SED-MVS | | | 98.05 1 | 97.99 1 | 98.24 8 | 99.42 6 | 95.30 16 | 98.25 30 | 98.27 28 | 95.13 17 | 99.19 1 | 98.89 4 | 95.54 4 | 99.85 15 | 97.52 3 | 99.66 9 | 99.56 24 |
|
test_241102_ONE | | | | | | 99.42 6 | 95.30 16 | | 98.27 28 | 95.09 20 | 99.19 1 | 98.81 8 | 95.54 4 | 99.65 54 | | | |
|
SD-MVS | | | 97.41 9 | 97.53 6 | 97.06 72 | 98.57 73 | 94.46 31 | 97.92 58 | 98.14 53 | 94.82 30 | 99.01 3 | 98.55 19 | 94.18 12 | 97.41 304 | 96.94 12 | 99.64 12 | 99.32 62 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test0726 | | | | | | 99.45 2 | 95.36 11 | 98.31 24 | 98.29 24 | 94.92 24 | 98.99 4 | 98.92 2 | 95.08 6 | | | | |
|
IU-MVS | | | | | | 99.42 6 | 95.39 10 | | 97.94 102 | 90.40 175 | 98.94 5 | | | | 97.41 9 | 99.66 9 | 99.74 6 |
|
test_241102_TWO | | | | | | | | | 98.27 28 | 95.13 17 | 98.93 6 | 98.89 4 | 94.99 9 | 99.85 15 | 97.52 3 | 99.65 11 | 99.74 6 |
|
PC_three_1452 | | | | | | | | | | 90.77 158 | 98.89 7 | 98.28 53 | 96.24 1 | 98.35 202 | 95.76 56 | 99.58 21 | 99.59 18 |
|
SMA-MVS |  | | 97.35 12 | 97.03 14 | 98.30 7 | 99.06 40 | 95.42 9 | 97.94 56 | 98.18 46 | 90.57 171 | 98.85 8 | 98.94 1 | 93.33 18 | 99.83 23 | 96.72 21 | 99.68 4 | 99.63 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DVP-MVS |  | | 97.91 2 | 97.81 2 | 98.22 10 | 99.45 2 | 95.36 11 | 98.21 37 | 97.85 112 | 94.92 24 | 98.73 9 | 98.87 6 | 95.08 6 | 99.84 20 | 97.52 3 | 99.67 6 | 99.48 43 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 94.78 33 | 98.73 9 | 98.87 6 | 95.87 3 | 99.84 20 | 97.45 7 | 99.72 2 | 99.77 1 |
|
DPE-MVS |  | | 97.86 3 | 97.65 4 | 98.47 4 | 99.17 32 | 95.78 6 | 97.21 134 | 98.35 19 | 95.16 16 | 98.71 11 | 98.80 9 | 95.05 8 | 99.89 3 | 96.70 22 | 99.73 1 | 99.73 8 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
TSAR-MVS + MP. | | | 97.42 8 | 97.33 9 | 97.69 43 | 99.25 27 | 94.24 40 | 98.07 45 | 97.85 112 | 93.72 60 | 98.57 12 | 98.35 38 | 93.69 16 | 99.40 110 | 97.06 10 | 99.46 40 | 99.44 49 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MSP-MVS | | | 97.59 7 | 97.54 5 | 97.73 39 | 99.40 11 | 93.77 59 | 98.53 10 | 98.29 24 | 95.55 5 | 98.56 13 | 97.81 83 | 93.90 13 | 99.65 54 | 96.62 23 | 99.21 71 | 99.77 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 97.82 4 | 97.73 3 | 98.08 16 | 99.15 33 | 94.82 26 | 98.81 3 | 98.30 23 | 94.76 34 | 98.30 14 | 98.90 3 | 93.77 15 | 99.68 48 | 97.93 1 | 99.69 3 | 99.75 4 |
|
xxxxxxxxxxxxxcwj | | | 97.36 11 | 97.20 10 | 97.83 27 | 98.91 49 | 94.28 36 | 97.02 147 | 97.22 186 | 95.35 8 | 98.27 15 | 98.65 13 | 93.33 18 | 99.72 36 | 96.49 28 | 99.52 27 | 99.51 36 |
|
SF-MVS | | | 97.39 10 | 97.13 11 | 98.17 12 | 99.02 43 | 95.28 18 | 98.23 34 | 98.27 28 | 92.37 110 | 98.27 15 | 98.65 13 | 93.33 18 | 99.72 36 | 96.49 28 | 99.52 27 | 99.51 36 |
|
SteuartSystems-ACMMP | | | 97.62 6 | 97.53 6 | 97.87 25 | 98.39 81 | 94.25 39 | 98.43 18 | 98.27 28 | 95.34 10 | 98.11 17 | 98.56 17 | 94.53 10 | 99.71 39 | 96.57 26 | 99.62 14 | 99.65 10 |
Skip Steuart: Steuart Systems R&D Blog. |
test_part2 | | | | | | 99.28 25 | 95.74 7 | | | | 98.10 18 | | | | | | |
|
APD-MVS |  | | 96.95 31 | 96.60 40 | 98.01 20 | 99.03 42 | 94.93 25 | 97.72 79 | 98.10 61 | 91.50 134 | 98.01 19 | 98.32 46 | 92.33 36 | 99.58 72 | 94.85 85 | 99.51 31 | 99.53 35 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepPCF-MVS | | 93.97 1 | 96.61 48 | 97.09 12 | 95.15 163 | 98.09 106 | 86.63 267 | 96.00 236 | 98.15 51 | 95.43 6 | 97.95 20 | 98.56 17 | 93.40 17 | 99.36 114 | 96.77 20 | 99.48 37 | 99.45 47 |
|
ACMMP_NAP | | | 97.20 15 | 96.86 22 | 98.23 9 | 99.09 36 | 95.16 21 | 97.60 94 | 98.19 44 | 92.82 98 | 97.93 21 | 98.74 11 | 91.60 54 | 99.86 8 | 96.26 33 | 99.52 27 | 99.67 9 |
|
ETH3D-3000-0.1 | | | 97.07 22 | 96.71 36 | 98.14 14 | 98.90 51 | 95.33 15 | 97.68 83 | 98.24 34 | 91.57 132 | 97.90 22 | 98.37 36 | 92.61 30 | 99.66 53 | 95.59 68 | 99.51 31 | 99.43 51 |
|
9.14 | | | | 96.75 33 | | 98.93 47 | | 97.73 76 | 98.23 38 | 91.28 146 | 97.88 23 | 98.44 28 | 93.00 22 | 99.65 54 | 95.76 56 | 99.47 38 | |
|
CNVR-MVS | | | 97.68 5 | 97.44 8 | 98.37 6 | 98.90 51 | 95.86 5 | 97.27 125 | 98.08 64 | 95.81 3 | 97.87 24 | 98.31 47 | 94.26 11 | 99.68 48 | 97.02 11 | 99.49 36 | 99.57 21 |
|
testtj | | | 96.93 33 | 96.56 43 | 98.05 18 | 99.10 34 | 94.66 28 | 97.78 70 | 98.22 39 | 92.74 101 | 97.59 25 | 98.20 58 | 91.96 45 | 99.86 8 | 94.21 99 | 99.25 67 | 99.63 12 |
|
VNet | | | 95.89 69 | 95.45 73 | 97.21 66 | 98.07 108 | 92.94 80 | 97.50 101 | 98.15 51 | 93.87 54 | 97.52 26 | 97.61 102 | 85.29 143 | 99.53 90 | 95.81 55 | 95.27 173 | 99.16 72 |
|
Regformer-2 | | | 97.16 18 | 96.99 16 | 97.67 44 | 98.32 87 | 93.84 54 | 96.83 167 | 98.10 61 | 95.24 11 | 97.49 27 | 98.25 55 | 92.57 31 | 99.61 63 | 96.80 17 | 99.29 59 | 99.56 24 |
|
Regformer-1 | | | 97.10 20 | 96.96 18 | 97.54 50 | 98.32 87 | 93.48 65 | 96.83 167 | 97.99 97 | 95.20 13 | 97.46 28 | 98.25 55 | 92.48 35 | 99.58 72 | 96.79 19 | 99.29 59 | 99.55 28 |
|
SR-MVS | | | 97.01 28 | 96.86 22 | 97.47 52 | 99.09 36 | 93.27 72 | 97.98 50 | 98.07 70 | 93.75 59 | 97.45 29 | 98.48 25 | 91.43 57 | 99.59 69 | 96.22 36 | 99.27 63 | 99.54 31 |
|
APD-MVS_3200maxsize | | | 96.81 40 | 96.71 36 | 97.12 70 | 99.01 46 | 92.31 98 | 97.98 50 | 98.06 73 | 93.11 84 | 97.44 30 | 98.55 19 | 90.93 69 | 99.55 85 | 96.06 44 | 99.25 67 | 99.51 36 |
|
TSAR-MVS + GP. | | | 96.69 45 | 96.49 46 | 97.27 61 | 98.31 89 | 93.39 67 | 96.79 171 | 96.72 229 | 94.17 48 | 97.44 30 | 97.66 95 | 92.76 24 | 99.33 115 | 96.86 15 | 97.76 122 | 99.08 82 |
|
SR-MVS-dyc-post | | | 96.88 36 | 96.80 29 | 97.11 71 | 99.02 43 | 92.34 95 | 97.98 50 | 98.03 84 | 93.52 69 | 97.43 32 | 98.51 22 | 91.40 58 | 99.56 82 | 96.05 45 | 99.26 65 | 99.43 51 |
|
RE-MVS-def | | | | 96.72 35 | | 99.02 43 | 92.34 95 | 97.98 50 | 98.03 84 | 93.52 69 | 97.43 32 | 98.51 22 | 90.71 74 | | 96.05 45 | 99.26 65 | 99.43 51 |
|
test1172 | | | 96.93 33 | 96.86 22 | 97.15 68 | 99.10 34 | 92.34 95 | 97.96 55 | 98.04 81 | 93.79 58 | 97.35 34 | 98.53 21 | 91.40 58 | 99.56 82 | 96.30 32 | 99.30 58 | 99.55 28 |
|
旧先验2 | | | | | | | | 95.94 239 | | 81.66 328 | 97.34 35 | | | 98.82 160 | 92.26 132 | | |
|
ETH3D cwj APD-0.16 | | | 96.56 50 | 96.06 59 | 98.05 18 | 98.26 93 | 95.19 19 | 96.99 152 | 98.05 80 | 89.85 185 | 97.26 36 | 98.22 57 | 91.80 48 | 99.69 45 | 94.84 86 | 99.28 61 | 99.27 68 |
|
MSLP-MVS++ | | | 96.94 32 | 97.06 13 | 96.59 84 | 98.72 59 | 91.86 113 | 97.67 84 | 98.49 12 | 94.66 37 | 97.24 37 | 98.41 34 | 92.31 38 | 98.94 151 | 96.61 24 | 99.46 40 | 98.96 94 |
|
abl_6 | | | 96.40 55 | 96.21 56 | 96.98 75 | 98.89 54 | 92.20 103 | 97.89 59 | 98.03 84 | 93.34 76 | 97.22 38 | 98.42 31 | 87.93 106 | 99.72 36 | 95.10 78 | 99.07 84 | 99.02 85 |
|
HFP-MVS | | | 97.14 19 | 96.92 20 | 97.83 27 | 99.42 6 | 94.12 46 | 98.52 11 | 98.32 20 | 93.21 78 | 97.18 39 | 98.29 50 | 92.08 40 | 99.83 23 | 95.63 63 | 99.59 16 | 99.54 31 |
|
#test# | | | 97.02 26 | 96.75 33 | 97.83 27 | 99.42 6 | 94.12 46 | 98.15 40 | 98.32 20 | 92.57 106 | 97.18 39 | 98.29 50 | 92.08 40 | 99.83 23 | 95.12 77 | 99.59 16 | 99.54 31 |
|
ACMMPR | | | 97.07 22 | 96.84 25 | 97.79 33 | 99.44 5 | 93.88 53 | 98.52 11 | 98.31 22 | 93.21 78 | 97.15 41 | 98.33 44 | 91.35 60 | 99.86 8 | 95.63 63 | 99.59 16 | 99.62 14 |
|
region2R | | | 97.07 22 | 96.84 25 | 97.77 36 | 99.46 1 | 93.79 56 | 98.52 11 | 98.24 34 | 93.19 81 | 97.14 42 | 98.34 41 | 91.59 55 | 99.87 7 | 95.46 71 | 99.59 16 | 99.64 11 |
|
Regformer-4 | | | 96.97 29 | 96.87 21 | 97.25 62 | 98.34 84 | 92.66 86 | 96.96 155 | 98.01 91 | 95.12 19 | 97.14 42 | 98.42 31 | 91.82 47 | 99.61 63 | 96.90 13 | 99.13 77 | 99.50 39 |
|
PGM-MVS | | | 96.81 40 | 96.53 44 | 97.65 45 | 99.35 21 | 93.53 64 | 97.65 87 | 98.98 1 | 92.22 113 | 97.14 42 | 98.44 28 | 91.17 65 | 99.85 15 | 94.35 97 | 99.46 40 | 99.57 21 |
|
PHI-MVS | | | 96.77 42 | 96.46 49 | 97.71 42 | 98.40 79 | 94.07 49 | 98.21 37 | 98.45 15 | 89.86 183 | 97.11 45 | 98.01 69 | 92.52 33 | 99.69 45 | 96.03 48 | 99.53 26 | 99.36 60 |
|
NCCC | | | 97.30 14 | 97.03 14 | 98.11 15 | 98.77 57 | 95.06 23 | 97.34 117 | 98.04 81 | 95.96 2 | 97.09 46 | 97.88 75 | 93.18 21 | 99.71 39 | 95.84 54 | 99.17 74 | 99.56 24 |
|
Regformer-3 | | | 96.85 38 | 96.80 29 | 97.01 73 | 98.34 84 | 92.02 109 | 96.96 155 | 97.76 116 | 95.01 23 | 97.08 47 | 98.42 31 | 91.71 50 | 99.54 87 | 96.80 17 | 99.13 77 | 99.48 43 |
|
ZD-MVS | | | | | | 99.05 41 | 94.59 29 | | 98.08 64 | 89.22 201 | 97.03 48 | 98.10 61 | 92.52 33 | 99.65 54 | 94.58 95 | 99.31 57 | |
|
testdata | | | | | 95.46 156 | 98.18 103 | 88.90 213 | | 97.66 131 | 82.73 322 | 97.03 48 | 98.07 64 | 90.06 82 | 98.85 158 | 89.67 183 | 98.98 88 | 98.64 121 |
|
HPM-MVS_fast | | | 96.51 51 | 96.27 54 | 97.22 65 | 99.32 23 | 92.74 83 | 98.74 5 | 98.06 73 | 90.57 171 | 96.77 50 | 98.35 38 | 90.21 80 | 99.53 90 | 94.80 90 | 99.63 13 | 99.38 58 |
|
hse-mvs3 | | | 94.15 112 | 93.52 120 | 96.04 119 | 97.81 120 | 90.22 168 | 97.62 93 | 97.58 141 | 95.19 14 | 96.74 51 | 97.45 111 | 83.67 165 | 99.61 63 | 95.85 52 | 79.73 334 | 98.29 149 |
|
hse-mvs2 | | | 93.45 139 | 92.99 135 | 94.81 180 | 97.02 155 | 88.59 219 | 96.69 181 | 96.47 247 | 95.19 14 | 96.74 51 | 96.16 181 | 83.67 165 | 98.48 194 | 95.85 52 | 79.13 338 | 97.35 190 |
|
GST-MVS | | | 96.85 38 | 96.52 45 | 97.82 30 | 99.36 19 | 94.14 45 | 98.29 26 | 98.13 54 | 92.72 102 | 96.70 53 | 98.06 65 | 91.35 60 | 99.86 8 | 94.83 87 | 99.28 61 | 99.47 46 |
|
xiu_mvs_v1_base_debu | | | 95.01 91 | 94.76 89 | 95.75 132 | 96.58 175 | 91.71 114 | 96.25 221 | 97.35 177 | 92.99 88 | 96.70 53 | 96.63 156 | 82.67 187 | 99.44 105 | 96.22 36 | 97.46 126 | 96.11 222 |
|
xiu_mvs_v1_base | | | 95.01 91 | 94.76 89 | 95.75 132 | 96.58 175 | 91.71 114 | 96.25 221 | 97.35 177 | 92.99 88 | 96.70 53 | 96.63 156 | 82.67 187 | 99.44 105 | 96.22 36 | 97.46 126 | 96.11 222 |
|
xiu_mvs_v1_base_debi | | | 95.01 91 | 94.76 89 | 95.75 132 | 96.58 175 | 91.71 114 | 96.25 221 | 97.35 177 | 92.99 88 | 96.70 53 | 96.63 156 | 82.67 187 | 99.44 105 | 96.22 36 | 97.46 126 | 96.11 222 |
|
CDPH-MVS | | | 95.97 67 | 95.38 76 | 97.77 36 | 98.93 47 | 94.44 32 | 96.35 211 | 97.88 106 | 86.98 267 | 96.65 57 | 97.89 73 | 91.99 44 | 99.47 101 | 92.26 132 | 99.46 40 | 99.39 56 |
|
ETH3 D test6400 | | | 96.16 62 | 95.52 70 | 98.07 17 | 98.90 51 | 95.06 23 | 97.03 144 | 98.21 40 | 88.16 237 | 96.64 58 | 97.70 90 | 91.18 64 | 99.67 50 | 92.44 131 | 99.47 38 | 99.48 43 |
|
DROMVSNet | | | 96.42 54 | 96.47 47 | 96.26 109 | 97.01 156 | 91.52 123 | 98.89 1 | 97.75 117 | 94.42 42 | 96.64 58 | 97.68 92 | 89.32 88 | 98.60 180 | 97.45 7 | 99.11 82 | 98.67 120 |
|
UA-Net | | | 95.95 68 | 95.53 69 | 97.20 67 | 97.67 127 | 92.98 79 | 97.65 87 | 98.13 54 | 94.81 31 | 96.61 60 | 98.35 38 | 88.87 93 | 99.51 95 | 90.36 171 | 97.35 133 | 99.11 80 |
|
HPM-MVS++ |  | | 97.34 13 | 96.97 17 | 98.47 4 | 99.08 38 | 96.16 3 | 97.55 98 | 97.97 99 | 95.59 4 | 96.61 60 | 97.89 73 | 92.57 31 | 99.84 20 | 95.95 49 | 99.51 31 | 99.40 55 |
|
XVS | | | 97.18 16 | 96.96 18 | 97.81 31 | 99.38 14 | 94.03 51 | 98.59 8 | 98.20 42 | 94.85 26 | 96.59 62 | 98.29 50 | 91.70 51 | 99.80 28 | 95.66 58 | 99.40 47 | 99.62 14 |
|
X-MVStestdata | | | 91.71 199 | 89.67 258 | 97.81 31 | 99.38 14 | 94.03 51 | 98.59 8 | 98.20 42 | 94.85 26 | 96.59 62 | 32.69 365 | 91.70 51 | 99.80 28 | 95.66 58 | 99.40 47 | 99.62 14 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 33 | 96.64 39 | 97.78 34 | 98.64 68 | 94.30 35 | 97.41 109 | 98.04 81 | 94.81 31 | 96.59 62 | 98.37 36 | 91.24 62 | 99.64 62 | 95.16 75 | 99.52 27 | 99.42 54 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PS-MVSNAJ | | | 95.37 81 | 95.33 78 | 95.49 152 | 97.35 137 | 90.66 156 | 95.31 265 | 97.48 150 | 93.85 55 | 96.51 65 | 95.70 208 | 88.65 97 | 99.65 54 | 94.80 90 | 98.27 107 | 96.17 217 |
|
EI-MVSNet-Vis-set | | | 96.51 51 | 96.47 47 | 96.63 81 | 98.24 94 | 91.20 136 | 96.89 162 | 97.73 120 | 94.74 35 | 96.49 66 | 98.49 24 | 90.88 71 | 99.58 72 | 96.44 30 | 98.32 106 | 99.13 76 |
|
ETV-MVS | | | 96.02 65 | 95.89 64 | 96.40 97 | 97.16 143 | 92.44 93 | 97.47 106 | 97.77 115 | 94.55 39 | 96.48 67 | 94.51 256 | 91.23 63 | 98.92 152 | 95.65 61 | 98.19 109 | 97.82 171 |
|
alignmvs | | | 95.87 71 | 95.23 80 | 97.78 34 | 97.56 135 | 95.19 19 | 97.86 61 | 97.17 189 | 94.39 44 | 96.47 68 | 96.40 170 | 85.89 136 | 99.20 124 | 96.21 40 | 95.11 177 | 98.95 96 |
|
xiu_mvs_v2_base | | | 95.32 83 | 95.29 79 | 95.40 157 | 97.22 139 | 90.50 161 | 95.44 259 | 97.44 165 | 93.70 62 | 96.46 69 | 96.18 178 | 88.59 100 | 99.53 90 | 94.79 92 | 97.81 119 | 96.17 217 |
|
CP-MVS | | | 97.02 26 | 96.81 28 | 97.64 47 | 99.33 22 | 93.54 63 | 98.80 4 | 98.28 26 | 92.99 88 | 96.45 70 | 98.30 49 | 91.90 46 | 99.85 15 | 95.61 65 | 99.68 4 | 99.54 31 |
|
HPM-MVS |  | | 96.69 45 | 96.45 50 | 97.40 54 | 99.36 19 | 93.11 75 | 98.87 2 | 98.06 73 | 91.17 150 | 96.40 71 | 97.99 70 | 90.99 68 | 99.58 72 | 95.61 65 | 99.61 15 | 99.49 41 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
ZNCC-MVS | | | 96.96 30 | 96.67 38 | 97.85 26 | 99.37 16 | 94.12 46 | 98.49 15 | 98.18 46 | 92.64 105 | 96.39 72 | 98.18 59 | 91.61 53 | 99.88 4 | 95.59 68 | 99.55 23 | 99.57 21 |
|
diffmvs | | | 95.25 85 | 95.13 83 | 95.63 140 | 96.43 188 | 89.34 198 | 95.99 237 | 97.35 177 | 92.83 97 | 96.31 73 | 97.37 115 | 86.44 128 | 98.67 174 | 96.26 33 | 97.19 139 | 98.87 105 |
|
LFMVS | | | 93.60 134 | 92.63 147 | 96.52 86 | 98.13 105 | 91.27 131 | 97.94 56 | 93.39 338 | 90.57 171 | 96.29 74 | 98.31 47 | 69.00 325 | 99.16 129 | 94.18 101 | 95.87 162 | 99.12 79 |
|
canonicalmvs | | | 96.02 65 | 95.45 73 | 97.75 38 | 97.59 133 | 95.15 22 | 98.28 27 | 97.60 138 | 94.52 40 | 96.27 75 | 96.12 182 | 87.65 110 | 99.18 127 | 96.20 41 | 94.82 181 | 98.91 100 |
|
MVSFormer | | | 95.37 81 | 95.16 82 | 95.99 122 | 96.34 192 | 91.21 134 | 98.22 35 | 97.57 142 | 91.42 138 | 96.22 76 | 97.32 116 | 86.20 133 | 97.92 257 | 94.07 102 | 99.05 85 | 98.85 106 |
|
lupinMVS | | | 94.99 95 | 94.56 95 | 96.29 107 | 96.34 192 | 91.21 134 | 95.83 244 | 96.27 255 | 88.93 211 | 96.22 76 | 96.88 138 | 86.20 133 | 98.85 158 | 95.27 73 | 99.05 85 | 98.82 109 |
|
EI-MVSNet-UG-set | | | 96.34 57 | 96.30 53 | 96.47 92 | 98.20 99 | 90.93 147 | 96.86 163 | 97.72 124 | 94.67 36 | 96.16 78 | 98.46 26 | 90.43 77 | 99.58 72 | 96.23 35 | 97.96 116 | 98.90 101 |
|
zzz-MVS | | | 97.07 22 | 96.77 32 | 97.97 23 | 99.37 16 | 94.42 33 | 97.15 140 | 98.08 64 | 95.07 21 | 96.11 79 | 98.59 15 | 90.88 71 | 99.90 1 | 96.18 42 | 99.50 34 | 99.58 19 |
|
MTAPA | | | 97.08 21 | 96.78 31 | 97.97 23 | 99.37 16 | 94.42 33 | 97.24 127 | 98.08 64 | 95.07 21 | 96.11 79 | 98.59 15 | 90.88 71 | 99.90 1 | 96.18 42 | 99.50 34 | 99.58 19 |
|
MCST-MVS | | | 97.18 16 | 96.84 25 | 98.20 11 | 99.30 24 | 95.35 13 | 97.12 142 | 98.07 70 | 93.54 68 | 96.08 81 | 97.69 91 | 93.86 14 | 99.71 39 | 96.50 27 | 99.39 49 | 99.55 28 |
|
CS-MVS | | | 95.88 70 | 95.98 61 | 95.58 144 | 96.44 186 | 90.56 158 | 97.78 70 | 97.73 120 | 93.01 87 | 96.07 82 | 96.77 142 | 90.13 81 | 98.57 185 | 96.83 16 | 99.10 83 | 97.60 182 |
|
TEST9 | | | | | | 98.70 60 | 94.19 41 | 96.41 203 | 98.02 88 | 88.17 235 | 96.03 83 | 97.56 107 | 92.74 25 | 99.59 69 | | | |
|
train_agg | | | 96.30 58 | 95.83 66 | 97.72 40 | 98.70 60 | 94.19 41 | 96.41 203 | 98.02 88 | 88.58 223 | 96.03 83 | 97.56 107 | 92.73 26 | 99.59 69 | 95.04 79 | 99.37 54 | 99.39 56 |
|
test_prior3 | | | 96.46 53 | 96.20 57 | 97.23 63 | 98.67 62 | 92.99 77 | 96.35 211 | 98.00 93 | 92.80 99 | 96.03 83 | 97.59 103 | 92.01 42 | 99.41 108 | 95.01 80 | 99.38 50 | 99.29 64 |
|
test_prior2 | | | | | | | | 96.35 211 | | 92.80 99 | 96.03 83 | 97.59 103 | 92.01 42 | | 95.01 80 | 99.38 50 | |
|
jason | | | 94.84 100 | 94.39 103 | 96.18 113 | 95.52 225 | 90.93 147 | 96.09 230 | 96.52 245 | 89.28 199 | 96.01 87 | 97.32 116 | 84.70 150 | 98.77 165 | 95.15 76 | 98.91 92 | 98.85 106 |
jason: jason. |
test_8 | | | | | | 98.67 62 | 94.06 50 | 96.37 210 | 98.01 91 | 88.58 223 | 95.98 88 | 97.55 109 | 92.73 26 | 99.58 72 | | | |
|
mPP-MVS | | | 96.86 37 | 96.60 40 | 97.64 47 | 99.40 11 | 93.44 66 | 98.50 14 | 98.09 63 | 93.27 77 | 95.95 89 | 98.33 44 | 91.04 67 | 99.88 4 | 95.20 74 | 99.57 22 | 99.60 17 |
|
DELS-MVS | | | 96.61 48 | 96.38 52 | 97.30 58 | 97.79 122 | 93.19 73 | 95.96 238 | 98.18 46 | 95.23 12 | 95.87 90 | 97.65 96 | 91.45 56 | 99.70 44 | 95.87 50 | 99.44 44 | 99.00 92 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
VDD-MVS | | | 93.82 127 | 93.08 133 | 96.02 120 | 97.88 117 | 89.96 177 | 97.72 79 | 95.85 270 | 92.43 108 | 95.86 91 | 98.44 28 | 68.42 329 | 99.39 111 | 96.31 31 | 94.85 179 | 98.71 117 |
|
MVS_111021_HR | | | 96.68 47 | 96.58 42 | 96.99 74 | 98.46 75 | 92.31 98 | 96.20 226 | 98.90 2 | 94.30 47 | 95.86 91 | 97.74 88 | 92.33 36 | 99.38 113 | 96.04 47 | 99.42 45 | 99.28 67 |
|
MVS_111021_LR | | | 96.24 60 | 96.19 58 | 96.39 99 | 98.23 98 | 91.35 129 | 96.24 224 | 98.79 4 | 93.99 52 | 95.80 93 | 97.65 96 | 89.92 86 | 99.24 122 | 95.87 50 | 99.20 72 | 98.58 122 |
|
VDDNet | | | 93.05 152 | 92.07 164 | 96.02 120 | 96.84 162 | 90.39 166 | 98.08 44 | 95.85 270 | 86.22 279 | 95.79 94 | 98.46 26 | 67.59 332 | 99.19 125 | 94.92 84 | 94.85 179 | 98.47 134 |
|
新几何1 | | | | | 97.32 57 | 98.60 69 | 93.59 62 | | 97.75 117 | 81.58 329 | 95.75 95 | 97.85 79 | 90.04 83 | 99.67 50 | 86.50 248 | 99.13 77 | 98.69 118 |
|
test_yl | | | 94.78 102 | 94.23 104 | 96.43 95 | 97.74 124 | 91.22 132 | 96.85 164 | 97.10 195 | 91.23 148 | 95.71 96 | 96.93 133 | 84.30 156 | 99.31 117 | 93.10 124 | 95.12 175 | 98.75 111 |
|
DCV-MVSNet | | | 94.78 102 | 94.23 104 | 96.43 95 | 97.74 124 | 91.22 132 | 96.85 164 | 97.10 195 | 91.23 148 | 95.71 96 | 96.93 133 | 84.30 156 | 99.31 117 | 93.10 124 | 95.12 175 | 98.75 111 |
|
agg_prior1 | | | 96.22 61 | 95.77 67 | 97.56 49 | 98.67 62 | 93.79 56 | 96.28 219 | 98.00 93 | 88.76 220 | 95.68 98 | 97.55 109 | 92.70 28 | 99.57 80 | 95.01 80 | 99.32 55 | 99.32 62 |
|
agg_prior | | | | | | 98.67 62 | 93.79 56 | | 98.00 93 | | 95.68 98 | | | 99.57 80 | | | |
|
1121 | | | 94.71 104 | 93.83 109 | 97.34 56 | 98.57 73 | 93.64 61 | 96.04 232 | 97.73 120 | 81.56 330 | 95.68 98 | 97.85 79 | 90.23 79 | 99.65 54 | 87.68 226 | 99.12 80 | 98.73 114 |
|
MG-MVS | | | 95.61 76 | 95.38 76 | 96.31 104 | 98.42 78 | 90.53 160 | 96.04 232 | 97.48 150 | 93.47 72 | 95.67 101 | 98.10 61 | 89.17 90 | 99.25 121 | 91.27 159 | 98.77 94 | 99.13 76 |
|
baseline | | | 95.58 77 | 95.42 75 | 96.08 115 | 96.78 166 | 90.41 165 | 97.16 138 | 97.45 161 | 93.69 63 | 95.65 102 | 97.85 79 | 87.29 118 | 98.68 173 | 95.66 58 | 97.25 137 | 99.13 76 |
|
MVS_Test | | | 94.89 98 | 94.62 93 | 95.68 138 | 96.83 164 | 89.55 187 | 96.70 179 | 97.17 189 | 91.17 150 | 95.60 103 | 96.11 185 | 87.87 107 | 98.76 166 | 93.01 128 | 97.17 140 | 98.72 115 |
|
DPM-MVS | | | 95.69 73 | 94.92 86 | 98.01 20 | 98.08 107 | 95.71 8 | 95.27 268 | 97.62 137 | 90.43 174 | 95.55 104 | 97.07 129 | 91.72 49 | 99.50 98 | 89.62 185 | 98.94 90 | 98.82 109 |
|
MP-MVS-pluss | | | 96.70 44 | 96.27 54 | 97.98 22 | 99.23 30 | 94.71 27 | 96.96 155 | 98.06 73 | 90.67 162 | 95.55 104 | 98.78 10 | 91.07 66 | 99.86 8 | 96.58 25 | 99.55 23 | 99.38 58 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MP-MVS |  | | 96.77 42 | 96.45 50 | 97.72 40 | 99.39 13 | 93.80 55 | 98.41 19 | 98.06 73 | 93.37 73 | 95.54 106 | 98.34 41 | 90.59 76 | 99.88 4 | 94.83 87 | 99.54 25 | 99.49 41 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CS-MVS-test | | | 95.86 72 | 95.88 65 | 95.80 129 | 96.76 169 | 90.59 157 | 98.40 20 | 97.65 133 | 93.52 69 | 95.53 107 | 96.79 140 | 89.98 84 | 98.59 184 | 95.59 68 | 98.69 97 | 98.23 150 |
|
test12 | | | | | 97.65 45 | 98.46 75 | 94.26 38 | | 97.66 131 | | 95.52 108 | | 90.89 70 | 99.46 102 | | 99.25 67 | 99.22 69 |
|
casdiffmvs | | | 95.64 75 | 95.49 71 | 96.08 115 | 96.76 169 | 90.45 163 | 97.29 124 | 97.44 165 | 94.00 51 | 95.46 109 | 97.98 71 | 87.52 114 | 98.73 168 | 95.64 62 | 97.33 134 | 99.08 82 |
|
test222 | | | | | | 98.24 94 | 92.21 101 | 95.33 263 | 97.60 138 | 79.22 342 | 95.25 110 | 97.84 82 | 88.80 95 | | | 99.15 75 | 98.72 115 |
|
原ACMM1 | | | | | 96.38 100 | 98.59 70 | 91.09 142 | | 97.89 104 | 87.41 259 | 95.22 111 | 97.68 92 | 90.25 78 | 99.54 87 | 87.95 216 | 99.12 80 | 98.49 131 |
|
CPTT-MVS | | | 95.57 78 | 95.19 81 | 96.70 78 | 99.27 26 | 91.48 124 | 98.33 23 | 98.11 59 | 87.79 248 | 95.17 112 | 98.03 67 | 87.09 121 | 99.61 63 | 93.51 115 | 99.42 45 | 99.02 85 |
|
DP-MVS Recon | | | 95.68 74 | 95.12 84 | 97.37 55 | 99.19 31 | 94.19 41 | 97.03 144 | 98.08 64 | 88.35 230 | 95.09 113 | 97.65 96 | 89.97 85 | 99.48 100 | 92.08 141 | 98.59 101 | 98.44 139 |
|
Vis-MVSNet |  | | 95.23 86 | 94.81 88 | 96.51 89 | 97.18 142 | 91.58 121 | 98.26 29 | 98.12 56 | 94.38 45 | 94.90 114 | 98.15 60 | 82.28 197 | 98.92 152 | 91.45 156 | 98.58 102 | 99.01 89 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CANet | | | 96.39 56 | 96.02 60 | 97.50 51 | 97.62 130 | 93.38 68 | 97.02 147 | 97.96 100 | 95.42 7 | 94.86 115 | 97.81 83 | 87.38 117 | 99.82 26 | 96.88 14 | 99.20 72 | 99.29 64 |
|
API-MVS | | | 94.84 100 | 94.49 99 | 95.90 125 | 97.90 116 | 92.00 110 | 97.80 68 | 97.48 150 | 89.19 202 | 94.81 116 | 96.71 145 | 88.84 94 | 99.17 128 | 88.91 203 | 98.76 95 | 96.53 208 |
|
OMC-MVS | | | 95.09 90 | 94.70 92 | 96.25 111 | 98.46 75 | 91.28 130 | 96.43 201 | 97.57 142 | 92.04 122 | 94.77 117 | 97.96 72 | 87.01 122 | 99.09 138 | 91.31 158 | 96.77 145 | 98.36 146 |
|
WTY-MVS | | | 94.71 104 | 94.02 106 | 96.79 77 | 97.71 126 | 92.05 107 | 96.59 194 | 97.35 177 | 90.61 168 | 94.64 118 | 96.93 133 | 86.41 129 | 99.39 111 | 91.20 161 | 94.71 185 | 98.94 97 |
|
ACMMP |  | | 96.27 59 | 95.93 62 | 97.28 60 | 99.24 28 | 92.62 88 | 98.25 30 | 98.81 3 | 92.99 88 | 94.56 119 | 98.39 35 | 88.96 92 | 99.85 15 | 94.57 96 | 97.63 123 | 99.36 60 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Effi-MVS+ | | | 94.93 96 | 94.45 101 | 96.36 102 | 96.61 172 | 91.47 125 | 96.41 203 | 97.41 170 | 91.02 155 | 94.50 120 | 95.92 191 | 87.53 113 | 98.78 163 | 93.89 108 | 96.81 144 | 98.84 108 |
|
sss | | | 94.51 106 | 93.80 110 | 96.64 79 | 97.07 148 | 91.97 111 | 96.32 215 | 98.06 73 | 88.94 210 | 94.50 120 | 96.78 141 | 84.60 151 | 99.27 120 | 91.90 142 | 96.02 158 | 98.68 119 |
|
PVSNet_BlendedMVS | | | 94.06 118 | 93.92 107 | 94.47 195 | 98.27 90 | 89.46 193 | 96.73 175 | 98.36 16 | 90.17 177 | 94.36 122 | 95.24 227 | 88.02 103 | 99.58 72 | 93.44 117 | 90.72 240 | 94.36 310 |
|
PVSNet_Blended | | | 94.87 99 | 94.56 95 | 95.81 128 | 98.27 90 | 89.46 193 | 95.47 258 | 98.36 16 | 88.84 214 | 94.36 122 | 96.09 186 | 88.02 103 | 99.58 72 | 93.44 117 | 98.18 110 | 98.40 142 |
|
PMMVS | | | 92.86 162 | 92.34 158 | 94.42 199 | 94.92 262 | 86.73 263 | 94.53 282 | 96.38 251 | 84.78 301 | 94.27 124 | 95.12 232 | 83.13 175 | 98.40 197 | 91.47 155 | 96.49 154 | 98.12 155 |
|
EPP-MVSNet | | | 95.22 87 | 95.04 85 | 95.76 130 | 97.49 136 | 89.56 186 | 98.67 6 | 97.00 208 | 90.69 161 | 94.24 125 | 97.62 101 | 89.79 87 | 98.81 161 | 93.39 120 | 96.49 154 | 98.92 99 |
|
PVSNet_Blended_VisFu | | | 95.27 84 | 94.91 87 | 96.38 100 | 98.20 99 | 90.86 149 | 97.27 125 | 98.25 33 | 90.21 176 | 94.18 126 | 97.27 118 | 87.48 115 | 99.73 33 | 93.53 114 | 97.77 121 | 98.55 123 |
|
thisisatest0530 | | | 93.03 153 | 92.21 162 | 95.49 152 | 97.07 148 | 89.11 209 | 97.49 105 | 92.19 346 | 90.16 178 | 94.09 127 | 96.41 169 | 76.43 285 | 99.05 144 | 90.38 170 | 95.68 168 | 98.31 148 |
|
XVG-OURS-SEG-HR | | | 93.86 126 | 93.55 117 | 94.81 180 | 97.06 151 | 88.53 222 | 95.28 266 | 97.45 161 | 91.68 130 | 94.08 128 | 97.68 92 | 82.41 195 | 98.90 155 | 93.84 110 | 92.47 210 | 96.98 195 |
|
XVG-OURS | | | 93.72 131 | 93.35 128 | 94.80 183 | 97.07 148 | 88.61 218 | 94.79 276 | 97.46 155 | 91.97 125 | 93.99 129 | 97.86 78 | 81.74 208 | 98.88 157 | 92.64 130 | 92.67 208 | 96.92 199 |
|
IS-MVSNet | | | 94.90 97 | 94.52 98 | 96.05 118 | 97.67 127 | 90.56 158 | 98.44 17 | 96.22 258 | 93.21 78 | 93.99 129 | 97.74 88 | 85.55 141 | 98.45 195 | 89.98 174 | 97.86 117 | 99.14 75 |
|
CSCG | | | 96.05 64 | 95.91 63 | 96.46 94 | 99.24 28 | 90.47 162 | 98.30 25 | 98.57 11 | 89.01 206 | 93.97 131 | 97.57 105 | 92.62 29 | 99.76 31 | 94.66 93 | 99.27 63 | 99.15 74 |
|
EIA-MVS | | | 95.53 79 | 95.47 72 | 95.71 137 | 97.06 151 | 89.63 182 | 97.82 66 | 97.87 108 | 93.57 64 | 93.92 132 | 95.04 233 | 90.61 75 | 98.95 150 | 94.62 94 | 98.68 98 | 98.54 124 |
|
tttt0517 | | | 92.96 156 | 92.33 159 | 94.87 177 | 97.11 146 | 87.16 255 | 97.97 54 | 92.09 347 | 90.63 166 | 93.88 133 | 97.01 132 | 76.50 282 | 99.06 143 | 90.29 173 | 95.45 170 | 98.38 144 |
|
HyFIR lowres test | | | 93.66 132 | 92.92 138 | 95.87 126 | 98.24 94 | 89.88 178 | 94.58 280 | 98.49 12 | 85.06 296 | 93.78 134 | 95.78 202 | 82.86 183 | 98.67 174 | 91.77 146 | 95.71 167 | 99.07 84 |
|
CHOSEN 1792x2688 | | | 94.15 112 | 93.51 121 | 96.06 117 | 98.27 90 | 89.38 196 | 95.18 272 | 98.48 14 | 85.60 287 | 93.76 135 | 97.11 127 | 83.15 174 | 99.61 63 | 91.33 157 | 98.72 96 | 99.19 70 |
|
Anonymous202405211 | | | 92.07 191 | 90.83 210 | 95.76 130 | 98.19 101 | 88.75 215 | 97.58 95 | 95.00 306 | 86.00 282 | 93.64 136 | 97.45 111 | 66.24 341 | 99.53 90 | 90.68 168 | 92.71 206 | 99.01 89 |
|
CDS-MVSNet | | | 94.14 115 | 93.54 118 | 95.93 123 | 96.18 199 | 91.46 126 | 96.33 214 | 97.04 204 | 88.97 209 | 93.56 137 | 96.51 163 | 87.55 112 | 97.89 261 | 89.80 179 | 95.95 160 | 98.44 139 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MDTV_nov1_ep13_2view | | | | | | | 70.35 357 | 93.10 322 | | 83.88 311 | 93.55 138 | | 82.47 194 | | 86.25 251 | | 98.38 144 |
|
Anonymous20240529 | | | 91.98 193 | 90.73 214 | 95.73 135 | 98.14 104 | 89.40 195 | 97.99 49 | 97.72 124 | 79.63 340 | 93.54 139 | 97.41 114 | 69.94 323 | 99.56 82 | 91.04 162 | 91.11 233 | 98.22 151 |
|
CANet_DTU | | | 94.37 107 | 93.65 115 | 96.55 85 | 96.46 185 | 92.13 105 | 96.21 225 | 96.67 237 | 94.38 45 | 93.53 140 | 97.03 131 | 79.34 246 | 99.71 39 | 90.76 165 | 98.45 104 | 97.82 171 |
|
tpmrst | | | 91.44 213 | 91.32 190 | 91.79 291 | 95.15 250 | 79.20 343 | 93.42 315 | 95.37 288 | 88.55 226 | 93.49 141 | 93.67 297 | 82.49 193 | 98.27 207 | 90.41 169 | 89.34 254 | 97.90 164 |
|
TAMVS | | | 94.01 121 | 93.46 123 | 95.64 139 | 96.16 201 | 90.45 163 | 96.71 178 | 96.89 219 | 89.27 200 | 93.46 142 | 96.92 136 | 87.29 118 | 97.94 254 | 88.70 207 | 95.74 165 | 98.53 125 |
|
thisisatest0515 | | | 92.29 181 | 91.30 192 | 95.25 160 | 96.60 173 | 88.90 213 | 94.36 289 | 92.32 345 | 87.92 242 | 93.43 143 | 94.57 255 | 77.28 278 | 99.00 147 | 89.42 189 | 95.86 163 | 97.86 167 |
|
DeepC-MVS | | 93.07 3 | 96.06 63 | 95.66 68 | 97.29 59 | 97.96 110 | 93.17 74 | 97.30 123 | 98.06 73 | 93.92 53 | 93.38 144 | 98.66 12 | 86.83 123 | 99.73 33 | 95.60 67 | 99.22 70 | 98.96 94 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
thres600view7 | | | 92.49 172 | 91.60 180 | 95.18 162 | 97.91 115 | 89.47 191 | 97.65 87 | 94.66 317 | 92.18 119 | 93.33 145 | 94.91 237 | 78.06 271 | 99.10 135 | 81.61 300 | 94.06 193 | 96.98 195 |
|
thres100view900 | | | 92.43 173 | 91.58 181 | 94.98 171 | 97.92 114 | 89.37 197 | 97.71 81 | 94.66 317 | 92.20 115 | 93.31 146 | 94.90 238 | 78.06 271 | 99.08 140 | 81.40 303 | 94.08 190 | 96.48 211 |
|
thres200 | | | 92.23 185 | 91.39 187 | 94.75 187 | 97.61 131 | 89.03 210 | 96.60 193 | 95.09 303 | 92.08 121 | 93.28 147 | 94.00 284 | 78.39 265 | 99.04 146 | 81.26 307 | 94.18 189 | 96.19 216 |
|
tfpn200view9 | | | 92.38 176 | 91.52 184 | 94.95 174 | 97.85 118 | 89.29 201 | 97.41 109 | 94.88 312 | 92.19 117 | 93.27 148 | 94.46 261 | 78.17 267 | 99.08 140 | 81.40 303 | 94.08 190 | 96.48 211 |
|
thres400 | | | 92.42 174 | 91.52 184 | 95.12 166 | 97.85 118 | 89.29 201 | 97.41 109 | 94.88 312 | 92.19 117 | 93.27 148 | 94.46 261 | 78.17 267 | 99.08 140 | 81.40 303 | 94.08 190 | 96.98 195 |
|
ab-mvs | | | 93.57 136 | 92.55 151 | 96.64 79 | 97.28 138 | 91.96 112 | 95.40 260 | 97.45 161 | 89.81 187 | 93.22 150 | 96.28 175 | 79.62 243 | 99.46 102 | 90.74 166 | 93.11 202 | 98.50 129 |
|
Vis-MVSNet (Re-imp) | | | 94.15 112 | 93.88 108 | 94.95 174 | 97.61 131 | 87.92 238 | 98.10 42 | 95.80 272 | 92.22 113 | 93.02 151 | 97.45 111 | 84.53 153 | 97.91 260 | 88.24 211 | 97.97 115 | 99.02 85 |
|
114514_t | | | 93.95 122 | 93.06 134 | 96.63 81 | 99.07 39 | 91.61 118 | 97.46 108 | 97.96 100 | 77.99 346 | 93.00 152 | 97.57 105 | 86.14 135 | 99.33 115 | 89.22 196 | 99.15 75 | 98.94 97 |
|
UGNet | | | 94.04 120 | 93.28 130 | 96.31 104 | 96.85 161 | 91.19 137 | 97.88 60 | 97.68 129 | 94.40 43 | 93.00 152 | 96.18 178 | 73.39 305 | 99.61 63 | 91.72 147 | 98.46 103 | 98.13 154 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
HY-MVS | | 89.66 9 | 93.87 125 | 92.95 137 | 96.63 81 | 97.10 147 | 92.49 92 | 95.64 252 | 96.64 238 | 89.05 205 | 93.00 152 | 95.79 201 | 85.77 139 | 99.45 104 | 89.16 200 | 94.35 187 | 97.96 160 |
|
PVSNet | | 86.66 18 | 92.24 184 | 91.74 177 | 93.73 228 | 97.77 123 | 83.69 308 | 92.88 324 | 96.72 229 | 87.91 243 | 93.00 152 | 94.86 240 | 78.51 261 | 99.05 144 | 86.53 246 | 97.45 130 | 98.47 134 |
|
MAR-MVS | | | 94.22 110 | 93.46 123 | 96.51 89 | 98.00 109 | 92.19 104 | 97.67 84 | 97.47 153 | 88.13 239 | 93.00 152 | 95.84 195 | 84.86 149 | 99.51 95 | 87.99 215 | 98.17 111 | 97.83 170 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PAPM_NR | | | 95.01 91 | 94.59 94 | 96.26 109 | 98.89 54 | 90.68 155 | 97.24 127 | 97.73 120 | 91.80 127 | 92.93 157 | 96.62 159 | 89.13 91 | 99.14 132 | 89.21 197 | 97.78 120 | 98.97 93 |
|
MDTV_nov1_ep13 | | | | 90.76 212 | | 95.22 247 | 80.33 332 | 93.03 323 | 95.28 293 | 88.14 238 | 92.84 158 | 93.83 288 | 81.34 212 | 98.08 230 | 82.86 291 | 94.34 188 | |
|
CostFormer | | | 91.18 231 | 90.70 215 | 92.62 272 | 94.84 268 | 81.76 321 | 94.09 299 | 94.43 322 | 84.15 307 | 92.72 159 | 93.77 292 | 79.43 245 | 98.20 213 | 90.70 167 | 92.18 216 | 97.90 164 |
|
EPNet | | | 95.20 88 | 94.56 95 | 97.14 69 | 92.80 325 | 92.68 85 | 97.85 64 | 94.87 315 | 96.64 1 | 92.46 160 | 97.80 85 | 86.23 130 | 99.65 54 | 93.72 112 | 98.62 100 | 99.10 81 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CR-MVSNet | | | 90.82 243 | 89.77 254 | 93.95 218 | 94.45 284 | 87.19 253 | 90.23 344 | 95.68 278 | 86.89 269 | 92.40 161 | 92.36 320 | 80.91 218 | 97.05 314 | 81.09 308 | 93.95 194 | 97.60 182 |
|
RPMNet | | | 88.98 276 | 87.05 291 | 94.77 185 | 94.45 284 | 87.19 253 | 90.23 344 | 98.03 84 | 77.87 348 | 92.40 161 | 87.55 350 | 80.17 232 | 99.51 95 | 68.84 354 | 93.95 194 | 97.60 182 |
|
EPMVS | | | 90.70 249 | 89.81 252 | 93.37 247 | 94.73 273 | 84.21 300 | 93.67 310 | 88.02 358 | 89.50 193 | 92.38 163 | 93.49 301 | 77.82 275 | 97.78 271 | 86.03 258 | 92.68 207 | 98.11 158 |
|
baseline1 | | | 92.82 165 | 91.90 171 | 95.55 147 | 97.20 141 | 90.77 153 | 97.19 135 | 94.58 320 | 92.20 115 | 92.36 164 | 96.34 173 | 84.16 159 | 98.21 211 | 89.20 198 | 83.90 317 | 97.68 176 |
|
PatchT | | | 88.87 280 | 87.42 285 | 93.22 253 | 94.08 295 | 85.10 290 | 89.51 348 | 94.64 319 | 81.92 326 | 92.36 164 | 88.15 347 | 80.05 234 | 97.01 318 | 72.43 346 | 93.65 197 | 97.54 186 |
|
PAPR | | | 94.18 111 | 93.42 127 | 96.48 91 | 97.64 129 | 91.42 128 | 95.55 254 | 97.71 128 | 88.99 207 | 92.34 166 | 95.82 197 | 89.19 89 | 99.11 134 | 86.14 254 | 97.38 131 | 98.90 101 |
|
mvs-test1 | | | 93.63 133 | 93.69 113 | 93.46 243 | 96.02 208 | 84.61 297 | 97.24 127 | 96.72 229 | 93.85 55 | 92.30 167 | 95.76 203 | 83.08 176 | 98.89 156 | 91.69 150 | 96.54 152 | 96.87 201 |
|
SCA | | | 91.84 196 | 91.18 199 | 93.83 224 | 95.59 221 | 84.95 293 | 94.72 277 | 95.58 282 | 90.82 156 | 92.25 168 | 93.69 294 | 75.80 288 | 98.10 225 | 86.20 252 | 95.98 159 | 98.45 136 |
|
CVMVSNet | | | 91.23 225 | 91.75 175 | 89.67 324 | 95.77 216 | 74.69 352 | 96.44 199 | 94.88 312 | 85.81 284 | 92.18 169 | 97.64 99 | 79.07 249 | 95.58 341 | 88.06 214 | 95.86 163 | 98.74 113 |
|
AUN-MVS | | | 91.76 198 | 90.75 213 | 94.81 180 | 97.00 157 | 88.57 220 | 96.65 185 | 96.49 246 | 89.63 190 | 92.15 170 | 96.12 182 | 78.66 259 | 98.50 190 | 90.83 164 | 79.18 337 | 97.36 189 |
|
AdaColmap |  | | 94.34 108 | 93.68 114 | 96.31 104 | 98.59 70 | 91.68 117 | 96.59 194 | 97.81 114 | 89.87 182 | 92.15 170 | 97.06 130 | 83.62 167 | 99.54 87 | 89.34 191 | 98.07 113 | 97.70 175 |
|
GeoE | | | 93.89 124 | 93.28 130 | 95.72 136 | 96.96 159 | 89.75 181 | 98.24 33 | 96.92 216 | 89.47 194 | 92.12 172 | 97.21 122 | 84.42 154 | 98.39 200 | 87.71 222 | 96.50 153 | 99.01 89 |
|
PatchmatchNet |  | | 91.91 194 | 91.35 188 | 93.59 236 | 95.38 231 | 84.11 302 | 93.15 320 | 95.39 286 | 89.54 191 | 92.10 173 | 93.68 296 | 82.82 185 | 98.13 220 | 84.81 273 | 95.32 172 | 98.52 126 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
VPA-MVSNet | | | 93.24 145 | 92.48 156 | 95.51 149 | 95.70 219 | 92.39 94 | 97.86 61 | 98.66 9 | 92.30 111 | 92.09 174 | 95.37 222 | 80.49 225 | 98.40 197 | 93.95 105 | 85.86 285 | 95.75 239 |
|
tpm | | | 90.25 259 | 89.74 257 | 91.76 294 | 93.92 298 | 79.73 339 | 93.98 300 | 93.54 335 | 88.28 231 | 91.99 175 | 93.25 306 | 77.51 277 | 97.44 301 | 87.30 237 | 87.94 265 | 98.12 155 |
|
CNLPA | | | 94.28 109 | 93.53 119 | 96.52 86 | 98.38 82 | 92.55 90 | 96.59 194 | 96.88 220 | 90.13 179 | 91.91 176 | 97.24 120 | 85.21 144 | 99.09 138 | 87.64 229 | 97.83 118 | 97.92 163 |
|
BH-RMVSNet | | | 92.72 168 | 91.97 169 | 94.97 172 | 97.16 143 | 87.99 237 | 96.15 228 | 95.60 280 | 90.62 167 | 91.87 177 | 97.15 126 | 78.41 264 | 98.57 185 | 83.16 288 | 97.60 124 | 98.36 146 |
|
PatchMatch-RL | | | 92.90 160 | 92.02 167 | 95.56 145 | 98.19 101 | 90.80 151 | 95.27 268 | 97.18 187 | 87.96 241 | 91.86 178 | 95.68 209 | 80.44 226 | 98.99 148 | 84.01 282 | 97.54 125 | 96.89 200 |
|
OPM-MVS | | | 93.28 144 | 92.76 141 | 94.82 178 | 94.63 278 | 90.77 153 | 96.65 185 | 97.18 187 | 93.72 60 | 91.68 179 | 97.26 119 | 79.33 247 | 98.63 177 | 92.13 138 | 92.28 212 | 95.07 274 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
tpm2 | | | 89.96 265 | 89.21 266 | 92.23 280 | 94.91 265 | 81.25 324 | 93.78 306 | 94.42 323 | 80.62 336 | 91.56 180 | 93.44 303 | 76.44 284 | 97.94 254 | 85.60 264 | 92.08 220 | 97.49 187 |
|
TAPA-MVS | | 90.10 7 | 92.30 180 | 91.22 197 | 95.56 145 | 98.33 86 | 89.60 184 | 96.79 171 | 97.65 133 | 81.83 327 | 91.52 181 | 97.23 121 | 87.94 105 | 98.91 154 | 71.31 350 | 98.37 105 | 98.17 153 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TR-MVS | | | 91.48 212 | 90.59 219 | 94.16 207 | 96.40 189 | 87.33 247 | 95.67 249 | 95.34 292 | 87.68 253 | 91.46 182 | 95.52 218 | 76.77 281 | 98.35 202 | 82.85 292 | 93.61 199 | 96.79 204 |
|
RPSCF | | | 90.75 246 | 90.86 206 | 90.42 317 | 96.84 162 | 76.29 350 | 95.61 253 | 96.34 252 | 83.89 310 | 91.38 183 | 97.87 76 | 76.45 283 | 98.78 163 | 87.16 241 | 92.23 213 | 96.20 215 |
|
PLC |  | 91.00 6 | 94.11 116 | 93.43 125 | 96.13 114 | 98.58 72 | 91.15 141 | 96.69 181 | 97.39 171 | 87.29 262 | 91.37 184 | 96.71 145 | 88.39 101 | 99.52 94 | 87.33 236 | 97.13 141 | 97.73 173 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CHOSEN 280x420 | | | 93.12 149 | 92.72 145 | 94.34 202 | 96.71 171 | 87.27 249 | 90.29 343 | 97.72 124 | 86.61 274 | 91.34 185 | 95.29 224 | 84.29 158 | 98.41 196 | 93.25 122 | 98.94 90 | 97.35 190 |
|
HQP_MVS | | | 93.78 129 | 93.43 125 | 94.82 178 | 96.21 196 | 89.99 173 | 97.74 74 | 97.51 148 | 94.85 26 | 91.34 185 | 96.64 152 | 81.32 213 | 98.60 180 | 93.02 126 | 92.23 213 | 95.86 228 |
|
plane_prior3 | | | | | | | 90.00 171 | | | 94.46 41 | 91.34 185 | | | | | | |
|
Fast-Effi-MVS+ | | | 93.46 138 | 92.75 143 | 95.59 143 | 96.77 167 | 90.03 170 | 96.81 170 | 97.13 192 | 88.19 233 | 91.30 188 | 94.27 272 | 86.21 132 | 98.63 177 | 87.66 228 | 96.46 156 | 98.12 155 |
|
EI-MVSNet | | | 93.03 153 | 92.88 139 | 93.48 241 | 95.77 216 | 86.98 258 | 96.44 199 | 97.12 193 | 90.66 164 | 91.30 188 | 97.64 99 | 86.56 125 | 98.05 236 | 89.91 176 | 90.55 242 | 95.41 253 |
|
MVSTER | | | 93.20 147 | 92.81 140 | 94.37 200 | 96.56 178 | 89.59 185 | 97.06 143 | 97.12 193 | 91.24 147 | 91.30 188 | 95.96 189 | 82.02 202 | 98.05 236 | 93.48 116 | 90.55 242 | 95.47 249 |
|
RRT_MVS | | | 93.21 146 | 92.32 160 | 95.91 124 | 94.92 262 | 94.15 44 | 96.92 159 | 96.86 223 | 91.42 138 | 91.28 191 | 96.43 167 | 79.66 242 | 98.10 225 | 93.29 121 | 90.06 247 | 95.46 250 |
|
ADS-MVSNet2 | | | 89.45 272 | 88.59 274 | 92.03 283 | 95.86 211 | 82.26 319 | 90.93 339 | 94.32 327 | 83.23 319 | 91.28 191 | 91.81 327 | 79.01 254 | 95.99 332 | 79.52 315 | 91.39 229 | 97.84 168 |
|
ADS-MVSNet | | | 89.89 267 | 88.68 273 | 93.53 239 | 95.86 211 | 84.89 294 | 90.93 339 | 95.07 304 | 83.23 319 | 91.28 191 | 91.81 327 | 79.01 254 | 97.85 263 | 79.52 315 | 91.39 229 | 97.84 168 |
|
nrg030 | | | 94.05 119 | 93.31 129 | 96.27 108 | 95.22 247 | 94.59 29 | 98.34 22 | 97.46 155 | 92.93 95 | 91.21 194 | 96.64 152 | 87.23 120 | 98.22 210 | 94.99 83 | 85.80 286 | 95.98 226 |
|
Effi-MVS+-dtu | | | 93.08 150 | 93.21 132 | 92.68 271 | 96.02 208 | 83.25 311 | 97.14 141 | 96.72 229 | 93.85 55 | 91.20 195 | 93.44 303 | 83.08 176 | 98.30 206 | 91.69 150 | 95.73 166 | 96.50 210 |
|
VPNet | | | 92.23 185 | 91.31 191 | 94.99 169 | 95.56 223 | 90.96 145 | 97.22 133 | 97.86 111 | 92.96 94 | 90.96 196 | 96.62 159 | 75.06 293 | 98.20 213 | 91.90 142 | 83.65 319 | 95.80 234 |
|
JIA-IIPM | | | 88.26 288 | 87.04 292 | 91.91 285 | 93.52 310 | 81.42 323 | 89.38 349 | 94.38 324 | 80.84 334 | 90.93 197 | 80.74 355 | 79.22 248 | 97.92 257 | 82.76 293 | 91.62 224 | 96.38 213 |
|
test-LLR | | | 91.42 214 | 91.19 198 | 92.12 281 | 94.59 279 | 80.66 327 | 94.29 293 | 92.98 340 | 91.11 152 | 90.76 198 | 92.37 317 | 79.02 252 | 98.07 233 | 88.81 204 | 96.74 146 | 97.63 177 |
|
test-mter | | | 90.19 262 | 89.54 261 | 92.12 281 | 94.59 279 | 80.66 327 | 94.29 293 | 92.98 340 | 87.68 253 | 90.76 198 | 92.37 317 | 67.67 331 | 98.07 233 | 88.81 204 | 96.74 146 | 97.63 177 |
|
ACMM | | 89.79 8 | 92.96 156 | 92.50 155 | 94.35 201 | 96.30 194 | 88.71 216 | 97.58 95 | 97.36 176 | 91.40 141 | 90.53 200 | 96.65 151 | 79.77 239 | 98.75 167 | 91.24 160 | 91.64 223 | 95.59 245 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
F-COLMAP | | | 93.58 135 | 92.98 136 | 95.37 158 | 98.40 79 | 88.98 211 | 97.18 136 | 97.29 182 | 87.75 251 | 90.49 201 | 97.10 128 | 85.21 144 | 99.50 98 | 86.70 245 | 96.72 148 | 97.63 177 |
|
DWT-MVSNet_test | | | 90.76 244 | 89.89 248 | 93.38 246 | 95.04 256 | 83.70 307 | 95.85 243 | 94.30 328 | 88.19 233 | 90.46 202 | 92.80 310 | 73.61 303 | 98.50 190 | 88.16 212 | 90.58 241 | 97.95 162 |
|
TESTMET0.1,1 | | | 90.06 264 | 89.42 262 | 91.97 284 | 94.41 286 | 80.62 329 | 94.29 293 | 91.97 349 | 87.28 263 | 90.44 203 | 92.47 316 | 68.79 326 | 97.67 279 | 88.50 210 | 96.60 151 | 97.61 181 |
|
FIs | | | 94.09 117 | 93.70 112 | 95.27 159 | 95.70 219 | 92.03 108 | 98.10 42 | 98.68 7 | 93.36 75 | 90.39 204 | 96.70 147 | 87.63 111 | 97.94 254 | 92.25 134 | 90.50 244 | 95.84 231 |
|
GA-MVS | | | 91.38 216 | 90.31 229 | 94.59 189 | 94.65 276 | 87.62 245 | 94.34 290 | 96.19 260 | 90.73 160 | 90.35 205 | 93.83 288 | 71.84 308 | 97.96 251 | 87.22 238 | 93.61 199 | 98.21 152 |
|
LS3D | | | 93.57 136 | 92.61 149 | 96.47 92 | 97.59 133 | 91.61 118 | 97.67 84 | 97.72 124 | 85.17 294 | 90.29 206 | 98.34 41 | 84.60 151 | 99.73 33 | 83.85 286 | 98.27 107 | 98.06 159 |
|
FC-MVSNet-test | | | 93.94 123 | 93.57 116 | 95.04 167 | 95.48 227 | 91.45 127 | 98.12 41 | 98.71 5 | 93.37 73 | 90.23 207 | 96.70 147 | 87.66 109 | 97.85 263 | 91.49 154 | 90.39 245 | 95.83 232 |
|
bset_n11_16_dypcd | | | 91.55 207 | 90.59 219 | 94.44 196 | 91.51 337 | 90.25 167 | 92.70 327 | 93.42 337 | 92.27 112 | 90.22 208 | 94.74 247 | 78.42 263 | 97.80 268 | 94.19 100 | 87.86 267 | 95.29 269 |
|
HQP-NCC | | | | | | 95.86 211 | | 96.65 185 | | 93.55 65 | 90.14 209 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 211 | | 96.65 185 | | 93.55 65 | 90.14 209 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 209 | | | 98.50 190 | | | 95.78 235 |
|
HQP-MVS | | | 93.19 148 | 92.74 144 | 94.54 194 | 95.86 211 | 89.33 199 | 96.65 185 | 97.39 171 | 93.55 65 | 90.14 209 | 95.87 193 | 80.95 216 | 98.50 190 | 92.13 138 | 92.10 218 | 95.78 235 |
|
UniMVSNet_NR-MVSNet | | | 93.37 141 | 92.67 146 | 95.47 155 | 95.34 236 | 92.83 81 | 97.17 137 | 98.58 10 | 92.98 93 | 90.13 213 | 95.80 198 | 88.37 102 | 97.85 263 | 91.71 148 | 83.93 314 | 95.73 241 |
|
DU-MVS | | | 92.90 160 | 92.04 165 | 95.49 152 | 94.95 260 | 92.83 81 | 97.16 138 | 98.24 34 | 93.02 86 | 90.13 213 | 95.71 206 | 83.47 168 | 97.85 263 | 91.71 148 | 83.93 314 | 95.78 235 |
|
LPG-MVS_test | | | 92.94 158 | 92.56 150 | 94.10 208 | 96.16 201 | 88.26 228 | 97.65 87 | 97.46 155 | 91.29 143 | 90.12 215 | 97.16 124 | 79.05 250 | 98.73 168 | 92.25 134 | 91.89 221 | 95.31 262 |
|
LGP-MVS_train | | | | | 94.10 208 | 96.16 201 | 88.26 228 | | 97.46 155 | 91.29 143 | 90.12 215 | 97.16 124 | 79.05 250 | 98.73 168 | 92.25 134 | 91.89 221 | 95.31 262 |
|
UniMVSNet (Re) | | | 93.31 143 | 92.55 151 | 95.61 142 | 95.39 230 | 93.34 71 | 97.39 113 | 98.71 5 | 93.14 83 | 90.10 217 | 94.83 242 | 87.71 108 | 98.03 240 | 91.67 152 | 83.99 313 | 95.46 250 |
|
mvs_anonymous | | | 93.82 127 | 93.74 111 | 94.06 210 | 96.44 186 | 85.41 285 | 95.81 245 | 97.05 202 | 89.85 185 | 90.09 218 | 96.36 172 | 87.44 116 | 97.75 274 | 93.97 104 | 96.69 149 | 99.02 85 |
|
test_djsdf | | | 93.07 151 | 92.76 141 | 94.00 213 | 93.49 312 | 88.70 217 | 98.22 35 | 97.57 142 | 91.42 138 | 90.08 219 | 95.55 216 | 82.85 184 | 97.92 257 | 94.07 102 | 91.58 225 | 95.40 256 |
|
dp | | | 88.90 279 | 88.26 279 | 90.81 310 | 94.58 281 | 76.62 349 | 92.85 325 | 94.93 310 | 85.12 295 | 90.07 220 | 93.07 307 | 75.81 287 | 98.12 223 | 80.53 310 | 87.42 272 | 97.71 174 |
|
PS-MVSNAJss | | | 93.74 130 | 93.51 121 | 94.44 196 | 93.91 299 | 89.28 203 | 97.75 73 | 97.56 145 | 92.50 107 | 89.94 221 | 96.54 162 | 88.65 97 | 98.18 216 | 93.83 111 | 90.90 238 | 95.86 228 |
|
UniMVSNet_ETH3D | | | 91.34 221 | 90.22 237 | 94.68 188 | 94.86 267 | 87.86 241 | 97.23 132 | 97.46 155 | 87.99 240 | 89.90 222 | 96.92 136 | 66.35 339 | 98.23 209 | 90.30 172 | 90.99 236 | 97.96 160 |
|
CLD-MVS | | | 92.98 155 | 92.53 153 | 94.32 203 | 96.12 205 | 89.20 205 | 95.28 266 | 97.47 153 | 92.66 103 | 89.90 222 | 95.62 211 | 80.58 223 | 98.40 197 | 92.73 129 | 92.40 211 | 95.38 258 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
gg-mvs-nofinetune | | | 87.82 291 | 85.61 300 | 94.44 196 | 94.46 283 | 89.27 204 | 91.21 338 | 84.61 363 | 80.88 333 | 89.89 224 | 74.98 357 | 71.50 310 | 97.53 293 | 85.75 263 | 97.21 138 | 96.51 209 |
|
1112_ss | | | 93.37 141 | 92.42 157 | 96.21 112 | 97.05 153 | 90.99 143 | 96.31 216 | 96.72 229 | 86.87 270 | 89.83 225 | 96.69 149 | 86.51 127 | 99.14 132 | 88.12 213 | 93.67 196 | 98.50 129 |
|
BH-untuned | | | 92.94 158 | 92.62 148 | 93.92 222 | 97.22 139 | 86.16 276 | 96.40 206 | 96.25 257 | 90.06 180 | 89.79 226 | 96.17 180 | 83.19 172 | 98.35 202 | 87.19 239 | 97.27 136 | 97.24 192 |
|
V42 | | | 91.58 205 | 90.87 205 | 93.73 228 | 94.05 296 | 88.50 223 | 97.32 120 | 96.97 209 | 88.80 219 | 89.71 227 | 94.33 267 | 82.54 191 | 98.05 236 | 89.01 201 | 85.07 298 | 94.64 304 |
|
Baseline_NR-MVSNet | | | 91.20 227 | 90.62 217 | 92.95 262 | 93.83 302 | 88.03 236 | 97.01 151 | 95.12 302 | 88.42 228 | 89.70 228 | 95.13 231 | 83.47 168 | 97.44 301 | 89.66 184 | 83.24 322 | 93.37 328 |
|
v144192 | | | 91.06 233 | 90.28 231 | 93.39 245 | 93.66 307 | 87.23 252 | 96.83 167 | 97.07 199 | 87.43 258 | 89.69 229 | 94.28 271 | 81.48 211 | 98.00 243 | 87.18 240 | 84.92 302 | 94.93 282 |
|
v1144 | | | 91.37 218 | 90.60 218 | 93.68 233 | 93.89 300 | 88.23 230 | 96.84 166 | 97.03 206 | 88.37 229 | 89.69 229 | 94.39 263 | 82.04 201 | 97.98 244 | 87.80 219 | 85.37 291 | 94.84 288 |
|
Test_1112_low_res | | | 92.84 164 | 91.84 173 | 95.85 127 | 97.04 154 | 89.97 176 | 95.53 256 | 96.64 238 | 85.38 290 | 89.65 231 | 95.18 228 | 85.86 137 | 99.10 135 | 87.70 223 | 93.58 201 | 98.49 131 |
|
v1192 | | | 91.07 232 | 90.23 235 | 93.58 237 | 93.70 305 | 87.82 242 | 96.73 175 | 97.07 199 | 87.77 249 | 89.58 232 | 94.32 269 | 80.90 220 | 97.97 247 | 86.52 247 | 85.48 289 | 94.95 278 |
|
v1240 | | | 90.70 249 | 89.85 250 | 93.23 252 | 93.51 311 | 86.80 261 | 96.61 191 | 97.02 207 | 87.16 265 | 89.58 232 | 94.31 270 | 79.55 244 | 97.98 244 | 85.52 265 | 85.44 290 | 94.90 285 |
|
TranMVSNet+NR-MVSNet | | | 92.50 170 | 91.63 179 | 95.14 164 | 94.76 271 | 92.07 106 | 97.53 99 | 98.11 59 | 92.90 96 | 89.56 234 | 96.12 182 | 83.16 173 | 97.60 287 | 89.30 192 | 83.20 323 | 95.75 239 |
|
v2v482 | | | 91.59 203 | 90.85 208 | 93.80 226 | 93.87 301 | 88.17 233 | 96.94 158 | 96.88 220 | 89.54 191 | 89.53 235 | 94.90 238 | 81.70 209 | 98.02 241 | 89.25 195 | 85.04 300 | 95.20 271 |
|
v1921920 | | | 90.85 242 | 90.03 245 | 93.29 250 | 93.55 308 | 86.96 260 | 96.74 174 | 97.04 204 | 87.36 260 | 89.52 236 | 94.34 266 | 80.23 231 | 97.97 247 | 86.27 250 | 85.21 295 | 94.94 280 |
|
IterMVS-LS | | | 92.29 181 | 91.94 170 | 93.34 248 | 96.25 195 | 86.97 259 | 96.57 197 | 97.05 202 | 90.67 162 | 89.50 237 | 94.80 244 | 86.59 124 | 97.64 282 | 89.91 176 | 86.11 284 | 95.40 256 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
cascas | | | 91.20 227 | 90.08 241 | 94.58 193 | 94.97 258 | 89.16 208 | 93.65 311 | 97.59 140 | 79.90 339 | 89.40 238 | 92.92 309 | 75.36 292 | 98.36 201 | 92.14 137 | 94.75 183 | 96.23 214 |
|
XVG-ACMP-BASELINE | | | 90.93 240 | 90.21 238 | 93.09 257 | 94.31 290 | 85.89 278 | 95.33 263 | 97.26 183 | 91.06 154 | 89.38 239 | 95.44 221 | 68.61 327 | 98.60 180 | 89.46 188 | 91.05 234 | 94.79 296 |
|
GBi-Net | | | 91.35 219 | 90.27 232 | 94.59 189 | 96.51 181 | 91.18 138 | 97.50 101 | 96.93 212 | 88.82 216 | 89.35 240 | 94.51 256 | 73.87 299 | 97.29 310 | 86.12 255 | 88.82 257 | 95.31 262 |
|
test1 | | | 91.35 219 | 90.27 232 | 94.59 189 | 96.51 181 | 91.18 138 | 97.50 101 | 96.93 212 | 88.82 216 | 89.35 240 | 94.51 256 | 73.87 299 | 97.29 310 | 86.12 255 | 88.82 257 | 95.31 262 |
|
FMVSNet3 | | | 91.78 197 | 90.69 216 | 95.03 168 | 96.53 180 | 92.27 100 | 97.02 147 | 96.93 212 | 89.79 188 | 89.35 240 | 94.65 252 | 77.01 279 | 97.47 298 | 86.12 255 | 88.82 257 | 95.35 260 |
|
WR-MVS | | | 92.34 177 | 91.53 183 | 94.77 185 | 95.13 252 | 90.83 150 | 96.40 206 | 97.98 98 | 91.88 126 | 89.29 243 | 95.54 217 | 82.50 192 | 97.80 268 | 89.79 180 | 85.27 294 | 95.69 242 |
|
DP-MVS | | | 92.76 167 | 91.51 186 | 96.52 86 | 98.77 57 | 90.99 143 | 97.38 115 | 96.08 263 | 82.38 323 | 89.29 243 | 97.87 76 | 83.77 163 | 99.69 45 | 81.37 306 | 96.69 149 | 98.89 103 |
|
BH-w/o | | | 92.14 190 | 91.75 175 | 93.31 249 | 96.99 158 | 85.73 280 | 95.67 249 | 95.69 276 | 88.73 221 | 89.26 245 | 94.82 243 | 82.97 181 | 98.07 233 | 85.26 269 | 96.32 157 | 96.13 221 |
|
3Dnovator | | 91.36 5 | 95.19 89 | 94.44 102 | 97.44 53 | 96.56 178 | 93.36 70 | 98.65 7 | 98.36 16 | 94.12 49 | 89.25 246 | 98.06 65 | 82.20 199 | 99.77 30 | 93.41 119 | 99.32 55 | 99.18 71 |
|
miper_enhance_ethall | | | 91.54 209 | 91.01 202 | 93.15 255 | 95.35 235 | 87.07 257 | 93.97 301 | 96.90 217 | 86.79 271 | 89.17 247 | 93.43 305 | 86.55 126 | 97.64 282 | 89.97 175 | 86.93 275 | 94.74 300 |
|
Fast-Effi-MVS+-dtu | | | 92.29 181 | 91.99 168 | 93.21 254 | 95.27 243 | 85.52 283 | 97.03 144 | 96.63 241 | 92.09 120 | 89.11 248 | 95.14 230 | 80.33 229 | 98.08 230 | 87.54 232 | 94.74 184 | 96.03 225 |
|
RRT_test8_iter05 | | | 91.19 230 | 90.78 211 | 92.41 276 | 95.76 218 | 83.14 312 | 97.32 120 | 97.46 155 | 91.37 142 | 89.07 249 | 95.57 213 | 70.33 318 | 98.21 211 | 93.56 113 | 86.62 280 | 95.89 227 |
|
XXY-MVS | | | 92.16 188 | 91.23 196 | 94.95 174 | 94.75 272 | 90.94 146 | 97.47 106 | 97.43 168 | 89.14 203 | 88.90 250 | 96.43 167 | 79.71 240 | 98.24 208 | 89.56 186 | 87.68 268 | 95.67 244 |
|
PCF-MVS | | 89.48 11 | 91.56 206 | 89.95 246 | 96.36 102 | 96.60 173 | 92.52 91 | 92.51 330 | 97.26 183 | 79.41 341 | 88.90 250 | 96.56 161 | 84.04 161 | 99.55 85 | 77.01 332 | 97.30 135 | 97.01 194 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
miper_ehance_all_eth | | | 91.59 203 | 91.13 200 | 92.97 261 | 95.55 224 | 86.57 268 | 94.47 283 | 96.88 220 | 87.77 249 | 88.88 252 | 94.01 283 | 86.22 131 | 97.54 291 | 89.49 187 | 86.93 275 | 94.79 296 |
|
jajsoiax | | | 92.42 174 | 91.89 172 | 94.03 212 | 93.33 317 | 88.50 223 | 97.73 76 | 97.53 146 | 92.00 124 | 88.85 253 | 96.50 164 | 75.62 291 | 98.11 224 | 93.88 109 | 91.56 226 | 95.48 247 |
|
eth_miper_zixun_eth | | | 91.02 235 | 90.59 219 | 92.34 278 | 95.33 239 | 84.35 298 | 94.10 298 | 96.90 217 | 88.56 225 | 88.84 254 | 94.33 267 | 84.08 160 | 97.60 287 | 88.77 206 | 84.37 309 | 95.06 275 |
|
cl_fuxian | | | 91.38 216 | 90.89 204 | 92.88 264 | 95.58 222 | 86.30 271 | 94.68 278 | 96.84 225 | 88.17 235 | 88.83 255 | 94.23 275 | 85.65 140 | 97.47 298 | 89.36 190 | 84.63 304 | 94.89 286 |
|
test_part1 | | | 92.21 187 | 91.10 201 | 95.51 149 | 97.80 121 | 92.66 86 | 98.02 48 | 97.68 129 | 89.79 188 | 88.80 256 | 96.02 187 | 76.85 280 | 98.18 216 | 90.86 163 | 84.11 312 | 95.69 242 |
|
mvs_tets | | | 92.31 179 | 91.76 174 | 93.94 220 | 93.41 314 | 88.29 226 | 97.63 92 | 97.53 146 | 92.04 122 | 88.76 257 | 96.45 166 | 74.62 295 | 98.09 229 | 93.91 107 | 91.48 227 | 95.45 252 |
|
v148 | | | 90.99 236 | 90.38 226 | 92.81 267 | 93.83 302 | 85.80 279 | 96.78 173 | 96.68 235 | 89.45 195 | 88.75 258 | 93.93 287 | 82.96 182 | 97.82 267 | 87.83 218 | 83.25 321 | 94.80 294 |
|
FMVSNet2 | | | 91.31 222 | 90.08 241 | 94.99 169 | 96.51 181 | 92.21 101 | 97.41 109 | 96.95 210 | 88.82 216 | 88.62 259 | 94.75 246 | 73.87 299 | 97.42 303 | 85.20 270 | 88.55 262 | 95.35 260 |
|
PAPM | | | 91.52 210 | 90.30 230 | 95.20 161 | 95.30 242 | 89.83 179 | 93.38 316 | 96.85 224 | 86.26 278 | 88.59 260 | 95.80 198 | 84.88 148 | 98.15 219 | 75.67 336 | 95.93 161 | 97.63 177 |
|
cl-mvsnet2 | | | 91.21 226 | 90.56 222 | 93.14 256 | 96.09 207 | 86.80 261 | 94.41 287 | 96.58 244 | 87.80 247 | 88.58 261 | 93.99 285 | 80.85 221 | 97.62 285 | 89.87 178 | 86.93 275 | 94.99 277 |
|
3Dnovator+ | | 91.43 4 | 95.40 80 | 94.48 100 | 98.16 13 | 96.90 160 | 95.34 14 | 98.48 16 | 97.87 108 | 94.65 38 | 88.53 262 | 98.02 68 | 83.69 164 | 99.71 39 | 93.18 123 | 98.96 89 | 99.44 49 |
|
anonymousdsp | | | 92.16 188 | 91.55 182 | 93.97 216 | 92.58 329 | 89.55 187 | 97.51 100 | 97.42 169 | 89.42 196 | 88.40 263 | 94.84 241 | 80.66 222 | 97.88 262 | 91.87 144 | 91.28 231 | 94.48 306 |
|
WR-MVS_H | | | 92.00 192 | 91.35 188 | 93.95 218 | 95.09 254 | 89.47 191 | 98.04 47 | 98.68 7 | 91.46 136 | 88.34 264 | 94.68 250 | 85.86 137 | 97.56 289 | 85.77 262 | 84.24 310 | 94.82 291 |
|
v8 | | | 91.29 224 | 90.53 223 | 93.57 238 | 94.15 292 | 88.12 235 | 97.34 117 | 97.06 201 | 88.99 207 | 88.32 265 | 94.26 274 | 83.08 176 | 98.01 242 | 87.62 230 | 83.92 316 | 94.57 305 |
|
ACMP | | 89.59 10 | 92.62 169 | 92.14 163 | 94.05 211 | 96.40 189 | 88.20 231 | 97.36 116 | 97.25 185 | 91.52 133 | 88.30 266 | 96.64 152 | 78.46 262 | 98.72 171 | 91.86 145 | 91.48 227 | 95.23 270 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
v10 | | | 91.04 234 | 90.23 235 | 93.49 240 | 94.12 293 | 88.16 234 | 97.32 120 | 97.08 198 | 88.26 232 | 88.29 267 | 94.22 277 | 82.17 200 | 97.97 247 | 86.45 249 | 84.12 311 | 94.33 311 |
|
QAPM | | | 93.45 139 | 92.27 161 | 96.98 75 | 96.77 167 | 92.62 88 | 98.39 21 | 98.12 56 | 84.50 304 | 88.27 268 | 97.77 86 | 82.39 196 | 99.81 27 | 85.40 267 | 98.81 93 | 98.51 128 |
|
Anonymous20231211 | | | 90.63 251 | 89.42 262 | 94.27 204 | 98.24 94 | 89.19 207 | 98.05 46 | 97.89 104 | 79.95 338 | 88.25 269 | 94.96 234 | 72.56 306 | 98.13 220 | 89.70 182 | 85.14 296 | 95.49 246 |
|
CP-MVSNet | | | 91.89 195 | 91.24 195 | 93.82 225 | 95.05 255 | 88.57 220 | 97.82 66 | 98.19 44 | 91.70 129 | 88.21 270 | 95.76 203 | 81.96 203 | 97.52 295 | 87.86 217 | 84.65 303 | 95.37 259 |
|
cl-mvsnet1 | | | 90.97 238 | 90.33 227 | 92.88 264 | 95.36 234 | 86.19 275 | 94.46 285 | 96.63 241 | 87.82 245 | 88.18 271 | 94.23 275 | 82.99 179 | 97.53 293 | 87.72 220 | 85.57 288 | 94.93 282 |
|
cl-mvsnet____ | | | 90.96 239 | 90.32 228 | 92.89 263 | 95.37 233 | 86.21 274 | 94.46 285 | 96.64 238 | 87.82 245 | 88.15 272 | 94.18 278 | 82.98 180 | 97.54 291 | 87.70 223 | 85.59 287 | 94.92 284 |
|
tpmvs | | | 89.83 270 | 89.15 268 | 91.89 286 | 94.92 262 | 80.30 333 | 93.11 321 | 95.46 285 | 86.28 277 | 88.08 273 | 92.65 312 | 80.44 226 | 98.52 189 | 81.47 302 | 89.92 249 | 96.84 202 |
|
PS-CasMVS | | | 91.55 207 | 90.84 209 | 93.69 232 | 94.96 259 | 88.28 227 | 97.84 65 | 98.24 34 | 91.46 136 | 88.04 274 | 95.80 198 | 79.67 241 | 97.48 297 | 87.02 242 | 84.54 307 | 95.31 262 |
|
MVS_0304 | | | 88.79 281 | 87.57 283 | 92.46 273 | 94.65 276 | 86.15 277 | 96.40 206 | 97.17 189 | 86.44 275 | 88.02 275 | 91.71 329 | 56.68 356 | 97.03 315 | 84.47 278 | 92.58 209 | 94.19 316 |
|
MIMVSNet | | | 88.50 285 | 86.76 293 | 93.72 230 | 94.84 268 | 87.77 243 | 91.39 334 | 94.05 330 | 86.41 276 | 87.99 276 | 92.59 314 | 63.27 348 | 95.82 337 | 77.44 326 | 92.84 205 | 97.57 185 |
|
GG-mvs-BLEND | | | | | 93.62 234 | 93.69 306 | 89.20 205 | 92.39 332 | 83.33 364 | | 87.98 277 | 89.84 340 | 71.00 314 | 96.87 322 | 82.08 299 | 95.40 171 | 94.80 294 |
|
miper_lstm_enhance | | | 90.50 255 | 90.06 244 | 91.83 288 | 95.33 239 | 83.74 304 | 93.86 304 | 96.70 234 | 87.56 256 | 87.79 278 | 93.81 291 | 83.45 170 | 96.92 321 | 87.39 234 | 84.62 305 | 94.82 291 |
|
PEN-MVS | | | 91.20 227 | 90.44 224 | 93.48 241 | 94.49 282 | 87.91 240 | 97.76 72 | 98.18 46 | 91.29 143 | 87.78 279 | 95.74 205 | 80.35 228 | 97.33 308 | 85.46 266 | 82.96 324 | 95.19 272 |
|
ITE_SJBPF | | | | | 92.43 275 | 95.34 236 | 85.37 286 | | 95.92 266 | 91.47 135 | 87.75 280 | 96.39 171 | 71.00 314 | 97.96 251 | 82.36 297 | 89.86 250 | 93.97 320 |
|
v7n | | | 90.76 244 | 89.86 249 | 93.45 244 | 93.54 309 | 87.60 246 | 97.70 82 | 97.37 174 | 88.85 213 | 87.65 281 | 94.08 282 | 81.08 215 | 98.10 225 | 84.68 275 | 83.79 318 | 94.66 303 |
|
Patchmtry | | | 88.64 284 | 87.25 287 | 92.78 268 | 94.09 294 | 86.64 264 | 89.82 347 | 95.68 278 | 80.81 335 | 87.63 282 | 92.36 320 | 80.91 218 | 97.03 315 | 78.86 321 | 85.12 297 | 94.67 302 |
|
pmmvs4 | | | 90.93 240 | 89.85 250 | 94.17 206 | 93.34 316 | 90.79 152 | 94.60 279 | 96.02 264 | 84.62 302 | 87.45 283 | 95.15 229 | 81.88 206 | 97.45 300 | 87.70 223 | 87.87 266 | 94.27 315 |
|
tpm cat1 | | | 88.36 286 | 87.21 289 | 91.81 290 | 95.13 252 | 80.55 330 | 92.58 329 | 95.70 275 | 74.97 350 | 87.45 283 | 91.96 325 | 78.01 273 | 98.17 218 | 80.39 311 | 88.74 260 | 96.72 206 |
|
FMVSNet1 | | | 89.88 268 | 88.31 277 | 94.59 189 | 95.41 229 | 91.18 138 | 97.50 101 | 96.93 212 | 86.62 273 | 87.41 285 | 94.51 256 | 65.94 343 | 97.29 310 | 83.04 290 | 87.43 271 | 95.31 262 |
|
IterMVS-SCA-FT | | | 90.31 257 | 89.81 252 | 91.82 289 | 95.52 225 | 84.20 301 | 94.30 292 | 96.15 261 | 90.61 168 | 87.39 286 | 94.27 272 | 75.80 288 | 96.44 327 | 87.34 235 | 86.88 279 | 94.82 291 |
|
MVS | | | 91.71 199 | 90.44 224 | 95.51 149 | 95.20 249 | 91.59 120 | 96.04 232 | 97.45 161 | 73.44 353 | 87.36 287 | 95.60 212 | 85.42 142 | 99.10 135 | 85.97 259 | 97.46 126 | 95.83 232 |
|
EU-MVSNet | | | 88.72 283 | 88.90 270 | 88.20 329 | 93.15 320 | 74.21 353 | 96.63 190 | 94.22 329 | 85.18 293 | 87.32 288 | 95.97 188 | 76.16 286 | 94.98 345 | 85.27 268 | 86.17 282 | 95.41 253 |
|
IterMVS | | | 90.15 263 | 89.67 258 | 91.61 296 | 95.48 227 | 83.72 305 | 94.33 291 | 96.12 262 | 89.99 181 | 87.31 289 | 94.15 280 | 75.78 290 | 96.27 330 | 86.97 243 | 86.89 278 | 94.83 289 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
pmmvs5 | | | 89.86 269 | 88.87 271 | 92.82 266 | 92.86 323 | 86.23 273 | 96.26 220 | 95.39 286 | 84.24 306 | 87.12 290 | 94.51 256 | 74.27 297 | 97.36 307 | 87.61 231 | 87.57 269 | 94.86 287 |
|
DTE-MVSNet | | | 90.56 252 | 89.75 256 | 93.01 259 | 93.95 297 | 87.25 250 | 97.64 91 | 97.65 133 | 90.74 159 | 87.12 290 | 95.68 209 | 79.97 236 | 97.00 319 | 83.33 287 | 81.66 329 | 94.78 298 |
|
Patchmatch-test | | | 89.42 273 | 87.99 280 | 93.70 231 | 95.27 243 | 85.11 289 | 88.98 350 | 94.37 325 | 81.11 331 | 87.10 292 | 93.69 294 | 82.28 197 | 97.50 296 | 74.37 340 | 94.76 182 | 98.48 133 |
|
IB-MVS | | 87.33 17 | 89.91 266 | 88.28 278 | 94.79 184 | 95.26 246 | 87.70 244 | 95.12 274 | 93.95 333 | 89.35 198 | 87.03 293 | 92.49 315 | 70.74 316 | 99.19 125 | 89.18 199 | 81.37 330 | 97.49 187 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPNet_dtu | | | 91.71 199 | 91.28 193 | 92.99 260 | 93.76 304 | 83.71 306 | 96.69 181 | 95.28 293 | 93.15 82 | 87.02 294 | 95.95 190 | 83.37 171 | 97.38 306 | 79.46 318 | 96.84 143 | 97.88 166 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline2 | | | 91.63 202 | 90.86 206 | 93.94 220 | 94.33 288 | 86.32 270 | 95.92 240 | 91.64 351 | 89.37 197 | 86.94 295 | 94.69 249 | 81.62 210 | 98.69 172 | 88.64 208 | 94.57 186 | 96.81 203 |
|
MSDG | | | 91.42 214 | 90.24 234 | 94.96 173 | 97.15 145 | 88.91 212 | 93.69 309 | 96.32 253 | 85.72 286 | 86.93 296 | 96.47 165 | 80.24 230 | 98.98 149 | 80.57 309 | 95.05 178 | 96.98 195 |
|
test0.0.03 1 | | | 89.37 274 | 88.70 272 | 91.41 301 | 92.47 330 | 85.63 281 | 95.22 271 | 92.70 343 | 91.11 152 | 86.91 297 | 93.65 298 | 79.02 252 | 93.19 355 | 78.00 325 | 89.18 255 | 95.41 253 |
|
COLMAP_ROB |  | 87.81 15 | 90.40 256 | 89.28 265 | 93.79 227 | 97.95 111 | 87.13 256 | 96.92 159 | 95.89 269 | 82.83 321 | 86.88 298 | 97.18 123 | 73.77 302 | 99.29 119 | 78.44 323 | 93.62 198 | 94.95 278 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
D2MVS | | | 91.30 223 | 90.95 203 | 92.35 277 | 94.71 274 | 85.52 283 | 96.18 227 | 98.21 40 | 88.89 212 | 86.60 299 | 93.82 290 | 79.92 237 | 97.95 253 | 89.29 193 | 90.95 237 | 93.56 324 |
|
OurMVSNet-221017-0 | | | 90.51 254 | 90.19 239 | 91.44 300 | 93.41 314 | 81.25 324 | 96.98 154 | 96.28 254 | 91.68 130 | 86.55 300 | 96.30 174 | 74.20 298 | 97.98 244 | 88.96 202 | 87.40 273 | 95.09 273 |
|
MS-PatchMatch | | | 90.27 258 | 89.77 254 | 91.78 292 | 94.33 288 | 84.72 296 | 95.55 254 | 96.73 228 | 86.17 280 | 86.36 301 | 95.28 226 | 71.28 312 | 97.80 268 | 84.09 281 | 98.14 112 | 92.81 333 |
|
1314 | | | 92.81 166 | 92.03 166 | 95.14 164 | 95.33 239 | 89.52 190 | 96.04 232 | 97.44 165 | 87.72 252 | 86.25 302 | 95.33 223 | 83.84 162 | 98.79 162 | 89.26 194 | 97.05 142 | 97.11 193 |
|
tfpnnormal | | | 89.70 271 | 88.40 276 | 93.60 235 | 95.15 250 | 90.10 169 | 97.56 97 | 98.16 50 | 87.28 263 | 86.16 303 | 94.63 253 | 77.57 276 | 98.05 236 | 74.48 338 | 84.59 306 | 92.65 336 |
|
pm-mvs1 | | | 90.72 248 | 89.65 260 | 93.96 217 | 94.29 291 | 89.63 182 | 97.79 69 | 96.82 226 | 89.07 204 | 86.12 304 | 95.48 220 | 78.61 260 | 97.78 271 | 86.97 243 | 81.67 328 | 94.46 307 |
|
OpenMVS |  | 89.19 12 | 92.86 162 | 91.68 178 | 96.40 97 | 95.34 236 | 92.73 84 | 98.27 28 | 98.12 56 | 84.86 299 | 85.78 305 | 97.75 87 | 78.89 257 | 99.74 32 | 87.50 233 | 98.65 99 | 96.73 205 |
|
LTVRE_ROB | | 88.41 13 | 90.99 236 | 89.92 247 | 94.19 205 | 96.18 199 | 89.55 187 | 96.31 216 | 97.09 197 | 87.88 244 | 85.67 306 | 95.91 192 | 78.79 258 | 98.57 185 | 81.50 301 | 89.98 248 | 94.44 308 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
testgi | | | 87.97 289 | 87.21 289 | 90.24 319 | 92.86 323 | 80.76 326 | 96.67 184 | 94.97 308 | 91.74 128 | 85.52 307 | 95.83 196 | 62.66 350 | 94.47 349 | 76.25 333 | 88.36 263 | 95.48 247 |
|
AllTest | | | 90.23 260 | 88.98 269 | 93.98 214 | 97.94 112 | 86.64 264 | 96.51 198 | 95.54 283 | 85.38 290 | 85.49 308 | 96.77 142 | 70.28 319 | 99.15 130 | 80.02 313 | 92.87 203 | 96.15 219 |
|
TestCases | | | | | 93.98 214 | 97.94 112 | 86.64 264 | | 95.54 283 | 85.38 290 | 85.49 308 | 96.77 142 | 70.28 319 | 99.15 130 | 80.02 313 | 92.87 203 | 96.15 219 |
|
DSMNet-mixed | | | 86.34 302 | 86.12 298 | 87.00 334 | 89.88 347 | 70.43 356 | 94.93 275 | 90.08 356 | 77.97 347 | 85.42 310 | 92.78 311 | 74.44 296 | 93.96 351 | 74.43 339 | 95.14 174 | 96.62 207 |
|
ppachtmachnet_test | | | 88.35 287 | 87.29 286 | 91.53 297 | 92.45 331 | 83.57 309 | 93.75 307 | 95.97 265 | 84.28 305 | 85.32 311 | 94.18 278 | 79.00 256 | 96.93 320 | 75.71 335 | 84.99 301 | 94.10 317 |
|
CL-MVSNet_2432*1600 | | | 86.31 303 | 85.15 305 | 89.80 323 | 88.83 352 | 81.74 322 | 93.93 303 | 96.22 258 | 86.67 272 | 85.03 312 | 90.80 333 | 78.09 270 | 94.50 347 | 74.92 337 | 71.86 351 | 93.15 329 |
|
our_test_3 | | | 88.78 282 | 87.98 281 | 91.20 305 | 92.45 331 | 82.53 315 | 93.61 313 | 95.69 276 | 85.77 285 | 84.88 313 | 93.71 293 | 79.99 235 | 96.78 325 | 79.47 317 | 86.24 281 | 94.28 314 |
|
MVP-Stereo | | | 90.74 247 | 90.08 241 | 92.71 269 | 93.19 319 | 88.20 231 | 95.86 242 | 96.27 255 | 86.07 281 | 84.86 314 | 94.76 245 | 77.84 274 | 97.75 274 | 83.88 285 | 98.01 114 | 92.17 344 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
ACMH+ | | 87.92 14 | 90.20 261 | 89.18 267 | 93.25 251 | 96.48 184 | 86.45 269 | 96.99 152 | 96.68 235 | 88.83 215 | 84.79 315 | 96.22 177 | 70.16 321 | 98.53 188 | 84.42 280 | 88.04 264 | 94.77 299 |
|
NR-MVSNet | | | 92.34 177 | 91.27 194 | 95.53 148 | 94.95 260 | 93.05 76 | 97.39 113 | 98.07 70 | 92.65 104 | 84.46 316 | 95.71 206 | 85.00 147 | 97.77 273 | 89.71 181 | 83.52 320 | 95.78 235 |
|
LF4IMVS | | | 87.94 290 | 87.25 287 | 89.98 321 | 92.38 333 | 80.05 337 | 94.38 288 | 95.25 296 | 87.59 255 | 84.34 317 | 94.74 247 | 64.31 346 | 97.66 281 | 84.83 272 | 87.45 270 | 92.23 341 |
|
LCM-MVSNet-Re | | | 92.50 170 | 92.52 154 | 92.44 274 | 96.82 165 | 81.89 320 | 96.92 159 | 93.71 334 | 92.41 109 | 84.30 318 | 94.60 254 | 85.08 146 | 97.03 315 | 91.51 153 | 97.36 132 | 98.40 142 |
|
TransMVSNet (Re) | | | 88.94 277 | 87.56 284 | 93.08 258 | 94.35 287 | 88.45 225 | 97.73 76 | 95.23 297 | 87.47 257 | 84.26 319 | 95.29 224 | 79.86 238 | 97.33 308 | 79.44 319 | 74.44 347 | 93.45 327 |
|
Anonymous20231206 | | | 87.09 296 | 86.14 297 | 89.93 322 | 91.22 339 | 80.35 331 | 96.11 229 | 95.35 289 | 83.57 316 | 84.16 320 | 93.02 308 | 73.54 304 | 95.61 339 | 72.16 347 | 86.14 283 | 93.84 322 |
|
SixPastTwentyTwo | | | 89.15 275 | 88.54 275 | 90.98 307 | 93.49 312 | 80.28 334 | 96.70 179 | 94.70 316 | 90.78 157 | 84.15 321 | 95.57 213 | 71.78 309 | 97.71 277 | 84.63 276 | 85.07 298 | 94.94 280 |
|
TDRefinement | | | 86.53 299 | 84.76 309 | 91.85 287 | 82.23 360 | 84.25 299 | 96.38 209 | 95.35 289 | 84.97 298 | 84.09 322 | 94.94 235 | 65.76 344 | 98.34 205 | 84.60 277 | 74.52 346 | 92.97 330 |
|
DIV-MVS_2432*1600 | | | 85.95 307 | 84.95 306 | 88.96 326 | 89.55 350 | 79.11 344 | 95.13 273 | 96.42 249 | 85.91 283 | 84.07 323 | 90.48 334 | 70.03 322 | 94.82 346 | 80.04 312 | 72.94 350 | 92.94 331 |
|
pmmvs6 | | | 87.81 292 | 86.19 296 | 92.69 270 | 91.32 338 | 86.30 271 | 97.34 117 | 96.41 250 | 80.59 337 | 84.05 324 | 94.37 265 | 67.37 334 | 97.67 279 | 84.75 274 | 79.51 336 | 94.09 319 |
|
ACMH | | 87.59 16 | 90.53 253 | 89.42 262 | 93.87 223 | 96.21 196 | 87.92 238 | 97.24 127 | 96.94 211 | 88.45 227 | 83.91 325 | 96.27 176 | 71.92 307 | 98.62 179 | 84.43 279 | 89.43 253 | 95.05 276 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FMVSNet5 | | | 87.29 295 | 85.79 299 | 91.78 292 | 94.80 270 | 87.28 248 | 95.49 257 | 95.28 293 | 84.09 308 | 83.85 326 | 91.82 326 | 62.95 349 | 94.17 350 | 78.48 322 | 85.34 293 | 93.91 321 |
|
USDC | | | 88.94 277 | 87.83 282 | 92.27 279 | 94.66 275 | 84.96 292 | 93.86 304 | 95.90 268 | 87.34 261 | 83.40 327 | 95.56 215 | 67.43 333 | 98.19 215 | 82.64 296 | 89.67 252 | 93.66 323 |
|
Anonymous20240521 | | | 86.42 301 | 85.44 301 | 89.34 325 | 90.33 343 | 79.79 338 | 96.73 175 | 95.92 266 | 83.71 314 | 83.25 328 | 91.36 332 | 63.92 347 | 96.01 331 | 78.39 324 | 85.36 292 | 92.22 342 |
|
KD-MVS_2432*1600 | | | 84.81 314 | 82.64 317 | 91.31 302 | 91.07 340 | 85.34 287 | 91.22 336 | 95.75 273 | 85.56 288 | 83.09 329 | 90.21 336 | 67.21 335 | 95.89 333 | 77.18 330 | 62.48 358 | 92.69 334 |
|
miper_refine_blended | | | 84.81 314 | 82.64 317 | 91.31 302 | 91.07 340 | 85.34 287 | 91.22 336 | 95.75 273 | 85.56 288 | 83.09 329 | 90.21 336 | 67.21 335 | 95.89 333 | 77.18 330 | 62.48 358 | 92.69 334 |
|
PVSNet_0 | | 82.17 19 | 85.46 311 | 83.64 314 | 90.92 308 | 95.27 243 | 79.49 340 | 90.55 342 | 95.60 280 | 83.76 313 | 83.00 331 | 89.95 338 | 71.09 313 | 97.97 247 | 82.75 294 | 60.79 360 | 95.31 262 |
|
test_0402 | | | 86.46 300 | 84.79 308 | 91.45 299 | 95.02 257 | 85.55 282 | 96.29 218 | 94.89 311 | 80.90 332 | 82.21 332 | 93.97 286 | 68.21 330 | 97.29 310 | 62.98 358 | 88.68 261 | 91.51 347 |
|
Patchmatch-RL test | | | 87.38 294 | 86.24 295 | 90.81 310 | 88.74 353 | 78.40 347 | 88.12 352 | 93.17 339 | 87.11 266 | 82.17 333 | 89.29 342 | 81.95 204 | 95.60 340 | 88.64 208 | 77.02 341 | 98.41 141 |
|
TinyColmap | | | 86.82 298 | 85.35 304 | 91.21 304 | 94.91 265 | 82.99 313 | 93.94 302 | 94.02 332 | 83.58 315 | 81.56 334 | 94.68 250 | 62.34 351 | 98.13 220 | 75.78 334 | 87.35 274 | 92.52 338 |
|
test20.03 | | | 86.14 305 | 85.40 303 | 88.35 327 | 90.12 344 | 80.06 336 | 95.90 241 | 95.20 298 | 88.59 222 | 81.29 335 | 93.62 299 | 71.43 311 | 92.65 356 | 71.26 351 | 81.17 331 | 92.34 340 |
|
N_pmnet | | | 78.73 323 | 78.71 325 | 78.79 339 | 92.80 325 | 46.50 368 | 94.14 297 | 43.71 371 | 78.61 344 | 80.83 336 | 91.66 330 | 74.94 294 | 96.36 328 | 67.24 355 | 84.45 308 | 93.50 325 |
|
MVS-HIRNet | | | 82.47 320 | 81.21 322 | 86.26 336 | 95.38 231 | 69.21 359 | 88.96 351 | 89.49 357 | 66.28 355 | 80.79 337 | 74.08 359 | 68.48 328 | 97.39 305 | 71.93 348 | 95.47 169 | 92.18 343 |
|
PM-MVS | | | 83.48 317 | 81.86 321 | 88.31 328 | 87.83 356 | 77.59 348 | 93.43 314 | 91.75 350 | 86.91 268 | 80.63 338 | 89.91 339 | 44.42 361 | 95.84 336 | 85.17 271 | 76.73 343 | 91.50 348 |
|
ambc | | | | | 86.56 335 | 83.60 358 | 70.00 358 | 85.69 354 | 94.97 308 | | 80.60 339 | 88.45 343 | 37.42 363 | 96.84 323 | 82.69 295 | 75.44 345 | 92.86 332 |
|
MIMVSNet1 | | | 84.93 313 | 83.05 315 | 90.56 315 | 89.56 349 | 84.84 295 | 95.40 260 | 95.35 289 | 83.91 309 | 80.38 340 | 92.21 324 | 57.23 354 | 93.34 354 | 70.69 353 | 82.75 327 | 93.50 325 |
|
lessismore_v0 | | | | | 90.45 316 | 91.96 336 | 79.09 345 | | 87.19 361 | | 80.32 341 | 94.39 263 | 66.31 340 | 97.55 290 | 84.00 283 | 76.84 342 | 94.70 301 |
|
K. test v3 | | | 87.64 293 | 86.75 294 | 90.32 318 | 93.02 322 | 79.48 341 | 96.61 191 | 92.08 348 | 90.66 164 | 80.25 342 | 94.09 281 | 67.21 335 | 96.65 326 | 85.96 260 | 80.83 332 | 94.83 289 |
|
OpenMVS_ROB |  | 81.14 20 | 84.42 316 | 82.28 319 | 90.83 309 | 90.06 345 | 84.05 303 | 95.73 248 | 94.04 331 | 73.89 352 | 80.17 343 | 91.53 331 | 59.15 353 | 97.64 282 | 66.92 356 | 89.05 256 | 90.80 351 |
|
EG-PatchMatch MVS | | | 87.02 297 | 85.44 301 | 91.76 294 | 92.67 327 | 85.00 291 | 96.08 231 | 96.45 248 | 83.41 318 | 79.52 344 | 93.49 301 | 57.10 355 | 97.72 276 | 79.34 320 | 90.87 239 | 92.56 337 |
|
pmmvs-eth3d | | | 86.22 304 | 84.45 310 | 91.53 297 | 88.34 354 | 87.25 250 | 94.47 283 | 95.01 305 | 83.47 317 | 79.51 345 | 89.61 341 | 69.75 324 | 95.71 338 | 83.13 289 | 76.73 343 | 91.64 345 |
|
pmmvs3 | | | 79.97 322 | 77.50 326 | 87.39 332 | 82.80 359 | 79.38 342 | 92.70 327 | 90.75 355 | 70.69 354 | 78.66 346 | 87.47 351 | 51.34 359 | 93.40 353 | 73.39 344 | 69.65 354 | 89.38 354 |
|
UnsupCasMVSNet_eth | | | 85.99 306 | 84.45 310 | 90.62 314 | 89.97 346 | 82.40 318 | 93.62 312 | 97.37 174 | 89.86 183 | 78.59 347 | 92.37 317 | 65.25 345 | 95.35 344 | 82.27 298 | 70.75 352 | 94.10 317 |
|
new-patchmatchnet | | | 83.18 318 | 81.87 320 | 87.11 333 | 86.88 357 | 75.99 351 | 93.70 308 | 95.18 299 | 85.02 297 | 77.30 348 | 88.40 344 | 65.99 342 | 93.88 352 | 74.19 342 | 70.18 353 | 91.47 349 |
|
UnsupCasMVSNet_bld | | | 82.13 321 | 79.46 324 | 90.14 320 | 88.00 355 | 82.47 316 | 90.89 341 | 96.62 243 | 78.94 343 | 75.61 349 | 84.40 353 | 56.63 357 | 96.31 329 | 77.30 329 | 66.77 356 | 91.63 346 |
|
ET-MVSNet_ETH3D | | | 91.49 211 | 90.11 240 | 95.63 140 | 96.40 189 | 91.57 122 | 95.34 262 | 93.48 336 | 90.60 170 | 75.58 350 | 95.49 219 | 80.08 233 | 96.79 324 | 94.25 98 | 89.76 251 | 98.52 126 |
|
new_pmnet | | | 82.89 319 | 81.12 323 | 88.18 330 | 89.63 348 | 80.18 335 | 91.77 333 | 92.57 344 | 76.79 349 | 75.56 351 | 88.23 346 | 61.22 352 | 94.48 348 | 71.43 349 | 82.92 325 | 89.87 353 |
|
CMPMVS |  | 62.92 21 | 85.62 310 | 84.92 307 | 87.74 331 | 89.14 351 | 73.12 355 | 94.17 296 | 96.80 227 | 73.98 351 | 73.65 352 | 94.93 236 | 66.36 338 | 97.61 286 | 83.95 284 | 91.28 231 | 92.48 339 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
YYNet1 | | | 85.87 308 | 84.23 312 | 90.78 313 | 92.38 333 | 82.46 317 | 93.17 318 | 95.14 301 | 82.12 325 | 67.69 353 | 92.36 320 | 78.16 269 | 95.50 343 | 77.31 328 | 79.73 334 | 94.39 309 |
|
MDA-MVSNet_test_wron | | | 85.87 308 | 84.23 312 | 90.80 312 | 92.38 333 | 82.57 314 | 93.17 318 | 95.15 300 | 82.15 324 | 67.65 354 | 92.33 323 | 78.20 266 | 95.51 342 | 77.33 327 | 79.74 333 | 94.31 313 |
|
DeepMVS_CX |  | | | | 74.68 343 | 90.84 342 | 64.34 363 | | 81.61 366 | 65.34 356 | 67.47 355 | 88.01 349 | 48.60 360 | 80.13 364 | 62.33 359 | 73.68 349 | 79.58 358 |
|
LCM-MVSNet | | | 72.55 324 | 69.39 328 | 82.03 337 | 70.81 367 | 65.42 362 | 90.12 346 | 94.36 326 | 55.02 359 | 65.88 356 | 81.72 354 | 24.16 370 | 89.96 357 | 74.32 341 | 68.10 355 | 90.71 352 |
|
test_method | | | 66.11 328 | 64.89 331 | 69.79 344 | 72.62 365 | 35.23 372 | 65.19 362 | 92.83 342 | 20.35 365 | 65.20 357 | 88.08 348 | 43.14 362 | 82.70 362 | 73.12 345 | 63.46 357 | 91.45 350 |
|
MDA-MVSNet-bldmvs | | | 85.00 312 | 82.95 316 | 91.17 306 | 93.13 321 | 83.33 310 | 94.56 281 | 95.00 306 | 84.57 303 | 65.13 358 | 92.65 312 | 70.45 317 | 95.85 335 | 73.57 343 | 77.49 340 | 94.33 311 |
|
PMMVS2 | | | 70.19 326 | 66.92 329 | 80.01 338 | 76.35 361 | 65.67 361 | 86.22 353 | 87.58 360 | 64.83 357 | 62.38 359 | 80.29 356 | 26.78 368 | 88.49 359 | 63.79 357 | 54.07 361 | 85.88 355 |
|
FPMVS | | | 71.27 325 | 69.85 327 | 75.50 341 | 74.64 362 | 59.03 364 | 91.30 335 | 91.50 352 | 58.80 358 | 57.92 360 | 88.28 345 | 29.98 366 | 85.53 361 | 53.43 360 | 82.84 326 | 81.95 357 |
|
Gipuma |  | | 67.86 327 | 65.41 330 | 75.18 342 | 92.66 328 | 73.45 354 | 66.50 361 | 94.52 321 | 53.33 360 | 57.80 361 | 66.07 361 | 30.81 364 | 89.20 358 | 48.15 362 | 78.88 339 | 62.90 361 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tmp_tt | | | 51.94 334 | 53.82 334 | 46.29 349 | 33.73 371 | 45.30 370 | 78.32 359 | 67.24 370 | 18.02 366 | 50.93 362 | 87.05 352 | 52.99 358 | 53.11 368 | 70.76 352 | 25.29 366 | 40.46 364 |
|
ANet_high | | | 63.94 329 | 59.58 332 | 77.02 340 | 61.24 369 | 66.06 360 | 85.66 355 | 87.93 359 | 78.53 345 | 42.94 363 | 71.04 360 | 25.42 369 | 80.71 363 | 52.60 361 | 30.83 364 | 84.28 356 |
|
E-PMN | | | 53.28 331 | 52.56 335 | 55.43 347 | 74.43 363 | 47.13 367 | 83.63 357 | 76.30 367 | 42.23 362 | 42.59 364 | 62.22 363 | 28.57 367 | 74.40 365 | 31.53 365 | 31.51 363 | 44.78 362 |
|
EMVS | | | 52.08 333 | 51.31 336 | 54.39 348 | 72.62 365 | 45.39 369 | 83.84 356 | 75.51 368 | 41.13 363 | 40.77 365 | 59.65 364 | 30.08 365 | 73.60 366 | 28.31 366 | 29.90 365 | 44.18 363 |
|
MVE |  | 50.73 23 | 53.25 332 | 48.81 337 | 66.58 346 | 65.34 368 | 57.50 365 | 72.49 360 | 70.94 369 | 40.15 364 | 39.28 366 | 63.51 362 | 6.89 373 | 73.48 367 | 38.29 364 | 42.38 362 | 68.76 360 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 53.92 22 | 58.58 330 | 55.40 333 | 68.12 345 | 51.00 370 | 48.64 366 | 78.86 358 | 87.10 362 | 46.77 361 | 35.84 367 | 74.28 358 | 8.76 371 | 86.34 360 | 42.07 363 | 73.91 348 | 69.38 359 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 25.11 335 | 24.57 339 | 26.74 350 | 73.98 364 | 39.89 371 | 57.88 363 | 9.80 372 | 12.27 367 | 10.39 368 | 6.97 370 | 7.03 372 | 36.44 369 | 25.43 367 | 17.39 367 | 3.89 367 |
|
testmvs | | | 13.36 337 | 16.33 340 | 4.48 352 | 5.04 372 | 2.26 374 | 93.18 317 | 3.28 373 | 2.70 368 | 8.24 369 | 21.66 366 | 2.29 375 | 2.19 370 | 7.58 368 | 2.96 368 | 9.00 366 |
|
test123 | | | 13.04 338 | 15.66 341 | 5.18 351 | 4.51 373 | 3.45 373 | 92.50 331 | 1.81 374 | 2.50 369 | 7.58 370 | 20.15 367 | 3.67 374 | 2.18 371 | 7.13 369 | 1.07 369 | 9.90 365 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
cdsmvs_eth3d_5k | | | 23.24 336 | 30.99 338 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 97.63 136 | 0.00 370 | 0.00 371 | 96.88 138 | 84.38 155 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
pcd_1.5k_mvsjas | | | 7.39 340 | 9.85 343 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 88.65 97 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
ab-mvs-re | | | 8.06 339 | 10.74 342 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 96.69 149 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 353 | 0.00 374 | 0.00 375 | 0.00 364 | 0.00 375 | 0.00 370 | 0.00 371 | 0.00 371 | 0.00 376 | 0.00 372 | 0.00 370 | 0.00 370 | 0.00 368 |
|
No_MVS | | | | | 98.86 1 | 98.67 62 | 96.94 1 | | 97.93 103 | | | | | 99.86 8 | 97.68 2 | 99.67 6 | 99.77 1 |
|
eth-test2 | | | | | | 0.00 374 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 374 | | | | | | | | | | | |
|
OPU-MVS | | | | | 98.55 2 | 98.82 56 | 96.86 2 | 98.25 30 | | | | 98.26 54 | 96.04 2 | 99.24 122 | 95.36 72 | 99.59 16 | 99.56 24 |
|
save fliter | | | | | | 98.91 49 | 94.28 36 | 97.02 147 | 98.02 88 | 95.35 8 | | | | | | | |
|
test_0728_SECOND | | | | | 98.51 3 | 99.45 2 | 95.93 4 | 98.21 37 | 98.28 26 | | | | | 99.86 8 | 97.52 3 | 99.67 6 | 99.75 4 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 136 |
|
sam_mvs1 | | | | | | | | | | | | | 82.76 186 | | | | 98.45 136 |
|
sam_mvs | | | | | | | | | | | | | 81.94 205 | | | | |
|
MTGPA |  | | | | | | | | 98.08 64 | | | | | | | | |
|
test_post1 | | | | | | | | 92.81 326 | | | | 16.58 369 | 80.53 224 | 97.68 278 | 86.20 252 | | |
|
test_post | | | | | | | | | | | | 17.58 368 | 81.76 207 | 98.08 230 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 335 | 82.65 190 | 98.10 225 | | | |
|
MTMP | | | | | | | | 97.86 61 | 82.03 365 | | | | | | | | |
|
gm-plane-assit | | | | | | 93.22 318 | 78.89 346 | | | 84.82 300 | | 93.52 300 | | 98.64 176 | 87.72 220 | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 89 | 99.38 50 | 99.45 47 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 106 | 99.38 50 | 99.50 39 |
|
test_prior4 | | | | | | | 93.66 60 | 96.42 202 | | | | | | | | | |
|
test_prior | | | | | 97.23 63 | 98.67 62 | 92.99 77 | | 98.00 93 | | | | | 99.41 108 | | | 99.29 64 |
|
新几何2 | | | | | | | | 95.79 246 | | | | | | | | | |
|
旧先验1 | | | | | | 98.38 82 | 93.38 68 | | 97.75 117 | | | 98.09 63 | 92.30 39 | | | 99.01 87 | 99.16 72 |
|
无先验 | | | | | | | | 95.79 246 | 97.87 108 | 83.87 312 | | | | 99.65 54 | 87.68 226 | | 98.89 103 |
|
原ACMM2 | | | | | | | | 95.67 249 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.67 50 | 85.96 260 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 23 | | | | |
|
testdata1 | | | | | | | | 95.26 270 | | 93.10 85 | | | | | | | |
|
plane_prior7 | | | | | | 96.21 196 | 89.98 175 | | | | | | | | | | |
|
plane_prior6 | | | | | | 96.10 206 | 90.00 171 | | | | | | 81.32 213 | | | | |
|
plane_prior5 | | | | | | | | | 97.51 148 | | | | | 98.60 180 | 93.02 126 | 92.23 213 | 95.86 228 |
|
plane_prior4 | | | | | | | | | | | | 96.64 152 | | | | | |
|
plane_prior2 | | | | | | | | 97.74 74 | | 94.85 26 | | | | | | | |
|
plane_prior1 | | | | | | 96.14 204 | | | | | | | | | | | |
|
plane_prior | | | | | | | 89.99 173 | 97.24 127 | | 94.06 50 | | | | | | 92.16 217 | |
|
n2 | | | | | | | | | 0.00 375 | | | | | | | | |
|
nn | | | | | | | | | 0.00 375 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 354 | | | | | | | | |
|
test11 | | | | | | | | | 97.88 106 | | | | | | | | |
|
door | | | | | | | | | 91.13 353 | | | | | | | | |
|
HQP5-MVS | | | | | | | 89.33 199 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 138 | | |
|
HQP3-MVS | | | | | | | | | 97.39 171 | | | | | | | 92.10 218 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 216 | | | | |
|
NP-MVS | | | | | | 95.99 210 | 89.81 180 | | | | | 95.87 193 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 246 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 235 | |
|
Test By Simon | | | | | | | | | | | | | 88.73 96 | | | | |
|