This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 4399.72 5699.74 37
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
CS-MVS98.44 4198.49 2198.31 11099.08 10796.73 11399.67 398.47 18097.17 5598.94 5599.10 8695.73 4599.13 20698.71 2899.49 10199.09 161
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17497.45 3598.88 6299.14 8195.25 6599.15 20398.83 2699.56 9199.20 141
EC-MVSNet98.21 5998.11 5798.49 9398.34 18297.26 9099.61 598.43 18996.78 7498.87 6398.84 12693.72 10199.01 22798.91 2399.50 9999.19 145
HPM-MVScopyleft98.36 5098.10 5999.13 4899.74 797.82 6899.53 698.80 9394.63 18098.61 8298.97 10595.13 7399.77 10697.65 9199.83 1499.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer97.57 9397.49 8497.84 14798.07 20995.76 16899.47 798.40 19394.98 16198.79 6798.83 12892.34 11998.41 29896.91 12399.59 8199.34 116
test_djsdf96.00 16595.69 16996.93 21295.72 35195.49 17899.47 798.40 19394.98 16194.58 23897.86 22489.16 19698.41 29896.91 12394.12 26396.88 281
HPM-MVS_fast98.38 4798.13 5599.12 5099.75 397.86 6499.44 998.82 8194.46 19098.94 5599.20 6795.16 7199.74 11197.58 9699.85 599.77 27
nrg03096.28 15695.72 16397.96 14396.90 30198.15 5499.39 1098.31 21095.47 13194.42 24898.35 17992.09 13198.69 26597.50 10489.05 33797.04 265
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2499.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+94.38 697.43 10296.78 12199.38 1897.83 22998.52 2899.37 1298.71 11697.09 6292.99 30999.13 8289.36 19099.89 4796.97 12099.57 8599.71 49
FIs96.51 14596.12 14897.67 16697.13 28797.54 7699.36 1399.22 2395.89 11294.03 26998.35 17991.98 13498.44 28996.40 14892.76 29197.01 266
FC-MVSNet-test96.42 14896.05 15097.53 17696.95 29697.27 8699.36 1399.23 2095.83 11593.93 27298.37 17792.00 13398.32 30796.02 16092.72 29297.00 267
3Dnovator94.51 597.46 9796.93 11399.07 5397.78 23297.64 7199.35 1599.06 3497.02 6493.75 28299.16 7789.25 19399.92 3197.22 11399.75 4599.64 71
sasdasda97.67 8397.23 9898.98 5998.70 14798.38 3599.34 1698.39 19596.76 7697.67 14197.40 26692.26 12299.49 16298.28 5596.28 23299.08 165
GeoE96.58 14396.07 14998.10 13298.35 17795.89 16499.34 1698.12 24693.12 25896.09 20598.87 12389.71 18298.97 22992.95 25998.08 17699.43 109
canonicalmvs97.67 8397.23 9898.98 5998.70 14798.38 3599.34 1698.39 19596.76 7697.67 14197.40 26692.26 12299.49 16298.28 5596.28 23299.08 165
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1698.87 6995.96 10898.60 8399.13 8296.05 3499.94 897.77 8199.86 199.77 27
EPP-MVSNet97.46 9797.28 9697.99 14098.64 15695.38 18399.33 2098.31 21093.61 23697.19 15899.07 9594.05 9799.23 19396.89 12798.43 16399.37 114
MGCFI-Net97.62 8897.19 10198.92 6498.66 15398.20 4999.32 2198.38 19996.69 8197.58 15097.42 26592.10 13099.50 16198.28 5596.25 23599.08 165
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2298.88 6297.40 3698.46 8899.20 6795.90 4299.89 4797.85 7699.74 5099.78 21
X-MVStestdata94.06 29292.30 31599.34 2399.70 2298.35 4299.29 2298.88 6297.40 3698.46 8843.50 40895.90 4299.89 4797.85 7699.74 5099.78 21
tttt051796.07 16295.51 17497.78 15398.41 17394.84 21299.28 2494.33 38894.26 19697.64 14698.64 15084.05 30799.47 17095.34 18297.60 19399.03 171
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2498.81 8696.24 9898.35 9899.23 6295.46 5299.94 897.42 10799.81 1599.77 27
test_vis1_n95.47 19295.13 19296.49 25297.77 23390.41 33099.27 2698.11 24996.58 8599.66 1599.18 7367.00 39099.62 13799.21 1699.40 11499.44 107
test_fmvs1_n95.90 17295.99 15495.63 29598.67 15288.32 36699.26 2798.22 22696.40 9399.67 1499.26 5773.91 37799.70 11999.02 2199.50 9998.87 185
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2798.88 6297.52 2999.41 2898.78 13596.00 3699.79 9897.79 8099.59 8199.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v7n94.19 27993.43 29296.47 25595.90 34694.38 23699.26 2798.34 20691.99 29792.76 31497.13 28288.31 21998.52 28089.48 33387.70 35196.52 326
MVSMamba_PlusPlus98.31 5698.19 5498.67 7698.96 12297.36 8399.24 3098.57 15294.81 17198.99 5298.90 11895.22 6899.59 14099.15 1799.84 1199.07 169
iter_conf05_1198.04 6597.94 6798.34 10798.60 16096.38 13399.24 3098.57 15295.90 11198.99 5298.79 13492.97 11099.47 17098.58 3199.85 599.17 151
WR-MVS_H95.05 22194.46 22596.81 22196.86 30395.82 16699.24 3099.24 1793.87 21392.53 32296.84 31790.37 17198.24 31793.24 24987.93 34996.38 339
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10598.94 5599.17 7496.06 3399.92 3197.62 9399.78 3299.75 35
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10298.94 5599.17 7495.91 4099.94 897.55 10099.79 2899.78 21
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10598.93 5999.19 7295.70 4699.94 897.62 9399.79 2899.78 21
QAPM96.29 15495.40 17598.96 6297.85 22897.60 7499.23 3398.93 5089.76 34893.11 30699.02 9889.11 19899.93 2591.99 28699.62 7699.34 116
MP-MVScopyleft98.33 5598.01 6499.28 3299.75 398.18 5199.22 3798.79 9896.13 10397.92 12599.23 6294.54 8399.94 896.74 14099.78 3299.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNetpermissive97.42 10397.11 10498.34 10798.66 15396.23 14199.22 3799.00 3996.63 8498.04 11199.21 6588.05 22899.35 18196.01 16199.21 12299.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG97.85 7497.74 7298.20 12199.67 2595.16 19599.22 3799.32 1193.04 26197.02 16798.92 11695.36 5899.91 3997.43 10699.64 7399.52 86
SDMVSNet96.85 13296.42 13798.14 12499.30 6896.38 13399.21 4099.23 2095.92 10995.96 21198.76 14185.88 26899.44 17497.93 7095.59 24798.60 210
OpenMVScopyleft93.04 1395.83 17695.00 19998.32 10997.18 28497.32 8499.21 4098.97 4289.96 34491.14 34299.05 9786.64 25499.92 3193.38 24599.47 10497.73 245
DTE-MVSNet93.98 29493.26 29796.14 27496.06 34094.39 23599.20 4298.86 7593.06 26091.78 33697.81 23285.87 26997.58 35590.53 31386.17 36796.46 336
Vis-MVSNet (Re-imp)96.87 13196.55 13397.83 14898.73 14295.46 17999.20 4298.30 21694.96 16396.60 18798.87 12390.05 17698.59 27593.67 23998.60 15299.46 104
test_fmvs293.43 30193.58 28492.95 35696.97 29583.91 38299.19 4497.24 32595.74 11895.20 22598.27 19169.65 38398.72 26496.26 15193.73 27296.24 344
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 11798.31 10199.10 8695.46 5299.93 2597.57 9999.81 1599.74 37
IS-MVSNet97.22 11396.88 11598.25 11698.85 13596.36 13699.19 4497.97 26995.39 13597.23 15798.99 10491.11 15998.93 23994.60 20798.59 15399.47 100
mvsmamba97.25 11296.99 11098.02 13898.34 18295.54 17699.18 4797.47 30795.04 15798.15 10298.57 15989.46 18799.31 18597.68 9099.01 13199.22 138
PEN-MVS94.42 26593.73 27796.49 25296.28 33194.84 21299.17 4899.00 3993.51 23892.23 33097.83 23086.10 26497.90 34192.55 27286.92 36296.74 294
PS-MVSNAJss96.43 14796.26 14496.92 21595.84 34995.08 20099.16 4998.50 17495.87 11493.84 27898.34 18394.51 8498.61 27296.88 12993.45 28097.06 264
dcpmvs_298.08 6298.59 1496.56 24499.57 3390.34 33299.15 5098.38 19996.82 7399.29 3499.49 1795.78 4499.57 14498.94 2299.86 199.77 27
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 5098.81 8696.24 9899.20 3899.37 3895.30 6199.80 8897.73 8399.67 6499.72 45
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5298.66 13296.84 7199.56 2099.31 5196.34 2599.70 11998.32 5399.73 5399.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
anonymousdsp95.42 19794.91 20496.94 21195.10 36795.90 16399.14 5298.41 19193.75 21993.16 30297.46 25987.50 24198.41 29895.63 17694.03 26596.50 331
jajsoiax95.45 19595.03 19896.73 22495.42 36394.63 22299.14 5298.52 16695.74 11893.22 30098.36 17883.87 31298.65 27096.95 12294.04 26496.91 277
PS-CasMVS94.67 24593.99 25696.71 22596.68 31495.26 19099.13 5599.03 3793.68 23092.33 32897.95 21785.35 27798.10 32593.59 24188.16 34896.79 289
CPTT-MVS97.72 7997.32 9598.92 6499.64 2897.10 9799.12 5698.81 8692.34 28698.09 10799.08 9493.01 10999.92 3196.06 15899.77 3499.75 35
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5798.80 9396.49 8899.17 4199.35 4495.34 5999.82 7697.72 8499.65 6999.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5798.80 9396.49 8899.17 4199.35 4495.29 6297.72 8499.65 6999.71 49
CP-MVSNet94.94 23294.30 23396.83 21996.72 31295.56 17399.11 5798.95 4693.89 21192.42 32797.90 22087.19 24598.12 32494.32 21788.21 34696.82 288
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 6098.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 8199.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6198.82 8196.58 8599.10 4699.32 4995.39 5599.82 7697.70 8899.63 7499.72 45
GST-MVS98.43 4398.12 5699.34 2399.72 1298.38 3599.09 6198.82 8195.71 12198.73 7399.06 9695.27 6399.93 2597.07 11799.63 7499.72 45
K. test v392.55 31891.91 32194.48 33595.64 35389.24 34899.07 6394.88 38294.04 20186.78 37497.59 25177.64 35697.64 35292.08 28189.43 33296.57 316
test250694.44 26493.91 26196.04 27799.02 11188.99 35499.06 6479.47 41396.96 6798.36 9699.26 5777.21 35899.52 15996.78 13899.04 12899.59 79
test072699.72 1299.25 299.06 6498.88 6297.62 2499.56 2099.50 1597.42 9
test_vis1_n_192096.71 13796.84 11796.31 26899.11 10489.74 33999.05 6698.58 15098.08 1299.87 199.37 3878.48 34699.93 2599.29 1499.69 6199.27 129
test_fmvs387.17 35387.06 35687.50 37191.21 39275.66 39699.05 6696.61 36192.79 27188.85 36392.78 38843.72 40393.49 39493.95 22984.56 37193.34 388
v894.47 26293.77 27396.57 24396.36 32894.83 21499.05 6698.19 23191.92 29993.16 30296.97 30588.82 20998.48 28291.69 29487.79 35096.39 338
test111195.94 16995.78 16096.41 26198.99 11890.12 33499.04 6992.45 39996.99 6698.03 11299.27 5681.40 32499.48 16796.87 13299.04 12899.63 73
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6998.81 8695.12 15199.32 3399.39 3296.22 2799.84 6797.72 8499.73 5399.67 65
PHI-MVS98.34 5398.06 6099.18 4299.15 10098.12 5799.04 6999.09 3193.32 24798.83 6699.10 8696.54 2199.83 6997.70 8899.76 4099.59 79
ECVR-MVScopyleft95.95 16795.71 16696.65 23099.02 11190.86 32099.03 7291.80 40096.96 6798.10 10699.26 5781.31 32599.51 16096.90 12699.04 12899.59 79
TranMVSNet+NR-MVSNet95.14 21694.48 22397.11 20096.45 32596.36 13699.03 7299.03 3795.04 15793.58 28597.93 21888.27 22098.03 33194.13 22386.90 36396.95 271
ACMMPcopyleft98.23 5897.95 6699.09 5299.74 797.62 7399.03 7299.41 695.98 10797.60 14999.36 4294.45 8899.93 2597.14 11498.85 14199.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7598.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4799.81 1599.70 53
OPU-MVS99.37 2099.24 8799.05 1499.02 7599.16 7797.81 399.37 18097.24 11299.73 5399.70 53
EIA-MVS97.75 7797.58 7798.27 11298.38 17496.44 12999.01 7798.60 14295.88 11397.26 15697.53 25694.97 7799.33 18397.38 10999.20 12399.05 170
Anonymous2023121194.10 28893.26 29796.61 23799.11 10494.28 23999.01 7798.88 6286.43 37392.81 31297.57 25381.66 32398.68 26894.83 19889.02 33996.88 281
test_cas_vis1_n_192097.38 10697.36 9397.45 17898.95 12493.25 27999.00 7998.53 16397.70 2099.77 799.35 4484.71 29299.85 6398.57 3299.66 6699.26 132
mvs_tets95.41 19995.00 19996.65 23095.58 35594.42 23399.00 7998.55 15995.73 12093.21 30198.38 17683.45 31698.63 27197.09 11694.00 26696.91 277
baseline97.64 8697.44 8998.25 11698.35 17796.20 14299.00 7998.32 20896.33 9798.03 11299.17 7491.35 15199.16 20098.10 6298.29 17199.39 112
v1094.29 27393.55 28696.51 25196.39 32794.80 21698.99 8298.19 23191.35 31693.02 30896.99 30388.09 22598.41 29890.50 31488.41 34596.33 342
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8299.49 595.43 13399.03 4799.32 4995.56 4999.94 896.80 13799.77 3499.78 21
LPG-MVS_test95.62 18795.34 18196.47 25597.46 26093.54 26398.99 8298.54 16194.67 17894.36 25198.77 13785.39 27599.11 21095.71 17294.15 26196.76 292
test_fmvsmvis_n_192098.44 4198.51 1898.23 11898.33 18596.15 14598.97 8599.15 2898.55 798.45 9199.55 694.26 9499.97 199.65 799.66 6698.57 215
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8598.58 15097.62 2499.45 2599.46 2497.42 999.94 898.47 4399.81 1599.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8598.88 6299.94 898.47 4399.81 1599.84 12
tfpnnormal93.66 29792.70 30796.55 24896.94 29795.94 15798.97 8599.19 2491.04 32791.38 34097.34 26884.94 28598.61 27285.45 36589.02 33995.11 367
V4294.78 23894.14 24496.70 22796.33 33095.22 19398.97 8598.09 25692.32 28894.31 25497.06 29488.39 21898.55 27792.90 26188.87 34196.34 340
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 13098.96 9099.36 998.63 599.86 299.51 1395.91 4099.97 199.72 599.75 4598.94 181
test_fmvsmconf0.01_n97.86 7297.54 8298.83 6995.48 35996.83 10898.95 9198.60 14298.58 698.93 5999.55 688.57 21299.91 3999.54 1199.61 7799.77 27
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9198.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 6499.81 1599.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs193.94 29593.06 29996.59 24096.49 32395.16 19598.95 9198.03 26692.32 28891.08 34397.84 22784.54 29798.41 29892.16 27986.13 36996.19 347
Anonymous2024052191.18 33090.44 33193.42 34793.70 38288.47 36398.94 9497.56 29488.46 36489.56 35795.08 36977.15 36196.97 36683.92 37489.55 32994.82 372
VPA-MVSNet95.75 17995.11 19597.69 16397.24 27697.27 8698.94 9499.23 2095.13 15095.51 21897.32 27085.73 27098.91 24297.33 11189.55 32996.89 280
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9697.02 34098.96 199.17 4199.47 2091.97 13699.94 899.85 499.69 6199.91 2
LS3D97.16 11896.66 13098.68 7598.53 16697.19 9498.93 9698.90 5792.83 27095.99 20999.37 3892.12 12999.87 5893.67 23999.57 8598.97 177
casdiffmvs_mvgpermissive97.72 7997.48 8698.44 9998.42 17196.59 12198.92 9898.44 18596.20 10097.76 13299.20 6791.66 14299.23 19398.27 5898.41 16499.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM93.85 995.69 18495.38 17996.61 23797.61 24793.84 25298.91 9998.44 18595.25 14594.28 25598.47 16786.04 26799.12 20895.50 18093.95 26896.87 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 10098.74 10897.27 4998.02 11499.39 3294.81 8099.96 497.91 7299.79 2899.77 27
iter_conf0598.16 6198.02 6398.59 8298.96 12297.07 9898.90 10098.57 15294.81 17197.84 12898.90 11895.22 6899.59 14099.15 1799.84 1199.12 157
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 10098.85 7897.28 4599.72 1299.39 3296.63 2097.60 35398.17 5999.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TransMVSNet (Re)92.67 31791.51 32396.15 27396.58 31894.65 22098.90 10096.73 35490.86 33089.46 35897.86 22485.62 27298.09 32786.45 35781.12 38395.71 357
EPNet97.28 11096.87 11698.51 9094.98 36896.14 14698.90 10097.02 34098.28 1095.99 20999.11 8491.36 15099.89 4796.98 11999.19 12499.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10599.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 5099.90 3
fmvsm_s_conf0.1_n_a98.08 6298.04 6298.21 11997.66 24495.39 18298.89 10599.17 2697.24 5099.76 899.67 191.13 15799.88 5699.39 1399.41 11199.35 115
MTMP98.89 10594.14 391
UA-Net97.96 6797.62 7598.98 5998.86 13397.47 8098.89 10599.08 3296.67 8298.72 7499.54 893.15 10899.81 8194.87 19698.83 14299.65 69
OurMVSNet-221017-094.21 27794.00 25494.85 32295.60 35489.22 34998.89 10597.43 31495.29 14292.18 33198.52 16482.86 31798.59 27593.46 24491.76 30096.74 294
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 11099.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2299.89 5
thisisatest053096.01 16495.36 18097.97 14198.38 17495.52 17798.88 11094.19 39094.04 20197.64 14698.31 18683.82 31499.46 17295.29 18697.70 19098.93 182
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 11095.32 37798.86 298.53 8699.44 2794.38 9099.94 899.86 199.70 5999.90 3
UGNet96.78 13596.30 14298.19 12398.24 19195.89 16498.88 11098.93 5097.39 3896.81 17897.84 22782.60 31999.90 4596.53 14399.49 10198.79 191
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.1_n98.18 6098.21 5198.11 13198.54 16595.24 19298.87 11499.24 1797.50 3199.70 1399.67 191.33 15299.89 4799.47 1299.54 9499.21 140
Anonymous2024052995.10 21894.22 23797.75 15799.01 11394.26 24198.87 11498.83 8085.79 37996.64 18398.97 10578.73 34399.85 6396.27 15094.89 25299.12 157
thres100view90095.38 20094.70 21397.41 18298.98 11994.92 20998.87 11496.90 34795.38 13696.61 18696.88 31384.29 29999.56 14788.11 34696.29 22997.76 242
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11299.09 10695.41 18198.86 11799.37 897.69 2199.78 699.61 492.38 11899.91 3999.58 1099.43 10999.49 96
XXY-MVS95.20 21394.45 22797.46 17796.75 31096.56 12398.86 11798.65 13693.30 24993.27 29998.27 19184.85 28798.87 24994.82 19991.26 30896.96 269
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12799.30 6895.25 19198.85 11999.39 797.94 1499.74 999.62 392.59 11599.91 3999.65 799.52 9799.25 134
VDDNet95.36 20394.53 22097.86 14698.10 20895.13 19898.85 11997.75 28290.46 33598.36 9699.39 3273.27 37999.64 13197.98 6796.58 21798.81 190
thres600view795.49 19194.77 20997.67 16698.98 11995.02 20198.85 11996.90 34795.38 13696.63 18496.90 31284.29 29999.59 14088.65 34396.33 22598.40 221
114514_t96.93 12896.27 14398.92 6499.50 4197.63 7298.85 11998.90 5784.80 38397.77 13199.11 8492.84 11199.66 12894.85 19799.77 3499.47 100
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23897.15 9698.84 12398.97 4298.75 399.43 2799.54 893.29 10699.93 2599.64 999.79 2899.89 5
LFMVS95.86 17494.98 20198.47 9598.87 13296.32 13898.84 12396.02 36793.40 24498.62 8199.20 6774.99 37199.63 13497.72 8497.20 20099.46 104
alignmvs97.56 9497.07 10799.01 5698.66 15398.37 4098.83 12598.06 26496.74 7898.00 11897.65 24590.80 16499.48 16798.37 5196.56 21899.19 145
DeepC-MVS95.98 397.88 7197.58 7798.77 7199.25 8196.93 10398.83 12598.75 10696.96 6796.89 17499.50 1590.46 17099.87 5897.84 7899.76 4099.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n98.92 798.87 699.04 5598.88 13097.25 9198.82 12799.34 1098.75 399.80 599.61 495.16 7199.95 799.70 699.80 2299.93 1
sd_testset96.17 15995.76 16197.42 18199.30 6894.34 23898.82 12799.08 3295.92 10995.96 21198.76 14182.83 31899.32 18495.56 17795.59 24798.60 210
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12798.81 8695.80 11699.16 4499.47 2095.37 5799.92 3197.89 7499.75 4599.79 19
casdiffmvspermissive97.63 8797.41 9098.28 11198.33 18596.14 14698.82 12798.32 20896.38 9597.95 12099.21 6591.23 15699.23 19398.12 6198.37 16599.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GBi-Net94.49 25993.80 27096.56 24498.21 19595.00 20298.82 12798.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
test194.49 25993.80 27096.56 24498.21 19595.00 20298.82 12798.18 23492.46 27994.09 26597.07 29081.16 32697.95 33792.08 28192.14 29596.72 297
FMVSNet193.19 31092.07 31796.56 24497.54 25495.00 20298.82 12798.18 23490.38 33892.27 32997.07 29073.68 37897.95 33789.36 33591.30 30696.72 297
API-MVS97.41 10497.25 9797.91 14498.70 14796.80 10998.82 12798.69 12194.53 18598.11 10598.28 18894.50 8799.57 14494.12 22499.49 10197.37 258
ACMH92.88 1694.55 25293.95 25896.34 26697.63 24693.26 27898.81 13598.49 17993.43 24389.74 35498.53 16181.91 32199.08 21693.69 23693.30 28496.70 301
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs196.42 14896.67 12995.66 29498.82 13788.53 36298.80 13698.20 22996.39 9499.64 1799.20 6780.35 33599.67 12699.04 2099.57 8598.78 194
Effi-MVS+-dtu96.29 15496.56 13295.51 29997.89 22790.22 33398.80 13698.10 25296.57 8796.45 19796.66 32490.81 16398.91 24295.72 17197.99 17797.40 255
HQP_MVS96.14 16195.90 15796.85 21897.42 26594.60 22798.80 13698.56 15797.28 4595.34 22098.28 18887.09 24699.03 22296.07 15594.27 25596.92 272
plane_prior298.80 13697.28 45
APD-MVScopyleft98.35 5298.00 6599.42 1699.51 3998.72 2198.80 13698.82 8194.52 18799.23 3799.25 6195.54 5199.80 8896.52 14499.77 3499.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet (Re)95.78 17895.19 19097.58 17396.99 29497.47 8098.79 14199.18 2595.60 12593.92 27397.04 29791.68 14098.48 28295.80 16887.66 35296.79 289
FMVSNet294.47 26293.61 28397.04 20498.21 19596.43 13098.79 14198.27 21992.46 27993.50 29197.09 28781.16 32698.00 33491.09 30391.93 29896.70 301
tt080594.54 25393.85 26796.63 23497.98 21993.06 28798.77 14397.84 27893.67 23293.80 28098.04 20876.88 36398.96 23394.79 20192.86 28997.86 241
testgi93.06 31392.45 31394.88 32196.43 32689.90 33698.75 14497.54 30095.60 12591.63 33997.91 21974.46 37597.02 36586.10 35993.67 27397.72 246
LCM-MVSNet-Re95.22 21195.32 18494.91 31898.18 20187.85 37298.75 14495.66 37495.11 15288.96 36096.85 31690.26 17597.65 35195.65 17598.44 16199.22 138
SixPastTwentyTwo93.34 30492.86 30394.75 32695.67 35289.41 34798.75 14496.67 35893.89 21190.15 35298.25 19480.87 33098.27 31690.90 30990.64 31496.57 316
UniMVSNet_ETH3D94.24 27693.33 29496.97 20997.19 28393.38 27398.74 14798.57 15291.21 32593.81 27998.58 15672.85 38098.77 26195.05 19393.93 26998.77 196
MVS_Test97.28 11097.00 10998.13 12798.33 18595.97 15498.74 14798.07 25994.27 19598.44 9398.07 20592.48 11699.26 18996.43 14798.19 17299.16 152
UniMVSNet_NR-MVSNet95.71 18195.15 19197.40 18496.84 30496.97 10198.74 14799.24 1795.16 14993.88 27597.72 23891.68 14098.31 30995.81 16687.25 35896.92 272
NR-MVSNet94.98 22794.16 24297.44 17996.53 32097.22 9398.74 14798.95 4694.96 16389.25 35997.69 24189.32 19198.18 31994.59 20987.40 35596.92 272
ETV-MVS97.96 6797.81 6998.40 10498.42 17197.27 8698.73 15198.55 15996.84 7198.38 9597.44 26295.39 5599.35 18197.62 9398.89 13798.58 214
baseline195.84 17595.12 19498.01 13998.49 16995.98 14998.73 15197.03 33895.37 13896.22 20298.19 19889.96 17899.16 20094.60 20787.48 35398.90 184
MVSTER96.06 16395.72 16397.08 20298.23 19395.93 16098.73 15198.27 21994.86 16895.07 22698.09 20488.21 22198.54 27896.59 14193.46 27896.79 289
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24293.48 26798.73 15198.44 18594.94 16692.53 32298.53 16184.50 29899.14 20595.48 18194.00 26696.66 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13297.51 3098.15 10298.83 12895.70 4699.92 3197.53 10299.67 6499.66 68
9.1498.06 6099.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3499.81 8197.00 11899.71 58
VPNet94.99 22594.19 23997.40 18497.16 28596.57 12298.71 15698.97 4295.67 12394.84 23198.24 19580.36 33498.67 26996.46 14587.32 35796.96 269
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6499.28 5496.47 2399.40 17698.52 4199.70 5999.47 100
ACMH+92.99 1494.30 27193.77 27395.88 28797.81 23192.04 30098.71 15698.37 20193.99 20690.60 34898.47 16780.86 33199.05 21892.75 26592.40 29496.55 320
Anonymous20240521195.28 20894.49 22297.67 16699.00 11493.75 25698.70 16097.04 33790.66 33196.49 19498.80 13278.13 35099.83 6996.21 15495.36 25199.44 107
DP-MVS96.59 14195.93 15698.57 8399.34 5796.19 14498.70 16098.39 19589.45 35494.52 24099.35 4491.85 13799.85 6392.89 26398.88 13899.68 61
Fast-Effi-MVS+-dtu95.87 17395.85 15895.91 28497.74 23791.74 30598.69 16298.15 24295.56 12794.92 22997.68 24488.98 20498.79 25993.19 25197.78 18697.20 262
tfpn200view995.32 20794.62 21697.43 18098.94 12594.98 20598.68 16396.93 34595.33 13996.55 19096.53 33084.23 30399.56 14788.11 34696.29 22997.76 242
VDD-MVS95.82 17795.23 18897.61 17298.84 13693.98 24898.68 16397.40 31695.02 15997.95 12099.34 4874.37 37699.78 10198.64 2996.80 21099.08 165
thres40095.38 20094.62 21697.65 17098.94 12594.98 20598.68 16396.93 34595.33 13996.55 19096.53 33084.23 30399.56 14788.11 34696.29 22998.40 221
pmmvs691.77 32490.63 32995.17 31194.69 37591.24 31498.67 16697.92 27486.14 37589.62 35597.56 25575.79 36898.34 30590.75 31184.56 37195.94 353
v2v48294.69 24094.03 25096.65 23096.17 33594.79 21798.67 16698.08 25792.72 27294.00 27097.16 28187.69 23898.45 28792.91 26088.87 34196.72 297
mamv497.13 12098.11 5794.17 34298.97 12183.70 38398.66 16898.71 11694.63 18097.83 12998.90 11896.25 2699.55 15499.27 1599.76 4099.27 129
DU-MVS95.42 19794.76 21097.40 18496.53 32096.97 10198.66 16898.99 4195.43 13393.88 27597.69 24188.57 21298.31 30995.81 16687.25 35896.92 272
MAR-MVS96.91 12996.40 13998.45 9798.69 15096.90 10598.66 16898.68 12492.40 28597.07 16497.96 21691.54 14799.75 10993.68 23798.92 13598.69 201
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing393.19 31092.48 31295.30 30898.07 20992.27 29398.64 17197.17 32893.94 21093.98 27197.04 29767.97 38796.01 38288.40 34497.14 20197.63 249
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32598.64 17199.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1999.86 199.82 16
h-mvs3396.17 15995.62 17297.81 15199.03 11094.45 23198.64 17198.75 10697.48 3298.67 7598.72 14489.76 18099.86 6297.95 6881.59 38199.11 159
VNet97.79 7697.40 9198.96 6298.88 13097.55 7598.63 17498.93 5096.74 7899.02 4898.84 12690.33 17399.83 6998.53 3596.66 21499.50 91
PVSNet_Blended_VisFu97.70 8197.46 8798.44 9999.27 7895.91 16298.63 17499.16 2794.48 18997.67 14198.88 12292.80 11299.91 3997.11 11599.12 12699.50 91
PAPM_NR97.46 9797.11 10498.50 9199.50 4196.41 13298.63 17498.60 14295.18 14897.06 16598.06 20694.26 9499.57 14493.80 23598.87 14099.52 86
Baseline_NR-MVSNet94.35 26893.81 26995.96 28296.20 33394.05 24798.61 17796.67 35891.44 31293.85 27797.60 25088.57 21298.14 32294.39 21386.93 36195.68 358
v114494.59 25093.92 25996.60 23996.21 33294.78 21898.59 17898.14 24491.86 30294.21 26097.02 30087.97 22998.41 29891.72 29389.57 32796.61 311
AllTest95.24 21094.65 21596.99 20699.25 8193.21 28198.59 17898.18 23491.36 31493.52 28898.77 13784.67 29399.72 11389.70 32897.87 18298.02 237
Fast-Effi-MVS+96.28 15695.70 16898.03 13798.29 19095.97 15498.58 18098.25 22491.74 30395.29 22497.23 27791.03 16299.15 20392.90 26197.96 17998.97 177
Anonymous2023120691.66 32591.10 32593.33 35094.02 38187.35 37498.58 18097.26 32490.48 33490.16 35196.31 33583.83 31396.53 37679.36 38789.90 32396.12 348
v14419294.39 26793.70 27996.48 25496.06 34094.35 23798.58 18098.16 24191.45 31194.33 25397.02 30087.50 24198.45 28791.08 30489.11 33696.63 309
v14894.29 27393.76 27595.91 28496.10 33892.93 28898.58 18097.97 26992.59 27793.47 29296.95 30988.53 21698.32 30792.56 27187.06 36096.49 332
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28098.58 18098.11 24989.92 34593.57 28699.10 8686.37 26099.79 9890.78 31098.10 17597.09 263
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_rt91.29 32890.65 32893.19 35497.45 26386.25 37898.57 18590.90 40493.30 24986.94 37393.59 38262.07 39699.11 21097.48 10595.58 24994.22 377
FMVSNet394.97 22994.26 23597.11 20098.18 20196.62 11698.56 18698.26 22393.67 23294.09 26597.10 28384.25 30198.01 33292.08 28192.14 29596.70 301
F-COLMAP97.09 12396.80 11897.97 14199.45 5294.95 20898.55 18798.62 14193.02 26296.17 20498.58 15694.01 9899.81 8193.95 22998.90 13699.14 155
dmvs_re94.48 26194.18 24195.37 30597.68 24190.11 33598.54 18897.08 33294.56 18394.42 24897.24 27684.25 30197.76 34991.02 30892.83 29098.24 228
v192192094.20 27893.47 29096.40 26395.98 34394.08 24698.52 18998.15 24291.33 31794.25 25797.20 28086.41 25998.42 29190.04 32289.39 33396.69 306
EU-MVSNet93.66 29794.14 24492.25 36295.96 34583.38 38698.52 18998.12 24694.69 17692.61 31998.13 20287.36 24496.39 37891.82 29090.00 32296.98 268
TAMVS97.02 12596.79 12097.70 16298.06 21295.31 18998.52 18998.31 21093.95 20897.05 16698.61 15193.49 10398.52 28095.33 18397.81 18499.29 127
LTVRE_ROB92.95 1594.60 24893.90 26296.68 22997.41 26894.42 23398.52 18998.59 14591.69 30691.21 34198.35 17984.87 28699.04 22191.06 30593.44 28196.60 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement91.06 33289.68 33795.21 30985.35 40691.49 31098.51 19397.07 33491.47 31088.83 36497.84 22777.31 35799.09 21592.79 26477.98 39495.04 369
v119294.32 27093.58 28496.53 24996.10 33894.45 23198.50 19498.17 23991.54 30994.19 26197.06 29486.95 25098.43 29090.14 31789.57 32796.70 301
test_040291.32 32790.27 33394.48 33596.60 31791.12 31598.50 19497.22 32686.10 37688.30 36696.98 30477.65 35597.99 33578.13 39192.94 28894.34 374
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19498.78 10097.72 1798.92 6199.28 5495.27 6399.82 7697.55 10099.77 3499.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19798.81 8697.72 1798.76 7099.16 7797.05 1399.78 10198.06 6499.66 6699.69 56
test_yl97.22 11396.78 12198.54 8798.73 14296.60 11998.45 19898.31 21094.70 17498.02 11498.42 17190.80 16499.70 11996.81 13596.79 21199.34 116
DCV-MVSNet97.22 11396.78 12198.54 8798.73 14296.60 11998.45 19898.31 21094.70 17498.02 11498.42 17190.80 16499.70 11996.81 13596.79 21199.34 116
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19898.76 10497.82 1698.45 9198.93 11496.65 1999.83 6997.38 10999.41 11199.71 49
v124094.06 29293.29 29696.34 26696.03 34293.90 25098.44 20198.17 23991.18 32694.13 26497.01 30286.05 26598.42 29189.13 33889.50 33196.70 301
plane_prior94.60 22798.44 20196.74 7894.22 257
MP-MVS-pluss98.31 5697.92 6899.49 1299.72 1298.88 1898.43 20398.78 10094.10 19997.69 14099.42 2995.25 6599.92 3198.09 6399.80 2299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS95.69 18495.33 18396.76 22396.16 33794.63 22298.43 20398.39 19596.64 8395.02 22898.78 13585.15 28299.05 21895.21 19094.20 25896.60 312
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20598.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 9299.84 1199.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20698.68 12497.04 6398.52 8798.80 13296.78 1699.83 6997.93 7099.61 7799.74 37
hse-mvs295.71 18195.30 18696.93 21298.50 16793.53 26598.36 20798.10 25297.48 3298.67 7597.99 21389.76 18099.02 22597.95 6880.91 38698.22 230
CANet98.05 6497.76 7198.90 6798.73 14297.27 8698.35 20898.78 10097.37 4197.72 13898.96 11091.53 14899.92 3198.79 2799.65 6999.51 89
AUN-MVS94.53 25593.73 27796.92 21598.50 16793.52 26698.34 20998.10 25293.83 21695.94 21397.98 21585.59 27399.03 22294.35 21580.94 38598.22 230
test20.0390.89 33490.38 33292.43 35893.48 38388.14 36998.33 21097.56 29493.40 24487.96 36796.71 32380.69 33394.13 39379.15 38886.17 36795.01 371
DP-MVS Recon97.86 7297.46 8799.06 5499.53 3698.35 4298.33 21098.89 5992.62 27598.05 10998.94 11395.34 5999.65 12996.04 15999.42 11099.19 145
RPSCF94.87 23495.40 17593.26 35298.89 12882.06 39098.33 21098.06 26490.30 34096.56 18899.26 5787.09 24699.49 16293.82 23496.32 22698.24 228
TAPA-MVS93.98 795.35 20494.56 21997.74 15899.13 10194.83 21498.33 21098.64 13786.62 37196.29 20198.61 15194.00 9999.29 18780.00 38599.41 11199.09 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IterMVS-LS95.46 19395.21 18996.22 27298.12 20693.72 25998.32 21498.13 24593.71 22594.26 25697.31 27192.24 12498.10 32594.63 20490.12 32096.84 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous96.70 13896.53 13597.18 19498.19 19993.78 25398.31 21598.19 23194.01 20494.47 24298.27 19192.08 13298.46 28697.39 10897.91 18099.31 122
WTY-MVS97.37 10896.92 11498.72 7398.86 13396.89 10798.31 21598.71 11695.26 14497.67 14198.56 16092.21 12699.78 10195.89 16396.85 20999.48 98
D2MVS95.18 21495.08 19695.48 30097.10 28992.07 29898.30 21799.13 3094.02 20392.90 31096.73 32189.48 18598.73 26394.48 21293.60 27795.65 359
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12798.30 21798.69 12197.21 5298.84 6499.36 4295.41 5499.78 10198.62 3099.65 6999.80 18
DSMNet-mixed92.52 32092.58 31092.33 36094.15 37782.65 38898.30 21794.26 38989.08 35992.65 31895.73 35685.01 28495.76 38486.24 35897.76 18798.59 212
EI-MVSNet-UG-set98.41 4598.34 3598.61 8099.45 5296.32 13898.28 22098.68 12497.17 5598.74 7199.37 3895.25 6599.79 9898.57 3299.54 9499.73 42
OMC-MVS97.55 9597.34 9498.20 12199.33 5995.92 16198.28 22098.59 14595.52 12997.97 11999.10 8693.28 10799.49 16295.09 19198.88 13899.19 145
baseline295.11 21794.52 22196.87 21796.65 31693.56 26298.27 22294.10 39293.45 24292.02 33597.43 26387.45 24399.19 19893.88 23297.41 19897.87 240
PVSNet_BlendedMVS96.73 13696.60 13197.12 19999.25 8195.35 18698.26 22399.26 1594.28 19497.94 12297.46 25992.74 11399.81 8196.88 12993.32 28396.20 346
BH-untuned95.95 16795.72 16396.65 23098.55 16492.26 29498.23 22497.79 28093.73 22294.62 23798.01 21188.97 20599.00 22893.04 25698.51 15798.68 202
sss97.39 10596.98 11298.61 8098.60 16096.61 11898.22 22598.93 5093.97 20798.01 11798.48 16691.98 13499.85 6396.45 14698.15 17399.39 112
save fliter99.46 4998.38 3598.21 22698.71 11697.95 13
WR-MVS95.15 21594.46 22597.22 19096.67 31596.45 12898.21 22698.81 8694.15 19793.16 30297.69 24187.51 23998.30 31195.29 18688.62 34396.90 279
pmmvs593.65 29992.97 30295.68 29395.49 35892.37 29298.20 22897.28 32289.66 35092.58 32097.26 27382.14 32098.09 32793.18 25290.95 31296.58 314
thres20095.25 20994.57 21897.28 18898.81 13894.92 20998.20 22897.11 33095.24 14796.54 19296.22 34184.58 29699.53 15687.93 35096.50 22197.39 256
CDS-MVSNet96.99 12696.69 12797.90 14598.05 21395.98 14998.20 22898.33 20793.67 23296.95 16898.49 16593.54 10298.42 29195.24 18997.74 18899.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ETVMVS94.50 25893.44 29197.68 16598.18 20195.35 18698.19 23197.11 33093.73 22296.40 19895.39 36374.53 37398.84 25291.10 30296.31 22798.84 188
WB-MVS84.86 35885.33 35983.46 37989.48 39769.56 40598.19 23196.42 36489.55 35281.79 38994.67 37284.80 28890.12 40152.44 40580.64 38790.69 392
131496.25 15895.73 16297.79 15297.13 28795.55 17598.19 23198.59 14593.47 24192.03 33497.82 23191.33 15299.49 16294.62 20698.44 16198.32 227
MVS94.67 24593.54 28798.08 13396.88 30296.56 12398.19 23198.50 17478.05 39492.69 31798.02 20991.07 16199.63 13490.09 31898.36 16798.04 236
BH-RMVSNet95.92 17195.32 18497.69 16398.32 18894.64 22198.19 23197.45 31294.56 18396.03 20798.61 15185.02 28399.12 20890.68 31299.06 12799.30 125
1112_ss96.63 13996.00 15398.50 9198.56 16296.37 13598.18 23698.10 25292.92 26694.84 23198.43 16992.14 12899.58 14394.35 21596.51 22099.56 85
bld_raw_dy_0_6497.09 12396.76 12598.08 13398.89 12896.54 12598.17 23798.52 16688.80 36295.67 21698.83 12893.32 10499.48 16798.86 2499.75 4598.21 232
EPNet_dtu95.21 21294.95 20395.99 27996.17 33590.45 32998.16 23897.27 32396.77 7593.14 30598.33 18490.34 17298.42 29185.57 36398.81 14499.09 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS93.96 896.82 13496.23 14698.57 8398.46 17097.00 10098.14 23998.21 22793.95 20896.72 18197.99 21391.58 14399.76 10794.51 21196.54 21998.95 180
PLCcopyleft95.07 497.20 11696.78 12198.44 9999.29 7396.31 14098.14 23998.76 10492.41 28496.39 19998.31 18694.92 7999.78 10194.06 22798.77 14599.23 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EG-PatchMatch MVS91.13 33190.12 33494.17 34294.73 37489.00 35398.13 24197.81 27989.22 35885.32 38496.46 33267.71 38898.42 29187.89 35193.82 27195.08 368
EI-MVSNet95.96 16695.83 15996.36 26497.93 22493.70 26098.12 24298.27 21993.70 22795.07 22699.02 9892.23 12598.54 27894.68 20293.46 27896.84 286
CVMVSNet95.43 19696.04 15193.57 34697.93 22483.62 38498.12 24298.59 14595.68 12296.56 18899.02 9887.51 23997.51 35893.56 24397.44 19699.60 77
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9198.11 24498.29 21897.19 5498.99 5299.02 9896.22 2799.67 12698.52 4198.56 15599.51 89
XVG-ACMP-BASELINE94.54 25394.14 24495.75 29296.55 31991.65 30798.11 24498.44 18594.96 16394.22 25997.90 22079.18 34299.11 21094.05 22893.85 27096.48 334
testing9994.83 23594.08 24797.07 20397.94 22293.13 28398.10 24697.17 32894.86 16895.34 22096.00 35076.31 36599.40 17695.08 19295.90 24398.68 202
testing1195.00 22394.28 23497.16 19697.96 22193.36 27598.09 24797.06 33694.94 16695.33 22396.15 34376.89 36299.40 17695.77 17096.30 22898.72 197
SSC-MVS84.27 35984.71 36282.96 38389.19 39968.83 40698.08 24896.30 36689.04 36081.37 39194.47 37384.60 29589.89 40249.80 40779.52 38990.15 393
CNLPA97.45 10097.03 10898.73 7299.05 10897.44 8298.07 24998.53 16395.32 14196.80 17998.53 16193.32 10499.72 11394.31 21899.31 12099.02 172
diffmvspermissive97.58 9297.40 9198.13 12798.32 18895.81 16798.06 25098.37 20196.20 10098.74 7198.89 12191.31 15499.25 19098.16 6098.52 15699.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 1792x268897.12 12196.80 11898.08 13399.30 6894.56 22998.05 25199.71 193.57 23797.09 16198.91 11788.17 22299.89 4796.87 13299.56 9199.81 17
HQP-NCC97.20 28098.05 25196.43 9094.45 243
ACMP_Plane97.20 28098.05 25196.43 9094.45 243
HQP-MVS95.72 18095.40 17596.69 22897.20 28094.25 24298.05 25198.46 18196.43 9094.45 24397.73 23686.75 25298.96 23395.30 18494.18 25996.86 285
MIMVSNet189.67 34388.28 34893.82 34492.81 38791.08 31698.01 25597.45 31287.95 36687.90 36895.87 35267.63 38994.56 39278.73 39088.18 34795.83 355
AdaColmapbinary97.15 11996.70 12698.48 9499.16 9896.69 11598.01 25598.89 5994.44 19196.83 17598.68 14690.69 16799.76 10794.36 21499.29 12198.98 176
testing9194.98 22794.25 23697.20 19197.94 22293.41 27098.00 25797.58 29194.99 16095.45 21996.04 34777.20 35999.42 17594.97 19596.02 24298.78 194
FMVSNet591.81 32390.92 32694.49 33497.21 27992.09 29798.00 25797.55 29989.31 35790.86 34595.61 36174.48 37495.32 38885.57 36389.70 32596.07 350
CANet_DTU96.96 12796.55 13398.21 11998.17 20496.07 14897.98 25998.21 22797.24 5097.13 16098.93 11486.88 25199.91 3995.00 19499.37 11798.66 206
MVP-Stereo94.28 27593.92 25995.35 30694.95 36992.60 29197.97 26097.65 28691.61 30890.68 34797.09 28786.32 26198.42 29189.70 32899.34 11895.02 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
KD-MVS_self_test90.38 33789.38 34093.40 34992.85 38688.94 35697.95 26197.94 27290.35 33990.25 35093.96 37979.82 33795.94 38384.62 37376.69 39695.33 362
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10597.95 26199.58 397.14 5898.44 9399.01 10295.03 7699.62 13797.91 7299.75 4599.50 91
testing22294.12 28693.03 30097.37 18798.02 21494.66 21997.94 26396.65 36094.63 18095.78 21495.76 35371.49 38198.92 24091.17 30195.88 24498.52 216
TEST999.31 6498.50 2997.92 26498.73 11192.63 27497.74 13598.68 14696.20 2999.80 88
train_agg97.97 6697.52 8399.33 2699.31 6498.50 2997.92 26498.73 11192.98 26397.74 13598.68 14696.20 2999.80 8896.59 14199.57 8599.68 61
Syy-MVS92.55 31892.61 30992.38 35997.39 26983.41 38597.91 26697.46 30893.16 25593.42 29495.37 36484.75 29096.12 38077.00 39396.99 20497.60 250
myMVS_eth3d92.73 31692.01 31894.89 32097.39 26990.94 31897.91 26697.46 30893.16 25593.42 29495.37 36468.09 38696.12 38088.34 34596.99 20497.60 250
CDPH-MVS97.94 6997.49 8499.28 3299.47 4798.44 3197.91 26698.67 12992.57 27898.77 6998.85 12595.93 3999.72 11395.56 17799.69 6199.68 61
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8497.91 26699.58 397.20 5398.33 9999.00 10395.99 3799.64 13198.05 6699.76 4099.69 56
PatchMatch-RL96.59 14196.03 15298.27 11299.31 6496.51 12697.91 26699.06 3493.72 22496.92 17298.06 20688.50 21799.65 12991.77 29299.00 13398.66 206
OpenMVS_ROBcopyleft86.42 2089.00 34787.43 35593.69 34593.08 38589.42 34697.91 26696.89 34978.58 39385.86 37994.69 37169.48 38498.29 31477.13 39293.29 28593.36 387
test_899.29 7398.44 3197.89 27298.72 11392.98 26397.70 13998.66 14996.20 2999.80 88
ab-mvs96.42 14895.71 16698.55 8598.63 15796.75 11297.88 27398.74 10893.84 21496.54 19298.18 19985.34 27899.75 10995.93 16296.35 22499.15 153
jason97.32 10997.08 10698.06 13697.45 26395.59 17197.87 27497.91 27594.79 17398.55 8598.83 12891.12 15899.23 19397.58 9699.60 7999.34 116
jason: jason.
WB-MVSnew94.19 27994.04 24994.66 32996.82 30692.14 29597.86 27595.96 37093.50 23995.64 21796.77 32088.06 22797.99 33584.87 36896.86 20893.85 385
xiu_mvs_v1_base_debu97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
xiu_mvs_v1_base97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
xiu_mvs_v1_base_debi97.60 8997.56 7997.72 15998.35 17795.98 14997.86 27598.51 16997.13 5999.01 4998.40 17391.56 14499.80 8898.53 3598.68 14697.37 258
test_prior498.01 6197.86 275
mvsany_test388.80 34888.04 34991.09 36689.78 39681.57 39197.83 28095.49 37593.81 21787.53 36993.95 38056.14 39997.43 35994.68 20283.13 37594.26 375
FA-MVS(test-final)96.41 15195.94 15597.82 15098.21 19595.20 19497.80 28197.58 29193.21 25297.36 15497.70 23989.47 18699.56 14794.12 22497.99 17798.71 200
test_prior297.80 28196.12 10497.89 12798.69 14595.96 3896.89 12799.60 79
XVG-OURS-SEG-HR96.51 14596.34 14097.02 20598.77 14093.76 25497.79 28398.50 17495.45 13296.94 16999.09 9287.87 23399.55 15496.76 13995.83 24697.74 244
MS-PatchMatch93.84 29693.63 28294.46 33796.18 33489.45 34597.76 28498.27 21992.23 29192.13 33297.49 25779.50 33998.69 26589.75 32699.38 11695.25 363
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28598.89 5997.71 1998.33 9998.97 10594.97 7799.88 5698.42 4999.76 4099.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MG-MVS97.81 7597.60 7698.44 9999.12 10295.97 15497.75 28598.78 10096.89 7098.46 8899.22 6493.90 10099.68 12594.81 20099.52 9799.67 65
test_f86.07 35785.39 35888.10 37089.28 39875.57 39797.73 28796.33 36589.41 35685.35 38391.56 39443.31 40595.53 38591.32 29984.23 37393.21 389
Test_1112_low_res96.34 15395.66 17198.36 10698.56 16295.94 15797.71 28898.07 25992.10 29594.79 23597.29 27291.75 13999.56 14794.17 22296.50 22199.58 83
BH-w/o95.38 20095.08 19696.26 27198.34 18291.79 30297.70 28997.43 31492.87 26894.24 25897.22 27888.66 21098.84 25291.55 29697.70 19098.16 234
lupinMVS97.44 10197.22 10098.12 13098.07 20995.76 16897.68 29097.76 28194.50 18898.79 6798.61 15192.34 11999.30 18697.58 9699.59 8199.31 122
原ACMM297.67 291
test_vis3_rt79.22 36177.40 36884.67 37686.44 40474.85 40097.66 29281.43 41184.98 38267.12 40481.91 40228.09 41397.60 35388.96 33980.04 38881.55 402
LF4IMVS93.14 31292.79 30594.20 34095.88 34788.67 35997.66 29297.07 33493.81 21791.71 33797.65 24577.96 35298.81 25791.47 29791.92 29995.12 366
EGC-MVSNET75.22 37069.54 37392.28 36194.81 37289.58 34397.64 29496.50 3621.82 4135.57 41495.74 35468.21 38596.26 37973.80 39691.71 30190.99 391
新几何297.64 294
MDA-MVSNet-bldmvs89.97 34188.35 34794.83 32495.21 36591.34 31197.64 29497.51 30388.36 36571.17 40296.13 34479.22 34196.63 37583.65 37586.27 36696.52 326
pmmvs-eth3d90.36 33889.05 34394.32 33991.10 39392.12 29697.63 29796.95 34488.86 36184.91 38593.13 38778.32 34796.74 37088.70 34181.81 38094.09 380
TR-MVS94.94 23294.20 23897.17 19597.75 23494.14 24597.59 29897.02 34092.28 29095.75 21597.64 24783.88 31198.96 23389.77 32596.15 23998.40 221
无先验97.58 29998.72 11391.38 31399.87 5893.36 24799.60 77
旧先验297.57 30091.30 31998.67 7599.80 8895.70 174
mvsany_test197.69 8297.70 7397.66 16998.24 19194.18 24497.53 30197.53 30195.52 12999.66 1599.51 1394.30 9299.56 14798.38 5098.62 15199.23 136
CostFormer94.95 23094.73 21295.60 29797.28 27489.06 35197.53 30196.89 34989.66 35096.82 17796.72 32286.05 26598.95 23895.53 17996.13 24098.79 191
UWE-MVS94.30 27193.89 26495.53 29897.83 22988.95 35597.52 30393.25 39494.44 19196.63 18497.07 29078.70 34499.28 18891.99 28697.56 19598.36 224
XVG-OURS96.55 14496.41 13896.99 20698.75 14193.76 25497.50 30498.52 16695.67 12396.83 17599.30 5288.95 20699.53 15695.88 16496.26 23497.69 247
xiu_mvs_v2_base97.66 8597.70 7397.56 17598.61 15995.46 17997.44 30598.46 18197.15 5798.65 8098.15 20094.33 9199.80 8897.84 7898.66 15097.41 254
tpm94.13 28493.80 27095.12 31296.50 32287.91 37197.44 30595.89 37392.62 27596.37 20096.30 33684.13 30698.30 31193.24 24991.66 30399.14 155
DeepPCF-MVS96.37 297.93 7098.48 2396.30 26999.00 11489.54 34497.43 30798.87 6998.16 1199.26 3699.38 3796.12 3299.64 13198.30 5499.77 3499.72 45
test22299.23 8897.17 9597.40 30898.66 13288.68 36398.05 10998.96 11094.14 9699.53 9699.61 75
pmmvs494.69 24093.99 25696.81 22195.74 35095.94 15797.40 30897.67 28590.42 33793.37 29697.59 25189.08 19998.20 31892.97 25891.67 30296.30 343
test0.0.03 194.08 29093.51 28895.80 28995.53 35792.89 28997.38 31095.97 36995.11 15292.51 32496.66 32487.71 23596.94 36787.03 35493.67 27397.57 252
HyFIR lowres test96.90 13096.49 13698.14 12499.33 5995.56 17397.38 31099.65 292.34 28697.61 14898.20 19789.29 19299.10 21496.97 12097.60 19399.77 27
Effi-MVS+97.12 12196.69 12798.39 10598.19 19996.72 11497.37 31298.43 18993.71 22597.65 14598.02 20992.20 12799.25 19096.87 13297.79 18599.19 145
N_pmnet87.12 35587.77 35385.17 37595.46 36061.92 41197.37 31270.66 41685.83 37888.73 36596.04 34785.33 27997.76 34980.02 38490.48 31595.84 354
PAPR96.84 13396.24 14598.65 7898.72 14696.92 10497.36 31498.57 15293.33 24696.67 18297.57 25394.30 9299.56 14791.05 30798.59 15399.47 100
PMMVS96.60 14096.33 14197.41 18297.90 22693.93 24997.35 31598.41 19192.84 26997.76 13297.45 26191.10 16099.20 19796.26 15197.91 18099.11 159
PS-MVSNAJ97.73 7897.77 7097.62 17198.68 15195.58 17297.34 31698.51 16997.29 4498.66 7997.88 22394.51 8499.90 4597.87 7599.17 12597.39 256
SCA95.46 19395.13 19296.46 25897.67 24291.29 31397.33 31797.60 29094.68 17796.92 17297.10 28383.97 30998.89 24692.59 26998.32 17099.20 141
testdata197.32 31896.34 96
ET-MVSNet_ETH3D94.13 28492.98 30197.58 17398.22 19496.20 14297.31 31995.37 37694.53 18579.56 39497.63 24986.51 25597.53 35796.91 12390.74 31399.02 172
tpm294.19 27993.76 27595.46 30297.23 27789.04 35297.31 31996.85 35387.08 37096.21 20396.79 31983.75 31598.74 26292.43 27796.23 23798.59 212
PVSNet_Blended97.38 10697.12 10398.14 12499.25 8195.35 18697.28 32199.26 1593.13 25797.94 12298.21 19692.74 11399.81 8196.88 12999.40 11499.27 129
CLD-MVS95.62 18795.34 18196.46 25897.52 25793.75 25697.27 32298.46 18195.53 12894.42 24898.00 21286.21 26298.97 22996.25 15394.37 25396.66 307
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPMVS94.99 22594.48 22396.52 25097.22 27891.75 30497.23 32391.66 40194.11 19897.28 15596.81 31885.70 27198.84 25293.04 25697.28 19998.97 177
miper_lstm_enhance94.33 26994.07 24895.11 31397.75 23490.97 31797.22 32498.03 26691.67 30792.76 31496.97 30590.03 17797.78 34892.51 27489.64 32696.56 318
APD_test188.22 35088.01 35088.86 36995.98 34374.66 40197.21 32596.44 36383.96 38686.66 37697.90 22060.95 39797.84 34782.73 37790.23 31994.09 380
dmvs_testset87.64 35288.93 34583.79 37895.25 36463.36 41097.20 32691.17 40293.07 25985.64 38295.98 35185.30 28191.52 40069.42 39987.33 35696.49 332
YYNet190.70 33689.39 33994.62 33194.79 37390.65 32697.20 32697.46 30887.54 36872.54 40095.74 35486.51 25596.66 37486.00 36086.76 36596.54 321
MDA-MVSNet_test_wron90.71 33589.38 34094.68 32894.83 37190.78 32397.19 32897.46 30887.60 36772.41 40195.72 35886.51 25596.71 37385.92 36186.80 36496.56 318
IterMVS-SCA-FT94.11 28793.87 26594.85 32297.98 21990.56 32897.18 32998.11 24993.75 21992.58 32097.48 25883.97 30997.41 36092.48 27691.30 30696.58 314
IterMVS94.09 28993.85 26794.80 32597.99 21790.35 33197.18 32998.12 24693.68 23092.46 32697.34 26884.05 30797.41 36092.51 27491.33 30596.62 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FE-MVS95.62 18794.90 20597.78 15398.37 17694.92 20997.17 33197.38 31890.95 32997.73 13797.70 23985.32 28099.63 13491.18 30098.33 16898.79 191
DPM-MVS97.55 9596.99 11099.23 3899.04 10998.55 2797.17 33198.35 20494.85 17097.93 12498.58 15695.07 7599.71 11892.60 26799.34 11899.43 109
c3_l94.79 23794.43 22995.89 28697.75 23493.12 28597.16 33398.03 26692.23 29193.46 29397.05 29691.39 14998.01 33293.58 24289.21 33596.53 323
new-patchmatchnet88.50 34987.45 35491.67 36490.31 39585.89 37997.16 33397.33 31989.47 35383.63 38792.77 38976.38 36495.06 39082.70 37877.29 39594.06 382
UnsupCasMVSNet_eth90.99 33389.92 33694.19 34194.08 37889.83 33797.13 33598.67 12993.69 22885.83 38096.19 34275.15 37096.74 37089.14 33779.41 39096.00 351
IB-MVS91.98 1793.27 30691.97 31997.19 19397.47 25993.41 27097.09 33695.99 36893.32 24792.47 32595.73 35678.06 35199.53 15694.59 20982.98 37698.62 209
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl____94.51 25794.01 25396.02 27897.58 24993.40 27297.05 33797.96 27191.73 30592.76 31497.08 28989.06 20098.13 32392.61 26690.29 31896.52 326
DIV-MVS_self_test94.52 25694.03 25095.99 27997.57 25393.38 27397.05 33797.94 27291.74 30392.81 31297.10 28389.12 19798.07 32992.60 26790.30 31796.53 323
miper_ehance_all_eth95.01 22294.69 21495.97 28197.70 24093.31 27697.02 33998.07 25992.23 29193.51 29096.96 30791.85 13798.15 32193.68 23791.16 30996.44 337
CMPMVSbinary66.06 2189.70 34289.67 33889.78 36793.19 38476.56 39397.00 34098.35 20480.97 39181.57 39097.75 23574.75 37298.61 27289.85 32493.63 27594.17 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpmrst95.63 18695.69 16995.44 30397.54 25488.54 36196.97 34197.56 29493.50 23997.52 15296.93 31189.49 18499.16 20095.25 18896.42 22398.64 208
dp94.15 28393.90 26294.90 31997.31 27386.82 37796.97 34197.19 32791.22 32496.02 20896.61 32985.51 27499.02 22590.00 32394.30 25498.85 186
cl2294.68 24294.19 23996.13 27598.11 20793.60 26196.94 34398.31 21092.43 28393.32 29896.87 31586.51 25598.28 31594.10 22691.16 30996.51 329
PM-MVS87.77 35186.55 35791.40 36591.03 39483.36 38796.92 34495.18 38091.28 32186.48 37893.42 38353.27 40096.74 37089.43 33481.97 37994.11 379
TinyColmap92.31 32191.53 32294.65 33096.92 29889.75 33896.92 34496.68 35790.45 33689.62 35597.85 22676.06 36798.81 25786.74 35592.51 29395.41 361
our_test_393.65 29993.30 29594.69 32795.45 36189.68 34296.91 34697.65 28691.97 29891.66 33896.88 31389.67 18397.93 34088.02 34991.49 30496.48 334
test-LLR95.10 21894.87 20795.80 28996.77 30789.70 34096.91 34695.21 37895.11 15294.83 23395.72 35887.71 23598.97 22993.06 25498.50 15898.72 197
TESTMET0.1,194.18 28293.69 28095.63 29596.92 29889.12 35096.91 34694.78 38393.17 25494.88 23096.45 33378.52 34598.92 24093.09 25398.50 15898.85 186
test-mter94.08 29093.51 28895.80 28996.77 30789.70 34096.91 34695.21 37892.89 26794.83 23395.72 35877.69 35398.97 22993.06 25498.50 15898.72 197
USDC93.33 30592.71 30695.21 30996.83 30590.83 32296.91 34697.50 30493.84 21490.72 34698.14 20177.69 35398.82 25689.51 33293.21 28695.97 352
MDTV_nov1_ep13_2view84.26 38196.89 35190.97 32897.90 12689.89 17993.91 23199.18 150
ppachtmachnet_test93.22 30892.63 30894.97 31795.45 36190.84 32196.88 35297.88 27690.60 33292.08 33397.26 27388.08 22697.86 34685.12 36790.33 31696.22 345
tpmvs94.60 24894.36 23295.33 30797.46 26088.60 36096.88 35297.68 28491.29 32093.80 28096.42 33488.58 21199.24 19291.06 30596.04 24198.17 233
MDTV_nov1_ep1395.40 17597.48 25888.34 36596.85 35497.29 32193.74 22197.48 15397.26 27389.18 19599.05 21891.92 28997.43 197
PatchmatchNetpermissive95.71 18195.52 17396.29 27097.58 24990.72 32496.84 35597.52 30294.06 20097.08 16296.96 30789.24 19498.90 24592.03 28598.37 16599.26 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MSDG95.93 17095.30 18697.83 14898.90 12795.36 18496.83 35698.37 20191.32 31894.43 24798.73 14390.27 17499.60 13990.05 32198.82 14398.52 216
thisisatest051595.61 19094.89 20697.76 15698.15 20595.15 19796.77 35794.41 38692.95 26597.18 15997.43 26384.78 28999.45 17394.63 20497.73 18998.68 202
GA-MVS94.81 23694.03 25097.14 19797.15 28693.86 25196.76 35897.58 29194.00 20594.76 23697.04 29780.91 32998.48 28291.79 29196.25 23599.09 161
tpm cat193.36 30292.80 30495.07 31597.58 24987.97 37096.76 35897.86 27782.17 39093.53 28796.04 34786.13 26399.13 20689.24 33695.87 24598.10 235
eth_miper_zixun_eth94.68 24294.41 23095.47 30197.64 24591.71 30696.73 36098.07 25992.71 27393.64 28397.21 27990.54 16998.17 32093.38 24589.76 32496.54 321
test_post196.68 36130.43 41287.85 23498.69 26592.59 269
pmmvs386.67 35684.86 36192.11 36388.16 40087.19 37696.63 36294.75 38479.88 39287.22 37192.75 39066.56 39195.20 38981.24 38276.56 39793.96 383
miper_enhance_ethall95.10 21894.75 21196.12 27697.53 25693.73 25896.61 36398.08 25792.20 29493.89 27496.65 32692.44 11798.30 31194.21 22191.16 30996.34 340
testmvs21.48 37924.95 38211.09 39514.89 4176.47 42096.56 3649.87 4187.55 41117.93 41139.02 4099.43 4185.90 41416.56 41312.72 41120.91 409
test12320.95 38023.72 38312.64 39413.54 4188.19 41996.55 3656.13 4197.48 41216.74 41237.98 41012.97 4156.05 41316.69 4125.43 41223.68 408
CL-MVSNet_self_test90.11 33989.14 34293.02 35591.86 39088.23 36896.51 36698.07 25990.49 33390.49 34994.41 37484.75 29095.34 38780.79 38374.95 39895.50 360
GG-mvs-BLEND96.59 24096.34 32994.98 20596.51 36688.58 40793.10 30794.34 37880.34 33698.05 33089.53 33196.99 20496.74 294
new_pmnet90.06 34089.00 34493.22 35394.18 37688.32 36696.42 36896.89 34986.19 37485.67 38193.62 38177.18 36097.10 36481.61 38189.29 33494.23 376
PVSNet91.96 1896.35 15296.15 14796.96 21099.17 9492.05 29996.08 36998.68 12493.69 22897.75 13497.80 23388.86 20799.69 12494.26 22099.01 13199.15 153
ADS-MVSNet294.58 25194.40 23195.11 31398.00 21588.74 35896.04 37097.30 32090.15 34196.47 19596.64 32787.89 23197.56 35690.08 31997.06 20299.02 172
ADS-MVSNet95.00 22394.45 22796.63 23498.00 21591.91 30196.04 37097.74 28390.15 34196.47 19596.64 32787.89 23198.96 23390.08 31997.06 20299.02 172
PAPM94.95 23094.00 25497.78 15397.04 29195.65 17096.03 37298.25 22491.23 32394.19 26197.80 23391.27 15598.86 25182.61 37997.61 19298.84 188
cascas94.63 24793.86 26696.93 21296.91 30094.27 24096.00 37398.51 16985.55 38094.54 23996.23 33984.20 30598.87 24995.80 16896.98 20797.66 248
gg-mvs-nofinetune92.21 32290.58 33097.13 19896.75 31095.09 19995.85 37489.40 40685.43 38194.50 24181.98 40180.80 33298.40 30492.16 27998.33 16897.88 239
FPMVS77.62 36977.14 36979.05 38779.25 41060.97 41295.79 37595.94 37165.96 40167.93 40394.40 37537.73 40788.88 40468.83 40088.46 34487.29 398
CHOSEN 280x42097.18 11797.18 10297.20 19198.81 13893.27 27795.78 37699.15 2895.25 14596.79 18098.11 20392.29 12199.07 21798.56 3499.85 599.25 134
MIMVSNet93.26 30792.21 31696.41 26197.73 23893.13 28395.65 37797.03 33891.27 32294.04 26896.06 34675.33 36997.19 36386.56 35696.23 23798.92 183
KD-MVS_2432*160089.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28889.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
miper_refine_blended89.61 34487.96 35194.54 33294.06 37991.59 30895.59 37897.63 28889.87 34688.95 36194.38 37678.28 34896.82 36884.83 36968.05 40295.21 364
PCF-MVS93.45 1194.68 24293.43 29298.42 10398.62 15896.77 11195.48 38098.20 22984.63 38493.34 29798.32 18588.55 21599.81 8184.80 37198.96 13498.68 202
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
JIA-IIPM93.35 30392.49 31195.92 28396.48 32490.65 32695.01 38196.96 34385.93 37796.08 20687.33 39887.70 23798.78 26091.35 29895.58 24998.34 225
CR-MVSNet94.76 23994.15 24396.59 24097.00 29293.43 26894.96 38297.56 29492.46 27996.93 17096.24 33788.15 22397.88 34587.38 35296.65 21598.46 219
RPMNet92.81 31591.34 32497.24 18997.00 29293.43 26894.96 38298.80 9382.27 38996.93 17092.12 39386.98 24999.82 7676.32 39496.65 21598.46 219
UnsupCasMVSNet_bld87.17 35385.12 36093.31 35191.94 38988.77 35794.92 38498.30 21684.30 38582.30 38890.04 39563.96 39497.25 36285.85 36274.47 40093.93 384
PVSNet_088.72 1991.28 32990.03 33595.00 31697.99 21787.29 37594.84 38598.50 17492.06 29689.86 35395.19 36679.81 33899.39 17992.27 27869.79 40198.33 226
Patchmatch-test94.42 26593.68 28196.63 23497.60 24891.76 30394.83 38697.49 30689.45 35494.14 26397.10 28388.99 20198.83 25585.37 36698.13 17499.29 127
testf179.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
APD_test279.02 36377.70 36582.99 38188.10 40166.90 40794.67 38793.11 39571.08 39974.02 39793.41 38434.15 40993.25 39572.25 39778.50 39288.82 395
Patchmtry93.22 30892.35 31495.84 28896.77 30793.09 28694.66 38997.56 29487.37 36992.90 31096.24 33788.15 22397.90 34187.37 35390.10 32196.53 323
kuosan78.45 36677.69 36780.72 38592.73 38875.32 39894.63 39074.51 41475.96 39580.87 39393.19 38663.23 39579.99 40942.56 40981.56 38286.85 401
dongtai82.47 36081.88 36384.22 37795.19 36676.03 39494.59 39174.14 41582.63 38787.19 37296.09 34564.10 39387.85 40558.91 40384.11 37488.78 397
PatchT93.06 31391.97 31996.35 26596.69 31392.67 29094.48 39297.08 33286.62 37197.08 16292.23 39287.94 23097.90 34178.89 38996.69 21398.49 218
LCM-MVSNet78.70 36576.24 37186.08 37377.26 41271.99 40394.34 39396.72 35561.62 40376.53 39589.33 39633.91 41192.78 39881.85 38074.60 39993.46 386
PMMVS277.95 36875.44 37285.46 37482.54 40774.95 39994.23 39493.08 39772.80 39874.68 39687.38 39736.36 40891.56 39973.95 39563.94 40489.87 394
MVS-HIRNet89.46 34688.40 34692.64 35797.58 24982.15 38994.16 39593.05 39875.73 39790.90 34482.52 40079.42 34098.33 30683.53 37698.68 14697.43 253
Patchmatch-RL test91.49 32690.85 32793.41 34891.37 39184.40 38092.81 39695.93 37291.87 30187.25 37094.87 37088.99 20196.53 37692.54 27382.00 37899.30 125
ambc89.49 36886.66 40375.78 39592.66 39796.72 35586.55 37792.50 39146.01 40197.90 34190.32 31582.09 37794.80 373
EMVS64.07 37563.26 37866.53 39281.73 40958.81 41591.85 39884.75 40951.93 40759.09 40775.13 40643.32 40479.09 41042.03 41039.47 40761.69 406
E-PMN64.94 37464.25 37667.02 39182.28 40859.36 41491.83 39985.63 40852.69 40560.22 40677.28 40541.06 40680.12 40846.15 40841.14 40661.57 407
ANet_high69.08 37165.37 37580.22 38665.99 41471.96 40490.91 40090.09 40582.62 38849.93 40978.39 40429.36 41281.75 40662.49 40238.52 40886.95 400
tmp_tt68.90 37266.97 37474.68 38950.78 41659.95 41387.13 40183.47 41038.80 40962.21 40596.23 33964.70 39276.91 41188.91 34030.49 40987.19 399
MVEpermissive62.14 2263.28 37659.38 37974.99 38874.33 41365.47 40985.55 40280.50 41252.02 40651.10 40875.00 40710.91 41780.50 40751.60 40653.40 40578.99 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 37363.57 37773.09 39057.90 41551.22 41785.05 40393.93 39354.45 40444.32 41083.57 39913.22 41489.15 40358.68 40481.00 38478.91 404
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method79.03 36278.17 36481.63 38486.06 40554.40 41682.75 40496.89 34939.54 40880.98 39295.57 36258.37 39894.73 39184.74 37278.61 39195.75 356
Gipumacopyleft78.40 36776.75 37083.38 38095.54 35680.43 39279.42 40597.40 31664.67 40273.46 39980.82 40345.65 40293.14 39766.32 40187.43 35476.56 405
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d30.17 37730.18 38130.16 39378.61 41143.29 41866.79 40614.21 41717.31 41014.82 41311.93 41311.55 41641.43 41237.08 41119.30 4105.76 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.98 37831.98 3800.00 3960.00 4190.00 4210.00 40798.59 1450.00 4140.00 41598.61 15190.60 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.88 38210.50 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41494.51 840.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.20 38110.94 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41598.43 1690.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.94 31888.66 342
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13999.94 898.53 3599.80 2299.86 8
PC_three_145295.08 15699.60 1999.16 7797.86 298.47 28597.52 10399.72 5699.74 37
No_MVS99.62 699.17 9499.08 1198.63 13999.94 898.53 3599.80 2299.86 8
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7598.97 10595.70 4699.83 6996.07 15599.58 84
IU-MVS99.71 1999.23 798.64 13795.28 14399.63 1898.35 5299.81 1599.83 13
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4799.80 2299.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 4399.86 199.85 10
GSMVS99.20 141
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18899.20 141
sam_mvs88.99 201
MTGPAbinary98.74 108
test_post31.83 41188.83 20898.91 242
patchmatchnet-post95.10 36889.42 18998.89 246
gm-plane-assit95.88 34787.47 37389.74 34996.94 31099.19 19893.32 248
test9_res96.39 14999.57 8599.69 56
agg_prior295.87 16599.57 8599.68 61
agg_prior99.30 6898.38 3598.72 11397.57 15199.81 81
TestCases96.99 20699.25 8193.21 28198.18 23491.36 31493.52 28898.77 13784.67 29399.72 11389.70 32897.87 18298.02 237
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
新几何199.16 4599.34 5798.01 6198.69 12190.06 34398.13 10498.95 11294.60 8299.89 4791.97 28899.47 10499.59 79
旧先验199.29 7397.48 7898.70 12099.09 9295.56 4999.47 10499.61 75
原ACMM198.65 7899.32 6296.62 11698.67 12993.27 25197.81 13098.97 10595.18 7099.83 6993.84 23399.46 10799.50 91
testdata299.89 4791.65 295
segment_acmp96.85 14
testdata98.26 11599.20 9295.36 18498.68 12491.89 30098.60 8399.10 8694.44 8999.82 7694.27 21999.44 10899.58 83
test1299.18 4299.16 9898.19 5098.53 16398.07 10895.13 7399.72 11399.56 9199.63 73
plane_prior797.42 26594.63 222
plane_prior697.35 27294.61 22587.09 246
plane_prior598.56 15799.03 22296.07 15594.27 25596.92 272
plane_prior498.28 188
plane_prior394.61 22597.02 6495.34 220
plane_prior197.37 271
n20.00 420
nn0.00 420
door-mid94.37 387
lessismore_v094.45 33894.93 37088.44 36491.03 40386.77 37597.64 24776.23 36698.42 29190.31 31685.64 37096.51 329
LGP-MVS_train96.47 25597.46 26093.54 26398.54 16194.67 17894.36 25198.77 13785.39 27599.11 21095.71 17294.15 26196.76 292
test1198.66 132
door94.64 385
HQP5-MVS94.25 242
BP-MVS95.30 184
HQP4-MVS94.45 24398.96 23396.87 283
HQP3-MVS98.46 18194.18 259
HQP2-MVS86.75 252
NP-MVS97.28 27494.51 23097.73 236
ACMMP++_ref92.97 287
ACMMP++93.61 276
Test By Simon94.64 81
ITE_SJBPF95.44 30397.42 26591.32 31297.50 30495.09 15593.59 28498.35 17981.70 32298.88 24889.71 32793.39 28296.12 348
DeepMVS_CXcopyleft86.78 37297.09 29072.30 40295.17 38175.92 39684.34 38695.19 36670.58 38295.35 38679.98 38689.04 33892.68 390