This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3498.27 3195.13 1999.19 198.89 495.54 599.85 1897.52 599.66 1099.56 27
test_241102_ONE99.42 795.30 1898.27 3195.09 2399.19 198.81 1095.54 599.65 57
SD-MVS97.41 1097.53 797.06 7498.57 7994.46 3497.92 6498.14 5794.82 3499.01 398.55 2294.18 1497.41 31196.94 1899.64 1399.32 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test072699.45 395.36 1398.31 2798.29 2694.92 2898.99 498.92 295.08 8
IU-MVS99.42 795.39 1197.94 10690.40 18398.94 597.41 1299.66 1099.74 7
DVP-MVS++98.06 197.99 198.28 998.67 6695.39 1199.29 198.28 2894.78 3798.93 698.87 696.04 299.86 997.45 999.58 2299.59 20
test_241102_TWO98.27 3195.13 1998.93 698.89 494.99 1199.85 1897.52 599.65 1299.74 7
PC_three_145290.77 16698.89 898.28 5796.24 198.35 20995.76 6199.58 2299.59 20
SMA-MVScopyleft97.35 1397.03 1898.30 899.06 4295.42 1097.94 6298.18 5090.57 17998.85 998.94 193.33 2199.83 2696.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4197.85 11894.92 2898.73 1098.87 695.08 899.84 2397.52 599.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 3798.73 1098.87 695.87 499.84 2397.45 999.72 299.77 1
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 14098.35 2095.16 1898.71 1298.80 1195.05 1099.89 496.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.97.42 997.33 1197.69 4599.25 2994.24 4398.07 5197.85 11893.72 6798.57 1398.35 4293.69 1899.40 11397.06 1499.46 4499.44 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6298.53 1398.29 2695.55 598.56 1497.81 9193.90 1599.65 5796.62 2899.21 7599.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS199.55 193.34 7499.29 198.35 2094.98 2798.49 15
test_one_060199.32 2495.20 2198.25 3695.13 1998.48 1698.87 695.16 7
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 698.30 2594.76 3998.30 1798.90 393.77 1799.68 5197.93 199.69 399.75 5
xxxxxxxxxxxxxcwj97.36 1297.20 1297.83 2998.91 5394.28 3997.02 15397.22 19295.35 898.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
SF-MVS97.39 1197.13 1398.17 1499.02 4695.28 2098.23 3898.27 3192.37 11898.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8794.25 4298.43 2198.27 3195.34 1098.11 2098.56 2094.53 1299.71 4296.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
test_part299.28 2795.74 898.10 21
APD-MVScopyleft96.95 3296.60 4598.01 2299.03 4594.93 2897.72 8498.10 6591.50 14298.01 2298.32 5092.33 4099.58 7594.85 8999.51 3399.53 38
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-296.83 4197.44 995.01 17199.05 4385.39 29196.98 16098.77 594.70 4197.99 2398.66 1493.61 1999.91 197.67 499.50 3699.72 10
DeepPCF-MVS93.97 196.61 5197.09 1495.15 16598.09 11486.63 27196.00 24398.15 5595.43 697.95 2498.56 2093.40 2099.36 11796.77 2599.48 4199.45 51
ACMMP_NAP97.20 1696.86 2698.23 1199.09 3895.16 2497.60 9998.19 4892.82 10697.93 2598.74 1391.60 5999.86 996.26 3899.52 2999.67 11
ETH3D-3000-0.197.07 2396.71 4098.14 1698.90 5595.33 1797.68 8898.24 3891.57 14097.90 2698.37 4092.61 3499.66 5695.59 7399.51 3399.43 55
9.1496.75 3798.93 5197.73 8198.23 4291.28 15497.88 2798.44 3293.00 2599.65 5795.76 6199.47 42
CNVR-MVS97.68 697.44 998.37 798.90 5595.86 697.27 13198.08 6895.81 397.87 2898.31 5194.26 1399.68 5197.02 1799.49 4099.57 24
testtj96.93 3496.56 4898.05 2099.10 3694.66 3197.78 7698.22 4392.74 10997.59 2998.20 6591.96 4999.86 994.21 10399.25 7199.63 14
VNet95.89 7495.45 7697.21 6898.07 11692.94 8497.50 10798.15 5593.87 6197.52 3097.61 11085.29 14799.53 9395.81 6095.27 18099.16 79
Regformer-297.16 1996.99 2097.67 4698.32 9393.84 5796.83 17498.10 6595.24 1397.49 3198.25 5992.57 3599.61 6696.80 2299.29 6399.56 27
Regformer-197.10 2196.96 2297.54 5298.32 9393.48 6896.83 17497.99 10195.20 1597.46 3298.25 5992.48 3999.58 7596.79 2499.29 6399.55 31
SR-MVS97.01 2996.86 2697.47 5499.09 3893.27 7697.98 5698.07 7493.75 6697.45 3398.48 2991.43 6299.59 7296.22 4199.27 6799.54 34
APD-MVS_3200maxsize96.81 4296.71 4097.12 7299.01 4992.31 10297.98 5698.06 7793.11 9397.44 3498.55 2290.93 7499.55 8896.06 4999.25 7199.51 39
TSAR-MVS + GP.96.69 4896.49 5197.27 6398.31 9593.39 7096.79 17896.72 23594.17 5497.44 3497.66 10392.76 2799.33 11896.86 2197.76 12999.08 89
SR-MVS-dyc-post96.88 3796.80 3397.11 7399.02 4692.34 9997.98 5698.03 8893.52 7797.43 3698.51 2691.40 6399.56 8596.05 5099.26 6999.43 55
RE-MVS-def96.72 3999.02 4692.34 9997.98 5698.03 8893.52 7797.43 3698.51 2690.71 7996.05 5099.26 6999.43 55
dcpmvs_296.37 6197.05 1694.31 20898.96 5084.11 30997.56 10297.51 15393.92 5997.43 3698.52 2592.75 2899.32 12097.32 1399.50 3699.51 39
test117296.93 3496.86 2697.15 7099.10 3692.34 9997.96 6198.04 8593.79 6597.35 3998.53 2491.40 6399.56 8596.30 3799.30 6299.55 31
旧先验295.94 24681.66 33697.34 4098.82 16792.26 139
ETH3D cwj APD-0.1696.56 5396.06 6498.05 2098.26 9995.19 2296.99 15898.05 8489.85 19397.26 4198.22 6191.80 5299.69 4894.84 9099.28 6599.27 73
MSLP-MVS++96.94 3397.06 1596.59 8698.72 6391.86 11797.67 8998.49 1394.66 4397.24 4298.41 3892.31 4298.94 15896.61 2999.46 4498.96 101
abl_696.40 5996.21 6196.98 7798.89 5892.20 10797.89 6598.03 8893.34 8597.22 4398.42 3587.93 11099.72 3995.10 8299.07 8999.02 92
HFP-MVS97.14 2096.92 2497.83 2999.42 794.12 4998.52 1498.32 2293.21 8797.18 4498.29 5492.08 4499.83 2695.63 6899.59 1799.54 34
#test#97.02 2796.75 3797.83 2999.42 794.12 4998.15 4698.32 2292.57 11497.18 4498.29 5492.08 4499.83 2695.12 8199.59 1799.54 34
ACMMPR97.07 2396.84 2997.79 3599.44 693.88 5698.52 1498.31 2493.21 8797.15 4698.33 4891.35 6599.86 995.63 6899.59 1799.62 16
region2R97.07 2396.84 2997.77 3899.46 293.79 5998.52 1498.24 3893.19 9097.14 4798.34 4591.59 6099.87 895.46 7599.59 1799.64 13
Regformer-496.97 3096.87 2597.25 6498.34 9092.66 9096.96 16298.01 9595.12 2297.14 4798.42 3591.82 5199.61 6696.90 1999.13 8399.50 43
PGM-MVS96.81 4296.53 4997.65 4799.35 2293.53 6797.65 9298.98 192.22 12197.14 4798.44 3291.17 7099.85 1894.35 10199.46 4499.57 24
PHI-MVS96.77 4596.46 5497.71 4498.40 8594.07 5298.21 4198.45 1689.86 19197.11 5098.01 7792.52 3799.69 4896.03 5399.53 2899.36 64
NCCC97.30 1597.03 1898.11 1798.77 6195.06 2697.34 12398.04 8595.96 297.09 5197.88 8393.18 2499.71 4295.84 5999.17 8099.56 27
Regformer-396.85 3996.80 3397.01 7598.34 9092.02 11396.96 16297.76 12295.01 2697.08 5298.42 3591.71 5599.54 9096.80 2299.13 8399.48 47
ZD-MVS99.05 4394.59 3298.08 6889.22 20997.03 5398.10 6892.52 3799.65 5794.58 9999.31 61
testdata95.46 15898.18 10988.90 21797.66 13682.73 33097.03 5398.07 7190.06 8698.85 16589.67 19098.98 9398.64 130
CS-MVS96.79 4497.05 1696.00 12598.17 11190.38 17099.09 397.89 10995.31 1297.02 5598.02 7591.74 5398.71 18097.06 1499.18 7898.90 109
CS-MVS-test96.47 5696.62 4496.01 12498.18 10990.40 16898.40 2397.65 13895.33 1197.02 5596.79 14889.98 8898.72 17897.06 1499.18 7898.91 107
HPM-MVS_fast96.51 5496.27 5997.22 6799.32 2492.74 8798.74 898.06 7790.57 17996.77 5798.35 4290.21 8599.53 9394.80 9499.63 1499.38 62
h-mvs3394.15 11593.52 12396.04 12197.81 12890.22 17297.62 9897.58 14695.19 1696.74 5897.45 11983.67 16999.61 6695.85 5779.73 34298.29 158
hse-mvs293.45 14292.99 13894.81 18397.02 16688.59 22396.69 18896.47 25395.19 1696.74 5896.16 18883.67 16998.48 20195.85 5779.13 34697.35 197
GST-MVS96.85 3996.52 5097.82 3299.36 2094.14 4898.29 2998.13 5892.72 11096.70 6098.06 7291.35 6599.86 994.83 9199.28 6599.47 50
xiu_mvs_v1_base_debu95.01 9494.76 9295.75 13596.58 18591.71 11896.25 22897.35 18392.99 9696.70 6096.63 16382.67 19199.44 10896.22 4197.46 13396.11 229
xiu_mvs_v1_base95.01 9494.76 9295.75 13596.58 18591.71 11896.25 22897.35 18392.99 9696.70 6096.63 16382.67 19199.44 10896.22 4197.46 13396.11 229
xiu_mvs_v1_base_debi95.01 9494.76 9295.75 13596.58 18591.71 11896.25 22897.35 18392.99 9696.70 6096.63 16382.67 19199.44 10896.22 4197.46 13396.11 229
CDPH-MVS95.97 7295.38 7997.77 3898.93 5194.44 3596.35 21897.88 11286.98 27596.65 6497.89 8191.99 4899.47 10492.26 13999.46 4499.39 60
ETH3 D test640096.16 6795.52 7398.07 1998.90 5595.06 2697.03 15098.21 4488.16 24596.64 6597.70 9891.18 6999.67 5392.44 13899.47 4299.48 47
DROMVSNet96.42 5896.47 5296.26 11197.01 16791.52 12798.89 497.75 12394.42 4896.64 6597.68 10089.32 9298.60 18997.45 999.11 8898.67 129
UA-Net95.95 7395.53 7297.20 6997.67 13592.98 8397.65 9298.13 5894.81 3596.61 6798.35 4288.87 9799.51 9890.36 17897.35 14099.11 87
HPM-MVS++copyleft97.34 1496.97 2198.47 599.08 4096.16 497.55 10497.97 10395.59 496.61 6797.89 8192.57 3599.84 2395.95 5499.51 3399.40 59
XVS97.18 1796.96 2297.81 3399.38 1594.03 5498.59 1198.20 4694.85 3096.59 6998.29 5491.70 5699.80 3195.66 6399.40 5199.62 16
X-MVStestdata91.71 20489.67 26497.81 3399.38 1594.03 5498.59 1198.20 4694.85 3096.59 6932.69 37391.70 5699.80 3195.66 6399.40 5199.62 16
DeepC-MVS_fast93.89 296.93 3496.64 4397.78 3698.64 7494.30 3897.41 11598.04 8594.81 3596.59 6998.37 4091.24 6799.64 6595.16 7999.52 2999.42 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ95.37 8495.33 8195.49 15497.35 14890.66 16095.31 27297.48 15693.85 6296.51 7295.70 21588.65 10199.65 5794.80 9498.27 11496.17 224
EI-MVSNet-Vis-set96.51 5496.47 5296.63 8398.24 10091.20 14096.89 16997.73 12694.74 4096.49 7398.49 2890.88 7699.58 7596.44 3598.32 11399.13 83
ETV-MVS96.02 7095.89 6896.40 9997.16 15492.44 9797.47 11297.77 12194.55 4596.48 7494.51 26391.23 6898.92 15995.65 6698.19 11697.82 179
alignmvs95.87 7595.23 8397.78 3697.56 14695.19 2297.86 6797.17 19594.39 5096.47 7596.40 17785.89 14099.20 12896.21 4595.11 18498.95 103
xiu_mvs_v2_base95.32 8695.29 8295.40 15997.22 15090.50 16395.44 26697.44 17193.70 6996.46 7696.18 18588.59 10499.53 9394.79 9697.81 12696.17 224
CP-MVS97.02 2796.81 3297.64 4999.33 2393.54 6698.80 798.28 2892.99 9696.45 7798.30 5391.90 5099.85 1895.61 7099.68 499.54 34
HPM-MVScopyleft96.69 4896.45 5597.40 5699.36 2093.11 7998.87 598.06 7791.17 15896.40 7897.99 7890.99 7399.58 7595.61 7099.61 1699.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ZNCC-MVS96.96 3196.67 4297.85 2899.37 1794.12 4998.49 1898.18 5092.64 11396.39 7998.18 6691.61 5899.88 595.59 7399.55 2599.57 24
diffmvs95.25 8895.13 8695.63 14396.43 19789.34 20295.99 24497.35 18392.83 10596.31 8097.37 12386.44 13298.67 18396.26 3897.19 14698.87 114
LFMVS93.60 13792.63 15296.52 8898.13 11391.27 13597.94 6293.39 34490.57 17996.29 8198.31 5169.00 33199.16 13394.18 10595.87 16999.12 86
canonicalmvs96.02 7095.45 7697.75 4097.59 14395.15 2598.28 3097.60 14394.52 4696.27 8296.12 18987.65 11499.18 13196.20 4694.82 18898.91 107
MVSFormer95.37 8495.16 8595.99 12696.34 20191.21 13898.22 3997.57 14791.42 14696.22 8397.32 12486.20 13797.92 26494.07 10699.05 9098.85 115
lupinMVS94.99 9894.56 9896.29 10996.34 20191.21 13895.83 25196.27 26188.93 21996.22 8396.88 14686.20 13798.85 16595.27 7799.05 9098.82 118
EI-MVSNet-UG-set96.34 6296.30 5896.47 9498.20 10590.93 15196.86 17097.72 12994.67 4296.16 8598.46 3090.43 8299.58 7596.23 4097.96 12398.90 109
zzz-MVS97.07 2396.77 3697.97 2599.37 1794.42 3697.15 14698.08 6895.07 2496.11 8698.59 1890.88 7699.90 296.18 4799.50 3699.58 22
MTAPA97.08 2296.78 3597.97 2599.37 1794.42 3697.24 13398.08 6895.07 2496.11 8698.59 1890.88 7699.90 296.18 4799.50 3699.58 22
MCST-MVS97.18 1796.84 2998.20 1399.30 2695.35 1597.12 14898.07 7493.54 7596.08 8897.69 9993.86 1699.71 4296.50 3299.39 5399.55 31
TEST998.70 6494.19 4496.41 21098.02 9288.17 24396.03 8997.56 11592.74 2999.59 72
train_agg96.30 6395.83 6997.72 4298.70 6494.19 4496.41 21098.02 9288.58 23196.03 8997.56 11592.73 3099.59 7295.04 8399.37 5899.39 60
test_prior396.46 5796.20 6297.23 6598.67 6692.99 8196.35 21898.00 9792.80 10796.03 8997.59 11192.01 4699.41 11195.01 8499.38 5499.29 68
test_prior296.35 21892.80 10796.03 8997.59 11192.01 4695.01 8499.38 54
jason94.84 10394.39 10696.18 11595.52 23490.93 15196.09 23796.52 25189.28 20796.01 9397.32 12484.70 15498.77 17295.15 8098.91 9798.85 115
jason: jason.
test_898.67 6694.06 5396.37 21798.01 9588.58 23195.98 9497.55 11792.73 3099.58 75
mPP-MVS96.86 3896.60 4597.64 4999.40 1293.44 6998.50 1798.09 6793.27 8695.95 9598.33 4891.04 7299.88 595.20 7899.57 2499.60 19
DELS-MVS96.61 5196.38 5797.30 6097.79 13093.19 7795.96 24598.18 5095.23 1495.87 9697.65 10491.45 6199.70 4795.87 5599.44 4899.00 99
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VDD-MVS93.82 13093.08 13696.02 12297.88 12589.96 18197.72 8495.85 27692.43 11695.86 9798.44 3268.42 33599.39 11496.31 3694.85 18698.71 126
MVS_111021_HR96.68 5096.58 4796.99 7698.46 8192.31 10296.20 23398.90 294.30 5395.86 9797.74 9692.33 4099.38 11696.04 5299.42 4999.28 71
MVS_111021_LR96.24 6596.19 6396.39 10198.23 10491.35 13396.24 23198.79 493.99 5895.80 9997.65 10489.92 9099.24 12695.87 5599.20 7698.58 131
VDDNet93.05 15792.07 16996.02 12296.84 17390.39 16998.08 5095.85 27686.22 28795.79 10098.46 3067.59 33899.19 12994.92 8894.85 18698.47 143
新几何197.32 5998.60 7593.59 6597.75 12381.58 33795.75 10197.85 8790.04 8799.67 5386.50 25599.13 8398.69 127
test_yl94.78 10594.23 10796.43 9797.74 13291.22 13696.85 17197.10 20191.23 15695.71 10296.93 14184.30 16099.31 12193.10 12895.12 18298.75 120
DCV-MVSNet94.78 10594.23 10796.43 9797.74 13291.22 13696.85 17197.10 20191.23 15695.71 10296.93 14184.30 16099.31 12193.10 12895.12 18298.75 120
agg_prior196.22 6695.77 7097.56 5198.67 6693.79 5996.28 22698.00 9788.76 22895.68 10497.55 11792.70 3299.57 8395.01 8499.32 5999.32 66
agg_prior98.67 6693.79 5998.00 9795.68 10499.57 83
112194.71 10793.83 11297.34 5898.57 7993.64 6496.04 23997.73 12681.56 33895.68 10497.85 8790.23 8499.65 5787.68 23399.12 8698.73 123
MG-MVS95.61 7995.38 7996.31 10698.42 8490.53 16296.04 23997.48 15693.47 7995.67 10798.10 6889.17 9499.25 12591.27 16698.77 9999.13 83
baseline95.58 8095.42 7896.08 11796.78 17790.41 16797.16 14497.45 16793.69 7095.65 10897.85 8787.29 12298.68 18295.66 6397.25 14499.13 83
MVS_Test94.89 10194.62 9695.68 14196.83 17589.55 19196.70 18697.17 19591.17 15895.60 10996.11 19287.87 11198.76 17393.01 13497.17 14798.72 124
DPM-MVS95.69 7694.92 8998.01 2298.08 11595.71 995.27 27597.62 14290.43 18295.55 11097.07 13791.72 5499.50 10189.62 19298.94 9598.82 118
MP-MVS-pluss96.70 4796.27 5997.98 2499.23 3294.71 3096.96 16298.06 7790.67 17095.55 11098.78 1291.07 7199.86 996.58 3099.55 2599.38 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4596.45 5597.72 4299.39 1493.80 5898.41 2298.06 7793.37 8295.54 11298.34 4590.59 8199.88 594.83 9199.54 2799.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test1297.65 4798.46 8194.26 4197.66 13695.52 11390.89 7599.46 10599.25 7199.22 76
casdiffmvs95.64 7895.49 7496.08 11796.76 18090.45 16597.29 13097.44 17194.00 5795.46 11497.98 7987.52 11898.73 17595.64 6797.33 14199.08 89
test22298.24 10092.21 10595.33 27097.60 14379.22 35095.25 11597.84 9088.80 9999.15 8198.72 124
test250691.60 20890.78 21694.04 21897.66 13783.81 31298.27 3175.53 37793.43 8095.23 11698.21 6267.21 34199.07 14793.01 13498.49 10799.25 74
原ACMM196.38 10298.59 7691.09 14697.89 10987.41 26795.22 11797.68 10090.25 8399.54 9087.95 22399.12 8698.49 140
CPTT-MVS95.57 8195.19 8496.70 8099.27 2891.48 12898.33 2698.11 6387.79 25695.17 11898.03 7487.09 12599.61 6693.51 11999.42 4999.02 92
DP-MVS Recon95.68 7795.12 8797.37 5799.19 3394.19 4497.03 15098.08 6888.35 23895.09 11997.65 10489.97 8999.48 10392.08 14898.59 10598.44 148
Vis-MVSNetpermissive95.23 8994.81 9196.51 9197.18 15391.58 12598.26 3398.12 6094.38 5194.90 12098.15 6782.28 20198.92 15991.45 16398.58 10699.01 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet96.39 6096.02 6597.50 5397.62 14093.38 7197.02 15397.96 10495.42 794.86 12197.81 9187.38 12199.82 2996.88 2099.20 7699.29 68
API-MVS94.84 10394.49 10295.90 12997.90 12492.00 11497.80 7497.48 15689.19 21094.81 12296.71 15288.84 9899.17 13288.91 21098.76 10096.53 215
OMC-MVS95.09 9394.70 9596.25 11398.46 8191.28 13496.43 20897.57 14792.04 13094.77 12397.96 8087.01 12699.09 14291.31 16596.77 15298.36 155
ECVR-MVScopyleft93.19 15192.73 14994.57 19797.66 13785.41 28998.21 4188.23 36693.43 8094.70 12498.21 6272.57 31199.07 14793.05 13198.49 10799.25 74
WTY-MVS94.71 10794.02 10996.79 7997.71 13492.05 11196.59 20197.35 18390.61 17694.64 12596.93 14186.41 13399.39 11491.20 16894.71 19298.94 104
test111193.19 15192.82 14394.30 20997.58 14584.56 30498.21 4189.02 36593.53 7694.58 12698.21 6272.69 31099.05 15093.06 13098.48 10999.28 71
ACMMPcopyleft96.27 6495.93 6697.28 6299.24 3092.62 9298.25 3498.81 392.99 9694.56 12798.39 3988.96 9699.85 1894.57 10097.63 13099.36 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Effi-MVS+94.93 9994.45 10496.36 10496.61 18291.47 12996.41 21097.41 17691.02 16394.50 12895.92 19887.53 11798.78 17093.89 11296.81 15198.84 117
sss94.51 10993.80 11396.64 8197.07 15991.97 11596.32 22298.06 7788.94 21894.50 12896.78 14984.60 15599.27 12491.90 14996.02 16598.68 128
PVSNet_BlendedMVS94.06 12193.92 11094.47 19998.27 9689.46 19796.73 18298.36 1790.17 18594.36 13095.24 23488.02 10799.58 7593.44 12190.72 24794.36 317
PVSNet_Blended94.87 10294.56 9895.81 13298.27 9689.46 19795.47 26598.36 1788.84 22294.36 13096.09 19388.02 10799.58 7593.44 12198.18 11798.40 151
PMMVS92.86 16792.34 16394.42 20394.92 27186.73 26794.53 28996.38 25784.78 30994.27 13295.12 23983.13 17998.40 20491.47 16296.49 16198.12 163
EPP-MVSNet95.22 9095.04 8895.76 13397.49 14789.56 19098.67 997.00 21490.69 16994.24 13397.62 10989.79 9198.81 16893.39 12496.49 16198.92 106
PVSNet_Blended_VisFu95.27 8794.91 9096.38 10298.20 10590.86 15397.27 13198.25 3690.21 18494.18 13497.27 12687.48 11999.73 3693.53 11897.77 12898.55 132
thisisatest053093.03 15892.21 16795.49 15497.07 15989.11 21397.49 11192.19 35290.16 18694.09 13596.41 17676.43 28999.05 15090.38 17795.68 17598.31 157
XVG-OURS-SEG-HR93.86 12993.55 12094.81 18397.06 16288.53 22695.28 27397.45 16791.68 13894.08 13697.68 10082.41 19998.90 16293.84 11492.47 21796.98 202
XVG-OURS93.72 13493.35 13194.80 18697.07 15988.61 22294.79 28397.46 16191.97 13393.99 13797.86 8681.74 21298.88 16492.64 13792.67 21596.92 206
IS-MVSNet94.90 10094.52 10196.05 12097.67 13590.56 16198.44 2096.22 26493.21 8793.99 13797.74 9685.55 14598.45 20289.98 18197.86 12499.14 82
CSCG96.05 6995.91 6796.46 9699.24 3090.47 16498.30 2898.57 1289.01 21493.97 13997.57 11392.62 3399.76 3494.66 9799.27 6799.15 81
EIA-MVS95.53 8295.47 7595.71 14097.06 16289.63 18697.82 7297.87 11493.57 7193.92 14095.04 24090.61 8098.95 15794.62 9898.68 10298.54 133
tttt051792.96 16192.33 16494.87 18097.11 15787.16 25997.97 6092.09 35390.63 17493.88 14197.01 14076.50 28699.06 14990.29 18095.45 17798.38 153
HyFIR lowres test93.66 13592.92 14195.87 13098.24 10089.88 18294.58 28798.49 1385.06 30493.78 14295.78 20982.86 18798.67 18391.77 15395.71 17499.07 91
CHOSEN 1792x268894.15 11593.51 12496.06 11998.27 9689.38 20095.18 27998.48 1585.60 29593.76 14397.11 13583.15 17899.61 6691.33 16498.72 10199.19 77
Anonymous20240521192.07 19690.83 21595.76 13398.19 10788.75 21997.58 10095.00 31286.00 29093.64 14497.45 11966.24 34899.53 9390.68 17592.71 21399.01 96
CDS-MVSNet94.14 11893.54 12195.93 12796.18 20891.46 13096.33 22197.04 21088.97 21793.56 14596.51 17087.55 11697.89 26889.80 18695.95 16798.44 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MDTV_nov1_ep13_2view70.35 36793.10 33083.88 31993.55 14682.47 19886.25 25898.38 153
Anonymous2024052991.98 19890.73 22095.73 13898.14 11289.40 19997.99 5597.72 12979.63 34893.54 14797.41 12269.94 32999.56 8591.04 16991.11 24098.22 159
CANet_DTU94.37 11093.65 11896.55 8796.46 19592.13 10996.21 23296.67 24394.38 5193.53 14897.03 13979.34 25099.71 4290.76 17298.45 11197.82 179
tpmrst91.44 21991.32 19591.79 29895.15 25979.20 35393.42 32395.37 29488.55 23493.49 14993.67 30482.49 19798.27 21490.41 17689.34 26197.90 172
TAMVS94.01 12493.46 12695.64 14296.16 21090.45 16596.71 18596.89 22589.27 20893.46 15096.92 14487.29 12297.94 26188.70 21495.74 17298.53 134
thisisatest051592.29 18691.30 19795.25 16296.60 18388.90 21794.36 29692.32 35187.92 25093.43 15194.57 26277.28 28299.00 15489.42 19695.86 17097.86 175
DeepC-MVS93.07 396.06 6895.66 7197.29 6197.96 11893.17 7897.30 12998.06 7793.92 5993.38 15298.66 1486.83 12799.73 3695.60 7299.22 7498.96 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres600view792.49 17791.60 18595.18 16497.91 12389.47 19597.65 9294.66 32392.18 12793.33 15394.91 24478.06 27599.10 13981.61 30794.06 20096.98 202
thres100view90092.43 17891.58 18694.98 17497.92 12289.37 20197.71 8694.66 32392.20 12393.31 15494.90 24578.06 27599.08 14481.40 31094.08 19796.48 218
thres20092.23 19091.39 19294.75 19097.61 14189.03 21496.60 20095.09 30992.08 12993.28 15594.00 29178.39 26999.04 15381.26 31494.18 19696.19 223
tfpn200view992.38 18191.52 18994.95 17797.85 12689.29 20597.41 11594.88 31892.19 12593.27 15694.46 26878.17 27199.08 14481.40 31094.08 19796.48 218
thres40092.42 17991.52 18995.12 16897.85 12689.29 20597.41 11594.88 31892.19 12593.27 15694.46 26878.17 27199.08 14481.40 31094.08 19796.98 202
ab-mvs93.57 13992.55 15696.64 8197.28 14991.96 11695.40 26797.45 16789.81 19593.22 15896.28 18279.62 24799.46 10590.74 17393.11 20998.50 138
Vis-MVSNet (Re-imp)94.15 11593.88 11194.95 17797.61 14187.92 24298.10 4895.80 27892.22 12193.02 15997.45 11984.53 15797.91 26788.24 21897.97 12299.02 92
114514_t93.95 12593.06 13796.63 8399.07 4191.61 12297.46 11497.96 10477.99 35493.00 16097.57 11386.14 13999.33 11889.22 20399.15 8198.94 104
UGNet94.04 12393.28 13396.31 10696.85 17291.19 14197.88 6697.68 13494.40 4993.00 16096.18 18573.39 30999.61 6691.72 15498.46 11098.13 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HY-MVS89.66 993.87 12892.95 14096.63 8397.10 15892.49 9695.64 25996.64 24489.05 21393.00 16095.79 20885.77 14399.45 10789.16 20794.35 19497.96 168
PVSNet86.66 1892.24 18991.74 18293.73 23597.77 13183.69 31792.88 33296.72 23587.91 25193.00 16094.86 24778.51 26599.05 15086.53 25397.45 13798.47 143
MAR-MVS94.22 11393.46 12696.51 9198.00 11792.19 10897.67 8997.47 15988.13 24793.00 16095.84 20284.86 15399.51 9887.99 22298.17 11897.83 178
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR95.01 9494.59 9796.26 11198.89 5890.68 15997.24 13397.73 12691.80 13592.93 16596.62 16689.13 9599.14 13689.21 20497.78 12798.97 100
MDTV_nov1_ep1390.76 21895.22 25680.33 34293.03 33195.28 29988.14 24692.84 16693.83 29581.34 21698.08 23782.86 29894.34 195
CostFormer91.18 23790.70 22192.62 27994.84 27781.76 33194.09 30694.43 32884.15 31592.72 16793.77 29979.43 24998.20 22090.70 17492.18 22397.90 172
EPNet95.20 9194.56 9897.14 7192.80 33492.68 8997.85 7094.87 32196.64 192.46 16897.80 9386.23 13499.65 5793.72 11698.62 10499.10 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet90.82 24989.77 26093.95 22594.45 29387.19 25790.23 35295.68 28486.89 27792.40 16992.36 32780.91 22297.05 32181.09 31593.95 20197.60 190
RPMNet88.98 28287.05 29794.77 18894.45 29387.19 25790.23 35298.03 8877.87 35692.40 16987.55 35880.17 23699.51 9868.84 36193.95 20197.60 190
EPMVS90.70 25589.81 25893.37 25494.73 28284.21 30793.67 31888.02 36789.50 20192.38 17193.49 30877.82 27997.78 27886.03 26592.68 21498.11 166
baseline192.82 17091.90 17695.55 14997.20 15290.77 15797.19 14194.58 32692.20 12392.36 17296.34 18084.16 16398.21 21889.20 20583.90 32597.68 184
PatchT88.87 28687.42 29193.22 26094.08 30485.10 29689.51 35694.64 32581.92 33492.36 17288.15 35580.05 23897.01 32572.43 35393.65 20497.54 193
PAPR94.18 11493.42 13096.48 9397.64 13991.42 13295.55 26197.71 13388.99 21592.34 17495.82 20489.19 9399.11 13886.14 26197.38 13898.90 109
mvs-test193.63 13693.69 11693.46 25096.02 21784.61 30397.24 13396.72 23593.85 6292.30 17595.76 21083.08 18098.89 16391.69 15796.54 15996.87 208
SCA91.84 20191.18 20493.83 23195.59 23084.95 29994.72 28495.58 28890.82 16492.25 17693.69 30175.80 29298.10 23286.20 25995.98 16698.45 145
CVMVSNet91.23 23191.75 18089.67 33195.77 22574.69 36296.44 20694.88 31885.81 29292.18 17797.64 10779.07 25395.58 34888.06 22195.86 17098.74 122
AUN-MVS91.76 20390.75 21994.81 18397.00 16888.57 22496.65 19296.49 25289.63 19892.15 17896.12 18978.66 26398.50 19790.83 17179.18 34597.36 196
AdaColmapbinary94.34 11193.68 11796.31 10698.59 7691.68 12196.59 20197.81 12089.87 19092.15 17897.06 13883.62 17199.54 9089.34 19898.07 12097.70 183
GeoE93.89 12793.28 13395.72 13996.96 17089.75 18598.24 3796.92 22289.47 20292.12 18097.21 13084.42 15898.39 20787.71 22996.50 16099.01 96
PatchmatchNetpermissive91.91 19991.35 19393.59 24395.38 24084.11 30993.15 32895.39 29289.54 19992.10 18193.68 30382.82 18998.13 22784.81 28095.32 17998.52 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet93.24 14892.48 16195.51 15195.70 22892.39 9897.86 6798.66 1092.30 11992.09 18295.37 22980.49 22998.40 20493.95 10985.86 29295.75 246
tpm90.25 26589.74 26391.76 30193.92 30779.73 34993.98 30793.54 34188.28 23991.99 18393.25 31377.51 28197.44 30887.30 24487.94 27298.12 163
CNLPA94.28 11293.53 12296.52 8898.38 8892.55 9496.59 20196.88 22690.13 18791.91 18497.24 12885.21 14899.09 14287.64 23697.83 12597.92 171
BH-RMVSNet92.72 17391.97 17494.97 17597.16 15487.99 24196.15 23595.60 28690.62 17591.87 18597.15 13478.41 26898.57 19383.16 29597.60 13198.36 155
PatchMatch-RL92.90 16592.02 17295.56 14798.19 10790.80 15595.27 27597.18 19387.96 24991.86 18695.68 21680.44 23098.99 15584.01 28997.54 13296.89 207
OPM-MVS93.28 14792.76 14594.82 18194.63 28790.77 15796.65 19297.18 19393.72 6791.68 18797.26 12779.33 25198.63 18692.13 14592.28 21995.07 281
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm289.96 27189.21 27292.23 28794.91 27481.25 33493.78 31494.42 32980.62 34491.56 18893.44 31076.44 28897.94 26185.60 27192.08 22797.49 194
TAPA-MVS90.10 792.30 18591.22 20295.56 14798.33 9289.60 18896.79 17897.65 13881.83 33591.52 18997.23 12987.94 10998.91 16171.31 35798.37 11298.17 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS91.48 21890.59 22594.16 21396.40 19887.33 25195.67 25695.34 29887.68 26191.46 19095.52 22576.77 28598.35 20982.85 29993.61 20696.79 211
RPSCF90.75 25290.86 21190.42 32496.84 17376.29 36095.61 26096.34 25883.89 31891.38 19197.87 8476.45 28798.78 17087.16 24892.23 22096.20 222
PLCcopyleft91.00 694.11 11993.43 12896.13 11698.58 7891.15 14596.69 18897.39 17787.29 27091.37 19296.71 15288.39 10599.52 9787.33 24397.13 14897.73 181
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 280x42093.12 15492.72 15094.34 20696.71 18187.27 25390.29 35197.72 12986.61 28291.34 19395.29 23184.29 16298.41 20393.25 12698.94 9597.35 197
HQP_MVS93.78 13293.43 12894.82 18196.21 20589.99 17797.74 7997.51 15394.85 3091.34 19396.64 15981.32 21798.60 18993.02 13292.23 22095.86 235
plane_prior390.00 17594.46 4791.34 193
Fast-Effi-MVS+93.46 14192.75 14795.59 14696.77 17890.03 17496.81 17797.13 19888.19 24191.30 19694.27 27986.21 13698.63 18687.66 23596.46 16398.12 163
EI-MVSNet93.03 15892.88 14293.48 24895.77 22586.98 26296.44 20697.12 19990.66 17291.30 19697.64 10786.56 12998.05 24389.91 18390.55 24995.41 260
MVSTER93.20 15092.81 14494.37 20496.56 18889.59 18997.06 14997.12 19991.24 15591.30 19695.96 19682.02 20698.05 24393.48 12090.55 24995.47 256
RRT_MVS93.21 14992.32 16595.91 12894.92 27194.15 4796.92 16696.86 22991.42 14691.28 19996.43 17479.66 24698.10 23293.29 12590.06 25495.46 257
ADS-MVSNet289.45 27888.59 28092.03 29095.86 22082.26 32890.93 34794.32 33383.23 32791.28 19991.81 33479.01 25895.99 33979.52 32291.39 23697.84 176
ADS-MVSNet89.89 27388.68 27993.53 24695.86 22084.89 30090.93 34795.07 31083.23 32791.28 19991.81 33479.01 25897.85 27079.52 32291.39 23697.84 176
nrg03094.05 12293.31 13296.27 11095.22 25694.59 3298.34 2597.46 16192.93 10391.21 20296.64 15987.23 12498.22 21794.99 8785.80 29395.98 233
Effi-MVS+-dtu93.08 15593.21 13592.68 27896.02 21783.25 32097.14 14796.72 23593.85 6291.20 20393.44 31083.08 18098.30 21391.69 15795.73 17396.50 217
VPNet92.23 19091.31 19694.99 17295.56 23290.96 14997.22 13997.86 11792.96 10290.96 20496.62 16675.06 29798.20 22091.90 14983.65 32795.80 241
JIA-IIPM88.26 29487.04 29891.91 29293.52 31981.42 33389.38 35794.38 33080.84 34290.93 20580.74 36379.22 25297.92 26482.76 30091.62 23196.38 220
test-LLR91.42 22091.19 20392.12 28894.59 28880.66 33794.29 30092.98 34691.11 16090.76 20692.37 32479.02 25698.07 24088.81 21196.74 15397.63 185
test-mter90.19 26889.54 26792.12 28894.59 28880.66 33794.29 30092.98 34687.68 26190.76 20692.37 32467.67 33798.07 24088.81 21196.74 15397.63 185
ACMM89.79 892.96 16192.50 16094.35 20596.30 20388.71 22097.58 10097.36 18291.40 14990.53 20896.65 15879.77 24398.75 17491.24 16791.64 23095.59 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
F-COLMAP93.58 13892.98 13995.37 16098.40 8588.98 21597.18 14297.29 18887.75 25990.49 20997.10 13685.21 14899.50 10186.70 25296.72 15597.63 185
DWT-MVSNet_test90.76 25089.89 25493.38 25395.04 26583.70 31695.85 25094.30 33488.19 24190.46 21092.80 31773.61 30798.50 19788.16 21990.58 24897.95 170
TESTMET0.1,190.06 27089.42 26891.97 29194.41 29580.62 33994.29 30091.97 35587.28 27190.44 21192.47 32368.79 33297.67 28688.50 21796.60 15897.61 189
FIs94.09 12093.70 11595.27 16195.70 22892.03 11298.10 4898.68 893.36 8490.39 21296.70 15487.63 11597.94 26192.25 14190.50 25195.84 238
GA-MVS91.38 22290.31 23594.59 19294.65 28587.62 24994.34 29796.19 26690.73 16890.35 21393.83 29571.84 31497.96 25887.22 24593.61 20698.21 160
LS3D93.57 13992.61 15496.47 9497.59 14391.61 12297.67 8997.72 12985.17 30290.29 21498.34 4584.60 15599.73 3683.85 29398.27 11498.06 167
FC-MVSNet-test93.94 12693.57 11995.04 16995.48 23691.45 13198.12 4798.71 693.37 8290.23 21596.70 15487.66 11397.85 27091.49 16190.39 25295.83 239
bset_n11_16_dypcd91.55 21390.59 22594.44 20091.51 34790.25 17192.70 33593.42 34392.27 12090.22 21694.74 25478.42 26797.80 27594.19 10487.86 27495.29 276
HQP-NCC95.86 22096.65 19293.55 7290.14 217
ACMP_Plane95.86 22096.65 19293.55 7290.14 217
HQP4-MVS90.14 21798.50 19795.78 242
HQP-MVS93.19 15192.74 14894.54 19895.86 22089.33 20396.65 19297.39 17793.55 7290.14 21795.87 20080.95 22098.50 19792.13 14592.10 22595.78 242
UniMVSNet_NR-MVSNet93.37 14492.67 15195.47 15795.34 24592.83 8597.17 14398.58 1192.98 10190.13 22195.80 20588.37 10697.85 27091.71 15583.93 32295.73 248
DU-MVS92.90 16592.04 17095.49 15494.95 26992.83 8597.16 14498.24 3893.02 9590.13 22195.71 21383.47 17297.85 27091.71 15583.93 32295.78 242
LPG-MVS_test92.94 16392.56 15594.10 21496.16 21088.26 23297.65 9297.46 16191.29 15190.12 22397.16 13279.05 25498.73 17592.25 14191.89 22895.31 269
LGP-MVS_train94.10 21496.16 21088.26 23297.46 16191.29 15190.12 22397.16 13279.05 25498.73 17592.25 14191.89 22895.31 269
UniMVSNet (Re)93.31 14692.55 15695.61 14595.39 23993.34 7497.39 11998.71 693.14 9290.10 22594.83 24987.71 11298.03 24791.67 15983.99 32195.46 257
mvs_anonymous93.82 13093.74 11494.06 21696.44 19685.41 28995.81 25297.05 20889.85 19390.09 22696.36 17987.44 12097.75 28193.97 10896.69 15699.02 92
test_djsdf93.07 15692.76 14594.00 22093.49 32188.70 22198.22 3997.57 14791.42 14690.08 22795.55 22382.85 18897.92 26494.07 10691.58 23295.40 263
dp88.90 28588.26 28590.81 31794.58 29076.62 35992.85 33394.93 31685.12 30390.07 22893.07 31475.81 29198.12 23080.53 31787.42 27997.71 182
PS-MVSNAJss93.74 13393.51 12494.44 20093.91 30889.28 20797.75 7897.56 15092.50 11589.94 22996.54 16988.65 10198.18 22393.83 11590.90 24595.86 235
UniMVSNet_ETH3D91.34 22790.22 24394.68 19194.86 27687.86 24597.23 13897.46 16187.99 24889.90 23096.92 14466.35 34698.23 21690.30 17990.99 24397.96 168
CLD-MVS92.98 16092.53 15894.32 20796.12 21489.20 20995.28 27397.47 15992.66 11189.90 23095.62 21880.58 22798.40 20492.73 13692.40 21895.38 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
gg-mvs-nofinetune87.82 29785.61 30694.44 20094.46 29289.27 20891.21 34684.61 37280.88 34189.89 23274.98 36571.50 31697.53 30085.75 27097.21 14596.51 216
1112_ss93.37 14492.42 16296.21 11497.05 16490.99 14796.31 22396.72 23586.87 27889.83 23396.69 15686.51 13199.14 13688.12 22093.67 20398.50 138
BH-untuned92.94 16392.62 15393.92 22997.22 15086.16 28096.40 21396.25 26390.06 18889.79 23496.17 18783.19 17698.35 20987.19 24697.27 14397.24 199
V4291.58 21190.87 21093.73 23594.05 30588.50 22797.32 12696.97 21588.80 22789.71 23594.33 27482.54 19598.05 24389.01 20885.07 30594.64 311
Baseline_NR-MVSNet91.20 23390.62 22392.95 26993.83 31188.03 24097.01 15795.12 30888.42 23689.70 23695.13 23883.47 17297.44 30889.66 19183.24 33093.37 335
v14419291.06 23990.28 23793.39 25293.66 31687.23 25696.83 17497.07 20587.43 26689.69 23794.28 27881.48 21598.00 25087.18 24784.92 30994.93 289
v114491.37 22490.60 22493.68 24093.89 30988.23 23496.84 17397.03 21288.37 23789.69 23794.39 27082.04 20597.98 25187.80 22685.37 29894.84 295
Test_1112_low_res92.84 16991.84 17895.85 13197.04 16589.97 18095.53 26396.64 24485.38 29889.65 23995.18 23585.86 14199.10 13987.70 23093.58 20898.49 140
v119291.07 23890.23 24193.58 24493.70 31487.82 24696.73 18297.07 20587.77 25789.58 24094.32 27680.90 22497.97 25486.52 25485.48 29694.95 285
v124090.70 25589.85 25693.23 25993.51 32086.80 26596.61 19897.02 21387.16 27389.58 24094.31 27779.55 24897.98 25185.52 27285.44 29794.90 292
TranMVSNet+NR-MVSNet92.50 17591.63 18495.14 16694.76 28092.07 11097.53 10598.11 6392.90 10489.56 24296.12 18983.16 17797.60 29489.30 19983.20 33195.75 246
v2v48291.59 20990.85 21393.80 23393.87 31088.17 23796.94 16596.88 22689.54 19989.53 24394.90 24581.70 21398.02 24889.25 20285.04 30795.20 278
v192192090.85 24890.03 25193.29 25793.55 31786.96 26496.74 18197.04 21087.36 26889.52 24494.34 27380.23 23597.97 25486.27 25785.21 30294.94 287
IterMVS-LS92.29 18691.94 17593.34 25596.25 20486.97 26396.57 20497.05 20890.67 17089.50 24594.80 25186.59 12897.64 28989.91 18386.11 29195.40 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cascas91.20 23390.08 24794.58 19694.97 26789.16 21293.65 31997.59 14579.90 34789.40 24692.92 31675.36 29698.36 20892.14 14494.75 19096.23 221
XVG-ACMP-BASELINE90.93 24690.21 24493.09 26494.31 29985.89 28295.33 27097.26 18991.06 16289.38 24795.44 22868.61 33398.60 18989.46 19591.05 24194.79 303
GBi-Net91.35 22590.27 23894.59 19296.51 19191.18 14297.50 10796.93 21888.82 22489.35 24894.51 26373.87 30397.29 31786.12 26288.82 26495.31 269
test191.35 22590.27 23894.59 19296.51 19191.18 14297.50 10796.93 21888.82 22489.35 24894.51 26373.87 30397.29 31786.12 26288.82 26495.31 269
FMVSNet391.78 20290.69 22295.03 17096.53 19092.27 10497.02 15396.93 21889.79 19689.35 24894.65 25977.01 28397.47 30586.12 26288.82 26495.35 267
WR-MVS92.34 18291.53 18894.77 18895.13 26190.83 15496.40 21397.98 10291.88 13489.29 25195.54 22482.50 19697.80 27589.79 18785.27 30195.69 249
DP-MVS92.76 17291.51 19196.52 8898.77 6190.99 14797.38 12196.08 26982.38 33189.29 25197.87 8483.77 16799.69 4881.37 31396.69 15698.89 112
BH-w/o92.14 19591.75 18093.31 25696.99 16985.73 28495.67 25695.69 28288.73 22989.26 25394.82 25082.97 18598.07 24085.26 27696.32 16496.13 228
3Dnovator91.36 595.19 9294.44 10597.44 5596.56 18893.36 7398.65 1098.36 1794.12 5589.25 25498.06 7282.20 20399.77 3393.41 12399.32 5999.18 78
miper_enhance_ethall91.54 21591.01 20793.15 26295.35 24487.07 26193.97 30896.90 22386.79 27989.17 25593.43 31286.55 13097.64 28989.97 18286.93 28294.74 307
Fast-Effi-MVS+-dtu92.29 18691.99 17393.21 26195.27 25285.52 28797.03 15096.63 24792.09 12889.11 25695.14 23780.33 23398.08 23787.54 23994.74 19196.03 232
RRT_test8_iter0591.19 23690.78 21692.41 28395.76 22783.14 32197.32 12697.46 16191.37 15089.07 25795.57 22070.33 32498.21 21893.56 11786.62 28795.89 234
XXY-MVS92.16 19391.23 20194.95 17794.75 28190.94 15097.47 11297.43 17489.14 21188.90 25896.43 17479.71 24498.24 21589.56 19387.68 27595.67 251
PCF-MVS89.48 1191.56 21289.95 25296.36 10496.60 18392.52 9592.51 33897.26 18979.41 34988.90 25896.56 16884.04 16599.55 8877.01 33997.30 14297.01 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_ehance_all_eth91.59 20991.13 20592.97 26895.55 23386.57 27294.47 29096.88 22687.77 25788.88 26094.01 29086.22 13597.54 29889.49 19486.93 28294.79 303
jajsoiax92.42 17991.89 17794.03 21993.33 32688.50 22797.73 8197.53 15192.00 13288.85 26196.50 17175.62 29598.11 23193.88 11391.56 23395.48 254
eth_miper_zixun_eth91.02 24190.59 22592.34 28595.33 24884.35 30594.10 30596.90 22388.56 23388.84 26294.33 27484.08 16497.60 29488.77 21384.37 31795.06 282
c3_l91.38 22290.89 20992.88 27195.58 23186.30 27594.68 28596.84 23188.17 24388.83 26394.23 28285.65 14497.47 30589.36 19784.63 31194.89 293
test_part192.21 19291.10 20695.51 15197.80 12992.66 9098.02 5497.68 13489.79 19688.80 26496.02 19476.85 28498.18 22390.86 17084.11 32095.69 249
mvs_tets92.31 18491.76 17993.94 22793.41 32388.29 23097.63 9797.53 15192.04 13088.76 26596.45 17374.62 29998.09 23693.91 11191.48 23495.45 259
v14890.99 24290.38 23292.81 27493.83 31185.80 28396.78 18096.68 24189.45 20388.75 26693.93 29482.96 18697.82 27487.83 22583.25 32994.80 301
FMVSNet291.31 22890.08 24794.99 17296.51 19192.21 10597.41 11596.95 21688.82 22488.62 26794.75 25373.87 30397.42 31085.20 27788.55 26995.35 267
PAPM91.52 21690.30 23695.20 16395.30 25189.83 18393.38 32496.85 23086.26 28688.59 26895.80 20584.88 15298.15 22675.67 34395.93 16897.63 185
cl2291.21 23290.56 22893.14 26396.09 21686.80 26594.41 29496.58 25087.80 25588.58 26993.99 29280.85 22597.62 29289.87 18586.93 28294.99 284
3Dnovator+91.43 495.40 8394.48 10398.16 1596.90 17195.34 1698.48 1997.87 11494.65 4488.53 27098.02 7583.69 16899.71 4293.18 12798.96 9499.44 53
anonymousdsp92.16 19391.55 18793.97 22392.58 33889.55 19197.51 10697.42 17589.42 20488.40 27194.84 24880.66 22697.88 26991.87 15191.28 23894.48 313
WR-MVS_H92.00 19791.35 19393.95 22595.09 26389.47 19598.04 5398.68 891.46 14488.34 27294.68 25785.86 14197.56 29685.77 26984.24 31894.82 298
v891.29 23090.53 22993.57 24594.15 30188.12 23997.34 12397.06 20788.99 21588.32 27394.26 28183.08 18098.01 24987.62 23783.92 32494.57 312
ACMP89.59 1092.62 17492.14 16894.05 21796.40 19888.20 23597.36 12297.25 19191.52 14188.30 27496.64 15978.46 26698.72 17891.86 15291.48 23495.23 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1091.04 24090.23 24193.49 24794.12 30288.16 23897.32 12697.08 20488.26 24088.29 27594.22 28482.17 20497.97 25486.45 25684.12 31994.33 318
QAPM93.45 14292.27 16696.98 7796.77 17892.62 9298.39 2498.12 6084.50 31288.27 27697.77 9482.39 20099.81 3085.40 27498.81 9898.51 137
Anonymous2023121190.63 25789.42 26894.27 21098.24 10089.19 21198.05 5297.89 10979.95 34688.25 27794.96 24172.56 31298.13 22789.70 18985.14 30395.49 253
CP-MVSNet91.89 20091.24 20093.82 23295.05 26488.57 22497.82 7298.19 4891.70 13788.21 27895.76 21081.96 20797.52 30287.86 22484.65 31095.37 266
DIV-MVS_self_test90.97 24490.33 23392.88 27195.36 24386.19 27994.46 29296.63 24787.82 25388.18 27994.23 28282.99 18397.53 30087.72 22785.57 29594.93 289
cl____90.96 24590.32 23492.89 27095.37 24286.21 27894.46 29296.64 24487.82 25388.15 28094.18 28582.98 18497.54 29887.70 23085.59 29494.92 291
tpmvs89.83 27689.15 27491.89 29394.92 27180.30 34393.11 32995.46 29186.28 28588.08 28192.65 31980.44 23098.52 19681.47 30989.92 25696.84 209
PS-CasMVS91.55 21390.84 21493.69 23994.96 26888.28 23197.84 7198.24 3891.46 14488.04 28295.80 20579.67 24597.48 30487.02 24984.54 31595.31 269
MVS_030488.79 28787.57 28992.46 28094.65 28586.15 28196.40 21397.17 19586.44 28388.02 28391.71 33656.68 36397.03 32284.47 28592.58 21694.19 323
MIMVSNet88.50 29186.76 29993.72 23794.84 27787.77 24791.39 34294.05 33686.41 28487.99 28492.59 32163.27 35595.82 34477.44 33392.84 21297.57 192
GG-mvs-BLEND93.62 24193.69 31589.20 20992.39 34083.33 37387.98 28589.84 34871.00 32096.87 32982.08 30695.40 17894.80 301
miper_lstm_enhance90.50 26190.06 25091.83 29595.33 24883.74 31393.86 31296.70 24087.56 26487.79 28693.81 29883.45 17496.92 32887.39 24184.62 31294.82 298
PEN-MVS91.20 23390.44 23093.48 24894.49 29187.91 24497.76 7798.18 5091.29 15187.78 28795.74 21280.35 23297.33 31585.46 27382.96 33295.19 279
ITE_SJBPF92.43 28295.34 24585.37 29295.92 27291.47 14387.75 28896.39 17871.00 32097.96 25882.36 30489.86 25793.97 327
v7n90.76 25089.86 25593.45 25193.54 31887.60 25097.70 8797.37 18088.85 22187.65 28994.08 28981.08 21998.10 23284.68 28283.79 32694.66 310
Patchmtry88.64 29087.25 29392.78 27594.09 30386.64 26889.82 35595.68 28480.81 34387.63 29092.36 32780.91 22297.03 32278.86 32885.12 30494.67 309
pmmvs490.93 24689.85 25694.17 21293.34 32590.79 15694.60 28696.02 27084.62 31087.45 29195.15 23681.88 21097.45 30787.70 23087.87 27394.27 322
tpm cat188.36 29287.21 29591.81 29795.13 26180.55 34092.58 33795.70 28174.97 35887.45 29191.96 33278.01 27798.17 22580.39 31888.74 26796.72 213
FMVSNet189.88 27488.31 28394.59 19295.41 23891.18 14297.50 10796.93 21886.62 28187.41 29394.51 26365.94 35097.29 31783.04 29787.43 27895.31 269
IterMVS-SCA-FT90.31 26389.81 25891.82 29695.52 23484.20 30894.30 29996.15 26790.61 17687.39 29494.27 27975.80 29296.44 33487.34 24286.88 28694.82 298
MVS91.71 20490.44 23095.51 15195.20 25891.59 12496.04 23997.45 16773.44 36187.36 29595.60 21985.42 14699.10 13985.97 26697.46 13395.83 239
EU-MVSNet88.72 28988.90 27688.20 33693.15 32974.21 36396.63 19794.22 33585.18 30187.32 29695.97 19576.16 29094.98 35285.27 27586.17 28995.41 260
IterMVS90.15 26989.67 26491.61 30395.48 23683.72 31494.33 29896.12 26889.99 18987.31 29794.15 28775.78 29496.27 33786.97 25086.89 28594.83 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs589.86 27588.87 27792.82 27392.86 33286.23 27796.26 22795.39 29284.24 31487.12 29894.51 26374.27 30197.36 31487.61 23887.57 27694.86 294
DTE-MVSNet90.56 25889.75 26293.01 26693.95 30687.25 25497.64 9697.65 13890.74 16787.12 29895.68 21679.97 24097.00 32683.33 29481.66 33794.78 305
Patchmatch-test89.42 27987.99 28693.70 23895.27 25285.11 29588.98 35894.37 33181.11 33987.10 30093.69 30182.28 20197.50 30374.37 34794.76 18998.48 142
IB-MVS87.33 1789.91 27288.28 28494.79 18795.26 25587.70 24895.12 28193.95 33989.35 20687.03 30192.49 32270.74 32299.19 12989.18 20681.37 33897.49 194
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet_dtu91.71 20491.28 19892.99 26793.76 31383.71 31596.69 18895.28 29993.15 9187.02 30295.95 19783.37 17597.38 31379.46 32596.84 15097.88 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline291.63 20790.86 21193.94 22794.33 29786.32 27495.92 24791.64 35789.37 20586.94 30394.69 25681.62 21498.69 18188.64 21594.57 19396.81 210
MSDG91.42 22090.24 24094.96 17697.15 15688.91 21693.69 31796.32 25985.72 29486.93 30496.47 17280.24 23498.98 15680.57 31695.05 18596.98 202
test0.0.03 189.37 28088.70 27891.41 30892.47 34085.63 28595.22 27892.70 34991.11 16086.91 30593.65 30579.02 25693.19 36378.00 33289.18 26295.41 260
COLMAP_ROBcopyleft87.81 1590.40 26289.28 27193.79 23497.95 11987.13 26096.92 16695.89 27582.83 32986.88 30697.18 13173.77 30699.29 12378.44 33093.62 20594.95 285
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
D2MVS91.30 22990.95 20892.35 28494.71 28385.52 28796.18 23498.21 4488.89 22086.60 30793.82 29779.92 24197.95 26089.29 20090.95 24493.56 331
OurMVSNet-221017-090.51 26090.19 24591.44 30793.41 32381.25 33496.98 16096.28 26091.68 13886.55 30896.30 18174.20 30297.98 25188.96 20987.40 28095.09 280
MS-PatchMatch90.27 26489.77 26091.78 29994.33 29784.72 30295.55 26196.73 23486.17 28886.36 30995.28 23371.28 31897.80 27584.09 28898.14 11992.81 340
131492.81 17192.03 17195.14 16695.33 24889.52 19496.04 23997.44 17187.72 26086.25 31095.33 23083.84 16698.79 16989.26 20197.05 14997.11 200
tfpnnormal89.70 27788.40 28293.60 24295.15 25990.10 17397.56 10298.16 5487.28 27186.16 31194.63 26077.57 28098.05 24374.48 34584.59 31392.65 343
pm-mvs190.72 25489.65 26693.96 22494.29 30089.63 18697.79 7596.82 23289.07 21286.12 31295.48 22778.61 26497.78 27886.97 25081.67 33694.46 314
OpenMVScopyleft89.19 1292.86 16791.68 18396.40 9995.34 24592.73 8898.27 3198.12 6084.86 30785.78 31397.75 9578.89 26199.74 3587.50 24098.65 10396.73 212
LTVRE_ROB88.41 1390.99 24289.92 25394.19 21196.18 20889.55 19196.31 22397.09 20387.88 25285.67 31495.91 19978.79 26298.57 19381.50 30889.98 25594.44 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testgi87.97 29587.21 29590.24 32692.86 33280.76 33696.67 19194.97 31491.74 13685.52 31595.83 20362.66 35794.47 35676.25 34088.36 27095.48 254
AllTest90.23 26688.98 27593.98 22197.94 12086.64 26896.51 20595.54 28985.38 29885.49 31696.77 15070.28 32599.15 13480.02 32092.87 21096.15 226
TestCases93.98 22197.94 12086.64 26895.54 28985.38 29885.49 31696.77 15070.28 32599.15 13480.02 32092.87 21096.15 226
DSMNet-mixed86.34 30886.12 30487.00 34189.88 35770.43 36694.93 28290.08 36377.97 35585.42 31892.78 31874.44 30093.96 35874.43 34695.14 18196.62 214
ppachtmachnet_test88.35 29387.29 29291.53 30492.45 34183.57 31893.75 31595.97 27184.28 31385.32 31994.18 28579.00 26096.93 32775.71 34284.99 30894.10 324
CL-MVSNet_self_test86.31 30985.15 31189.80 33088.83 36281.74 33293.93 31196.22 26486.67 28085.03 32090.80 34178.09 27494.50 35474.92 34471.86 35993.15 336
our_test_388.78 28887.98 28791.20 31292.45 34182.53 32493.61 32195.69 28285.77 29384.88 32193.71 30079.99 23996.78 33279.47 32486.24 28894.28 321
MVP-Stereo90.74 25390.08 24792.71 27693.19 32888.20 23595.86 24996.27 26186.07 28984.86 32294.76 25277.84 27897.75 28183.88 29298.01 12192.17 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMH+87.92 1490.20 26789.18 27393.25 25896.48 19486.45 27396.99 15896.68 24188.83 22384.79 32396.22 18470.16 32798.53 19584.42 28788.04 27194.77 306
NR-MVSNet92.34 18291.27 19995.53 15094.95 26993.05 8097.39 11998.07 7492.65 11284.46 32495.71 21385.00 15197.77 28089.71 18883.52 32895.78 242
LF4IMVS87.94 29687.25 29389.98 32892.38 34380.05 34794.38 29595.25 30287.59 26384.34 32594.74 25464.31 35397.66 28884.83 27987.45 27792.23 348
LCM-MVSNet-Re92.50 17592.52 15992.44 28196.82 17681.89 33096.92 16693.71 34092.41 11784.30 32694.60 26185.08 15097.03 32291.51 16097.36 13998.40 151
TransMVSNet (Re)88.94 28387.56 29093.08 26594.35 29688.45 22997.73 8195.23 30387.47 26584.26 32795.29 23179.86 24297.33 31579.44 32674.44 35593.45 334
Anonymous2023120687.09 30286.14 30389.93 32991.22 34980.35 34196.11 23695.35 29583.57 32484.16 32893.02 31573.54 30895.61 34672.16 35486.14 29093.84 329
SixPastTwentyTwo89.15 28188.54 28190.98 31493.49 32180.28 34496.70 18694.70 32290.78 16584.15 32995.57 22071.78 31597.71 28484.63 28385.07 30594.94 287
TDRefinement86.53 30584.76 31591.85 29482.23 37084.25 30696.38 21695.35 29584.97 30684.09 33094.94 24265.76 35198.34 21284.60 28474.52 35492.97 337
KD-MVS_self_test85.95 31384.95 31288.96 33389.55 36079.11 35495.13 28096.42 25585.91 29184.07 33190.48 34270.03 32894.82 35380.04 31972.94 35892.94 338
pmmvs687.81 29886.19 30292.69 27791.32 34886.30 27597.34 12396.41 25680.59 34584.05 33294.37 27267.37 34097.67 28684.75 28179.51 34494.09 326
ACMH87.59 1690.53 25989.42 26893.87 23096.21 20587.92 24297.24 13396.94 21788.45 23583.91 33396.27 18371.92 31398.62 18884.43 28689.43 26095.05 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet587.29 30185.79 30591.78 29994.80 27987.28 25295.49 26495.28 29984.09 31683.85 33491.82 33362.95 35694.17 35778.48 32985.34 30093.91 328
USDC88.94 28387.83 28892.27 28694.66 28484.96 29893.86 31295.90 27487.34 26983.40 33595.56 22267.43 33998.19 22282.64 30389.67 25993.66 330
Anonymous2024052186.42 30785.44 30789.34 33290.33 35379.79 34896.73 18295.92 27283.71 32283.25 33691.36 33963.92 35496.01 33878.39 33185.36 29992.22 349
KD-MVS_2432*160084.81 32082.64 32391.31 30991.07 35085.34 29391.22 34495.75 27985.56 29683.09 33790.21 34467.21 34195.89 34077.18 33762.48 36692.69 341
miper_refine_blended84.81 32082.64 32391.31 30991.07 35085.34 29391.22 34495.75 27985.56 29683.09 33790.21 34467.21 34195.89 34077.18 33762.48 36692.69 341
PVSNet_082.17 1985.46 31783.64 32090.92 31595.27 25279.49 35090.55 35095.60 28683.76 32183.00 33989.95 34671.09 31997.97 25482.75 30160.79 36895.31 269
test_040286.46 30684.79 31491.45 30695.02 26685.55 28696.29 22594.89 31780.90 34082.21 34093.97 29368.21 33697.29 31762.98 36588.68 26891.51 354
Patchmatch-RL test87.38 30086.24 30190.81 31788.74 36378.40 35788.12 36093.17 34587.11 27482.17 34189.29 35081.95 20895.60 34788.64 21577.02 34998.41 150
TinyColmap86.82 30485.35 31091.21 31194.91 27482.99 32293.94 31094.02 33883.58 32381.56 34294.68 25762.34 35898.13 22775.78 34187.35 28192.52 345
test20.0386.14 31185.40 30988.35 33490.12 35480.06 34695.90 24895.20 30488.59 23081.29 34393.62 30671.43 31792.65 36471.26 35881.17 33992.34 347
N_pmnet78.73 32978.71 33178.79 34792.80 33446.50 37894.14 30443.71 38178.61 35280.83 34491.66 33774.94 29896.36 33567.24 36284.45 31693.50 332
MVS-HIRNet82.47 32681.21 32886.26 34395.38 24069.21 36988.96 35989.49 36466.28 36380.79 34574.08 36768.48 33497.39 31271.93 35595.47 17692.18 350
PM-MVS83.48 32381.86 32788.31 33587.83 36677.59 35893.43 32291.75 35686.91 27680.63 34689.91 34744.42 36995.84 34385.17 27876.73 35191.50 355
ambc86.56 34283.60 36870.00 36885.69 36294.97 31480.60 34788.45 35137.42 37196.84 33082.69 30275.44 35392.86 339
MIMVSNet184.93 31983.05 32190.56 32289.56 35984.84 30195.40 26795.35 29583.91 31780.38 34892.21 33157.23 36193.34 36270.69 36082.75 33593.50 332
lessismore_v090.45 32391.96 34679.09 35587.19 37080.32 34994.39 27066.31 34797.55 29784.00 29076.84 35094.70 308
K. test v387.64 29986.75 30090.32 32593.02 33179.48 35196.61 19892.08 35490.66 17280.25 35094.09 28867.21 34196.65 33385.96 26780.83 34094.83 296
OpenMVS_ROBcopyleft81.14 2084.42 32282.28 32590.83 31690.06 35584.05 31195.73 25594.04 33773.89 36080.17 35191.53 33859.15 36097.64 28966.92 36389.05 26390.80 358
EG-PatchMatch MVS87.02 30385.44 30791.76 30192.67 33685.00 29796.08 23896.45 25483.41 32679.52 35293.49 30857.10 36297.72 28379.34 32790.87 24692.56 344
pmmvs-eth3d86.22 31084.45 31691.53 30488.34 36487.25 25494.47 29095.01 31183.47 32579.51 35389.61 34969.75 33095.71 34583.13 29676.73 35191.64 352
pmmvs379.97 32877.50 33287.39 33982.80 36979.38 35292.70 33590.75 36270.69 36278.66 35487.47 35951.34 36793.40 36173.39 35169.65 36289.38 361
UnsupCasMVSNet_eth85.99 31284.45 31690.62 32189.97 35682.40 32793.62 32097.37 18089.86 19178.59 35592.37 32465.25 35295.35 35182.27 30570.75 36094.10 324
new-patchmatchnet83.18 32481.87 32687.11 34086.88 36775.99 36193.70 31695.18 30585.02 30577.30 35688.40 35265.99 34993.88 35974.19 34970.18 36191.47 356
UnsupCasMVSNet_bld82.13 32779.46 33090.14 32788.00 36582.47 32590.89 34996.62 24978.94 35175.61 35784.40 36156.63 36496.31 33677.30 33666.77 36491.63 353
ET-MVSNet_ETH3D91.49 21790.11 24695.63 14396.40 19891.57 12695.34 26993.48 34290.60 17875.58 35895.49 22680.08 23796.79 33194.25 10289.76 25898.52 135
new_pmnet82.89 32581.12 32988.18 33789.63 35880.18 34591.77 34192.57 35076.79 35775.56 35988.23 35461.22 35994.48 35571.43 35682.92 33389.87 360
CMPMVSbinary62.92 2185.62 31684.92 31387.74 33889.14 36173.12 36594.17 30396.80 23373.98 35973.65 36094.93 24366.36 34597.61 29383.95 29191.28 23892.48 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet185.87 31484.23 31890.78 32092.38 34382.46 32693.17 32695.14 30782.12 33367.69 36192.36 32778.16 27395.50 35077.31 33579.73 34294.39 316
MDA-MVSNet_test_wron85.87 31484.23 31890.80 31992.38 34382.57 32393.17 32695.15 30682.15 33267.65 36292.33 33078.20 27095.51 34977.33 33479.74 34194.31 320
DeepMVS_CXcopyleft74.68 35190.84 35264.34 37381.61 37565.34 36467.47 36388.01 35748.60 36880.13 37262.33 36673.68 35779.58 366
LCM-MVSNet72.55 33069.39 33482.03 34570.81 37765.42 37290.12 35494.36 33255.02 36765.88 36481.72 36224.16 37889.96 36574.32 34868.10 36390.71 359
test_method66.11 33564.89 33769.79 35272.62 37535.23 38265.19 37092.83 34820.35 37365.20 36588.08 35643.14 37082.70 37073.12 35263.46 36591.45 357
MDA-MVSNet-bldmvs85.00 31882.95 32291.17 31393.13 33083.33 31994.56 28895.00 31284.57 31165.13 36692.65 31970.45 32395.85 34273.57 35077.49 34894.33 318
PMMVS270.19 33266.92 33580.01 34676.35 37165.67 37186.22 36187.58 36964.83 36562.38 36780.29 36426.78 37688.49 36763.79 36454.07 36985.88 362
FPMVS71.27 33169.85 33375.50 34974.64 37259.03 37491.30 34391.50 35858.80 36657.92 36888.28 35329.98 37485.53 36953.43 36882.84 33481.95 365
Gipumacopyleft67.86 33465.41 33675.18 35092.66 33773.45 36466.50 36994.52 32753.33 36857.80 36966.07 36930.81 37289.20 36648.15 37078.88 34762.90 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt51.94 34153.82 34146.29 35733.73 38145.30 38078.32 36767.24 38018.02 37450.93 37087.05 36052.99 36653.11 37670.76 35925.29 37440.46 372
ANet_high63.94 33659.58 33977.02 34861.24 37966.06 37085.66 36387.93 36878.53 35342.94 37171.04 36825.42 37780.71 37152.60 36930.83 37284.28 363
E-PMN53.28 33852.56 34255.43 35574.43 37347.13 37783.63 36576.30 37642.23 37042.59 37262.22 37128.57 37574.40 37331.53 37331.51 37144.78 370
EMVS52.08 34051.31 34354.39 35672.62 37545.39 37983.84 36475.51 37841.13 37140.77 37359.65 37230.08 37373.60 37428.31 37429.90 37344.18 371
MVEpermissive50.73 2353.25 33948.81 34466.58 35465.34 37857.50 37572.49 36870.94 37940.15 37239.28 37463.51 3706.89 38173.48 37538.29 37242.38 37068.76 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft53.92 2258.58 33755.40 34068.12 35351.00 38048.64 37678.86 36687.10 37146.77 36935.84 37574.28 3668.76 37986.34 36842.07 37173.91 35669.38 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 34224.57 34626.74 35873.98 37439.89 38157.88 3719.80 38212.27 37510.39 3766.97 3787.03 38036.44 37725.43 37517.39 3753.89 375
testmvs13.36 34416.33 3474.48 3605.04 3822.26 38493.18 3253.28 3832.70 3768.24 37721.66 3742.29 3832.19 3787.58 3762.96 3769.00 374
test12313.04 34515.66 3485.18 3594.51 3833.45 38392.50 3391.81 3842.50 3777.58 37820.15 3753.67 3822.18 3797.13 3771.07 3779.90 373
EGC-MVSNET68.77 33363.01 33886.07 34492.49 33982.24 32993.96 30990.96 3610.71 3782.62 37990.89 34053.66 36593.46 36057.25 36784.55 31482.51 364
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k23.24 34330.99 3450.00 3610.00 3840.00 3850.00 37297.63 1410.00 3790.00 38096.88 14684.38 1590.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas7.39 3479.85 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37988.65 1010.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.06 34610.74 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38096.69 1560.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
MSC_two_6792asdad98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
No_MVS98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
eth-test20.00 384
eth-test0.00 384
OPU-MVS98.55 398.82 6096.86 398.25 3498.26 5896.04 299.24 12695.36 7699.59 1799.56 27
save fliter98.91 5394.28 3997.02 15398.02 9295.35 8
test_0728_SECOND98.51 499.45 395.93 598.21 4198.28 2899.86 997.52 599.67 699.75 5
GSMVS98.45 145
sam_mvs182.76 19098.45 145
sam_mvs81.94 209
MTGPAbinary98.08 68
test_post192.81 33416.58 37780.53 22897.68 28586.20 259
test_post17.58 37681.76 21198.08 237
patchmatchnet-post90.45 34382.65 19498.10 232
MTMP97.86 6782.03 374
gm-plane-assit93.22 32778.89 35684.82 30893.52 30798.64 18587.72 227
test9_res94.81 9399.38 5499.45 51
agg_prior293.94 11099.38 5499.50 43
test_prior493.66 6396.42 209
test_prior97.23 6598.67 6692.99 8198.00 9799.41 11199.29 68
新几何295.79 253
旧先验198.38 8893.38 7197.75 12398.09 7092.30 4399.01 9299.16 79
无先验95.79 25397.87 11483.87 32099.65 5787.68 23398.89 112
原ACMM295.67 256
testdata299.67 5385.96 267
segment_acmp92.89 26
testdata195.26 27793.10 94
plane_prior796.21 20589.98 179
plane_prior696.10 21590.00 17581.32 217
plane_prior597.51 15398.60 18993.02 13292.23 22095.86 235
plane_prior496.64 159
plane_prior297.74 7994.85 30
plane_prior196.14 213
plane_prior89.99 17797.24 13394.06 5692.16 224
n20.00 385
nn0.00 385
door-mid91.06 360
test1197.88 112
door91.13 359
HQP5-MVS89.33 203
BP-MVS92.13 145
HQP3-MVS97.39 17792.10 225
HQP2-MVS80.95 220
NP-MVS95.99 21989.81 18495.87 200
ACMMP++_ref90.30 253
ACMMP++91.02 242
Test By Simon88.73 100