This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
PC_three_145282.47 21997.09 997.07 4492.72 198.04 15792.70 4299.02 1298.86 9
DVP-MVS++95.98 196.36 194.82 3497.78 5786.00 5698.29 197.49 590.75 2097.62 598.06 692.59 299.61 395.64 699.02 1298.86 9
OPU-MVS96.21 398.00 4690.85 397.13 1297.08 4292.59 298.94 8792.25 5198.99 1498.84 12
SED-MVS95.91 296.28 294.80 3698.77 585.99 5897.13 1297.44 1490.31 2997.71 198.07 492.31 499.58 895.66 499.13 398.84 12
test_241102_ONE98.77 585.99 5897.44 1490.26 3397.71 197.96 1092.31 499.38 32
test_0728_THIRD90.75 2097.04 1098.05 892.09 699.55 1595.64 699.13 399.13 1
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 8297.51 489.13 6197.14 897.91 1191.64 799.62 194.61 1499.17 298.86 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6197.09 1496.73 8190.27 3197.04 1098.05 891.47 899.55 1595.62 899.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 6197.19 997.47 1090.27 3197.64 498.13 191.47 8
test_241102_TWO97.44 1490.31 2997.62 598.07 491.46 1099.58 895.66 499.12 698.98 8
test_one_060198.58 1285.83 6797.44 1491.05 1596.78 1398.06 691.45 11
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2397.47 1091.73 896.10 1796.69 6189.90 1299.30 4294.70 1298.04 7099.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11496.52 9580.00 21794.00 18797.08 4690.05 3595.65 2197.29 2889.66 1398.97 8393.95 1998.71 3498.50 26
SD-MVS94.96 1295.33 893.88 6597.25 7886.69 3296.19 4797.11 4590.42 2896.95 1297.27 2989.53 1496.91 24694.38 1698.85 1998.03 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 9596.96 5592.09 395.32 2397.08 4289.49 1599.33 3995.10 1198.85 1998.66 18
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 497.40 2089.03 6596.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 3
MCST-MVS94.45 2194.20 2995.19 1198.46 2087.50 1595.00 11597.12 4387.13 11792.51 8096.30 8089.24 1799.34 3693.46 2598.62 4898.73 15
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5496.62 9488.14 9296.10 1796.96 4989.09 1898.94 8794.48 1598.68 3998.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8186.33 4797.33 597.30 2991.38 1195.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 14
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4397.28 3185.90 14497.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
9.1494.47 1897.79 5496.08 5597.44 1486.13 14295.10 2697.40 2388.34 2199.22 4993.25 3298.70 36
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7295.21 10195.47 17689.44 5095.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3197.48 987.76 10495.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 6596.96 5591.75 794.02 3996.83 5488.12 2499.55 1593.41 2898.94 1698.28 52
agg_prior193.29 5992.97 6394.26 5897.38 6985.92 6393.92 19196.72 8381.96 23192.16 8596.23 8487.85 2598.97 8391.95 6598.55 5397.90 83
CSCG93.23 6293.05 6093.76 7298.04 4484.07 10396.22 4697.37 2184.15 18290.05 12395.66 10787.77 2699.15 5689.91 9698.27 6298.07 70
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 7796.93 5892.34 293.94 4096.58 7187.74 2799.44 3092.83 3798.40 5798.62 20
ETH3D-3000-0.194.61 1794.44 1995.12 1397.70 6087.71 1195.98 6297.44 1486.67 13095.25 2597.31 2787.73 2899.24 4793.11 3598.76 3098.40 39
TEST997.53 6386.49 4194.07 18096.78 7481.61 24492.77 7096.20 8687.71 2999.12 58
train_agg93.44 5493.08 5994.52 4897.53 6386.49 4194.07 18096.78 7481.86 23792.77 7096.20 8687.63 3099.12 5892.14 5698.69 3797.94 79
test_897.49 6686.30 5094.02 18596.76 7781.86 23792.70 7496.20 8687.63 3099.02 71
ZD-MVS98.15 3786.62 3797.07 4783.63 19394.19 3496.91 5187.57 3299.26 4691.99 6198.44 55
TSAR-MVS + GP.93.66 4993.41 5394.41 5596.59 9186.78 2894.40 15593.93 24689.77 4494.21 3395.59 11087.35 3398.61 11092.72 4096.15 11297.83 88
APD-MVScopyleft94.24 3194.07 3594.75 3998.06 4386.90 2395.88 6696.94 5785.68 15095.05 2797.18 3787.31 3499.07 6191.90 6998.61 4998.28 52
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3 D test640093.64 5093.22 5694.92 2297.79 5486.84 2495.31 8997.26 3282.67 21793.81 4396.29 8187.29 3599.27 4589.87 9798.67 4198.65 19
ETH3D cwj APD-0.1693.91 4293.53 5195.06 1596.76 8687.78 994.92 12097.21 3784.33 18093.89 4297.09 4187.20 3699.29 4491.90 6998.44 5598.12 66
Regformer-294.33 2894.22 2694.68 4195.54 13186.75 3194.57 14396.70 8691.84 694.41 2996.56 7387.19 3799.13 5793.50 2497.65 8398.16 62
segment_acmp87.16 38
Regformer-194.22 3394.13 3394.51 4995.54 13186.36 4694.57 14396.44 10391.69 994.32 3296.56 7387.05 3999.03 6793.35 2997.65 8398.15 63
testtj94.39 2694.18 3095.00 1898.24 3386.77 3096.16 4897.23 3587.28 11594.85 2897.04 4586.99 4099.52 2391.54 7598.33 6098.71 16
旧先验196.79 8581.81 16395.67 16096.81 5686.69 4197.66 8296.97 122
test_prior393.60 5193.53 5193.82 6797.29 7484.49 9094.12 17396.88 6287.67 10792.63 7596.39 7886.62 4298.87 9191.50 7698.67 4198.11 68
test_prior294.12 17387.67 10792.63 7596.39 7886.62 4291.50 7698.67 41
CDPH-MVS92.83 6692.30 7494.44 5197.79 5486.11 5494.06 18296.66 9180.09 26492.77 7096.63 6886.62 4299.04 6687.40 12598.66 4498.17 61
DPM-MVS92.58 7091.74 8095.08 1496.19 10389.31 592.66 23896.56 10083.44 19991.68 10095.04 12486.60 4598.99 8085.60 14997.92 7596.93 124
DELS-MVS93.43 5693.25 5593.97 6295.42 13585.04 7993.06 22897.13 4290.74 2291.84 9495.09 12386.32 4699.21 5091.22 8098.45 5497.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS94.47 1994.28 2395.03 1698.52 1686.96 1996.85 2697.32 2788.24 8693.15 5997.04 4586.17 4799.62 192.40 4798.81 2298.52 24
HFP-MVS94.52 1894.40 2094.86 2798.61 1086.81 2696.94 1897.34 2288.63 7493.65 4797.21 3486.10 4899.49 2692.35 4998.77 2898.30 48
#test#94.32 2994.14 3294.86 2798.61 1086.81 2696.43 3497.34 2287.51 11093.65 4797.21 3486.10 4899.49 2691.68 7398.77 2898.30 48
MVS_111021_HR93.45 5393.31 5493.84 6696.99 8184.84 8093.24 22197.24 3388.76 7191.60 10195.85 10086.07 5098.66 10591.91 6698.16 6598.03 74
Regformer-493.91 4293.81 4294.19 6095.36 13685.47 7594.68 13596.41 10691.60 1093.75 4496.71 5985.95 5199.10 6093.21 3396.65 10398.01 76
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 7597.34 2288.28 8595.30 2497.67 1585.90 5299.54 1993.91 2098.95 1598.60 21
Regformer-393.68 4893.64 5093.81 7095.36 13684.61 8494.68 13595.83 14991.27 1293.60 5096.71 5985.75 5398.86 9492.87 3696.65 10397.96 78
PHI-MVS93.89 4493.65 4994.62 4596.84 8486.43 4396.69 3097.49 585.15 16693.56 5396.28 8285.60 5499.31 4192.45 4498.79 2398.12 66
MP-MVS-pluss94.21 3494.00 3894.85 2998.17 3686.65 3594.82 12797.17 4186.26 13892.83 6897.87 1285.57 5599.56 1094.37 1798.92 1798.34 43
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3493.97 3994.90 2698.41 2486.82 2596.54 3397.19 3888.24 8693.26 5596.83 5485.48 5699.59 791.43 7998.40 5798.30 48
MP-MVScopyleft94.25 3094.07 3594.77 3898.47 1986.31 4996.71 2996.98 5189.04 6391.98 9097.19 3685.43 5799.56 1092.06 6098.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast89.43 294.04 3793.79 4394.80 3697.48 6786.78 2895.65 7996.89 6189.40 5392.81 6996.97 4885.37 5899.24 4790.87 8898.69 3798.38 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R94.43 2394.27 2594.92 2298.65 886.67 3496.92 2297.23 3588.60 7693.58 5197.27 2985.22 5999.54 1992.21 5298.74 3398.56 23
CP-MVS94.34 2794.21 2894.74 4098.39 2586.64 3697.60 397.24 3388.53 7892.73 7397.23 3285.20 6099.32 4092.15 5598.83 2198.25 57
test1294.34 5697.13 7986.15 5396.29 11291.04 11185.08 6199.01 7398.13 6797.86 86
ACMMPR94.43 2394.28 2394.91 2498.63 986.69 3296.94 1897.32 2788.63 7493.53 5497.26 3185.04 6299.54 1992.35 4998.78 2598.50 26
XVS94.45 2194.32 2194.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6697.16 3985.02 6399.49 2691.99 6198.56 5198.47 32
X-MVStestdata88.31 16886.13 21194.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6623.41 37185.02 6399.49 2691.99 6198.56 5198.47 32
MSLP-MVS++93.72 4794.08 3492.65 10697.31 7283.43 12195.79 7097.33 2590.03 3693.58 5196.96 4984.87 6597.76 17392.19 5498.66 4496.76 128
HPM-MVScopyleft94.02 3893.88 4094.43 5398.39 2585.78 6997.25 897.07 4786.90 12592.62 7796.80 5884.85 6699.17 5392.43 4598.65 4698.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS94.23 3294.17 3194.43 5398.21 3585.78 6996.40 3796.90 6088.20 8994.33 3197.40 2384.75 6799.03 6793.35 2997.99 7198.48 28
PGM-MVS93.96 4193.72 4694.68 4198.43 2186.22 5295.30 9297.78 187.45 11393.26 5597.33 2684.62 6899.51 2490.75 9198.57 5098.32 47
EI-MVSNet-Vis-set93.01 6592.92 6493.29 7795.01 15083.51 11994.48 14795.77 15390.87 1692.52 7996.67 6384.50 6999.00 7891.99 6194.44 14097.36 104
zzz-MVS94.47 1994.30 2295.00 1898.42 2286.95 2095.06 11396.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
MTAPA94.42 2594.22 2695.00 1898.42 2286.95 2094.36 16396.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
test117293.97 4094.07 3593.66 7498.11 3983.45 12096.26 4396.84 6788.33 8294.19 3497.43 2084.24 7299.01 7393.26 3197.98 7298.52 24
SR-MVS-dyc-post93.82 4593.82 4193.82 6797.92 4784.57 8696.28 4196.76 7787.46 11193.75 4497.43 2084.24 7299.01 7392.73 3897.80 7897.88 84
ETV-MVS92.74 6892.66 6992.97 9195.20 14584.04 10595.07 11096.51 10190.73 2392.96 6491.19 26084.06 7498.34 12891.72 7296.54 10696.54 138
CS-MVS92.55 7192.87 6691.58 15694.21 18980.54 20095.30 9296.68 8988.18 9192.09 8894.57 14584.06 7498.05 15692.56 4398.19 6496.15 146
EI-MVSNet-UG-set92.74 6892.62 7093.12 8394.86 16283.20 12694.40 15595.74 15690.71 2492.05 8996.60 7084.00 7698.99 8091.55 7493.63 14897.17 113
mPP-MVS93.99 3993.78 4494.63 4498.50 1785.90 6696.87 2496.91 5988.70 7291.83 9697.17 3883.96 7799.55 1591.44 7898.64 4798.43 38
APD-MVS_3200maxsize93.78 4693.77 4593.80 7197.92 4784.19 10196.30 3996.87 6486.96 12193.92 4197.47 1883.88 7898.96 8692.71 4197.87 7698.26 56
CS-MVS-test92.55 7192.72 6892.02 13294.87 16081.34 17796.43 3496.57 9889.04 6391.05 11094.41 14883.85 7998.09 15090.83 9097.47 8696.64 133
EIA-MVS91.95 7991.94 7791.98 13695.16 14680.01 21695.36 8696.73 8188.44 7989.34 13092.16 22783.82 8098.45 12189.35 10297.06 9297.48 101
EPP-MVSNet91.70 8591.56 8292.13 13095.88 11880.50 20297.33 595.25 19286.15 14089.76 12595.60 10983.42 8198.32 13187.37 12793.25 15997.56 99
UA-Net92.83 6692.54 7193.68 7396.10 10884.71 8395.66 7796.39 10891.92 493.22 5796.49 7583.16 8298.87 9184.47 16295.47 12097.45 103
UniMVSNet_NR-MVSNet89.92 12289.29 12491.81 14993.39 21983.72 11294.43 15397.12 4389.80 4086.46 17893.32 18883.16 8297.23 22384.92 15581.02 30294.49 218
DROMVSNet93.44 5493.71 4792.63 10795.21 14482.43 15097.27 796.71 8590.57 2792.88 6595.80 10283.16 8298.16 13993.68 2398.14 6697.31 105
RE-MVS-def93.68 4897.92 4784.57 8696.28 4196.76 7787.46 11193.75 4497.43 2082.94 8592.73 3897.80 7897.88 84
112190.42 11089.49 11693.20 8097.27 7684.46 9392.63 23995.51 17471.01 34791.20 10896.21 8582.92 8699.05 6380.56 22598.07 6996.10 153
新几何193.10 8497.30 7384.35 9995.56 16871.09 34691.26 10796.24 8382.87 8798.86 9479.19 24498.10 6896.07 155
原ACMM192.01 13397.34 7181.05 18596.81 7278.89 27890.45 11595.92 9782.65 8898.84 9980.68 22398.26 6396.14 148
casdiffmvs92.51 7392.43 7392.74 10194.41 18381.98 16094.54 14596.23 11889.57 4891.96 9196.17 9082.58 8998.01 16090.95 8695.45 12298.23 58
DeepC-MVS88.79 393.31 5892.99 6294.26 5896.07 11085.83 6794.89 12296.99 5089.02 6689.56 12697.37 2582.51 9099.38 3292.20 5398.30 6197.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast93.40 5793.22 5693.94 6498.36 2784.83 8197.15 1196.80 7385.77 14792.47 8197.13 4082.38 9199.07 6190.51 9398.40 5797.92 82
baseline92.39 7692.29 7592.69 10594.46 18081.77 16494.14 17296.27 11389.22 5791.88 9296.00 9482.35 9297.99 16291.05 8295.27 12798.30 48
canonicalmvs93.27 6092.75 6794.85 2995.70 12587.66 1396.33 3896.41 10690.00 3794.09 3794.60 14282.33 9398.62 10992.40 4792.86 16798.27 54
DP-MVS Recon91.95 7991.28 8593.96 6398.33 2985.92 6394.66 13896.66 9182.69 21690.03 12495.82 10182.30 9499.03 6784.57 16196.48 10996.91 125
PAPR90.02 11789.27 12692.29 12695.78 12180.95 18992.68 23796.22 11981.91 23486.66 17693.75 18082.23 9598.44 12279.40 24394.79 13097.48 101
MVS_Test91.31 9191.11 8891.93 14094.37 18480.14 20893.46 20995.80 15186.46 13391.35 10693.77 17882.21 9698.09 15087.57 12394.95 12997.55 100
nrg03091.08 9690.39 9893.17 8293.07 22886.91 2296.41 3696.26 11488.30 8488.37 14394.85 13282.19 9797.64 18491.09 8182.95 27394.96 192
UniMVSNet (Re)89.80 12589.07 12992.01 13393.60 21484.52 8994.78 13097.47 1089.26 5686.44 18192.32 22282.10 9897.39 21184.81 15880.84 30694.12 230
testdata90.49 19896.40 9777.89 26395.37 18872.51 33993.63 4996.69 6182.08 9997.65 18283.08 17797.39 8795.94 159
PAPM_NR91.22 9390.78 9692.52 11397.60 6281.46 17394.37 16296.24 11786.39 13687.41 16094.80 13482.06 10098.48 11682.80 18595.37 12397.61 95
MG-MVS91.77 8291.70 8192.00 13597.08 8080.03 21593.60 20495.18 19687.85 10190.89 11296.47 7682.06 10098.36 12585.07 15397.04 9397.62 94
CANet93.54 5293.20 5894.55 4795.65 12685.73 7194.94 11896.69 8891.89 590.69 11395.88 9981.99 10299.54 1993.14 3497.95 7498.39 40
FC-MVSNet-test90.27 11290.18 10390.53 19493.71 21079.85 22195.77 7197.59 289.31 5586.27 18494.67 13981.93 10397.01 24084.26 16488.09 22994.71 203
FIs90.51 10990.35 9990.99 18293.99 20080.98 18795.73 7297.54 389.15 6086.72 17594.68 13881.83 10497.24 22285.18 15288.31 22594.76 202
ACMMPcopyleft93.24 6192.88 6594.30 5798.09 4285.33 7796.86 2597.45 1388.33 8290.15 12297.03 4781.44 10599.51 2490.85 8995.74 11598.04 73
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+91.59 8791.11 8893.01 8994.35 18783.39 12394.60 14095.10 20087.10 11890.57 11493.10 19981.43 10698.07 15489.29 10394.48 13897.59 97
MVS_111021_LR92.47 7492.29 7592.98 9095.99 11484.43 9793.08 22696.09 12788.20 8991.12 10995.72 10681.33 10797.76 17391.74 7197.37 8896.75 129
mvs_anonymous89.37 14089.32 12389.51 24293.47 21774.22 30791.65 26994.83 21782.91 21285.45 20693.79 17681.23 10896.36 27886.47 13994.09 14297.94 79
PVSNet_BlendedMVS89.98 11889.70 11390.82 18696.12 10581.25 17993.92 19196.83 6983.49 19889.10 13392.26 22581.04 10998.85 9786.72 13787.86 23392.35 305
PVSNet_Blended90.73 10190.32 10091.98 13696.12 10581.25 17992.55 24396.83 6982.04 22989.10 13392.56 21581.04 10998.85 9786.72 13795.91 11395.84 164
alignmvs93.08 6492.50 7294.81 3595.62 12887.61 1495.99 6096.07 12989.77 4494.12 3694.87 12980.56 11198.66 10592.42 4693.10 16298.15 63
abl_693.18 6393.05 6093.57 7697.52 6584.27 10095.53 8396.67 9087.85 10193.20 5897.22 3380.35 11299.18 5291.91 6697.21 8997.26 108
API-MVS90.66 10490.07 10692.45 11696.36 9984.57 8696.06 5895.22 19582.39 22089.13 13294.27 15680.32 11398.46 11880.16 23296.71 10194.33 223
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9883.17 12794.87 12496.66 9183.29 20389.27 13194.46 14780.29 11499.17 5387.57 12395.37 12396.05 157
test22296.55 9381.70 16592.22 25395.01 20368.36 35290.20 11996.14 9180.26 11597.80 7896.05 157
diffmvs91.37 9091.23 8691.77 15093.09 22780.27 20592.36 24895.52 17387.03 12091.40 10594.93 12680.08 11697.44 19992.13 5794.56 13697.61 95
Test By Simon80.02 117
IterMVS-LS88.36 16787.91 16189.70 23593.80 20778.29 25493.73 19895.08 20285.73 14884.75 22491.90 24179.88 11896.92 24583.83 16982.51 27993.89 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 14488.86 13689.80 23191.84 26078.30 25393.70 20195.01 20385.73 14887.15 16495.28 11579.87 11997.21 22583.81 17087.36 23893.88 243
TAPA-MVS84.62 688.16 17287.01 18091.62 15496.64 8980.65 19694.39 15796.21 12276.38 30386.19 18695.44 11179.75 12098.08 15362.75 34795.29 12596.13 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+89.41 13788.64 13891.71 15294.74 16680.81 19393.54 20595.10 20083.11 20686.82 17490.67 27879.74 12197.75 17680.51 22793.55 15096.57 136
pcd_1.5k_mvsjas6.64 3458.86 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37779.70 1220.00 3780.00 3760.00 3760.00 374
PS-MVSNAJss89.97 11989.62 11491.02 17991.90 25880.85 19295.26 9895.98 13586.26 13886.21 18594.29 15379.70 12297.65 18288.87 10888.10 22794.57 211
PS-MVSNAJ91.18 9490.92 9291.96 13895.26 14282.60 14992.09 25895.70 15886.27 13791.84 9492.46 21779.70 12298.99 8089.08 10595.86 11494.29 224
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 15382.42 15192.24 25295.64 16586.11 14391.74 9993.14 19779.67 12598.89 9089.06 10695.46 12194.28 225
WR-MVS_H87.80 18187.37 17189.10 25093.23 22378.12 25795.61 8097.30 2987.90 9783.72 25392.01 23879.65 12696.01 29176.36 26980.54 31093.16 279
EPNet91.79 8191.02 9194.10 6190.10 31985.25 7896.03 5992.05 28792.83 187.39 16395.78 10379.39 12799.01 7388.13 11797.48 8598.05 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth87.22 20986.62 19489.02 25392.13 25077.40 27790.91 28094.81 21981.28 25084.32 23990.08 28979.26 12896.62 25683.81 17082.94 27493.04 284
miper_enhance_ethall86.90 21886.18 21089.06 25191.66 26877.58 27490.22 29294.82 21879.16 27584.48 23089.10 30379.19 12996.66 25484.06 16682.94 27492.94 287
NR-MVSNet88.58 16387.47 16991.93 14093.04 23084.16 10294.77 13196.25 11689.05 6280.04 30593.29 19179.02 13097.05 23781.71 20780.05 31794.59 209
TAMVS89.21 14288.29 15191.96 13893.71 21082.62 14893.30 21594.19 23882.22 22487.78 15493.94 16778.83 13196.95 24377.70 25792.98 16596.32 141
c3_l87.14 21486.50 19989.04 25292.20 24777.26 27891.22 27694.70 22382.01 23084.34 23890.43 28278.81 13296.61 25983.70 17281.09 29993.25 273
1112_ss88.42 16487.33 17291.72 15194.92 15780.98 18792.97 23194.54 22678.16 29283.82 25193.88 17278.78 13397.91 16879.45 23989.41 20596.26 144
CDS-MVSNet89.45 13488.51 14292.29 12693.62 21383.61 11793.01 22994.68 22481.95 23287.82 15393.24 19378.69 13496.99 24180.34 22993.23 16096.28 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS89.60 12888.92 13391.67 15395.47 13481.15 18392.38 24794.78 22183.11 20689.06 13594.32 15178.67 13596.61 25981.57 20890.89 18797.24 109
CPTT-MVS91.99 7891.80 7992.55 11198.24 3381.98 16096.76 2896.49 10281.89 23690.24 11896.44 7778.59 13698.61 11089.68 9897.85 7797.06 117
IS-MVSNet91.43 8891.09 9092.46 11595.87 12081.38 17696.95 1793.69 25589.72 4689.50 12895.98 9578.57 13797.77 17283.02 17996.50 10898.22 59
OMC-MVS91.23 9290.62 9793.08 8596.27 10184.07 10393.52 20695.93 13986.95 12289.51 12796.13 9278.50 13898.35 12785.84 14692.90 16696.83 127
PCF-MVS84.11 1087.74 18386.08 21592.70 10494.02 19584.43 9789.27 30695.87 14673.62 33084.43 23394.33 15078.48 13998.86 9470.27 30794.45 13994.81 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LCM-MVSNet-Re88.30 16988.32 15088.27 27194.71 16972.41 32993.15 22290.98 31687.77 10379.25 31391.96 23978.35 14095.75 30383.04 17895.62 11696.65 132
HY-MVS83.01 1289.03 14987.94 16092.29 12694.86 16282.77 13892.08 25994.49 22781.52 24686.93 16992.79 21178.32 14198.23 13479.93 23490.55 18895.88 162
GeoE90.05 11689.43 11991.90 14395.16 14680.37 20495.80 6994.65 22583.90 18787.55 15994.75 13578.18 14297.62 18681.28 21193.63 14897.71 92
MVS87.44 19986.10 21491.44 16292.61 24183.62 11692.63 23995.66 16267.26 35381.47 28392.15 22877.95 14398.22 13679.71 23695.48 11992.47 300
MVSFormer91.68 8691.30 8492.80 9793.86 20483.88 10895.96 6395.90 14384.66 17691.76 9794.91 12777.92 14497.30 21489.64 9997.11 9097.24 109
lupinMVS90.92 9790.21 10193.03 8893.86 20483.88 10892.81 23593.86 25079.84 26791.76 9794.29 15377.92 14498.04 15790.48 9497.11 9097.17 113
Test_1112_low_res87.65 18686.51 19891.08 17594.94 15679.28 23591.77 26394.30 23476.04 30883.51 26092.37 22077.86 14697.73 17778.69 24889.13 21296.22 145
VNet92.24 7791.91 7893.24 7996.59 9183.43 12194.84 12696.44 10389.19 5994.08 3895.90 9877.85 14798.17 13888.90 10793.38 15698.13 65
DU-MVS89.34 14188.50 14391.85 14693.04 23083.72 11294.47 15096.59 9689.50 4986.46 17893.29 19177.25 14897.23 22384.92 15581.02 30294.59 209
Baseline_NR-MVSNet87.07 21586.63 19388.40 26791.44 27177.87 26494.23 16992.57 27584.12 18385.74 19292.08 23477.25 14896.04 28882.29 19379.94 31891.30 322
jason90.80 9890.10 10592.90 9493.04 23083.53 11893.08 22694.15 24080.22 26191.41 10494.91 12776.87 15097.93 16790.28 9596.90 9697.24 109
jason: jason.
PAPM86.68 22785.39 23590.53 19493.05 22979.33 23489.79 29994.77 22278.82 28081.95 28093.24 19376.81 15197.30 21466.94 33093.16 16194.95 195
Vis-MVSNet (Re-imp)89.59 12989.44 11890.03 21995.74 12275.85 29595.61 8090.80 32287.66 10987.83 15295.40 11476.79 15296.46 27278.37 24996.73 10097.80 89
baseline188.10 17387.28 17490.57 19294.96 15480.07 21194.27 16691.29 30986.74 12787.41 16094.00 16476.77 15396.20 28380.77 22079.31 32595.44 177
114514_t89.51 13188.50 14392.54 11298.11 3981.99 15995.16 10696.36 11070.19 34985.81 19095.25 11776.70 15498.63 10882.07 19696.86 9997.00 121
PLCcopyleft84.53 789.06 14888.03 15692.15 12997.27 7682.69 14594.29 16595.44 18279.71 26984.01 24794.18 15876.68 15598.75 10377.28 26193.41 15595.02 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TranMVSNet+NR-MVSNet88.84 15587.95 15991.49 15992.68 24083.01 13394.92 12096.31 11189.88 3985.53 19993.85 17476.63 15696.96 24281.91 20079.87 32094.50 216
MAR-MVS90.30 11189.37 12193.07 8796.61 9084.48 9295.68 7595.67 16082.36 22287.85 15192.85 20576.63 15698.80 10180.01 23396.68 10295.91 160
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WR-MVS88.38 16587.67 16590.52 19693.30 22280.18 20693.26 21895.96 13788.57 7785.47 20592.81 20976.12 15896.91 24681.24 21282.29 28194.47 221
v887.50 19886.71 18889.89 22591.37 27779.40 22894.50 14695.38 18684.81 17383.60 25891.33 25576.05 15997.42 20182.84 18380.51 31492.84 291
v14887.04 21686.32 20589.21 24690.94 29577.26 27893.71 20094.43 22984.84 17284.36 23790.80 27476.04 16097.05 23782.12 19579.60 32293.31 270
eth_miper_zixun_eth86.50 23385.77 22788.68 26191.94 25775.81 29690.47 28694.89 21282.05 22784.05 24590.46 28175.96 16196.77 25082.76 18679.36 32493.46 267
3Dnovator+87.14 492.42 7591.37 8395.55 695.63 12788.73 697.07 1696.77 7690.84 1784.02 24696.62 6975.95 16299.34 3687.77 12097.68 8198.59 22
h-mvs3390.80 9890.15 10492.75 10096.01 11282.66 14695.43 8595.53 17289.80 4093.08 6295.64 10875.77 16399.00 7892.07 5878.05 32996.60 134
hse-mvs289.88 12489.34 12291.51 15894.83 16481.12 18493.94 19093.91 24989.80 4093.08 6293.60 18375.77 16397.66 18092.07 5877.07 33695.74 169
BH-untuned88.60 16288.13 15590.01 22295.24 14378.50 24893.29 21694.15 24084.75 17484.46 23193.40 18575.76 16597.40 20877.59 25894.52 13794.12 230
DIV-MVS_self_test86.53 23185.78 22588.75 25892.02 25576.45 28890.74 28294.30 23481.83 23983.34 26490.82 27375.75 16696.57 26281.73 20681.52 29493.24 274
BH-w/o87.57 19487.05 17989.12 24994.90 15977.90 26292.41 24593.51 25782.89 21383.70 25491.34 25475.75 16697.07 23575.49 27793.49 15292.39 303
cl____86.52 23285.78 22588.75 25892.03 25476.46 28790.74 28294.30 23481.83 23983.34 26490.78 27575.74 16896.57 26281.74 20581.54 29393.22 276
cdsmvs_eth3d_5k22.14 34029.52 3430.00 3590.00 3820.00 3830.00 37095.76 1540.00 3770.00 37894.29 15375.66 1690.00 3780.00 3760.00 3760.00 374
CNLPA89.07 14787.98 15892.34 12296.87 8384.78 8294.08 17993.24 26081.41 24784.46 23195.13 12275.57 17096.62 25677.21 26293.84 14695.61 173
CHOSEN 1792x268888.84 15587.69 16392.30 12596.14 10481.42 17590.01 29695.86 14774.52 32387.41 16093.94 16775.46 17198.36 12580.36 22895.53 11797.12 116
CP-MVSNet87.63 18987.26 17688.74 26093.12 22676.59 28695.29 9596.58 9788.43 8083.49 26192.98 20275.28 17295.83 29978.97 24581.15 29893.79 249
v1087.25 20686.38 20089.85 22691.19 28379.50 22594.48 14795.45 18083.79 19083.62 25791.19 26075.13 17397.42 20181.94 19980.60 30892.63 296
Vis-MVSNetpermissive91.75 8391.23 8693.29 7795.32 13983.78 11196.14 5195.98 13589.89 3890.45 11596.58 7175.09 17498.31 13284.75 15996.90 9697.78 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss88.93 15388.26 15390.94 18594.05 19480.78 19491.71 26695.38 18681.55 24588.63 13893.91 17175.04 17595.47 31482.47 18991.61 17896.57 136
v114487.61 19286.79 18690.06 21891.01 29079.34 23193.95 18995.42 18583.36 20285.66 19591.31 25874.98 17697.42 20183.37 17482.06 28493.42 268
miper_lstm_enhance85.27 25584.59 25387.31 29291.28 28174.63 30287.69 32894.09 24481.20 25481.36 28689.85 29574.97 17794.30 32881.03 21679.84 32193.01 285
test_yl90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17595.12 19885.63 15191.49 10294.70 13674.75 17898.42 12386.13 14292.53 17197.31 105
DCV-MVSNet90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17595.12 19885.63 15191.49 10294.70 13674.75 17898.42 12386.13 14292.53 17197.31 105
V4287.68 18486.86 18290.15 21390.58 31080.14 20894.24 16895.28 19183.66 19285.67 19491.33 25574.73 18097.41 20684.43 16381.83 28892.89 289
XVG-OURS-SEG-HR89.95 12089.45 11791.47 16194.00 19981.21 18291.87 26196.06 13185.78 14688.55 13995.73 10574.67 18197.27 21888.71 11089.64 20395.91 160
v2v48287.84 17987.06 17890.17 21190.99 29179.23 23894.00 18795.13 19784.87 17185.53 19992.07 23674.45 18297.45 19784.71 16081.75 29093.85 247
CLD-MVS89.47 13388.90 13491.18 17094.22 18882.07 15892.13 25696.09 12787.90 9785.37 21592.45 21874.38 18397.56 18987.15 13090.43 18993.93 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS87.65 18686.85 18390.03 21992.14 24980.60 19993.76 19795.23 19382.94 21184.60 22694.02 16274.27 18495.49 31381.04 21483.68 26694.01 238
HQP_MVS90.60 10890.19 10291.82 14794.70 17082.73 14295.85 6796.22 11990.81 1886.91 17194.86 13074.23 18598.12 14088.15 11589.99 19494.63 205
plane_prior694.52 17682.75 13974.23 185
v14419287.19 21286.35 20389.74 23290.64 30878.24 25593.92 19195.43 18381.93 23385.51 20191.05 26874.21 18797.45 19782.86 18281.56 29293.53 262
VPA-MVSNet89.62 12788.96 13191.60 15593.86 20482.89 13795.46 8497.33 2587.91 9688.43 14293.31 18974.17 18897.40 20887.32 12882.86 27894.52 214
ab-mvs89.41 13788.35 14792.60 10895.15 14882.65 14792.20 25495.60 16783.97 18688.55 13993.70 18274.16 18998.21 13782.46 19089.37 20696.94 123
131487.51 19686.57 19690.34 20892.42 24479.74 22392.63 23995.35 19078.35 28880.14 30291.62 25074.05 19097.15 22781.05 21393.53 15194.12 230
test_djsdf89.03 14988.64 13890.21 21090.74 30579.28 23595.96 6395.90 14384.66 17685.33 21792.94 20374.02 19197.30 21489.64 9988.53 21894.05 236
cl2286.78 22385.98 21889.18 24892.34 24577.62 27390.84 28194.13 24281.33 24983.97 24890.15 28773.96 19296.60 26184.19 16582.94 27493.33 269
AdaColmapbinary89.89 12389.07 12992.37 12197.41 6883.03 13194.42 15495.92 14082.81 21486.34 18394.65 14073.89 19399.02 7180.69 22295.51 11895.05 187
HyFIR lowres test88.09 17486.81 18491.93 14096.00 11380.63 19790.01 29695.79 15273.42 33187.68 15692.10 23373.86 19497.96 16480.75 22191.70 17797.19 112
HQP2-MVS73.83 195
HQP-MVS89.80 12589.28 12591.34 16594.17 19081.56 16794.39 15796.04 13388.81 6885.43 20993.97 16673.83 19597.96 16487.11 13289.77 20194.50 216
3Dnovator86.66 591.73 8490.82 9594.44 5194.59 17486.37 4597.18 1097.02 4989.20 5884.31 24196.66 6473.74 19799.17 5386.74 13597.96 7397.79 90
EPNet_dtu86.49 23585.94 22188.14 27690.24 31772.82 32194.11 17592.20 28386.66 13179.42 31292.36 22173.52 19895.81 30171.26 30193.66 14795.80 167
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)84.43 26883.06 27188.54 26491.72 26478.44 24995.18 10492.82 26982.73 21579.67 30992.12 23073.49 19995.96 29371.10 30668.73 35491.21 325
Effi-MVS+-dtu88.65 16088.35 14789.54 23993.33 22076.39 28994.47 15094.36 23187.70 10585.43 20989.56 30073.45 20097.26 22085.57 15091.28 18094.97 189
mvs-test189.45 13489.14 12790.38 20593.33 22077.63 27294.95 11794.36 23187.70 10587.10 16792.81 20973.45 20098.03 15985.57 15093.04 16395.48 175
baseline286.50 23385.39 23589.84 22791.12 28776.70 28491.88 26088.58 34682.35 22379.95 30690.95 27073.42 20297.63 18580.27 23189.95 19795.19 184
PEN-MVS86.80 22286.27 20888.40 26792.32 24675.71 29795.18 10496.38 10987.97 9482.82 27093.15 19673.39 20395.92 29476.15 27379.03 32793.59 260
v119287.25 20686.33 20490.00 22390.76 30479.04 23993.80 19595.48 17582.57 21885.48 20491.18 26273.38 20497.42 20182.30 19282.06 28493.53 262
QAPM89.51 13188.15 15493.59 7594.92 15784.58 8596.82 2796.70 8678.43 28783.41 26296.19 8973.18 20599.30 4277.11 26496.54 10696.89 126
tpmrst85.35 25284.99 24286.43 30990.88 30067.88 35388.71 31691.43 30680.13 26386.08 18888.80 30973.05 20696.02 29082.48 18883.40 27295.40 179
PS-CasMVS87.32 20386.88 18188.63 26392.99 23476.33 29195.33 8896.61 9588.22 8883.30 26693.07 20073.03 20795.79 30278.36 25081.00 30493.75 255
DTE-MVSNet86.11 23985.48 23387.98 27991.65 26974.92 30194.93 11995.75 15587.36 11482.26 27593.04 20172.85 20895.82 30074.04 28977.46 33393.20 277
MVSTER88.84 15588.29 15190.51 19792.95 23580.44 20393.73 19895.01 20384.66 17687.15 16493.12 19872.79 20997.21 22587.86 11987.36 23893.87 244
v192192086.97 21786.06 21689.69 23690.53 31378.11 25893.80 19595.43 18381.90 23585.33 21791.05 26872.66 21097.41 20682.05 19781.80 28993.53 262
DP-MVS87.25 20685.36 23792.90 9497.65 6183.24 12594.81 12892.00 28974.99 31881.92 28195.00 12572.66 21099.05 6366.92 33292.33 17496.40 139
v7n86.81 22185.76 22889.95 22490.72 30679.25 23795.07 11095.92 14084.45 17982.29 27490.86 27172.60 21297.53 19179.42 24280.52 31393.08 283
OPM-MVS90.12 11489.56 11591.82 14793.14 22583.90 10794.16 17195.74 15688.96 6787.86 15095.43 11372.48 21397.91 16888.10 11890.18 19393.65 259
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LS3D87.89 17886.32 20592.59 10996.07 11082.92 13695.23 9994.92 21175.66 31082.89 26995.98 9572.48 21399.21 5068.43 32195.23 12895.64 172
pm-mvs186.61 22885.54 23189.82 22891.44 27180.18 20695.28 9794.85 21583.84 18981.66 28292.62 21472.45 21596.48 26979.67 23778.06 32892.82 292
PMMVS85.71 24784.96 24487.95 28088.90 33377.09 28088.68 31790.06 33372.32 34086.47 17790.76 27672.15 21694.40 32581.78 20493.49 15292.36 304
PatchmatchNetpermissive85.85 24484.70 25089.29 24591.76 26375.54 29888.49 31991.30 30881.63 24385.05 22088.70 31171.71 21796.24 28274.61 28789.05 21396.08 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs171.70 21896.12 150
test_part189.00 15287.99 15792.04 13195.94 11783.81 11096.14 5196.05 13286.44 13485.69 19393.73 18171.57 21997.66 18085.80 14780.54 31094.66 204
patchmatchnet-post83.76 34771.53 22096.48 269
v124086.78 22385.85 22389.56 23890.45 31477.79 26793.61 20395.37 18881.65 24185.43 20991.15 26471.50 22197.43 20081.47 21082.05 28693.47 266
anonymousdsp87.84 17987.09 17790.12 21589.13 33080.54 20094.67 13795.55 16982.05 22783.82 25192.12 23071.47 22297.15 22787.15 13087.80 23492.67 294
Patchmatch-test81.37 29779.30 30387.58 28690.92 29774.16 30980.99 35787.68 35170.52 34876.63 32888.81 30771.21 22392.76 34660.01 35586.93 24495.83 165
F-COLMAP87.95 17786.80 18591.40 16396.35 10080.88 19194.73 13395.45 18079.65 27082.04 27994.61 14171.13 22498.50 11576.24 27291.05 18594.80 201
pmmvs485.43 25083.86 26190.16 21290.02 32282.97 13590.27 28892.67 27375.93 30980.73 29291.74 24571.05 22595.73 30478.85 24683.46 27091.78 313
CR-MVSNet85.35 25283.76 26290.12 21590.58 31079.34 23185.24 34291.96 29378.27 28985.55 19787.87 32471.03 22695.61 30573.96 29189.36 20795.40 179
Patchmtry82.71 28180.93 28788.06 27890.05 32176.37 29084.74 34691.96 29372.28 34181.32 28787.87 32471.03 22695.50 31268.97 31780.15 31692.32 306
CL-MVSNet_self_test81.74 29080.53 28885.36 31985.96 35272.45 32890.25 28993.07 26481.24 25279.85 30887.29 33170.93 22892.52 34766.95 32969.23 35091.11 329
RPMNet83.95 27281.53 28291.21 16890.58 31079.34 23185.24 34296.76 7771.44 34485.55 19782.97 35170.87 22998.91 8961.01 35189.36 20795.40 179
Patchmatch-RL test81.67 29179.96 29786.81 30785.42 35671.23 33582.17 35587.50 35278.47 28677.19 32482.50 35270.81 23093.48 33882.66 18772.89 34495.71 171
CostFormer85.77 24684.94 24588.26 27291.16 28672.58 32789.47 30491.04 31576.26 30686.45 18089.97 29270.74 23196.86 24982.35 19187.07 24395.34 182
sam_mvs70.60 232
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 20184.46 9393.32 21195.46 17785.17 16392.25 8294.03 15970.59 23398.57 11290.97 8394.67 13194.18 226
test_post10.29 37270.57 23695.91 296
CANet_DTU90.26 11389.41 12092.81 9693.46 21883.01 13393.48 20794.47 22889.43 5287.76 15594.23 15770.54 23799.03 6784.97 15496.39 11096.38 140
BH-RMVSNet88.37 16687.48 16891.02 17995.28 14079.45 22792.89 23393.07 26485.45 15786.91 17194.84 13370.35 23897.76 17373.97 29094.59 13595.85 163
Fast-Effi-MVS+-dtu87.44 19986.72 18789.63 23792.04 25377.68 27194.03 18493.94 24585.81 14582.42 27391.32 25770.33 23997.06 23680.33 23090.23 19294.14 229
MDTV_nov1_ep13_2view55.91 37087.62 33073.32 33284.59 22770.33 23974.65 28695.50 174
ACMM84.12 989.14 14388.48 14691.12 17194.65 17381.22 18195.31 8996.12 12685.31 16185.92 18994.34 14970.19 24198.06 15585.65 14888.86 21594.08 234
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D87.51 19685.91 22292.32 12393.70 21283.93 10692.33 24990.94 31884.16 18172.09 34992.52 21669.90 24295.85 29889.20 10488.36 22497.17 113
LPG-MVS_test89.45 13488.90 13491.12 17194.47 17881.49 17195.30 9296.14 12486.73 12885.45 20695.16 12069.89 24398.10 14287.70 12189.23 21093.77 253
LGP-MVS_train91.12 17194.47 17881.49 17196.14 12486.73 12885.45 20695.16 12069.89 24398.10 14287.70 12189.23 21093.77 253
CHOSEN 280x42085.15 25783.99 25988.65 26292.47 24278.40 25179.68 35992.76 27074.90 32081.41 28589.59 29869.85 24595.51 31079.92 23595.29 12592.03 310
LTVRE_ROB82.13 1386.26 23884.90 24690.34 20894.44 18281.50 16992.31 25194.89 21283.03 20879.63 31092.67 21269.69 24697.79 17171.20 30286.26 24691.72 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft83.78 1188.74 15887.29 17393.08 8592.70 23985.39 7696.57 3296.43 10578.74 28380.85 29196.07 9369.64 24799.01 7378.01 25596.65 10394.83 199
MDTV_nov1_ep1383.56 26691.69 26769.93 34687.75 32791.54 30278.60 28584.86 22388.90 30669.54 24896.03 28970.25 30888.93 214
AUN-MVS87.78 18286.54 19791.48 16094.82 16581.05 18593.91 19493.93 24683.00 20986.93 16993.53 18469.50 24997.67 17986.14 14077.12 33595.73 170
PatchT82.68 28281.27 28486.89 30590.09 32070.94 34084.06 34890.15 33074.91 31985.63 19683.57 34869.37 25094.87 32365.19 33788.50 22094.84 198
VPNet88.20 17187.47 16990.39 20393.56 21579.46 22694.04 18395.54 17188.67 7386.96 16894.58 14469.33 25197.15 22784.05 16780.53 31294.56 212
ACMP84.23 889.01 15188.35 14790.99 18294.73 16781.27 17895.07 11095.89 14586.48 13283.67 25594.30 15269.33 25197.99 16287.10 13488.55 21793.72 257
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_post188.00 3249.81 37369.31 25395.53 30876.65 267
tpmvs83.35 27982.07 27787.20 29991.07 28971.00 33988.31 32291.70 29778.91 27780.49 29787.18 33369.30 25497.08 23468.12 32583.56 26893.51 265
thres20087.21 21086.24 20990.12 21595.36 13678.53 24693.26 21892.10 28586.42 13588.00 14991.11 26669.24 25598.00 16169.58 31591.04 18693.83 248
tfpn200view987.58 19386.64 19190.41 20295.99 11478.64 24394.58 14191.98 29186.94 12388.09 14491.77 24369.18 25698.10 14270.13 31191.10 18194.48 219
thres40087.62 19186.64 19190.57 19295.99 11478.64 24394.58 14191.98 29186.94 12388.09 14491.77 24369.18 25698.10 14270.13 31191.10 18194.96 192
tfpnnormal84.72 26583.23 26989.20 24792.79 23880.05 21394.48 14795.81 15082.38 22181.08 28991.21 25969.01 25896.95 24361.69 34980.59 30990.58 336
thres100view90087.63 18986.71 18890.38 20596.12 10578.55 24595.03 11491.58 30087.15 11688.06 14792.29 22468.91 25998.10 14270.13 31191.10 18194.48 219
thres600view787.65 18686.67 19090.59 19196.08 10978.72 24194.88 12391.58 30087.06 11988.08 14692.30 22368.91 25998.10 14270.05 31491.10 18194.96 192
PatchMatch-RL86.77 22685.54 23190.47 20195.88 11882.71 14490.54 28592.31 28079.82 26884.32 23991.57 25368.77 26196.39 27573.16 29593.48 15492.32 306
XVG-OURS89.40 13988.70 13791.52 15794.06 19381.46 17391.27 27496.07 12986.14 14188.89 13795.77 10468.73 26297.26 22087.39 12689.96 19695.83 165
TR-MVS86.78 22385.76 22889.82 22894.37 18478.41 25092.47 24492.83 26881.11 25586.36 18292.40 21968.73 26297.48 19473.75 29389.85 20093.57 261
tpm84.73 26484.02 25886.87 30690.33 31568.90 34989.06 31189.94 33680.85 25785.75 19189.86 29468.54 26495.97 29277.76 25684.05 26295.75 168
FMVSNet387.40 20186.11 21391.30 16693.79 20983.64 11594.20 17094.81 21983.89 18884.37 23491.87 24268.45 26596.56 26478.23 25285.36 25193.70 258
MVP-Stereo85.97 24184.86 24789.32 24490.92 29782.19 15692.11 25794.19 23878.76 28278.77 31591.63 24968.38 26696.56 26475.01 28493.95 14389.20 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat181.96 28680.27 29287.01 30191.09 28871.02 33887.38 33191.53 30366.25 35480.17 30086.35 33768.22 26796.15 28669.16 31682.29 28193.86 246
tpm284.08 27082.94 27287.48 29091.39 27671.27 33489.23 30890.37 32771.95 34284.64 22589.33 30167.30 26896.55 26675.17 28187.09 24294.63 205
test-LLR85.87 24385.41 23487.25 29590.95 29371.67 33289.55 30089.88 33983.41 20084.54 22887.95 32167.25 26995.11 31981.82 20293.37 15794.97 189
test0.0.03 182.41 28481.69 28084.59 32588.23 34072.89 32090.24 29087.83 34983.41 20079.86 30789.78 29667.25 26988.99 36065.18 33883.42 27191.90 312
CVMVSNet84.69 26684.79 24984.37 32791.84 26064.92 36193.70 20191.47 30566.19 35586.16 18795.28 11567.18 27193.33 34080.89 21990.42 19094.88 197
bset_n11_16_dypcd86.83 22085.55 23090.65 19088.22 34181.70 16588.88 31490.42 32585.26 16285.49 20390.69 27767.11 27297.02 23989.51 10184.39 25893.23 275
thisisatest051587.33 20285.99 21791.37 16493.49 21679.55 22490.63 28489.56 34480.17 26287.56 15890.86 27167.07 27398.28 13381.50 20993.02 16496.29 142
tttt051788.61 16187.78 16291.11 17494.96 15477.81 26695.35 8789.69 34185.09 16888.05 14894.59 14366.93 27498.48 11683.27 17692.13 17697.03 119
our_test_381.93 28780.46 29086.33 31188.46 33773.48 31588.46 32091.11 31176.46 30176.69 32788.25 31766.89 27594.36 32668.75 31879.08 32691.14 327
thisisatest053088.67 15987.61 16691.86 14494.87 16080.07 21194.63 13989.90 33884.00 18588.46 14193.78 17766.88 27698.46 11883.30 17592.65 16997.06 117
IterMVS-SCA-FT85.45 24984.53 25488.18 27591.71 26576.87 28390.19 29392.65 27485.40 15981.44 28490.54 27966.79 27795.00 32281.04 21481.05 30092.66 295
SCA86.32 23785.18 23989.73 23492.15 24876.60 28591.12 27791.69 29883.53 19785.50 20288.81 30766.79 27796.48 26976.65 26790.35 19196.12 150
D2MVS85.90 24285.09 24188.35 26990.79 30277.42 27691.83 26295.70 15880.77 25880.08 30490.02 29066.74 27996.37 27681.88 20187.97 23191.26 323
IterMVS84.88 26283.98 26087.60 28591.44 27176.03 29390.18 29492.41 27783.24 20581.06 29090.42 28366.60 28094.28 32979.46 23880.98 30592.48 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net87.26 20485.98 21891.08 17594.01 19683.10 12895.14 10794.94 20683.57 19484.37 23491.64 24666.59 28196.34 27978.23 25285.36 25193.79 249
test187.26 20485.98 21891.08 17594.01 19683.10 12895.14 10794.94 20683.57 19484.37 23491.64 24666.59 28196.34 27978.23 25285.36 25193.79 249
FMVSNet287.19 21285.82 22491.30 16694.01 19683.67 11494.79 12994.94 20683.57 19483.88 24992.05 23766.59 28196.51 26777.56 25985.01 25493.73 256
EPMVS83.90 27482.70 27687.51 28790.23 31872.67 32388.62 31881.96 36481.37 24885.01 22188.34 31566.31 28494.45 32475.30 28087.12 24195.43 178
ppachtmachnet_test81.84 28880.07 29687.15 30088.46 33774.43 30689.04 31292.16 28475.33 31477.75 32088.99 30466.20 28595.37 31565.12 33977.60 33191.65 315
MDA-MVSNet_test_wron79.21 31577.19 31785.29 32088.22 34172.77 32285.87 33890.06 33374.34 32462.62 36087.56 32766.14 28691.99 35166.90 33373.01 34291.10 330
YYNet179.22 31477.20 31685.28 32188.20 34372.66 32485.87 33890.05 33574.33 32562.70 35987.61 32666.09 28792.03 35066.94 33072.97 34391.15 326
JIA-IIPM81.04 30078.98 31087.25 29588.64 33473.48 31581.75 35689.61 34373.19 33382.05 27873.71 35966.07 28895.87 29771.18 30484.60 25792.41 302
RRT_MVS88.86 15487.68 16492.39 12092.02 25586.09 5594.38 16194.94 20685.45 15787.14 16693.84 17565.88 28997.11 23188.73 10986.77 24593.98 239
MSDG84.86 26383.09 27090.14 21493.80 20780.05 21389.18 30993.09 26378.89 27878.19 31691.91 24065.86 29097.27 21868.47 32088.45 22193.11 281
jajsoiax88.24 17087.50 16790.48 19990.89 29980.14 20895.31 8995.65 16484.97 17084.24 24394.02 16265.31 29197.42 20188.56 11188.52 21993.89 241
cascas86.43 23684.98 24390.80 18792.10 25280.92 19090.24 29095.91 14273.10 33483.57 25988.39 31465.15 29297.46 19684.90 15791.43 17994.03 237
ADS-MVSNet281.66 29279.71 30087.50 28891.35 27874.19 30883.33 35188.48 34772.90 33682.24 27685.77 34164.98 29393.20 34264.57 34183.74 26495.12 185
ADS-MVSNet81.56 29479.78 29886.90 30491.35 27871.82 33183.33 35189.16 34572.90 33682.24 27685.77 34164.98 29393.76 33564.57 34183.74 26495.12 185
pmmvs584.21 26982.84 27588.34 27088.95 33276.94 28292.41 24591.91 29575.63 31180.28 29991.18 26264.59 29595.57 30677.09 26583.47 26992.53 298
PVSNet78.82 1885.55 24884.65 25188.23 27494.72 16871.93 33087.12 33292.75 27178.80 28184.95 22290.53 28064.43 29696.71 25374.74 28593.86 14596.06 156
UGNet89.95 12088.95 13292.95 9294.51 17783.31 12495.70 7495.23 19389.37 5487.58 15793.94 16764.00 29798.78 10283.92 16896.31 11196.74 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RPSCF85.07 25884.27 25587.48 29092.91 23670.62 34291.69 26892.46 27676.20 30782.67 27295.22 11863.94 29897.29 21777.51 26085.80 24994.53 213
mvs_tets88.06 17687.28 17490.38 20590.94 29579.88 21995.22 10095.66 16285.10 16784.21 24493.94 16763.53 29997.40 20888.50 11288.40 22393.87 244
test111189.10 14488.64 13890.48 19995.53 13374.97 30096.08 5584.89 35788.13 9390.16 12196.65 6563.29 30098.10 14286.14 14096.90 9698.39 40
Anonymous2023121186.59 23085.13 24090.98 18496.52 9581.50 16996.14 5196.16 12373.78 32883.65 25692.15 22863.26 30197.37 21282.82 18481.74 29194.06 235
ECVR-MVScopyleft89.09 14688.53 14190.77 18895.62 12875.89 29496.16 4884.22 35987.89 9990.20 11996.65 6563.19 30298.10 14285.90 14596.94 9498.33 44
dp81.47 29680.23 29385.17 32289.92 32465.49 35986.74 33390.10 33276.30 30581.10 28887.12 33462.81 30395.92 29468.13 32479.88 31994.09 233
LFMVS90.08 11589.13 12892.95 9296.71 8782.32 15596.08 5589.91 33786.79 12692.15 8796.81 5662.60 30498.34 12887.18 12993.90 14498.19 60
DWT-MVSNet_test84.95 26183.68 26388.77 25691.43 27473.75 31191.74 26590.98 31680.66 25983.84 25087.36 32962.44 30597.11 23178.84 24785.81 24895.46 176
Anonymous2023120681.03 30179.77 29984.82 32487.85 34670.26 34491.42 27292.08 28673.67 32977.75 32089.25 30262.43 30693.08 34361.50 35082.00 28791.12 328
VDD-MVS90.74 10089.92 11293.20 8096.27 10183.02 13295.73 7293.86 25088.42 8192.53 7896.84 5362.09 30798.64 10790.95 8692.62 17097.93 81
MS-PatchMatch85.05 25984.16 25687.73 28391.42 27578.51 24791.25 27593.53 25677.50 29480.15 30191.58 25161.99 30895.51 31075.69 27694.35 14189.16 346
OurMVSNet-221017-085.35 25284.64 25287.49 28990.77 30372.59 32694.01 18694.40 23084.72 17579.62 31193.17 19561.91 30996.72 25181.99 19881.16 29693.16 279
test20.0379.95 30979.08 30882.55 33585.79 35367.74 35491.09 27891.08 31281.23 25374.48 34189.96 29361.63 31090.15 35760.08 35376.38 33789.76 339
DSMNet-mixed76.94 32176.29 32078.89 33983.10 36256.11 36987.78 32679.77 36760.65 35975.64 33488.71 31061.56 31188.34 36160.07 35489.29 20992.21 309
Anonymous2024052988.09 17486.59 19592.58 11096.53 9481.92 16295.99 6095.84 14874.11 32689.06 13595.21 11961.44 31298.81 10083.67 17387.47 23597.01 120
IB-MVS80.51 1585.24 25683.26 26891.19 16992.13 25079.86 22091.75 26491.29 30983.28 20480.66 29488.49 31361.28 31398.46 11880.99 21779.46 32395.25 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS86.61 22885.27 23890.66 18991.33 28078.71 24290.40 28793.81 25385.34 16085.12 21989.57 29961.25 31497.11 23180.99 21789.59 20496.15 146
N_pmnet68.89 32768.44 33070.23 34689.07 33128.79 37888.06 32319.50 37969.47 35071.86 35184.93 34361.24 31591.75 35354.70 35977.15 33490.15 337
EU-MVSNet81.32 29880.95 28682.42 33688.50 33663.67 36293.32 21191.33 30764.02 35780.57 29692.83 20761.21 31692.27 34976.34 27080.38 31591.32 321
VDDNet89.56 13088.49 14592.76 9995.07 14982.09 15796.30 3993.19 26281.05 25691.88 9296.86 5261.16 31798.33 13088.43 11392.49 17397.84 87
PVSNet_073.20 2077.22 32074.83 32584.37 32790.70 30771.10 33783.09 35389.67 34272.81 33873.93 34383.13 35060.79 31893.70 33668.54 31950.84 36588.30 353
RRT_test8_iter0586.90 21886.36 20288.52 26593.00 23373.27 31794.32 16495.96 13785.50 15684.26 24292.86 20460.76 31997.70 17888.32 11482.29 28194.60 208
SixPastTwentyTwo83.91 27382.90 27386.92 30390.99 29170.67 34193.48 20791.99 29085.54 15477.62 32292.11 23260.59 32096.87 24876.05 27477.75 33093.20 277
gg-mvs-nofinetune81.77 28979.37 30288.99 25490.85 30177.73 27086.29 33679.63 36874.88 32183.19 26769.05 36260.34 32196.11 28775.46 27894.64 13493.11 281
MDA-MVSNet-bldmvs78.85 31676.31 31986.46 30889.76 32673.88 31088.79 31590.42 32579.16 27559.18 36188.33 31660.20 32294.04 33162.00 34868.96 35291.48 319
pmmvs683.42 27781.60 28188.87 25588.01 34477.87 26494.96 11694.24 23774.67 32278.80 31491.09 26760.17 32396.49 26877.06 26675.40 34092.23 308
ACMH80.38 1785.36 25183.68 26390.39 20394.45 18180.63 19794.73 13394.85 21582.09 22677.24 32392.65 21360.01 32497.58 18772.25 29984.87 25592.96 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GG-mvs-BLEND87.94 28189.73 32777.91 26187.80 32578.23 37080.58 29583.86 34659.88 32595.33 31671.20 30292.22 17590.60 335
UniMVSNet_ETH3D87.53 19586.37 20191.00 18192.44 24378.96 24094.74 13295.61 16684.07 18485.36 21694.52 14659.78 32697.34 21382.93 18087.88 23296.71 131
pmmvs-eth3d80.97 30278.72 31187.74 28284.99 35879.97 21890.11 29591.65 29975.36 31373.51 34486.03 33859.45 32793.96 33475.17 28172.21 34589.29 344
test_040281.30 29979.17 30787.67 28493.19 22478.17 25692.98 23091.71 29675.25 31576.02 33390.31 28459.23 32896.37 27650.22 36283.63 26788.47 352
KD-MVS_self_test80.20 30779.24 30483.07 33385.64 35565.29 36091.01 27993.93 24678.71 28476.32 32986.40 33659.20 32992.93 34572.59 29769.35 34991.00 331
FMVSNet185.85 24484.11 25791.08 17592.81 23783.10 12895.14 10794.94 20681.64 24282.68 27191.64 24659.01 33096.34 27975.37 27983.78 26393.79 249
COLMAP_ROBcopyleft80.39 1683.96 27182.04 27889.74 23295.28 14079.75 22294.25 16792.28 28175.17 31678.02 31993.77 17858.60 33197.84 17065.06 34085.92 24791.63 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+81.04 1485.05 25983.46 26789.82 22894.66 17279.37 22994.44 15294.12 24382.19 22578.04 31892.82 20858.23 33297.54 19073.77 29282.90 27792.54 297
CMPMVSbinary59.16 2180.52 30479.20 30684.48 32683.98 35967.63 35589.95 29893.84 25264.79 35666.81 35791.14 26557.93 33395.17 31776.25 27188.10 22790.65 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ITE_SJBPF88.24 27391.88 25977.05 28192.92 26685.54 15480.13 30393.30 19057.29 33496.20 28372.46 29884.71 25691.49 318
TESTMET0.1,183.74 27582.85 27486.42 31089.96 32371.21 33689.55 30087.88 34877.41 29583.37 26387.31 33056.71 33593.65 33780.62 22492.85 16894.40 222
UnsupCasMVSNet_eth80.07 30878.27 31285.46 31885.24 35772.63 32588.45 32194.87 21482.99 21071.64 35288.07 32056.34 33691.75 35373.48 29463.36 35992.01 311
K. test v381.59 29380.15 29585.91 31689.89 32569.42 34892.57 24287.71 35085.56 15373.44 34589.71 29755.58 33795.52 30977.17 26369.76 34892.78 293
test-mter84.54 26783.64 26587.25 29590.95 29371.67 33289.55 30089.88 33979.17 27484.54 22887.95 32155.56 33895.11 31981.82 20293.37 15794.97 189
lessismore_v086.04 31288.46 33768.78 35080.59 36673.01 34790.11 28855.39 33996.43 27475.06 28365.06 35692.90 288
MVS-HIRNet73.70 32472.20 32778.18 34291.81 26256.42 36882.94 35482.58 36255.24 36168.88 35466.48 36355.32 34095.13 31858.12 35688.42 22283.01 357
test250687.21 21086.28 20790.02 22195.62 12873.64 31396.25 4571.38 37287.89 9990.45 11596.65 6555.29 34198.09 15086.03 14496.94 9498.33 44
new-patchmatchnet76.41 32275.17 32480.13 33882.65 36459.61 36487.66 32991.08 31278.23 29169.85 35383.22 34954.76 34291.63 35564.14 34364.89 35789.16 346
Anonymous20240521187.68 18486.13 21192.31 12496.66 8880.74 19594.87 12491.49 30480.47 26089.46 12995.44 11154.72 34398.23 13482.19 19489.89 19897.97 77
XVG-ACMP-BASELINE86.00 24084.84 24889.45 24391.20 28278.00 25991.70 26795.55 16985.05 16982.97 26892.25 22654.49 34497.48 19482.93 18087.45 23792.89 289
USDC82.76 28081.26 28587.26 29491.17 28474.55 30389.27 30693.39 25978.26 29075.30 33692.08 23454.43 34596.63 25571.64 30085.79 25090.61 333
AllTest83.42 27781.39 28389.52 24095.01 15077.79 26793.12 22390.89 32077.41 29576.12 33193.34 18654.08 34697.51 19268.31 32284.27 26093.26 271
TestCases89.52 24095.01 15077.79 26790.89 32077.41 29576.12 33193.34 18654.08 34697.51 19268.31 32284.27 26093.26 271
KD-MVS_2432*160078.50 31776.02 32285.93 31486.22 35074.47 30484.80 34492.33 27879.29 27276.98 32585.92 33953.81 34893.97 33267.39 32757.42 36289.36 341
miper_refine_blended78.50 31776.02 32285.93 31486.22 35074.47 30484.80 34492.33 27879.29 27276.98 32585.92 33953.81 34893.97 33267.39 32757.42 36289.36 341
MIMVSNet82.59 28380.53 28888.76 25791.51 27078.32 25286.57 33590.13 33179.32 27180.70 29388.69 31252.98 35093.07 34466.03 33588.86 21594.90 196
FMVSNet581.52 29579.60 30187.27 29391.17 28477.95 26091.49 27192.26 28276.87 30076.16 33087.91 32351.67 35192.34 34867.74 32681.16 29691.52 317
testgi80.94 30380.20 29483.18 33287.96 34566.29 35691.28 27390.70 32483.70 19178.12 31792.84 20651.37 35290.82 35663.34 34482.46 28092.43 301
Anonymous2024052180.44 30579.21 30584.11 33085.75 35467.89 35292.86 23493.23 26175.61 31275.59 33587.47 32850.03 35394.33 32771.14 30581.21 29590.12 338
UnsupCasMVSNet_bld76.23 32373.27 32685.09 32383.79 36072.92 31985.65 34193.47 25871.52 34368.84 35579.08 35649.77 35493.21 34166.81 33460.52 36189.13 348
OpenMVS_ROBcopyleft74.94 1979.51 31277.03 31886.93 30287.00 34776.23 29292.33 24990.74 32368.93 35174.52 34088.23 31849.58 35596.62 25657.64 35784.29 25987.94 354
TDRefinement79.81 31077.34 31487.22 29879.24 36675.48 29993.12 22392.03 28876.45 30275.01 33791.58 25149.19 35696.44 27370.22 31069.18 35189.75 340
MIMVSNet179.38 31377.28 31585.69 31786.35 34973.67 31291.61 27092.75 27178.11 29372.64 34888.12 31948.16 35791.97 35260.32 35277.49 33291.43 320
MVS_030483.46 27681.92 27988.10 27790.63 30977.49 27593.26 21893.75 25480.04 26580.44 29887.24 33247.94 35895.55 30775.79 27588.16 22691.26 323
LF4IMVS80.37 30679.07 30984.27 32986.64 34869.87 34789.39 30591.05 31476.38 30374.97 33890.00 29147.85 35994.25 33074.55 28880.82 30788.69 350
EG-PatchMatch MVS82.37 28580.34 29188.46 26690.27 31679.35 23092.80 23694.33 23377.14 29973.26 34690.18 28647.47 36096.72 25170.25 30887.32 24089.30 343
TinyColmap79.76 31177.69 31385.97 31391.71 26573.12 31889.55 30090.36 32875.03 31772.03 35090.19 28546.22 36196.19 28563.11 34581.03 30188.59 351
tmp_tt35.64 33939.24 34124.84 35514.87 37923.90 37962.71 36551.51 3786.58 37336.66 36962.08 36644.37 36230.34 37552.40 36122.00 37220.27 370
new_pmnet72.15 32570.13 32878.20 34182.95 36365.68 35783.91 34982.40 36362.94 35864.47 35879.82 35542.85 36386.26 36357.41 35874.44 34182.65 359
EGC-MVSNET61.97 33056.37 33478.77 34089.63 32873.50 31489.12 31082.79 3610.21 3761.24 37784.80 34439.48 36490.04 35844.13 36475.94 33972.79 363
pmmvs371.81 32668.71 32981.11 33775.86 36770.42 34386.74 33383.66 36058.95 36068.64 35680.89 35436.93 36589.52 35963.10 34663.59 35883.39 356
PM-MVS78.11 31976.12 32184.09 33183.54 36170.08 34588.97 31385.27 35679.93 26674.73 33986.43 33534.70 36693.48 33879.43 24172.06 34688.72 349
ambc83.06 33479.99 36563.51 36377.47 36092.86 26774.34 34284.45 34528.74 36795.06 32173.06 29668.89 35390.61 333
test_method50.52 33548.47 33756.66 35152.26 37718.98 38041.51 36981.40 36510.10 37144.59 36675.01 35828.51 36868.16 36953.54 36049.31 36682.83 358
DeepMVS_CXcopyleft56.31 35274.23 36851.81 37156.67 37744.85 36548.54 36575.16 35727.87 36958.74 37340.92 36652.22 36458.39 366
FPMVS64.63 32962.55 33170.88 34570.80 36956.71 36684.42 34784.42 35851.78 36349.57 36381.61 35323.49 37081.48 36640.61 36776.25 33874.46 362
ANet_high58.88 33254.22 33672.86 34456.50 37656.67 36780.75 35886.00 35373.09 33537.39 36864.63 36522.17 37179.49 36843.51 36523.96 37082.43 360
EMVS42.07 33841.12 34044.92 35463.45 37435.56 37773.65 36163.48 37433.05 36926.88 37345.45 37021.27 37267.14 37119.80 37223.02 37132.06 369
Gipumacopyleft57.99 33354.91 33567.24 34888.51 33565.59 35852.21 36790.33 32943.58 36642.84 36751.18 36820.29 37385.07 36434.77 36870.45 34751.05 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 33742.29 33946.03 35365.58 37237.41 37573.51 36264.62 37333.99 36828.47 37247.87 36919.90 37467.91 37022.23 37124.45 36932.77 368
PMMVS259.60 33156.40 33369.21 34768.83 37046.58 37373.02 36477.48 37155.07 36249.21 36472.95 36117.43 37580.04 36749.32 36344.33 36780.99 361
LCM-MVSNet66.00 32862.16 33277.51 34364.51 37358.29 36583.87 35090.90 31948.17 36454.69 36273.31 36016.83 37686.75 36265.47 33661.67 36087.48 355
PMVScopyleft47.18 2252.22 33448.46 33863.48 34945.72 37846.20 37473.41 36378.31 36941.03 36730.06 37065.68 3646.05 37783.43 36530.04 36965.86 35560.80 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 33638.59 34257.77 35056.52 37548.77 37255.38 36658.64 37629.33 37028.96 37152.65 3674.68 37864.62 37228.11 37033.07 36859.93 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d21.27 34120.48 34423.63 35668.59 37136.41 37649.57 3686.85 3809.37 3727.89 3744.46 3764.03 37931.37 37417.47 37316.07 3733.12 371
test1238.76 34311.22 3461.39 3570.85 3810.97 38185.76 3400.35 3820.54 3752.45 3768.14 3750.60 3800.48 3762.16 3750.17 3752.71 372
testmvs8.92 34211.52 3451.12 3581.06 3800.46 38286.02 3370.65 3810.62 3742.74 3759.52 3740.31 3810.45 3772.38 3740.39 3742.46 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.82 34410.43 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37893.88 1720.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS198.86 185.54 7498.29 197.49 589.79 4396.29 15
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
No_MVS96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
eth-test20.00 382
eth-test0.00 382
IU-MVS98.77 586.00 5696.84 6781.26 25197.26 795.50 1099.13 399.03 6
save fliter97.85 5085.63 7295.21 10196.82 7189.44 50
test_0728_SECOND95.01 1798.79 286.43 4397.09 1497.49 599.61 395.62 899.08 798.99 7
GSMVS96.12 150
test_part298.55 1387.22 1896.40 14
MTGPAbinary96.97 52
MTMP96.16 4860.64 375
gm-plane-assit89.60 32968.00 35177.28 29888.99 30497.57 18879.44 240
test9_res91.91 6698.71 3498.07 70
agg_prior290.54 9298.68 3998.27 54
agg_prior97.38 6985.92 6396.72 8392.16 8598.97 83
test_prior485.96 6094.11 175
test_prior93.82 6797.29 7484.49 9096.88 6298.87 9198.11 68
旧先验293.36 21071.25 34594.37 3097.13 23086.74 135
新几何293.11 225
无先验93.28 21796.26 11473.95 32799.05 6380.56 22596.59 135
原ACMM292.94 232
testdata298.75 10378.30 251
testdata192.15 25587.94 95
plane_prior794.70 17082.74 141
plane_prior596.22 11998.12 14088.15 11589.99 19494.63 205
plane_prior494.86 130
plane_prior382.75 13990.26 3386.91 171
plane_prior295.85 6790.81 18
plane_prior194.59 174
plane_prior82.73 14295.21 10189.66 4789.88 199
n20.00 383
nn0.00 383
door-mid85.49 354
test1196.57 98
door85.33 355
HQP5-MVS81.56 167
HQP-NCC94.17 19094.39 15788.81 6885.43 209
ACMP_Plane94.17 19094.39 15788.81 6885.43 209
BP-MVS87.11 132
HQP4-MVS85.43 20997.96 16494.51 215
HQP3-MVS96.04 13389.77 201
NP-MVS94.37 18482.42 15193.98 165
ACMMP++_ref87.47 235
ACMMP++88.01 230