This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 5499.94 598.47 2899.81 1299.84 7
test_one_060199.66 2699.25 298.86 6797.55 2099.20 3099.47 1397.57 6
DVP-MVScopyleft99.03 398.83 699.63 499.72 1299.25 298.97 8498.58 14097.62 1699.45 1899.46 1697.42 999.94 598.47 2899.81 1299.69 50
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1299.25 299.06 6398.88 5497.62 1699.56 1399.50 897.42 9
SED-MVS99.09 198.91 299.63 499.71 1999.24 599.02 7498.87 6197.65 1499.73 499.48 1197.53 799.94 598.43 3299.81 1299.70 47
test_241102_ONE99.71 1999.24 598.87 6197.62 1699.73 499.39 2297.53 799.74 101
DVP-MVS++99.08 298.89 399.64 399.17 9199.23 799.69 198.88 5497.32 3399.53 1699.47 1397.81 399.94 598.47 2899.72 4799.74 31
IU-MVS99.71 1999.23 798.64 12895.28 13599.63 1198.35 3799.81 1299.83 8
DPE-MVScopyleft98.92 598.67 999.65 299.58 3299.20 998.42 19298.91 4897.58 1999.54 1599.46 1697.10 1299.94 597.64 7799.84 1099.83 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.63 2999.18 1099.27 27
MSC_two_6792asdad99.62 699.17 9199.08 1198.63 13099.94 598.53 2099.80 1999.86 3
No_MVS99.62 699.17 9199.08 1198.63 13099.94 598.53 2099.80 1999.86 3
HPM-MVS++copyleft98.58 2098.25 3899.55 999.50 4199.08 1198.72 14498.66 12397.51 2298.15 9098.83 11595.70 4399.92 2697.53 8799.67 5499.66 62
OPU-MVS99.37 2099.24 8499.05 1499.02 7499.16 6797.81 399.37 16097.24 9799.73 4499.70 47
SMA-MVScopyleft98.58 2098.25 3899.56 899.51 3999.04 1598.95 9098.80 8593.67 21399.37 2399.52 496.52 2199.89 3998.06 4799.81 1299.76 28
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.02 498.84 599.55 999.57 3398.96 1699.39 1298.93 4297.38 3099.41 2099.54 296.66 1799.84 5798.86 1199.85 599.87 2
ACMMP_NAP98.61 1598.30 3599.55 999.62 3098.95 1798.82 11798.81 7895.80 10899.16 3599.47 1395.37 5499.92 2697.89 5899.75 3899.79 14
MP-MVS-pluss98.31 4997.92 5599.49 1299.72 1298.88 1898.43 19098.78 9294.10 18297.69 12599.42 2095.25 6299.92 2698.09 4699.80 1999.67 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MCST-MVS98.65 1298.37 2399.48 1399.60 3198.87 1998.41 19398.68 11597.04 5398.52 7598.80 11896.78 1699.83 5997.93 5499.61 6799.74 31
CNVR-MVS98.78 898.56 1399.45 1599.32 6098.87 1998.47 18498.81 7897.72 1098.76 5899.16 6797.05 1399.78 9198.06 4799.66 5699.69 50
APD-MVScopyleft98.35 4598.00 5399.42 1699.51 3998.72 2198.80 12598.82 7394.52 17199.23 2999.25 5195.54 4899.80 7896.52 13199.77 2899.74 31
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 1898.32 3499.41 1799.54 3598.71 2299.04 6898.81 7895.12 14399.32 2599.39 2296.22 2499.84 5797.72 7099.73 4499.67 59
ZD-MVS99.46 4998.70 2398.79 9093.21 23298.67 6398.97 9595.70 4399.83 5996.07 14299.58 73
FOURS199.82 198.66 2499.69 198.95 3897.46 2599.39 22
MTAPA98.58 2098.29 3699.46 1499.76 298.64 2598.90 9798.74 10097.27 4098.02 10199.39 2294.81 7499.96 497.91 5699.79 2399.77 22
NCCC98.61 1598.35 2699.38 1899.28 7498.61 2698.45 18598.76 9697.82 998.45 7998.93 10496.65 1899.83 5997.38 9499.41 9799.71 43
DPM-MVS97.55 8096.99 9499.23 3799.04 10498.55 2797.17 30698.35 18894.85 15897.93 11198.58 14395.07 6999.71 10892.60 25199.34 10399.43 102
3Dnovator+94.38 697.43 8796.78 10499.38 1897.83 21098.52 2899.37 1498.71 10897.09 5292.99 28699.13 7289.36 17499.89 3996.97 10699.57 7499.71 43
TEST999.31 6298.50 2997.92 24398.73 10392.63 25297.74 12098.68 13296.20 2699.80 78
train_agg97.97 5497.52 6999.33 2699.31 6298.50 2997.92 24398.73 10392.98 24197.74 12098.68 13296.20 2699.80 7896.59 12799.57 7499.68 55
test_899.29 7098.44 3197.89 24998.72 10592.98 24197.70 12498.66 13596.20 2699.80 78
CDPH-MVS97.94 5797.49 7099.28 3199.47 4798.44 3197.91 24598.67 12092.57 25698.77 5798.85 11295.93 3699.72 10395.56 16399.69 5299.68 55
SteuartSystems-ACMMP98.90 698.75 799.36 2199.22 8698.43 3399.10 5898.87 6197.38 3099.35 2499.40 2197.78 599.87 4897.77 6799.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS98.49 3098.20 4499.35 2299.73 1198.39 3499.19 4298.86 6795.77 10998.31 8999.10 7695.46 4999.93 2197.57 8499.81 1299.74 31
save fliter99.46 4998.38 3598.21 21398.71 10897.95 7
GST-MVS98.43 3898.12 4799.34 2399.72 1298.38 3599.09 5998.82 7395.71 11398.73 6199.06 8695.27 6099.93 2197.07 10399.63 6499.72 39
agg_prior99.30 6698.38 3598.72 10597.57 13499.81 71
canonicalmvs97.67 7097.23 8498.98 5498.70 13798.38 3599.34 1898.39 18196.76 6697.67 12697.40 25492.26 11199.49 14898.28 4096.28 20999.08 151
alignmvs97.56 7997.07 9199.01 5298.66 14298.37 3998.83 11598.06 24896.74 6798.00 10597.65 23490.80 14999.48 15298.37 3696.56 19799.19 133
SD-MVS98.64 1398.68 898.53 7999.33 5798.36 4098.90 9798.85 7097.28 3699.72 699.39 2296.63 1997.60 33398.17 4299.85 599.64 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS98.70 1198.49 1799.34 2399.70 2298.35 4199.29 2298.88 5497.40 2798.46 7699.20 5795.90 3999.89 3997.85 6199.74 4299.78 16
X-MVStestdata94.06 27292.30 29399.34 2399.70 2298.35 4199.29 2298.88 5497.40 2798.46 7643.50 38195.90 3999.89 3997.85 6199.74 4299.78 16
DP-MVS Recon97.86 6097.46 7399.06 5199.53 3698.35 4198.33 19798.89 5192.62 25398.05 9698.94 10395.34 5699.65 11996.04 14699.42 9699.19 133
HFP-MVS98.63 1498.40 2099.32 2799.72 1298.29 4499.23 3198.96 3796.10 9498.94 4499.17 6496.06 3099.92 2697.62 7899.78 2699.75 29
TSAR-MVS + MP.98.78 898.62 1099.24 3599.69 2498.28 4599.14 4998.66 12396.84 6199.56 1399.31 4196.34 2399.70 10998.32 3899.73 4499.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS98.74 1098.55 1499.29 2899.75 398.23 4699.26 2798.88 5497.52 2199.41 2098.78 12096.00 3399.79 8897.79 6699.59 7099.85 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_prior99.19 3999.31 6298.22 4798.84 7199.70 10999.65 63
test1299.18 4199.16 9598.19 4898.53 15098.07 9595.13 6799.72 10399.56 8099.63 67
SR-MVS98.57 2398.35 2699.24 3599.53 3698.18 4999.09 5998.82 7396.58 7399.10 3799.32 3995.39 5299.82 6697.70 7499.63 6499.72 39
MP-MVScopyleft98.33 4898.01 5299.28 3199.75 398.18 4999.22 3598.79 9096.13 9297.92 11299.23 5294.54 7799.94 596.74 12699.78 2699.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
region2R98.61 1598.38 2299.29 2899.74 798.16 5199.23 3198.93 4296.15 9198.94 4499.17 6495.91 3799.94 597.55 8599.79 2399.78 16
nrg03096.28 14095.72 14997.96 12696.90 27798.15 5299.39 1298.31 19495.47 12394.42 22798.35 16892.09 11898.69 24197.50 8989.05 31497.04 238
ACMMPR98.59 1898.36 2499.29 2899.74 798.15 5299.23 3198.95 3896.10 9498.93 4899.19 6295.70 4399.94 597.62 7899.79 2399.78 16
PHI-MVS98.34 4698.06 5099.18 4199.15 9798.12 5499.04 6899.09 2493.32 22798.83 5499.10 7696.54 2099.83 5997.70 7499.76 3499.59 73
PGM-MVS98.49 3098.23 4199.27 3399.72 1298.08 5598.99 8199.49 595.43 12599.03 3899.32 3995.56 4699.94 596.80 12399.77 2899.78 16
mPP-MVS98.51 2998.26 3799.25 3499.75 398.04 5699.28 2498.81 7896.24 8798.35 8699.23 5295.46 4999.94 597.42 9299.81 1299.77 22
DeepC-MVS_fast96.70 198.55 2698.34 2999.18 4199.25 7898.04 5698.50 18198.78 9297.72 1098.92 4999.28 4495.27 6099.82 6697.55 8599.77 2899.69 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior498.01 5897.86 252
新几何199.16 4499.34 5598.01 5898.69 11290.06 32198.13 9198.95 10294.60 7699.89 3991.97 27199.47 9199.59 73
APD-MVS_3200maxsize98.53 2898.33 3399.15 4599.50 4197.92 6099.15 4798.81 7896.24 8799.20 3099.37 2895.30 5899.80 7897.73 6999.67 5499.72 39
SR-MVS-dyc-post98.54 2798.35 2699.13 4699.49 4597.86 6199.11 5598.80 8596.49 7699.17 3399.35 3495.34 5699.82 6697.72 7099.65 5999.71 43
RE-MVS-def98.34 2999.49 4597.86 6199.11 5598.80 8596.49 7699.17 3399.35 3495.29 5997.72 7099.65 5999.71 43
HPM-MVS_fast98.38 4198.13 4699.12 4899.75 397.86 6199.44 1198.82 7394.46 17498.94 4499.20 5795.16 6699.74 10197.58 8199.85 599.77 22
CP-MVS98.57 2398.36 2499.19 3999.66 2697.86 6199.34 1898.87 6195.96 9998.60 7199.13 7296.05 3199.94 597.77 6799.86 199.77 22
HPM-MVScopyleft98.36 4398.10 4999.13 4699.74 797.82 6599.53 898.80 8594.63 16698.61 7098.97 9595.13 6799.77 9697.65 7699.83 1199.79 14
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_030498.47 3398.22 4399.21 3899.00 10997.80 6698.88 10495.32 35398.86 198.53 7499.44 1994.38 8499.94 599.86 199.70 5099.90 1
DELS-MVS98.40 4098.20 4498.99 5399.00 10997.66 6797.75 26198.89 5197.71 1298.33 8798.97 9594.97 7199.88 4798.42 3499.76 3499.42 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator94.51 597.46 8296.93 9699.07 5097.78 21297.64 6899.35 1799.06 2797.02 5493.75 26199.16 6789.25 17899.92 2697.22 9999.75 3899.64 65
114514_t96.93 11096.27 12698.92 5899.50 4197.63 6998.85 11198.90 4984.80 35897.77 11699.11 7492.84 10299.66 11894.85 18199.77 2899.47 93
ACMMPcopyleft98.23 5097.95 5499.09 4999.74 797.62 7099.03 7199.41 695.98 9797.60 13399.36 3294.45 8299.93 2197.14 10098.85 12599.70 47
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
QAPM96.29 13895.40 16198.96 5697.85 20997.60 7199.23 3198.93 4289.76 32693.11 28399.02 8889.11 18399.93 2191.99 27099.62 6699.34 108
VNet97.79 6397.40 7798.96 5698.88 12197.55 7298.63 16198.93 4296.74 6799.02 3998.84 11390.33 15899.83 5998.53 2096.66 19399.50 85
FIs96.51 12896.12 13197.67 14897.13 26397.54 7399.36 1599.22 1795.89 10394.03 24898.35 16891.98 12198.44 26996.40 13592.76 26897.01 240
旧先验199.29 7097.48 7498.70 11199.09 8295.56 4699.47 9199.61 69
UA-Net97.96 5597.62 6298.98 5498.86 12397.47 7598.89 10199.08 2596.67 7098.72 6299.54 293.15 10099.81 7194.87 18098.83 12699.65 63
UniMVSNet (Re)95.78 16495.19 17797.58 15596.99 27097.47 7598.79 13099.18 1995.60 11793.92 25297.04 28391.68 12698.48 26295.80 15587.66 32996.79 267
CNLPA97.45 8597.03 9298.73 6499.05 10397.44 7798.07 23098.53 15095.32 13396.80 16298.53 14793.32 9899.72 10394.31 20299.31 10599.02 155
MVS_111021_HR98.47 3398.34 2998.88 6199.22 8697.32 7897.91 24599.58 397.20 4398.33 8799.00 9395.99 3499.64 12198.05 4999.76 3499.69 50
OpenMVScopyleft93.04 1395.83 16295.00 18698.32 9897.18 26097.32 7899.21 3898.97 3589.96 32291.14 31999.05 8786.64 23899.92 2693.38 22999.47 9197.73 221
ETV-MVS97.96 5597.81 5698.40 9498.42 15897.27 8098.73 14098.55 14696.84 6198.38 8397.44 25195.39 5299.35 16197.62 7898.89 12198.58 193
CANet98.05 5397.76 5898.90 6098.73 13297.27 8098.35 19598.78 9297.37 3297.72 12398.96 10091.53 13499.92 2698.79 1399.65 5999.51 83
FC-MVSNet-test96.42 13196.05 13497.53 15896.95 27297.27 8099.36 1599.23 1495.83 10793.93 25198.37 16692.00 12098.32 28896.02 14792.72 26997.00 241
VPA-MVSNet95.75 16595.11 18297.69 14697.24 25297.27 8098.94 9299.23 1495.13 14295.51 19897.32 25785.73 25598.91 21997.33 9689.55 30696.89 255
EC-MVSNet98.21 5198.11 4898.49 8398.34 16997.26 8499.61 598.43 17596.78 6498.87 5198.84 11393.72 9599.01 20598.91 1099.50 8699.19 133
TSAR-MVS + GP.98.38 4198.24 4098.81 6299.22 8697.25 8598.11 22898.29 20297.19 4498.99 4399.02 8896.22 2499.67 11698.52 2698.56 13999.51 83
NR-MVSNet94.98 21394.16 22797.44 16196.53 29697.22 8698.74 13698.95 3894.96 15389.25 33697.69 23089.32 17598.18 30094.59 19387.40 33296.92 247
LS3D97.16 10296.66 11298.68 6798.53 15297.19 8798.93 9498.90 4992.83 24895.99 19099.37 2892.12 11799.87 4893.67 22399.57 7498.97 160
test22299.23 8597.17 8897.40 28398.66 12388.68 33898.05 9698.96 10094.14 9099.53 8499.61 69
CPTT-MVS97.72 6697.32 8198.92 5899.64 2897.10 8999.12 5398.81 7892.34 26498.09 9499.08 8493.01 10199.92 2696.06 14599.77 2899.75 29
CS-MVS-test98.49 3098.50 1698.46 8699.20 8997.05 9099.64 498.50 16097.45 2698.88 5099.14 7195.25 6299.15 18198.83 1299.56 8099.20 129
HY-MVS93.96 896.82 11696.23 12998.57 7398.46 15697.00 9198.14 22398.21 21193.95 19196.72 16497.99 20291.58 12999.76 9794.51 19596.54 19898.95 163
UniMVSNet_NR-MVSNet95.71 16895.15 17897.40 16696.84 28096.97 9298.74 13699.24 1295.16 14193.88 25497.72 22791.68 12698.31 29095.81 15387.25 33596.92 247
DU-MVS95.42 18494.76 19797.40 16696.53 29696.97 9298.66 15798.99 3495.43 12593.88 25497.69 23088.57 19798.31 29095.81 15387.25 33596.92 247
DeepC-MVS95.98 397.88 5997.58 6498.77 6399.25 7896.93 9498.83 11598.75 9896.96 5796.89 15799.50 890.46 15599.87 4897.84 6399.76 3499.52 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR96.84 11596.24 12898.65 6998.72 13696.92 9597.36 28998.57 14293.33 22696.67 16597.57 24294.30 8699.56 13591.05 28898.59 13799.47 93
MVS_111021_LR98.34 4698.23 4198.67 6899.27 7596.90 9697.95 24199.58 397.14 4898.44 8199.01 9295.03 7099.62 12797.91 5699.75 3899.50 85
MAR-MVS96.91 11196.40 12198.45 8798.69 13996.90 9698.66 15798.68 11592.40 26397.07 14797.96 20591.54 13399.75 9993.68 22198.92 11998.69 181
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS97.37 9396.92 9798.72 6598.86 12396.89 9898.31 20298.71 10895.26 13697.67 12698.56 14692.21 11499.78 9195.89 15096.85 18899.48 91
MSLP-MVS++98.56 2598.57 1298.55 7599.26 7796.80 9998.71 14599.05 2997.28 3698.84 5299.28 4496.47 2299.40 15898.52 2699.70 5099.47 93
API-MVS97.41 8997.25 8397.91 12798.70 13796.80 9998.82 11798.69 11294.53 16998.11 9298.28 17794.50 8199.57 13294.12 20899.49 8897.37 231
PCF-MVS93.45 1194.68 22693.43 27398.42 9398.62 14696.77 10195.48 35598.20 21384.63 35993.34 27498.32 17488.55 19999.81 7184.80 34898.96 11898.68 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs96.42 13195.71 15298.55 7598.63 14596.75 10297.88 25098.74 10093.84 19696.54 17498.18 18885.34 26499.75 9995.93 14996.35 20399.15 140
CS-MVS98.44 3698.49 1798.31 9999.08 10296.73 10399.67 398.47 16697.17 4598.94 4499.10 7695.73 4299.13 18498.71 1499.49 8899.09 147
Effi-MVS+97.12 10496.69 10998.39 9598.19 18596.72 10497.37 28798.43 17593.71 20697.65 12998.02 19892.20 11599.25 16896.87 11897.79 16999.19 133
AdaColmapbinary97.15 10396.70 10898.48 8499.16 9596.69 10598.01 23698.89 5194.44 17596.83 15898.68 13290.69 15299.76 9794.36 19899.29 10698.98 159
原ACMM198.65 6999.32 6096.62 10698.67 12093.27 23197.81 11598.97 9595.18 6599.83 5993.84 21799.46 9499.50 85
FMVSNet394.97 21494.26 22197.11 18298.18 18796.62 10698.56 17398.26 20793.67 21394.09 24497.10 27084.25 28498.01 31392.08 26592.14 27296.70 279
sss97.39 9096.98 9598.61 7198.60 14896.61 10898.22 21298.93 4293.97 19098.01 10498.48 15291.98 12199.85 5396.45 13398.15 15799.39 105
test_yl97.22 9796.78 10498.54 7798.73 13296.60 10998.45 18598.31 19494.70 16098.02 10198.42 16090.80 14999.70 10996.81 12196.79 19099.34 108
DCV-MVSNet97.22 9796.78 10498.54 7798.73 13296.60 10998.45 18598.31 19494.70 16098.02 10198.42 16090.80 14999.70 10996.81 12196.79 19099.34 108
casdiffmvs_mvgpermissive97.72 6697.48 7298.44 8998.42 15896.59 11198.92 9598.44 17196.20 8997.76 11799.20 5791.66 12899.23 17198.27 4198.41 14899.49 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VPNet94.99 21194.19 22497.40 16697.16 26196.57 11298.71 14598.97 3595.67 11594.84 20998.24 18480.36 31798.67 24596.46 13287.32 33496.96 244
MVS94.67 22993.54 26998.08 11896.88 27896.56 11398.19 21898.50 16078.05 36892.69 29498.02 19891.07 14599.63 12490.09 29998.36 15198.04 212
XXY-MVS95.20 20094.45 21497.46 15996.75 28596.56 11398.86 11098.65 12793.30 22993.27 27698.27 18084.85 27398.87 22694.82 18391.26 28596.96 244
iter_conf_final96.42 13196.12 13197.34 16998.46 15696.55 11599.08 6198.06 24896.03 9695.63 19698.46 15687.72 21898.59 25197.84 6393.80 24496.87 258
PatchMatch-RL96.59 12396.03 13698.27 10199.31 6296.51 11697.91 24599.06 2793.72 20596.92 15598.06 19588.50 20199.65 11991.77 27599.00 11798.66 185
EI-MVSNet-Vis-set98.47 3398.39 2198.69 6699.46 4996.49 11798.30 20498.69 11297.21 4298.84 5299.36 3295.41 5199.78 9198.62 1699.65 5999.80 13
WR-MVS95.15 20294.46 21297.22 17396.67 29096.45 11898.21 21398.81 7894.15 18093.16 27997.69 23087.51 22398.30 29295.29 17288.62 32096.90 254
EIA-MVS97.75 6497.58 6498.27 10198.38 16196.44 11999.01 7698.60 13395.88 10597.26 13997.53 24594.97 7199.33 16397.38 9499.20 10899.05 153
test_fmvsm_n_192098.87 799.01 198.45 8799.42 5496.43 12098.96 8999.36 798.63 299.86 299.51 695.91 3799.97 199.72 299.75 3898.94 164
mvsmamba96.57 12696.32 12497.32 17096.60 29296.43 12099.54 797.98 25496.49 7695.20 20298.64 13690.82 14798.55 25597.97 5193.65 24996.98 242
FMVSNet294.47 24593.61 26597.04 18598.21 18196.43 12098.79 13098.27 20392.46 25793.50 27097.09 27481.16 30998.00 31591.09 28491.93 27596.70 279
PAPM_NR97.46 8297.11 8898.50 8199.50 4196.41 12398.63 16198.60 13395.18 14097.06 14898.06 19594.26 8899.57 13293.80 21998.87 12499.52 80
SDMVSNet96.85 11496.42 11998.14 11199.30 6696.38 12499.21 3899.23 1495.92 10095.96 19298.76 12685.88 25299.44 15797.93 5495.59 21998.60 189
1112_ss96.63 12196.00 13798.50 8198.56 14996.37 12598.18 22198.10 23692.92 24494.84 20998.43 15892.14 11699.58 13194.35 19996.51 19999.56 79
TranMVSNet+NR-MVSNet95.14 20394.48 21097.11 18296.45 30296.36 12699.03 7199.03 3095.04 14993.58 26497.93 20788.27 20498.03 31294.13 20786.90 34096.95 246
IS-MVSNet97.22 9796.88 9898.25 10498.85 12596.36 12699.19 4297.97 25695.39 12797.23 14098.99 9491.11 14398.93 21794.60 19198.59 13799.47 93
EI-MVSNet-UG-set98.41 3998.34 2998.61 7199.45 5296.32 12898.28 20798.68 11597.17 4598.74 5999.37 2895.25 6299.79 8898.57 1799.54 8399.73 36
LFMVS95.86 16094.98 18898.47 8598.87 12296.32 12898.84 11496.02 34493.40 22498.62 6999.20 5774.99 35099.63 12497.72 7097.20 18399.46 97
PLCcopyleft95.07 497.20 10096.78 10498.44 8999.29 7096.31 13098.14 22398.76 9692.41 26296.39 18098.31 17594.92 7399.78 9194.06 21198.77 12999.23 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Vis-MVSNetpermissive97.42 8897.11 8898.34 9798.66 14296.23 13199.22 3599.00 3296.63 7298.04 9899.21 5588.05 21199.35 16196.01 14899.21 10799.45 99
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D94.13 26592.98 28197.58 15598.22 18096.20 13297.31 29495.37 35294.53 16979.56 36797.63 23886.51 23997.53 33796.91 10990.74 29099.02 155
baseline97.64 7297.44 7598.25 10498.35 16496.20 13299.00 7898.32 19296.33 8698.03 9999.17 6491.35 13799.16 17898.10 4598.29 15599.39 105
DP-MVS96.59 12395.93 14098.57 7399.34 5596.19 13498.70 14998.39 18189.45 33194.52 21999.35 3491.85 12399.85 5392.89 24798.88 12299.68 55
test_fmvsmvis_n_192098.44 3698.51 1598.23 10698.33 17196.15 13598.97 8499.15 2198.55 398.45 7999.55 194.26 8899.97 199.65 399.66 5698.57 194
casdiffmvspermissive97.63 7397.41 7698.28 10098.33 17196.14 13698.82 11798.32 19296.38 8497.95 10799.21 5591.23 14199.23 17198.12 4498.37 14999.48 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet97.28 9596.87 9998.51 8094.98 34496.14 13698.90 9797.02 32198.28 495.99 19099.11 7491.36 13699.89 3996.98 10599.19 10999.50 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU96.96 10996.55 11598.21 10798.17 18996.07 13897.98 23998.21 21197.24 4197.13 14398.93 10486.88 23599.91 3495.00 17999.37 10298.66 185
iter_conf0596.13 14695.79 14497.15 17898.16 19095.99 13998.88 10497.98 25495.91 10295.58 19798.46 15685.53 25998.59 25197.88 5993.75 24596.86 261
xiu_mvs_v1_base_debu97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
xiu_mvs_v1_base97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
xiu_mvs_v1_base_debi97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
baseline195.84 16195.12 18198.01 12298.49 15595.98 14098.73 14097.03 31995.37 13096.22 18398.19 18789.96 16399.16 17894.60 19187.48 33098.90 167
CDS-MVSNet96.99 10896.69 10997.90 12898.05 19895.98 14098.20 21598.33 19193.67 21396.95 15198.49 15193.54 9698.42 27195.24 17597.74 17299.31 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+96.28 14095.70 15498.03 12198.29 17695.97 14598.58 16798.25 20891.74 28195.29 20197.23 26491.03 14699.15 18192.90 24597.96 16398.97 160
MVS_Test97.28 9597.00 9398.13 11498.33 17195.97 14598.74 13698.07 24394.27 17898.44 8198.07 19492.48 10699.26 16796.43 13498.19 15699.16 139
MG-MVS97.81 6297.60 6398.44 8999.12 9995.97 14597.75 26198.78 9296.89 6098.46 7699.22 5493.90 9499.68 11594.81 18499.52 8599.67 59
tfpnnormal93.66 27792.70 28796.55 23196.94 27395.94 14898.97 8499.19 1891.04 30591.38 31797.34 25584.94 27198.61 24885.45 34389.02 31695.11 345
pmmvs494.69 22493.99 23996.81 20395.74 32895.94 14897.40 28397.67 27390.42 31593.37 27397.59 24089.08 18498.20 29992.97 24291.67 27996.30 321
Test_1112_low_res96.34 13795.66 15798.36 9698.56 14995.94 14897.71 26498.07 24392.10 27394.79 21397.29 25991.75 12599.56 13594.17 20696.50 20099.58 77
MVSTER96.06 14895.72 14997.08 18498.23 17995.93 15198.73 14098.27 20394.86 15795.07 20498.09 19388.21 20598.54 25796.59 12793.46 25496.79 267
OMC-MVS97.55 8097.34 8098.20 10899.33 5795.92 15298.28 20798.59 13595.52 12197.97 10699.10 7693.28 9999.49 14895.09 17798.88 12299.19 133
PVSNet_Blended_VisFu97.70 6897.46 7398.44 8999.27 7595.91 15398.63 16199.16 2094.48 17397.67 12698.88 10992.80 10399.91 3497.11 10199.12 11199.50 85
anonymousdsp95.42 18494.91 19196.94 19395.10 34395.90 15499.14 4998.41 17793.75 20193.16 27997.46 24887.50 22598.41 27995.63 16294.03 23796.50 309
GeoE96.58 12596.07 13398.10 11798.35 16495.89 15599.34 1898.12 23093.12 23696.09 18698.87 11089.71 16798.97 20792.95 24398.08 16099.43 102
UGNet96.78 11796.30 12598.19 11098.24 17795.89 15598.88 10498.93 4297.39 2996.81 16197.84 21682.60 30299.90 3796.53 13099.49 8898.79 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H95.05 20894.46 21296.81 20396.86 27995.82 15799.24 3099.24 1293.87 19592.53 29996.84 30290.37 15698.24 29893.24 23387.93 32696.38 317
diffmvspermissive97.58 7797.40 7798.13 11498.32 17495.81 15898.06 23198.37 18596.20 8998.74 5998.89 10891.31 13999.25 16898.16 4398.52 14099.34 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
bld_raw_dy_0_6495.74 16695.31 17297.03 18696.35 30695.76 15999.12 5397.37 30395.97 9894.70 21598.48 15285.80 25498.49 26196.55 12993.48 25396.84 263
MVSFormer97.57 7897.49 7097.84 13098.07 19595.76 15999.47 998.40 17994.98 15198.79 5598.83 11592.34 10898.41 27996.91 10999.59 7099.34 108
lupinMVS97.44 8697.22 8598.12 11698.07 19595.76 15997.68 26697.76 26994.50 17298.79 5598.61 13892.34 10899.30 16597.58 8199.59 7099.31 114
PAPM94.95 21594.00 23797.78 13697.04 26795.65 16296.03 34798.25 20891.23 30194.19 24097.80 22291.27 14098.86 22882.61 35697.61 17698.84 171
jason97.32 9497.08 9098.06 12097.45 24195.59 16397.87 25197.91 26394.79 15998.55 7398.83 11591.12 14299.23 17197.58 8199.60 6899.34 108
jason: jason.
PS-MVSNAJ97.73 6597.77 5797.62 15398.68 14095.58 16497.34 29198.51 15597.29 3598.66 6797.88 21294.51 7899.90 3797.87 6099.17 11097.39 229
CP-MVSNet94.94 21794.30 22096.83 20196.72 28795.56 16599.11 5598.95 3893.89 19392.42 30497.90 20987.19 22998.12 30594.32 20188.21 32396.82 266
HyFIR lowres test96.90 11296.49 11898.14 11199.33 5795.56 16597.38 28599.65 292.34 26497.61 13298.20 18689.29 17699.10 19296.97 10697.60 17799.77 22
131496.25 14295.73 14897.79 13597.13 26395.55 16798.19 21898.59 13593.47 22192.03 31197.82 22091.33 13899.49 14894.62 19098.44 14598.32 204
thisisatest053096.01 14995.36 16697.97 12498.38 16195.52 16898.88 10494.19 36694.04 18497.64 13098.31 17583.82 29799.46 15595.29 17297.70 17498.93 165
test_djsdf96.00 15095.69 15596.93 19495.72 32995.49 16999.47 998.40 17994.98 15194.58 21797.86 21389.16 18198.41 27996.91 10994.12 23596.88 256
xiu_mvs_v2_base97.66 7197.70 6097.56 15798.61 14795.46 17097.44 28098.46 16797.15 4798.65 6898.15 18994.33 8599.80 7897.84 6398.66 13497.41 227
Vis-MVSNet (Re-imp)96.87 11396.55 11597.83 13198.73 13295.46 17099.20 4098.30 20094.96 15396.60 16998.87 11090.05 16198.59 25193.67 22398.60 13699.46 97
EPP-MVSNet97.46 8297.28 8297.99 12398.64 14495.38 17299.33 2198.31 19493.61 21797.19 14199.07 8594.05 9199.23 17196.89 11398.43 14799.37 107
testdata98.26 10399.20 8995.36 17398.68 11591.89 27898.60 7199.10 7694.44 8399.82 6694.27 20399.44 9599.58 77
MSDG95.93 15695.30 17397.83 13198.90 11995.36 17396.83 33198.37 18591.32 29694.43 22698.73 12890.27 15999.60 12990.05 30298.82 12798.52 195
PVSNet_BlendedMVS96.73 11896.60 11397.12 18199.25 7895.35 17598.26 21099.26 1094.28 17797.94 10997.46 24892.74 10499.81 7196.88 11593.32 25996.20 324
PVSNet_Blended97.38 9197.12 8798.14 11199.25 7895.35 17597.28 29699.26 1093.13 23597.94 10998.21 18592.74 10499.81 7196.88 11599.40 9999.27 121
TAMVS97.02 10796.79 10397.70 14598.06 19795.31 17798.52 17698.31 19493.95 19197.05 14998.61 13893.49 9798.52 25995.33 16997.81 16899.29 119
PS-CasMVS94.67 22993.99 23996.71 20796.68 28995.26 17899.13 5299.03 3093.68 21192.33 30597.95 20685.35 26398.10 30693.59 22588.16 32596.79 267
V4294.78 22294.14 22996.70 20996.33 30895.22 17998.97 8498.09 24092.32 26694.31 23397.06 28088.39 20298.55 25592.90 24588.87 31896.34 318
FA-MVS(test-final)96.41 13595.94 13997.82 13398.21 18195.20 18097.80 25797.58 27993.21 23297.36 13797.70 22889.47 17199.56 13594.12 20897.99 16198.71 180
pm-mvs193.94 27593.06 28096.59 22296.49 29995.16 18198.95 9098.03 25192.32 26691.08 32097.84 21684.54 28098.41 27992.16 26386.13 34696.19 325
CSCG97.85 6197.74 5998.20 10899.67 2595.16 18199.22 3599.32 893.04 23997.02 15098.92 10695.36 5599.91 3497.43 9199.64 6399.52 80
thisisatest051595.61 17794.89 19397.76 13998.15 19195.15 18396.77 33294.41 36292.95 24397.18 14297.43 25284.78 27499.45 15694.63 18897.73 17398.68 182
VDDNet95.36 19094.53 20797.86 12998.10 19495.13 18498.85 11197.75 27090.46 31398.36 8499.39 2273.27 35799.64 12197.98 5096.58 19698.81 172
gg-mvs-nofinetune92.21 29990.58 30797.13 18096.75 28595.09 18595.85 34989.40 38185.43 35694.50 22081.98 37480.80 31598.40 28592.16 26398.33 15297.88 215
PS-MVSNAJss96.43 13096.26 12796.92 19795.84 32795.08 18699.16 4698.50 16095.87 10693.84 25798.34 17294.51 7898.61 24896.88 11593.45 25697.06 237
thres600view795.49 17894.77 19697.67 14898.98 11495.02 18798.85 11196.90 32795.38 12896.63 16796.90 29784.29 28299.59 13088.65 32396.33 20498.40 199
GBi-Net94.49 24293.80 25296.56 22698.21 18195.00 18898.82 11798.18 21892.46 25794.09 24497.07 27781.16 30997.95 31792.08 26592.14 27296.72 275
test194.49 24293.80 25296.56 22698.21 18195.00 18898.82 11798.18 21892.46 25794.09 24497.07 27781.16 30997.95 31792.08 26592.14 27296.72 275
FMVSNet193.19 29092.07 29596.56 22697.54 23295.00 18898.82 11798.18 21890.38 31692.27 30697.07 27773.68 35697.95 31789.36 31691.30 28396.72 275
tfpn200view995.32 19494.62 20397.43 16298.94 11794.98 19198.68 15296.93 32595.33 13196.55 17296.53 31484.23 28699.56 13588.11 32496.29 20697.76 218
GG-mvs-BLEND96.59 22296.34 30794.98 19196.51 34188.58 38293.10 28494.34 35280.34 31998.05 31189.53 31296.99 18696.74 272
thres40095.38 18794.62 20397.65 15298.94 11794.98 19198.68 15296.93 32595.33 13196.55 17296.53 31484.23 28699.56 13588.11 32496.29 20698.40 199
F-COLMAP97.09 10696.80 10197.97 12499.45 5294.95 19498.55 17498.62 13293.02 24096.17 18598.58 14394.01 9299.81 7193.95 21398.90 12099.14 142
FE-MVS95.62 17494.90 19297.78 13698.37 16394.92 19597.17 30697.38 30290.95 30797.73 12297.70 22885.32 26699.63 12491.18 28398.33 15298.79 173
thres100view90095.38 18794.70 20097.41 16498.98 11494.92 19598.87 10896.90 32795.38 12896.61 16896.88 29884.29 28299.56 13588.11 32496.29 20697.76 218
thres20095.25 19694.57 20597.28 17198.81 12894.92 19598.20 21597.11 31395.24 13996.54 17496.22 32584.58 27999.53 14387.93 32896.50 20097.39 229
tttt051796.07 14795.51 16097.78 13698.41 16094.84 19899.28 2494.33 36494.26 17997.64 13098.64 13684.05 29099.47 15495.34 16897.60 17799.03 154
PEN-MVS94.42 24893.73 25996.49 23596.28 30994.84 19899.17 4599.00 3293.51 21992.23 30797.83 21986.10 24897.90 32192.55 25686.92 33996.74 272
v894.47 24593.77 25596.57 22596.36 30594.83 20099.05 6598.19 21591.92 27793.16 27996.97 29088.82 19498.48 26291.69 27787.79 32796.39 316
TAPA-MVS93.98 795.35 19194.56 20697.74 14199.13 9894.83 20098.33 19798.64 12886.62 34696.29 18298.61 13894.00 9399.29 16680.00 36299.41 9799.09 147
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1094.29 25593.55 26896.51 23496.39 30494.80 20298.99 8198.19 21591.35 29493.02 28596.99 28888.09 20998.41 27990.50 29588.41 32296.33 320
v2v48294.69 22494.03 23396.65 21296.17 31394.79 20398.67 15598.08 24192.72 25094.00 24997.16 26887.69 22298.45 26792.91 24488.87 31896.72 275
v114494.59 23493.92 24296.60 22196.21 31094.78 20498.59 16598.14 22891.86 28094.21 23997.02 28587.97 21298.41 27991.72 27689.57 30496.61 289
TransMVSNet (Re)92.67 29591.51 30096.15 25696.58 29494.65 20598.90 9796.73 33490.86 30889.46 33597.86 21385.62 25798.09 30886.45 33581.12 35895.71 335
BH-RMVSNet95.92 15795.32 17097.69 14698.32 17494.64 20698.19 21897.45 29694.56 16796.03 18898.61 13885.02 26999.12 18690.68 29399.06 11299.30 117
OPM-MVS95.69 17195.33 16996.76 20596.16 31594.63 20798.43 19098.39 18196.64 7195.02 20698.78 12085.15 26899.05 19695.21 17694.20 23096.60 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
jajsoiax95.45 18295.03 18596.73 20695.42 34094.63 20799.14 4998.52 15395.74 11093.22 27798.36 16783.87 29598.65 24696.95 10894.04 23696.91 252
plane_prior797.42 24394.63 207
plane_prior697.35 24894.61 21087.09 230
plane_prior394.61 21097.02 5495.34 199
HQP_MVS96.14 14595.90 14196.85 20097.42 24394.60 21298.80 12598.56 14497.28 3695.34 19998.28 17787.09 23099.03 20096.07 14294.27 22796.92 247
plane_prior94.60 21298.44 18896.74 6794.22 229
CHOSEN 1792x268897.12 10496.80 10198.08 11899.30 6694.56 21498.05 23299.71 193.57 21897.09 14498.91 10788.17 20699.89 3996.87 11899.56 8099.81 12
NP-MVS97.28 25094.51 21597.73 225
h-mvs3396.17 14395.62 15897.81 13499.03 10594.45 21698.64 15998.75 9897.48 2398.67 6398.72 12989.76 16599.86 5297.95 5281.59 35799.11 145
v119294.32 25393.58 26696.53 23296.10 31694.45 21698.50 18198.17 22391.54 28794.19 24097.06 28086.95 23498.43 27090.14 29889.57 30496.70 279
mvs_tets95.41 18695.00 18696.65 21295.58 33394.42 21899.00 7898.55 14695.73 11293.21 27898.38 16583.45 29998.63 24797.09 10294.00 23896.91 252
LTVRE_ROB92.95 1594.60 23293.90 24596.68 21197.41 24694.42 21898.52 17698.59 13591.69 28491.21 31898.35 16884.87 27299.04 19991.06 28693.44 25796.60 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet93.98 27493.26 27896.14 25796.06 31894.39 22099.20 4098.86 6793.06 23891.78 31397.81 22185.87 25397.58 33590.53 29486.17 34496.46 314
v7n94.19 26193.43 27396.47 23895.90 32494.38 22199.26 2798.34 19091.99 27592.76 29197.13 26988.31 20398.52 25989.48 31487.70 32896.52 304
v14419294.39 25093.70 26196.48 23796.06 31894.35 22298.58 16798.16 22591.45 28994.33 23297.02 28587.50 22598.45 26791.08 28589.11 31396.63 287
sd_testset96.17 14395.76 14797.42 16399.30 6694.34 22398.82 11799.08 2595.92 10095.96 19298.76 12682.83 30199.32 16495.56 16395.59 21998.60 189
Anonymous2023121194.10 26893.26 27896.61 21999.11 10094.28 22499.01 7698.88 5486.43 34892.81 28997.57 24281.66 30698.68 24494.83 18289.02 31696.88 256
cascas94.63 23193.86 24896.93 19496.91 27694.27 22596.00 34898.51 15585.55 35594.54 21896.23 32384.20 28898.87 22695.80 15596.98 18797.66 224
Anonymous2024052995.10 20594.22 22297.75 14099.01 10894.26 22698.87 10898.83 7285.79 35496.64 16698.97 9578.73 32699.85 5396.27 13794.89 22499.12 144
HQP5-MVS94.25 227
HQP-MVS95.72 16795.40 16196.69 21097.20 25694.25 22798.05 23298.46 16796.43 7994.45 22297.73 22586.75 23698.96 21195.30 17094.18 23196.86 261
RRT_MVS95.98 15195.78 14596.56 22696.48 30094.22 22999.57 697.92 26195.89 10393.95 25098.70 13089.27 17798.42 27197.23 9893.02 26397.04 238
mvsany_test197.69 6997.70 6097.66 15198.24 17794.18 23097.53 27797.53 28895.52 12199.66 899.51 694.30 8699.56 13598.38 3598.62 13599.23 126
TR-MVS94.94 21794.20 22397.17 17797.75 21494.14 23197.59 27497.02 32192.28 26895.75 19597.64 23683.88 29498.96 21189.77 30696.15 21498.40 199
v192192094.20 26093.47 27296.40 24695.98 32194.08 23298.52 17698.15 22691.33 29594.25 23697.20 26786.41 24398.42 27190.04 30389.39 31096.69 284
Baseline_NR-MVSNet94.35 25193.81 25195.96 26596.20 31194.05 23398.61 16496.67 33891.44 29093.85 25697.60 23988.57 19798.14 30394.39 19786.93 33895.68 336
VDD-MVS95.82 16395.23 17597.61 15498.84 12693.98 23498.68 15297.40 30095.02 15097.95 10799.34 3874.37 35499.78 9198.64 1596.80 18999.08 151
PMMVS96.60 12296.33 12397.41 16497.90 20793.93 23597.35 29098.41 17792.84 24797.76 11797.45 25091.10 14499.20 17596.26 13897.91 16499.11 145
v124094.06 27293.29 27796.34 24996.03 32093.90 23698.44 18898.17 22391.18 30494.13 24397.01 28786.05 24998.42 27189.13 31989.50 30896.70 279
GA-MVS94.81 22094.03 23397.14 17997.15 26293.86 23796.76 33397.58 27994.00 18894.76 21497.04 28380.91 31298.48 26291.79 27496.25 21199.09 147
ACMM93.85 995.69 17195.38 16596.61 21997.61 22593.84 23898.91 9698.44 17195.25 13794.28 23498.47 15486.04 25199.12 18695.50 16693.95 24096.87 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_anonymous96.70 12096.53 11797.18 17698.19 18593.78 23998.31 20298.19 21594.01 18794.47 22198.27 18092.08 11998.46 26697.39 9397.91 16499.31 114
XVG-OURS-SEG-HR96.51 12896.34 12297.02 18798.77 13093.76 24097.79 25998.50 16095.45 12496.94 15299.09 8287.87 21699.55 14296.76 12595.83 21897.74 220
XVG-OURS96.55 12796.41 12096.99 18898.75 13193.76 24097.50 27998.52 15395.67 11596.83 15899.30 4288.95 19199.53 14395.88 15196.26 21097.69 223
Anonymous20240521195.28 19594.49 20997.67 14899.00 10993.75 24298.70 14997.04 31890.66 30996.49 17698.80 11878.13 33299.83 5996.21 14195.36 22399.44 100
CLD-MVS95.62 17495.34 16796.46 24197.52 23593.75 24297.27 29798.46 16795.53 12094.42 22798.00 20186.21 24698.97 20796.25 14094.37 22596.66 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_enhance_ethall95.10 20594.75 19896.12 25997.53 23493.73 24496.61 33898.08 24192.20 27293.89 25396.65 31092.44 10798.30 29294.21 20591.16 28696.34 318
IterMVS-LS95.46 18095.21 17696.22 25598.12 19293.72 24598.32 20198.13 22993.71 20694.26 23597.31 25892.24 11298.10 30694.63 18890.12 29796.84 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 15295.83 14396.36 24797.93 20593.70 24698.12 22698.27 20393.70 20895.07 20499.02 8892.23 11398.54 25794.68 18693.46 25496.84 263
cl2294.68 22694.19 22496.13 25898.11 19393.60 24796.94 31898.31 19492.43 26193.32 27596.87 30086.51 23998.28 29694.10 21091.16 28696.51 307
baseline295.11 20494.52 20896.87 19996.65 29193.56 24898.27 20994.10 36893.45 22292.02 31297.43 25287.45 22799.19 17693.88 21697.41 18197.87 216
LPG-MVS_test95.62 17495.34 16796.47 23897.46 23893.54 24998.99 8198.54 14894.67 16494.36 23098.77 12285.39 26199.11 18895.71 15894.15 23396.76 270
LGP-MVS_train96.47 23897.46 23893.54 24998.54 14894.67 16494.36 23098.77 12285.39 26199.11 18895.71 15894.15 23396.76 270
hse-mvs295.71 16895.30 17396.93 19498.50 15393.53 25198.36 19498.10 23697.48 2398.67 6397.99 20289.76 16599.02 20397.95 5280.91 36198.22 207
AUN-MVS94.53 23993.73 25996.92 19798.50 15393.52 25298.34 19698.10 23693.83 19895.94 19497.98 20485.59 25899.03 20094.35 19980.94 36098.22 207
ACMP93.49 1095.34 19294.98 18896.43 24397.67 22193.48 25398.73 14098.44 17194.94 15692.53 29998.53 14784.50 28199.14 18395.48 16794.00 23896.66 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet94.76 22394.15 22896.59 22297.00 26893.43 25494.96 35797.56 28192.46 25796.93 15396.24 32188.15 20797.88 32587.38 33096.65 19498.46 197
RPMNet92.81 29491.34 30197.24 17297.00 26893.43 25494.96 35798.80 8582.27 36396.93 15392.12 36686.98 23399.82 6676.32 37096.65 19498.46 197
IB-MVS91.98 1793.27 28691.97 29697.19 17597.47 23793.41 25697.09 31195.99 34593.32 22792.47 30295.73 33578.06 33399.53 14394.59 19382.98 35298.62 188
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl____94.51 24194.01 23696.02 26197.58 22793.40 25797.05 31297.96 25891.73 28392.76 29197.08 27689.06 18598.13 30492.61 25090.29 29596.52 304
DIV-MVS_self_test94.52 24094.03 23395.99 26297.57 23193.38 25897.05 31297.94 25991.74 28192.81 28997.10 27089.12 18298.07 31092.60 25190.30 29496.53 301
UniMVSNet_ETH3D94.24 25893.33 27596.97 19197.19 25993.38 25898.74 13698.57 14291.21 30393.81 25898.58 14372.85 35898.77 23795.05 17893.93 24198.77 177
miper_ehance_all_eth95.01 20994.69 20195.97 26497.70 21993.31 26097.02 31498.07 24392.23 26993.51 26996.96 29291.85 12398.15 30293.68 22191.16 28696.44 315
CHOSEN 280x42097.18 10197.18 8697.20 17498.81 12893.27 26195.78 35199.15 2195.25 13796.79 16398.11 19292.29 11099.07 19598.56 1999.85 599.25 125
ACMH92.88 1694.55 23693.95 24196.34 24997.63 22493.26 26298.81 12498.49 16593.43 22389.74 33198.53 14781.91 30499.08 19493.69 22093.30 26096.70 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_cas_vis1_n_192097.38 9197.36 7997.45 16098.95 11693.25 26399.00 7898.53 15097.70 1399.77 399.35 3484.71 27699.85 5398.57 1799.66 5699.26 123
COLMAP_ROBcopyleft93.27 1295.33 19394.87 19496.71 20799.29 7093.24 26498.58 16798.11 23389.92 32393.57 26599.10 7686.37 24499.79 8890.78 29198.10 15997.09 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest95.24 19794.65 20296.99 18899.25 7893.21 26598.59 16598.18 21891.36 29293.52 26798.77 12284.67 27799.72 10389.70 30997.87 16698.02 213
TestCases96.99 18899.25 7893.21 26598.18 21891.36 29293.52 26798.77 12284.67 27799.72 10389.70 30997.87 16698.02 213
MIMVSNet93.26 28792.21 29496.41 24497.73 21893.13 26795.65 35297.03 31991.27 30094.04 24796.06 32875.33 34897.19 34386.56 33496.23 21298.92 166
c3_l94.79 22194.43 21695.89 26997.75 21493.12 26897.16 30898.03 25192.23 26993.46 27297.05 28291.39 13598.01 31393.58 22689.21 31296.53 301
Patchmtry93.22 28892.35 29295.84 27196.77 28293.09 26994.66 36497.56 28187.37 34492.90 28796.24 32188.15 20797.90 32187.37 33190.10 29896.53 301
tt080594.54 23793.85 24996.63 21697.98 20393.06 27098.77 13297.84 26693.67 21393.80 25998.04 19776.88 34398.96 21194.79 18592.86 26697.86 217
v14894.29 25593.76 25795.91 26796.10 31692.93 27198.58 16797.97 25692.59 25593.47 27196.95 29488.53 20098.32 28892.56 25587.06 33796.49 310
test0.0.03 194.08 27093.51 27095.80 27295.53 33592.89 27297.38 28595.97 34695.11 14492.51 30196.66 30887.71 21996.94 34787.03 33293.67 24797.57 225
PatchT93.06 29291.97 29696.35 24896.69 28892.67 27394.48 36597.08 31486.62 34697.08 14592.23 36587.94 21397.90 32178.89 36696.69 19298.49 196
MVP-Stereo94.28 25793.92 24295.35 28894.95 34592.60 27497.97 24097.65 27491.61 28690.68 32497.09 27486.32 24598.42 27189.70 30999.34 10395.02 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs593.65 27992.97 28295.68 27695.49 33692.37 27598.20 21597.28 30789.66 32892.58 29797.26 26082.14 30398.09 30893.18 23690.95 28996.58 292
BH-untuned95.95 15395.72 14996.65 21298.55 15192.26 27698.23 21197.79 26893.73 20494.62 21698.01 20088.97 19099.00 20693.04 24098.51 14198.68 182
pmmvs-eth3d90.36 31589.05 32094.32 31891.10 36892.12 27797.63 27396.95 32488.86 33784.91 36193.13 36078.32 32996.74 35088.70 32281.81 35694.09 358
FMVSNet591.81 30090.92 30394.49 31397.21 25592.09 27898.00 23897.55 28689.31 33490.86 32295.61 34074.48 35295.32 36585.57 34189.70 30296.07 328
D2MVS95.18 20195.08 18395.48 28297.10 26592.07 27998.30 20499.13 2394.02 18692.90 28796.73 30589.48 17098.73 23994.48 19693.60 25295.65 337
PVSNet91.96 1896.35 13696.15 13096.96 19299.17 9192.05 28096.08 34498.68 11593.69 20997.75 11997.80 22288.86 19299.69 11494.26 20499.01 11699.15 140
ACMH+92.99 1494.30 25493.77 25595.88 27097.81 21192.04 28198.71 14598.37 18593.99 18990.60 32598.47 15480.86 31499.05 19692.75 24992.40 27196.55 298
ADS-MVSNet95.00 21094.45 21496.63 21698.00 19991.91 28296.04 34597.74 27190.15 31996.47 17796.64 31187.89 21498.96 21190.08 30097.06 18499.02 155
BH-w/o95.38 18795.08 18396.26 25498.34 16991.79 28397.70 26597.43 29892.87 24694.24 23797.22 26588.66 19598.84 22991.55 27997.70 17498.16 210
Patchmatch-test94.42 24893.68 26396.63 21697.60 22691.76 28494.83 36197.49 29389.45 33194.14 24297.10 27088.99 18698.83 23185.37 34498.13 15899.29 119
EPMVS94.99 21194.48 21096.52 23397.22 25491.75 28597.23 29891.66 37694.11 18197.28 13896.81 30385.70 25698.84 22993.04 24097.28 18298.97 160
Fast-Effi-MVS+-dtu95.87 15995.85 14295.91 26797.74 21791.74 28698.69 15198.15 22695.56 11994.92 20797.68 23388.98 18998.79 23593.19 23597.78 17097.20 235
eth_miper_zixun_eth94.68 22694.41 21795.47 28397.64 22391.71 28796.73 33598.07 24392.71 25193.64 26297.21 26690.54 15498.17 30193.38 22989.76 30196.54 299
XVG-ACMP-BASELINE94.54 23794.14 22995.75 27596.55 29591.65 28898.11 22898.44 17194.96 15394.22 23897.90 20979.18 32599.11 18894.05 21293.85 24296.48 312
KD-MVS_2432*160089.61 32187.96 32894.54 31194.06 35591.59 28995.59 35397.63 27689.87 32488.95 33894.38 35078.28 33096.82 34884.83 34668.05 37595.21 342
miper_refine_blended89.61 32187.96 32894.54 31194.06 35591.59 28995.59 35397.63 27689.87 32488.95 33894.38 35078.28 33096.82 34884.83 34668.05 37595.21 342
TDRefinement91.06 30989.68 31495.21 29085.35 37991.49 29198.51 18097.07 31691.47 28888.83 34197.84 21677.31 33999.09 19392.79 24877.98 36795.04 347
MDA-MVSNet-bldmvs89.97 31888.35 32494.83 30495.21 34291.34 29297.64 27097.51 29088.36 34071.17 37596.13 32779.22 32496.63 35583.65 35286.27 34396.52 304
ITE_SJBPF95.44 28597.42 24391.32 29397.50 29195.09 14793.59 26398.35 16881.70 30598.88 22589.71 30893.39 25896.12 326
SCA95.46 18095.13 17996.46 24197.67 22191.29 29497.33 29297.60 27894.68 16396.92 15597.10 27083.97 29298.89 22392.59 25398.32 15499.20 129
pmmvs691.77 30190.63 30695.17 29294.69 35191.24 29598.67 15597.92 26186.14 35089.62 33297.56 24475.79 34798.34 28690.75 29284.56 34895.94 331
test_040291.32 30490.27 31094.48 31496.60 29291.12 29698.50 18197.22 31186.10 35188.30 34396.98 28977.65 33797.99 31678.13 36892.94 26594.34 352
MIMVSNet189.67 32088.28 32593.82 32292.81 36391.08 29798.01 23697.45 29687.95 34187.90 34595.87 33267.63 36494.56 36978.73 36788.18 32495.83 333
miper_lstm_enhance94.33 25294.07 23295.11 29497.75 21490.97 29897.22 29998.03 25191.67 28592.76 29196.97 29090.03 16297.78 32892.51 25889.64 30396.56 296
ECVR-MVScopyleft95.95 15395.71 15296.65 21299.02 10690.86 29999.03 7191.80 37596.96 5798.10 9399.26 4781.31 30899.51 14796.90 11299.04 11399.59 73
ppachtmachnet_test93.22 28892.63 28894.97 29895.45 33890.84 30096.88 32797.88 26490.60 31092.08 31097.26 26088.08 21097.86 32685.12 34590.33 29396.22 323
USDC93.33 28592.71 28695.21 29096.83 28190.83 30196.91 32197.50 29193.84 19690.72 32398.14 19077.69 33598.82 23289.51 31393.21 26295.97 330
MDA-MVSNet_test_wron90.71 31289.38 31794.68 30894.83 34790.78 30297.19 30397.46 29487.60 34272.41 37495.72 33786.51 23996.71 35385.92 33986.80 34196.56 296
PatchmatchNetpermissive95.71 16895.52 15996.29 25397.58 22790.72 30396.84 33097.52 28994.06 18397.08 14596.96 29289.24 17998.90 22292.03 26998.37 14999.26 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patch_mono-298.36 4398.87 496.82 20299.53 3690.68 30498.64 15999.29 997.88 899.19 3299.52 496.80 1599.97 199.11 699.86 199.82 11
YYNet190.70 31389.39 31694.62 31094.79 34990.65 30597.20 30197.46 29487.54 34372.54 37395.74 33386.51 23996.66 35486.00 33886.76 34296.54 299
JIA-IIPM93.35 28392.49 29095.92 26696.48 30090.65 30595.01 35696.96 32385.93 35296.08 18787.33 37187.70 22198.78 23691.35 28195.58 22198.34 202
IterMVS-SCA-FT94.11 26793.87 24794.85 30297.98 20390.56 30797.18 30498.11 23393.75 20192.58 29797.48 24783.97 29297.41 34092.48 26091.30 28396.58 292
EPNet_dtu95.21 19994.95 19095.99 26296.17 31390.45 30898.16 22297.27 30896.77 6593.14 28298.33 17390.34 15798.42 27185.57 34198.81 12899.09 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis1_n95.47 17995.13 17996.49 23597.77 21390.41 30999.27 2698.11 23396.58 7399.66 899.18 6367.00 36599.62 12799.21 599.40 9999.44 100
IterMVS94.09 26993.85 24994.80 30597.99 20190.35 31097.18 30498.12 23093.68 21192.46 30397.34 25584.05 29097.41 34092.51 25891.33 28296.62 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dcpmvs_298.08 5298.59 1196.56 22699.57 3390.34 31199.15 4798.38 18496.82 6399.29 2699.49 1095.78 4199.57 13298.94 999.86 199.77 22
Effi-MVS+-dtu96.29 13896.56 11495.51 28197.89 20890.22 31298.80 12598.10 23696.57 7596.45 17996.66 30890.81 14898.91 21995.72 15797.99 16197.40 228
test111195.94 15595.78 14596.41 24498.99 11390.12 31399.04 6892.45 37496.99 5698.03 9999.27 4681.40 30799.48 15296.87 11899.04 11399.63 67
dmvs_re94.48 24494.18 22695.37 28797.68 22090.11 31498.54 17597.08 31494.56 16794.42 22797.24 26384.25 28497.76 32991.02 28992.83 26798.24 205
testgi93.06 29292.45 29194.88 30196.43 30389.90 31598.75 13397.54 28795.60 11791.63 31697.91 20874.46 35397.02 34586.10 33793.67 24797.72 222
UnsupCasMVSNet_eth90.99 31089.92 31394.19 32094.08 35489.83 31697.13 31098.67 12093.69 20985.83 35696.19 32675.15 34996.74 35089.14 31879.41 36396.00 329
TinyColmap92.31 29891.53 29994.65 30996.92 27489.75 31796.92 31996.68 33790.45 31489.62 33297.85 21576.06 34698.81 23386.74 33392.51 27095.41 339
test_vis1_n_192096.71 11996.84 10096.31 25199.11 10089.74 31899.05 6598.58 14098.08 699.87 199.37 2878.48 32899.93 2199.29 499.69 5299.27 121
test-LLR95.10 20594.87 19495.80 27296.77 28289.70 31996.91 32195.21 35495.11 14494.83 21195.72 33787.71 21998.97 20793.06 23898.50 14298.72 178
test-mter94.08 27093.51 27095.80 27296.77 28289.70 31996.91 32195.21 35492.89 24594.83 21195.72 33777.69 33598.97 20793.06 23898.50 14298.72 178
our_test_393.65 27993.30 27694.69 30795.45 33889.68 32196.91 32197.65 27491.97 27691.66 31596.88 29889.67 16897.93 32088.02 32791.49 28196.48 312
EGC-MVSNET75.22 34369.54 34692.28 33894.81 34889.58 32297.64 27096.50 3411.82 3865.57 38795.74 33368.21 36296.26 35973.80 37291.71 27890.99 368
DeepPCF-MVS96.37 297.93 5898.48 1996.30 25299.00 10989.54 32397.43 28298.87 6198.16 599.26 2899.38 2796.12 2999.64 12198.30 3999.77 2899.72 39
MS-PatchMatch93.84 27693.63 26494.46 31696.18 31289.45 32497.76 26098.27 20392.23 26992.13 30997.49 24679.50 32298.69 24189.75 30799.38 10195.25 341
OpenMVS_ROBcopyleft86.42 2089.00 32487.43 33293.69 32393.08 36189.42 32597.91 24596.89 32978.58 36785.86 35594.69 34769.48 36198.29 29577.13 36993.29 26193.36 364
SixPastTwentyTwo93.34 28492.86 28394.75 30695.67 33089.41 32698.75 13396.67 33893.89 19390.15 32998.25 18380.87 31398.27 29790.90 29090.64 29196.57 294
K. test v392.55 29691.91 29894.48 31495.64 33189.24 32799.07 6294.88 35894.04 18486.78 35097.59 24077.64 33897.64 33292.08 26589.43 30996.57 294
OurMVSNet-221017-094.21 25994.00 23794.85 30295.60 33289.22 32898.89 10197.43 29895.29 13492.18 30898.52 15082.86 30098.59 25193.46 22891.76 27796.74 272
TESTMET0.1,194.18 26393.69 26295.63 27896.92 27489.12 32996.91 32194.78 35993.17 23494.88 20896.45 31778.52 32798.92 21893.09 23798.50 14298.85 169
CostFormer94.95 21594.73 19995.60 28097.28 25089.06 33097.53 27796.89 32989.66 32896.82 16096.72 30686.05 24998.95 21695.53 16596.13 21598.79 173
tpm294.19 26193.76 25795.46 28497.23 25389.04 33197.31 29496.85 33387.08 34596.21 18496.79 30483.75 29898.74 23892.43 26196.23 21298.59 191
EG-PatchMatch MVS91.13 30890.12 31194.17 32194.73 35089.00 33298.13 22597.81 26789.22 33585.32 36096.46 31667.71 36398.42 27187.89 32993.82 24395.08 346
test250694.44 24793.91 24496.04 26099.02 10688.99 33399.06 6379.47 38896.96 5798.36 8499.26 4777.21 34099.52 14696.78 12499.04 11399.59 73
KD-MVS_self_test90.38 31489.38 31793.40 32792.85 36288.94 33497.95 24197.94 25990.35 31790.25 32793.96 35379.82 32095.94 36084.62 35076.69 36995.33 340
UnsupCasMVSNet_bld87.17 33085.12 33693.31 32991.94 36488.77 33594.92 35998.30 20084.30 36082.30 36490.04 36863.96 36897.25 34285.85 34074.47 37393.93 362
ADS-MVSNet294.58 23594.40 21895.11 29498.00 19988.74 33696.04 34597.30 30590.15 31996.47 17796.64 31187.89 21497.56 33690.08 30097.06 18499.02 155
LF4IMVS93.14 29192.79 28594.20 31995.88 32588.67 33797.66 26897.07 31693.81 19991.71 31497.65 23477.96 33498.81 23391.47 28091.92 27695.12 344
tpmvs94.60 23294.36 21995.33 28997.46 23888.60 33896.88 32797.68 27291.29 29893.80 25996.42 31888.58 19699.24 17091.06 28696.04 21698.17 209
tpmrst95.63 17395.69 15595.44 28597.54 23288.54 33996.97 31697.56 28193.50 22097.52 13596.93 29689.49 16999.16 17895.25 17496.42 20298.64 187
test_fmvs196.42 13196.67 11195.66 27798.82 12788.53 34098.80 12598.20 21396.39 8399.64 1099.20 5780.35 31899.67 11699.04 799.57 7498.78 176
Anonymous2024052191.18 30790.44 30893.42 32593.70 35888.47 34198.94 9297.56 28188.46 33989.56 33495.08 34577.15 34296.97 34683.92 35189.55 30694.82 350
lessismore_v094.45 31794.93 34688.44 34291.03 37886.77 35197.64 23676.23 34598.42 27190.31 29785.64 34796.51 307
MDTV_nov1_ep1395.40 16197.48 23688.34 34396.85 32997.29 30693.74 20397.48 13697.26 26089.18 18099.05 19691.92 27297.43 180
test_fmvs1_n95.90 15895.99 13895.63 27898.67 14188.32 34499.26 2798.22 21096.40 8299.67 799.26 4773.91 35599.70 10999.02 899.50 8698.87 168
new_pmnet90.06 31789.00 32193.22 33194.18 35288.32 34496.42 34396.89 32986.19 34985.67 35793.62 35577.18 34197.10 34481.61 35889.29 31194.23 354
CL-MVSNet_self_test90.11 31689.14 31993.02 33391.86 36588.23 34696.51 34198.07 24390.49 31190.49 32694.41 34884.75 27595.34 36480.79 36074.95 37195.50 338
test20.0390.89 31190.38 30992.43 33693.48 35988.14 34798.33 19797.56 28193.40 22487.96 34496.71 30780.69 31694.13 37079.15 36586.17 34495.01 349
tpm cat193.36 28292.80 28495.07 29697.58 22787.97 34896.76 33397.86 26582.17 36493.53 26696.04 32986.13 24799.13 18489.24 31795.87 21798.10 211
tpm94.13 26593.80 25295.12 29396.50 29887.91 34997.44 28095.89 34992.62 25396.37 18196.30 32084.13 28998.30 29293.24 23391.66 28099.14 142
LCM-MVSNet-Re95.22 19895.32 17094.91 29998.18 18787.85 35098.75 13395.66 35095.11 14488.96 33796.85 30190.26 16097.65 33195.65 16198.44 14599.22 128
gm-plane-assit95.88 32587.47 35189.74 32796.94 29599.19 17693.32 232
Anonymous2023120691.66 30291.10 30293.33 32894.02 35787.35 35298.58 16797.26 30990.48 31290.16 32896.31 31983.83 29696.53 35679.36 36489.90 30096.12 326
PVSNet_088.72 1991.28 30690.03 31295.00 29797.99 20187.29 35394.84 36098.50 16092.06 27489.86 33095.19 34279.81 32199.39 15992.27 26269.79 37498.33 203
pmmvs386.67 33384.86 33792.11 34088.16 37387.19 35496.63 33794.75 36079.88 36687.22 34892.75 36366.56 36695.20 36681.24 35976.56 37093.96 361
dp94.15 26493.90 24594.90 30097.31 24986.82 35596.97 31697.19 31291.22 30296.02 18996.61 31385.51 26099.02 20390.00 30494.30 22698.85 169
test_vis1_rt91.29 30590.65 30593.19 33297.45 24186.25 35698.57 17290.90 37993.30 22986.94 34993.59 35662.07 36999.11 18897.48 9095.58 22194.22 355
new-patchmatchnet88.50 32687.45 33191.67 34190.31 37085.89 35797.16 30897.33 30489.47 33083.63 36392.77 36276.38 34495.06 36782.70 35577.29 36894.06 360
Patchmatch-RL test91.49 30390.85 30493.41 32691.37 36684.40 35892.81 36995.93 34891.87 27987.25 34794.87 34688.99 18696.53 35692.54 25782.00 35499.30 117
MDTV_nov1_ep13_2view84.26 35996.89 32690.97 30697.90 11389.89 16493.91 21599.18 138
test_fmvs293.43 28193.58 26692.95 33496.97 27183.91 36099.19 4297.24 31095.74 11095.20 20298.27 18069.65 36098.72 24096.26 13893.73 24696.24 322
CVMVSNet95.43 18396.04 13593.57 32497.93 20583.62 36198.12 22698.59 13595.68 11496.56 17099.02 8887.51 22397.51 33893.56 22797.44 17999.60 71
EU-MVSNet93.66 27794.14 22992.25 33995.96 32383.38 36298.52 17698.12 23094.69 16292.61 29698.13 19187.36 22896.39 35891.82 27390.00 29996.98 242
PM-MVS87.77 32886.55 33491.40 34291.03 36983.36 36396.92 31995.18 35691.28 29986.48 35493.42 35753.27 37396.74 35089.43 31581.97 35594.11 357
DSMNet-mixed92.52 29792.58 28992.33 33794.15 35382.65 36498.30 20494.26 36589.08 33692.65 29595.73 33585.01 27095.76 36186.24 33697.76 17198.59 191
MVS-HIRNet89.46 32388.40 32392.64 33597.58 22782.15 36594.16 36893.05 37375.73 37090.90 32182.52 37379.42 32398.33 28783.53 35398.68 13097.43 226
RPSCF94.87 21995.40 16193.26 33098.89 12082.06 36698.33 19798.06 24890.30 31896.56 17099.26 4787.09 23099.49 14893.82 21896.32 20598.24 205
mvsany_test388.80 32588.04 32691.09 34389.78 37181.57 36797.83 25695.49 35193.81 19987.53 34693.95 35456.14 37297.43 33994.68 18683.13 35194.26 353
Gipumacopyleft78.40 34076.75 34383.38 35595.54 33480.43 36879.42 37897.40 30064.67 37573.46 37280.82 37645.65 37593.14 37466.32 37787.43 33176.56 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary66.06 2189.70 31989.67 31589.78 34493.19 36076.56 36997.00 31598.35 18880.97 36581.57 36597.75 22474.75 35198.61 24889.85 30593.63 25094.17 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc89.49 34586.66 37675.78 37092.66 37096.72 33586.55 35392.50 36446.01 37497.90 32190.32 29682.09 35394.80 351
test_fmvs387.17 33087.06 33387.50 34891.21 36775.66 37199.05 6596.61 34092.79 24988.85 34092.78 36143.72 37693.49 37193.95 21384.56 34893.34 365
test_f86.07 33485.39 33588.10 34789.28 37275.57 37297.73 26396.33 34389.41 33385.35 35991.56 36743.31 37895.53 36291.32 28284.23 35093.21 366
PMMVS277.95 34175.44 34585.46 35182.54 38074.95 37394.23 36793.08 37272.80 37174.68 36987.38 37036.36 38191.56 37673.95 37163.94 37789.87 369
test_vis3_rt79.22 33577.40 34184.67 35386.44 37774.85 37497.66 26881.43 38684.98 35767.12 37781.91 37528.09 38697.60 33388.96 32080.04 36281.55 375
APD_test188.22 32788.01 32788.86 34695.98 32174.66 37597.21 30096.44 34283.96 36186.66 35297.90 20960.95 37097.84 32782.73 35490.23 29694.09 358
DeepMVS_CXcopyleft86.78 34997.09 26672.30 37695.17 35775.92 36984.34 36295.19 34270.58 35995.35 36379.98 36389.04 31592.68 367
LCM-MVSNet78.70 33976.24 34486.08 35077.26 38571.99 37794.34 36696.72 33561.62 37676.53 36889.33 36933.91 38492.78 37581.85 35774.60 37293.46 363
ANet_high69.08 34465.37 34880.22 35965.99 38771.96 37890.91 37390.09 38082.62 36249.93 38278.39 37729.36 38581.75 38062.49 37838.52 38186.95 374
testf179.02 33777.70 33982.99 35688.10 37466.90 37994.67 36293.11 37071.08 37274.02 37093.41 35834.15 38293.25 37272.25 37378.50 36588.82 370
APD_test279.02 33777.70 33982.99 35688.10 37466.90 37994.67 36293.11 37071.08 37274.02 37093.41 35834.15 38293.25 37272.25 37378.50 36588.82 370
MVEpermissive62.14 2263.28 34959.38 35274.99 36174.33 38665.47 38185.55 37580.50 38752.02 37951.10 38175.00 38010.91 39080.50 38151.60 38053.40 37878.99 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset87.64 32988.93 32283.79 35495.25 34163.36 38297.20 30191.17 37793.07 23785.64 35895.98 33185.30 26791.52 37769.42 37587.33 33396.49 310
N_pmnet87.12 33287.77 33085.17 35295.46 33761.92 38397.37 28770.66 38985.83 35388.73 34296.04 32985.33 26597.76 32980.02 36190.48 29295.84 332
FPMVS77.62 34277.14 34279.05 36079.25 38360.97 38495.79 35095.94 34765.96 37467.93 37694.40 34937.73 38088.88 37968.83 37688.46 32187.29 372
tmp_tt68.90 34566.97 34774.68 36250.78 38959.95 38587.13 37483.47 38538.80 38262.21 37896.23 32364.70 36776.91 38488.91 32130.49 38287.19 373
E-PMN64.94 34764.25 34967.02 36482.28 38159.36 38691.83 37285.63 38352.69 37860.22 37977.28 37841.06 37980.12 38246.15 38141.14 37961.57 380
EMVS64.07 34863.26 35166.53 36581.73 38258.81 38791.85 37184.75 38451.93 38059.09 38075.13 37943.32 37779.09 38342.03 38239.47 38061.69 379
test_method79.03 33678.17 33881.63 35886.06 37854.40 38882.75 37796.89 32939.54 38180.98 36695.57 34158.37 37194.73 36884.74 34978.61 36495.75 334
PMVScopyleft61.03 2365.95 34663.57 35073.09 36357.90 38851.22 38985.05 37693.93 36954.45 37744.32 38383.57 37213.22 38789.15 37858.68 37981.00 35978.91 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d30.17 35030.18 35430.16 36678.61 38443.29 39066.79 37914.21 39017.31 38314.82 38611.93 38611.55 38941.43 38537.08 38319.30 3835.76 383
test12320.95 35323.72 35612.64 36713.54 3918.19 39196.55 3406.13 3927.48 38516.74 38537.98 38312.97 3886.05 38616.69 3845.43 38523.68 381
testmvs21.48 35224.95 35511.09 36814.89 3906.47 39296.56 3399.87 3917.55 38417.93 38439.02 3829.43 3915.90 38716.56 38512.72 38420.91 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.98 35131.98 3530.00 3690.00 3920.00 3930.00 38098.59 1350.00 3870.00 38898.61 13890.60 1530.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.88 35510.50 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38794.51 780.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.20 35410.94 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38898.43 1580.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
PC_three_145295.08 14899.60 1299.16 6797.86 298.47 26597.52 8899.72 4799.74 31
eth-test20.00 392
eth-test0.00 392
test_241102_TWO98.87 6197.65 1499.53 1699.48 1197.34 1199.94 598.43 3299.80 1999.83 8
9.1498.06 5099.47 4798.71 14598.82 7394.36 17699.16 3599.29 4396.05 3199.81 7197.00 10499.71 49
test_0728_THIRD97.32 3399.45 1899.46 1697.88 199.94 598.47 2899.86 199.85 5
GSMVS99.20 129
sam_mvs189.45 17299.20 129
sam_mvs88.99 186
MTGPAbinary98.74 100
test_post196.68 33630.43 38587.85 21798.69 24192.59 253
test_post31.83 38488.83 19398.91 219
patchmatchnet-post95.10 34489.42 17398.89 223
MTMP98.89 10194.14 367
test9_res96.39 13699.57 7499.69 50
agg_prior295.87 15299.57 7499.68 55
test_prior297.80 25796.12 9397.89 11498.69 13195.96 3596.89 11399.60 68
旧先验297.57 27691.30 29798.67 6399.80 7895.70 160
新几何297.64 270
无先验97.58 27598.72 10591.38 29199.87 4893.36 23199.60 71
原ACMM297.67 267
testdata299.89 3991.65 278
segment_acmp96.85 14
testdata197.32 29396.34 85
plane_prior598.56 14499.03 20096.07 14294.27 22796.92 247
plane_prior498.28 177
plane_prior298.80 12597.28 36
plane_prior197.37 247
n20.00 393
nn0.00 393
door-mid94.37 363
test1198.66 123
door94.64 361
HQP-NCC97.20 25698.05 23296.43 7994.45 222
ACMP_Plane97.20 25698.05 23296.43 7994.45 222
BP-MVS95.30 170
HQP4-MVS94.45 22298.96 21196.87 258
HQP3-MVS98.46 16794.18 231
HQP2-MVS86.75 236
ACMMP++_ref92.97 264
ACMMP++93.61 251
Test By Simon94.64 75