PC_three_1452 | | | | | | | | | | 82.47 219 | 97.09 10 | 97.07 41 | 92.72 1 | 98.04 149 | 92.70 45 | 99.02 12 | 98.86 10 |
|
DVP-MVS++ | | | 95.98 1 | 96.36 1 | 94.82 29 | 97.78 51 | 86.00 48 | 98.29 1 | 97.49 6 | 90.75 18 | 97.62 5 | 98.06 6 | 92.59 2 | 99.61 3 | 95.64 9 | 99.02 12 | 98.86 10 |
|
OPU-MVS | | | | | 96.21 3 | 98.00 42 | 90.85 3 | 97.13 14 | | | | 97.08 39 | 92.59 2 | 98.94 74 | 92.25 53 | 98.99 14 | 98.84 13 |
|
SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 31 | 98.77 5 | 85.99 50 | 97.13 14 | 97.44 15 | 90.31 27 | 97.71 1 | 98.07 4 | 92.31 4 | 99.58 9 | 95.66 7 | 99.13 3 | 98.84 13 |
|
test_241102_ONE | | | | | | 98.77 5 | 85.99 50 | | 97.44 15 | 90.26 32 | 97.71 1 | 97.96 10 | 92.31 4 | 99.38 30 | | | |
|
test_0728_THIRD | | | | | | | | | | 90.75 18 | 97.04 11 | 98.05 8 | 92.09 6 | 99.55 15 | 95.64 9 | 99.13 3 | 99.13 2 |
|
DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 9 | 98.36 25 | 87.28 16 | 95.56 85 | 97.51 5 | 89.13 60 | 97.14 9 | 97.91 11 | 91.64 7 | 99.62 1 | 94.61 17 | 99.17 2 | 98.86 10 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 37 | 98.78 3 | 85.93 53 | 97.09 16 | 96.73 77 | 90.27 30 | 97.04 11 | 98.05 8 | 91.47 8 | 99.55 15 | 95.62 11 | 99.08 7 | 98.45 35 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 98.78 3 | 85.93 53 | 97.19 11 | 97.47 11 | 90.27 30 | 97.64 4 | 98.13 1 | 91.47 8 | | | | |
|
test_241102_TWO | | | | | | | | | 97.44 15 | 90.31 27 | 97.62 5 | 98.07 4 | 91.46 10 | 99.58 9 | 95.66 7 | 99.12 6 | 98.98 9 |
|
test_one_0601 | | | | | | 98.58 11 | 85.83 58 | | 97.44 15 | 91.05 13 | 96.78 14 | 98.06 6 | 91.45 11 | | | | |
|
MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 18 | 98.49 17 | 86.52 34 | 96.91 25 | 97.47 11 | 91.73 9 | 96.10 18 | 96.69 56 | 89.90 12 | 99.30 39 | 94.70 15 | 98.04 65 | 99.13 2 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DeepPCF-MVS | | 89.96 1 | 94.20 31 | 94.77 15 | 92.49 104 | 96.52 87 | 80.00 209 | 94.00 184 | 97.08 43 | 90.05 34 | 95.65 21 | 97.29 27 | 89.66 13 | 98.97 71 | 93.95 23 | 98.71 31 | 98.50 26 |
|
SD-MVS | | | 94.96 12 | 95.33 8 | 93.88 55 | 97.25 69 | 86.69 26 | 96.19 49 | 97.11 42 | 90.42 26 | 96.95 13 | 97.27 28 | 89.53 14 | 96.91 238 | 94.38 19 | 98.85 19 | 98.03 69 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 7 | 98.11 36 | 88.51 7 | 95.29 95 | 96.96 51 | 92.09 5 | 95.32 23 | 97.08 39 | 89.49 15 | 99.33 36 | 95.10 14 | 98.85 19 | 98.66 19 |
|
APDe-MVS | | | 95.46 5 | 95.64 5 | 94.91 20 | 98.26 28 | 86.29 44 | 97.46 6 | 97.40 20 | 89.03 63 | 96.20 17 | 98.10 2 | 89.39 16 | 99.34 33 | 95.88 6 | 99.03 11 | 99.10 4 |
|
MCST-MVS | | | 94.45 20 | 94.20 30 | 95.19 12 | 98.46 19 | 87.50 13 | 95.00 115 | 97.12 40 | 87.13 116 | 92.51 73 | 96.30 73 | 89.24 17 | 99.34 33 | 93.46 29 | 98.62 43 | 98.73 16 |
|
TSAR-MVS + MP. | | | 94.85 13 | 94.94 12 | 94.58 40 | 98.25 29 | 86.33 40 | 96.11 55 | 96.62 86 | 88.14 94 | 96.10 18 | 96.96 45 | 89.09 18 | 98.94 74 | 94.48 18 | 98.68 36 | 98.48 29 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 24 | 96.99 72 | 86.33 40 | 97.33 7 | 97.30 28 | 91.38 11 | 95.39 22 | 97.46 20 | 88.98 19 | 99.40 29 | 94.12 21 | 98.89 18 | 98.82 15 |
Skip Steuart: Steuart Systems R&D Blog. |
SMA-MVS |  | | 95.20 8 | 95.07 11 | 95.59 5 | 98.14 35 | 88.48 8 | 96.26 46 | 97.28 30 | 85.90 143 | 97.67 3 | 98.10 2 | 88.41 20 | 99.56 11 | 94.66 16 | 99.19 1 | 98.71 18 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
patch_mono-2 | | | 93.74 41 | 94.32 22 | 92.01 120 | 97.54 57 | 78.37 247 | 93.40 208 | 97.19 34 | 88.02 96 | 94.99 27 | 97.21 32 | 88.35 21 | 98.44 112 | 94.07 22 | 98.09 62 | 99.23 1 |
|
9.14 | | | | 94.47 18 | | 97.79 49 | | 96.08 56 | 97.44 15 | 86.13 141 | 95.10 25 | 97.40 23 | 88.34 22 | 99.22 43 | 93.25 34 | 98.70 33 | |
|
SF-MVS | | | 94.97 11 | 94.90 14 | 95.20 11 | 97.84 47 | 87.76 9 | 96.65 34 | 97.48 10 | 87.76 106 | 95.71 20 | 97.70 15 | 88.28 23 | 99.35 32 | 93.89 25 | 98.78 25 | 98.48 29 |
|
HPM-MVS++ |  | | 95.14 10 | 94.91 13 | 95.83 4 | 98.25 29 | 89.65 4 | 95.92 65 | 96.96 51 | 91.75 8 | 94.02 36 | 96.83 51 | 88.12 24 | 99.55 15 | 93.41 32 | 98.94 16 | 98.28 49 |
|
dcpmvs_2 | | | 93.49 45 | 94.19 31 | 91.38 155 | 97.69 54 | 76.78 279 | 94.25 163 | 96.29 102 | 88.33 84 | 94.46 28 | 96.88 48 | 88.07 25 | 98.64 94 | 93.62 28 | 98.09 62 | 98.73 16 |
|
CSCG | | | 93.23 55 | 93.05 54 | 93.76 60 | 98.04 40 | 84.07 90 | 96.22 48 | 97.37 21 | 84.15 180 | 90.05 118 | 95.66 102 | 87.77 26 | 99.15 49 | 89.91 97 | 98.27 55 | 98.07 65 |
|
NCCC | | | 94.81 14 | 94.69 16 | 95.17 13 | 97.83 48 | 87.46 15 | 95.66 79 | 96.93 55 | 92.34 3 | 93.94 37 | 96.58 66 | 87.74 27 | 99.44 28 | 92.83 40 | 98.40 51 | 98.62 20 |
|
TEST9 | | | | | | 97.53 58 | 86.49 35 | 94.07 176 | 96.78 70 | 81.61 243 | 92.77 64 | 96.20 77 | 87.71 28 | 99.12 50 | | | |
|
train_agg | | | 93.44 47 | 93.08 53 | 94.52 42 | 97.53 58 | 86.49 35 | 94.07 176 | 96.78 70 | 81.86 236 | 92.77 64 | 96.20 77 | 87.63 29 | 99.12 50 | 92.14 58 | 98.69 34 | 97.94 72 |
|
test_8 | | | | | | 97.49 60 | 86.30 43 | 94.02 181 | 96.76 73 | 81.86 236 | 92.70 68 | 96.20 77 | 87.63 29 | 99.02 60 | | | |
|
ZD-MVS | | | | | | 98.15 34 | 86.62 31 | | 97.07 44 | 83.63 192 | 94.19 32 | 96.91 47 | 87.57 31 | 99.26 41 | 91.99 64 | 98.44 50 | |
|
TSAR-MVS + GP. | | | 93.66 43 | 93.41 48 | 94.41 47 | 96.59 82 | 86.78 24 | 94.40 153 | 93.93 240 | 89.77 44 | 94.21 31 | 95.59 105 | 87.35 32 | 98.61 98 | 92.72 43 | 96.15 101 | 97.83 80 |
|
APD-MVS |  | | 94.24 27 | 94.07 34 | 94.75 34 | 98.06 39 | 86.90 21 | 95.88 66 | 96.94 54 | 85.68 149 | 95.05 26 | 97.18 35 | 87.31 33 | 99.07 52 | 91.90 70 | 98.61 45 | 98.28 49 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
segment_acmp | | | | | | | | | | | | | 87.16 34 | | | | |
|
旧先验1 | | | | | | 96.79 76 | 81.81 154 | | 95.67 151 | | | 96.81 53 | 86.69 35 | | | 97.66 76 | 96.97 115 |
|
test_prior2 | | | | | | | | 94.12 170 | | 87.67 108 | 92.63 69 | 96.39 72 | 86.62 36 | | 91.50 75 | 98.67 38 | |
|
CDPH-MVS | | | 92.83 59 | 92.30 65 | 94.44 43 | 97.79 49 | 86.11 47 | 94.06 178 | 96.66 83 | 80.09 263 | 92.77 64 | 96.63 63 | 86.62 36 | 99.04 56 | 87.40 126 | 98.66 39 | 98.17 59 |
|
DPM-MVS | | | 92.58 63 | 91.74 71 | 95.08 14 | 96.19 95 | 89.31 5 | 92.66 237 | 96.56 91 | 83.44 198 | 91.68 96 | 95.04 124 | 86.60 38 | 98.99 68 | 85.60 150 | 97.92 69 | 96.93 117 |
|
DELS-MVS | | | 93.43 50 | 93.25 50 | 93.97 52 | 95.42 127 | 85.04 68 | 93.06 226 | 97.13 39 | 90.74 20 | 91.84 90 | 95.09 123 | 86.32 39 | 99.21 44 | 91.22 78 | 98.45 49 | 97.65 85 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
test_fmvsm_n_1920 | | | 94.71 16 | 95.11 10 | 93.50 63 | 95.79 114 | 84.62 73 | 96.15 52 | 97.64 2 | 89.85 39 | 97.19 8 | 97.89 12 | 86.28 40 | 98.71 91 | 97.11 2 | 98.08 64 | 97.17 104 |
|
ZNCC-MVS | | | 94.47 19 | 94.28 25 | 95.03 15 | 98.52 15 | 86.96 18 | 96.85 28 | 97.32 26 | 88.24 88 | 93.15 51 | 97.04 42 | 86.17 41 | 99.62 1 | 92.40 49 | 98.81 22 | 98.52 25 |
|
HFP-MVS | | | 94.52 18 | 94.40 20 | 94.86 23 | 98.61 10 | 86.81 23 | 96.94 20 | 97.34 22 | 88.63 76 | 93.65 41 | 97.21 32 | 86.10 42 | 99.49 25 | 92.35 51 | 98.77 27 | 98.30 46 |
|
MVS_111021_HR | | | 93.45 46 | 93.31 49 | 93.84 56 | 96.99 72 | 84.84 69 | 93.24 219 | 97.24 31 | 88.76 71 | 91.60 97 | 95.85 93 | 86.07 43 | 98.66 92 | 91.91 68 | 98.16 58 | 98.03 69 |
|
ACMMP_NAP | | | 94.74 15 | 94.56 17 | 95.28 8 | 98.02 41 | 87.70 10 | 95.68 77 | 97.34 22 | 88.28 87 | 95.30 24 | 97.67 16 | 85.90 44 | 99.54 19 | 93.91 24 | 98.95 15 | 98.60 22 |
|
CS-MVS | | | 94.12 32 | 94.44 19 | 93.17 70 | 96.55 84 | 83.08 119 | 97.63 3 | 96.95 53 | 91.71 10 | 93.50 47 | 96.21 76 | 85.61 45 | 98.24 126 | 93.64 27 | 98.17 57 | 98.19 57 |
|
PHI-MVS | | | 93.89 38 | 93.65 46 | 94.62 39 | 96.84 75 | 86.43 37 | 96.69 32 | 97.49 6 | 85.15 163 | 93.56 45 | 96.28 74 | 85.60 46 | 99.31 38 | 92.45 46 | 98.79 23 | 98.12 63 |
|
MP-MVS-pluss | | | 94.21 29 | 94.00 36 | 94.85 24 | 98.17 33 | 86.65 29 | 94.82 126 | 97.17 38 | 86.26 135 | 92.83 61 | 97.87 13 | 85.57 47 | 99.56 11 | 94.37 20 | 98.92 17 | 98.34 41 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
GST-MVS | | | 94.21 29 | 93.97 37 | 94.90 22 | 98.41 22 | 86.82 22 | 96.54 36 | 97.19 34 | 88.24 88 | 93.26 48 | 96.83 51 | 85.48 48 | 99.59 7 | 91.43 77 | 98.40 51 | 98.30 46 |
|
MP-MVS |  | | 94.25 26 | 94.07 34 | 94.77 33 | 98.47 18 | 86.31 42 | 96.71 31 | 96.98 48 | 89.04 62 | 91.98 83 | 97.19 34 | 85.43 49 | 99.56 11 | 92.06 63 | 98.79 23 | 98.44 36 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS_fast | | 89.43 2 | 94.04 33 | 93.79 40 | 94.80 31 | 97.48 61 | 86.78 24 | 95.65 81 | 96.89 59 | 89.40 52 | 92.81 62 | 96.97 44 | 85.37 50 | 99.24 42 | 90.87 87 | 98.69 34 | 98.38 40 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
region2R | | | 94.43 22 | 94.27 27 | 94.92 19 | 98.65 8 | 86.67 28 | 96.92 24 | 97.23 33 | 88.60 78 | 93.58 43 | 97.27 28 | 85.22 51 | 99.54 19 | 92.21 54 | 98.74 30 | 98.56 24 |
|
CP-MVS | | | 94.34 25 | 94.21 29 | 94.74 35 | 98.39 23 | 86.64 30 | 97.60 4 | 97.24 31 | 88.53 80 | 92.73 67 | 97.23 31 | 85.20 52 | 99.32 37 | 92.15 57 | 98.83 21 | 98.25 54 |
|
test12 | | | | | 94.34 48 | 97.13 70 | 86.15 46 | | 96.29 102 | | 91.04 105 | | 85.08 53 | 99.01 62 | | 98.13 60 | 97.86 78 |
|
ACMMPR | | | 94.43 22 | 94.28 25 | 94.91 20 | 98.63 9 | 86.69 26 | 96.94 20 | 97.32 26 | 88.63 76 | 93.53 46 | 97.26 30 | 85.04 54 | 99.54 19 | 92.35 51 | 98.78 25 | 98.50 26 |
|
CS-MVS-test | | | 94.02 34 | 94.29 24 | 93.24 67 | 96.69 78 | 83.24 111 | 97.49 5 | 96.92 56 | 92.14 4 | 92.90 57 | 95.77 98 | 85.02 55 | 98.33 121 | 93.03 37 | 98.62 43 | 98.13 61 |
|
XVS | | | 94.45 20 | 94.32 22 | 94.85 24 | 98.54 13 | 86.60 32 | 96.93 22 | 97.19 34 | 90.66 23 | 92.85 59 | 97.16 37 | 85.02 55 | 99.49 25 | 91.99 64 | 98.56 47 | 98.47 32 |
|
X-MVStestdata | | | 88.31 164 | 86.13 210 | 94.85 24 | 98.54 13 | 86.60 32 | 96.93 22 | 97.19 34 | 90.66 23 | 92.85 59 | 23.41 381 | 85.02 55 | 99.49 25 | 91.99 64 | 98.56 47 | 98.47 32 |
|
MSLP-MVS++ | | | 93.72 42 | 94.08 33 | 92.65 96 | 97.31 65 | 83.43 106 | 95.79 71 | 97.33 24 | 90.03 35 | 93.58 43 | 96.96 45 | 84.87 58 | 97.76 164 | 92.19 56 | 98.66 39 | 96.76 121 |
|
HPM-MVS |  | | 94.02 34 | 93.88 38 | 94.43 45 | 98.39 23 | 85.78 60 | 97.25 10 | 97.07 44 | 86.90 124 | 92.62 70 | 96.80 55 | 84.85 59 | 99.17 46 | 92.43 47 | 98.65 41 | 98.33 42 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
SR-MVS | | | 94.23 28 | 94.17 32 | 94.43 45 | 98.21 32 | 85.78 60 | 96.40 40 | 96.90 58 | 88.20 92 | 94.33 30 | 97.40 23 | 84.75 60 | 99.03 57 | 93.35 33 | 97.99 66 | 98.48 29 |
|
PGM-MVS | | | 93.96 37 | 93.72 43 | 94.68 36 | 98.43 20 | 86.22 45 | 95.30 93 | 97.78 1 | 87.45 112 | 93.26 48 | 97.33 26 | 84.62 61 | 99.51 23 | 90.75 89 | 98.57 46 | 98.32 45 |
|
EI-MVSNet-Vis-set | | | 93.01 57 | 92.92 56 | 93.29 65 | 95.01 142 | 83.51 105 | 94.48 145 | 95.77 144 | 90.87 14 | 92.52 72 | 96.67 58 | 84.50 62 | 99.00 66 | 91.99 64 | 94.44 134 | 97.36 96 |
|
MTAPA | | | 94.42 24 | 94.22 28 | 95.00 17 | 98.42 21 | 86.95 19 | 94.36 160 | 96.97 49 | 91.07 12 | 93.14 52 | 97.56 17 | 84.30 63 | 99.56 11 | 93.43 30 | 98.75 29 | 98.47 32 |
|
SR-MVS-dyc-post | | | 93.82 39 | 93.82 39 | 93.82 57 | 97.92 43 | 84.57 75 | 96.28 44 | 96.76 73 | 87.46 110 | 93.75 39 | 97.43 21 | 84.24 64 | 99.01 62 | 92.73 41 | 97.80 72 | 97.88 76 |
|
ETV-MVS | | | 92.74 61 | 92.66 60 | 92.97 81 | 95.20 136 | 84.04 92 | 95.07 111 | 96.51 92 | 90.73 21 | 92.96 56 | 91.19 263 | 84.06 65 | 98.34 119 | 91.72 72 | 96.54 95 | 96.54 130 |
|
EI-MVSNet-UG-set | | | 92.74 61 | 92.62 61 | 93.12 72 | 94.86 153 | 83.20 113 | 94.40 153 | 95.74 147 | 90.71 22 | 92.05 81 | 96.60 65 | 84.00 66 | 98.99 68 | 91.55 74 | 93.63 144 | 97.17 104 |
|
mPP-MVS | | | 93.99 36 | 93.78 41 | 94.63 38 | 98.50 16 | 85.90 57 | 96.87 26 | 96.91 57 | 88.70 74 | 91.83 92 | 97.17 36 | 83.96 67 | 99.55 15 | 91.44 76 | 98.64 42 | 98.43 37 |
|
APD-MVS_3200maxsize | | | 93.78 40 | 93.77 42 | 93.80 59 | 97.92 43 | 84.19 88 | 96.30 42 | 96.87 61 | 86.96 120 | 93.92 38 | 97.47 19 | 83.88 68 | 98.96 73 | 92.71 44 | 97.87 70 | 98.26 53 |
|
EIA-MVS | | | 91.95 70 | 91.94 68 | 91.98 124 | 95.16 137 | 80.01 208 | 95.36 88 | 96.73 77 | 88.44 81 | 89.34 126 | 92.16 229 | 83.82 69 | 98.45 111 | 89.35 101 | 97.06 83 | 97.48 93 |
|
MVS_0304 | | | 94.60 17 | 94.38 21 | 95.23 10 | 95.41 128 | 87.49 14 | 96.53 37 | 92.75 267 | 93.82 1 | 93.07 55 | 97.84 14 | 83.66 70 | 99.59 7 | 97.61 1 | 98.76 28 | 98.61 21 |
|
casdiffmvs_mvg |  | | 92.96 58 | 92.83 58 | 93.35 64 | 94.59 165 | 83.40 108 | 95.00 115 | 96.34 100 | 90.30 29 | 92.05 81 | 96.05 85 | 83.43 71 | 98.15 133 | 92.07 60 | 95.67 105 | 98.49 28 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
EPP-MVSNet | | | 91.70 76 | 91.56 73 | 92.13 119 | 95.88 111 | 80.50 191 | 97.33 7 | 95.25 181 | 86.15 139 | 89.76 121 | 95.60 104 | 83.42 72 | 98.32 123 | 87.37 128 | 93.25 156 | 97.56 91 |
|
test_fmvsmvis_n_1920 | | | 93.44 47 | 93.55 47 | 93.10 73 | 93.67 207 | 84.26 87 | 95.83 69 | 96.14 115 | 89.00 66 | 92.43 75 | 97.50 18 | 83.37 73 | 98.72 90 | 96.61 3 | 97.44 78 | 96.32 134 |
|
UA-Net | | | 92.83 59 | 92.54 62 | 93.68 61 | 96.10 100 | 84.71 72 | 95.66 79 | 96.39 97 | 91.92 6 | 93.22 50 | 96.49 69 | 83.16 74 | 98.87 78 | 84.47 164 | 95.47 110 | 97.45 95 |
|
UniMVSNet_NR-MVSNet | | | 89.92 114 | 89.29 117 | 91.81 139 | 93.39 214 | 83.72 98 | 94.43 151 | 97.12 40 | 89.80 40 | 86.46 180 | 93.32 190 | 83.16 74 | 97.23 217 | 84.92 156 | 81.02 305 | 94.49 214 |
|
EC-MVSNet | | | 93.44 47 | 93.71 44 | 92.63 97 | 95.21 135 | 82.43 140 | 97.27 9 | 96.71 80 | 90.57 25 | 92.88 58 | 95.80 96 | 83.16 74 | 98.16 132 | 93.68 26 | 98.14 59 | 97.31 97 |
|
RE-MVS-def | | | | 93.68 45 | | 97.92 43 | 84.57 75 | 96.28 44 | 96.76 73 | 87.46 110 | 93.75 39 | 97.43 21 | 82.94 77 | | 92.73 41 | 97.80 72 | 97.88 76 |
|
新几何1 | | | | | 93.10 73 | 97.30 66 | 84.35 86 | | 95.56 159 | 71.09 351 | 91.26 103 | 96.24 75 | 82.87 78 | 98.86 80 | 79.19 248 | 98.10 61 | 96.07 147 |
|
原ACMM1 | | | | | 92.01 120 | 97.34 64 | 81.05 175 | | 96.81 68 | 78.89 277 | 90.45 110 | 95.92 90 | 82.65 79 | 98.84 84 | 80.68 227 | 98.26 56 | 96.14 141 |
|
casdiffmvs |  | | 92.51 64 | 92.43 64 | 92.74 91 | 94.41 177 | 81.98 150 | 94.54 143 | 96.23 109 | 89.57 48 | 91.96 85 | 96.17 81 | 82.58 80 | 98.01 151 | 90.95 85 | 95.45 112 | 98.23 55 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DeepC-MVS | | 88.79 3 | 93.31 52 | 92.99 55 | 94.26 50 | 96.07 102 | 85.83 58 | 94.89 121 | 96.99 47 | 89.02 65 | 89.56 122 | 97.37 25 | 82.51 81 | 99.38 30 | 92.20 55 | 98.30 54 | 97.57 90 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS_fast | | | 93.40 51 | 93.22 51 | 93.94 54 | 98.36 25 | 84.83 70 | 97.15 13 | 96.80 69 | 85.77 146 | 92.47 74 | 97.13 38 | 82.38 82 | 99.07 52 | 90.51 94 | 98.40 51 | 97.92 75 |
|
baseline | | | 92.39 67 | 92.29 66 | 92.69 95 | 94.46 174 | 81.77 155 | 94.14 169 | 96.27 104 | 89.22 56 | 91.88 88 | 96.00 86 | 82.35 83 | 97.99 153 | 91.05 80 | 95.27 117 | 98.30 46 |
|
canonicalmvs | | | 93.27 53 | 92.75 59 | 94.85 24 | 95.70 119 | 87.66 11 | 96.33 41 | 96.41 96 | 90.00 36 | 94.09 34 | 94.60 144 | 82.33 84 | 98.62 97 | 92.40 49 | 92.86 163 | 98.27 51 |
|
DP-MVS Recon | | | 91.95 70 | 91.28 76 | 93.96 53 | 98.33 27 | 85.92 55 | 94.66 137 | 96.66 83 | 82.69 217 | 90.03 119 | 95.82 95 | 82.30 85 | 99.03 57 | 84.57 162 | 96.48 98 | 96.91 118 |
|
PAPR | | | 90.02 108 | 89.27 119 | 92.29 115 | 95.78 115 | 80.95 179 | 92.68 236 | 96.22 110 | 81.91 233 | 86.66 178 | 93.75 182 | 82.23 86 | 98.44 112 | 79.40 247 | 94.79 122 | 97.48 93 |
|
MVS_Test | | | 91.31 82 | 91.11 79 | 91.93 128 | 94.37 178 | 80.14 200 | 93.46 207 | 95.80 142 | 86.46 131 | 91.35 102 | 93.77 180 | 82.21 87 | 98.09 144 | 87.57 124 | 94.95 120 | 97.55 92 |
|
nrg030 | | | 91.08 87 | 90.39 89 | 93.17 70 | 93.07 222 | 86.91 20 | 96.41 38 | 96.26 105 | 88.30 86 | 88.37 141 | 94.85 132 | 82.19 88 | 97.64 175 | 91.09 79 | 82.95 276 | 94.96 187 |
|
UniMVSNet (Re) | | | 89.80 117 | 89.07 121 | 92.01 120 | 93.60 209 | 84.52 78 | 94.78 129 | 97.47 11 | 89.26 55 | 86.44 183 | 92.32 224 | 82.10 89 | 97.39 204 | 84.81 159 | 80.84 309 | 94.12 229 |
|
testdata | | | | | 90.49 192 | 96.40 89 | 77.89 259 | | 95.37 177 | 72.51 344 | 93.63 42 | 96.69 56 | 82.08 90 | 97.65 172 | 83.08 180 | 97.39 79 | 95.94 151 |
|
PAPM_NR | | | 91.22 84 | 90.78 87 | 92.52 103 | 97.60 56 | 81.46 164 | 94.37 159 | 96.24 108 | 86.39 133 | 87.41 158 | 94.80 135 | 82.06 91 | 98.48 105 | 82.80 188 | 95.37 113 | 97.61 87 |
|
MG-MVS | | | 91.77 73 | 91.70 72 | 92.00 123 | 97.08 71 | 80.03 207 | 93.60 202 | 95.18 185 | 87.85 104 | 90.89 106 | 96.47 70 | 82.06 91 | 98.36 116 | 85.07 154 | 97.04 84 | 97.62 86 |
|
CANet | | | 93.54 44 | 93.20 52 | 94.55 41 | 95.65 120 | 85.73 62 | 94.94 118 | 96.69 82 | 91.89 7 | 90.69 108 | 95.88 92 | 81.99 93 | 99.54 19 | 93.14 36 | 97.95 68 | 98.39 38 |
|
FC-MVSNet-test | | | 90.27 102 | 90.18 94 | 90.53 188 | 93.71 204 | 79.85 214 | 95.77 72 | 97.59 3 | 89.31 54 | 86.27 186 | 94.67 141 | 81.93 94 | 97.01 232 | 84.26 166 | 88.09 229 | 94.71 198 |
|
FIs | | | 90.51 100 | 90.35 90 | 90.99 176 | 93.99 194 | 80.98 177 | 95.73 74 | 97.54 4 | 89.15 59 | 86.72 177 | 94.68 140 | 81.83 95 | 97.24 216 | 85.18 153 | 88.31 226 | 94.76 197 |
|
ACMMP |  | | 93.24 54 | 92.88 57 | 94.30 49 | 98.09 38 | 85.33 66 | 96.86 27 | 97.45 14 | 88.33 84 | 90.15 117 | 97.03 43 | 81.44 96 | 99.51 23 | 90.85 88 | 95.74 104 | 98.04 68 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Effi-MVS+ | | | 91.59 78 | 91.11 79 | 93.01 79 | 94.35 181 | 83.39 109 | 94.60 139 | 95.10 189 | 87.10 117 | 90.57 109 | 93.10 201 | 81.43 97 | 98.07 147 | 89.29 103 | 94.48 132 | 97.59 89 |
|
MVS_111021_LR | | | 92.47 65 | 92.29 66 | 92.98 80 | 95.99 108 | 84.43 84 | 93.08 224 | 96.09 119 | 88.20 92 | 91.12 104 | 95.72 101 | 81.33 98 | 97.76 164 | 91.74 71 | 97.37 80 | 96.75 122 |
|
mvs_anonymous | | | 89.37 134 | 89.32 116 | 89.51 238 | 93.47 212 | 74.22 305 | 91.65 268 | 94.83 207 | 82.91 212 | 85.45 208 | 93.79 178 | 81.23 99 | 96.36 272 | 86.47 140 | 94.09 137 | 97.94 72 |
|
PVSNet_BlendedMVS | | | 89.98 109 | 89.70 105 | 90.82 181 | 96.12 97 | 81.25 169 | 93.92 189 | 96.83 65 | 83.49 197 | 89.10 129 | 92.26 227 | 81.04 100 | 98.85 82 | 86.72 138 | 87.86 233 | 92.35 305 |
|
PVSNet_Blended | | | 90.73 92 | 90.32 91 | 91.98 124 | 96.12 97 | 81.25 169 | 92.55 241 | 96.83 65 | 82.04 229 | 89.10 129 | 92.56 217 | 81.04 100 | 98.85 82 | 86.72 138 | 95.91 102 | 95.84 156 |
|
alignmvs | | | 93.08 56 | 92.50 63 | 94.81 30 | 95.62 122 | 87.61 12 | 95.99 61 | 96.07 121 | 89.77 44 | 94.12 33 | 94.87 129 | 80.56 102 | 98.66 92 | 92.42 48 | 93.10 159 | 98.15 60 |
|
API-MVS | | | 90.66 95 | 90.07 97 | 92.45 106 | 96.36 91 | 84.57 75 | 96.06 59 | 95.22 184 | 82.39 220 | 89.13 128 | 94.27 157 | 80.32 103 | 98.46 108 | 80.16 235 | 96.71 92 | 94.33 220 |
|
PVSNet_Blended_VisFu | | | 91.38 80 | 90.91 84 | 92.80 87 | 96.39 90 | 83.17 114 | 94.87 123 | 96.66 83 | 83.29 202 | 89.27 127 | 94.46 148 | 80.29 104 | 99.17 46 | 87.57 124 | 95.37 113 | 96.05 149 |
|
test222 | | | | | | 96.55 84 | 81.70 156 | 92.22 253 | 95.01 192 | 68.36 357 | 90.20 114 | 96.14 82 | 80.26 105 | | | 97.80 72 | 96.05 149 |
|
diffmvs |  | | 91.37 81 | 91.23 77 | 91.77 140 | 93.09 221 | 80.27 195 | 92.36 246 | 95.52 164 | 87.03 119 | 91.40 101 | 94.93 126 | 80.08 106 | 97.44 192 | 92.13 59 | 94.56 129 | 97.61 87 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Test By Simon | | | | | | | | | | | | | 80.02 107 | | | | |
|
IterMVS-LS | | | 88.36 163 | 87.91 157 | 89.70 231 | 93.80 201 | 78.29 250 | 93.73 196 | 95.08 191 | 85.73 147 | 84.75 226 | 91.90 243 | 79.88 108 | 96.92 237 | 83.83 172 | 82.51 282 | 93.89 239 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 89.10 138 | 88.86 129 | 89.80 227 | 91.84 256 | 78.30 249 | 93.70 199 | 95.01 192 | 85.73 147 | 87.15 163 | 95.28 112 | 79.87 109 | 97.21 219 | 83.81 173 | 87.36 239 | 93.88 241 |
|
TAPA-MVS | | 84.62 6 | 88.16 168 | 87.01 178 | 91.62 144 | 96.64 80 | 80.65 186 | 94.39 155 | 96.21 113 | 76.38 306 | 86.19 188 | 95.44 107 | 79.75 110 | 98.08 146 | 62.75 353 | 95.29 115 | 96.13 142 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
Fast-Effi-MVS+ | | | 89.41 130 | 88.64 133 | 91.71 142 | 94.74 157 | 80.81 183 | 93.54 203 | 95.10 189 | 83.11 206 | 86.82 176 | 90.67 280 | 79.74 111 | 97.75 167 | 80.51 230 | 93.55 146 | 96.57 128 |
|
pcd_1.5k_mvsjas | | | 6.64 355 | 8.86 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 79.70 112 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
PS-MVSNAJss | | | 89.97 110 | 89.62 106 | 91.02 173 | 91.90 254 | 80.85 182 | 95.26 98 | 95.98 127 | 86.26 135 | 86.21 187 | 94.29 154 | 79.70 112 | 97.65 172 | 88.87 109 | 88.10 227 | 94.57 204 |
|
PS-MVSNAJ | | | 91.18 85 | 90.92 83 | 91.96 126 | 95.26 133 | 82.60 139 | 92.09 258 | 95.70 149 | 86.27 134 | 91.84 90 | 92.46 219 | 79.70 112 | 98.99 68 | 89.08 105 | 95.86 103 | 94.29 223 |
|
xiu_mvs_v2_base | | | 91.13 86 | 90.89 85 | 91.86 134 | 94.97 145 | 82.42 141 | 92.24 252 | 95.64 156 | 86.11 142 | 91.74 95 | 93.14 199 | 79.67 115 | 98.89 77 | 89.06 106 | 95.46 111 | 94.28 224 |
|
WR-MVS_H | | | 87.80 177 | 87.37 168 | 89.10 246 | 93.23 217 | 78.12 253 | 95.61 83 | 97.30 28 | 87.90 100 | 83.72 254 | 92.01 240 | 79.65 116 | 96.01 285 | 76.36 274 | 80.54 313 | 93.16 278 |
|
EPNet | | | 91.79 72 | 91.02 82 | 94.10 51 | 90.10 317 | 85.25 67 | 96.03 60 | 92.05 287 | 92.83 2 | 87.39 161 | 95.78 97 | 79.39 117 | 99.01 62 | 88.13 116 | 97.48 77 | 98.05 67 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_ehance_all_eth | | | 87.22 208 | 86.62 193 | 89.02 249 | 92.13 247 | 77.40 272 | 90.91 280 | 94.81 209 | 81.28 249 | 84.32 242 | 90.08 291 | 79.26 118 | 96.62 249 | 83.81 173 | 82.94 277 | 93.04 283 |
|
miper_enhance_ethall | | | 86.90 219 | 86.18 209 | 89.06 247 | 91.66 266 | 77.58 270 | 90.22 294 | 94.82 208 | 79.16 274 | 84.48 233 | 89.10 306 | 79.19 119 | 96.66 246 | 84.06 168 | 82.94 277 | 92.94 286 |
|
NR-MVSNet | | | 88.58 159 | 87.47 166 | 91.93 128 | 93.04 224 | 84.16 89 | 94.77 130 | 96.25 107 | 89.05 61 | 80.04 306 | 93.29 193 | 79.02 120 | 97.05 230 | 81.71 211 | 80.05 319 | 94.59 202 |
|
TAMVS | | | 89.21 136 | 88.29 147 | 91.96 126 | 93.71 204 | 82.62 138 | 93.30 214 | 94.19 231 | 82.22 224 | 87.78 152 | 93.94 170 | 78.83 121 | 96.95 235 | 77.70 261 | 92.98 161 | 96.32 134 |
|
c3_l | | | 87.14 213 | 86.50 198 | 89.04 248 | 92.20 244 | 77.26 273 | 91.22 276 | 94.70 215 | 82.01 230 | 84.34 241 | 90.43 284 | 78.81 122 | 96.61 252 | 83.70 175 | 81.09 302 | 93.25 273 |
|
1112_ss | | | 88.42 160 | 87.33 169 | 91.72 141 | 94.92 149 | 80.98 177 | 92.97 229 | 94.54 218 | 78.16 293 | 83.82 252 | 93.88 175 | 78.78 123 | 97.91 159 | 79.45 243 | 89.41 203 | 96.26 138 |
|
CDS-MVSNet | | | 89.45 127 | 88.51 138 | 92.29 115 | 93.62 208 | 83.61 103 | 93.01 227 | 94.68 216 | 81.95 231 | 87.82 151 | 93.24 195 | 78.69 124 | 96.99 233 | 80.34 232 | 93.23 157 | 96.28 137 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
WTY-MVS | | | 89.60 121 | 88.92 125 | 91.67 143 | 95.47 126 | 81.15 173 | 92.38 245 | 94.78 211 | 83.11 206 | 89.06 131 | 94.32 152 | 78.67 125 | 96.61 252 | 81.57 212 | 90.89 183 | 97.24 100 |
|
CPTT-MVS | | | 91.99 69 | 91.80 70 | 92.55 101 | 98.24 31 | 81.98 150 | 96.76 30 | 96.49 93 | 81.89 235 | 90.24 113 | 96.44 71 | 78.59 126 | 98.61 98 | 89.68 98 | 97.85 71 | 97.06 109 |
|
IS-MVSNet | | | 91.43 79 | 91.09 81 | 92.46 105 | 95.87 113 | 81.38 167 | 96.95 19 | 93.69 250 | 89.72 46 | 89.50 124 | 95.98 88 | 78.57 127 | 97.77 163 | 83.02 182 | 96.50 97 | 98.22 56 |
|
OMC-MVS | | | 91.23 83 | 90.62 88 | 93.08 75 | 96.27 93 | 84.07 90 | 93.52 204 | 95.93 131 | 86.95 121 | 89.51 123 | 96.13 83 | 78.50 128 | 98.35 118 | 85.84 148 | 92.90 162 | 96.83 120 |
|
PCF-MVS | | 84.11 10 | 87.74 179 | 86.08 214 | 92.70 94 | 94.02 189 | 84.43 84 | 89.27 309 | 95.87 138 | 73.62 335 | 84.43 236 | 94.33 151 | 78.48 129 | 98.86 80 | 70.27 313 | 94.45 133 | 94.81 195 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
LCM-MVSNet-Re | | | 88.30 165 | 88.32 146 | 88.27 266 | 94.71 160 | 72.41 327 | 93.15 220 | 90.98 317 | 87.77 105 | 79.25 314 | 91.96 241 | 78.35 130 | 95.75 297 | 83.04 181 | 95.62 106 | 96.65 125 |
|
HY-MVS | | 83.01 12 | 89.03 144 | 87.94 156 | 92.29 115 | 94.86 153 | 82.77 128 | 92.08 259 | 94.49 219 | 81.52 245 | 86.93 168 | 92.79 212 | 78.32 131 | 98.23 127 | 79.93 237 | 90.55 184 | 95.88 154 |
|
GeoE | | | 90.05 107 | 89.43 112 | 91.90 133 | 95.16 137 | 80.37 194 | 95.80 70 | 94.65 217 | 83.90 185 | 87.55 157 | 94.75 137 | 78.18 132 | 97.62 177 | 81.28 215 | 93.63 144 | 97.71 84 |
|
MVS | | | 87.44 196 | 86.10 213 | 91.44 153 | 92.61 237 | 83.62 102 | 92.63 238 | 95.66 153 | 67.26 358 | 81.47 285 | 92.15 230 | 77.95 133 | 98.22 129 | 79.71 239 | 95.48 109 | 92.47 299 |
|
MVSFormer | | | 91.68 77 | 91.30 75 | 92.80 87 | 93.86 198 | 83.88 95 | 95.96 63 | 95.90 135 | 84.66 175 | 91.76 93 | 94.91 127 | 77.92 134 | 97.30 208 | 89.64 99 | 97.11 81 | 97.24 100 |
|
lupinMVS | | | 90.92 88 | 90.21 92 | 93.03 78 | 93.86 198 | 83.88 95 | 92.81 234 | 93.86 244 | 79.84 265 | 91.76 93 | 94.29 154 | 77.92 134 | 98.04 149 | 90.48 95 | 97.11 81 | 97.17 104 |
|
Test_1112_low_res | | | 87.65 182 | 86.51 197 | 91.08 169 | 94.94 148 | 79.28 230 | 91.77 263 | 94.30 227 | 76.04 311 | 83.51 261 | 92.37 222 | 77.86 136 | 97.73 168 | 78.69 251 | 89.13 210 | 96.22 139 |
|
VNet | | | 92.24 68 | 91.91 69 | 93.24 67 | 96.59 82 | 83.43 106 | 94.84 125 | 96.44 94 | 89.19 58 | 94.08 35 | 95.90 91 | 77.85 137 | 98.17 131 | 88.90 107 | 93.38 153 | 98.13 61 |
|
mvsany_test1 | | | 85.42 251 | 85.30 238 | 85.77 316 | 87.95 345 | 75.41 297 | 87.61 333 | 80.97 369 | 76.82 303 | 88.68 135 | 95.83 94 | 77.44 138 | 90.82 357 | 85.90 146 | 86.51 247 | 91.08 331 |
|
DU-MVS | | | 89.34 135 | 88.50 139 | 91.85 136 | 93.04 224 | 83.72 98 | 94.47 148 | 96.59 88 | 89.50 49 | 86.46 180 | 93.29 193 | 77.25 139 | 97.23 217 | 84.92 156 | 81.02 305 | 94.59 202 |
|
Baseline_NR-MVSNet | | | 87.07 214 | 86.63 192 | 88.40 262 | 91.44 269 | 77.87 260 | 94.23 166 | 92.57 272 | 84.12 181 | 85.74 194 | 92.08 236 | 77.25 139 | 96.04 282 | 82.29 197 | 79.94 320 | 91.30 323 |
|
jason | | | 90.80 89 | 90.10 96 | 92.90 84 | 93.04 224 | 83.53 104 | 93.08 224 | 94.15 233 | 80.22 260 | 91.41 100 | 94.91 127 | 76.87 141 | 97.93 158 | 90.28 96 | 96.90 87 | 97.24 100 |
jason: jason. |
PAPM | | | 86.68 226 | 85.39 235 | 90.53 188 | 93.05 223 | 79.33 229 | 89.79 302 | 94.77 212 | 78.82 279 | 81.95 281 | 93.24 195 | 76.81 142 | 97.30 208 | 66.94 336 | 93.16 158 | 94.95 190 |
|
Vis-MVSNet (Re-imp) | | | 89.59 122 | 89.44 111 | 90.03 215 | 95.74 116 | 75.85 292 | 95.61 83 | 90.80 322 | 87.66 109 | 87.83 150 | 95.40 110 | 76.79 143 | 96.46 265 | 78.37 252 | 96.73 91 | 97.80 81 |
|
baseline1 | | | 88.10 169 | 87.28 171 | 90.57 186 | 94.96 146 | 80.07 203 | 94.27 162 | 91.29 310 | 86.74 126 | 87.41 158 | 94.00 167 | 76.77 144 | 96.20 277 | 80.77 224 | 79.31 327 | 95.44 170 |
|
114514_t | | | 89.51 124 | 88.50 139 | 92.54 102 | 98.11 36 | 81.99 149 | 95.16 106 | 96.36 99 | 70.19 354 | 85.81 192 | 95.25 114 | 76.70 145 | 98.63 96 | 82.07 200 | 96.86 90 | 97.00 114 |
|
PLC |  | 84.53 7 | 89.06 143 | 88.03 153 | 92.15 118 | 97.27 68 | 82.69 135 | 94.29 161 | 95.44 171 | 79.71 267 | 84.01 249 | 94.18 159 | 76.68 146 | 98.75 88 | 77.28 265 | 93.41 152 | 95.02 183 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TranMVSNet+NR-MVSNet | | | 88.84 149 | 87.95 155 | 91.49 150 | 92.68 236 | 83.01 122 | 94.92 120 | 96.31 101 | 89.88 38 | 85.53 201 | 93.85 177 | 76.63 147 | 96.96 234 | 81.91 204 | 79.87 322 | 94.50 212 |
|
MAR-MVS | | | 90.30 101 | 89.37 114 | 93.07 77 | 96.61 81 | 84.48 80 | 95.68 77 | 95.67 151 | 82.36 222 | 87.85 149 | 92.85 206 | 76.63 147 | 98.80 86 | 80.01 236 | 96.68 93 | 95.91 152 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
WR-MVS | | | 88.38 161 | 87.67 161 | 90.52 190 | 93.30 216 | 80.18 198 | 93.26 217 | 95.96 130 | 88.57 79 | 85.47 207 | 92.81 210 | 76.12 149 | 96.91 238 | 81.24 216 | 82.29 285 | 94.47 217 |
|
v8 | | | 87.50 195 | 86.71 187 | 89.89 221 | 91.37 274 | 79.40 223 | 94.50 144 | 95.38 175 | 84.81 171 | 83.60 259 | 91.33 258 | 76.05 150 | 97.42 194 | 82.84 186 | 80.51 316 | 92.84 290 |
|
v148 | | | 87.04 215 | 86.32 204 | 89.21 242 | 90.94 293 | 77.26 273 | 93.71 198 | 94.43 221 | 84.84 170 | 84.36 240 | 90.80 277 | 76.04 151 | 97.05 230 | 82.12 199 | 79.60 324 | 93.31 270 |
|
eth_miper_zixun_eth | | | 86.50 233 | 85.77 227 | 88.68 257 | 91.94 253 | 75.81 293 | 90.47 286 | 94.89 201 | 82.05 227 | 84.05 247 | 90.46 283 | 75.96 152 | 96.77 242 | 82.76 189 | 79.36 326 | 93.46 267 |
|
3Dnovator+ | | 87.14 4 | 92.42 66 | 91.37 74 | 95.55 6 | 95.63 121 | 88.73 6 | 97.07 18 | 96.77 72 | 90.84 15 | 84.02 248 | 96.62 64 | 75.95 153 | 99.34 33 | 87.77 120 | 97.68 75 | 98.59 23 |
|
h-mvs33 | | | 90.80 89 | 90.15 95 | 92.75 90 | 96.01 104 | 82.66 136 | 95.43 87 | 95.53 163 | 89.80 40 | 93.08 53 | 95.64 103 | 75.77 154 | 99.00 66 | 92.07 60 | 78.05 331 | 96.60 126 |
|
hse-mvs2 | | | 89.88 116 | 89.34 115 | 91.51 149 | 94.83 155 | 81.12 174 | 93.94 187 | 93.91 243 | 89.80 40 | 93.08 53 | 93.60 184 | 75.77 154 | 97.66 171 | 92.07 60 | 77.07 338 | 95.74 161 |
|
BH-untuned | | | 88.60 157 | 88.13 151 | 90.01 218 | 95.24 134 | 78.50 243 | 93.29 215 | 94.15 233 | 84.75 172 | 84.46 234 | 93.40 187 | 75.76 156 | 97.40 201 | 77.59 262 | 94.52 131 | 94.12 229 |
|
DIV-MVS_self_test | | | 86.53 231 | 85.78 225 | 88.75 254 | 92.02 252 | 76.45 285 | 90.74 282 | 94.30 227 | 81.83 238 | 83.34 265 | 90.82 276 | 75.75 157 | 96.57 255 | 81.73 210 | 81.52 297 | 93.24 274 |
|
BH-w/o | | | 87.57 191 | 87.05 176 | 89.12 245 | 94.90 151 | 77.90 258 | 92.41 243 | 93.51 252 | 82.89 213 | 83.70 255 | 91.34 257 | 75.75 157 | 97.07 228 | 75.49 281 | 93.49 149 | 92.39 303 |
|
cl____ | | | 86.52 232 | 85.78 225 | 88.75 254 | 92.03 251 | 76.46 284 | 90.74 282 | 94.30 227 | 81.83 238 | 83.34 265 | 90.78 278 | 75.74 159 | 96.57 255 | 81.74 209 | 81.54 296 | 93.22 275 |
|
cdsmvs_eth3d_5k | | | 22.14 350 | 29.52 353 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 95.76 145 | 0.00 387 | 0.00 388 | 94.29 154 | 75.66 160 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
CNLPA | | | 89.07 142 | 87.98 154 | 92.34 111 | 96.87 74 | 84.78 71 | 94.08 175 | 93.24 255 | 81.41 246 | 84.46 234 | 95.13 122 | 75.57 161 | 96.62 249 | 77.21 266 | 93.84 142 | 95.61 168 |
|
CHOSEN 1792x2688 | | | 88.84 149 | 87.69 160 | 92.30 114 | 96.14 96 | 81.42 166 | 90.01 299 | 95.86 139 | 74.52 326 | 87.41 158 | 93.94 170 | 75.46 162 | 98.36 116 | 80.36 231 | 95.53 107 | 97.12 108 |
|
CP-MVSNet | | | 87.63 185 | 87.26 173 | 88.74 256 | 93.12 220 | 76.59 283 | 95.29 95 | 96.58 89 | 88.43 82 | 83.49 262 | 92.98 204 | 75.28 163 | 95.83 293 | 78.97 249 | 81.15 301 | 93.79 247 |
|
v10 | | | 87.25 205 | 86.38 200 | 89.85 222 | 91.19 280 | 79.50 220 | 94.48 145 | 95.45 169 | 83.79 189 | 83.62 258 | 91.19 263 | 75.13 164 | 97.42 194 | 81.94 203 | 80.60 311 | 92.63 295 |
|
Vis-MVSNet |  | | 91.75 74 | 91.23 77 | 93.29 65 | 95.32 130 | 83.78 97 | 96.14 53 | 95.98 127 | 89.89 37 | 90.45 110 | 96.58 66 | 75.09 165 | 98.31 124 | 84.75 160 | 96.90 87 | 97.78 83 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
sss | | | 88.93 147 | 88.26 149 | 90.94 179 | 94.05 188 | 80.78 184 | 91.71 265 | 95.38 175 | 81.55 244 | 88.63 136 | 93.91 174 | 75.04 166 | 95.47 308 | 82.47 192 | 91.61 174 | 96.57 128 |
|
v1144 | | | 87.61 188 | 86.79 184 | 90.06 214 | 91.01 288 | 79.34 226 | 93.95 186 | 95.42 174 | 83.36 201 | 85.66 196 | 91.31 261 | 74.98 167 | 97.42 194 | 83.37 177 | 82.06 287 | 93.42 268 |
|
miper_lstm_enhance | | | 85.27 256 | 84.59 254 | 87.31 287 | 91.28 278 | 74.63 300 | 87.69 330 | 94.09 237 | 81.20 253 | 81.36 288 | 89.85 297 | 74.97 168 | 94.30 323 | 81.03 220 | 79.84 323 | 93.01 284 |
|
test_yl | | | 90.69 93 | 90.02 101 | 92.71 92 | 95.72 117 | 82.41 143 | 94.11 171 | 95.12 187 | 85.63 151 | 91.49 98 | 94.70 138 | 74.75 169 | 98.42 114 | 86.13 143 | 92.53 167 | 97.31 97 |
|
DCV-MVSNet | | | 90.69 93 | 90.02 101 | 92.71 92 | 95.72 117 | 82.41 143 | 94.11 171 | 95.12 187 | 85.63 151 | 91.49 98 | 94.70 138 | 74.75 169 | 98.42 114 | 86.13 143 | 92.53 167 | 97.31 97 |
|
V42 | | | 87.68 180 | 86.86 180 | 90.15 209 | 90.58 308 | 80.14 200 | 94.24 165 | 95.28 180 | 83.66 191 | 85.67 195 | 91.33 258 | 74.73 171 | 97.41 199 | 84.43 165 | 81.83 291 | 92.89 288 |
|
FA-MVS(test-final) | | | 89.66 119 | 88.91 126 | 91.93 128 | 94.57 168 | 80.27 195 | 91.36 272 | 94.74 213 | 84.87 168 | 89.82 120 | 92.61 216 | 74.72 172 | 98.47 107 | 83.97 170 | 93.53 147 | 97.04 111 |
|
XVG-OURS-SEG-HR | | | 89.95 112 | 89.45 110 | 91.47 152 | 94.00 193 | 81.21 172 | 91.87 261 | 96.06 123 | 85.78 145 | 88.55 137 | 95.73 100 | 74.67 173 | 97.27 212 | 88.71 110 | 89.64 201 | 95.91 152 |
|
v2v482 | | | 87.84 175 | 87.06 175 | 90.17 207 | 90.99 289 | 79.23 233 | 94.00 184 | 95.13 186 | 84.87 168 | 85.53 201 | 92.07 238 | 74.45 174 | 97.45 190 | 84.71 161 | 81.75 293 | 93.85 245 |
|
CLD-MVS | | | 89.47 126 | 88.90 127 | 91.18 163 | 94.22 183 | 82.07 148 | 92.13 256 | 96.09 119 | 87.90 100 | 85.37 217 | 92.45 220 | 74.38 175 | 97.56 180 | 87.15 131 | 90.43 185 | 93.93 238 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
XXY-MVS | | | 87.65 182 | 86.85 181 | 90.03 215 | 92.14 246 | 80.60 189 | 93.76 195 | 95.23 182 | 82.94 211 | 84.60 229 | 94.02 165 | 74.27 176 | 95.49 307 | 81.04 218 | 83.68 269 | 94.01 237 |
|
HQP_MVS | | | 90.60 99 | 90.19 93 | 91.82 137 | 94.70 161 | 82.73 132 | 95.85 67 | 96.22 110 | 90.81 16 | 86.91 170 | 94.86 130 | 74.23 177 | 98.12 134 | 88.15 114 | 89.99 190 | 94.63 199 |
|
plane_prior6 | | | | | | 94.52 170 | 82.75 129 | | | | | | 74.23 177 | | | | |
|
v144192 | | | 87.19 211 | 86.35 202 | 89.74 228 | 90.64 306 | 78.24 251 | 93.92 189 | 95.43 172 | 81.93 232 | 85.51 203 | 91.05 271 | 74.21 179 | 97.45 190 | 82.86 185 | 81.56 295 | 93.53 262 |
|
VPA-MVSNet | | | 89.62 120 | 88.96 123 | 91.60 145 | 93.86 198 | 82.89 127 | 95.46 86 | 97.33 24 | 87.91 99 | 88.43 140 | 93.31 191 | 74.17 180 | 97.40 201 | 87.32 129 | 82.86 281 | 94.52 207 |
|
ab-mvs | | | 89.41 130 | 88.35 143 | 92.60 98 | 95.15 139 | 82.65 137 | 92.20 254 | 95.60 158 | 83.97 184 | 88.55 137 | 93.70 183 | 74.16 181 | 98.21 130 | 82.46 193 | 89.37 204 | 96.94 116 |
|
1314 | | | 87.51 193 | 86.57 195 | 90.34 203 | 92.42 240 | 79.74 216 | 92.63 238 | 95.35 179 | 78.35 288 | 80.14 303 | 91.62 252 | 74.05 182 | 97.15 221 | 81.05 217 | 93.53 147 | 94.12 229 |
|
test_djsdf | | | 89.03 144 | 88.64 133 | 90.21 205 | 90.74 303 | 79.28 230 | 95.96 63 | 95.90 135 | 84.66 175 | 85.33 219 | 92.94 205 | 74.02 183 | 97.30 208 | 89.64 99 | 88.53 219 | 94.05 235 |
|
cl22 | | | 86.78 222 | 85.98 218 | 89.18 244 | 92.34 241 | 77.62 269 | 90.84 281 | 94.13 235 | 81.33 248 | 83.97 250 | 90.15 289 | 73.96 184 | 96.60 254 | 84.19 167 | 82.94 277 | 93.33 269 |
|
AdaColmap |  | | 89.89 115 | 89.07 121 | 92.37 110 | 97.41 62 | 83.03 120 | 94.42 152 | 95.92 132 | 82.81 214 | 86.34 185 | 94.65 142 | 73.89 185 | 99.02 60 | 80.69 226 | 95.51 108 | 95.05 182 |
|
HyFIR lowres test | | | 88.09 170 | 86.81 182 | 91.93 128 | 96.00 105 | 80.63 187 | 90.01 299 | 95.79 143 | 73.42 336 | 87.68 154 | 92.10 235 | 73.86 186 | 97.96 155 | 80.75 225 | 91.70 173 | 97.19 103 |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 187 | | | | |
|
HQP-MVS | | | 89.80 117 | 89.28 118 | 91.34 157 | 94.17 184 | 81.56 158 | 94.39 155 | 96.04 124 | 88.81 68 | 85.43 211 | 93.97 169 | 73.83 187 | 97.96 155 | 87.11 133 | 89.77 199 | 94.50 212 |
|
3Dnovator | | 86.66 5 | 91.73 75 | 90.82 86 | 94.44 43 | 94.59 165 | 86.37 39 | 97.18 12 | 97.02 46 | 89.20 57 | 84.31 244 | 96.66 59 | 73.74 189 | 99.17 46 | 86.74 136 | 97.96 67 | 97.79 82 |
|
EPNet_dtu | | | 86.49 235 | 85.94 221 | 88.14 271 | 90.24 315 | 72.82 317 | 94.11 171 | 92.20 281 | 86.66 129 | 79.42 313 | 92.36 223 | 73.52 190 | 95.81 295 | 71.26 307 | 93.66 143 | 95.80 159 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TransMVSNet (Re) | | | 84.43 268 | 83.06 273 | 88.54 260 | 91.72 261 | 78.44 244 | 95.18 103 | 92.82 265 | 82.73 216 | 79.67 310 | 92.12 232 | 73.49 191 | 95.96 287 | 71.10 312 | 68.73 360 | 91.21 325 |
|
Effi-MVS+-dtu | | | 88.65 155 | 88.35 143 | 89.54 235 | 93.33 215 | 76.39 286 | 94.47 148 | 94.36 225 | 87.70 107 | 85.43 211 | 89.56 302 | 73.45 192 | 97.26 214 | 85.57 151 | 91.28 176 | 94.97 184 |
|
baseline2 | | | 86.50 233 | 85.39 235 | 89.84 223 | 91.12 285 | 76.70 281 | 91.88 260 | 88.58 347 | 82.35 223 | 79.95 307 | 90.95 273 | 73.42 193 | 97.63 176 | 80.27 234 | 89.95 193 | 95.19 178 |
|
PEN-MVS | | | 86.80 221 | 86.27 207 | 88.40 262 | 92.32 242 | 75.71 294 | 95.18 103 | 96.38 98 | 87.97 97 | 82.82 271 | 93.15 198 | 73.39 194 | 95.92 288 | 76.15 278 | 79.03 329 | 93.59 260 |
|
v1192 | | | 87.25 205 | 86.33 203 | 90.00 219 | 90.76 302 | 79.04 234 | 93.80 193 | 95.48 165 | 82.57 218 | 85.48 206 | 91.18 265 | 73.38 195 | 97.42 194 | 82.30 196 | 82.06 287 | 93.53 262 |
|
QAPM | | | 89.51 124 | 88.15 150 | 93.59 62 | 94.92 149 | 84.58 74 | 96.82 29 | 96.70 81 | 78.43 287 | 83.41 263 | 96.19 80 | 73.18 196 | 99.30 39 | 77.11 268 | 96.54 95 | 96.89 119 |
|
mvsmamba | | | 89.96 111 | 89.50 109 | 91.33 158 | 92.90 231 | 81.82 153 | 96.68 33 | 92.37 275 | 89.03 63 | 87.00 166 | 94.85 132 | 73.05 197 | 97.65 172 | 91.03 81 | 88.63 217 | 94.51 209 |
|
tpmrst | | | 85.35 253 | 84.99 243 | 86.43 308 | 90.88 298 | 67.88 354 | 88.71 318 | 91.43 307 | 80.13 262 | 86.08 190 | 88.80 312 | 73.05 197 | 96.02 284 | 82.48 191 | 83.40 275 | 95.40 172 |
|
PS-CasMVS | | | 87.32 202 | 86.88 179 | 88.63 259 | 92.99 227 | 76.33 288 | 95.33 90 | 96.61 87 | 88.22 90 | 83.30 267 | 93.07 202 | 73.03 199 | 95.79 296 | 78.36 253 | 81.00 307 | 93.75 254 |
|
DTE-MVSNet | | | 86.11 239 | 85.48 233 | 87.98 274 | 91.65 267 | 74.92 299 | 94.93 119 | 95.75 146 | 87.36 113 | 82.26 276 | 93.04 203 | 72.85 200 | 95.82 294 | 74.04 294 | 77.46 335 | 93.20 276 |
|
MVSTER | | | 88.84 149 | 88.29 147 | 90.51 191 | 92.95 229 | 80.44 192 | 93.73 196 | 95.01 192 | 84.66 175 | 87.15 163 | 93.12 200 | 72.79 201 | 97.21 219 | 87.86 119 | 87.36 239 | 93.87 242 |
|
v1921920 | | | 86.97 217 | 86.06 215 | 89.69 232 | 90.53 311 | 78.11 254 | 93.80 193 | 95.43 172 | 81.90 234 | 85.33 219 | 91.05 271 | 72.66 202 | 97.41 199 | 82.05 201 | 81.80 292 | 93.53 262 |
|
DP-MVS | | | 87.25 205 | 85.36 237 | 92.90 84 | 97.65 55 | 83.24 111 | 94.81 127 | 92.00 289 | 74.99 321 | 81.92 282 | 95.00 125 | 72.66 202 | 99.05 54 | 66.92 338 | 92.33 170 | 96.40 132 |
|
v7n | | | 86.81 220 | 85.76 228 | 89.95 220 | 90.72 304 | 79.25 232 | 95.07 111 | 95.92 132 | 84.45 178 | 82.29 275 | 90.86 274 | 72.60 204 | 97.53 184 | 79.42 246 | 80.52 315 | 93.08 282 |
|
OPM-MVS | | | 90.12 105 | 89.56 108 | 91.82 137 | 93.14 219 | 83.90 94 | 94.16 168 | 95.74 147 | 88.96 67 | 87.86 148 | 95.43 109 | 72.48 205 | 97.91 159 | 88.10 118 | 90.18 189 | 93.65 259 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
LS3D | | | 87.89 174 | 86.32 204 | 92.59 99 | 96.07 102 | 82.92 126 | 95.23 99 | 94.92 200 | 75.66 313 | 82.89 270 | 95.98 88 | 72.48 205 | 99.21 44 | 68.43 327 | 95.23 118 | 95.64 165 |
|
pm-mvs1 | | | 86.61 227 | 85.54 231 | 89.82 224 | 91.44 269 | 80.18 198 | 95.28 97 | 94.85 205 | 83.84 187 | 81.66 283 | 92.62 215 | 72.45 207 | 96.48 262 | 79.67 240 | 78.06 330 | 92.82 291 |
|
PMMVS | | | 85.71 247 | 84.96 245 | 87.95 275 | 88.90 332 | 77.09 275 | 88.68 319 | 90.06 333 | 72.32 345 | 86.47 179 | 90.76 279 | 72.15 208 | 94.40 320 | 81.78 208 | 93.49 149 | 92.36 304 |
|
SDMVSNet | | | 90.19 104 | 89.61 107 | 91.93 128 | 96.00 105 | 83.09 118 | 92.89 231 | 95.98 127 | 88.73 72 | 86.85 174 | 95.20 118 | 72.09 209 | 97.08 226 | 88.90 107 | 89.85 196 | 95.63 166 |
|
PatchmatchNet |  | | 85.85 244 | 84.70 251 | 89.29 241 | 91.76 260 | 75.54 295 | 88.49 321 | 91.30 309 | 81.63 242 | 85.05 222 | 88.70 314 | 71.71 210 | 96.24 276 | 74.61 292 | 89.05 211 | 96.08 146 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
sam_mvs1 | | | | | | | | | | | | | 71.70 211 | | | | 96.12 143 |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 352 | 71.53 212 | 96.48 262 | | | |
|
v1240 | | | 86.78 222 | 85.85 223 | 89.56 234 | 90.45 312 | 77.79 264 | 93.61 201 | 95.37 177 | 81.65 240 | 85.43 211 | 91.15 267 | 71.50 213 | 97.43 193 | 81.47 214 | 82.05 289 | 93.47 266 |
|
anonymousdsp | | | 87.84 175 | 87.09 174 | 90.12 211 | 89.13 329 | 80.54 190 | 94.67 136 | 95.55 160 | 82.05 227 | 83.82 252 | 92.12 232 | 71.47 214 | 97.15 221 | 87.15 131 | 87.80 235 | 92.67 293 |
|
Patchmatch-test | | | 81.37 298 | 79.30 304 | 87.58 281 | 90.92 295 | 74.16 307 | 80.99 365 | 87.68 352 | 70.52 353 | 76.63 330 | 88.81 310 | 71.21 215 | 92.76 344 | 60.01 361 | 86.93 245 | 95.83 157 |
|
F-COLMAP | | | 87.95 173 | 86.80 183 | 91.40 154 | 96.35 92 | 80.88 181 | 94.73 132 | 95.45 169 | 79.65 268 | 82.04 280 | 94.61 143 | 71.13 216 | 98.50 104 | 76.24 277 | 91.05 181 | 94.80 196 |
|
pmmvs4 | | | 85.43 250 | 83.86 263 | 90.16 208 | 90.02 320 | 82.97 124 | 90.27 288 | 92.67 270 | 75.93 312 | 80.73 294 | 91.74 247 | 71.05 217 | 95.73 299 | 78.85 250 | 83.46 273 | 91.78 314 |
|
CR-MVSNet | | | 85.35 253 | 83.76 264 | 90.12 211 | 90.58 308 | 79.34 226 | 85.24 349 | 91.96 293 | 78.27 290 | 85.55 198 | 87.87 327 | 71.03 218 | 95.61 300 | 73.96 296 | 89.36 205 | 95.40 172 |
|
Patchmtry | | | 82.71 282 | 80.93 288 | 88.06 272 | 90.05 319 | 76.37 287 | 84.74 354 | 91.96 293 | 72.28 346 | 81.32 289 | 87.87 327 | 71.03 218 | 95.50 306 | 68.97 323 | 80.15 318 | 92.32 306 |
|
CL-MVSNet_self_test | | | 81.74 291 | 80.53 289 | 85.36 319 | 85.96 354 | 72.45 326 | 90.25 290 | 93.07 259 | 81.24 251 | 79.85 309 | 87.29 333 | 70.93 220 | 92.52 345 | 66.95 335 | 69.23 356 | 91.11 329 |
|
RPMNet | | | 83.95 274 | 81.53 283 | 91.21 161 | 90.58 308 | 79.34 226 | 85.24 349 | 96.76 73 | 71.44 349 | 85.55 198 | 82.97 357 | 70.87 221 | 98.91 76 | 61.01 357 | 89.36 205 | 95.40 172 |
|
Patchmatch-RL test | | | 81.67 292 | 79.96 298 | 86.81 304 | 85.42 359 | 71.23 336 | 82.17 363 | 87.50 353 | 78.47 285 | 77.19 326 | 82.50 358 | 70.81 222 | 93.48 335 | 82.66 190 | 72.89 348 | 95.71 164 |
|
CostFormer | | | 85.77 246 | 84.94 246 | 88.26 267 | 91.16 283 | 72.58 325 | 89.47 307 | 91.04 316 | 76.26 309 | 86.45 182 | 89.97 294 | 70.74 223 | 96.86 241 | 82.35 195 | 87.07 244 | 95.34 175 |
|
sam_mvs | | | | | | | | | | | | | 70.60 224 | | | | |
|
xiu_mvs_v1_base_debu | | | 90.64 96 | 90.05 98 | 92.40 107 | 93.97 195 | 84.46 81 | 93.32 210 | 95.46 166 | 85.17 160 | 92.25 76 | 94.03 162 | 70.59 225 | 98.57 101 | 90.97 82 | 94.67 124 | 94.18 225 |
|
xiu_mvs_v1_base | | | 90.64 96 | 90.05 98 | 92.40 107 | 93.97 195 | 84.46 81 | 93.32 210 | 95.46 166 | 85.17 160 | 92.25 76 | 94.03 162 | 70.59 225 | 98.57 101 | 90.97 82 | 94.67 124 | 94.18 225 |
|
xiu_mvs_v1_base_debi | | | 90.64 96 | 90.05 98 | 92.40 107 | 93.97 195 | 84.46 81 | 93.32 210 | 95.46 166 | 85.17 160 | 92.25 76 | 94.03 162 | 70.59 225 | 98.57 101 | 90.97 82 | 94.67 124 | 94.18 225 |
|
test_post | | | | | | | | | | | | 10.29 382 | 70.57 228 | 95.91 290 | | | |
|
CANet_DTU | | | 90.26 103 | 89.41 113 | 92.81 86 | 93.46 213 | 83.01 122 | 93.48 205 | 94.47 220 | 89.43 51 | 87.76 153 | 94.23 158 | 70.54 229 | 99.03 57 | 84.97 155 | 96.39 99 | 96.38 133 |
|
BH-RMVSNet | | | 88.37 162 | 87.48 165 | 91.02 173 | 95.28 131 | 79.45 222 | 92.89 231 | 93.07 259 | 85.45 156 | 86.91 170 | 94.84 134 | 70.35 230 | 97.76 164 | 73.97 295 | 94.59 128 | 95.85 155 |
|
Fast-Effi-MVS+-dtu | | | 87.44 196 | 86.72 186 | 89.63 233 | 92.04 250 | 77.68 268 | 94.03 180 | 93.94 239 | 85.81 144 | 82.42 274 | 91.32 260 | 70.33 231 | 97.06 229 | 80.33 233 | 90.23 188 | 94.14 228 |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 379 | 87.62 332 | | 73.32 337 | 84.59 230 | | 70.33 231 | | 74.65 291 | | 95.50 169 |
|
ACMM | | 84.12 9 | 89.14 137 | 88.48 142 | 91.12 165 | 94.65 164 | 81.22 171 | 95.31 91 | 96.12 118 | 85.31 159 | 85.92 191 | 94.34 150 | 70.19 233 | 98.06 148 | 85.65 149 | 88.86 215 | 94.08 233 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ET-MVSNet_ETH3D | | | 87.51 193 | 85.91 222 | 92.32 112 | 93.70 206 | 83.93 93 | 92.33 249 | 90.94 318 | 84.16 179 | 72.09 352 | 92.52 218 | 69.90 234 | 95.85 292 | 89.20 104 | 88.36 225 | 97.17 104 |
|
LPG-MVS_test | | | 89.45 127 | 88.90 127 | 91.12 165 | 94.47 172 | 81.49 162 | 95.30 93 | 96.14 115 | 86.73 127 | 85.45 208 | 95.16 120 | 69.89 235 | 98.10 136 | 87.70 122 | 89.23 208 | 93.77 252 |
|
LGP-MVS_train | | | | | 91.12 165 | 94.47 172 | 81.49 162 | | 96.14 115 | 86.73 127 | 85.45 208 | 95.16 120 | 69.89 235 | 98.10 136 | 87.70 122 | 89.23 208 | 93.77 252 |
|
CHOSEN 280x420 | | | 85.15 258 | 83.99 261 | 88.65 258 | 92.47 238 | 78.40 246 | 79.68 369 | 92.76 266 | 74.90 323 | 81.41 287 | 89.59 300 | 69.85 237 | 95.51 304 | 79.92 238 | 95.29 115 | 92.03 310 |
|
LTVRE_ROB | | 82.13 13 | 86.26 238 | 84.90 247 | 90.34 203 | 94.44 176 | 81.50 160 | 92.31 251 | 94.89 201 | 83.03 208 | 79.63 311 | 92.67 213 | 69.69 238 | 97.79 162 | 71.20 308 | 86.26 249 | 91.72 315 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
OpenMVS |  | 83.78 11 | 88.74 153 | 87.29 170 | 93.08 75 | 92.70 235 | 85.39 65 | 96.57 35 | 96.43 95 | 78.74 282 | 80.85 293 | 96.07 84 | 69.64 239 | 99.01 62 | 78.01 259 | 96.65 94 | 94.83 194 |
|
MDTV_nov1_ep13 | | | | 83.56 267 | | 91.69 265 | 69.93 347 | 87.75 329 | 91.54 303 | 78.60 284 | 84.86 225 | 88.90 309 | 69.54 240 | 96.03 283 | 70.25 314 | 88.93 214 | |
|
AUN-MVS | | | 87.78 178 | 86.54 196 | 91.48 151 | 94.82 156 | 81.05 175 | 93.91 191 | 93.93 240 | 83.00 209 | 86.93 168 | 93.53 185 | 69.50 241 | 97.67 169 | 86.14 141 | 77.12 337 | 95.73 163 |
|
PatchT | | | 82.68 283 | 81.27 285 | 86.89 302 | 90.09 318 | 70.94 341 | 84.06 356 | 90.15 330 | 74.91 322 | 85.63 197 | 83.57 353 | 69.37 242 | 94.87 317 | 65.19 343 | 88.50 221 | 94.84 193 |
|
RRT_MVS | | | 89.09 140 | 88.62 136 | 90.49 192 | 92.85 232 | 79.65 218 | 96.41 38 | 94.41 223 | 88.22 90 | 85.50 204 | 94.77 136 | 69.36 243 | 97.31 207 | 89.33 102 | 86.73 246 | 94.51 209 |
|
VPNet | | | 88.20 167 | 87.47 166 | 90.39 199 | 93.56 210 | 79.46 221 | 94.04 179 | 95.54 162 | 88.67 75 | 86.96 167 | 94.58 146 | 69.33 244 | 97.15 221 | 84.05 169 | 80.53 314 | 94.56 205 |
|
ACMP | | 84.23 8 | 89.01 146 | 88.35 143 | 90.99 176 | 94.73 158 | 81.27 168 | 95.07 111 | 95.89 137 | 86.48 130 | 83.67 256 | 94.30 153 | 69.33 244 | 97.99 153 | 87.10 135 | 88.55 218 | 93.72 256 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test_post1 | | | | | | | | 88.00 326 | | | | 9.81 383 | 69.31 246 | 95.53 302 | 76.65 271 | | |
|
tpmvs | | | 83.35 280 | 82.07 279 | 87.20 294 | 91.07 287 | 71.00 340 | 88.31 324 | 91.70 297 | 78.91 276 | 80.49 299 | 87.18 334 | 69.30 247 | 97.08 226 | 68.12 331 | 83.56 271 | 93.51 265 |
|
thres200 | | | 87.21 209 | 86.24 208 | 90.12 211 | 95.36 129 | 78.53 241 | 93.26 217 | 92.10 285 | 86.42 132 | 88.00 147 | 91.11 269 | 69.24 248 | 98.00 152 | 69.58 321 | 91.04 182 | 93.83 246 |
|
tfpn200view9 | | | 87.58 190 | 86.64 190 | 90.41 198 | 95.99 108 | 78.64 238 | 94.58 140 | 91.98 291 | 86.94 122 | 88.09 142 | 91.77 245 | 69.18 249 | 98.10 136 | 70.13 317 | 91.10 177 | 94.48 215 |
|
thres400 | | | 87.62 187 | 86.64 190 | 90.57 186 | 95.99 108 | 78.64 238 | 94.58 140 | 91.98 291 | 86.94 122 | 88.09 142 | 91.77 245 | 69.18 249 | 98.10 136 | 70.13 317 | 91.10 177 | 94.96 187 |
|
tfpnnormal | | | 84.72 265 | 83.23 270 | 89.20 243 | 92.79 234 | 80.05 205 | 94.48 145 | 95.81 141 | 82.38 221 | 81.08 291 | 91.21 262 | 69.01 251 | 96.95 235 | 61.69 355 | 80.59 312 | 90.58 337 |
|
thres100view900 | | | 87.63 185 | 86.71 187 | 90.38 201 | 96.12 97 | 78.55 240 | 95.03 114 | 91.58 301 | 87.15 115 | 88.06 145 | 92.29 226 | 68.91 252 | 98.10 136 | 70.13 317 | 91.10 177 | 94.48 215 |
|
thres600view7 | | | 87.65 182 | 86.67 189 | 90.59 185 | 96.08 101 | 78.72 236 | 94.88 122 | 91.58 301 | 87.06 118 | 88.08 144 | 92.30 225 | 68.91 252 | 98.10 136 | 70.05 320 | 91.10 177 | 94.96 187 |
|
PatchMatch-RL | | | 86.77 225 | 85.54 231 | 90.47 197 | 95.88 111 | 82.71 134 | 90.54 285 | 92.31 278 | 79.82 266 | 84.32 242 | 91.57 256 | 68.77 254 | 96.39 269 | 73.16 300 | 93.48 151 | 92.32 306 |
|
XVG-OURS | | | 89.40 132 | 88.70 131 | 91.52 148 | 94.06 187 | 81.46 164 | 91.27 274 | 96.07 121 | 86.14 140 | 88.89 133 | 95.77 98 | 68.73 255 | 97.26 214 | 87.39 127 | 89.96 192 | 95.83 157 |
|
TR-MVS | | | 86.78 222 | 85.76 228 | 89.82 224 | 94.37 178 | 78.41 245 | 92.47 242 | 92.83 264 | 81.11 254 | 86.36 184 | 92.40 221 | 68.73 255 | 97.48 187 | 73.75 298 | 89.85 196 | 93.57 261 |
|
tpm | | | 84.73 264 | 84.02 260 | 86.87 303 | 90.33 313 | 68.90 350 | 89.06 314 | 89.94 336 | 80.85 256 | 85.75 193 | 89.86 296 | 68.54 257 | 95.97 286 | 77.76 260 | 84.05 265 | 95.75 160 |
|
FMVSNet3 | | | 87.40 198 | 86.11 212 | 91.30 159 | 93.79 203 | 83.64 101 | 94.20 167 | 94.81 209 | 83.89 186 | 84.37 237 | 91.87 244 | 68.45 258 | 96.56 257 | 78.23 256 | 85.36 254 | 93.70 258 |
|
MVP-Stereo | | | 85.97 241 | 84.86 248 | 89.32 240 | 90.92 295 | 82.19 146 | 92.11 257 | 94.19 231 | 78.76 281 | 78.77 317 | 91.63 251 | 68.38 259 | 96.56 257 | 75.01 288 | 93.95 139 | 89.20 347 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
tpm cat1 | | | 81.96 287 | 80.27 293 | 87.01 297 | 91.09 286 | 71.02 339 | 87.38 334 | 91.53 304 | 66.25 359 | 80.17 301 | 86.35 340 | 68.22 260 | 96.15 280 | 69.16 322 | 82.29 285 | 93.86 244 |
|
dmvs_testset | | | 74.57 328 | 75.81 327 | 70.86 353 | 87.72 347 | 40.47 384 | 87.05 337 | 77.90 377 | 82.75 215 | 71.15 357 | 85.47 346 | 67.98 261 | 84.12 373 | 45.26 371 | 76.98 339 | 88.00 356 |
|
sd_testset | | | 88.59 158 | 87.85 158 | 90.83 180 | 96.00 105 | 80.42 193 | 92.35 247 | 94.71 214 | 88.73 72 | 86.85 174 | 95.20 118 | 67.31 262 | 96.43 267 | 79.64 241 | 89.85 196 | 95.63 166 |
|
tpm2 | | | 84.08 271 | 82.94 274 | 87.48 285 | 91.39 273 | 71.27 335 | 89.23 311 | 90.37 326 | 71.95 347 | 84.64 228 | 89.33 303 | 67.30 263 | 96.55 259 | 75.17 285 | 87.09 243 | 94.63 199 |
|
test-LLR | | | 85.87 243 | 85.41 234 | 87.25 290 | 90.95 291 | 71.67 333 | 89.55 303 | 89.88 339 | 83.41 199 | 84.54 231 | 87.95 324 | 67.25 264 | 95.11 313 | 81.82 206 | 93.37 154 | 94.97 184 |
|
test0.0.03 1 | | | 82.41 285 | 81.69 281 | 84.59 325 | 88.23 340 | 72.89 316 | 90.24 292 | 87.83 350 | 83.41 199 | 79.86 308 | 89.78 298 | 67.25 264 | 88.99 365 | 65.18 344 | 83.42 274 | 91.90 313 |
|
CVMVSNet | | | 84.69 266 | 84.79 250 | 84.37 327 | 91.84 256 | 64.92 363 | 93.70 199 | 91.47 306 | 66.19 360 | 86.16 189 | 95.28 112 | 67.18 266 | 93.33 337 | 80.89 223 | 90.42 186 | 94.88 192 |
|
iter_conf_final | | | 89.42 129 | 88.69 132 | 91.60 145 | 95.12 140 | 82.93 125 | 95.75 73 | 92.14 284 | 87.32 114 | 87.12 165 | 94.07 160 | 67.09 267 | 97.55 181 | 90.61 91 | 89.01 212 | 94.32 221 |
|
thisisatest0515 | | | 87.33 201 | 85.99 217 | 91.37 156 | 93.49 211 | 79.55 219 | 90.63 284 | 89.56 344 | 80.17 261 | 87.56 156 | 90.86 274 | 67.07 268 | 98.28 125 | 81.50 213 | 93.02 160 | 96.29 136 |
|
tttt0517 | | | 88.61 156 | 87.78 159 | 91.11 168 | 94.96 146 | 77.81 262 | 95.35 89 | 89.69 341 | 85.09 165 | 88.05 146 | 94.59 145 | 66.93 269 | 98.48 105 | 83.27 179 | 92.13 172 | 97.03 112 |
|
our_test_3 | | | 81.93 288 | 80.46 291 | 86.33 310 | 88.46 337 | 73.48 312 | 88.46 322 | 91.11 312 | 76.46 304 | 76.69 329 | 88.25 320 | 66.89 270 | 94.36 321 | 68.75 324 | 79.08 328 | 91.14 327 |
|
thisisatest0530 | | | 88.67 154 | 87.61 162 | 91.86 134 | 94.87 152 | 80.07 203 | 94.63 138 | 89.90 338 | 84.00 183 | 88.46 139 | 93.78 179 | 66.88 271 | 98.46 108 | 83.30 178 | 92.65 165 | 97.06 109 |
|
IterMVS-SCA-FT | | | 85.45 249 | 84.53 255 | 88.18 270 | 91.71 263 | 76.87 278 | 90.19 295 | 92.65 271 | 85.40 157 | 81.44 286 | 90.54 281 | 66.79 272 | 95.00 316 | 81.04 218 | 81.05 303 | 92.66 294 |
|
SCA | | | 86.32 237 | 85.18 240 | 89.73 230 | 92.15 245 | 76.60 282 | 91.12 277 | 91.69 298 | 83.53 196 | 85.50 204 | 88.81 310 | 66.79 272 | 96.48 262 | 76.65 271 | 90.35 187 | 96.12 143 |
|
D2MVS | | | 85.90 242 | 85.09 242 | 88.35 264 | 90.79 300 | 77.42 271 | 91.83 262 | 95.70 149 | 80.77 257 | 80.08 305 | 90.02 292 | 66.74 274 | 96.37 270 | 81.88 205 | 87.97 231 | 91.26 324 |
|
IterMVS | | | 84.88 262 | 83.98 262 | 87.60 280 | 91.44 269 | 76.03 290 | 90.18 296 | 92.41 274 | 83.24 204 | 81.06 292 | 90.42 285 | 66.60 275 | 94.28 324 | 79.46 242 | 80.98 308 | 92.48 298 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
GBi-Net | | | 87.26 203 | 85.98 218 | 91.08 169 | 94.01 190 | 83.10 115 | 95.14 107 | 94.94 195 | 83.57 193 | 84.37 237 | 91.64 248 | 66.59 276 | 96.34 273 | 78.23 256 | 85.36 254 | 93.79 247 |
|
test1 | | | 87.26 203 | 85.98 218 | 91.08 169 | 94.01 190 | 83.10 115 | 95.14 107 | 94.94 195 | 83.57 193 | 84.37 237 | 91.64 248 | 66.59 276 | 96.34 273 | 78.23 256 | 85.36 254 | 93.79 247 |
|
FMVSNet2 | | | 87.19 211 | 85.82 224 | 91.30 159 | 94.01 190 | 83.67 100 | 94.79 128 | 94.94 195 | 83.57 193 | 83.88 251 | 92.05 239 | 66.59 276 | 96.51 260 | 77.56 263 | 85.01 257 | 93.73 255 |
|
EPMVS | | | 83.90 276 | 82.70 278 | 87.51 282 | 90.23 316 | 72.67 320 | 88.62 320 | 81.96 367 | 81.37 247 | 85.01 223 | 88.34 318 | 66.31 279 | 94.45 318 | 75.30 284 | 87.12 242 | 95.43 171 |
|
ppachtmachnet_test | | | 81.84 289 | 80.07 297 | 87.15 295 | 88.46 337 | 74.43 304 | 89.04 315 | 92.16 282 | 75.33 317 | 77.75 322 | 88.99 307 | 66.20 280 | 95.37 309 | 65.12 345 | 77.60 333 | 91.65 316 |
|
MDA-MVSNet_test_wron | | | 79.21 316 | 77.19 318 | 85.29 320 | 88.22 341 | 72.77 318 | 85.87 343 | 90.06 333 | 74.34 327 | 62.62 366 | 87.56 330 | 66.14 281 | 91.99 350 | 66.90 339 | 73.01 346 | 91.10 330 |
|
YYNet1 | | | 79.22 315 | 77.20 317 | 85.28 321 | 88.20 342 | 72.66 321 | 85.87 343 | 90.05 335 | 74.33 328 | 62.70 365 | 87.61 329 | 66.09 282 | 92.03 348 | 66.94 336 | 72.97 347 | 91.15 326 |
|
JIA-IIPM | | | 81.04 301 | 78.98 311 | 87.25 290 | 88.64 333 | 73.48 312 | 81.75 364 | 89.61 343 | 73.19 338 | 82.05 279 | 73.71 368 | 66.07 283 | 95.87 291 | 71.18 310 | 84.60 260 | 92.41 302 |
|
MSDG | | | 84.86 263 | 83.09 272 | 90.14 210 | 93.80 201 | 80.05 205 | 89.18 312 | 93.09 258 | 78.89 277 | 78.19 318 | 91.91 242 | 65.86 284 | 97.27 212 | 68.47 326 | 88.45 222 | 93.11 280 |
|
FE-MVS | | | 87.40 198 | 86.02 216 | 91.57 147 | 94.56 169 | 79.69 217 | 90.27 288 | 93.72 249 | 80.57 258 | 88.80 134 | 91.62 252 | 65.32 285 | 98.59 100 | 74.97 289 | 94.33 136 | 96.44 131 |
|
jajsoiax | | | 88.24 166 | 87.50 164 | 90.48 194 | 90.89 297 | 80.14 200 | 95.31 91 | 95.65 155 | 84.97 167 | 84.24 245 | 94.02 165 | 65.31 286 | 97.42 194 | 88.56 111 | 88.52 220 | 93.89 239 |
|
cascas | | | 86.43 236 | 84.98 244 | 90.80 182 | 92.10 249 | 80.92 180 | 90.24 292 | 95.91 134 | 73.10 339 | 83.57 260 | 88.39 317 | 65.15 287 | 97.46 189 | 84.90 158 | 91.43 175 | 94.03 236 |
|
ADS-MVSNet2 | | | 81.66 293 | 79.71 301 | 87.50 283 | 91.35 275 | 74.19 306 | 83.33 359 | 88.48 348 | 72.90 341 | 82.24 277 | 85.77 344 | 64.98 288 | 93.20 340 | 64.57 347 | 83.74 267 | 95.12 180 |
|
ADS-MVSNet | | | 81.56 295 | 79.78 299 | 86.90 301 | 91.35 275 | 71.82 330 | 83.33 359 | 89.16 345 | 72.90 341 | 82.24 277 | 85.77 344 | 64.98 288 | 93.76 331 | 64.57 347 | 83.74 267 | 95.12 180 |
|
pmmvs5 | | | 84.21 269 | 82.84 277 | 88.34 265 | 88.95 331 | 76.94 277 | 92.41 243 | 91.91 295 | 75.63 314 | 80.28 300 | 91.18 265 | 64.59 290 | 95.57 301 | 77.09 269 | 83.47 272 | 92.53 297 |
|
PVSNet | | 78.82 18 | 85.55 248 | 84.65 252 | 88.23 269 | 94.72 159 | 71.93 328 | 87.12 336 | 92.75 267 | 78.80 280 | 84.95 224 | 90.53 282 | 64.43 291 | 96.71 245 | 74.74 290 | 93.86 141 | 96.06 148 |
|
dmvs_re | | | 84.20 270 | 83.22 271 | 87.14 296 | 91.83 258 | 77.81 262 | 90.04 298 | 90.19 329 | 84.70 174 | 81.49 284 | 89.17 305 | 64.37 292 | 91.13 355 | 71.58 306 | 85.65 253 | 92.46 300 |
|
UGNet | | | 89.95 112 | 88.95 124 | 92.95 82 | 94.51 171 | 83.31 110 | 95.70 76 | 95.23 182 | 89.37 53 | 87.58 155 | 93.94 170 | 64.00 293 | 98.78 87 | 83.92 171 | 96.31 100 | 96.74 123 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
RPSCF | | | 85.07 259 | 84.27 256 | 87.48 285 | 92.91 230 | 70.62 343 | 91.69 267 | 92.46 273 | 76.20 310 | 82.67 273 | 95.22 115 | 63.94 294 | 97.29 211 | 77.51 264 | 85.80 251 | 94.53 206 |
|
bld_raw_dy_0_64 | | | 87.60 189 | 86.73 185 | 90.21 205 | 91.72 261 | 80.26 197 | 95.09 110 | 88.61 346 | 85.68 149 | 85.55 198 | 94.38 149 | 63.93 295 | 96.66 246 | 87.73 121 | 87.84 234 | 93.72 256 |
|
iter_conf05 | | | 88.85 148 | 88.08 152 | 91.17 164 | 94.27 182 | 81.64 157 | 95.18 103 | 92.15 283 | 86.23 137 | 87.28 162 | 94.07 160 | 63.89 296 | 97.55 181 | 90.63 90 | 89.00 213 | 94.32 221 |
|
mvs_tets | | | 88.06 172 | 87.28 171 | 90.38 201 | 90.94 293 | 79.88 212 | 95.22 100 | 95.66 153 | 85.10 164 | 84.21 246 | 93.94 170 | 63.53 297 | 97.40 201 | 88.50 112 | 88.40 224 | 93.87 242 |
|
test1111 | | | 89.10 138 | 88.64 133 | 90.48 194 | 95.53 125 | 74.97 298 | 96.08 56 | 84.89 359 | 88.13 95 | 90.16 116 | 96.65 60 | 63.29 298 | 98.10 136 | 86.14 141 | 96.90 87 | 98.39 38 |
|
Anonymous20231211 | | | 86.59 229 | 85.13 241 | 90.98 178 | 96.52 87 | 81.50 160 | 96.14 53 | 96.16 114 | 73.78 333 | 83.65 257 | 92.15 230 | 63.26 299 | 97.37 205 | 82.82 187 | 81.74 294 | 94.06 234 |
|
ECVR-MVS |  | | 89.09 140 | 88.53 137 | 90.77 183 | 95.62 122 | 75.89 291 | 96.16 50 | 84.22 361 | 87.89 102 | 90.20 114 | 96.65 60 | 63.19 300 | 98.10 136 | 85.90 146 | 96.94 85 | 98.33 42 |
|
dp | | | 81.47 297 | 80.23 294 | 85.17 322 | 89.92 322 | 65.49 361 | 86.74 338 | 90.10 332 | 76.30 308 | 81.10 290 | 87.12 335 | 62.81 301 | 95.92 288 | 68.13 330 | 79.88 321 | 94.09 232 |
|
LFMVS | | | 90.08 106 | 89.13 120 | 92.95 82 | 96.71 77 | 82.32 145 | 96.08 56 | 89.91 337 | 86.79 125 | 92.15 80 | 96.81 53 | 62.60 302 | 98.34 119 | 87.18 130 | 93.90 140 | 98.19 57 |
|
Anonymous20231206 | | | 81.03 302 | 79.77 300 | 84.82 324 | 87.85 346 | 70.26 345 | 91.42 271 | 92.08 286 | 73.67 334 | 77.75 322 | 89.25 304 | 62.43 303 | 93.08 341 | 61.50 356 | 82.00 290 | 91.12 328 |
|
VDD-MVS | | | 90.74 91 | 89.92 103 | 93.20 69 | 96.27 93 | 83.02 121 | 95.73 74 | 93.86 244 | 88.42 83 | 92.53 71 | 96.84 50 | 62.09 304 | 98.64 94 | 90.95 85 | 92.62 166 | 97.93 74 |
|
MS-PatchMatch | | | 85.05 260 | 84.16 257 | 87.73 278 | 91.42 272 | 78.51 242 | 91.25 275 | 93.53 251 | 77.50 296 | 80.15 302 | 91.58 254 | 61.99 305 | 95.51 304 | 75.69 280 | 94.35 135 | 89.16 348 |
|
OurMVSNet-221017-0 | | | 85.35 253 | 84.64 253 | 87.49 284 | 90.77 301 | 72.59 324 | 94.01 182 | 94.40 224 | 84.72 173 | 79.62 312 | 93.17 197 | 61.91 306 | 96.72 243 | 81.99 202 | 81.16 299 | 93.16 278 |
|
test_vis1_n_1920 | | | 89.39 133 | 89.84 104 | 88.04 273 | 92.97 228 | 72.64 322 | 94.71 134 | 96.03 126 | 86.18 138 | 91.94 87 | 96.56 68 | 61.63 307 | 95.74 298 | 93.42 31 | 95.11 119 | 95.74 161 |
|
test20.03 | | | 79.95 310 | 79.08 309 | 82.55 336 | 85.79 356 | 67.74 355 | 91.09 278 | 91.08 313 | 81.23 252 | 74.48 344 | 89.96 295 | 61.63 307 | 90.15 359 | 60.08 359 | 76.38 340 | 89.76 340 |
|
DSMNet-mixed | | | 76.94 324 | 76.29 323 | 78.89 343 | 83.10 365 | 56.11 378 | 87.78 328 | 79.77 371 | 60.65 366 | 75.64 336 | 88.71 313 | 61.56 309 | 88.34 366 | 60.07 360 | 89.29 207 | 92.21 309 |
|
Anonymous20240529 | | | 88.09 170 | 86.59 194 | 92.58 100 | 96.53 86 | 81.92 152 | 95.99 61 | 95.84 140 | 74.11 330 | 89.06 131 | 95.21 117 | 61.44 310 | 98.81 85 | 83.67 176 | 87.47 236 | 97.01 113 |
|
IB-MVS | | 80.51 15 | 85.24 257 | 83.26 269 | 91.19 162 | 92.13 247 | 79.86 213 | 91.75 264 | 91.29 310 | 83.28 203 | 80.66 296 | 88.49 316 | 61.28 311 | 98.46 108 | 80.99 221 | 79.46 325 | 95.25 177 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
GA-MVS | | | 86.61 227 | 85.27 239 | 90.66 184 | 91.33 277 | 78.71 237 | 90.40 287 | 93.81 247 | 85.34 158 | 85.12 221 | 89.57 301 | 61.25 312 | 97.11 225 | 80.99 221 | 89.59 202 | 96.15 140 |
|
N_pmnet | | | 68.89 334 | 68.44 336 | 70.23 354 | 89.07 330 | 28.79 388 | 88.06 325 | 19.50 389 | 69.47 355 | 71.86 354 | 84.93 347 | 61.24 313 | 91.75 352 | 54.70 366 | 77.15 336 | 90.15 338 |
|
EU-MVSNet | | | 81.32 299 | 80.95 287 | 82.42 338 | 88.50 336 | 63.67 364 | 93.32 210 | 91.33 308 | 64.02 363 | 80.57 298 | 92.83 208 | 61.21 314 | 92.27 347 | 76.34 275 | 80.38 317 | 91.32 322 |
|
test_cas_vis1_n_1920 | | | 88.83 152 | 88.85 130 | 88.78 252 | 91.15 284 | 76.72 280 | 93.85 192 | 94.93 199 | 83.23 205 | 92.81 62 | 96.00 86 | 61.17 315 | 94.45 318 | 91.67 73 | 94.84 121 | 95.17 179 |
|
VDDNet | | | 89.56 123 | 88.49 141 | 92.76 89 | 95.07 141 | 82.09 147 | 96.30 42 | 93.19 257 | 81.05 255 | 91.88 88 | 96.86 49 | 61.16 316 | 98.33 121 | 88.43 113 | 92.49 169 | 97.84 79 |
|
PVSNet_0 | | 73.20 20 | 77.22 323 | 74.83 329 | 84.37 327 | 90.70 305 | 71.10 338 | 83.09 361 | 89.67 342 | 72.81 343 | 73.93 346 | 83.13 355 | 60.79 317 | 93.70 333 | 68.54 325 | 50.84 375 | 88.30 355 |
|
SixPastTwentyTwo | | | 83.91 275 | 82.90 275 | 86.92 300 | 90.99 289 | 70.67 342 | 93.48 205 | 91.99 290 | 85.54 154 | 77.62 324 | 92.11 234 | 60.59 318 | 96.87 240 | 76.05 279 | 77.75 332 | 93.20 276 |
|
gg-mvs-nofinetune | | | 81.77 290 | 79.37 303 | 88.99 250 | 90.85 299 | 77.73 267 | 86.29 341 | 79.63 372 | 74.88 324 | 83.19 268 | 69.05 371 | 60.34 319 | 96.11 281 | 75.46 282 | 94.64 127 | 93.11 280 |
|
MDA-MVSNet-bldmvs | | | 78.85 317 | 76.31 322 | 86.46 307 | 89.76 324 | 73.88 308 | 88.79 317 | 90.42 325 | 79.16 274 | 59.18 367 | 88.33 319 | 60.20 320 | 94.04 326 | 62.00 354 | 68.96 358 | 91.48 320 |
|
pmmvs6 | | | 83.42 278 | 81.60 282 | 88.87 251 | 88.01 343 | 77.87 260 | 94.96 117 | 94.24 230 | 74.67 325 | 78.80 316 | 91.09 270 | 60.17 321 | 96.49 261 | 77.06 270 | 75.40 344 | 92.23 308 |
|
ACMH | | 80.38 17 | 85.36 252 | 83.68 265 | 90.39 199 | 94.45 175 | 80.63 187 | 94.73 132 | 94.85 205 | 82.09 226 | 77.24 325 | 92.65 214 | 60.01 322 | 97.58 178 | 72.25 304 | 84.87 258 | 92.96 285 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GG-mvs-BLEND | | | | | 87.94 276 | 89.73 326 | 77.91 257 | 87.80 327 | 78.23 376 | | 80.58 297 | 83.86 351 | 59.88 323 | 95.33 310 | 71.20 308 | 92.22 171 | 90.60 336 |
|
UniMVSNet_ETH3D | | | 87.53 192 | 86.37 201 | 91.00 175 | 92.44 239 | 78.96 235 | 94.74 131 | 95.61 157 | 84.07 182 | 85.36 218 | 94.52 147 | 59.78 324 | 97.34 206 | 82.93 183 | 87.88 232 | 96.71 124 |
|
pmmvs-eth3d | | | 80.97 303 | 78.72 312 | 87.74 277 | 84.99 361 | 79.97 211 | 90.11 297 | 91.65 299 | 75.36 316 | 73.51 347 | 86.03 341 | 59.45 325 | 93.96 329 | 75.17 285 | 72.21 349 | 89.29 346 |
|
test_0402 | | | 81.30 300 | 79.17 308 | 87.67 279 | 93.19 218 | 78.17 252 | 92.98 228 | 91.71 296 | 75.25 318 | 76.02 335 | 90.31 286 | 59.23 326 | 96.37 270 | 50.22 369 | 83.63 270 | 88.47 354 |
|
KD-MVS_self_test | | | 80.20 308 | 79.24 305 | 83.07 334 | 85.64 358 | 65.29 362 | 91.01 279 | 93.93 240 | 78.71 283 | 76.32 331 | 86.40 339 | 59.20 327 | 92.93 343 | 72.59 302 | 69.35 355 | 91.00 332 |
|
FMVSNet1 | | | 85.85 244 | 84.11 258 | 91.08 169 | 92.81 233 | 83.10 115 | 95.14 107 | 94.94 195 | 81.64 241 | 82.68 272 | 91.64 248 | 59.01 328 | 96.34 273 | 75.37 283 | 83.78 266 | 93.79 247 |
|
COLMAP_ROB |  | 80.39 16 | 83.96 273 | 82.04 280 | 89.74 228 | 95.28 131 | 79.75 215 | 94.25 163 | 92.28 279 | 75.17 319 | 78.02 321 | 93.77 180 | 58.60 329 | 97.84 161 | 65.06 346 | 85.92 250 | 91.63 317 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 81.04 14 | 85.05 260 | 83.46 268 | 89.82 224 | 94.66 163 | 79.37 224 | 94.44 150 | 94.12 236 | 82.19 225 | 78.04 320 | 92.82 209 | 58.23 330 | 97.54 183 | 73.77 297 | 82.90 280 | 92.54 296 |
|
CMPMVS |  | 59.16 21 | 80.52 305 | 79.20 307 | 84.48 326 | 83.98 362 | 67.63 356 | 89.95 301 | 93.84 246 | 64.79 362 | 66.81 363 | 91.14 268 | 57.93 331 | 95.17 311 | 76.25 276 | 88.10 227 | 90.65 333 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
tt0805 | | | 86.92 218 | 85.74 230 | 90.48 194 | 92.22 243 | 79.98 210 | 95.63 82 | 94.88 203 | 83.83 188 | 84.74 227 | 92.80 211 | 57.61 332 | 97.67 169 | 85.48 152 | 84.42 261 | 93.79 247 |
|
ITE_SJBPF | | | | | 88.24 268 | 91.88 255 | 77.05 276 | | 92.92 261 | 85.54 154 | 80.13 304 | 93.30 192 | 57.29 333 | 96.20 277 | 72.46 303 | 84.71 259 | 91.49 319 |
|
TESTMET0.1,1 | | | 83.74 277 | 82.85 276 | 86.42 309 | 89.96 321 | 71.21 337 | 89.55 303 | 87.88 349 | 77.41 297 | 83.37 264 | 87.31 332 | 56.71 334 | 93.65 334 | 80.62 228 | 92.85 164 | 94.40 218 |
|
UnsupCasMVSNet_eth | | | 80.07 309 | 78.27 313 | 85.46 318 | 85.24 360 | 72.63 323 | 88.45 323 | 94.87 204 | 82.99 210 | 71.64 355 | 88.07 323 | 56.34 335 | 91.75 352 | 73.48 299 | 63.36 367 | 92.01 311 |
|
test_fmvs1 | | | 87.34 200 | 87.56 163 | 86.68 306 | 90.59 307 | 71.80 331 | 94.01 182 | 94.04 238 | 78.30 289 | 91.97 84 | 95.22 115 | 56.28 336 | 93.71 332 | 92.89 39 | 94.71 123 | 94.52 207 |
|
K. test v3 | | | 81.59 294 | 80.15 296 | 85.91 315 | 89.89 323 | 69.42 349 | 92.57 240 | 87.71 351 | 85.56 153 | 73.44 348 | 89.71 299 | 55.58 337 | 95.52 303 | 77.17 267 | 69.76 354 | 92.78 292 |
|
test-mter | | | 84.54 267 | 83.64 266 | 87.25 290 | 90.95 291 | 71.67 333 | 89.55 303 | 89.88 339 | 79.17 273 | 84.54 231 | 87.95 324 | 55.56 338 | 95.11 313 | 81.82 206 | 93.37 154 | 94.97 184 |
|
lessismore_v0 | | | | | 86.04 311 | 88.46 337 | 68.78 351 | | 80.59 370 | | 73.01 350 | 90.11 290 | 55.39 339 | 96.43 267 | 75.06 287 | 65.06 364 | 92.90 287 |
|
MVS-HIRNet | | | 73.70 329 | 72.20 332 | 78.18 346 | 91.81 259 | 56.42 377 | 82.94 362 | 82.58 365 | 55.24 368 | 68.88 360 | 66.48 372 | 55.32 340 | 95.13 312 | 58.12 362 | 88.42 223 | 83.01 363 |
|
test2506 | | | 87.21 209 | 86.28 206 | 90.02 217 | 95.62 122 | 73.64 310 | 96.25 47 | 71.38 381 | 87.89 102 | 90.45 110 | 96.65 60 | 55.29 341 | 98.09 144 | 86.03 145 | 96.94 85 | 98.33 42 |
|
new-patchmatchnet | | | 76.41 325 | 75.17 328 | 80.13 340 | 82.65 367 | 59.61 370 | 87.66 331 | 91.08 313 | 78.23 292 | 69.85 359 | 83.22 354 | 54.76 342 | 91.63 354 | 64.14 349 | 64.89 365 | 89.16 348 |
|
Anonymous202405211 | | | 87.68 180 | 86.13 210 | 92.31 113 | 96.66 79 | 80.74 185 | 94.87 123 | 91.49 305 | 80.47 259 | 89.46 125 | 95.44 107 | 54.72 343 | 98.23 127 | 82.19 198 | 89.89 194 | 97.97 71 |
|
XVG-ACMP-BASELINE | | | 86.00 240 | 84.84 249 | 89.45 239 | 91.20 279 | 78.00 255 | 91.70 266 | 95.55 160 | 85.05 166 | 82.97 269 | 92.25 228 | 54.49 344 | 97.48 187 | 82.93 183 | 87.45 238 | 92.89 288 |
|
USDC | | | 82.76 281 | 81.26 286 | 87.26 289 | 91.17 281 | 74.55 301 | 89.27 309 | 93.39 254 | 78.26 291 | 75.30 338 | 92.08 236 | 54.43 345 | 96.63 248 | 71.64 305 | 85.79 252 | 90.61 334 |
|
AllTest | | | 83.42 278 | 81.39 284 | 89.52 236 | 95.01 142 | 77.79 264 | 93.12 221 | 90.89 320 | 77.41 297 | 76.12 333 | 93.34 188 | 54.08 346 | 97.51 185 | 68.31 328 | 84.27 263 | 93.26 271 |
|
TestCases | | | | | 89.52 236 | 95.01 142 | 77.79 264 | | 90.89 320 | 77.41 297 | 76.12 333 | 93.34 188 | 54.08 346 | 97.51 185 | 68.31 328 | 84.27 263 | 93.26 271 |
|
KD-MVS_2432*1600 | | | 78.50 318 | 76.02 325 | 85.93 313 | 86.22 352 | 74.47 302 | 84.80 352 | 92.33 276 | 79.29 271 | 76.98 327 | 85.92 342 | 53.81 348 | 93.97 327 | 67.39 333 | 57.42 372 | 89.36 343 |
|
miper_refine_blended | | | 78.50 318 | 76.02 325 | 85.93 313 | 86.22 352 | 74.47 302 | 84.80 352 | 92.33 276 | 79.29 271 | 76.98 327 | 85.92 342 | 53.81 348 | 93.97 327 | 67.39 333 | 57.42 372 | 89.36 343 |
|
MIMVSNet | | | 82.59 284 | 80.53 289 | 88.76 253 | 91.51 268 | 78.32 248 | 86.57 340 | 90.13 331 | 79.32 270 | 80.70 295 | 88.69 315 | 52.98 350 | 93.07 342 | 66.03 341 | 88.86 215 | 94.90 191 |
|
FMVSNet5 | | | 81.52 296 | 79.60 302 | 87.27 288 | 91.17 281 | 77.95 256 | 91.49 270 | 92.26 280 | 76.87 302 | 76.16 332 | 87.91 326 | 51.67 351 | 92.34 346 | 67.74 332 | 81.16 299 | 91.52 318 |
|
testgi | | | 80.94 304 | 80.20 295 | 83.18 333 | 87.96 344 | 66.29 358 | 91.28 273 | 90.70 324 | 83.70 190 | 78.12 319 | 92.84 207 | 51.37 352 | 90.82 357 | 63.34 350 | 82.46 283 | 92.43 301 |
|
test_fmvs1_n | | | 87.03 216 | 87.04 177 | 86.97 298 | 89.74 325 | 71.86 329 | 94.55 142 | 94.43 221 | 78.47 285 | 91.95 86 | 95.50 106 | 51.16 353 | 93.81 330 | 93.02 38 | 94.56 129 | 95.26 176 |
|
Anonymous20240521 | | | 80.44 306 | 79.21 306 | 84.11 330 | 85.75 357 | 67.89 353 | 92.86 233 | 93.23 256 | 75.61 315 | 75.59 337 | 87.47 331 | 50.03 354 | 94.33 322 | 71.14 311 | 81.21 298 | 90.12 339 |
|
UnsupCasMVSNet_bld | | | 76.23 326 | 73.27 330 | 85.09 323 | 83.79 363 | 72.92 315 | 85.65 346 | 93.47 253 | 71.52 348 | 68.84 361 | 79.08 363 | 49.77 355 | 93.21 339 | 66.81 340 | 60.52 369 | 89.13 350 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 313 | 77.03 320 | 86.93 299 | 87.00 349 | 76.23 289 | 92.33 249 | 90.74 323 | 68.93 356 | 74.52 343 | 88.23 321 | 49.58 356 | 96.62 249 | 57.64 363 | 84.29 262 | 87.94 357 |
|
TDRefinement | | | 79.81 311 | 77.34 315 | 87.22 293 | 79.24 371 | 75.48 296 | 93.12 221 | 92.03 288 | 76.45 305 | 75.01 339 | 91.58 254 | 49.19 357 | 96.44 266 | 70.22 316 | 69.18 357 | 89.75 341 |
|
test_vis1_n | | | 86.56 230 | 86.49 199 | 86.78 305 | 88.51 334 | 72.69 319 | 94.68 135 | 93.78 248 | 79.55 269 | 90.70 107 | 95.31 111 | 48.75 358 | 93.28 338 | 93.15 35 | 93.99 138 | 94.38 219 |
|
MIMVSNet1 | | | 79.38 314 | 77.28 316 | 85.69 317 | 86.35 351 | 73.67 309 | 91.61 269 | 92.75 267 | 78.11 294 | 72.64 351 | 88.12 322 | 48.16 359 | 91.97 351 | 60.32 358 | 77.49 334 | 91.43 321 |
|
LF4IMVS | | | 80.37 307 | 79.07 310 | 84.27 329 | 86.64 350 | 69.87 348 | 89.39 308 | 91.05 315 | 76.38 306 | 74.97 340 | 90.00 293 | 47.85 360 | 94.25 325 | 74.55 293 | 80.82 310 | 88.69 352 |
|
EG-PatchMatch MVS | | | 82.37 286 | 80.34 292 | 88.46 261 | 90.27 314 | 79.35 225 | 92.80 235 | 94.33 226 | 77.14 301 | 73.26 349 | 90.18 288 | 47.47 361 | 96.72 243 | 70.25 314 | 87.32 241 | 89.30 345 |
|
test_fmvs2 | | | 83.98 272 | 84.03 259 | 83.83 332 | 87.16 348 | 67.53 357 | 93.93 188 | 92.89 262 | 77.62 295 | 86.89 173 | 93.53 185 | 47.18 362 | 92.02 349 | 90.54 92 | 86.51 247 | 91.93 312 |
|
TinyColmap | | | 79.76 312 | 77.69 314 | 85.97 312 | 91.71 263 | 73.12 314 | 89.55 303 | 90.36 327 | 75.03 320 | 72.03 353 | 90.19 287 | 46.22 363 | 96.19 279 | 63.11 351 | 81.03 304 | 88.59 353 |
|
tmp_tt | | | 35.64 349 | 39.24 351 | 24.84 365 | 14.87 389 | 23.90 389 | 62.71 375 | 51.51 388 | 6.58 383 | 36.66 379 | 62.08 376 | 44.37 364 | 30.34 385 | 52.40 368 | 22.00 382 | 20.27 380 |
|
new_pmnet | | | 72.15 330 | 70.13 334 | 78.20 345 | 82.95 366 | 65.68 359 | 83.91 357 | 82.40 366 | 62.94 365 | 64.47 364 | 79.82 362 | 42.85 365 | 86.26 369 | 57.41 364 | 74.44 345 | 82.65 365 |
|
test_vis1_rt | | | 77.96 321 | 76.46 321 | 82.48 337 | 85.89 355 | 71.74 332 | 90.25 290 | 78.89 373 | 71.03 352 | 71.30 356 | 81.35 360 | 42.49 366 | 91.05 356 | 84.55 163 | 82.37 284 | 84.65 360 |
|
EGC-MVSNET | | | 61.97 338 | 56.37 342 | 78.77 344 | 89.63 327 | 73.50 311 | 89.12 313 | 82.79 364 | 0.21 386 | 1.24 387 | 84.80 348 | 39.48 367 | 90.04 360 | 44.13 372 | 75.94 343 | 72.79 370 |
|
pmmvs3 | | | 71.81 332 | 68.71 335 | 81.11 339 | 75.86 372 | 70.42 344 | 86.74 338 | 83.66 362 | 58.95 367 | 68.64 362 | 80.89 361 | 36.93 368 | 89.52 362 | 63.10 352 | 63.59 366 | 83.39 361 |
|
mvsany_test3 | | | 74.95 327 | 73.26 331 | 80.02 341 | 74.61 373 | 63.16 366 | 85.53 347 | 78.42 374 | 74.16 329 | 74.89 341 | 86.46 337 | 36.02 369 | 89.09 364 | 82.39 194 | 66.91 361 | 87.82 358 |
|
PM-MVS | | | 78.11 320 | 76.12 324 | 84.09 331 | 83.54 364 | 70.08 346 | 88.97 316 | 85.27 358 | 79.93 264 | 74.73 342 | 86.43 338 | 34.70 370 | 93.48 335 | 79.43 245 | 72.06 350 | 88.72 351 |
|
ambc | | | | | 83.06 335 | 79.99 369 | 63.51 365 | 77.47 370 | 92.86 263 | | 74.34 345 | 84.45 350 | 28.74 371 | 95.06 315 | 73.06 301 | 68.89 359 | 90.61 334 |
|
test_method | | | 50.52 345 | 48.47 347 | 56.66 361 | 52.26 387 | 18.98 390 | 41.51 379 | 81.40 368 | 10.10 381 | 44.59 376 | 75.01 367 | 28.51 372 | 68.16 379 | 53.54 367 | 49.31 376 | 82.83 364 |
|
DeepMVS_CX |  | | | | 56.31 362 | 74.23 374 | 51.81 380 | | 56.67 387 | 44.85 373 | 48.54 373 | 75.16 366 | 27.87 373 | 58.74 383 | 40.92 376 | 52.22 374 | 58.39 376 |
|
test_fmvs3 | | | 77.67 322 | 77.16 319 | 79.22 342 | 79.52 370 | 61.14 368 | 92.34 248 | 91.64 300 | 73.98 331 | 78.86 315 | 86.59 336 | 27.38 374 | 87.03 367 | 88.12 117 | 75.97 342 | 89.50 342 |
|
test_f | | | 71.95 331 | 70.87 333 | 75.21 349 | 74.21 375 | 59.37 371 | 85.07 351 | 85.82 355 | 65.25 361 | 70.42 358 | 83.13 355 | 23.62 375 | 82.93 375 | 78.32 254 | 71.94 351 | 83.33 362 |
|
FPMVS | | | 64.63 337 | 62.55 339 | 70.88 352 | 70.80 377 | 56.71 373 | 84.42 355 | 84.42 360 | 51.78 371 | 49.57 371 | 81.61 359 | 23.49 376 | 81.48 376 | 40.61 377 | 76.25 341 | 74.46 369 |
|
APD_test1 | | | 69.04 333 | 66.26 337 | 77.36 348 | 80.51 368 | 62.79 367 | 85.46 348 | 83.51 363 | 54.11 370 | 59.14 368 | 84.79 349 | 23.40 377 | 89.61 361 | 55.22 365 | 70.24 353 | 79.68 368 |
|
ANet_high | | | 58.88 342 | 54.22 346 | 72.86 350 | 56.50 386 | 56.67 374 | 80.75 366 | 86.00 354 | 73.09 340 | 37.39 378 | 64.63 375 | 22.17 378 | 79.49 378 | 43.51 373 | 23.96 380 | 82.43 366 |
|
EMVS | | | 42.07 348 | 41.12 350 | 44.92 364 | 63.45 384 | 35.56 387 | 73.65 371 | 63.48 384 | 33.05 379 | 26.88 383 | 45.45 380 | 21.27 379 | 67.14 381 | 19.80 382 | 23.02 381 | 32.06 379 |
|
Gipuma |  | | 57.99 343 | 54.91 345 | 67.24 358 | 88.51 334 | 65.59 360 | 52.21 377 | 90.33 328 | 43.58 374 | 42.84 377 | 51.18 378 | 20.29 380 | 85.07 370 | 34.77 378 | 70.45 352 | 51.05 377 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 43.23 347 | 42.29 349 | 46.03 363 | 65.58 382 | 37.41 385 | 73.51 372 | 64.62 383 | 33.99 378 | 28.47 382 | 47.87 379 | 19.90 381 | 67.91 380 | 22.23 381 | 24.45 379 | 32.77 378 |
|
PMMVS2 | | | 59.60 339 | 56.40 341 | 69.21 357 | 68.83 380 | 46.58 382 | 73.02 374 | 77.48 378 | 55.07 369 | 49.21 372 | 72.95 370 | 17.43 382 | 80.04 377 | 49.32 370 | 44.33 377 | 80.99 367 |
|
LCM-MVSNet | | | 66.00 335 | 62.16 340 | 77.51 347 | 64.51 383 | 58.29 372 | 83.87 358 | 90.90 319 | 48.17 372 | 54.69 369 | 73.31 369 | 16.83 383 | 86.75 368 | 65.47 342 | 61.67 368 | 87.48 359 |
|
test_vis3_rt | | | 65.12 336 | 62.60 338 | 72.69 351 | 71.44 376 | 60.71 369 | 87.17 335 | 65.55 382 | 63.80 364 | 53.22 370 | 65.65 374 | 14.54 384 | 89.44 363 | 76.65 271 | 65.38 363 | 67.91 373 |
|
testf1 | | | 59.54 340 | 56.11 343 | 69.85 355 | 69.28 378 | 56.61 375 | 80.37 367 | 76.55 379 | 42.58 375 | 45.68 374 | 75.61 364 | 11.26 385 | 84.18 371 | 43.20 374 | 60.44 370 | 68.75 371 |
|
APD_test2 | | | 59.54 340 | 56.11 343 | 69.85 355 | 69.28 378 | 56.61 375 | 80.37 367 | 76.55 379 | 42.58 375 | 45.68 374 | 75.61 364 | 11.26 385 | 84.18 371 | 43.20 374 | 60.44 370 | 68.75 371 |
|
PMVS |  | 47.18 22 | 52.22 344 | 48.46 348 | 63.48 359 | 45.72 388 | 46.20 383 | 73.41 373 | 78.31 375 | 41.03 377 | 30.06 380 | 65.68 373 | 6.05 387 | 83.43 374 | 30.04 379 | 65.86 362 | 60.80 374 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 39.65 23 | 43.39 346 | 38.59 352 | 57.77 360 | 56.52 385 | 48.77 381 | 55.38 376 | 58.64 386 | 29.33 380 | 28.96 381 | 52.65 377 | 4.68 388 | 64.62 382 | 28.11 380 | 33.07 378 | 59.93 375 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
wuyk23d | | | 21.27 351 | 20.48 354 | 23.63 366 | 68.59 381 | 36.41 386 | 49.57 378 | 6.85 390 | 9.37 382 | 7.89 384 | 4.46 386 | 4.03 389 | 31.37 384 | 17.47 383 | 16.07 383 | 3.12 381 |
|
test123 | | | 8.76 353 | 11.22 356 | 1.39 367 | 0.85 391 | 0.97 391 | 85.76 345 | 0.35 392 | 0.54 385 | 2.45 386 | 8.14 385 | 0.60 390 | 0.48 386 | 2.16 385 | 0.17 385 | 2.71 382 |
|
testmvs | | | 8.92 352 | 11.52 355 | 1.12 368 | 1.06 390 | 0.46 392 | 86.02 342 | 0.65 391 | 0.62 384 | 2.74 385 | 9.52 384 | 0.31 391 | 0.45 387 | 2.38 384 | 0.39 384 | 2.46 383 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 7.82 354 | 10.43 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 93.88 175 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 98.86 1 | 85.54 64 | 98.29 1 | 97.49 6 | 89.79 43 | 96.29 16 | | | | | | |
|
MSC_two_6792asdad | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 62 | | | | | 99.61 3 | 96.03 4 | 99.06 9 | 99.07 5 |
|
No_MVS | | | | | 96.52 1 | 97.78 51 | 90.86 1 | | 96.85 62 | | | | | 99.61 3 | 96.03 4 | 99.06 9 | 99.07 5 |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
IU-MVS | | | | | | 98.77 5 | 86.00 48 | | 96.84 64 | 81.26 250 | 97.26 7 | | | | 95.50 13 | 99.13 3 | 99.03 7 |
|
save fliter | | | | | | 97.85 46 | 85.63 63 | 95.21 101 | 96.82 67 | 89.44 50 | | | | | | | |
|
test_0728_SECOND | | | | | 95.01 16 | 98.79 2 | 86.43 37 | 97.09 16 | 97.49 6 | | | | | 99.61 3 | 95.62 11 | 99.08 7 | 98.99 8 |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 143 |
|
test_part2 | | | | | | 98.55 12 | 87.22 17 | | | | 96.40 15 | | | | | | |
|
MTGPA |  | | | | | | | | 96.97 49 | | | | | | | | |
|
MTMP | | | | | | | | 96.16 50 | 60.64 385 | | | | | | | | |
|
gm-plane-assit | | | | | | 89.60 328 | 68.00 352 | | | 77.28 300 | | 88.99 307 | | 97.57 179 | 79.44 244 | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 68 | 98.71 31 | 98.07 65 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 92 | 98.68 36 | 98.27 51 |
|
agg_prior | | | | | | 97.38 63 | 85.92 55 | | 96.72 79 | | 92.16 79 | | | 98.97 71 | | | |
|
test_prior4 | | | | | | | 85.96 52 | 94.11 171 | | | | | | | | | |
|
test_prior | | | | | 93.82 57 | 97.29 67 | 84.49 79 | | 96.88 60 | | | | | 98.87 78 | | | 98.11 64 |
|
旧先验2 | | | | | | | | 93.36 209 | | 71.25 350 | 94.37 29 | | | 97.13 224 | 86.74 136 | | |
|
新几何2 | | | | | | | | 93.11 223 | | | | | | | | | |
|
无先验 | | | | | | | | 93.28 216 | 96.26 105 | 73.95 332 | | | | 99.05 54 | 80.56 229 | | 96.59 127 |
|
原ACMM2 | | | | | | | | 92.94 230 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.75 88 | 78.30 255 | | |
|
testdata1 | | | | | | | | 92.15 255 | | 87.94 98 | | | | | | | |
|
plane_prior7 | | | | | | 94.70 161 | 82.74 131 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 96.22 110 | | | | | 98.12 134 | 88.15 114 | 89.99 190 | 94.63 199 |
|
plane_prior4 | | | | | | | | | | | | 94.86 130 | | | | | |
|
plane_prior3 | | | | | | | 82.75 129 | | | 90.26 32 | 86.91 170 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 67 | | 90.81 16 | | | | | | | |
|
plane_prior1 | | | | | | 94.59 165 | | | | | | | | | | | |
|
plane_prior | | | | | | | 82.73 132 | 95.21 101 | | 89.66 47 | | | | | | 89.88 195 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 356 | | | | | | | | |
|
test11 | | | | | | | | | 96.57 90 | | | | | | | | |
|
door | | | | | | | | | 85.33 357 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 158 | | | | | | | | | | |
|
HQP-NCC | | | | | | 94.17 184 | | 94.39 155 | | 88.81 68 | 85.43 211 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 184 | | 94.39 155 | | 88.81 68 | 85.43 211 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 133 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 211 | | | 97.96 155 | | | 94.51 209 |
|
HQP3-MVS | | | | | | | | | 96.04 124 | | | | | | | 89.77 199 | |
|
NP-MVS | | | | | | 94.37 178 | 82.42 141 | | | | | 93.98 168 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 236 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 230 | |
|