This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5998.87 5597.65 999.73 199.48 697.53 499.94 398.43 1999.81 1099.70 48
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 8098.85 6497.28 3199.72 399.39 1496.63 1597.60 32198.17 2999.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.71 2099.23 698.64 13795.28 12099.63 498.35 2599.81 1099.83 5
test072699.72 1299.25 299.06 5298.88 4997.62 1199.56 599.50 497.42 6
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3898.66 13296.84 5399.56 599.31 3596.34 1999.70 11598.32 2699.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17298.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6399.84 899.83 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1999.80 1799.83 5
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6998.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1699.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 2999.45 999.46 997.88 199.94 398.47 1699.86 199.85 2
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 2098.88 4997.52 1599.41 1198.78 11396.00 3499.79 9297.79 5199.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2699.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7398.80 8793.67 19899.37 1399.52 396.52 1799.89 3598.06 3499.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4798.87 5597.38 2699.35 1499.40 1397.78 399.87 4497.77 5299.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19998.52 15897.95 399.32 1599.39 1496.22 2099.84 5397.72 5599.73 4399.67 61
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5498.81 7695.12 12999.32 1599.39 1496.22 2099.84 5397.72 5599.73 4399.67 61
test_part299.63 2999.18 899.27 17
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 4198.82 7096.14 8099.26 1899.37 2293.33 10299.93 1596.96 9299.67 5499.69 51
DeepPCF-MVS96.37 297.93 6498.48 1796.30 24599.00 11089.54 31597.43 26898.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2799.77 2699.72 40
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10698.82 7094.52 15799.23 2099.25 4395.54 4999.80 8096.52 11799.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17698.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2399.73 4399.75 28
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17698.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2199.73 4399.75 28
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3798.81 7696.24 7699.20 2299.37 2295.30 6299.80 8097.73 5499.67 5499.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.34 5999.82 6497.72 5599.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.29 6397.72 5599.65 5899.71 44
9.1498.06 4999.47 4898.71 12498.82 7094.36 16299.16 2699.29 3996.05 3299.81 7197.00 8899.71 50
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9998.81 7695.80 9299.16 2699.47 895.37 5799.92 2197.89 4499.75 3899.79 10
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13498.84 6594.66 15299.11 2899.25 4395.46 5199.81 7196.80 10799.73 4399.63 73
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4898.82 7096.58 6399.10 2999.32 3395.39 5599.82 6497.70 6099.63 6499.72 40
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17498.79 9297.46 2199.09 3099.31 3595.86 4299.80 8098.64 499.76 3299.79 10
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17498.68 12197.43 2299.06 3199.31 3595.80 4399.77 10198.62 699.76 3299.78 13
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4898.83 6896.52 6699.05 3299.34 3195.34 5999.82 6497.86 4699.64 6299.73 36
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6599.49 595.43 11099.03 3399.32 3395.56 4799.94 396.80 10799.77 2699.78 13
VNet97.79 6997.40 8198.96 6798.88 11997.55 8198.63 14098.93 3796.74 5799.02 3498.84 10790.33 16299.83 5698.53 1096.66 18799.50 91
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
xiu_mvs_v1_base97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21898.29 20597.19 4098.99 3899.02 8096.22 2099.67 12298.52 1498.56 13599.51 89
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2398.96 3296.10 8498.94 3999.17 5696.06 3099.92 2197.62 6499.78 2399.75 28
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2398.93 3796.15 7998.94 3999.17 5695.91 3999.94 397.55 7199.79 1999.78 13
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6898.96 3295.65 10098.94 3999.17 5696.06 3099.92 2197.21 8399.78 2399.75 28
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 16098.94 3999.20 5295.16 6999.74 10797.58 6799.85 399.77 20
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2398.95 3496.10 8498.93 4399.19 5595.70 4499.94 397.62 6499.79 1999.78 13
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16198.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7199.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9698.86 6195.48 10798.91 4599.17 5695.48 5099.93 1595.80 14299.53 8599.76 26
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 19098.69 11897.21 3898.84 4699.36 2695.41 5499.78 9698.62 699.65 5899.80 9
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12499.05 2497.28 3198.84 4699.28 4096.47 1899.40 15598.52 1499.70 5199.47 98
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5499.09 2093.32 21198.83 4899.10 6996.54 1699.83 5697.70 6099.76 3299.59 80
MVSFormer97.57 8397.49 7597.84 13698.07 18595.76 16299.47 298.40 18394.98 13698.79 4998.83 10892.34 11398.41 26796.91 9499.59 7199.34 112
lupinMVS97.44 9197.22 8898.12 12298.07 18595.76 16297.68 25597.76 26694.50 15898.79 4998.61 12992.34 11399.30 16197.58 6799.59 7199.31 118
CDPH-MVS97.94 6397.49 7599.28 3599.47 4898.44 3197.91 23598.67 12992.57 23998.77 5198.85 10595.93 3899.72 10995.56 15299.69 5299.68 57
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16498.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3499.66 5799.69 51
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 19398.68 12197.17 4198.74 5399.37 2295.25 6699.79 9298.57 899.54 8499.73 36
diffmvs97.58 8297.40 8198.13 12098.32 16695.81 16198.06 22198.37 18896.20 7898.74 5398.89 10191.31 14399.25 16498.16 3098.52 13699.34 112
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4898.82 7095.71 9698.73 5599.06 7895.27 6499.93 1597.07 8799.63 6499.72 40
UA-Net97.96 5997.62 6598.98 6598.86 12197.47 8498.89 8499.08 2196.67 6098.72 5699.54 193.15 10599.81 7194.87 16898.83 12399.65 67
ETH3D cwj APD-0.1697.96 5997.52 7299.29 3199.05 10598.52 2798.33 18298.68 12193.18 21698.68 5799.13 6494.62 8199.83 5696.45 11999.55 8399.52 85
hse-mvs396.17 14395.62 15297.81 14099.03 10894.45 21798.64 13998.75 10297.48 1898.67 5898.72 12089.76 16999.86 4997.95 3881.59 34099.11 144
hse-mvs295.71 16295.30 16796.93 19398.50 15093.53 24998.36 17898.10 23697.48 1898.67 5897.99 19089.76 16999.02 19797.95 3880.91 34498.22 198
ZD-MVS99.46 5198.70 1998.79 9293.21 21598.67 5898.97 8795.70 4499.83 5696.07 12999.58 74
旧先验297.57 26391.30 28298.67 5899.80 8095.70 149
PS-MVSNAJ97.73 7197.77 6197.62 15798.68 13895.58 16697.34 27798.51 16197.29 3098.66 6297.88 20194.51 8499.90 3397.87 4599.17 11097.39 220
xiu_mvs_v2_base97.66 7597.70 6497.56 16198.61 14495.46 17297.44 26698.46 17197.15 4298.65 6398.15 17894.33 9099.80 8097.84 4998.66 13197.41 218
LFMVS95.86 15594.98 18198.47 9698.87 12096.32 13398.84 9596.02 33293.40 20898.62 6499.20 5274.99 34299.63 12997.72 5597.20 17799.46 102
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15398.61 6598.97 8795.13 7099.77 10197.65 6299.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.26 11199.20 9795.36 17598.68 12191.89 26298.60 6699.10 6994.44 8999.82 6494.27 19199.44 9599.58 82
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1298.87 5595.96 8798.60 6699.13 6496.05 3299.94 397.77 5299.86 199.77 20
CS-MVS98.04 5797.95 5598.32 10698.14 18197.15 9999.39 598.41 18096.51 6798.59 6898.51 14293.89 9999.03 19398.66 399.43 9698.77 171
jason97.32 9997.08 9398.06 12697.45 23195.59 16597.87 24197.91 26194.79 14498.55 6998.83 10891.12 14699.23 16797.58 6799.60 6899.34 112
jason: jason.
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17398.68 12197.04 4898.52 7098.80 11196.78 1299.83 5697.93 4099.61 6799.74 33
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7199.20 5295.90 4099.89 3597.85 4799.74 4199.78 13
X-MVStestdata94.06 26592.30 28599.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7143.50 36295.90 4099.89 3597.85 4799.74 4199.78 13
MG-MVS97.81 6897.60 6698.44 9899.12 10395.97 14897.75 25198.78 9596.89 5298.46 7199.22 4793.90 9899.68 12194.81 17299.52 8799.67 61
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16598.76 9997.82 598.45 7498.93 9796.65 1499.83 5697.38 7899.41 9899.71 44
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 20298.81 7691.63 27098.44 7598.85 10593.98 9799.82 6494.11 19799.69 5299.64 70
MVS_Test97.28 10097.00 9798.13 12098.33 16495.97 14898.74 11598.07 24594.27 16498.44 7598.07 18392.48 11199.26 16396.43 12198.19 15099.16 138
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 23199.58 397.14 4398.44 7599.01 8495.03 7399.62 13197.91 4199.75 3899.50 91
ETV-MVS97.96 5997.81 6098.40 10298.42 15497.27 9198.73 11998.55 15296.84 5398.38 7897.44 24095.39 5599.35 15897.62 6498.89 11898.58 186
VDDNet95.36 18294.53 19997.86 13598.10 18495.13 18698.85 9297.75 26790.46 29898.36 7999.39 1473.27 34899.64 12697.98 3796.58 19098.81 168
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1898.81 7696.24 7698.35 8099.23 4595.46 5199.94 397.42 7699.81 1099.77 20
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 25198.89 4697.71 898.33 8198.97 8794.97 7499.88 4398.42 2199.76 3299.42 108
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23599.58 397.20 3998.33 8199.00 8595.99 3599.64 12698.05 3699.76 3299.69 51
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3398.86 6195.77 9398.31 8399.10 6995.46 5199.93 1597.57 7099.81 1099.74 33
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12398.66 13297.51 1698.15 8498.83 10895.70 4499.92 2197.53 7399.67 5499.66 65
新几何199.16 5099.34 6298.01 6298.69 11890.06 30798.13 8598.95 9594.60 8299.89 3591.97 25999.47 9099.59 80
API-MVS97.41 9497.25 8697.91 13398.70 13596.80 11098.82 9998.69 11894.53 15598.11 8698.28 16794.50 8799.57 13594.12 19699.49 8897.37 222
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4398.81 7692.34 24798.09 8799.08 7693.01 10699.92 2196.06 13299.77 2699.75 28
test1299.18 4799.16 9998.19 5298.53 15698.07 8895.13 7099.72 10999.56 8099.63 73
test22299.23 9397.17 9897.40 26998.66 13288.68 32398.05 8998.96 9394.14 9399.53 8599.61 75
DP-MVS Recon97.86 6697.46 7799.06 6199.53 3698.35 4398.33 18298.89 4692.62 23698.05 8998.94 9695.34 5999.65 12496.04 13399.42 9799.19 133
Vis-MVSNetpermissive97.42 9397.11 9198.34 10598.66 13996.23 13699.22 2799.00 2796.63 6298.04 9199.21 4888.05 21499.35 15896.01 13599.21 10799.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline97.64 7697.44 7998.25 11298.35 15896.20 13799.00 6398.32 19596.33 7598.03 9299.17 5691.35 14199.16 17398.10 3298.29 14999.39 109
test_yl97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16598.31 19794.70 14698.02 9398.42 15090.80 15399.70 11596.81 10596.79 18499.34 112
DCV-MVSNet97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16598.31 19794.70 14698.02 9398.42 15090.80 15399.70 11596.81 10596.79 18499.34 112
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15498.74 10497.27 3598.02 9399.39 1494.81 7799.96 197.91 4199.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 8098.74 10497.27 3598.02 9399.39 1494.81 7799.96 197.91 4199.79 1999.77 20
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20698.68 12190.14 30698.01 9798.97 8794.80 7999.87 4493.36 21899.46 9399.61 75
sss97.39 9596.98 9998.61 8398.60 14596.61 11898.22 19898.93 3793.97 17698.01 9798.48 14491.98 12699.85 5096.45 11998.15 15199.39 109
alignmvs97.56 8497.07 9499.01 6298.66 13998.37 4198.83 9698.06 25096.74 5798.00 9997.65 22290.80 15399.48 15098.37 2496.56 19199.19 133
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 19398.59 14295.52 10697.97 10099.10 6993.28 10499.49 14695.09 16598.88 11999.19 133
VDD-MVS95.82 15895.23 16997.61 15898.84 12493.98 23298.68 13197.40 29595.02 13597.95 10199.34 3174.37 34699.78 9698.64 496.80 18399.08 149
casdiffmvs97.63 7797.41 8098.28 10898.33 16496.14 14098.82 9998.32 19596.38 7397.95 10199.21 4891.23 14599.23 16798.12 3198.37 14499.48 96
PVSNet_BlendedMVS96.73 12296.60 11797.12 18199.25 8695.35 17798.26 19699.26 894.28 16397.94 10397.46 23792.74 10999.81 7196.88 10093.32 24796.20 313
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17797.28 28299.26 893.13 21997.94 10398.21 17492.74 10999.81 7196.88 10099.40 10099.27 125
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 29098.35 19194.85 14397.93 10598.58 13495.07 7299.71 11492.60 23999.34 10399.43 106
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2798.79 9296.13 8197.92 10699.23 4594.54 8399.94 396.74 11199.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDTV_nov1_ep13_2view84.26 34796.89 30990.97 29297.90 10789.89 16893.91 20299.18 137
test_prior398.22 5597.90 5999.19 4399.31 7098.22 5097.80 24798.84 6596.12 8297.89 10898.69 12195.96 3699.70 11596.89 9799.60 6899.65 67
test_prior297.80 24796.12 8297.89 10898.69 12195.96 3696.89 9799.60 68
原ACMM198.65 8199.32 6896.62 11698.67 12993.27 21497.81 11098.97 8795.18 6899.83 5693.84 20499.46 9399.50 91
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9298.90 4484.80 34297.77 11199.11 6792.84 10799.66 12394.85 16999.77 2699.47 98
PMMVS96.60 12596.33 12697.41 16797.90 19693.93 23397.35 27698.41 18092.84 23197.76 11297.45 23991.10 14899.20 17096.26 12597.91 15899.11 144
PVSNet91.96 1896.35 13696.15 13296.96 19199.17 9892.05 27696.08 32798.68 12193.69 19497.75 11397.80 21288.86 19499.69 12094.26 19299.01 11399.15 139
TEST999.31 7098.50 2997.92 23398.73 10892.63 23597.74 11498.68 12396.20 2399.80 80
train_agg97.97 5897.52 7299.33 2799.31 7098.50 2997.92 23398.73 10892.98 22497.74 11498.68 12396.20 2399.80 8096.59 11399.57 7599.68 57
CANet98.05 5697.76 6298.90 7198.73 13097.27 9198.35 17998.78 9597.37 2897.72 11698.96 9391.53 13899.92 2198.79 299.65 5899.51 89
test_899.29 7898.44 3197.89 23998.72 11092.98 22497.70 11798.66 12696.20 2399.80 80
MP-MVS-pluss98.31 5297.92 5899.49 999.72 1298.88 1498.43 17098.78 9594.10 16897.69 11899.42 1295.25 6699.92 2198.09 3399.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs97.67 7497.23 8798.98 6598.70 13598.38 3599.34 1298.39 18596.76 5697.67 11997.40 24392.26 11699.49 14698.28 2896.28 20399.08 149
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 14099.16 1794.48 15997.67 11998.88 10292.80 10899.91 3097.11 8599.12 11199.50 91
WTY-MVS97.37 9796.92 10198.72 7798.86 12196.89 10998.31 18898.71 11495.26 12197.67 11998.56 13792.21 11999.78 9695.89 13796.85 18299.48 96
Effi-MVS+97.12 10996.69 11398.39 10398.19 17596.72 11497.37 27398.43 17893.71 19197.65 12298.02 18692.20 12099.25 16496.87 10397.79 16399.19 133
thisisatest053096.01 14895.36 16197.97 13098.38 15695.52 17098.88 8794.19 35394.04 17097.64 12398.31 16583.82 29399.46 15295.29 16097.70 16898.93 162
tttt051796.07 14595.51 15597.78 14298.41 15594.84 19999.28 1894.33 35194.26 16597.64 12398.64 12884.05 28699.47 15195.34 15697.60 17199.03 152
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16797.38 27199.65 292.34 24797.61 12598.20 17589.29 17999.10 18596.97 9097.60 17199.77 20
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5699.41 695.98 8697.60 12699.36 2694.45 8899.93 1597.14 8498.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
agg_prior197.95 6297.51 7499.28 3599.30 7598.38 3597.81 24698.72 11093.16 21897.57 12798.66 12696.14 2699.81 7196.63 11299.56 8099.66 65
agg_prior99.30 7598.38 3598.72 11097.57 12799.81 71
tpmrst95.63 16795.69 14995.44 27797.54 22188.54 33096.97 29997.56 27793.50 20497.52 12996.93 28489.49 17399.16 17395.25 16296.42 19698.64 182
MDTV_nov1_ep1395.40 15697.48 22588.34 33396.85 31297.29 29993.74 18897.48 13097.26 24989.18 18299.05 18991.92 26097.43 174
EPMVS94.99 20394.48 20296.52 22897.22 24491.75 28297.23 28491.66 35994.11 16797.28 13196.81 29185.70 25798.84 22193.04 22897.28 17698.97 158
EIA-MVS97.75 7097.58 6798.27 10998.38 15696.44 12799.01 6198.60 14095.88 8997.26 13297.53 23394.97 7499.33 16097.38 7899.20 10899.05 151
IS-MVSNet97.22 10296.88 10298.25 11298.85 12396.36 13199.19 3397.97 25595.39 11297.23 13398.99 8691.11 14798.93 20994.60 17898.59 13399.47 98
EPP-MVSNet97.46 8797.28 8597.99 12998.64 14195.38 17499.33 1598.31 19793.61 20197.19 13499.07 7794.05 9499.23 16796.89 9798.43 14399.37 111
thisisatest051595.61 17094.89 18597.76 14498.15 18095.15 18496.77 31594.41 34992.95 22697.18 13597.43 24184.78 27299.45 15394.63 17597.73 16798.68 177
CANet_DTU96.96 11496.55 11998.21 11498.17 17996.07 14297.98 22998.21 21397.24 3797.13 13698.93 9786.88 23899.91 3095.00 16799.37 10298.66 180
CHOSEN 1792x268897.12 10996.80 10498.08 12499.30 7594.56 21598.05 22299.71 193.57 20297.09 13798.91 10088.17 20999.89 3596.87 10399.56 8099.81 8
PatchT93.06 28491.97 28996.35 24296.69 27892.67 26994.48 34797.08 30686.62 33197.08 13892.23 34887.94 21697.90 31178.89 35096.69 18698.49 188
PatchmatchNetpermissive95.71 16295.52 15496.29 24697.58 21690.72 30296.84 31397.52 28494.06 16997.08 13896.96 28089.24 18198.90 21492.03 25798.37 14499.26 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MAR-MVS96.91 11696.40 12498.45 9798.69 13796.90 10798.66 13798.68 12192.40 24697.07 14097.96 19391.54 13799.75 10593.68 20898.92 11698.69 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 14098.60 14095.18 12597.06 14198.06 18494.26 9299.57 13593.80 20698.87 12199.52 85
TAMVS97.02 11296.79 10697.70 15098.06 18795.31 17998.52 15698.31 19793.95 17797.05 14298.61 12993.49 10198.52 25095.33 15797.81 16299.29 123
CSCG97.85 6797.74 6398.20 11599.67 2695.16 18299.22 2799.32 793.04 22297.02 14398.92 9995.36 5899.91 3097.43 7599.64 6299.52 85
CDS-MVSNet96.99 11396.69 11397.90 13498.05 18895.98 14398.20 20298.33 19493.67 19896.95 14498.49 14393.54 10098.42 26095.24 16397.74 16699.31 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
XVG-OURS-SEG-HR96.51 13196.34 12597.02 18698.77 12893.76 23897.79 24998.50 16695.45 10996.94 14599.09 7487.87 21999.55 14296.76 11095.83 21397.74 211
CR-MVSNet94.76 21894.15 22296.59 21997.00 25993.43 25294.96 34197.56 27792.46 24096.93 14696.24 31088.15 21097.88 31587.38 31596.65 18898.46 189
RPMNet92.81 28691.34 29497.24 17397.00 25993.43 25294.96 34198.80 8782.27 34696.93 14692.12 34986.98 23699.82 6476.32 35496.65 18898.46 189
SCA95.46 17295.13 17396.46 23597.67 20991.29 29397.33 27897.60 27594.68 14996.92 14897.10 25883.97 28898.89 21592.59 24198.32 14899.20 130
PatchMatch-RL96.59 12796.03 13798.27 10999.31 7096.51 12497.91 23599.06 2293.72 19096.92 14898.06 18488.50 20399.65 12491.77 26399.00 11498.66 180
DeepC-MVS95.98 397.88 6597.58 6798.77 7599.25 8696.93 10598.83 9698.75 10296.96 5196.89 15099.50 490.46 15999.87 4497.84 4999.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVG-OURS96.55 13096.41 12396.99 18798.75 12993.76 23897.50 26598.52 15895.67 9896.83 15199.30 3888.95 19399.53 14395.88 13896.26 20497.69 214
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22698.89 4694.44 16196.83 15198.68 12390.69 15699.76 10394.36 18699.29 10698.98 157
CostFormer94.95 20794.73 19195.60 27297.28 24089.06 32297.53 26496.89 32089.66 31496.82 15396.72 29486.05 25298.95 20895.53 15396.13 20998.79 169
UGNet96.78 12196.30 12798.19 11798.24 16995.89 15898.88 8798.93 3797.39 2596.81 15497.84 20682.60 29799.90 3396.53 11699.49 8898.79 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 22098.53 15695.32 11896.80 15598.53 13893.32 10399.72 10994.31 19099.31 10599.02 153
CHOSEN 280x42097.18 10697.18 8997.20 17598.81 12693.27 25995.78 33499.15 1895.25 12296.79 15698.11 18192.29 11599.07 18898.56 999.85 399.25 127
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15397.00 10298.14 21398.21 21393.95 17796.72 15797.99 19091.58 13399.76 10394.51 18396.54 19298.95 161
PAPR96.84 11996.24 13098.65 8198.72 13496.92 10697.36 27598.57 14893.33 21096.67 15897.57 23094.30 9199.56 13791.05 27498.59 13399.47 98
Anonymous2024052995.10 19794.22 21697.75 14599.01 10994.26 22698.87 8998.83 6885.79 33996.64 15998.97 8778.73 32199.85 5096.27 12494.89 21799.12 143
thres600view795.49 17194.77 18897.67 15398.98 11395.02 18998.85 9296.90 31895.38 11396.63 16096.90 28584.29 27999.59 13388.65 30896.33 19898.40 191
thres100view90095.38 17994.70 19297.41 16798.98 11394.92 19798.87 8996.90 31895.38 11396.61 16196.88 28684.29 27999.56 13788.11 30996.29 20097.76 209
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13798.73 13095.46 17299.20 3198.30 20394.96 13896.60 16298.87 10390.05 16598.59 24493.67 21098.60 13299.46 102
CVMVSNet95.43 17596.04 13693.57 31697.93 19483.62 34898.12 21698.59 14295.68 9796.56 16399.02 8087.51 22597.51 32593.56 21497.44 17399.60 78
RPSCF94.87 21295.40 15693.26 32298.89 11882.06 35398.33 18298.06 25090.30 30396.56 16399.26 4287.09 23399.49 14693.82 20596.32 19998.24 197
tfpn200view995.32 18694.62 19597.43 16698.94 11594.98 19398.68 13196.93 31695.33 11696.55 16596.53 30284.23 28299.56 13788.11 30996.29 20097.76 209
thres40095.38 17994.62 19597.65 15698.94 11594.98 19398.68 13196.93 31695.33 11696.55 16596.53 30284.23 28299.56 13788.11 30996.29 20098.40 191
thres20095.25 18894.57 19797.28 17298.81 12694.92 19798.20 20297.11 30595.24 12496.54 16796.22 31484.58 27699.53 14387.93 31396.50 19497.39 220
ab-mvs96.42 13495.71 14798.55 8798.63 14296.75 11397.88 24098.74 10493.84 18296.54 16798.18 17785.34 26499.75 10595.93 13696.35 19799.15 139
mvs-test196.60 12596.68 11596.37 24097.89 19791.81 27998.56 15298.10 23696.57 6496.52 16997.94 19590.81 15199.45 15395.72 14598.01 15597.86 208
Anonymous20240521195.28 18794.49 20197.67 15399.00 11093.75 24098.70 12897.04 30990.66 29496.49 17098.80 11178.13 32699.83 5696.21 12795.36 21699.44 105
ADS-MVSNet294.58 23094.40 21095.11 28698.00 18988.74 32796.04 32897.30 29890.15 30496.47 17196.64 29987.89 21797.56 32390.08 28697.06 17899.02 153
ADS-MVSNet95.00 20294.45 20696.63 21498.00 18991.91 27896.04 32897.74 26890.15 30496.47 17196.64 29987.89 21798.96 20490.08 28697.06 17899.02 153
Effi-MVS+-dtu96.29 13896.56 11895.51 27397.89 19790.22 30898.80 10698.10 23696.57 6496.45 17396.66 29690.81 15198.91 21195.72 14597.99 15697.40 219
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 21398.76 9992.41 24596.39 17498.31 16594.92 7699.78 9694.06 19998.77 12699.23 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm94.13 25893.80 24595.12 28596.50 28787.91 33897.44 26695.89 33792.62 23696.37 17596.30 30984.13 28598.30 28093.24 22191.66 26599.14 141
TAPA-MVS93.98 795.35 18394.56 19897.74 14699.13 10294.83 20198.33 18298.64 13786.62 33196.29 17698.61 12994.00 9699.29 16280.00 34699.41 9899.09 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.84 15695.12 17498.01 12898.49 15295.98 14398.73 11997.03 31095.37 11596.22 17798.19 17689.96 16799.16 17394.60 17887.48 31798.90 164
tpm294.19 25493.76 25095.46 27697.23 24389.04 32397.31 28096.85 32487.08 33096.21 17896.79 29283.75 29498.74 23092.43 24996.23 20698.59 184
F-COLMAP97.09 11196.80 10497.97 13099.45 5594.95 19698.55 15498.62 13993.02 22396.17 17998.58 13494.01 9599.81 7193.95 20198.90 11799.14 141
GeoE96.58 12996.07 13498.10 12398.35 15895.89 15899.34 1298.12 23193.12 22096.09 18098.87 10389.71 17198.97 20092.95 23198.08 15499.43 106
JIA-IIPM93.35 27592.49 28295.92 25996.48 28990.65 30395.01 34096.96 31485.93 33796.08 18187.33 35387.70 22398.78 22891.35 26995.58 21598.34 194
BH-RMVSNet95.92 15395.32 16597.69 15198.32 16694.64 20798.19 20697.45 29194.56 15496.03 18298.61 12985.02 26799.12 17990.68 27999.06 11299.30 121
dp94.15 25793.90 23894.90 29297.31 23986.82 34496.97 29997.19 30491.22 28796.02 18396.61 30185.51 26099.02 19790.00 29094.30 21998.85 165
EPNet97.28 10096.87 10398.51 9294.98 32996.14 14098.90 8097.02 31298.28 195.99 18499.11 6791.36 14099.89 3596.98 8999.19 10999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D97.16 10796.66 11698.68 7998.53 14997.19 9798.93 7798.90 4492.83 23295.99 18499.37 2292.12 12299.87 4493.67 21099.57 7598.97 158
AUN-MVS94.53 23493.73 25296.92 19698.50 15093.52 25098.34 18098.10 23693.83 18495.94 18697.98 19285.59 25999.03 19394.35 18780.94 34398.22 198
TR-MVS94.94 20994.20 21797.17 17897.75 20394.14 22997.59 26197.02 31292.28 25295.75 18797.64 22483.88 29098.96 20489.77 29296.15 20898.40 191
VPA-MVSNet95.75 16095.11 17597.69 15197.24 24297.27 9198.94 7599.23 1295.13 12895.51 18897.32 24685.73 25698.91 21197.33 8089.55 29296.89 246
HQP_MVS96.14 14495.90 14096.85 19997.42 23294.60 21398.80 10698.56 15097.28 3195.34 18998.28 16787.09 23399.03 19396.07 12994.27 22096.92 238
plane_prior394.61 21197.02 4995.34 189
DWT-MVSNet_test94.82 21394.36 21196.20 24997.35 23790.79 30098.34 18096.57 33192.91 22895.33 19196.44 30682.00 29999.12 17994.52 18295.78 21498.70 175
Fast-Effi-MVS+96.28 14095.70 14898.03 12798.29 16895.97 14898.58 14698.25 21191.74 26595.29 19297.23 25291.03 15099.15 17692.90 23397.96 15798.97 158
EI-MVSNet95.96 15095.83 14296.36 24197.93 19493.70 24498.12 21698.27 20693.70 19395.07 19399.02 8092.23 11898.54 24894.68 17493.46 24296.84 252
MVSTER96.06 14695.72 14497.08 18498.23 17095.93 15498.73 11998.27 20694.86 14295.07 19398.09 18288.21 20798.54 24896.59 11393.46 24296.79 256
OPM-MVS95.69 16595.33 16496.76 20396.16 30294.63 20898.43 17098.39 18596.64 6195.02 19598.78 11385.15 26699.05 18995.21 16494.20 22396.60 280
RRT_MVS96.04 14795.53 15397.56 16197.07 25797.32 8898.57 15198.09 24195.15 12795.02 19598.44 14788.20 20898.58 24696.17 12893.09 25196.79 256
Fast-Effi-MVS+-dtu95.87 15495.85 14195.91 26097.74 20691.74 28398.69 13098.15 22795.56 10394.92 19797.68 22188.98 19198.79 22793.19 22397.78 16497.20 226
TESTMET0.1,194.18 25693.69 25595.63 27196.92 26489.12 32196.91 30494.78 34693.17 21794.88 19896.45 30578.52 32298.92 21093.09 22598.50 13898.85 165
VPNet94.99 20394.19 21897.40 16997.16 25196.57 12198.71 12498.97 3095.67 9894.84 19998.24 17380.36 31298.67 23696.46 11887.32 32096.96 235
1112_ss96.63 12496.00 13898.50 9398.56 14696.37 13098.18 21098.10 23692.92 22794.84 19998.43 14892.14 12199.58 13494.35 18796.51 19399.56 84
test-LLR95.10 19794.87 18695.80 26596.77 27289.70 31296.91 30495.21 34195.11 13094.83 20195.72 32487.71 22198.97 20093.06 22698.50 13898.72 173
test-mter94.08 26393.51 26295.80 26596.77 27289.70 31296.91 30495.21 34192.89 22994.83 20195.72 32477.69 32998.97 20093.06 22698.50 13898.72 173
Test_1112_low_res96.34 13795.66 15198.36 10498.56 14695.94 15197.71 25398.07 24592.10 25794.79 20397.29 24891.75 13099.56 13794.17 19496.50 19499.58 82
GA-MVS94.81 21594.03 22797.14 17997.15 25293.86 23596.76 31697.58 27694.00 17494.76 20497.04 27180.91 30798.48 25291.79 26296.25 20599.09 146
bset_n11_16_dypcd94.89 21194.27 21496.76 20394.41 33695.15 18495.67 33595.64 33995.53 10494.65 20597.52 23487.10 23298.29 28396.58 11591.35 26796.83 254
BH-untuned95.95 15195.72 14496.65 21198.55 14892.26 27298.23 19797.79 26593.73 18994.62 20698.01 18888.97 19299.00 19993.04 22898.51 13798.68 177
test_djsdf96.00 14995.69 14996.93 19395.72 31595.49 17199.47 298.40 18394.98 13694.58 20797.86 20389.16 18398.41 26796.91 9494.12 22896.88 247
cascas94.63 22693.86 24196.93 19396.91 26694.27 22596.00 33198.51 16185.55 34094.54 20896.23 31284.20 28498.87 21895.80 14296.98 18197.66 215
DP-MVS96.59 12795.93 13998.57 8599.34 6296.19 13998.70 12898.39 18589.45 31794.52 20999.35 2891.85 12899.85 5092.89 23598.88 11999.68 57
gg-mvs-nofinetune92.21 29290.58 29997.13 18096.75 27595.09 18795.85 33289.40 36285.43 34194.50 21081.98 35680.80 31098.40 27392.16 25198.33 14797.88 206
mvs_anonymous96.70 12396.53 12197.18 17798.19 17593.78 23798.31 18898.19 21694.01 17394.47 21198.27 17092.08 12498.46 25597.39 7797.91 15899.31 118
HQP-NCC97.20 24698.05 22296.43 7094.45 212
ACMP_Plane97.20 24698.05 22296.43 7094.45 212
HQP4-MVS94.45 21298.96 20496.87 249
HQP-MVS95.72 16195.40 15696.69 20997.20 24694.25 22798.05 22298.46 17196.43 7094.45 21297.73 21586.75 23998.96 20495.30 15894.18 22496.86 251
MSDG95.93 15295.30 16797.83 13798.90 11795.36 17596.83 31498.37 18891.32 28194.43 21698.73 11990.27 16399.60 13290.05 28898.82 12498.52 187
nrg03096.28 14095.72 14497.96 13296.90 26798.15 5699.39 598.31 19795.47 10894.42 21798.35 15892.09 12398.69 23297.50 7489.05 30097.04 230
CLD-MVS95.62 16895.34 16296.46 23597.52 22493.75 24097.27 28398.46 17195.53 10494.42 21798.00 18986.21 24998.97 20096.25 12694.37 21896.66 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LPG-MVS_test95.62 16895.34 16296.47 23297.46 22793.54 24798.99 6598.54 15494.67 15094.36 21998.77 11585.39 26199.11 18295.71 14794.15 22696.76 260
LGP-MVS_train96.47 23297.46 22793.54 24798.54 15494.67 15094.36 21998.77 11585.39 26199.11 18295.71 14794.15 22696.76 260
v14419294.39 24393.70 25496.48 23196.06 30594.35 22398.58 14698.16 22691.45 27494.33 22197.02 27387.50 22798.45 25691.08 27189.11 29996.63 277
V4294.78 21794.14 22396.70 20896.33 29595.22 18198.97 6998.09 24192.32 24994.31 22297.06 26888.39 20498.55 24792.90 23388.87 30496.34 307
ACMM93.85 995.69 16595.38 16096.61 21697.61 21393.84 23698.91 7998.44 17595.25 12294.28 22398.47 14586.04 25499.12 17995.50 15493.95 23396.87 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS95.46 17295.21 17096.22 24898.12 18293.72 24398.32 18798.13 23093.71 19194.26 22497.31 24792.24 11798.10 29594.63 17590.12 28396.84 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192094.20 25393.47 26496.40 23995.98 30894.08 23098.52 15698.15 22791.33 28094.25 22597.20 25586.41 24698.42 26090.04 28989.39 29696.69 274
BH-w/o95.38 17995.08 17696.26 24798.34 16391.79 28097.70 25497.43 29392.87 23094.24 22697.22 25388.66 19798.84 22191.55 26797.70 16898.16 201
XVG-ACMP-BASELINE94.54 23394.14 22395.75 26896.55 28491.65 28598.11 21898.44 17594.96 13894.22 22797.90 19879.18 31999.11 18294.05 20093.85 23596.48 301
v114494.59 22993.92 23696.60 21896.21 29794.78 20598.59 14498.14 22991.86 26494.21 22897.02 27387.97 21598.41 26791.72 26489.57 29096.61 279
v119294.32 24693.58 25996.53 22796.10 30394.45 21798.50 16198.17 22491.54 27294.19 22997.06 26886.95 23798.43 25990.14 28489.57 29096.70 269
PAPM94.95 20794.00 23197.78 14297.04 25895.65 16496.03 33098.25 21191.23 28694.19 22997.80 21291.27 14498.86 22082.61 34097.61 17098.84 167
Patchmatch-test94.42 24193.68 25696.63 21497.60 21491.76 28194.83 34597.49 28889.45 31794.14 23197.10 25888.99 18898.83 22385.37 32998.13 15299.29 123
v124094.06 26593.29 26996.34 24396.03 30793.90 23498.44 16898.17 22491.18 28994.13 23297.01 27586.05 25298.42 26089.13 30589.50 29496.70 269
GBi-Net94.49 23793.80 24596.56 22398.21 17295.00 19098.82 9998.18 21992.46 24094.09 23397.07 26581.16 30497.95 30792.08 25392.14 25896.72 265
test194.49 23793.80 24596.56 22398.21 17295.00 19098.82 9998.18 21992.46 24094.09 23397.07 26581.16 30497.95 30792.08 25392.14 25896.72 265
FMVSNet394.97 20694.26 21597.11 18298.18 17796.62 11698.56 15298.26 21093.67 19894.09 23397.10 25884.25 28198.01 30392.08 25392.14 25896.70 269
MIMVSNet93.26 27992.21 28696.41 23897.73 20793.13 26495.65 33697.03 31091.27 28594.04 23696.06 31775.33 34097.19 32986.56 31996.23 20698.92 163
FIs96.51 13196.12 13397.67 15397.13 25397.54 8299.36 999.22 1495.89 8894.03 23798.35 15891.98 12698.44 25896.40 12292.76 25497.01 231
v2v48294.69 21994.03 22796.65 21196.17 30094.79 20498.67 13498.08 24392.72 23394.00 23897.16 25687.69 22498.45 25692.91 23288.87 30496.72 265
FC-MVSNet-test96.42 13496.05 13597.53 16396.95 26297.27 9199.36 999.23 1295.83 9193.93 23998.37 15692.00 12598.32 27696.02 13492.72 25597.00 232
UniMVSNet (Re)95.78 15995.19 17197.58 15996.99 26197.47 8498.79 11099.18 1695.60 10193.92 24097.04 27191.68 13198.48 25295.80 14287.66 31696.79 256
miper_enhance_ethall95.10 19794.75 19096.12 25397.53 22393.73 24296.61 32198.08 24392.20 25693.89 24196.65 29892.44 11298.30 28094.21 19391.16 27296.34 307
UniMVSNet_NR-MVSNet95.71 16295.15 17297.40 16996.84 27096.97 10398.74 11599.24 1095.16 12693.88 24297.72 21791.68 13198.31 27895.81 14087.25 32196.92 238
DU-MVS95.42 17694.76 18997.40 16996.53 28596.97 10398.66 13798.99 2995.43 11093.88 24297.69 21888.57 19998.31 27895.81 14087.25 32196.92 238
Baseline_NR-MVSNet94.35 24493.81 24495.96 25896.20 29894.05 23198.61 14396.67 32991.44 27593.85 24497.60 22788.57 19998.14 29294.39 18586.93 32495.68 325
PS-MVSNAJss96.43 13396.26 12996.92 19695.84 31395.08 18899.16 3698.50 16695.87 9093.84 24598.34 16294.51 8498.61 24096.88 10093.45 24497.06 229
UniMVSNet_ETH3D94.24 25193.33 26796.97 19097.19 24993.38 25698.74 11598.57 14891.21 28893.81 24698.58 13472.85 34998.77 22995.05 16693.93 23498.77 171
MVS_030492.81 28692.01 28895.23 28197.46 22791.33 29198.17 21198.81 7691.13 29093.80 24795.68 32766.08 35598.06 30090.79 27696.13 20996.32 310
tpmvs94.60 22794.36 21195.33 28097.46 22788.60 32996.88 31097.68 26991.29 28393.80 24796.42 30788.58 19899.24 16691.06 27296.04 21198.17 200
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 20297.64 7799.35 1199.06 2297.02 4993.75 24999.16 6189.25 18099.92 2197.22 8299.75 3899.64 70
eth_miper_zixun_eth94.68 22194.41 20995.47 27597.64 21191.71 28496.73 31898.07 24592.71 23493.64 25097.21 25490.54 15898.17 29093.38 21689.76 28796.54 289
ITE_SJBPF95.44 27797.42 23291.32 29297.50 28695.09 13393.59 25198.35 15881.70 30298.88 21789.71 29493.39 24696.12 315
TranMVSNet+NR-MVSNet95.14 19594.48 20297.11 18296.45 29096.36 13199.03 5699.03 2595.04 13493.58 25297.93 19688.27 20698.03 30294.13 19586.90 32696.95 237
COLMAP_ROBcopyleft93.27 1295.33 18594.87 18696.71 20699.29 7893.24 26198.58 14698.11 23489.92 30993.57 25399.10 6986.37 24799.79 9290.78 27798.10 15397.09 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm cat193.36 27492.80 27695.07 28897.58 21687.97 33796.76 31697.86 26382.17 34793.53 25496.04 31886.13 25099.13 17889.24 30395.87 21298.10 202
AllTest95.24 18994.65 19496.99 18799.25 8693.21 26298.59 14498.18 21991.36 27793.52 25598.77 11584.67 27499.72 10989.70 29597.87 16098.02 204
TestCases96.99 18799.25 8693.21 26298.18 21991.36 27793.52 25598.77 11584.67 27499.72 10989.70 29597.87 16098.02 204
miper_ehance_all_eth95.01 20194.69 19395.97 25797.70 20893.31 25897.02 29798.07 24592.23 25393.51 25796.96 28091.85 12898.15 29193.68 20891.16 27296.44 304
FMVSNet294.47 23993.61 25897.04 18598.21 17296.43 12898.79 11098.27 20692.46 24093.50 25897.09 26281.16 30498.00 30591.09 27091.93 26196.70 269
v14894.29 24893.76 25095.91 26096.10 30392.93 26798.58 14697.97 25592.59 23893.47 25996.95 28288.53 20298.32 27692.56 24387.06 32396.49 300
cl_fuxian94.79 21694.43 20895.89 26297.75 20393.12 26597.16 29198.03 25292.23 25393.46 26097.05 27091.39 13998.01 30393.58 21389.21 29896.53 291
RRT_test8_iter0594.56 23194.19 21895.67 27097.60 21491.34 28998.93 7798.42 17994.75 14593.39 26197.87 20279.00 32098.61 24096.78 10990.99 27597.07 228
pmmvs494.69 21993.99 23396.81 20195.74 31495.94 15197.40 26997.67 27090.42 30093.37 26297.59 22889.08 18698.20 28892.97 23091.67 26496.30 311
PCF-MVS93.45 1194.68 22193.43 26598.42 10198.62 14396.77 11295.48 33998.20 21584.63 34393.34 26398.32 16488.55 20199.81 7184.80 33398.96 11598.68 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl-mvsnet294.68 22194.19 21896.13 25298.11 18393.60 24596.94 30198.31 19792.43 24493.32 26496.87 28886.51 24298.28 28594.10 19891.16 27296.51 297
XXY-MVS95.20 19294.45 20697.46 16496.75 27596.56 12298.86 9198.65 13693.30 21393.27 26598.27 17084.85 27198.87 21894.82 17191.26 27196.96 235
jajsoiax95.45 17495.03 17896.73 20595.42 32694.63 20899.14 3898.52 15895.74 9493.22 26698.36 15783.87 29198.65 23896.95 9394.04 22996.91 243
mvs_tets95.41 17895.00 17996.65 21195.58 31994.42 21999.00 6398.55 15295.73 9593.21 26798.38 15583.45 29598.63 23997.09 8694.00 23196.91 243
anonymousdsp95.42 17694.91 18496.94 19295.10 32895.90 15799.14 3898.41 18093.75 18693.16 26897.46 23787.50 22798.41 26795.63 15194.03 23096.50 299
v894.47 23993.77 24896.57 22296.36 29394.83 20199.05 5398.19 21691.92 26193.16 26896.97 27888.82 19698.48 25291.69 26587.79 31496.39 305
WR-MVS95.15 19494.46 20497.22 17496.67 28096.45 12698.21 19998.81 7694.15 16693.16 26897.69 21887.51 22598.30 28095.29 16088.62 30696.90 245
EPNet_dtu95.21 19194.95 18395.99 25596.17 30090.45 30698.16 21297.27 30196.77 5593.14 27198.33 16390.34 16198.42 26085.57 32698.81 12599.09 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM96.29 13895.40 15698.96 6797.85 19997.60 8099.23 2398.93 3789.76 31293.11 27299.02 8089.11 18599.93 1591.99 25899.62 6699.34 112
GG-mvs-BLEND96.59 21996.34 29494.98 19396.51 32488.58 36393.10 27394.34 34080.34 31398.05 30189.53 29896.99 18096.74 262
v1094.29 24893.55 26096.51 22996.39 29294.80 20398.99 6598.19 21691.35 27993.02 27496.99 27688.09 21298.41 26790.50 28188.41 30896.33 309
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 20098.52 2799.37 898.71 11497.09 4792.99 27599.13 6489.36 17799.89 3596.97 9099.57 7599.71 44
D2MVS95.18 19395.08 17695.48 27497.10 25592.07 27598.30 19099.13 1994.02 17292.90 27696.73 29389.48 17498.73 23194.48 18493.60 24195.65 326
Patchmtry93.22 28092.35 28495.84 26496.77 27293.09 26694.66 34697.56 27787.37 32992.90 27696.24 31088.15 21097.90 31187.37 31690.10 28496.53 291
cl-mvsnet194.52 23594.03 22795.99 25597.57 22093.38 25697.05 29597.94 25891.74 26592.81 27897.10 25889.12 18498.07 29992.60 23990.30 28196.53 291
Anonymous2023121194.10 26193.26 27096.61 21699.11 10494.28 22499.01 6198.88 4986.43 33392.81 27897.57 23081.66 30398.68 23594.83 17089.02 30296.88 247
cl-mvsnet____94.51 23694.01 23096.02 25497.58 21693.40 25597.05 29597.96 25791.73 26792.76 28097.08 26489.06 18798.13 29392.61 23890.29 28296.52 294
miper_lstm_enhance94.33 24594.07 22695.11 28697.75 20390.97 29797.22 28598.03 25291.67 26992.76 28096.97 27890.03 16697.78 31792.51 24689.64 28996.56 286
v7n94.19 25493.43 26596.47 23295.90 31094.38 22299.26 2098.34 19391.99 25992.76 28097.13 25788.31 20598.52 25089.48 30087.70 31596.52 294
MVS94.67 22493.54 26198.08 12496.88 26896.56 12298.19 20698.50 16678.05 35192.69 28398.02 18691.07 14999.63 12990.09 28598.36 14698.04 203
DSMNet-mixed92.52 29092.58 28192.33 32794.15 33882.65 35198.30 19094.26 35289.08 32192.65 28495.73 32285.01 26895.76 34686.24 32197.76 16598.59 184
EU-MVSNet93.66 27094.14 22392.25 32895.96 30983.38 34998.52 15698.12 23194.69 14892.61 28598.13 18087.36 23096.39 34491.82 26190.00 28596.98 233
IterMVS-SCA-FT94.11 26093.87 24094.85 29497.98 19390.56 30597.18 28898.11 23493.75 18692.58 28697.48 23683.97 28897.41 32692.48 24891.30 26996.58 282
pmmvs593.65 27292.97 27495.68 26995.49 32292.37 27198.20 20297.28 30089.66 31492.58 28697.26 24982.14 29898.09 29793.18 22490.95 27696.58 282
WR-MVS_H95.05 20094.46 20496.81 20196.86 26995.82 16099.24 2299.24 1093.87 18192.53 28896.84 29090.37 16098.24 28793.24 22187.93 31396.38 306
ACMP93.49 1095.34 18494.98 18196.43 23797.67 20993.48 25198.73 11998.44 17594.94 14192.53 28898.53 13884.50 27899.14 17795.48 15594.00 23196.66 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part194.82 21393.82 24397.82 13998.84 12497.82 7299.03 5698.81 7692.31 25192.51 29097.89 20081.96 30098.67 23694.80 17388.24 30996.98 233
test0.0.03 194.08 26393.51 26295.80 26595.53 32192.89 26897.38 27195.97 33495.11 13092.51 29096.66 29687.71 22196.94 33387.03 31793.67 23797.57 216
IB-MVS91.98 1793.27 27891.97 28997.19 17697.47 22693.41 25497.09 29495.99 33393.32 21192.47 29295.73 32278.06 32799.53 14394.59 18082.98 33598.62 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS94.09 26293.85 24294.80 29797.99 19190.35 30797.18 28898.12 23193.68 19692.46 29397.34 24484.05 28697.41 32692.51 24691.33 26896.62 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet94.94 20994.30 21396.83 20096.72 27795.56 16799.11 4498.95 3493.89 17992.42 29497.90 19887.19 23198.12 29494.32 18988.21 31096.82 255
PS-CasMVS94.67 22493.99 23396.71 20696.68 27995.26 18099.13 4199.03 2593.68 19692.33 29597.95 19485.35 26398.10 29593.59 21288.16 31296.79 256
FMVSNet193.19 28292.07 28796.56 22397.54 22195.00 19098.82 9998.18 21990.38 30192.27 29697.07 26573.68 34797.95 30789.36 30291.30 26996.72 265
PEN-MVS94.42 24193.73 25296.49 23096.28 29694.84 19999.17 3599.00 2793.51 20392.23 29797.83 20986.10 25197.90 31192.55 24486.92 32596.74 262
OurMVSNet-221017-094.21 25294.00 23194.85 29495.60 31889.22 32098.89 8497.43 29395.29 11992.18 29898.52 14182.86 29698.59 24493.46 21591.76 26396.74 262
MS-PatchMatch93.84 26993.63 25794.46 30896.18 29989.45 31697.76 25098.27 20692.23 25392.13 29997.49 23579.50 31698.69 23289.75 29399.38 10195.25 330
ppachtmachnet_test93.22 28092.63 28094.97 29095.45 32490.84 29896.88 31097.88 26290.60 29592.08 30097.26 24988.08 21397.86 31685.12 33090.33 28096.22 312
131496.25 14295.73 14397.79 14197.13 25395.55 16998.19 20698.59 14293.47 20592.03 30197.82 21091.33 14299.49 14694.62 17798.44 14198.32 196
baseline295.11 19694.52 20096.87 19896.65 28193.56 24698.27 19594.10 35593.45 20692.02 30297.43 24187.45 22999.19 17193.88 20397.41 17597.87 207
DTE-MVSNet93.98 26793.26 27096.14 25196.06 30594.39 22199.20 3198.86 6193.06 22191.78 30397.81 21185.87 25597.58 32290.53 28086.17 33096.46 303
LF4IMVS93.14 28392.79 27794.20 31195.88 31188.67 32897.66 25797.07 30793.81 18591.71 30497.65 22277.96 32898.81 22591.47 26891.92 26295.12 333
our_test_393.65 27293.30 26894.69 29995.45 32489.68 31496.91 30497.65 27191.97 26091.66 30596.88 28689.67 17297.93 31088.02 31291.49 26696.48 301
testgi93.06 28492.45 28394.88 29396.43 29189.90 30998.75 11297.54 28395.60 10191.63 30697.91 19774.46 34597.02 33186.10 32293.67 23797.72 213
tfpnnormal93.66 27092.70 27996.55 22696.94 26395.94 15198.97 6999.19 1591.04 29191.38 30797.34 24484.94 26998.61 24085.45 32889.02 30295.11 334
LTVRE_ROB92.95 1594.60 22793.90 23896.68 21097.41 23594.42 21998.52 15698.59 14291.69 26891.21 30898.35 15884.87 27099.04 19291.06 27293.44 24596.60 280
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OpenMVScopyleft93.04 1395.83 15795.00 17998.32 10697.18 25097.32 8899.21 3098.97 3089.96 30891.14 30999.05 7986.64 24199.92 2193.38 21699.47 9097.73 212
pm-mvs193.94 26893.06 27296.59 21996.49 28895.16 18298.95 7398.03 25292.32 24991.08 31097.84 20684.54 27798.41 26792.16 25186.13 33296.19 314
MVS-HIRNet89.46 31588.40 31492.64 32597.58 21682.15 35294.16 35093.05 35875.73 35390.90 31182.52 35579.42 31798.33 27583.53 33898.68 12797.43 217
FMVSNet591.81 29390.92 29694.49 30597.21 24592.09 27498.00 22897.55 28289.31 31990.86 31295.61 32874.48 34495.32 34985.57 32689.70 28896.07 317
USDC93.33 27792.71 27895.21 28296.83 27190.83 29996.91 30497.50 28693.84 18290.72 31398.14 17977.69 32998.82 22489.51 29993.21 25095.97 319
MVP-Stereo94.28 25093.92 23695.35 27994.95 33092.60 27097.97 23097.65 27191.61 27190.68 31497.09 26286.32 24898.42 26089.70 29599.34 10395.02 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+92.99 1494.30 24793.77 24895.88 26397.81 20192.04 27798.71 12498.37 18893.99 17590.60 31598.47 14580.86 30999.05 18992.75 23792.40 25796.55 288
CL-MVSNet_2432*160090.11 30889.14 31193.02 32491.86 35088.23 33596.51 32498.07 24590.49 29690.49 31694.41 33684.75 27395.34 34880.79 34474.95 35195.50 327
DIV-MVS_2432*160090.38 30689.38 30993.40 31992.85 34788.94 32597.95 23197.94 25890.35 30290.25 31793.96 34179.82 31495.94 34584.62 33576.69 34995.33 329
Anonymous2023120691.66 29591.10 29593.33 32094.02 34287.35 34198.58 14697.26 30290.48 29790.16 31896.31 30883.83 29296.53 34279.36 34889.90 28696.12 315
SixPastTwentyTwo93.34 27692.86 27594.75 29895.67 31689.41 31898.75 11296.67 32993.89 17990.15 31998.25 17280.87 30898.27 28690.90 27590.64 27896.57 284
PVSNet_088.72 1991.28 29890.03 30495.00 28997.99 19187.29 34294.84 34498.50 16692.06 25889.86 32095.19 33079.81 31599.39 15692.27 25069.79 35498.33 195
ACMH92.88 1694.55 23293.95 23596.34 24397.63 21293.26 26098.81 10598.49 17093.43 20789.74 32198.53 13881.91 30199.08 18793.69 20793.30 24896.70 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs691.77 29490.63 29895.17 28494.69 33591.24 29498.67 13497.92 26086.14 33589.62 32297.56 23275.79 33998.34 27490.75 27884.56 33495.94 320
TinyColmap92.31 29191.53 29294.65 30196.92 26489.75 31196.92 30296.68 32890.45 29989.62 32297.85 20576.06 33898.81 22586.74 31892.51 25695.41 328
Anonymous2024052191.18 29990.44 30093.42 31793.70 34388.47 33198.94 7597.56 27788.46 32489.56 32495.08 33377.15 33596.97 33283.92 33689.55 29294.82 339
TransMVSNet (Re)92.67 28891.51 29396.15 25096.58 28394.65 20698.90 8096.73 32590.86 29389.46 32597.86 20385.62 25898.09 29786.45 32081.12 34195.71 324
NR-MVSNet94.98 20594.16 22197.44 16596.53 28597.22 9698.74 11598.95 3494.96 13889.25 32697.69 21889.32 17898.18 28994.59 18087.40 31996.92 238
LCM-MVSNet-Re95.22 19095.32 16594.91 29198.18 17787.85 33998.75 11295.66 33895.11 13088.96 32796.85 28990.26 16497.65 31995.65 15098.44 14199.22 129
KD-MVS_2432*160089.61 31387.96 31794.54 30394.06 34091.59 28695.59 33797.63 27389.87 31088.95 32894.38 33878.28 32496.82 33484.83 33168.05 35595.21 331
miper_refine_blended89.61 31387.96 31794.54 30394.06 34091.59 28695.59 33797.63 27389.87 31088.95 32894.38 33878.28 32496.82 33484.83 33168.05 35595.21 331
TDRefinement91.06 30189.68 30695.21 28285.35 35891.49 28898.51 16097.07 30791.47 27388.83 33097.84 20677.31 33399.09 18692.79 23677.98 34795.04 336
N_pmnet87.12 32087.77 31985.17 33795.46 32361.92 36297.37 27370.66 36885.83 33888.73 33196.04 31885.33 26597.76 31880.02 34590.48 27995.84 321
test_040291.32 29790.27 30294.48 30696.60 28291.12 29598.50 16197.22 30386.10 33688.30 33296.98 27777.65 33197.99 30678.13 35292.94 25394.34 341
test20.0390.89 30390.38 30192.43 32693.48 34488.14 33698.33 18297.56 27793.40 20887.96 33396.71 29580.69 31194.13 35479.15 34986.17 33095.01 338
MIMVSNet189.67 31288.28 31693.82 31492.81 34891.08 29698.01 22697.45 29187.95 32687.90 33495.87 32067.63 35394.56 35378.73 35188.18 31195.83 322
Patchmatch-RL test91.49 29690.85 29793.41 31891.37 35184.40 34692.81 35195.93 33691.87 26387.25 33594.87 33488.99 18896.53 34292.54 24582.00 33799.30 121
pmmvs386.67 32184.86 32492.11 32988.16 35587.19 34396.63 32094.75 34779.88 34987.22 33692.75 34666.56 35495.20 35081.24 34376.56 35093.96 347
K. test v392.55 28991.91 29194.48 30695.64 31789.24 31999.07 5194.88 34594.04 17086.78 33797.59 22877.64 33297.64 32092.08 25389.43 29596.57 284
lessismore_v094.45 30994.93 33188.44 33291.03 36086.77 33897.64 22476.23 33798.42 26090.31 28385.64 33396.51 297
ambc89.49 33386.66 35675.78 35692.66 35296.72 32686.55 33992.50 34746.01 36097.90 31190.32 28282.09 33694.80 340
PM-MVS87.77 31886.55 32291.40 33191.03 35383.36 35096.92 30295.18 34391.28 28486.48 34093.42 34353.27 35996.74 33689.43 30181.97 33894.11 344
OpenMVS_ROBcopyleft86.42 2089.00 31687.43 32193.69 31593.08 34689.42 31797.91 23596.89 32078.58 35085.86 34194.69 33569.48 35198.29 28377.13 35393.29 24993.36 350
UnsupCasMVSNet_eth90.99 30289.92 30594.19 31294.08 33989.83 31097.13 29398.67 12993.69 19485.83 34296.19 31575.15 34196.74 33689.14 30479.41 34596.00 318
new_pmnet90.06 30989.00 31393.22 32394.18 33788.32 33496.42 32696.89 32086.19 33485.67 34393.62 34277.18 33497.10 33081.61 34289.29 29794.23 342
EG-PatchMatch MVS91.13 30090.12 30394.17 31394.73 33489.00 32498.13 21597.81 26489.22 32085.32 34496.46 30467.71 35298.42 26087.89 31493.82 23695.08 335
pmmvs-eth3d90.36 30789.05 31294.32 31091.10 35292.12 27397.63 26096.95 31588.86 32284.91 34593.13 34478.32 32396.74 33688.70 30781.81 33994.09 345
DeepMVS_CXcopyleft86.78 33497.09 25672.30 35895.17 34475.92 35284.34 34695.19 33070.58 35095.35 34779.98 34789.04 30192.68 351
new-patchmatchnet88.50 31787.45 32091.67 33090.31 35485.89 34597.16 29197.33 29789.47 31683.63 34792.77 34576.38 33695.06 35182.70 33977.29 34894.06 346
UnsupCasMVSNet_bld87.17 31985.12 32393.31 32191.94 34988.77 32694.92 34398.30 20384.30 34482.30 34890.04 35063.96 35797.25 32885.85 32574.47 35393.93 348
CMPMVSbinary66.06 2189.70 31189.67 30789.78 33293.19 34576.56 35597.00 29898.35 19180.97 34881.57 34997.75 21474.75 34398.61 24089.85 29193.63 23994.17 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_method79.03 32278.17 32581.63 33986.06 35754.40 36782.75 35996.89 32039.54 36280.98 35095.57 32958.37 35894.73 35284.74 33478.61 34695.75 323
ET-MVSNet_ETH3D94.13 25892.98 27397.58 15998.22 17196.20 13797.31 28095.37 34094.53 15579.56 35197.63 22686.51 24297.53 32496.91 9490.74 27799.02 153
LCM-MVSNet78.70 32376.24 32886.08 33577.26 36471.99 35994.34 34896.72 32661.62 35776.53 35289.33 35133.91 36692.78 35681.85 34174.60 35293.46 349
PMMVS277.95 32575.44 32985.46 33682.54 35974.95 35794.23 34993.08 35772.80 35474.68 35387.38 35236.36 36591.56 35773.95 35563.94 35789.87 352
Gipumacopyleft78.40 32476.75 32783.38 33895.54 32080.43 35479.42 36097.40 29564.67 35673.46 35480.82 35745.65 36193.14 35566.32 35787.43 31876.56 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet190.70 30589.39 30894.62 30294.79 33390.65 30397.20 28697.46 28987.54 32872.54 35595.74 32186.51 24296.66 34086.00 32386.76 32896.54 289
MDA-MVSNet_test_wron90.71 30489.38 30994.68 30094.83 33290.78 30197.19 28797.46 28987.60 32772.41 35695.72 32486.51 24296.71 33985.92 32486.80 32796.56 286
MDA-MVSNet-bldmvs89.97 31088.35 31594.83 29695.21 32791.34 28997.64 25897.51 28588.36 32571.17 35796.13 31679.22 31896.63 34183.65 33786.27 32996.52 294
FPMVS77.62 32677.14 32679.05 34179.25 36260.97 36395.79 33395.94 33565.96 35567.93 35894.40 33737.73 36488.88 35968.83 35688.46 30787.29 353
tmp_tt68.90 32866.97 33074.68 34350.78 36859.95 36487.13 35683.47 36638.80 36362.21 35996.23 31264.70 35676.91 36488.91 30630.49 36287.19 354
E-PMN64.94 33064.25 33267.02 34582.28 36059.36 36591.83 35485.63 36452.69 35960.22 36077.28 35941.06 36380.12 36246.15 36141.14 35961.57 360
EMVS64.07 33163.26 33466.53 34681.73 36158.81 36691.85 35384.75 36551.93 36159.09 36175.13 36043.32 36279.09 36342.03 36239.47 36061.69 359
MVEpermissive62.14 2263.28 33259.38 33574.99 34274.33 36565.47 36185.55 35780.50 36752.02 36051.10 36275.00 36110.91 37180.50 36151.60 36053.40 35878.99 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 32765.37 33180.22 34065.99 36671.96 36090.91 35590.09 36182.62 34549.93 36378.39 35829.36 36781.75 36062.49 35838.52 36186.95 355
PMVScopyleft61.03 2365.95 32963.57 33373.09 34457.90 36751.22 36885.05 35893.93 35654.45 35844.32 36483.57 35413.22 36889.15 35858.68 35981.00 34278.91 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs21.48 33524.95 33811.09 34914.89 3696.47 37196.56 3229.87 3707.55 36517.93 36539.02 3639.43 3725.90 36716.56 36512.72 36420.91 362
test12320.95 33623.72 33912.64 34813.54 3708.19 37096.55 3236.13 3717.48 36616.74 36637.98 36412.97 3696.05 36616.69 3645.43 36523.68 361
wuyk23d30.17 33330.18 33730.16 34778.61 36343.29 36966.79 36114.21 36917.31 36414.82 36711.93 36711.55 37041.43 36537.08 36319.30 3635.76 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.98 33431.98 3360.00 3500.00 3710.00 3720.00 36298.59 1420.00 3670.00 36898.61 12990.60 1570.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.88 33810.50 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36894.51 840.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.20 33710.94 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36898.43 1480.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
OPU-MVS99.37 2099.24 9299.05 1099.02 5999.16 6197.81 299.37 15797.24 8199.73 4399.70 48
save fliter99.46 5198.38 3598.21 19998.71 11497.95 3
test_0728_SECOND99.71 199.72 1299.35 198.97 6998.88 4999.94 398.47 1699.81 1099.84 4
GSMVS99.20 130
sam_mvs189.45 17599.20 130
sam_mvs88.99 188
MTGPAbinary98.74 104
test_post196.68 31930.43 36687.85 22098.69 23292.59 241
test_post31.83 36588.83 19598.91 211
patchmatchnet-post95.10 33289.42 17698.89 215
MTMP98.89 8494.14 354
gm-plane-assit95.88 31187.47 34089.74 31396.94 28399.19 17193.32 220
test9_res96.39 12399.57 7599.69 51
agg_prior295.87 13999.57 7599.68 57
test_prior498.01 6297.86 242
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
新几何297.64 258
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9099.61 75
无先验97.58 26298.72 11091.38 27699.87 4493.36 21899.60 78
原ACMM297.67 256
testdata299.89 3591.65 266
segment_acmp96.85 11
testdata197.32 27996.34 74
plane_prior797.42 23294.63 208
plane_prior697.35 23794.61 21187.09 233
plane_prior598.56 15099.03 19396.07 12994.27 22096.92 238
plane_prior498.28 167
plane_prior298.80 10697.28 31
plane_prior197.37 236
plane_prior94.60 21398.44 16896.74 5794.22 222
n20.00 372
nn0.00 372
door-mid94.37 350
test1198.66 132
door94.64 348
HQP5-MVS94.25 227
BP-MVS95.30 158
HQP3-MVS98.46 17194.18 224
HQP2-MVS86.75 239
NP-MVS97.28 24094.51 21697.73 215
ACMMP++_ref92.97 252
ACMMP++93.61 240
Test By Simon94.64 80