28 29386.48 34993.42 35253.27 36896.74 34589.43 31081.97 34894.11 353
ambc89.49 34286.66 36775.78 36792.66 36096.72 33386.55 34892.50 35646.01 36997.90 32090.32 29182.09 34694.80 349
Gipumacopyleft78.40 33076.75 33383.38 34795.54 33080.43 36579.42 36897.40 30264.67 36573.46 36380.82 36645.65 37093.14 36566.32 36787.43 32876.56 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS64.07 33863.26 34166.53 35581.73 37258.81 37791.85 36184.75 37551.93 37059.09 37075.13 36943.32 37179.09 37342.03 37239.47 37061.69 369
E-PMN64.94 33764.25 33967.02 35482.28 37159.36 37691.83 36285.63 37452.69 36860.22 36977.28 36841.06 37280.12 37246.15 37141.14 36961.57 370
FPMVS77.62 33277.14 33279.05 35079.25 37360.97 37495.79 34195.94 34365.96 36467.93 36794.40 34637.73 37388.88 36968.83 36688.46 31787.29 363
PMMVS277.95 33175.44 33585.46 34582.54 37074.95 36894.23 35793.08 36572.80 36374.68 36287.38 36136.36 37491.56 36773.95 36463.94 36789.87 362
LCM-MVSNet78.70 32976.24 33486.08 34477.26 37571.99 37094.34 35696.72 33361.62 36676.53 36189.33 36033.91 37592.78 36681.85 35074.60 36293.46 358
ANet_high69.08 33465.37 33880.22 34965.99 37771.96 37190.91 36390.09 37182.62 35449.93 37278.39 36729.36 37681.75 37062.49 36838.52 37186.95 365
PMVScopyleft61.03 2365.95 33663.57 34073.09 35357.90 37851.22 37985.05 36693.93 36454.45 36744.32 37383.57 36313.22 37789.15 36858.68 36981.00 35278.91 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12320.95 34323.72 34612.64 35713.54 3818.19 38196.55 3316.13 3827.48 37516.74 37537.98 37312.97 3786.05 37616.69 3745.43 37523.68 371
wuyk23d30.17 34030.18 34430.16 35678.61 37443.29 38066.79 36914.21 38017.31 37314.82 37611.93 37611.55 37941.43 37537.08 37319.30 3735.76 373
MVEpermissive62.14 2263.28 33959.38 34274.99 35174.33 37665.47 37285.55 36580.50 37752.02 36951.10 37175.00 37010.91 38080.50 37151.60 37053.40 36878.99 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs21.48 34224.95 34511.09 35814.89 3806.47 38296.56 3309.87 3817.55 37417.93 37439.02 3729.43 3815.90 37716.56 37512.72 37420.91 372
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.20 34410.94 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37898.43 1540.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.82 198.66 2699.69 198.95 3497.46 2299.39 15
MSC_two_6792asdad99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
No_MVS99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
eth-test20.00 382
eth-test0.00 382
IU-MVS99.71 2199.23 798.64 14095.28 12899.63 498.35 2999.81 1099.83 7
save fliter99.46 5398.38 4098.21 20698.71 11797.95 3
test_0728_SECOND99.71 199.72 1399.35 198.97 7698.88 5099.94 398.47 1999.81 1099.84 6
GSMVS99.20 137
test_part299.63 3199.18 1099.27 20
MTGPAbinary98.74 107
MTMP98.89 9194.14 362
gm-plane-assit95.88 32187.47 35189.74 32296.94 29199.19 17793.32 229
test9_res96.39 13299.57 7999.69 55
agg_prior295.87 14899.57 7999.68 61
agg_prior99.30 7798.38 4098.72 11397.57 13699.81 74
test_prior498.01 6797.86 249
test_prior99.19 4699.31 7298.22 5598.84 6899.70 11899.65 71
旧先验297.57 27191.30 29198.67 6399.80 8395.70 158
新几何297.64 265
无先验97.58 27098.72 11391.38 28599.87 4793.36 22799.60 83
原ACMM297.67 263
testdata299.89 3891.65 275
testdata197.32 28796.34 80
plane_prior797.42 24294.63 215
plane_prior598.56 15599.03 20096.07 13894.27 22996.92 247
plane_prior498.28 175
plane_prior394.61 21897.02 5295.34 198
plane_prior298.80 11397.28 34
plane_prior197.37 246
plane_prior94.60 22098.44 17596.74 6494.22 231
n20.00 383
nn0.00 383
door-mid94.37 358
test1198.66 135
door94.64 356
HQP5-MVS94.25 234
HQP-NCC97.20 25698.05 22996.43 7694.45 221
ACMP_Plane97.20 25698.05 22996.43 7694.45 221
BP-MVS95.30 167
HQP4-MVS94.45 22198.96 21296.87 258
HQP3-MVS98.46 17694.18 233
NP-MVS97.28 25094.51 22397.73 223
ACMMP++_ref92.97 261
ACMMP++93.61 249