This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 2997.78 5186.00 4898.29 197.49 690.75 1897.62 598.06 692.59 299.61 395.64 999.02 1298.86 10
FOURS198.86 185.54 6498.29 197.49 689.79 4396.29 16
CS-MVS94.12 3294.44 1993.17 7096.55 8483.08 11997.63 396.95 5391.71 1093.50 4796.21 7685.61 4598.24 12693.64 2798.17 5798.19 57
CP-MVS94.34 2594.21 2994.74 3598.39 2386.64 3097.60 497.24 3188.53 8092.73 6797.23 3185.20 5299.32 3792.15 5798.83 2198.25 54
CS-MVS-test94.02 3494.29 2493.24 6796.69 7883.24 11197.49 596.92 5692.14 492.90 5795.77 9885.02 5598.33 12193.03 3798.62 4398.13 61
APDe-MVS95.46 595.64 594.91 2098.26 2886.29 4497.46 697.40 2089.03 6396.20 1798.10 289.39 1699.34 3395.88 699.03 1199.10 4
SteuartSystems-ACMMP95.20 895.32 994.85 2496.99 7286.33 4097.33 797.30 2891.38 1195.39 2297.46 2088.98 1999.40 2994.12 2198.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
EPP-MVSNet91.70 7691.56 7392.13 11995.88 11180.50 19197.33 795.25 18186.15 13989.76 12195.60 10483.42 7298.32 12387.37 12893.25 15697.56 91
EC-MVSNet93.44 4793.71 4492.63 9795.21 13582.43 14097.27 996.71 8090.57 2592.88 5895.80 9683.16 7498.16 13293.68 2698.14 5997.31 97
HPM-MVScopyleft94.02 3493.88 3894.43 4598.39 2385.78 6097.25 1097.07 4486.90 12492.62 7096.80 5584.85 5999.17 4692.43 4798.65 4198.33 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test072698.78 385.93 5397.19 1197.47 1190.27 3097.64 498.13 191.47 8
3Dnovator86.66 591.73 7590.82 8694.44 4394.59 16586.37 3997.18 1297.02 4689.20 5784.31 24496.66 5973.74 18999.17 4686.74 13697.96 6797.79 82
HPM-MVS_fast93.40 5193.22 5193.94 5498.36 2584.83 7097.15 1396.80 6985.77 14692.47 7497.13 3882.38 8299.07 5290.51 9498.40 5197.92 75
SED-MVS95.91 296.28 294.80 3198.77 585.99 5097.13 1497.44 1590.31 2797.71 198.07 492.31 499.58 995.66 799.13 398.84 13
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 3992.59 298.94 7492.25 5398.99 1498.84 13
DVP-MVScopyleft95.67 396.02 394.64 3798.78 385.93 5397.09 1696.73 7790.27 3097.04 1198.05 891.47 899.55 1595.62 1199.08 798.45 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.01 1698.79 286.43 3797.09 1697.49 699.61 395.62 1199.08 798.99 8
3Dnovator+87.14 492.42 6691.37 7495.55 695.63 12188.73 697.07 1896.77 7290.84 1584.02 24896.62 6475.95 15399.34 3387.77 12097.68 7598.59 23
IS-MVSNet91.43 7991.09 8192.46 10595.87 11381.38 16796.95 1993.69 25089.72 4689.50 12495.98 8878.57 12797.77 16383.02 18296.50 9798.22 56
HFP-MVS94.52 1894.40 2094.86 2398.61 1086.81 2396.94 2097.34 2288.63 7693.65 4197.21 3286.10 4299.49 2592.35 5198.77 2798.30 46
ACMMPR94.43 2294.28 2594.91 2098.63 986.69 2696.94 2097.32 2688.63 7693.53 4697.26 3085.04 5499.54 1992.35 5198.78 2598.50 26
XVS94.45 2094.32 2294.85 2498.54 1386.60 3296.93 2297.19 3490.66 2392.85 5997.16 3785.02 5599.49 2591.99 6498.56 4798.47 32
X-MVStestdata88.31 16486.13 21094.85 2498.54 1386.60 3296.93 2297.19 3490.66 2392.85 5923.41 38185.02 5599.49 2591.99 6498.56 4798.47 32
region2R94.43 2294.27 2794.92 1998.65 886.67 2896.92 2497.23 3388.60 7893.58 4397.27 2885.22 5199.54 1992.21 5498.74 3098.56 24
MSP-MVS95.42 695.56 694.98 1898.49 1786.52 3496.91 2597.47 1191.73 996.10 1896.69 5689.90 1299.30 3994.70 1598.04 6599.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS93.99 3693.78 4194.63 3898.50 1685.90 5796.87 2696.91 5788.70 7491.83 9297.17 3683.96 6799.55 1591.44 7698.64 4298.43 37
ACMMPcopyleft93.24 5492.88 5794.30 4998.09 3885.33 6696.86 2797.45 1488.33 8490.15 11797.03 4381.44 9699.51 2390.85 8895.74 10498.04 68
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZNCC-MVS94.47 1994.28 2595.03 1598.52 1586.96 1896.85 2897.32 2688.24 8893.15 5197.04 4286.17 4199.62 192.40 4998.81 2298.52 25
QAPM89.51 12488.15 15093.59 6294.92 14984.58 7496.82 2996.70 8178.43 28783.41 26396.19 8073.18 19699.30 3977.11 26896.54 9596.89 119
CPTT-MVS91.99 6991.80 7092.55 10198.24 3181.98 15096.76 3096.49 9381.89 23590.24 11396.44 7178.59 12698.61 9889.68 9897.85 7197.06 109
MP-MVScopyleft94.25 2694.07 3494.77 3398.47 1886.31 4296.71 3196.98 4889.04 6291.98 8397.19 3485.43 4999.56 1192.06 6398.79 2398.44 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS93.89 3893.65 4694.62 3996.84 7586.43 3796.69 3297.49 685.15 16393.56 4596.28 7485.60 4699.31 3892.45 4698.79 2398.12 63
mvsmamba89.96 11189.50 10991.33 15892.90 23181.82 15396.68 3392.37 27589.03 6387.00 16694.85 13273.05 19797.65 17291.03 8188.63 21794.51 209
SF-MVS94.97 1194.90 1495.20 1197.84 4787.76 996.65 3497.48 1087.76 10695.71 2097.70 1588.28 2399.35 3293.89 2598.78 2598.48 29
OpenMVScopyleft83.78 1188.74 15387.29 17093.08 7592.70 23585.39 6596.57 3596.43 9578.74 28280.85 29396.07 8469.64 23999.01 6278.01 25996.65 9494.83 194
GST-MVS94.21 2993.97 3794.90 2298.41 2286.82 2296.54 3697.19 3488.24 8893.26 4896.83 5185.48 4899.59 791.43 7798.40 5198.30 46
MVS_030494.60 1794.38 2195.23 1095.41 12887.49 1496.53 3792.75 26793.82 193.07 5597.84 1483.66 7099.59 797.61 198.76 2898.61 21
nrg03091.08 8790.39 8993.17 7093.07 22286.91 2096.41 3896.26 10588.30 8688.37 14194.85 13282.19 8897.64 17591.09 7982.95 27694.96 187
RRT_MVS89.09 14088.62 13690.49 19292.85 23279.65 21896.41 3894.41 22388.22 9085.50 20494.77 13669.36 24397.31 20789.33 10286.73 24694.51 209
SR-MVS94.23 2894.17 3294.43 4598.21 3285.78 6096.40 4096.90 5888.20 9294.33 3097.40 2384.75 6099.03 5793.35 3397.99 6698.48 29
canonicalmvs93.27 5392.75 5994.85 2495.70 11987.66 1196.33 4196.41 9690.00 3694.09 3494.60 14482.33 8498.62 9792.40 4992.86 16398.27 51
VDDNet89.56 12388.49 14192.76 8995.07 14182.09 14796.30 4293.19 25781.05 25591.88 8896.86 4961.16 31698.33 12188.43 11392.49 16997.84 79
APD-MVS_3200maxsize93.78 4093.77 4293.80 5997.92 4384.19 8896.30 4296.87 6186.96 12093.92 3897.47 1983.88 6898.96 7392.71 4497.87 7098.26 53
SR-MVS-dyc-post93.82 3993.82 3993.82 5797.92 4384.57 7596.28 4496.76 7387.46 11093.75 3997.43 2184.24 6499.01 6292.73 4197.80 7297.88 76
RE-MVS-def93.68 4597.92 4384.57 7596.28 4496.76 7387.46 11093.75 3997.43 2182.94 7792.73 4197.80 7297.88 76
SMA-MVScopyleft95.20 895.07 1195.59 598.14 3588.48 896.26 4697.28 3085.90 14397.67 398.10 288.41 2099.56 1194.66 1699.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test250687.21 20986.28 20690.02 21795.62 12273.64 31096.25 4771.38 38187.89 10290.45 11096.65 6055.29 34198.09 14486.03 14596.94 8598.33 42
CSCG93.23 5593.05 5493.76 6098.04 4084.07 9096.22 4897.37 2184.15 18090.05 11895.66 10287.77 2699.15 4989.91 9798.27 5598.07 65
SD-MVS94.96 1295.33 893.88 5597.25 6986.69 2696.19 4997.11 4290.42 2696.95 1397.27 2889.53 1496.91 23894.38 1998.85 1998.03 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ECVR-MVScopyleft89.09 14088.53 13790.77 18395.62 12275.89 29196.16 5084.22 36187.89 10290.20 11496.65 6063.19 30098.10 13685.90 14696.94 8598.33 42
MTMP96.16 5060.64 385
test_fmvsm_n_192094.71 1695.11 1093.50 6395.79 11484.62 7396.15 5297.64 289.85 3997.19 897.89 1286.28 4098.71 9197.11 298.08 6497.17 104
Anonymous2023121186.59 22985.13 24190.98 17896.52 8781.50 16096.14 5396.16 11473.78 33383.65 25792.15 23063.26 29997.37 20582.82 18781.74 29494.06 234
Vis-MVSNetpermissive91.75 7491.23 7793.29 6595.32 13083.78 9796.14 5395.98 12789.89 3790.45 11096.58 6675.09 16598.31 12484.75 16096.90 8797.78 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TSAR-MVS + MP.94.85 1394.94 1294.58 4098.25 2986.33 4096.11 5596.62 8688.14 9496.10 1896.96 4589.09 1898.94 7494.48 1898.68 3698.48 29
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test111189.10 13888.64 13390.48 19495.53 12574.97 29896.08 5684.89 35988.13 9590.16 11696.65 6063.29 29898.10 13686.14 14196.90 8798.39 38
9.1494.47 1897.79 4996.08 5697.44 1586.13 14195.10 2597.40 2388.34 2299.22 4393.25 3498.70 33
LFMVS90.08 10689.13 12092.95 8296.71 7782.32 14596.08 5689.91 33786.79 12592.15 8096.81 5362.60 30298.34 11987.18 13093.90 14098.19 57
API-MVS90.66 9590.07 9792.45 10696.36 9184.57 7596.06 5995.22 18482.39 22089.13 12894.27 15780.32 10398.46 10880.16 23596.71 9294.33 220
EPNet91.79 7291.02 8294.10 5190.10 31785.25 6796.03 6092.05 28792.83 287.39 16195.78 9779.39 11799.01 6288.13 11697.48 7798.05 67
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052988.09 17086.59 19492.58 10096.53 8681.92 15295.99 6195.84 14074.11 33089.06 13195.21 11761.44 31098.81 8583.67 17687.47 23697.01 113
alignmvs93.08 5692.50 6394.81 3095.62 12287.61 1295.99 6196.07 12189.77 4494.12 3394.87 12980.56 10298.66 9292.42 4893.10 15998.15 60
MVSFormer91.68 7791.30 7592.80 8793.86 19883.88 9595.96 6395.90 13584.66 17591.76 9394.91 12777.92 13497.30 20889.64 9997.11 8197.24 100
test_djsdf89.03 14488.64 13390.21 20590.74 30379.28 23095.96 6395.90 13584.66 17585.33 21992.94 20574.02 18397.30 20889.64 9988.53 21994.05 235
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 6596.96 5191.75 894.02 3696.83 5188.12 2499.55 1593.41 3298.94 1698.28 49
APD-MVScopyleft94.24 2794.07 3494.75 3498.06 3986.90 2195.88 6696.94 5485.68 14995.05 2697.18 3587.31 3399.07 5291.90 7098.61 4598.28 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HQP_MVS90.60 9990.19 9391.82 13794.70 16182.73 13295.85 6796.22 11090.81 1686.91 17094.86 13074.23 17798.12 13488.15 11489.99 19094.63 199
plane_prior295.85 6790.81 16
test_fmvsmvis_n_192093.44 4793.55 4793.10 7393.67 20784.26 8795.83 6996.14 11589.00 6692.43 7597.50 1883.37 7398.72 9096.61 397.44 7896.32 134
GeoE90.05 10789.43 11291.90 13395.16 13780.37 19495.80 7094.65 21783.90 18587.55 15794.75 13778.18 13297.62 17781.28 21593.63 14497.71 84
MSLP-MVS++93.72 4294.08 3392.65 9697.31 6583.43 10695.79 7197.33 2490.03 3593.58 4396.96 4584.87 5897.76 16492.19 5698.66 3996.76 121
FC-MVSNet-test90.27 10290.18 9490.53 18893.71 20479.85 21495.77 7297.59 389.31 5486.27 18694.67 14181.93 9497.01 23284.26 16688.09 22994.71 198
iter_conf_final89.42 12988.69 13291.60 14595.12 14082.93 12595.75 7392.14 28487.32 11487.12 16594.07 16067.09 26797.55 18190.61 9189.01 21294.32 221
FIs90.51 10090.35 9090.99 17693.99 19480.98 17795.73 7497.54 489.15 5986.72 17794.68 14081.83 9597.24 21685.18 15388.31 22694.76 197
VDD-MVS90.74 9189.92 10393.20 6996.27 9383.02 12195.73 7493.86 24488.42 8392.53 7196.84 5062.09 30498.64 9490.95 8592.62 16697.93 74
UGNet89.95 11288.95 12492.95 8294.51 17183.31 11095.70 7695.23 18289.37 5387.58 15593.94 17064.00 29398.78 8783.92 17196.31 10096.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMMP_NAP94.74 1594.56 1795.28 898.02 4187.70 1095.68 7797.34 2288.28 8795.30 2497.67 1685.90 4499.54 1993.91 2498.95 1598.60 22
MAR-MVS90.30 10189.37 11493.07 7796.61 8184.48 8095.68 7795.67 15182.36 22287.85 14992.85 20676.63 14798.80 8680.01 23696.68 9395.91 152
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UA-Net92.83 5992.54 6293.68 6196.10 10084.71 7295.66 7996.39 9791.92 693.22 5096.49 6983.16 7498.87 7884.47 16495.47 11097.45 95
NCCC94.81 1494.69 1695.17 1397.83 4887.46 1595.66 7996.93 5592.34 393.94 3796.58 6687.74 2799.44 2892.83 4098.40 5198.62 20
DeepC-MVS_fast89.43 294.04 3393.79 4094.80 3197.48 6186.78 2495.65 8196.89 5989.40 5292.81 6296.97 4485.37 5099.24 4290.87 8798.69 3498.38 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tt080586.92 21885.74 23090.48 19492.22 24379.98 21095.63 8294.88 20383.83 18884.74 22792.80 21157.61 33297.67 16985.48 15284.42 26193.79 247
WR-MVS_H87.80 17787.37 16889.10 24693.23 21778.12 25395.61 8397.30 2887.90 10083.72 25492.01 24079.65 11696.01 28576.36 27480.54 31393.16 278
Vis-MVSNet (Re-imp)89.59 12289.44 11190.03 21595.74 11675.85 29295.61 8390.80 32287.66 10987.83 15095.40 11076.79 14396.46 26578.37 25296.73 9197.80 81
DPE-MVScopyleft95.57 495.67 495.25 998.36 2587.28 1695.56 8597.51 589.13 6097.14 997.91 1191.64 799.62 194.61 1799.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
VPA-MVSNet89.62 12088.96 12391.60 14593.86 19882.89 12795.46 8697.33 2487.91 9988.43 14093.31 19174.17 18097.40 20187.32 12982.86 28194.52 207
h-mvs3390.80 8990.15 9592.75 9096.01 10482.66 13695.43 8795.53 16389.80 4093.08 5395.64 10375.77 15499.00 6692.07 6078.05 33196.60 126
EIA-MVS91.95 7091.94 6891.98 12495.16 13780.01 20895.36 8896.73 7788.44 8189.34 12692.16 22983.82 6998.45 11189.35 10197.06 8397.48 93
tttt051788.61 15687.78 15991.11 16894.96 14677.81 26295.35 8989.69 34185.09 16588.05 14694.59 14566.93 26998.48 10583.27 17992.13 17297.03 112
PS-CasMVS87.32 20286.88 17988.63 25992.99 22776.33 28895.33 9096.61 8788.22 9083.30 26793.07 20273.03 19995.79 29678.36 25381.00 30793.75 254
jajsoiax88.24 16687.50 16490.48 19490.89 29780.14 20095.31 9195.65 15584.97 16784.24 24594.02 16565.31 28697.42 19488.56 11188.52 22093.89 239
ACMM84.12 989.14 13788.48 14291.12 16594.65 16481.22 17195.31 9196.12 11885.31 15985.92 19194.34 15070.19 23398.06 14885.65 14988.86 21594.08 233
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PGM-MVS93.96 3793.72 4394.68 3698.43 2086.22 4595.30 9397.78 187.45 11293.26 4897.33 2684.62 6199.51 2390.75 8998.57 4698.32 45
LPG-MVS_test89.45 12788.90 12791.12 16594.47 17281.49 16295.30 9396.14 11586.73 12785.45 20895.16 12069.89 23598.10 13687.70 12289.23 20893.77 252
CP-MVSNet87.63 18587.26 17388.74 25693.12 22076.59 28395.29 9596.58 8988.43 8283.49 26292.98 20475.28 16395.83 29378.97 24981.15 30193.79 247
CNVR-MVS95.40 795.37 795.50 798.11 3688.51 795.29 9596.96 5192.09 595.32 2397.08 3989.49 1599.33 3695.10 1498.85 1998.66 19
pm-mvs186.61 22785.54 23189.82 22491.44 26980.18 19895.28 9794.85 20583.84 18781.66 28392.62 21572.45 20796.48 26279.67 24078.06 33092.82 291
PS-MVSNAJss89.97 11089.62 10691.02 17391.90 25480.85 18295.26 9895.98 12786.26 13586.21 18794.29 15479.70 11297.65 17288.87 10988.10 22794.57 204
LS3D87.89 17486.32 20492.59 9996.07 10282.92 12695.23 9994.92 20075.66 31382.89 27095.98 8872.48 20599.21 4468.43 32795.23 11895.64 165
mvs_tets88.06 17287.28 17190.38 20190.94 29379.88 21295.22 10095.66 15385.10 16484.21 24693.94 17063.53 29797.40 20188.50 11288.40 22493.87 242
save fliter97.85 4685.63 6395.21 10196.82 6789.44 50
plane_prior82.73 13295.21 10189.66 4789.88 195
iter_conf0588.85 14888.08 15291.17 16494.27 18281.64 15795.18 10392.15 28386.23 13787.28 16294.07 16063.89 29697.55 18190.63 9089.00 21394.32 221
PEN-MVS86.80 22186.27 20788.40 26292.32 24275.71 29495.18 10396.38 9887.97 9782.82 27193.15 19873.39 19495.92 28876.15 27879.03 32993.59 260
TransMVSNet (Re)84.43 26883.06 27388.54 26091.72 26178.44 24495.18 10392.82 26582.73 21679.67 31092.12 23273.49 19195.96 28771.10 31268.73 36091.21 325
114514_t89.51 12488.50 13992.54 10298.11 3681.99 14995.16 10696.36 9970.19 35485.81 19295.25 11476.70 14598.63 9682.07 20096.86 9097.00 114
GBi-Net87.26 20385.98 21891.08 16994.01 19083.10 11595.14 10794.94 19583.57 19384.37 23791.64 24866.59 27696.34 27378.23 25685.36 25493.79 247
test187.26 20385.98 21891.08 16994.01 19083.10 11595.14 10794.94 19583.57 19384.37 23791.64 24866.59 27696.34 27378.23 25685.36 25493.79 247
FMVSNet185.85 24484.11 25891.08 16992.81 23383.10 11595.14 10794.94 19581.64 24182.68 27291.64 24859.01 32896.34 27375.37 28383.78 26693.79 247
bld_raw_dy_0_6487.60 18986.73 18590.21 20591.72 26180.26 19795.09 11088.61 34685.68 14985.55 19894.38 14963.93 29596.66 24687.73 12187.84 23493.72 256
ETV-MVS92.74 6192.66 6092.97 8195.20 13684.04 9295.07 11196.51 9290.73 2192.96 5691.19 26384.06 6598.34 11991.72 7296.54 9596.54 130
v7n86.81 22085.76 22889.95 22090.72 30479.25 23295.07 11195.92 13284.45 17882.29 27590.86 27472.60 20497.53 18479.42 24680.52 31593.08 282
ACMP84.23 889.01 14688.35 14390.99 17694.73 15881.27 16895.07 11195.89 13786.48 13083.67 25694.30 15369.33 24497.99 15387.10 13588.55 21893.72 256
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres100view90087.63 18586.71 18790.38 20196.12 9778.55 24095.03 11491.58 30187.15 11588.06 14592.29 22668.91 25298.10 13670.13 31791.10 17794.48 215
MCST-MVS94.45 2094.20 3095.19 1298.46 1987.50 1395.00 11597.12 4087.13 11692.51 7396.30 7389.24 1799.34 3393.46 2998.62 4398.73 16
casdiffmvs_mvgpermissive92.96 5892.83 5893.35 6494.59 16583.40 10895.00 11596.34 10090.30 2992.05 8196.05 8583.43 7198.15 13392.07 6095.67 10598.49 28
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pmmvs683.42 27881.60 28288.87 25188.01 34377.87 26094.96 11794.24 23074.67 32578.80 31691.09 27060.17 32196.49 26177.06 27075.40 34492.23 308
CANet93.54 4493.20 5294.55 4195.65 12085.73 6294.94 11896.69 8291.89 790.69 10895.88 9281.99 9399.54 1993.14 3697.95 6898.39 38
DTE-MVSNet86.11 23985.48 23387.98 27491.65 26774.92 29994.93 11995.75 14687.36 11382.26 27693.04 20372.85 20095.82 29474.04 29477.46 33593.20 276
TranMVSNet+NR-MVSNet88.84 14987.95 15591.49 15092.68 23683.01 12294.92 12096.31 10189.88 3885.53 20193.85 17776.63 14796.96 23481.91 20479.87 32294.50 212
DeepC-MVS88.79 393.31 5292.99 5594.26 5096.07 10285.83 5894.89 12196.99 4789.02 6589.56 12297.37 2582.51 8199.38 3092.20 5598.30 5497.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres600view787.65 18286.67 18990.59 18596.08 10178.72 23694.88 12291.58 30187.06 11888.08 14492.30 22568.91 25298.10 13670.05 32091.10 17794.96 187
Anonymous20240521187.68 18086.13 21092.31 11396.66 7980.74 18594.87 12391.49 30580.47 25989.46 12595.44 10754.72 34398.23 12782.19 19889.89 19497.97 71
PVSNet_Blended_VisFu91.38 8090.91 8492.80 8796.39 9083.17 11494.87 12396.66 8383.29 20289.27 12794.46 14880.29 10499.17 4687.57 12495.37 11396.05 149
VNet92.24 6891.91 6993.24 6796.59 8283.43 10694.84 12596.44 9489.19 5894.08 3595.90 9177.85 13798.17 13188.90 10793.38 15398.13 61
MP-MVS-pluss94.21 2994.00 3694.85 2498.17 3386.65 2994.82 12697.17 3886.26 13592.83 6197.87 1385.57 4799.56 1194.37 2098.92 1798.34 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DP-MVS87.25 20585.36 23792.90 8497.65 5583.24 11194.81 12792.00 28974.99 32181.92 28295.00 12572.66 20299.05 5466.92 33892.33 17096.40 132
FMVSNet287.19 21185.82 22491.30 15994.01 19083.67 10094.79 12894.94 19583.57 19383.88 25192.05 23966.59 27696.51 26077.56 26385.01 25793.73 255
UniMVSNet (Re)89.80 11789.07 12192.01 12093.60 20984.52 7894.78 12997.47 1189.26 5586.44 18392.32 22482.10 8997.39 20484.81 15980.84 30994.12 229
NR-MVSNet88.58 15987.47 16691.93 12893.04 22484.16 8994.77 13096.25 10789.05 6180.04 30693.29 19379.02 12097.05 23081.71 21180.05 31994.59 202
UniMVSNet_ETH3D87.53 19286.37 20191.00 17592.44 23978.96 23594.74 13195.61 15784.07 18285.36 21894.52 14759.78 32497.34 20682.93 18387.88 23296.71 124
F-COLMAP87.95 17386.80 18391.40 15496.35 9280.88 18194.73 13295.45 16979.65 26882.04 28094.61 14371.13 21698.50 10476.24 27791.05 18194.80 196
ACMH80.38 1785.36 25283.68 26590.39 19994.45 17580.63 18794.73 13294.85 20582.09 22677.24 32592.65 21460.01 32297.58 17872.25 30484.87 25892.96 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_n_192089.39 13389.84 10488.04 27392.97 22872.64 32294.71 13496.03 12686.18 13891.94 8796.56 6861.63 30795.74 29893.42 3195.11 11995.74 161
test_vis1_n86.56 23086.49 19986.78 30588.51 33472.69 31994.68 13593.78 24879.55 26990.70 10795.31 11148.75 35893.28 33893.15 3593.99 13894.38 219
anonymousdsp87.84 17587.09 17490.12 21189.13 32980.54 19094.67 13695.55 16082.05 22783.82 25292.12 23271.47 21497.15 22187.15 13187.80 23592.67 293
DP-MVS Recon91.95 7091.28 7693.96 5398.33 2785.92 5594.66 13796.66 8382.69 21790.03 11995.82 9582.30 8599.03 5784.57 16296.48 9896.91 118
thisisatest053088.67 15487.61 16291.86 13494.87 15280.07 20394.63 13889.90 33884.00 18388.46 13993.78 17966.88 27198.46 10883.30 17892.65 16597.06 109
Effi-MVS+91.59 7891.11 7993.01 7994.35 18183.39 10994.60 13995.10 18987.10 11790.57 10993.10 20181.43 9798.07 14789.29 10394.48 13297.59 89
tfpn200view987.58 19086.64 19090.41 19895.99 10878.64 23894.58 14091.98 29186.94 12288.09 14291.77 24569.18 24998.10 13670.13 31791.10 17794.48 215
thres40087.62 18786.64 19090.57 18695.99 10878.64 23894.58 14091.98 29186.94 12288.09 14291.77 24569.18 24998.10 13670.13 31791.10 17794.96 187
test_fmvs1_n87.03 21687.04 17786.97 29889.74 32571.86 32994.55 14294.43 22178.47 28591.95 8695.50 10651.16 35393.81 33093.02 3894.56 12995.26 176
casdiffmvspermissive92.51 6492.43 6492.74 9194.41 17781.98 15094.54 14396.23 10989.57 4891.96 8596.17 8182.58 8098.01 15190.95 8595.45 11298.23 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v887.50 19586.71 18789.89 22191.37 27479.40 22394.50 14495.38 17584.81 17183.60 25991.33 25876.05 15097.42 19482.84 18680.51 31692.84 290
tfpnnormal84.72 26583.23 27089.20 24392.79 23480.05 20594.48 14595.81 14182.38 22181.08 29191.21 26269.01 25196.95 23561.69 35580.59 31290.58 337
EI-MVSNet-Vis-set93.01 5792.92 5693.29 6595.01 14283.51 10594.48 14595.77 14490.87 1492.52 7296.67 5884.50 6299.00 6691.99 6494.44 13497.36 96
v1087.25 20586.38 20089.85 22291.19 28079.50 22094.48 14595.45 16983.79 18983.62 25891.19 26375.13 16497.42 19481.94 20380.60 31192.63 295
Effi-MVS+-dtu88.65 15588.35 14389.54 23593.33 21576.39 28694.47 14894.36 22587.70 10785.43 21189.56 30273.45 19297.26 21485.57 15191.28 17694.97 184
DU-MVS89.34 13588.50 13991.85 13693.04 22483.72 9894.47 14896.59 8889.50 4986.46 18093.29 19377.25 13997.23 21784.92 15681.02 30594.59 202
ACMH+81.04 1485.05 26083.46 26889.82 22494.66 16379.37 22494.44 15094.12 23682.19 22578.04 32092.82 20958.23 33097.54 18373.77 29782.90 28092.54 296
UniMVSNet_NR-MVSNet89.92 11489.29 11791.81 13993.39 21483.72 9894.43 15197.12 4089.80 4086.46 18093.32 19083.16 7497.23 21784.92 15681.02 30594.49 214
AdaColmapbinary89.89 11589.07 12192.37 11097.41 6283.03 12094.42 15295.92 13282.81 21486.34 18594.65 14273.89 18599.02 6080.69 22695.51 10895.05 182
EI-MVSNet-UG-set92.74 6192.62 6193.12 7294.86 15383.20 11394.40 15395.74 14790.71 2292.05 8196.60 6584.00 6698.99 6891.55 7493.63 14497.17 104
TSAR-MVS + GP.93.66 4393.41 4894.41 4796.59 8286.78 2494.40 15393.93 24089.77 4494.21 3195.59 10587.35 3298.61 9892.72 4396.15 10197.83 80
HQP-NCC94.17 18494.39 15588.81 6885.43 211
ACMP_Plane94.17 18494.39 15588.81 6885.43 211
HQP-MVS89.80 11789.28 11891.34 15794.17 18481.56 15894.39 15596.04 12488.81 6885.43 21193.97 16973.83 18797.96 15587.11 13389.77 19994.50 212
TAPA-MVS84.62 688.16 16887.01 17891.62 14496.64 8080.65 18694.39 15596.21 11376.38 30686.19 18895.44 10779.75 11098.08 14662.75 35395.29 11596.13 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPM_NR91.22 8490.78 8792.52 10397.60 5681.46 16494.37 15996.24 10886.39 13387.41 15894.80 13582.06 9198.48 10582.80 18895.37 11397.61 87
MTAPA94.42 2494.22 2895.00 1798.42 2186.95 1994.36 16096.97 4991.07 1293.14 5297.56 1784.30 6399.56 1193.43 3098.75 2998.47 32
PLCcopyleft84.53 789.06 14388.03 15392.15 11897.27 6882.69 13594.29 16195.44 17179.71 26784.01 24994.18 15976.68 14698.75 8877.28 26593.41 15295.02 183
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline188.10 16987.28 17190.57 18694.96 14680.07 20394.27 16291.29 31086.74 12687.41 15894.00 16776.77 14496.20 27780.77 22479.31 32795.44 170
dcpmvs_293.49 4594.19 3191.38 15597.69 5476.78 27994.25 16396.29 10288.33 8494.46 2896.88 4888.07 2598.64 9493.62 2898.09 6298.73 16
COLMAP_ROBcopyleft80.39 1683.96 27382.04 28089.74 22895.28 13179.75 21594.25 16392.28 27975.17 31978.02 32193.77 18058.60 32997.84 16165.06 34685.92 25091.63 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
V4287.68 18086.86 18090.15 20990.58 30880.14 20094.24 16595.28 18083.66 19185.67 19591.33 25874.73 17197.41 19984.43 16581.83 29192.89 288
Baseline_NR-MVSNet87.07 21486.63 19288.40 26291.44 26977.87 26094.23 16692.57 27284.12 18185.74 19492.08 23677.25 13996.04 28282.29 19779.94 32091.30 323
FMVSNet387.40 19886.11 21291.30 15993.79 20383.64 10194.20 16794.81 20983.89 18684.37 23791.87 24468.45 25896.56 25778.23 25685.36 25493.70 258
OPM-MVS90.12 10589.56 10891.82 13793.14 21983.90 9494.16 16895.74 14788.96 6787.86 14895.43 10972.48 20597.91 15988.10 11890.18 18993.65 259
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline92.39 6792.29 6692.69 9594.46 17481.77 15594.14 16996.27 10489.22 5691.88 8896.00 8682.35 8397.99 15391.05 8095.27 11798.30 46
test_prior294.12 17087.67 10892.63 6996.39 7286.62 3691.50 7598.67 38
test_yl90.69 9390.02 10192.71 9295.72 11782.41 14394.11 17195.12 18785.63 15191.49 9894.70 13874.75 16998.42 11486.13 14392.53 16797.31 97
DCV-MVSNet90.69 9390.02 10192.71 9295.72 11782.41 14394.11 17195.12 18785.63 15191.49 9894.70 13874.75 16998.42 11486.13 14392.53 16797.31 97
test_prior485.96 5294.11 171
EPNet_dtu86.49 23585.94 22188.14 27190.24 31572.82 31794.11 17192.20 28186.66 12979.42 31392.36 22373.52 19095.81 29571.26 30793.66 14395.80 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNLPA89.07 14287.98 15492.34 11196.87 7484.78 7194.08 17593.24 25581.41 24684.46 23495.13 12275.57 16196.62 24977.21 26693.84 14295.61 168
TEST997.53 5886.49 3594.07 17696.78 7081.61 24392.77 6496.20 7787.71 2899.12 50
train_agg93.44 4793.08 5394.52 4297.53 5886.49 3594.07 17696.78 7081.86 23692.77 6496.20 7787.63 2999.12 5092.14 5898.69 3497.94 72
CDPH-MVS92.83 5992.30 6594.44 4397.79 4986.11 4794.06 17896.66 8380.09 26392.77 6496.63 6386.62 3699.04 5687.40 12698.66 3998.17 59
VPNet88.20 16787.47 16690.39 19993.56 21079.46 22194.04 17995.54 16288.67 7586.96 16794.58 14669.33 24497.15 22184.05 16980.53 31494.56 205
Fast-Effi-MVS+-dtu87.44 19686.72 18689.63 23392.04 25077.68 26894.03 18093.94 23985.81 14482.42 27491.32 26070.33 23197.06 22980.33 23390.23 18894.14 228
test_897.49 6086.30 4394.02 18196.76 7381.86 23692.70 6896.20 7787.63 2999.02 60
test_fmvs187.34 20087.56 16386.68 30690.59 30771.80 33194.01 18294.04 23878.30 28991.97 8495.22 11556.28 33693.71 33292.89 3994.71 12394.52 207
OurMVSNet-221017-085.35 25384.64 25387.49 28490.77 30172.59 32494.01 18294.40 22484.72 17379.62 31293.17 19761.91 30696.72 24381.99 20281.16 29993.16 278
v2v48287.84 17587.06 17590.17 20790.99 28979.23 23394.00 18495.13 18684.87 16885.53 20192.07 23874.45 17497.45 19084.71 16181.75 29393.85 245
DeepPCF-MVS89.96 194.20 3194.77 1592.49 10496.52 8780.00 20994.00 18497.08 4390.05 3495.65 2197.29 2789.66 1398.97 7193.95 2398.71 3198.50 26
v114487.61 18886.79 18490.06 21491.01 28879.34 22693.95 18695.42 17483.36 20185.66 19691.31 26174.98 16797.42 19483.37 17782.06 28793.42 268
hse-mvs289.88 11689.34 11591.51 14994.83 15581.12 17493.94 18793.91 24389.80 4093.08 5393.60 18475.77 15497.66 17192.07 6077.07 33895.74 161
test_fmvs283.98 27284.03 25983.83 33287.16 34867.53 35793.93 18892.89 26277.62 29586.89 17393.53 18547.18 36292.02 34990.54 9286.51 24791.93 312
v14419287.19 21186.35 20289.74 22890.64 30678.24 25193.92 18995.43 17281.93 23285.51 20391.05 27174.21 17997.45 19082.86 18581.56 29593.53 262
PVSNet_BlendedMVS89.98 10989.70 10590.82 18196.12 9781.25 16993.92 18996.83 6583.49 19789.10 12992.26 22781.04 10098.85 8286.72 13887.86 23392.35 305
AUN-MVS87.78 17886.54 19691.48 15194.82 15681.05 17593.91 19193.93 24083.00 20986.93 16893.53 18569.50 24197.67 16986.14 14177.12 33795.73 163
test_cas_vis1_n_192088.83 15288.85 13088.78 25291.15 28476.72 28093.85 19294.93 19983.23 20592.81 6296.00 8661.17 31594.45 31891.67 7394.84 12195.17 179
v192192086.97 21786.06 21589.69 23290.53 31178.11 25493.80 19395.43 17281.90 23485.33 21991.05 27172.66 20297.41 19982.05 20181.80 29293.53 262
v119287.25 20586.33 20390.00 21990.76 30279.04 23493.80 19395.48 16582.57 21885.48 20691.18 26573.38 19597.42 19482.30 19682.06 28793.53 262
XXY-MVS87.65 18286.85 18190.03 21592.14 24680.60 18993.76 19595.23 18282.94 21184.60 22994.02 16574.27 17695.49 30781.04 21883.68 26994.01 237
MVSTER88.84 14988.29 14790.51 19192.95 22980.44 19293.73 19695.01 19284.66 17587.15 16393.12 20072.79 20197.21 21987.86 11987.36 23993.87 242
IterMVS-LS88.36 16387.91 15789.70 23193.80 20178.29 25093.73 19695.08 19185.73 14784.75 22691.90 24379.88 10896.92 23783.83 17282.51 28293.89 239
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14887.04 21586.32 20489.21 24290.94 29377.26 27393.71 19894.43 22184.84 17084.36 24090.80 27776.04 15197.05 23082.12 19979.60 32493.31 270
EI-MVSNet89.10 13888.86 12989.80 22791.84 25678.30 24993.70 19995.01 19285.73 14787.15 16395.28 11279.87 10997.21 21983.81 17387.36 23993.88 241
CVMVSNet84.69 26684.79 25084.37 32791.84 25664.92 36393.70 19991.47 30666.19 36086.16 18995.28 11267.18 26693.33 33780.89 22390.42 18694.88 192
v124086.78 22285.85 22389.56 23490.45 31277.79 26493.61 20195.37 17781.65 24085.43 21191.15 26771.50 21397.43 19381.47 21482.05 28993.47 266
MG-MVS91.77 7391.70 7292.00 12397.08 7180.03 20793.60 20295.18 18587.85 10490.89 10696.47 7082.06 9198.36 11685.07 15497.04 8497.62 86
Fast-Effi-MVS+89.41 13088.64 13391.71 14294.74 15780.81 18393.54 20395.10 18983.11 20686.82 17690.67 28079.74 11197.75 16780.51 23093.55 14696.57 128
OMC-MVS91.23 8390.62 8893.08 7596.27 9384.07 9093.52 20495.93 13186.95 12189.51 12396.13 8378.50 12898.35 11885.84 14892.90 16296.83 120
CANet_DTU90.26 10389.41 11392.81 8693.46 21383.01 12293.48 20594.47 22089.43 5187.76 15394.23 15870.54 22999.03 5784.97 15596.39 9996.38 133
SixPastTwentyTwo83.91 27582.90 27586.92 30090.99 28970.67 34293.48 20591.99 29085.54 15477.62 32492.11 23460.59 31896.87 24076.05 27977.75 33293.20 276
MVS_Test91.31 8291.11 7991.93 12894.37 17880.14 20093.46 20795.80 14286.46 13191.35 10293.77 18082.21 8798.09 14487.57 12494.95 12097.55 92
patch_mono-293.74 4194.32 2292.01 12097.54 5778.37 24793.40 20897.19 3488.02 9694.99 2797.21 3288.35 2198.44 11294.07 2298.09 6299.23 1
旧先验293.36 20971.25 35094.37 2997.13 22486.74 136
xiu_mvs_v1_base_debu90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
xiu_mvs_v1_base90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
xiu_mvs_v1_base_debi90.64 9690.05 9892.40 10793.97 19584.46 8193.32 21095.46 16685.17 16092.25 7694.03 16270.59 22598.57 10190.97 8294.67 12494.18 225
EU-MVSNet81.32 29980.95 28782.42 33888.50 33663.67 36493.32 21091.33 30864.02 36380.57 29892.83 20861.21 31492.27 34776.34 27580.38 31791.32 322
TAMVS89.21 13688.29 14791.96 12693.71 20482.62 13893.30 21494.19 23182.22 22487.78 15293.94 17078.83 12196.95 23577.70 26192.98 16196.32 134
BH-untuned88.60 15788.13 15190.01 21895.24 13478.50 24393.29 21594.15 23384.75 17284.46 23493.40 18775.76 15697.40 20177.59 26294.52 13194.12 229
无先验93.28 21696.26 10573.95 33299.05 5480.56 22996.59 127
thres20087.21 20986.24 20890.12 21195.36 12978.53 24193.26 21792.10 28586.42 13288.00 14791.11 26969.24 24898.00 15269.58 32191.04 18293.83 246
WR-MVS88.38 16187.67 16190.52 19093.30 21680.18 19893.26 21795.96 13088.57 7985.47 20792.81 21076.12 14996.91 23881.24 21682.29 28594.47 217
MVS_111021_HR93.45 4693.31 4993.84 5696.99 7284.84 6993.24 21997.24 3188.76 7191.60 9795.85 9386.07 4398.66 9291.91 6898.16 5898.03 69
LCM-MVSNet-Re88.30 16588.32 14688.27 26694.71 16072.41 32793.15 22090.98 31787.77 10579.25 31491.96 24178.35 13095.75 29783.04 18195.62 10696.65 125
AllTest83.42 27881.39 28489.52 23695.01 14277.79 26493.12 22190.89 32077.41 29776.12 33393.34 18854.08 34697.51 18568.31 32884.27 26393.26 271
TDRefinement79.81 31177.34 31587.22 29379.24 37175.48 29693.12 22192.03 28876.45 30575.01 33991.58 25449.19 35796.44 26670.22 31669.18 35789.75 341
新几何293.11 223
jason90.80 8990.10 9692.90 8493.04 22483.53 10493.08 22494.15 23380.22 26091.41 10094.91 12776.87 14197.93 15890.28 9696.90 8797.24 100
jason: jason.
MVS_111021_LR92.47 6592.29 6692.98 8095.99 10884.43 8493.08 22496.09 11988.20 9291.12 10495.72 10181.33 9897.76 16491.74 7197.37 8096.75 122
DELS-MVS93.43 5093.25 5093.97 5295.42 12785.04 6893.06 22697.13 3990.74 2091.84 9095.09 12386.32 3999.21 4491.22 7898.45 4997.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDS-MVSNet89.45 12788.51 13892.29 11593.62 20883.61 10393.01 22794.68 21681.95 23187.82 15193.24 19578.69 12496.99 23380.34 23293.23 15796.28 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040281.30 30079.17 30887.67 27993.19 21878.17 25292.98 22891.71 29675.25 31876.02 33590.31 28659.23 32696.37 27050.22 36983.63 27088.47 354
1112_ss88.42 16087.33 16991.72 14194.92 14980.98 17792.97 22994.54 21878.16 29383.82 25293.88 17578.78 12397.91 15979.45 24389.41 20396.26 138
原ACMM292.94 230
SDMVSNet90.19 10489.61 10791.93 12896.00 10583.09 11892.89 23195.98 12788.73 7286.85 17495.20 11872.09 20997.08 22688.90 10789.85 19695.63 166
BH-RMVSNet88.37 16287.48 16591.02 17395.28 13179.45 22292.89 23193.07 25985.45 15686.91 17094.84 13470.35 23097.76 16473.97 29594.59 12895.85 155
Anonymous2024052180.44 30679.21 30684.11 33085.75 35767.89 35392.86 23393.23 25675.61 31575.59 33787.47 33150.03 35494.33 32271.14 31181.21 29890.12 339
lupinMVS90.92 8890.21 9293.03 7893.86 19883.88 9592.81 23493.86 24479.84 26591.76 9394.29 15477.92 13498.04 14990.48 9597.11 8197.17 104
EG-PatchMatch MVS82.37 28680.34 29288.46 26190.27 31479.35 22592.80 23594.33 22677.14 30173.26 34990.18 28847.47 36196.72 24370.25 31487.32 24189.30 345
PAPR90.02 10889.27 11992.29 11595.78 11580.95 17992.68 23696.22 11081.91 23386.66 17893.75 18282.23 8698.44 11279.40 24794.79 12297.48 93
DPM-MVS92.58 6391.74 7195.08 1496.19 9589.31 592.66 23796.56 9183.44 19891.68 9695.04 12486.60 3898.99 6885.60 15097.92 6996.93 117
131487.51 19386.57 19590.34 20392.42 24079.74 21692.63 23895.35 17978.35 28880.14 30391.62 25274.05 18297.15 22181.05 21793.53 14794.12 229
MVS87.44 19686.10 21391.44 15392.61 23783.62 10292.63 23895.66 15367.26 35881.47 28592.15 23077.95 13398.22 12979.71 23995.48 10992.47 299
K. test v381.59 29480.15 29685.91 31589.89 32369.42 34992.57 24087.71 35185.56 15373.44 34889.71 29955.58 33795.52 30377.17 26769.76 35492.78 292
PVSNet_Blended90.73 9290.32 9191.98 12496.12 9781.25 16992.55 24196.83 6582.04 22989.10 12992.56 21781.04 10098.85 8286.72 13895.91 10295.84 156
TR-MVS86.78 22285.76 22889.82 22494.37 17878.41 24592.47 24292.83 26481.11 25486.36 18492.40 22168.73 25597.48 18773.75 29889.85 19693.57 261
pmmvs584.21 26982.84 27788.34 26588.95 33176.94 27792.41 24391.91 29575.63 31480.28 30091.18 26564.59 29095.57 30177.09 26983.47 27292.53 297
BH-w/o87.57 19187.05 17689.12 24594.90 15177.90 25892.41 24393.51 25282.89 21383.70 25591.34 25775.75 15797.07 22875.49 28193.49 14992.39 303
WTY-MVS89.60 12188.92 12591.67 14395.47 12681.15 17392.38 24594.78 21183.11 20689.06 13194.32 15278.67 12596.61 25281.57 21290.89 18397.24 100
diffmvspermissive91.37 8191.23 7791.77 14093.09 22180.27 19592.36 24695.52 16487.03 11991.40 10194.93 12680.08 10697.44 19292.13 5994.56 12997.61 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sd_testset88.59 15887.85 15890.83 18096.00 10580.42 19392.35 24794.71 21488.73 7286.85 17495.20 11867.31 26296.43 26779.64 24189.85 19695.63 166
test_fmvs377.67 32277.16 31979.22 34279.52 37061.14 36892.34 24891.64 30073.98 33178.86 31586.59 33627.38 37487.03 36788.12 11775.97 34289.50 342
ET-MVSNet_ETH3D87.51 19385.91 22292.32 11293.70 20683.93 9392.33 24990.94 31884.16 17972.09 35292.52 21869.90 23495.85 29289.20 10488.36 22597.17 104
OpenMVS_ROBcopyleft74.94 1979.51 31377.03 32086.93 29987.00 34976.23 28992.33 24990.74 32368.93 35674.52 34388.23 32149.58 35696.62 24957.64 36384.29 26287.94 357
LTVRE_ROB82.13 1386.26 23884.90 24790.34 20394.44 17681.50 16092.31 25194.89 20183.03 20879.63 31192.67 21369.69 23897.79 16271.20 30886.26 24991.72 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
xiu_mvs_v2_base91.13 8690.89 8591.86 13494.97 14582.42 14192.24 25295.64 15686.11 14291.74 9593.14 19979.67 11598.89 7789.06 10695.46 11194.28 224
test22296.55 8481.70 15692.22 25395.01 19268.36 35790.20 11496.14 8280.26 10597.80 7296.05 149
ab-mvs89.41 13088.35 14392.60 9895.15 13982.65 13792.20 25495.60 15883.97 18488.55 13793.70 18374.16 18198.21 13082.46 19389.37 20496.94 116
testdata192.15 25587.94 98
CLD-MVS89.47 12688.90 12791.18 16394.22 18382.07 14892.13 25696.09 11987.90 10085.37 21792.45 22074.38 17597.56 18087.15 13190.43 18593.93 238
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVP-Stereo85.97 24184.86 24889.32 24090.92 29582.19 14692.11 25794.19 23178.76 28178.77 31791.63 25168.38 25996.56 25775.01 28893.95 13989.20 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-MVSNAJ91.18 8590.92 8391.96 12695.26 13382.60 13992.09 25895.70 14986.27 13491.84 9092.46 21979.70 11298.99 6889.08 10595.86 10394.29 223
HY-MVS83.01 1289.03 14487.94 15692.29 11594.86 15382.77 12892.08 25994.49 21981.52 24586.93 16892.79 21278.32 13198.23 12779.93 23790.55 18495.88 154
baseline286.50 23385.39 23589.84 22391.12 28576.70 28191.88 26088.58 34782.35 22379.95 30790.95 27373.42 19397.63 17680.27 23489.95 19395.19 178
XVG-OURS-SEG-HR89.95 11289.45 11091.47 15294.00 19381.21 17291.87 26196.06 12385.78 14588.55 13795.73 10074.67 17397.27 21288.71 11089.64 20195.91 152
D2MVS85.90 24285.09 24288.35 26490.79 30077.42 27191.83 26295.70 14980.77 25780.08 30590.02 29266.74 27496.37 27081.88 20587.97 23191.26 324
Test_1112_low_res87.65 18286.51 19791.08 16994.94 14879.28 23091.77 26394.30 22776.04 31183.51 26192.37 22277.86 13697.73 16878.69 25189.13 21096.22 139
IB-MVS80.51 1585.24 25783.26 26991.19 16292.13 24779.86 21391.75 26491.29 31083.28 20380.66 29688.49 31661.28 31198.46 10880.99 22179.46 32595.25 177
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
sss88.93 14788.26 14990.94 17994.05 18880.78 18491.71 26595.38 17581.55 24488.63 13693.91 17475.04 16695.47 30882.47 19291.61 17496.57 128
XVG-ACMP-BASELINE86.00 24084.84 24989.45 23991.20 27978.00 25591.70 26695.55 16085.05 16682.97 26992.25 22854.49 34497.48 18782.93 18387.45 23892.89 288
RPSCF85.07 25984.27 25687.48 28592.91 23070.62 34391.69 26792.46 27376.20 31082.67 27395.22 11563.94 29497.29 21177.51 26485.80 25194.53 206
mvs_anonymous89.37 13489.32 11689.51 23893.47 21274.22 30591.65 26894.83 20782.91 21285.45 20893.79 17881.23 9996.36 27286.47 14094.09 13797.94 72
MIMVSNet179.38 31477.28 31685.69 31786.35 35173.67 30991.61 26992.75 26778.11 29472.64 35188.12 32248.16 35991.97 35160.32 35877.49 33491.43 321
FMVSNet581.52 29679.60 30287.27 28891.17 28177.95 25691.49 27092.26 28076.87 30276.16 33287.91 32651.67 35192.34 34667.74 33281.16 29991.52 318
Anonymous2023120681.03 30279.77 30084.82 32487.85 34670.26 34591.42 27192.08 28673.67 33477.75 32289.25 30462.43 30393.08 34161.50 35682.00 29091.12 328
FA-MVS(test-final)89.66 11988.91 12691.93 12894.57 16880.27 19591.36 27294.74 21384.87 16889.82 12092.61 21674.72 17298.47 10783.97 17093.53 14797.04 111
testgi80.94 30480.20 29583.18 33387.96 34466.29 35891.28 27390.70 32483.70 19078.12 31992.84 20751.37 35290.82 35763.34 35082.46 28392.43 301
XVG-OURS89.40 13288.70 13191.52 14894.06 18781.46 16491.27 27496.07 12186.14 14088.89 13395.77 9868.73 25597.26 21487.39 12789.96 19295.83 157
MS-PatchMatch85.05 26084.16 25787.73 27891.42 27278.51 24291.25 27593.53 25177.50 29680.15 30291.58 25461.99 30595.51 30475.69 28094.35 13589.16 348
c3_l87.14 21386.50 19889.04 24892.20 24477.26 27391.22 27694.70 21582.01 23084.34 24190.43 28478.81 12296.61 25283.70 17581.09 30293.25 273
SCA86.32 23785.18 24089.73 23092.15 24576.60 28291.12 27791.69 29883.53 19685.50 20488.81 31066.79 27296.48 26276.65 27190.35 18796.12 143
test20.0379.95 31079.08 30982.55 33685.79 35667.74 35591.09 27891.08 31381.23 25274.48 34489.96 29561.63 30790.15 35960.08 35976.38 34089.76 340
KD-MVS_self_test80.20 30879.24 30583.07 33485.64 35865.29 36291.01 27993.93 24078.71 28376.32 33186.40 33959.20 32792.93 34372.59 30269.35 35591.00 332
miper_ehance_all_eth87.22 20886.62 19389.02 24992.13 24777.40 27290.91 28094.81 20981.28 24984.32 24290.08 29179.26 11896.62 24983.81 17382.94 27793.04 283
cl2286.78 22285.98 21889.18 24492.34 24177.62 26990.84 28194.13 23581.33 24883.97 25090.15 28973.96 18496.60 25484.19 16782.94 27793.33 269
cl____86.52 23285.78 22588.75 25492.03 25176.46 28490.74 28294.30 22781.83 23883.34 26590.78 27875.74 15996.57 25581.74 20981.54 29693.22 275
DIV-MVS_self_test86.53 23185.78 22588.75 25492.02 25276.45 28590.74 28294.30 22781.83 23883.34 26590.82 27675.75 15796.57 25581.73 21081.52 29793.24 274
thisisatest051587.33 20185.99 21791.37 15693.49 21179.55 21990.63 28489.56 34480.17 26187.56 15690.86 27467.07 26898.28 12581.50 21393.02 16096.29 136
PatchMatch-RL86.77 22585.54 23190.47 19795.88 11182.71 13490.54 28592.31 27879.82 26684.32 24291.57 25668.77 25496.39 26973.16 30093.48 15192.32 306
eth_miper_zixun_eth86.50 23385.77 22788.68 25791.94 25375.81 29390.47 28694.89 20182.05 22784.05 24790.46 28375.96 15296.77 24282.76 18979.36 32693.46 267
GA-MVS86.61 22785.27 23990.66 18491.33 27778.71 23790.40 28793.81 24785.34 15885.12 22189.57 30161.25 31297.11 22580.99 22189.59 20296.15 140
FE-MVS87.40 19886.02 21691.57 14794.56 16979.69 21790.27 28893.72 24980.57 25888.80 13491.62 25265.32 28598.59 10074.97 28994.33 13696.44 131
pmmvs485.43 25083.86 26390.16 20890.02 32082.97 12490.27 28892.67 27075.93 31280.73 29491.74 24771.05 21795.73 29978.85 25083.46 27391.78 314
test_vis1_rt77.96 32176.46 32182.48 33785.89 35571.74 33290.25 29078.89 37371.03 35271.30 35681.35 36042.49 36691.05 35684.55 16382.37 28484.65 360
CL-MVSNet_self_test81.74 29180.53 28985.36 31985.96 35472.45 32690.25 29093.07 25981.24 25179.85 30987.29 33370.93 22092.52 34566.95 33569.23 35691.11 329
test0.0.03 182.41 28581.69 28184.59 32588.23 34072.89 31690.24 29287.83 35083.41 19979.86 30889.78 29867.25 26488.99 36565.18 34483.42 27491.90 313
cascas86.43 23684.98 24490.80 18292.10 24980.92 18090.24 29295.91 13473.10 33983.57 26088.39 31765.15 28797.46 18984.90 15891.43 17594.03 236
miper_enhance_ethall86.90 21986.18 20989.06 24791.66 26677.58 27090.22 29494.82 20879.16 27484.48 23389.10 30679.19 11996.66 24684.06 16882.94 27792.94 286
IterMVS-SCA-FT85.45 24984.53 25588.18 27091.71 26376.87 27890.19 29592.65 27185.40 15781.44 28690.54 28166.79 27295.00 31681.04 21881.05 30392.66 294
IterMVS84.88 26283.98 26287.60 28091.44 26976.03 29090.18 29692.41 27483.24 20481.06 29290.42 28566.60 27594.28 32479.46 24280.98 30892.48 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs-eth3d80.97 30378.72 31287.74 27784.99 36179.97 21190.11 29791.65 29975.36 31673.51 34786.03 34159.45 32593.96 32975.17 28572.21 34989.29 346
dmvs_re84.20 27083.22 27187.14 29691.83 25877.81 26290.04 29890.19 32984.70 17481.49 28489.17 30564.37 29291.13 35571.58 30685.65 25392.46 300
CHOSEN 1792x268888.84 14987.69 16092.30 11496.14 9681.42 16690.01 29995.86 13974.52 32687.41 15893.94 17075.46 16298.36 11680.36 23195.53 10797.12 108
HyFIR lowres test88.09 17086.81 18291.93 12896.00 10580.63 18790.01 29995.79 14373.42 33687.68 15492.10 23573.86 18697.96 15580.75 22591.70 17397.19 103
CMPMVSbinary59.16 2180.52 30579.20 30784.48 32683.98 36267.63 35689.95 30193.84 24664.79 36266.81 36391.14 26857.93 33195.17 31176.25 27688.10 22790.65 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PAPM86.68 22685.39 23590.53 18893.05 22379.33 22989.79 30294.77 21278.82 27981.95 28193.24 19576.81 14297.30 20866.94 33693.16 15894.95 190
test-LLR85.87 24385.41 23487.25 29090.95 29171.67 33389.55 30389.88 33983.41 19984.54 23187.95 32467.25 26495.11 31381.82 20693.37 15494.97 184
TESTMET0.1,183.74 27782.85 27686.42 30989.96 32171.21 33789.55 30387.88 34977.41 29783.37 26487.31 33256.71 33493.65 33480.62 22892.85 16494.40 218
test-mter84.54 26783.64 26687.25 29090.95 29171.67 33389.55 30389.88 33979.17 27384.54 23187.95 32455.56 33895.11 31381.82 20693.37 15494.97 184
TinyColmap79.76 31277.69 31485.97 31291.71 26373.12 31489.55 30390.36 32775.03 32072.03 35390.19 28746.22 36396.19 27963.11 35181.03 30488.59 353
CostFormer85.77 24684.94 24688.26 26791.16 28372.58 32589.47 30791.04 31676.26 30986.45 18289.97 29470.74 22396.86 24182.35 19587.07 24495.34 175
LF4IMVS80.37 30779.07 31084.27 32986.64 35069.87 34889.39 30891.05 31576.38 30674.97 34090.00 29347.85 36094.25 32574.55 29380.82 31088.69 352
USDC82.76 28181.26 28687.26 28991.17 28174.55 30189.27 30993.39 25478.26 29175.30 33892.08 23654.43 34596.63 24871.64 30585.79 25290.61 334
PCF-MVS84.11 1087.74 17986.08 21492.70 9494.02 18984.43 8489.27 30995.87 13873.62 33584.43 23694.33 15178.48 12998.86 8070.27 31394.45 13394.81 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpm284.08 27182.94 27487.48 28591.39 27371.27 33589.23 31190.37 32671.95 34784.64 22889.33 30367.30 26396.55 25975.17 28587.09 24394.63 199
MSDG84.86 26383.09 27290.14 21093.80 20180.05 20589.18 31293.09 25878.89 27778.19 31891.91 24265.86 28497.27 21268.47 32688.45 22293.11 280
EGC-MVSNET61.97 33856.37 34278.77 34489.63 32773.50 31189.12 31382.79 3640.21 3861.24 38784.80 34839.48 36790.04 36044.13 37275.94 34372.79 370
tpm84.73 26484.02 26086.87 30390.33 31368.90 35089.06 31489.94 33680.85 25685.75 19389.86 29668.54 25795.97 28677.76 26084.05 26595.75 160
ppachtmachnet_test81.84 28980.07 29787.15 29588.46 33774.43 30489.04 31592.16 28275.33 31777.75 32288.99 30766.20 28095.37 30965.12 34577.60 33391.65 316
PM-MVS78.11 32076.12 32484.09 33183.54 36470.08 34688.97 31685.27 35879.93 26474.73 34286.43 33834.70 37093.48 33579.43 24572.06 35088.72 351
MDA-MVSNet-bldmvs78.85 31776.31 32286.46 30789.76 32473.88 30888.79 31790.42 32579.16 27459.18 36788.33 31960.20 32094.04 32662.00 35468.96 35891.48 320
tpmrst85.35 25384.99 24386.43 30890.88 29867.88 35488.71 31891.43 30780.13 26286.08 19088.80 31273.05 19796.02 28482.48 19183.40 27595.40 172
PMMVS85.71 24784.96 24587.95 27588.90 33277.09 27588.68 31990.06 33372.32 34586.47 17990.76 27972.15 20894.40 32081.78 20893.49 14992.36 304
EPMVS83.90 27682.70 27887.51 28290.23 31672.67 32088.62 32081.96 36781.37 24785.01 22388.34 31866.31 27994.45 31875.30 28487.12 24295.43 171
PatchmatchNetpermissive85.85 24484.70 25189.29 24191.76 26075.54 29588.49 32191.30 30981.63 24285.05 22288.70 31471.71 21096.24 27674.61 29289.05 21196.08 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
our_test_381.93 28880.46 29186.33 31088.46 33773.48 31288.46 32291.11 31276.46 30476.69 32988.25 32066.89 27094.36 32168.75 32479.08 32891.14 327
UnsupCasMVSNet_eth80.07 30978.27 31385.46 31885.24 36072.63 32388.45 32394.87 20482.99 21071.64 35588.07 32356.34 33591.75 35273.48 29963.36 36792.01 311
tpmvs83.35 28082.07 27987.20 29491.07 28771.00 34088.31 32491.70 29778.91 27680.49 29987.18 33469.30 24797.08 22668.12 33183.56 27193.51 265
N_pmnet68.89 33468.44 33670.23 35489.07 33028.79 38888.06 32519.50 38969.47 35571.86 35484.93 34761.24 31391.75 35254.70 36677.15 33690.15 338
test_post188.00 3269.81 38369.31 24695.53 30276.65 271
GG-mvs-BLEND87.94 27689.73 32677.91 25787.80 32778.23 37680.58 29783.86 35159.88 32395.33 31071.20 30892.22 17190.60 336
DSMNet-mixed76.94 32476.29 32378.89 34383.10 36556.11 37887.78 32879.77 37160.65 36675.64 33688.71 31361.56 30988.34 36660.07 36089.29 20792.21 309
MDTV_nov1_ep1383.56 26791.69 26569.93 34787.75 32991.54 30378.60 28484.86 22588.90 30969.54 24096.03 28370.25 31488.93 214
miper_lstm_enhance85.27 25684.59 25487.31 28791.28 27874.63 30087.69 33094.09 23781.20 25381.36 28889.85 29774.97 16894.30 32381.03 22079.84 32393.01 284
new-patchmatchnet76.41 32575.17 32880.13 34082.65 36759.61 37087.66 33191.08 31378.23 29269.85 35983.22 35454.76 34291.63 35464.14 34964.89 36589.16 348
MDTV_nov1_ep13_2view55.91 37987.62 33273.32 33784.59 23070.33 23174.65 29195.50 169
mvsany_test185.42 25185.30 23885.77 31687.95 34575.41 29787.61 33380.97 36976.82 30388.68 13595.83 9477.44 13890.82 35785.90 14686.51 24791.08 331
tpm cat181.96 28780.27 29387.01 29791.09 28671.02 33987.38 33491.53 30466.25 35980.17 30186.35 34068.22 26096.15 28069.16 32282.29 28593.86 244
test_vis3_rt65.12 33662.60 33872.69 35171.44 37660.71 36987.17 33565.55 38263.80 36453.22 37065.65 37414.54 38489.44 36376.65 27165.38 36367.91 373
PVSNet78.82 1885.55 24884.65 25288.23 26994.72 15971.93 32887.12 33692.75 26778.80 28084.95 22490.53 28264.43 29196.71 24574.74 29093.86 14196.06 148
dmvs_testset74.57 32875.81 32770.86 35387.72 34740.47 38487.05 33777.90 37782.75 21571.15 35785.47 34667.98 26184.12 37345.26 37176.98 33988.00 356
pmmvs371.81 33268.71 33581.11 33975.86 37270.42 34486.74 33883.66 36258.95 36768.64 36280.89 36136.93 36889.52 36263.10 35263.59 36683.39 361
dp81.47 29780.23 29485.17 32289.92 32265.49 36186.74 33890.10 33276.30 30881.10 29087.12 33562.81 30195.92 28868.13 33079.88 32194.09 232
MIMVSNet82.59 28480.53 28988.76 25391.51 26878.32 24886.57 34090.13 33179.32 27080.70 29588.69 31552.98 35093.07 34266.03 34188.86 21594.90 191
gg-mvs-nofinetune81.77 29079.37 30388.99 25090.85 29977.73 26786.29 34179.63 37274.88 32483.19 26869.05 37160.34 31996.11 28175.46 28294.64 12793.11 280
testmvs8.92 35211.52 3551.12 3681.06 3900.46 39286.02 3420.65 3910.62 3842.74 3859.52 3840.31 3910.45 3872.38 3840.39 3842.46 383
YYNet179.22 31577.20 31785.28 32188.20 34272.66 32185.87 34390.05 33574.33 32862.70 36587.61 32966.09 28292.03 34866.94 33672.97 34791.15 326
MDA-MVSNet_test_wron79.21 31677.19 31885.29 32088.22 34172.77 31885.87 34390.06 33374.34 32762.62 36687.56 33066.14 28191.99 35066.90 33973.01 34691.10 330
test1238.76 35311.22 3561.39 3670.85 3910.97 39185.76 3450.35 3920.54 3852.45 3868.14 3850.60 3900.48 3862.16 3850.17 3852.71 382
UnsupCasMVSNet_bld76.23 32673.27 33085.09 32383.79 36372.92 31585.65 34693.47 25371.52 34868.84 36179.08 36349.77 35593.21 33966.81 34060.52 36989.13 350
mvsany_test374.95 32773.26 33180.02 34174.61 37363.16 36685.53 34778.42 37474.16 32974.89 34186.46 33736.02 36989.09 36482.39 19466.91 36187.82 358
APD_test169.04 33366.26 33777.36 34880.51 36862.79 36785.46 34883.51 36354.11 37059.14 36884.79 34923.40 37789.61 36155.22 36570.24 35379.68 368
CR-MVSNet85.35 25383.76 26490.12 21190.58 30879.34 22685.24 34991.96 29378.27 29085.55 19887.87 32771.03 21895.61 30073.96 29689.36 20595.40 172
RPMNet83.95 27481.53 28391.21 16190.58 30879.34 22685.24 34996.76 7371.44 34985.55 19882.97 35770.87 22198.91 7661.01 35789.36 20595.40 172
test_f71.95 33170.87 33375.21 34974.21 37559.37 37185.07 35185.82 35565.25 36170.42 35883.13 35523.62 37582.93 37578.32 25471.94 35183.33 362
KD-MVS_2432*160078.50 31876.02 32585.93 31386.22 35274.47 30284.80 35292.33 27679.29 27176.98 32785.92 34253.81 34893.97 32767.39 33357.42 37289.36 343
miper_refine_blended78.50 31876.02 32585.93 31386.22 35274.47 30284.80 35292.33 27679.29 27176.98 32785.92 34253.81 34893.97 32767.39 33357.42 37289.36 343
Patchmtry82.71 28280.93 28888.06 27290.05 31976.37 28784.74 35491.96 29372.28 34681.32 28987.87 32771.03 21895.50 30668.97 32380.15 31892.32 306
FPMVS64.63 33762.55 33970.88 35270.80 37756.71 37384.42 35584.42 36051.78 37149.57 37181.61 35923.49 37681.48 37640.61 37776.25 34174.46 369
PatchT82.68 28381.27 28586.89 30290.09 31870.94 34184.06 35690.15 33074.91 32285.63 19783.57 35369.37 24294.87 31765.19 34388.50 22194.84 193
new_pmnet72.15 33070.13 33478.20 34582.95 36665.68 35983.91 35782.40 36662.94 36564.47 36479.82 36242.85 36586.26 36957.41 36474.44 34582.65 365
LCM-MVSNet66.00 33562.16 34077.51 34764.51 38358.29 37283.87 35890.90 31948.17 37254.69 36973.31 36916.83 38386.75 36865.47 34261.67 36887.48 359
ADS-MVSNet281.66 29379.71 30187.50 28391.35 27574.19 30683.33 35988.48 34872.90 34182.24 27785.77 34464.98 28893.20 34064.57 34783.74 26795.12 180
ADS-MVSNet81.56 29579.78 29986.90 30191.35 27571.82 33083.33 35989.16 34572.90 34182.24 27785.77 34464.98 28893.76 33164.57 34783.74 26795.12 180
PVSNet_073.20 2077.22 32374.83 32984.37 32790.70 30571.10 33883.09 36189.67 34272.81 34373.93 34683.13 35560.79 31793.70 33368.54 32550.84 37588.30 355
MVS-HIRNet73.70 32972.20 33278.18 34691.81 25956.42 37782.94 36282.58 36555.24 36868.88 36066.48 37255.32 34095.13 31258.12 36288.42 22383.01 363
Patchmatch-RL test81.67 29279.96 29886.81 30485.42 35971.23 33682.17 36387.50 35378.47 28577.19 32682.50 35870.81 22293.48 33582.66 19072.89 34895.71 164
JIA-IIPM81.04 30178.98 31187.25 29088.64 33373.48 31281.75 36489.61 34373.19 33882.05 27973.71 36866.07 28395.87 29171.18 31084.60 26092.41 302
Patchmatch-test81.37 29879.30 30487.58 28190.92 29574.16 30780.99 36587.68 35270.52 35376.63 33088.81 31071.21 21592.76 34460.01 36186.93 24595.83 157
ANet_high58.88 34254.22 34672.86 35056.50 38656.67 37480.75 36686.00 35473.09 34037.39 37864.63 37522.17 37879.49 37843.51 37323.96 38082.43 366
testf159.54 34056.11 34369.85 35569.28 37856.61 37580.37 36776.55 37942.58 37545.68 37475.61 36411.26 38584.18 37143.20 37460.44 37068.75 371
APD_test259.54 34056.11 34369.85 35569.28 37856.61 37580.37 36776.55 37942.58 37545.68 37475.61 36411.26 38584.18 37143.20 37460.44 37068.75 371
CHOSEN 280x42085.15 25883.99 26188.65 25892.47 23878.40 24679.68 36992.76 26674.90 32381.41 28789.59 30069.85 23795.51 30479.92 23895.29 11592.03 310
ambc83.06 33579.99 36963.51 36577.47 37092.86 26374.34 34584.45 35028.74 37195.06 31573.06 30168.89 35990.61 334
EMVS42.07 34841.12 35044.92 36463.45 38435.56 38773.65 37163.48 38433.05 37926.88 38345.45 38021.27 37967.14 38119.80 38223.02 38132.06 379
E-PMN43.23 34742.29 34946.03 36365.58 38237.41 38573.51 37264.62 38333.99 37828.47 38247.87 37919.90 38167.91 38022.23 38124.45 37932.77 378
PMVScopyleft47.18 2252.22 34448.46 34863.48 35945.72 38846.20 38373.41 37378.31 37541.03 37730.06 38065.68 3736.05 38783.43 37430.04 37965.86 36260.80 374
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS259.60 33956.40 34169.21 35768.83 38046.58 38273.02 37477.48 37855.07 36949.21 37272.95 37017.43 38280.04 37749.32 37044.33 37780.99 367
tmp_tt35.64 34939.24 35124.84 36514.87 38923.90 38962.71 37551.51 3886.58 38336.66 37962.08 37644.37 36430.34 38552.40 36822.00 38220.27 380
MVEpermissive39.65 2343.39 34638.59 35257.77 36056.52 38548.77 38155.38 37658.64 38629.33 38028.96 38152.65 3774.68 38864.62 38228.11 38033.07 37859.93 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft57.99 34354.91 34567.24 35888.51 33465.59 36052.21 37790.33 32843.58 37442.84 37751.18 37820.29 38085.07 37034.77 37870.45 35251.05 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d21.27 35120.48 35423.63 36668.59 38136.41 38649.57 3786.85 3909.37 3827.89 3844.46 3864.03 38931.37 38417.47 38316.07 3833.12 381
test_method50.52 34548.47 34756.66 36152.26 38718.98 39041.51 37981.40 36810.10 38144.59 37675.01 36728.51 37268.16 37953.54 36749.31 37682.83 364
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k22.14 35029.52 3530.00 3690.00 3920.00 3930.00 38095.76 1450.00 3870.00 38894.29 15475.66 1600.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas6.64 3558.86 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38779.70 1120.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.82 35410.43 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38893.88 1750.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6299.61 396.03 499.06 999.07 5
PC_three_145282.47 21997.09 1097.07 4192.72 198.04 14992.70 4599.02 1298.86 10
No_MVS96.52 197.78 5190.86 196.85 6299.61 396.03 499.06 999.07 5
test_one_060198.58 1185.83 5897.44 1591.05 1396.78 1498.06 691.45 11
eth-test20.00 392
eth-test0.00 392
ZD-MVS98.15 3486.62 3197.07 4483.63 19294.19 3296.91 4787.57 3199.26 4191.99 6498.44 50
IU-MVS98.77 586.00 4896.84 6481.26 25097.26 795.50 1399.13 399.03 7
test_241102_TWO97.44 1590.31 2797.62 598.07 491.46 1099.58 995.66 799.12 698.98 9
test_241102_ONE98.77 585.99 5097.44 1590.26 3297.71 197.96 1092.31 499.38 30
test_0728_THIRD90.75 1897.04 1198.05 892.09 699.55 1595.64 999.13 399.13 2
GSMVS96.12 143
test_part298.55 1287.22 1796.40 15
sam_mvs171.70 21196.12 143
sam_mvs70.60 224
MTGPAbinary96.97 49
test_post10.29 38270.57 22895.91 290
patchmatchnet-post83.76 35271.53 21296.48 262
gm-plane-assit89.60 32868.00 35277.28 30088.99 30797.57 17979.44 244
test9_res91.91 6898.71 3198.07 65
agg_prior290.54 9298.68 3698.27 51
agg_prior97.38 6385.92 5596.72 7992.16 7998.97 71
TestCases89.52 23695.01 14277.79 26490.89 32077.41 29776.12 33393.34 18854.08 34697.51 18568.31 32884.27 26393.26 271
test_prior93.82 5797.29 6784.49 7996.88 6098.87 7898.11 64
新几何193.10 7397.30 6684.35 8695.56 15971.09 35191.26 10396.24 7582.87 7898.86 8079.19 24898.10 6196.07 147
旧先验196.79 7681.81 15495.67 15196.81 5386.69 3597.66 7696.97 115
原ACMM192.01 12097.34 6481.05 17596.81 6878.89 27790.45 11095.92 9082.65 7998.84 8480.68 22798.26 5696.14 141
testdata298.75 8878.30 255
segment_acmp87.16 34
testdata90.49 19296.40 8977.89 25995.37 17772.51 34493.63 4296.69 5682.08 9097.65 17283.08 18097.39 7995.94 151
test1294.34 4897.13 7086.15 4696.29 10291.04 10585.08 5399.01 6298.13 6097.86 78
plane_prior794.70 16182.74 131
plane_prior694.52 17082.75 12974.23 177
plane_prior596.22 11098.12 13488.15 11489.99 19094.63 199
plane_prior494.86 130
plane_prior382.75 12990.26 3286.91 170
plane_prior194.59 165
n20.00 393
nn0.00 393
door-mid85.49 356
lessismore_v086.04 31188.46 33768.78 35180.59 37073.01 35090.11 29055.39 33996.43 26775.06 28765.06 36492.90 287
LGP-MVS_train91.12 16594.47 17281.49 16296.14 11586.73 12785.45 20895.16 12069.89 23598.10 13687.70 12289.23 20893.77 252
test1196.57 90
door85.33 357
HQP5-MVS81.56 158
BP-MVS87.11 133
HQP4-MVS85.43 21197.96 15594.51 209
HQP3-MVS96.04 12489.77 199
HQP2-MVS73.83 187
NP-MVS94.37 17882.42 14193.98 168
ACMMP++_ref87.47 236
ACMMP++88.01 230
Test By Simon80.02 107
ITE_SJBPF88.24 26891.88 25577.05 27692.92 26185.54 15480.13 30493.30 19257.29 33396.20 27772.46 30384.71 25991.49 319
DeepMVS_CXcopyleft56.31 36274.23 37451.81 38056.67 38744.85 37348.54 37375.16 36627.87 37358.74 38340.92 37652.22 37458.39 376