This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad98.86 198.67 5896.94 197.93 9799.86 897.68 699.67 699.77 1
No_MVS98.86 198.67 5896.94 197.93 9799.86 897.68 699.67 699.77 1
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 5696.04 299.24 11495.36 7999.59 1799.56 26
HPM-MVS++copyleft97.34 1496.97 2198.47 599.08 3696.16 497.55 11297.97 9395.59 896.61 6297.89 8092.57 3299.84 2295.95 5699.51 3199.40 49
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2999.86 897.52 1299.67 699.75 5
CNVR-MVS97.68 697.44 1098.37 798.90 5095.86 697.27 14198.08 6695.81 797.87 2898.31 5094.26 1399.68 4897.02 2399.49 3699.57 23
DPE-MVScopyleft97.86 497.65 698.47 599.17 3295.78 797.21 14998.35 2195.16 1898.71 1398.80 1395.05 1099.89 396.70 3199.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.28 2595.74 898.10 21
DPM-MVS95.69 6594.92 7898.01 1898.08 10295.71 995.27 27497.62 13290.43 18395.55 10397.07 13491.72 4499.50 8989.62 19498.94 8398.82 105
SMA-MVScopyleft97.35 1397.03 1998.30 899.06 3895.42 1097.94 6698.18 4990.57 18098.85 1098.94 293.33 2199.83 2596.72 3099.68 499.63 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 2994.78 3498.93 798.87 896.04 299.86 897.45 1699.58 2199.59 20
IU-MVS99.42 795.39 1197.94 9690.40 18498.94 697.41 1999.66 1099.74 7
DVP-MVScopyleft97.91 397.81 498.22 1299.45 395.36 1398.21 4397.85 10894.92 2598.73 1198.87 895.08 899.84 2297.52 1299.67 699.48 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2998.29 2794.92 2598.99 598.92 395.08 8
MCST-MVS97.18 1796.84 2698.20 1399.30 2495.35 1597.12 15698.07 7193.54 7396.08 8497.69 9693.86 1699.71 4096.50 3699.39 5099.55 29
3Dnovator+91.43 495.40 7294.48 9498.16 1596.90 16095.34 1698.48 2197.87 10394.65 4288.53 26998.02 7283.69 15799.71 4093.18 12698.96 8299.44 44
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3295.13 1999.19 298.89 695.54 599.85 1797.52 1299.66 1099.56 26
test_241102_ONE99.42 795.30 1798.27 3295.09 2299.19 298.81 1295.54 599.65 52
SF-MVS97.39 1297.13 1398.17 1499.02 4295.28 1998.23 4098.27 3292.37 11998.27 1998.65 1993.33 2199.72 3996.49 3799.52 2899.51 34
test_one_060199.32 2295.20 2098.25 3795.13 1998.48 1798.87 895.16 7
alignmvs95.87 6395.23 7297.78 3097.56 13395.19 2197.86 7197.17 18494.39 4896.47 7096.40 17785.89 12999.20 11796.21 4795.11 17998.95 90
ACMMP_NAP97.20 1696.86 2498.23 1199.09 3495.16 2297.60 10598.19 4792.82 10897.93 2698.74 1691.60 4999.86 896.26 4099.52 2899.67 11
canonicalmvs96.02 5895.45 6597.75 3497.59 13095.15 2398.28 3297.60 13394.52 4496.27 7896.12 19087.65 10399.18 12096.20 4894.82 18398.91 95
NCCC97.30 1597.03 1998.11 1698.77 5395.06 2497.34 13498.04 8195.96 597.09 4597.88 8293.18 2399.71 4095.84 6199.17 6999.56 26
APD-MVScopyleft96.95 2796.60 3998.01 1899.03 4194.93 2597.72 8898.10 6491.50 14198.01 2398.32 4992.33 3699.58 6794.85 9099.51 3199.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APDe-MVS97.82 597.73 598.08 1799.15 3394.82 2698.81 798.30 2594.76 3698.30 1898.90 593.77 1799.68 4897.93 499.69 399.75 5
MP-MVS-pluss96.70 4096.27 5297.98 2099.23 3094.71 2796.96 16798.06 7490.67 17195.55 10398.78 1591.07 6099.86 896.58 3499.55 2499.38 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS99.05 3994.59 2898.08 6689.22 21197.03 4798.10 6392.52 3399.65 5294.58 10199.31 57
nrg03094.05 11393.31 12596.27 9995.22 25394.59 2898.34 2797.46 15292.93 10591.21 20296.64 15887.23 11398.22 21394.99 8885.80 29495.98 230
SD-MVS97.41 1197.53 897.06 6198.57 6994.46 3097.92 6898.14 5694.82 3199.01 498.55 2394.18 1497.41 30996.94 2499.64 1399.32 56
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS95.97 6095.38 6897.77 3298.93 4794.44 3196.35 22097.88 10186.98 27696.65 6097.89 8091.99 4299.47 9292.26 13999.46 3999.39 50
MTAPA97.08 2096.78 3297.97 2199.37 1694.42 3297.24 14398.08 6695.07 2396.11 8298.59 2090.88 6599.90 296.18 4999.50 3399.58 22
MVS_030497.04 2396.73 3497.96 2297.60 12994.36 3398.01 5694.09 33497.33 196.29 7698.79 1489.73 7899.86 899.36 199.42 4599.67 11
DeepC-MVS_fast93.89 296.93 2996.64 3897.78 3098.64 6494.30 3497.41 12498.04 8194.81 3296.59 6498.37 3991.24 5699.64 5995.16 8399.52 2899.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter98.91 4994.28 3597.02 16098.02 8695.35 12
test1297.65 4098.46 7094.26 3697.66 12595.52 10690.89 6499.46 9399.25 6399.22 64
SteuartSystems-ACMMP97.62 797.53 897.87 2398.39 7794.25 3798.43 2498.27 3295.34 1398.11 2098.56 2194.53 1299.71 4096.57 3599.62 1599.65 13
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.97.42 1097.33 1297.69 3999.25 2794.24 3898.07 5297.85 10893.72 6598.57 1498.35 4193.69 1899.40 10097.06 2299.46 3999.44 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TEST998.70 5694.19 3996.41 21298.02 8688.17 24596.03 8597.56 11192.74 2899.59 64
train_agg96.30 5395.83 5997.72 3698.70 5694.19 3996.41 21298.02 8688.58 23496.03 8597.56 11192.73 2999.59 6495.04 8599.37 5499.39 50
DP-MVS Recon95.68 6695.12 7697.37 4899.19 3194.19 3997.03 15898.08 6688.35 24195.09 11397.65 10189.97 7599.48 9192.08 14898.59 9498.44 134
GST-MVS96.85 3496.52 4397.82 2699.36 1894.14 4298.29 3198.13 5792.72 11196.70 5698.06 6791.35 5499.86 894.83 9199.28 5899.47 41
ZNCC-MVS96.96 2696.67 3797.85 2499.37 1694.12 4398.49 2098.18 4992.64 11496.39 7498.18 6091.61 4899.88 495.59 7599.55 2499.57 23
HFP-MVS97.14 1996.92 2397.83 2599.42 794.12 4398.52 1698.32 2393.21 8697.18 4098.29 5392.08 4099.83 2595.63 7099.59 1799.54 30
PHI-MVS96.77 3896.46 4797.71 3898.40 7594.07 4598.21 4398.45 1789.86 19297.11 4498.01 7392.52 3399.69 4696.03 5499.53 2799.36 54
test_898.67 5894.06 4696.37 21998.01 8988.58 23495.98 8997.55 11392.73 2999.58 67
XVS97.18 1796.96 2297.81 2799.38 1494.03 4798.59 1298.20 4494.85 2796.59 6498.29 5391.70 4699.80 2995.66 6599.40 4899.62 16
X-MVStestdata91.71 20489.67 26397.81 2799.38 1494.03 4798.59 1298.20 4494.85 2796.59 6432.69 38191.70 4699.80 2995.66 6599.40 4899.62 16
ACMMPR97.07 2196.84 2697.79 2999.44 693.88 4998.52 1698.31 2493.21 8697.15 4198.33 4791.35 5499.86 895.63 7099.59 1799.62 16
MP-MVScopyleft96.77 3896.45 4897.72 3699.39 1393.80 5098.41 2598.06 7493.37 8195.54 10598.34 4490.59 6999.88 494.83 9199.54 2699.49 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
agg_prior98.67 5893.79 5198.00 9095.68 9999.57 74
region2R97.07 2196.84 2697.77 3299.46 293.79 5198.52 1698.24 3993.19 8997.14 4298.34 4491.59 5099.87 795.46 7799.59 1799.64 14
MSP-MVS97.59 897.54 797.73 3599.40 1193.77 5398.53 1598.29 2795.55 998.56 1597.81 8993.90 1599.65 5296.62 3299.21 6699.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_prior493.66 5496.42 211
新几何197.32 4998.60 6593.59 5597.75 11481.58 34195.75 9697.85 8690.04 7499.67 5086.50 25799.13 7398.69 113
CP-MVS97.02 2496.81 3097.64 4299.33 2193.54 5698.80 898.28 2992.99 9796.45 7298.30 5291.90 4399.85 1795.61 7299.68 499.54 30
PGM-MVS96.81 3696.53 4297.65 4099.35 2093.53 5797.65 9698.98 292.22 12197.14 4298.44 3491.17 5999.85 1794.35 10399.46 3999.57 23
mPP-MVS96.86 3296.60 3997.64 4299.40 1193.44 5898.50 1998.09 6593.27 8595.95 9098.33 4791.04 6199.88 495.20 8299.57 2399.60 19
TSAR-MVS + GP.96.69 4296.49 4497.27 5398.31 8193.39 5996.79 17996.72 22594.17 5397.44 3397.66 10092.76 2699.33 10596.86 2797.76 12199.08 77
CANet96.39 5096.02 5597.50 4497.62 12693.38 6097.02 16097.96 9495.42 1194.86 11597.81 8987.38 11099.82 2796.88 2699.20 6799.29 57
旧先验198.38 7893.38 6097.75 11498.09 6592.30 3999.01 8099.16 67
3Dnovator91.36 595.19 8194.44 9697.44 4696.56 18393.36 6298.65 1198.36 1894.12 5489.25 25498.06 6782.20 19399.77 3293.41 12399.32 5699.18 66
FOURS199.55 193.34 6399.29 198.35 2194.98 2498.49 16
UniMVSNet (Re)93.31 14092.55 15495.61 13395.39 23693.34 6397.39 12998.71 793.14 9390.10 22494.83 25087.71 10198.03 24491.67 15983.99 32195.46 258
SR-MVS97.01 2596.86 2497.47 4599.09 3493.27 6597.98 5998.07 7193.75 6497.45 3298.48 3191.43 5299.59 6496.22 4399.27 5999.54 30
DELS-MVS96.61 4596.38 5097.30 5097.79 11693.19 6695.96 24498.18 4995.23 1595.87 9197.65 10191.45 5199.70 4595.87 5799.44 4499.00 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS93.07 396.06 5695.66 6097.29 5197.96 10593.17 6797.30 13998.06 7493.92 5993.38 14898.66 1786.83 11699.73 3695.60 7499.22 6598.96 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft96.69 4296.45 4897.40 4799.36 1893.11 6898.87 698.06 7491.17 15696.40 7397.99 7490.99 6299.58 6795.61 7299.61 1699.49 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NR-MVSNet92.34 18291.27 19995.53 13894.95 26593.05 6997.39 12998.07 7192.65 11384.46 32395.71 21285.00 14097.77 27889.71 19083.52 32895.78 240
test_prior97.23 5498.67 5892.99 7098.00 9099.41 9999.29 57
UA-Net95.95 6195.53 6297.20 5797.67 12192.98 7197.65 9698.13 5794.81 3296.61 6298.35 4188.87 8699.51 8690.36 17997.35 13299.11 75
VNet95.89 6295.45 6597.21 5698.07 10392.94 7297.50 11598.15 5493.87 6197.52 3197.61 10785.29 13699.53 8195.81 6295.27 17599.16 67
UniMVSNet_NR-MVSNet93.37 13892.67 14895.47 14495.34 24292.83 7397.17 15298.58 1292.98 10290.13 22095.80 20588.37 9597.85 26991.71 15683.93 32295.73 247
DU-MVS92.90 16292.04 16995.49 14194.95 26592.83 7397.16 15398.24 3993.02 9690.13 22095.71 21283.47 16197.85 26991.71 15683.93 32295.78 240
HPM-MVS_fast96.51 4796.27 5297.22 5599.32 2292.74 7598.74 998.06 7490.57 18096.77 5398.35 4190.21 7299.53 8194.80 9499.63 1499.38 52
OpenMVScopyleft89.19 1292.86 16491.68 18396.40 8795.34 24292.73 7698.27 3398.12 5984.86 31185.78 31297.75 9378.89 25399.74 3587.50 24198.65 9296.73 207
EPNet95.20 8094.56 8897.14 5892.80 33592.68 7797.85 7494.87 31996.64 292.46 16497.80 9186.23 12399.65 5293.72 11798.62 9399.10 76
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM93.45 13692.27 16496.98 6396.77 17092.62 7898.39 2698.12 5984.50 31688.27 27697.77 9282.39 19099.81 2885.40 27698.81 8798.51 123
ACMMPcopyleft96.27 5495.93 5697.28 5299.24 2892.62 7898.25 3698.81 492.99 9794.56 12198.39 3888.96 8599.85 1794.57 10297.63 12299.36 54
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA94.28 10193.53 11396.52 7498.38 7892.55 8096.59 20396.88 21690.13 18891.91 17997.24 12585.21 13799.09 13287.64 23797.83 11797.92 159
PCF-MVS89.48 1191.56 21289.95 25196.36 9296.60 17892.52 8192.51 34397.26 17979.41 35388.90 25896.56 16984.04 15499.55 7777.01 34397.30 13597.01 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS89.66 993.87 12092.95 13496.63 6897.10 14792.49 8295.64 25896.64 23389.05 21693.00 15695.79 20885.77 13299.45 9589.16 20994.35 18997.96 157
ETV-MVS96.02 5895.89 5896.40 8797.16 14292.44 8397.47 12197.77 11394.55 4396.48 6994.51 26391.23 5898.92 15195.65 6898.19 10897.82 167
VPA-MVSNet93.24 14292.48 15995.51 13995.70 22392.39 8497.86 7198.66 1192.30 12092.09 17795.37 22880.49 22098.40 19793.95 11085.86 29395.75 245
SR-MVS-dyc-post96.88 3196.80 3197.11 6099.02 4292.34 8597.98 5998.03 8393.52 7597.43 3598.51 2691.40 5399.56 7596.05 5199.26 6199.43 46
RE-MVS-def96.72 3599.02 4292.34 8597.98 5998.03 8393.52 7597.43 3598.51 2690.71 6796.05 5199.26 6199.43 46
APD-MVS_3200maxsize96.81 3696.71 3697.12 5999.01 4592.31 8797.98 5998.06 7493.11 9497.44 3398.55 2390.93 6399.55 7796.06 5099.25 6399.51 34
MVS_111021_HR96.68 4496.58 4196.99 6298.46 7092.31 8796.20 23398.90 394.30 5195.86 9297.74 9492.33 3699.38 10396.04 5399.42 4599.28 59
FMVSNet391.78 20290.69 22195.03 16196.53 18692.27 8997.02 16096.93 20889.79 19789.35 24894.65 25977.01 27497.47 30386.12 26488.82 26695.35 267
test22298.24 8692.21 9095.33 26997.60 13379.22 35495.25 10897.84 8888.80 8899.15 7198.72 110
FMVSNet291.31 22790.08 24594.99 16396.51 18792.21 9097.41 12496.95 20688.82 22788.62 26694.75 25473.87 29997.42 30885.20 27988.55 27195.35 267
MAR-MVS94.22 10293.46 11896.51 7798.00 10492.19 9297.67 9397.47 15088.13 24893.00 15695.84 20284.86 14299.51 8687.99 22498.17 11097.83 166
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet_DTU94.37 9993.65 10896.55 7296.46 19192.13 9396.21 23296.67 23294.38 4993.53 14497.03 13779.34 24099.71 4090.76 17398.45 10197.82 167
TranMVSNet+NR-MVSNet92.50 17391.63 18495.14 15494.76 27792.07 9497.53 11398.11 6292.90 10689.56 24296.12 19083.16 16797.60 29289.30 20183.20 33195.75 245
WTY-MVS94.71 9694.02 10096.79 6497.71 12092.05 9596.59 20397.35 17390.61 17794.64 11996.93 14086.41 12299.39 10191.20 16894.71 18798.94 91
FIs94.09 11193.70 10695.27 14995.70 22392.03 9698.10 4998.68 993.36 8390.39 21296.70 15287.63 10497.94 25992.25 14190.50 25295.84 234
API-MVS94.84 9294.49 9395.90 11697.90 11192.00 9797.80 7997.48 14789.19 21294.81 11696.71 15088.84 8799.17 12188.91 21398.76 8996.53 210
sss94.51 9793.80 10496.64 6697.07 14891.97 9896.32 22398.06 7488.94 22194.50 12296.78 14784.60 14499.27 11291.90 14996.02 15998.68 114
ab-mvs93.57 13292.55 15496.64 6697.28 13791.96 9995.40 26697.45 15789.81 19693.22 15496.28 18279.62 23799.46 9390.74 17493.11 20498.50 124
MSLP-MVS++96.94 2897.06 1596.59 7198.72 5591.86 10097.67 9398.49 1494.66 4197.24 3998.41 3792.31 3898.94 14996.61 3399.46 3998.96 88
test_fmvsmvis_n_192096.70 4096.84 2696.31 9496.62 17691.73 10197.98 5998.30 2596.19 496.10 8398.95 189.42 7999.76 3398.90 399.08 7697.43 184
test_fmvsm_n_192097.55 997.89 396.53 7398.41 7491.73 10198.01 5699.02 196.37 399.30 198.92 392.39 3599.79 3199.16 299.46 3998.08 155
xiu_mvs_v1_base_debu95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
xiu_mvs_v1_base95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
xiu_mvs_v1_base_debi95.01 8394.76 8195.75 12396.58 18091.71 10396.25 22897.35 17392.99 9796.70 5696.63 16482.67 18199.44 9696.22 4397.46 12596.11 226
AdaColmapbinary94.34 10093.68 10796.31 9498.59 6691.68 10696.59 20397.81 11289.87 19192.15 17397.06 13583.62 16099.54 7989.34 20098.07 11297.70 171
CS-MVS-test96.89 3097.04 1896.45 8498.29 8291.66 10799.03 497.85 10895.84 696.90 4997.97 7691.24 5698.75 16696.92 2599.33 5598.94 91
114514_t93.95 11693.06 13196.63 6899.07 3791.61 10897.46 12397.96 9477.99 35893.00 15697.57 10986.14 12899.33 10589.22 20599.15 7198.94 91
LS3D93.57 13292.61 15296.47 8197.59 13091.61 10897.67 9397.72 11985.17 30690.29 21498.34 4484.60 14499.73 3683.85 29698.27 10598.06 156
MVS91.71 20490.44 22895.51 13995.20 25591.59 11096.04 23997.45 15773.44 36687.36 29495.60 21985.42 13599.10 12985.97 26897.46 12595.83 235
Vis-MVSNetpermissive95.23 7894.81 8096.51 7797.18 14191.58 11198.26 3598.12 5994.38 4994.90 11498.15 6282.28 19198.92 15191.45 16398.58 9599.01 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D91.49 21690.11 24495.63 13196.40 19491.57 11295.34 26893.48 34390.60 17975.58 36295.49 22580.08 22896.79 33094.25 10589.76 25998.52 121
EC-MVSNet96.42 4996.47 4596.26 10097.01 15691.52 11398.89 597.75 11494.42 4696.64 6197.68 9789.32 8098.60 18297.45 1699.11 7598.67 115
casdiffmvs_mvgpermissive95.81 6495.57 6196.51 7796.87 16191.49 11497.50 11597.56 14093.99 5795.13 11297.92 7987.89 9998.78 16195.97 5597.33 13399.26 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS95.57 7095.19 7396.70 6599.27 2691.48 11598.33 2898.11 6287.79 25795.17 11198.03 7087.09 11499.61 6093.51 11999.42 4599.02 80
Effi-MVS+94.93 8894.45 9596.36 9296.61 17791.47 11696.41 21297.41 16691.02 16194.50 12295.92 19887.53 10698.78 16193.89 11396.81 14598.84 104
CDS-MVSNet94.14 10993.54 11295.93 11596.18 20491.46 11796.33 22297.04 19988.97 22093.56 14196.51 17187.55 10597.89 26789.80 18895.95 16198.44 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FC-MVSNet-test93.94 11793.57 11095.04 15995.48 23291.45 11898.12 4898.71 793.37 8190.23 21596.70 15287.66 10297.85 26991.49 16190.39 25395.83 235
PAPR94.18 10393.42 12396.48 8097.64 12591.42 11995.55 26097.71 12388.99 21892.34 17095.82 20489.19 8199.11 12886.14 26397.38 13098.90 96
SDMVSNet94.17 10493.61 10995.86 11898.09 9991.37 12097.35 13398.20 4493.18 9091.79 18297.28 12179.13 24498.93 15094.61 10092.84 20797.28 191
MVS_111021_LR96.24 5596.19 5496.39 8998.23 9091.35 12196.24 23198.79 593.99 5795.80 9497.65 10189.92 7699.24 11495.87 5799.20 6798.58 117
iter_conf_final93.60 12993.11 12995.04 15997.13 14591.30 12297.92 6895.65 28092.98 10291.60 18596.64 15879.28 24298.13 22295.34 8091.49 23095.70 248
OMC-MVS95.09 8294.70 8496.25 10398.46 7091.28 12396.43 21097.57 13792.04 13094.77 11797.96 7787.01 11599.09 13291.31 16596.77 14698.36 141
LFMVS93.60 12992.63 14996.52 7498.13 9891.27 12497.94 6693.39 34490.57 18096.29 7698.31 5069.00 32899.16 12294.18 10695.87 16399.12 74
test_yl94.78 9494.23 9896.43 8597.74 11891.22 12596.85 17497.10 18991.23 15395.71 9796.93 14084.30 14999.31 10993.10 12795.12 17798.75 107
DCV-MVSNet94.78 9494.23 9896.43 8597.74 11891.22 12596.85 17497.10 18991.23 15395.71 9796.93 14084.30 14999.31 10993.10 12795.12 17798.75 107
MVSFormer95.37 7395.16 7495.99 11496.34 19791.21 12798.22 4197.57 13791.42 14596.22 7997.32 11986.20 12697.92 26394.07 10799.05 7798.85 102
lupinMVS94.99 8794.56 8896.29 9896.34 19791.21 12795.83 24996.27 25288.93 22296.22 7996.88 14586.20 12698.85 15695.27 8199.05 7798.82 105
EI-MVSNet-Vis-set96.51 4796.47 4596.63 6898.24 8691.20 12996.89 17197.73 11794.74 3796.49 6898.49 2890.88 6599.58 6796.44 3898.32 10499.13 71
UGNet94.04 11493.28 12696.31 9496.85 16291.19 13097.88 7097.68 12494.40 4793.00 15696.18 18673.39 30599.61 6091.72 15598.46 10098.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GBi-Net91.35 22490.27 23694.59 18596.51 18791.18 13197.50 11596.93 20888.82 22789.35 24894.51 26373.87 29997.29 31586.12 26488.82 26695.31 269
test191.35 22490.27 23694.59 18596.51 18791.18 13197.50 11596.93 20888.82 22789.35 24894.51 26373.87 29997.29 31586.12 26488.82 26695.31 269
FMVSNet189.88 27388.31 28394.59 18595.41 23591.18 13197.50 11596.93 20886.62 28287.41 29294.51 26365.94 34897.29 31583.04 30087.43 28095.31 269
CS-MVS96.86 3297.06 1596.26 10098.16 9691.16 13499.09 397.87 10395.30 1497.06 4698.03 7091.72 4498.71 17297.10 2199.17 6998.90 96
PLCcopyleft91.00 694.11 11093.43 12196.13 10698.58 6891.15 13596.69 19097.39 16787.29 27191.37 19296.71 15088.39 9499.52 8587.33 24497.13 14197.73 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
原ACMM196.38 9098.59 6691.09 13697.89 9987.41 26895.22 11097.68 9790.25 7199.54 7987.95 22599.12 7498.49 126
1112_ss93.37 13892.42 16196.21 10497.05 15390.99 13796.31 22496.72 22586.87 27989.83 23396.69 15486.51 12099.14 12588.12 22293.67 19898.50 124
DP-MVS92.76 16991.51 19196.52 7498.77 5390.99 13797.38 13196.08 26182.38 33589.29 25197.87 8383.77 15699.69 4681.37 31796.69 15098.89 99
VPNet92.23 19091.31 19694.99 16395.56 22890.96 13997.22 14897.86 10792.96 10490.96 20496.62 16775.06 29298.20 21591.90 14983.65 32795.80 238
XXY-MVS92.16 19291.23 20194.95 16894.75 27990.94 14097.47 12197.43 16489.14 21388.90 25896.43 17579.71 23598.24 21189.56 19587.68 27795.67 251
EI-MVSNet-UG-set96.34 5296.30 5196.47 8198.20 9190.93 14196.86 17397.72 11994.67 4096.16 8198.46 3290.43 7099.58 6796.23 4297.96 11598.90 96
jason94.84 9294.39 9796.18 10595.52 23090.93 14196.09 23796.52 24189.28 20996.01 8897.32 11984.70 14398.77 16495.15 8498.91 8598.85 102
jason: jason.
PVSNet_Blended_VisFu95.27 7694.91 7996.38 9098.20 9190.86 14397.27 14198.25 3790.21 18594.18 12997.27 12387.48 10899.73 3693.53 11897.77 12098.55 118
mvsmamba93.83 12293.46 11894.93 17194.88 27290.85 14498.55 1495.49 28794.24 5291.29 19996.97 13983.04 17298.14 22195.56 7691.17 23895.78 240
WR-MVS92.34 18291.53 18894.77 18195.13 25890.83 14596.40 21697.98 9291.88 13489.29 25195.54 22382.50 18697.80 27489.79 18985.27 30295.69 249
PatchMatch-RL92.90 16292.02 17195.56 13598.19 9390.80 14695.27 27497.18 18287.96 25091.86 18195.68 21580.44 22198.99 14684.01 29297.54 12496.89 203
pmmvs490.93 24589.85 25594.17 20693.34 32690.79 14794.60 28796.02 26284.62 31487.45 29095.15 23681.88 20097.45 30587.70 23287.87 27694.27 322
OPM-MVS93.28 14192.76 14294.82 17494.63 28590.77 14896.65 19497.18 18293.72 6591.68 18497.26 12479.33 24198.63 17992.13 14592.28 21595.07 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline192.82 16791.90 17595.55 13797.20 14090.77 14897.19 15094.58 32492.20 12392.36 16896.34 18084.16 15298.21 21489.20 20783.90 32597.68 172
iter_conf0593.18 14892.63 14994.83 17396.64 17590.69 15097.60 10595.53 28692.52 11591.58 18696.64 15876.35 28298.13 22295.43 7891.42 23395.68 250
PAPM_NR95.01 8394.59 8696.26 10098.89 5190.68 15197.24 14397.73 11791.80 13592.93 16196.62 16789.13 8399.14 12589.21 20697.78 11998.97 87
PS-MVSNAJ95.37 7395.33 7095.49 14197.35 13690.66 15295.31 27197.48 14793.85 6296.51 6795.70 21488.65 9099.65 5294.80 9498.27 10596.17 221
IS-MVSNet94.90 8994.52 9296.05 11097.67 12190.56 15398.44 2396.22 25593.21 8693.99 13397.74 9485.55 13498.45 19489.98 18397.86 11699.14 70
MG-MVS95.61 6895.38 6896.31 9498.42 7390.53 15496.04 23997.48 14793.47 7795.67 10098.10 6389.17 8299.25 11391.27 16698.77 8899.13 71
xiu_mvs_v2_base95.32 7595.29 7195.40 14697.22 13890.50 15595.44 26597.44 16193.70 6796.46 7196.18 18688.59 9399.53 8194.79 9697.81 11896.17 221
CSCG96.05 5795.91 5796.46 8399.24 2890.47 15698.30 3098.57 1389.01 21793.97 13597.57 10992.62 3199.76 3394.66 9799.27 5999.15 69
casdiffmvspermissive95.64 6795.49 6396.08 10796.76 17390.45 15797.29 14097.44 16194.00 5695.46 10797.98 7587.52 10798.73 16895.64 6997.33 13399.08 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAMVS94.01 11593.46 11895.64 13096.16 20690.45 15796.71 18796.89 21589.27 21093.46 14696.92 14387.29 11197.94 25988.70 21795.74 16698.53 120
baseline95.58 6995.42 6796.08 10796.78 16890.41 15997.16 15397.45 15793.69 6895.65 10197.85 8687.29 11198.68 17495.66 6597.25 13799.13 71
VDDNet93.05 15492.07 16896.02 11296.84 16390.39 16098.08 5195.85 26986.22 29095.79 9598.46 3267.59 33599.19 11894.92 8994.85 18198.47 129
h-mvs3394.15 10693.52 11596.04 11197.81 11590.22 16197.62 10497.58 13695.19 1696.74 5497.45 11483.67 15899.61 6095.85 5979.73 34598.29 144
tfpnnormal89.70 27788.40 28293.60 23995.15 25690.10 16297.56 10998.16 5387.28 27286.16 31094.63 26077.57 27198.05 24074.48 34984.59 31492.65 343
Fast-Effi-MVS+93.46 13592.75 14495.59 13496.77 17090.03 16396.81 17897.13 18688.19 24491.30 19694.27 27986.21 12598.63 17987.66 23696.46 15698.12 150
plane_prior696.10 21190.00 16481.32 207
plane_prior390.00 16494.46 4591.34 193
HQP_MVS93.78 12593.43 12194.82 17496.21 20189.99 16697.74 8397.51 14494.85 2791.34 19396.64 15881.32 20798.60 18293.02 13292.23 21695.86 231
plane_prior89.99 16697.24 14394.06 5592.16 220
plane_prior796.21 20189.98 168
Test_1112_low_res92.84 16691.84 17795.85 11997.04 15489.97 16995.53 26296.64 23385.38 30189.65 23995.18 23585.86 13099.10 12987.70 23293.58 20398.49 126
VDD-MVS93.82 12393.08 13096.02 11297.88 11289.96 17097.72 8895.85 26992.43 11795.86 9298.44 3468.42 33299.39 10196.31 3994.85 18198.71 112
HyFIR lowres test93.66 12892.92 13595.87 11798.24 8689.88 17194.58 28898.49 1485.06 30893.78 13895.78 20982.86 17798.67 17591.77 15495.71 16899.07 79
PAPM91.52 21590.30 23495.20 15195.30 24889.83 17293.38 32996.85 21986.26 28988.59 26795.80 20584.88 14198.15 22075.67 34795.93 16297.63 173
NP-MVS95.99 21589.81 17395.87 200
GeoE93.89 11993.28 12695.72 12796.96 15989.75 17498.24 3996.92 21289.47 20492.12 17597.21 12784.42 14798.39 20187.71 23196.50 15399.01 83
bld_raw_dy_0_6492.37 18091.69 18294.39 19694.28 29989.73 17597.71 9093.65 34192.78 11090.46 21096.67 15675.88 28497.97 25192.92 13690.89 24695.48 254
EIA-MVS95.53 7195.47 6495.71 12897.06 15189.63 17697.82 7797.87 10393.57 6993.92 13695.04 24090.61 6898.95 14894.62 9998.68 9198.54 119
pm-mvs190.72 25289.65 26593.96 21994.29 29889.63 17697.79 8096.82 22189.07 21486.12 31195.48 22678.61 25697.78 27686.97 25281.67 33794.46 313
TAPA-MVS90.10 792.30 18591.22 20295.56 13598.33 8089.60 17896.79 17997.65 12781.83 33991.52 18897.23 12687.94 9898.91 15371.31 36198.37 10398.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVSTER93.20 14492.81 14194.37 19796.56 18389.59 17997.06 15797.12 18791.24 15291.30 19695.96 19682.02 19698.05 24093.48 12090.55 25095.47 257
EPP-MVSNet95.22 7995.04 7795.76 12197.49 13489.56 18098.67 1097.00 20390.69 16994.24 12797.62 10689.79 7798.81 15993.39 12496.49 15498.92 94
anonymousdsp92.16 19291.55 18793.97 21892.58 33989.55 18197.51 11497.42 16589.42 20688.40 27194.84 24980.66 21697.88 26891.87 15191.28 23694.48 312
MVS_Test94.89 9094.62 8595.68 12996.83 16589.55 18196.70 18897.17 18491.17 15695.60 10296.11 19387.87 10098.76 16593.01 13497.17 14098.72 110
LTVRE_ROB88.41 1390.99 24189.92 25394.19 20596.18 20489.55 18196.31 22497.09 19187.88 25385.67 31395.91 19978.79 25498.57 18681.50 31289.98 25694.44 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
131492.81 16892.03 17095.14 15495.33 24589.52 18496.04 23997.44 16187.72 26186.25 30995.33 22983.84 15598.79 16089.26 20397.05 14297.11 196
thres600view792.49 17591.60 18595.18 15297.91 11089.47 18597.65 9694.66 32192.18 12793.33 14994.91 24578.06 26699.10 12981.61 31194.06 19596.98 198
WR-MVS_H92.00 19791.35 19393.95 22095.09 26089.47 18598.04 5498.68 991.46 14388.34 27294.68 25785.86 13097.56 29485.77 27184.24 31994.82 297
PVSNet_BlendedMVS94.06 11293.92 10294.47 19298.27 8389.46 18796.73 18498.36 1890.17 18694.36 12495.24 23488.02 9699.58 6793.44 12190.72 24894.36 317
PVSNet_Blended94.87 9194.56 8895.81 12098.27 8389.46 18795.47 26498.36 1888.84 22594.36 12496.09 19488.02 9699.58 6793.44 12198.18 10998.40 137
Anonymous2024052991.98 19890.73 21995.73 12698.14 9789.40 18997.99 5897.72 11979.63 35293.54 14397.41 11769.94 32599.56 7591.04 17091.11 24098.22 146
CHOSEN 1792x268894.15 10693.51 11696.06 10998.27 8389.38 19095.18 27898.48 1685.60 29893.76 13997.11 13283.15 16899.61 6091.33 16498.72 9099.19 65
thres100view90092.43 17691.58 18694.98 16597.92 10989.37 19197.71 9094.66 32192.20 12393.31 15094.90 24678.06 26699.08 13481.40 31494.08 19296.48 213
diffmvspermissive95.25 7795.13 7595.63 13196.43 19389.34 19295.99 24397.35 17392.83 10796.31 7597.37 11886.44 12198.67 17596.26 4097.19 13998.87 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP5-MVS89.33 193
HQP-MVS93.19 14592.74 14594.54 19195.86 21689.33 19396.65 19497.39 16793.55 7090.14 21695.87 20080.95 21098.50 19092.13 14592.10 22195.78 240
tfpn200view992.38 17991.52 18994.95 16897.85 11389.29 19597.41 12494.88 31692.19 12593.27 15294.46 26878.17 26299.08 13481.40 31494.08 19296.48 213
thres40092.42 17791.52 18995.12 15697.85 11389.29 19597.41 12494.88 31692.19 12593.27 15294.46 26878.17 26299.08 13481.40 31494.08 19296.98 198
PS-MVSNAJss93.74 12693.51 11694.44 19393.91 30789.28 19797.75 8297.56 14092.50 11689.94 22996.54 17088.65 9098.18 21893.83 11690.90 24595.86 231
gg-mvs-nofinetune87.82 29685.61 30594.44 19394.46 29089.27 19891.21 35284.61 37880.88 34489.89 23274.98 37271.50 31297.53 29885.75 27297.21 13896.51 211
sd_testset93.10 15092.45 16095.05 15898.09 9989.21 19996.89 17197.64 12993.18 9091.79 18297.28 12175.35 29198.65 17788.99 21192.84 20797.28 191
GG-mvs-BLEND93.62 23893.69 31489.20 20092.39 34583.33 38087.98 28489.84 35071.00 31696.87 32882.08 31095.40 17394.80 300
CLD-MVS92.98 15792.53 15694.32 20096.12 21089.20 20095.28 27297.47 15092.66 11289.90 23095.62 21880.58 21898.40 19792.73 13792.40 21495.38 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121190.63 25589.42 26894.27 20498.24 8689.19 20298.05 5397.89 9979.95 35088.25 27794.96 24272.56 30898.13 22289.70 19185.14 30495.49 253
cascas91.20 23290.08 24594.58 18994.97 26389.16 20393.65 32397.59 13579.90 35189.40 24692.92 31775.36 29098.36 20392.14 14494.75 18596.23 217
thisisatest053093.03 15592.21 16695.49 14197.07 14889.11 20497.49 12092.19 35390.16 18794.09 13196.41 17676.43 28199.05 14190.38 17895.68 16998.31 143
thres20092.23 19091.39 19294.75 18397.61 12789.03 20596.60 20295.09 30692.08 12993.28 15194.00 29178.39 26099.04 14481.26 31894.18 19196.19 220
F-COLMAP93.58 13192.98 13395.37 14798.40 7588.98 20697.18 15197.29 17887.75 26090.49 20997.10 13385.21 13799.50 8986.70 25496.72 14997.63 173
MSDG91.42 21990.24 23894.96 16797.15 14488.91 20793.69 32196.32 25085.72 29786.93 30396.47 17380.24 22598.98 14780.57 32095.05 18096.98 198
thisisatest051592.29 18691.30 19795.25 15096.60 17888.90 20894.36 29792.32 35287.92 25193.43 14794.57 26277.28 27399.00 14589.42 19895.86 16497.86 163
testdata95.46 14598.18 9588.90 20897.66 12582.73 33497.03 4798.07 6690.06 7398.85 15689.67 19298.98 8198.64 116
Anonymous20240521192.07 19590.83 21595.76 12198.19 9388.75 21097.58 10795.00 30986.00 29393.64 14097.45 11466.24 34699.53 8190.68 17692.71 21099.01 83
ACMM89.79 892.96 15892.50 15894.35 19896.30 19988.71 21197.58 10797.36 17291.40 14790.53 20896.65 15779.77 23498.75 16691.24 16791.64 22695.59 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf93.07 15392.76 14294.00 21593.49 32188.70 21298.22 4197.57 13791.42 14590.08 22695.55 22282.85 17897.92 26394.07 10791.58 22895.40 263
XVG-OURS93.72 12793.35 12494.80 17997.07 14888.61 21394.79 28397.46 15291.97 13393.99 13397.86 8581.74 20298.88 15592.64 13892.67 21296.92 202
hse-mvs293.45 13692.99 13294.81 17697.02 15588.59 21496.69 19096.47 24495.19 1696.74 5496.16 18983.67 15898.48 19395.85 5979.13 34997.35 188
AUN-MVS91.76 20390.75 21894.81 17697.00 15788.57 21596.65 19496.49 24389.63 19892.15 17396.12 19078.66 25598.50 19090.83 17179.18 34897.36 186
CP-MVSNet91.89 20091.24 20093.82 22895.05 26188.57 21597.82 7798.19 4791.70 13788.21 27895.76 21081.96 19797.52 30087.86 22684.65 31195.37 266
FA-MVS(test-final)93.52 13492.92 13595.31 14896.77 17088.54 21794.82 28296.21 25789.61 19994.20 12895.25 23383.24 16599.14 12590.01 18296.16 15898.25 145
XVG-OURS-SEG-HR93.86 12193.55 11194.81 17697.06 15188.53 21895.28 27297.45 15791.68 13894.08 13297.68 9782.41 18998.90 15493.84 11592.47 21396.98 198
jajsoiax92.42 17791.89 17694.03 21493.33 32788.50 21997.73 8597.53 14292.00 13288.85 26196.50 17275.62 28998.11 22893.88 11491.56 22995.48 254
V4291.58 21190.87 21093.73 23294.05 30488.50 21997.32 13796.97 20488.80 23089.71 23594.33 27482.54 18598.05 24089.01 21085.07 30694.64 310
TransMVSNet (Re)88.94 28387.56 28993.08 26094.35 29488.45 22197.73 8595.23 30087.47 26684.26 32695.29 23079.86 23397.33 31379.44 33074.44 36093.45 333
tt080591.09 23690.07 24894.16 20795.61 22588.31 22297.56 10996.51 24289.56 20089.17 25595.64 21767.08 34298.38 20291.07 16988.44 27295.80 238
mvs_tets92.31 18491.76 17893.94 22293.41 32488.29 22397.63 10297.53 14292.04 13088.76 26496.45 17474.62 29598.09 23293.91 11291.48 23195.45 259
PS-CasMVS91.55 21390.84 21493.69 23694.96 26488.28 22497.84 7598.24 3991.46 14388.04 28295.80 20579.67 23697.48 30287.02 25184.54 31695.31 269
LPG-MVS_test92.94 16092.56 15394.10 20996.16 20688.26 22597.65 9697.46 15291.29 14890.12 22297.16 12979.05 24698.73 16892.25 14191.89 22495.31 269
LGP-MVS_train94.10 20996.16 20688.26 22597.46 15291.29 14890.12 22297.16 12979.05 24698.73 16892.25 14191.89 22495.31 269
v114491.37 22390.60 22393.68 23793.89 30888.23 22796.84 17697.03 20188.37 24089.69 23794.39 27082.04 19597.98 24887.80 22885.37 29994.84 294
MVP-Stereo90.74 25190.08 24592.71 27393.19 32988.20 22895.86 24896.27 25286.07 29284.86 32194.76 25377.84 26997.75 27983.88 29598.01 11392.17 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP89.59 1092.62 17292.14 16794.05 21296.40 19488.20 22897.36 13297.25 18191.52 14088.30 27496.64 15878.46 25898.72 17191.86 15291.48 23195.23 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v2v48291.59 20990.85 21393.80 22993.87 30988.17 23096.94 16896.88 21689.54 20189.53 24394.90 24681.70 20398.02 24589.25 20485.04 30895.20 277
v1091.04 23990.23 23993.49 24494.12 30188.16 23197.32 13797.08 19288.26 24388.29 27594.22 28482.17 19497.97 25186.45 25884.12 32094.33 318
v891.29 22990.53 22793.57 24294.15 30088.12 23297.34 13497.06 19688.99 21888.32 27394.26 28183.08 17098.01 24687.62 23883.92 32494.57 311
RRT_MVS93.10 15092.83 13993.93 22494.76 27788.04 23398.47 2296.55 24093.44 7890.01 22897.04 13680.64 21797.93 26294.33 10490.21 25595.83 235
Baseline_NR-MVSNet91.20 23290.62 22292.95 26493.83 31088.03 23497.01 16395.12 30588.42 23989.70 23695.13 23883.47 16197.44 30689.66 19383.24 33093.37 334
BH-RMVSNet92.72 17191.97 17394.97 16697.16 14287.99 23596.15 23595.60 28190.62 17691.87 18097.15 13178.41 25998.57 18683.16 29897.60 12398.36 141
FE-MVS92.05 19691.05 20695.08 15796.83 16587.93 23693.91 31495.70 27486.30 28794.15 13094.97 24176.59 27799.21 11684.10 29096.86 14398.09 154
Vis-MVSNet (Re-imp)94.15 10693.88 10394.95 16897.61 12787.92 23798.10 4995.80 27192.22 12193.02 15597.45 11484.53 14697.91 26688.24 22197.97 11499.02 80
ACMH87.59 1690.53 25789.42 26893.87 22696.21 20187.92 23797.24 14396.94 20788.45 23883.91 33396.27 18371.92 30998.62 18184.43 28789.43 26295.05 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS91.20 23290.44 22893.48 24594.49 28987.91 23997.76 8198.18 4991.29 14887.78 28695.74 21180.35 22397.33 31385.46 27582.96 33295.19 278
UniMVSNet_ETH3D91.34 22690.22 24194.68 18494.86 27387.86 24097.23 14797.46 15287.99 24989.90 23096.92 14366.35 34498.23 21290.30 18090.99 24397.96 157
v119291.07 23790.23 23993.58 24193.70 31387.82 24196.73 18497.07 19487.77 25889.58 24094.32 27680.90 21497.97 25186.52 25685.48 29794.95 284
MIMVSNet88.50 29086.76 29893.72 23494.84 27487.77 24291.39 34894.05 33586.41 28687.99 28392.59 32263.27 35395.82 34377.44 33792.84 20797.57 180
IB-MVS87.33 1789.91 27188.28 28494.79 18095.26 25287.70 24395.12 28093.95 33889.35 20887.03 30092.49 32370.74 31899.19 11889.18 20881.37 33997.49 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS91.38 22190.31 23394.59 18594.65 28487.62 24494.34 29896.19 25890.73 16790.35 21393.83 29571.84 31097.96 25687.22 24693.61 20198.21 147
v7n90.76 24989.86 25493.45 24793.54 31887.60 24597.70 9297.37 17088.85 22487.65 28894.08 28981.08 20998.10 22984.68 28483.79 32694.66 309
TR-MVS91.48 21790.59 22494.16 20796.40 19487.33 24695.67 25595.34 29587.68 26291.46 19095.52 22476.77 27698.35 20482.85 30293.61 20196.79 206
FMVSNet587.29 30085.79 30491.78 29794.80 27687.28 24795.49 26395.28 29684.09 32083.85 33491.82 33462.95 35594.17 36078.48 33385.34 30193.91 327
CHOSEN 280x42093.12 14992.72 14794.34 19996.71 17487.27 24890.29 35797.72 11986.61 28391.34 19395.29 23084.29 15198.41 19693.25 12598.94 8397.35 188
pmmvs-eth3d86.22 30984.45 31691.53 30288.34 36687.25 24994.47 29195.01 30883.47 32979.51 35489.61 35169.75 32695.71 34483.13 29976.73 35691.64 352
DTE-MVSNet90.56 25689.75 26193.01 26193.95 30587.25 24997.64 10097.65 12790.74 16687.12 29795.68 21579.97 23197.00 32583.33 29781.66 33894.78 304
v14419291.06 23890.28 23593.39 24893.66 31687.23 25196.83 17797.07 19487.43 26789.69 23794.28 27881.48 20598.00 24787.18 24884.92 31094.93 288
CR-MVSNet90.82 24889.77 25993.95 22094.45 29187.19 25290.23 35895.68 27886.89 27892.40 16592.36 32880.91 21297.05 32181.09 31993.95 19697.60 178
RPMNet88.98 28287.05 29694.77 18194.45 29187.19 25290.23 35898.03 8377.87 36092.40 16587.55 36380.17 22799.51 8668.84 36693.95 19697.60 178
tttt051792.96 15892.33 16394.87 17297.11 14687.16 25497.97 6592.09 35490.63 17593.88 13797.01 13876.50 27899.06 14090.29 18195.45 17298.38 139
COLMAP_ROBcopyleft87.81 1590.40 26089.28 27193.79 23097.95 10687.13 25596.92 16995.89 26882.83 33386.88 30597.18 12873.77 30299.29 11178.44 33493.62 20094.95 284
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
miper_enhance_ethall91.54 21491.01 20793.15 25795.35 24187.07 25693.97 30996.90 21386.79 28089.17 25593.43 31386.55 11997.64 28789.97 18486.93 28494.74 306
EI-MVSNet93.03 15592.88 13793.48 24595.77 22186.98 25796.44 20897.12 18790.66 17391.30 19697.64 10486.56 11898.05 24089.91 18590.55 25095.41 260
IterMVS-LS92.29 18691.94 17493.34 25096.25 20086.97 25896.57 20697.05 19790.67 17189.50 24594.80 25286.59 11797.64 28789.91 18586.11 29295.40 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 24790.03 25093.29 25293.55 31786.96 25996.74 18397.04 19987.36 26989.52 24494.34 27380.23 22697.97 25186.27 25985.21 30394.94 286
mvsany_test193.93 11893.98 10193.78 23194.94 26786.80 26094.62 28692.55 35188.77 23196.85 5098.49 2888.98 8498.08 23395.03 8695.62 17096.46 215
cl2291.21 23190.56 22693.14 25896.09 21286.80 26094.41 29596.58 23987.80 25688.58 26893.99 29280.85 21597.62 29089.87 18786.93 28494.99 283
v124090.70 25389.85 25593.23 25493.51 32086.80 26096.61 20097.02 20287.16 27489.58 24094.31 27779.55 23897.98 24885.52 27485.44 29894.90 291
PMMVS92.86 16492.34 16294.42 19594.92 26886.73 26394.53 29096.38 24884.78 31394.27 12695.12 23983.13 16998.40 19791.47 16296.49 15498.12 150
AllTest90.23 26488.98 27593.98 21697.94 10786.64 26496.51 20795.54 28485.38 30185.49 31596.77 14870.28 32099.15 12380.02 32492.87 20596.15 223
TestCases93.98 21697.94 10786.64 26495.54 28485.38 30185.49 31596.77 14870.28 32099.15 12380.02 32492.87 20596.15 223
Patchmtry88.64 28987.25 29292.78 27194.09 30286.64 26489.82 36195.68 27880.81 34687.63 28992.36 32880.91 21297.03 32278.86 33285.12 30594.67 308
DeepPCF-MVS93.97 196.61 4597.09 1495.15 15398.09 9986.63 26796.00 24298.15 5495.43 1097.95 2598.56 2193.40 2099.36 10496.77 2899.48 3799.45 42
miper_ehance_all_eth91.59 20991.13 20592.97 26395.55 22986.57 26894.47 29196.88 21687.77 25888.88 26094.01 29086.22 12497.54 29689.49 19686.93 28494.79 302
test_cas_vis1_n_192094.48 9894.55 9194.28 20396.78 16886.45 26997.63 10297.64 12993.32 8497.68 3098.36 4073.75 30399.08 13496.73 2999.05 7797.31 190
ACMH+87.92 1490.20 26689.18 27393.25 25396.48 19086.45 26996.99 16496.68 23088.83 22684.79 32296.22 18570.16 32298.53 18884.42 28888.04 27494.77 305
baseline291.63 20790.86 21193.94 22294.33 29586.32 27195.92 24691.64 35889.37 20786.94 30294.69 25681.62 20498.69 17388.64 21894.57 18896.81 205
c3_l91.38 22190.89 20992.88 26795.58 22786.30 27294.68 28596.84 22088.17 24588.83 26394.23 28285.65 13397.47 30389.36 19984.63 31294.89 292
pmmvs687.81 29786.19 30192.69 27491.32 34986.30 27297.34 13496.41 24780.59 34984.05 33294.37 27267.37 33797.67 28484.75 28379.51 34794.09 325
pmmvs589.86 27488.87 27792.82 26992.86 33386.23 27496.26 22795.39 28984.24 31887.12 29794.51 26374.27 29797.36 31287.61 23987.57 27894.86 293
cl____90.96 24490.32 23292.89 26695.37 23986.21 27594.46 29396.64 23387.82 25488.15 28094.18 28582.98 17497.54 29687.70 23285.59 29594.92 290
DIV-MVS_self_test90.97 24390.33 23192.88 26795.36 24086.19 27694.46 29396.63 23687.82 25488.18 27994.23 28282.99 17397.53 29887.72 22985.57 29694.93 288
BH-untuned92.94 16092.62 15193.92 22597.22 13886.16 27796.40 21696.25 25490.06 18989.79 23496.17 18883.19 16698.35 20487.19 24797.27 13697.24 193
XVG-ACMP-BASELINE90.93 24590.21 24293.09 25994.31 29785.89 27895.33 26997.26 17991.06 16089.38 24795.44 22768.61 33098.60 18289.46 19791.05 24194.79 302
v14890.99 24190.38 23092.81 27093.83 31085.80 27996.78 18196.68 23089.45 20588.75 26593.93 29482.96 17697.82 27387.83 22783.25 32994.80 300
BH-w/o92.14 19491.75 17993.31 25196.99 15885.73 28095.67 25595.69 27688.73 23289.26 25394.82 25182.97 17598.07 23785.26 27896.32 15796.13 225
test0.0.03 189.37 28088.70 27891.41 30692.47 34185.63 28195.22 27792.70 34991.11 15886.91 30493.65 30579.02 24893.19 36678.00 33689.18 26495.41 260
test_040286.46 30584.79 31491.45 30495.02 26285.55 28296.29 22694.89 31580.90 34382.21 34193.97 29368.21 33397.29 31562.98 37088.68 27091.51 355
D2MVS91.30 22890.95 20892.35 27994.71 28285.52 28396.18 23498.21 4388.89 22386.60 30693.82 29779.92 23297.95 25889.29 20290.95 24493.56 330
Fast-Effi-MVS+-dtu92.29 18691.99 17293.21 25695.27 24985.52 28397.03 15896.63 23692.09 12889.11 25795.14 23780.33 22498.08 23387.54 24094.74 18696.03 229
ECVR-MVScopyleft93.19 14592.73 14694.57 19097.66 12385.41 28598.21 4388.23 36993.43 7994.70 11898.21 5772.57 30799.07 13893.05 13198.49 9799.25 62
mvs_anonymous93.82 12393.74 10594.06 21196.44 19285.41 28595.81 25097.05 19789.85 19490.09 22596.36 17987.44 10997.75 27993.97 10996.69 15099.02 80
patch_mono-296.83 3597.44 1095.01 16299.05 3985.39 28796.98 16598.77 694.70 3897.99 2498.66 1793.61 1999.91 197.67 899.50 3399.72 10
ITE_SJBPF92.43 27895.34 24285.37 28895.92 26491.47 14287.75 28796.39 17871.00 31697.96 25682.36 30889.86 25893.97 326
KD-MVS_2432*160084.81 32082.64 32491.31 30791.07 35185.34 28991.22 35095.75 27285.56 29983.09 33790.21 34667.21 33895.89 33977.18 34162.48 37492.69 341
miper_refine_blended84.81 32082.64 32491.31 30791.07 35185.34 28991.22 35095.75 27285.56 29983.09 33790.21 34667.21 33895.89 33977.18 34162.48 37492.69 341
dmvs_re90.21 26589.50 26792.35 27995.47 23485.15 29195.70 25494.37 32990.94 16288.42 27093.57 30774.63 29495.67 34682.80 30389.57 26196.22 218
Patchmatch-test89.42 27987.99 28693.70 23595.27 24985.11 29288.98 36494.37 32981.11 34287.10 29993.69 30182.28 19197.50 30174.37 35194.76 18498.48 128
PatchT88.87 28687.42 29093.22 25594.08 30385.10 29389.51 36294.64 32381.92 33892.36 16888.15 35980.05 22997.01 32472.43 35793.65 19997.54 181
EG-PatchMatch MVS87.02 30285.44 30691.76 29992.67 33785.00 29496.08 23896.45 24583.41 33079.52 35393.49 30957.10 36397.72 28179.34 33190.87 24792.56 344
USDC88.94 28387.83 28892.27 28394.66 28384.96 29593.86 31595.90 26687.34 27083.40 33595.56 22167.43 33698.19 21782.64 30789.67 26093.66 329
SCA91.84 20191.18 20493.83 22795.59 22684.95 29694.72 28495.58 28390.82 16392.25 17193.69 30175.80 28698.10 22986.20 26195.98 16098.45 131
ADS-MVSNet89.89 27288.68 27993.53 24395.86 21684.89 29790.93 35395.07 30783.23 33191.28 20091.81 33579.01 25097.85 26979.52 32691.39 23497.84 164
MIMVSNet184.93 31983.05 32190.56 32089.56 36084.84 29895.40 26695.35 29283.91 32180.38 34992.21 33257.23 36293.34 36570.69 36482.75 33593.50 331
MS-PatchMatch90.27 26289.77 25991.78 29794.33 29584.72 29995.55 26096.73 22486.17 29186.36 30895.28 23271.28 31497.80 27484.09 29198.14 11192.81 340
test111193.19 14592.82 14094.30 20297.58 13284.56 30098.21 4389.02 36893.53 7494.58 12098.21 5772.69 30699.05 14193.06 13098.48 9999.28 59
eth_miper_zixun_eth91.02 24090.59 22492.34 28195.33 24584.35 30194.10 30696.90 21388.56 23688.84 26294.33 27484.08 15397.60 29288.77 21684.37 31895.06 281
TDRefinement86.53 30484.76 31591.85 29282.23 37584.25 30296.38 21895.35 29284.97 31084.09 33094.94 24365.76 34998.34 20784.60 28674.52 35992.97 337
EPMVS90.70 25389.81 25793.37 24994.73 28184.21 30393.67 32288.02 37089.50 20392.38 16793.49 30977.82 27097.78 27686.03 26792.68 21198.11 153
IterMVS-SCA-FT90.31 26189.81 25791.82 29495.52 23084.20 30494.30 30096.15 25990.61 17787.39 29394.27 27975.80 28696.44 33387.34 24386.88 28894.82 297
dcpmvs_296.37 5197.05 1794.31 20198.96 4684.11 30597.56 10997.51 14493.92 5997.43 3598.52 2592.75 2799.32 10797.32 2099.50 3399.51 34
PatchmatchNetpermissive91.91 19991.35 19393.59 24095.38 23784.11 30593.15 33395.39 28989.54 20192.10 17693.68 30382.82 17998.13 22284.81 28295.32 17498.52 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OpenMVS_ROBcopyleft81.14 2084.42 32282.28 32890.83 31490.06 35684.05 30795.73 25394.04 33673.89 36580.17 35291.53 33859.15 35997.64 28766.92 36889.05 26590.80 361
test250691.60 20890.78 21694.04 21397.66 12383.81 30898.27 3375.53 38493.43 7995.23 10998.21 5767.21 33899.07 13893.01 13498.49 9799.25 62
miper_lstm_enhance90.50 25990.06 24991.83 29395.33 24583.74 30993.86 31596.70 22987.56 26587.79 28593.81 29883.45 16396.92 32787.39 24284.62 31394.82 297
IterMVS90.15 26889.67 26391.61 30195.48 23283.72 31094.33 29996.12 26089.99 19087.31 29694.15 28775.78 28896.27 33686.97 25286.89 28794.83 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet_dtu91.71 20491.28 19892.99 26293.76 31283.71 31196.69 19095.28 29693.15 9287.02 30195.95 19783.37 16497.38 31179.46 32996.84 14497.88 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet86.66 1892.24 18991.74 18193.73 23297.77 11783.69 31292.88 33896.72 22587.91 25293.00 15694.86 24878.51 25799.05 14186.53 25597.45 12998.47 129
ppachtmachnet_test88.35 29287.29 29191.53 30292.45 34283.57 31393.75 31895.97 26384.28 31785.32 31894.18 28579.00 25296.93 32675.71 34684.99 30994.10 323
MDA-MVSNet-bldmvs85.00 31882.95 32391.17 31193.13 33183.33 31494.56 28995.00 30984.57 31565.13 37192.65 31970.45 31995.85 34173.57 35477.49 35294.33 318
Effi-MVS+-dtu93.08 15293.21 12892.68 27596.02 21483.25 31597.14 15596.72 22593.85 6291.20 20393.44 31183.08 17098.30 20891.69 15895.73 16796.50 212
TinyColmap86.82 30385.35 30991.21 30994.91 27082.99 31693.94 31194.02 33783.58 32781.56 34394.68 25762.34 35798.13 22275.78 34587.35 28392.52 345
test_vis1_n92.37 18092.26 16592.72 27294.75 27982.64 31798.02 5596.80 22291.18 15597.77 2997.93 7858.02 36198.29 20997.63 998.21 10797.23 194
MDA-MVSNet_test_wron85.87 31484.23 31890.80 31792.38 34482.57 31893.17 33195.15 30382.15 33667.65 36792.33 33178.20 26195.51 35077.33 33879.74 34494.31 320
our_test_388.78 28787.98 28791.20 31092.45 34282.53 31993.61 32595.69 27685.77 29684.88 32093.71 30079.99 23096.78 33179.47 32886.24 28994.28 321
UnsupCasMVSNet_bld82.13 32979.46 33490.14 32588.00 36782.47 32090.89 35596.62 23878.94 35575.61 36184.40 36856.63 36496.31 33577.30 34066.77 37291.63 353
YYNet185.87 31484.23 31890.78 31892.38 34482.46 32193.17 33195.14 30482.12 33767.69 36692.36 32878.16 26495.50 35177.31 33979.73 34594.39 316
UnsupCasMVSNet_eth85.99 31284.45 31690.62 31989.97 35782.40 32293.62 32497.37 17089.86 19278.59 35792.37 32565.25 35095.35 35382.27 30970.75 36694.10 323
ADS-MVSNet289.45 27888.59 28092.03 28895.86 21682.26 32390.93 35394.32 33283.23 33191.28 20091.81 33579.01 25095.99 33879.52 32691.39 23497.84 164
EGC-MVSNET68.77 34163.01 34686.07 34592.49 34082.24 32493.96 31090.96 3630.71 3862.62 38790.89 34153.66 36593.46 36357.25 37484.55 31582.51 369
test_vis1_n_192094.17 10494.58 8792.91 26597.42 13582.02 32597.83 7697.85 10894.68 3998.10 2198.49 2870.15 32399.32 10797.91 598.82 8697.40 185
LCM-MVSNet-Re92.50 17392.52 15792.44 27796.82 16781.89 32696.92 16993.71 34092.41 11884.30 32594.60 26185.08 13997.03 32291.51 16097.36 13198.40 137
CostFormer91.18 23590.70 22092.62 27694.84 27481.76 32794.09 30794.43 32684.15 31992.72 16393.77 29979.43 23998.20 21590.70 17592.18 21997.90 160
CL-MVSNet_self_test86.31 30885.15 31089.80 32888.83 36481.74 32893.93 31296.22 25586.67 28185.03 31990.80 34278.09 26594.50 35674.92 34871.86 36593.15 336
JIA-IIPM88.26 29387.04 29791.91 29093.52 31981.42 32989.38 36394.38 32880.84 34590.93 20580.74 37079.22 24397.92 26382.76 30491.62 22796.38 216
OurMVSNet-221017-090.51 25890.19 24391.44 30593.41 32481.25 33096.98 16596.28 25191.68 13886.55 30796.30 18174.20 29897.98 24888.96 21287.40 28295.09 279
tpm289.96 27089.21 27292.23 28594.91 27081.25 33093.78 31794.42 32780.62 34891.56 18793.44 31176.44 28097.94 25985.60 27392.08 22397.49 182
test_fmvs193.21 14393.53 11392.25 28496.55 18581.20 33297.40 12896.96 20590.68 17096.80 5198.04 6969.25 32798.40 19797.58 1198.50 9697.16 195
test_fmvs1_n92.73 17092.88 13792.29 28296.08 21381.05 33397.98 5997.08 19290.72 16896.79 5298.18 6063.07 35498.45 19497.62 1098.42 10297.36 186
testgi87.97 29487.21 29490.24 32492.86 33380.76 33496.67 19394.97 31191.74 13685.52 31495.83 20362.66 35694.47 35876.25 34488.36 27395.48 254
test-LLR91.42 21991.19 20392.12 28694.59 28680.66 33594.29 30192.98 34691.11 15890.76 20692.37 32579.02 24898.07 23788.81 21496.74 14797.63 173
test-mter90.19 26789.54 26692.12 28694.59 28680.66 33594.29 30192.98 34687.68 26290.76 20692.37 32567.67 33498.07 23788.81 21496.74 14797.63 173
TESTMET0.1,190.06 26989.42 26891.97 28994.41 29380.62 33794.29 30191.97 35687.28 27290.44 21192.47 32468.79 32997.67 28488.50 22096.60 15297.61 177
tpm cat188.36 29187.21 29491.81 29595.13 25880.55 33892.58 34295.70 27474.97 36387.45 29091.96 33378.01 26898.17 21980.39 32288.74 26996.72 208
test_vis1_rt86.16 31085.06 31189.46 33093.47 32380.46 33996.41 21286.61 37585.22 30479.15 35588.64 35452.41 36797.06 32093.08 12990.57 24990.87 360
Anonymous2023120687.09 30186.14 30289.93 32791.22 35080.35 34096.11 23695.35 29283.57 32884.16 32793.02 31673.54 30495.61 34772.16 35886.14 29193.84 328
MDTV_nov1_ep1390.76 21795.22 25380.33 34193.03 33695.28 29688.14 24792.84 16293.83 29581.34 20698.08 23382.86 30194.34 190
tpmvs89.83 27589.15 27491.89 29194.92 26880.30 34293.11 33495.46 28886.28 28888.08 28192.65 31980.44 22198.52 18981.47 31389.92 25796.84 204
SixPastTwentyTwo89.15 28188.54 28190.98 31293.49 32180.28 34396.70 18894.70 32090.78 16484.15 32895.57 22071.78 31197.71 28284.63 28585.07 30694.94 286
new_pmnet82.89 32781.12 33288.18 33789.63 35980.18 34491.77 34792.57 35076.79 36275.56 36388.23 35861.22 35894.48 35771.43 36082.92 33389.87 364
test20.0386.14 31185.40 30888.35 33490.12 35580.06 34595.90 24795.20 30188.59 23381.29 34493.62 30671.43 31392.65 36771.26 36281.17 34092.34 347
LF4IMVS87.94 29587.25 29289.98 32692.38 34480.05 34694.38 29695.25 29987.59 26484.34 32494.74 25564.31 35197.66 28684.83 28187.45 27992.23 348
Anonymous2024052186.42 30685.44 30689.34 33190.33 35479.79 34796.73 18495.92 26483.71 32683.25 33691.36 33963.92 35296.01 33778.39 33585.36 30092.22 349
tpm90.25 26389.74 26291.76 29993.92 30679.73 34893.98 30893.54 34288.28 24291.99 17893.25 31477.51 27297.44 30687.30 24587.94 27598.12 150
PVSNet_082.17 1985.46 31783.64 32090.92 31395.27 24979.49 34990.55 35695.60 28183.76 32583.00 33989.95 34871.09 31597.97 25182.75 30560.79 37695.31 269
K. test v387.64 29886.75 29990.32 32393.02 33279.48 35096.61 20092.08 35590.66 17380.25 35194.09 28867.21 33896.65 33285.96 26980.83 34194.83 295
pmmvs379.97 33277.50 33787.39 33982.80 37479.38 35192.70 34190.75 36570.69 36778.66 35687.47 36451.34 36893.40 36473.39 35569.65 36889.38 365
tpmrst91.44 21891.32 19591.79 29695.15 25679.20 35293.42 32895.37 29188.55 23793.49 14593.67 30482.49 18798.27 21090.41 17789.34 26397.90 160
KD-MVS_self_test85.95 31384.95 31288.96 33389.55 36179.11 35395.13 27996.42 24685.91 29484.07 33190.48 34370.03 32494.82 35580.04 32372.94 36392.94 338
lessismore_v090.45 32191.96 34779.09 35487.19 37380.32 35094.39 27066.31 34597.55 29584.00 29376.84 35494.70 307
gm-plane-assit93.22 32878.89 35584.82 31293.52 30898.64 17887.72 229
Patchmatch-RL test87.38 29986.24 30090.81 31588.74 36578.40 35688.12 36893.17 34587.11 27582.17 34289.29 35381.95 19895.60 34888.64 21877.02 35398.41 136
PM-MVS83.48 32481.86 33088.31 33587.83 36877.59 35793.43 32791.75 35786.91 27780.63 34789.91 34944.42 37195.84 34285.17 28076.73 35691.50 356
dp88.90 28588.26 28590.81 31594.58 28876.62 35892.85 33994.93 31385.12 30790.07 22793.07 31575.81 28598.12 22780.53 32187.42 28197.71 170
test_fmvs289.77 27689.93 25289.31 33293.68 31576.37 35997.64 10095.90 26689.84 19591.49 18996.26 18458.77 36097.10 31994.65 9891.13 23994.46 313
RPSCF90.75 25090.86 21190.42 32296.84 16376.29 36095.61 25996.34 24983.89 32291.38 19197.87 8376.45 27998.78 16187.16 24992.23 21696.20 219
new-patchmatchnet83.18 32681.87 32987.11 34086.88 36975.99 36193.70 31995.18 30285.02 30977.30 36088.40 35665.99 34793.88 36274.19 35370.18 36791.47 357
CVMVSNet91.23 23091.75 17989.67 32995.77 22174.69 36296.44 20894.88 31685.81 29592.18 17297.64 10479.07 24595.58 34988.06 22395.86 16498.74 109
EU-MVSNet88.72 28888.90 27688.20 33693.15 33074.21 36396.63 19994.22 33385.18 30587.32 29595.97 19576.16 28394.98 35485.27 27786.17 29095.41 260
mvsany_test383.59 32382.44 32787.03 34183.80 37173.82 36493.70 31990.92 36486.42 28582.51 34090.26 34546.76 37095.71 34490.82 17276.76 35591.57 354
Gipumacopyleft67.86 34265.41 34475.18 35892.66 33873.45 36566.50 37794.52 32553.33 37657.80 37766.07 37730.81 37789.20 37348.15 37878.88 35162.90 377
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary62.92 2185.62 31684.92 31387.74 33889.14 36273.12 36694.17 30496.80 22273.98 36473.65 36594.93 24466.36 34397.61 29183.95 29491.28 23692.48 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DSMNet-mixed86.34 30786.12 30387.00 34289.88 35870.43 36794.93 28190.08 36677.97 35985.42 31792.78 31874.44 29693.96 36174.43 35095.14 17696.62 209
MDTV_nov1_ep13_2view70.35 36893.10 33583.88 32393.55 14282.47 18886.25 26098.38 139
ambc86.56 34383.60 37270.00 36985.69 37094.97 31180.60 34888.45 35537.42 37496.84 32982.69 30675.44 35892.86 339
MVS-HIRNet82.47 32881.21 33186.26 34495.38 23769.21 37088.96 36589.49 36766.28 36980.79 34674.08 37468.48 33197.39 31071.93 35995.47 17192.18 350
APD_test179.31 33377.70 33684.14 34689.11 36369.07 37192.36 34691.50 35969.07 36873.87 36492.63 32139.93 37394.32 35970.54 36580.25 34389.02 366
test_fmvs383.21 32583.02 32283.78 34786.77 37068.34 37296.76 18294.91 31486.49 28484.14 32989.48 35236.04 37591.73 36991.86 15280.77 34291.26 359
test_vis3_rt72.73 33570.55 33879.27 35180.02 37668.13 37393.92 31374.30 38676.90 36158.99 37573.58 37520.29 38495.37 35284.16 28972.80 36474.31 374
test_f80.57 33179.62 33383.41 34883.38 37367.80 37493.57 32693.72 33980.80 34777.91 35987.63 36233.40 37692.08 36887.14 25079.04 35090.34 363
ANet_high63.94 34459.58 34777.02 35461.24 38766.06 37585.66 37187.93 37178.53 35742.94 37971.04 37625.42 38280.71 37952.60 37730.83 38084.28 368
PMMVS270.19 33866.92 34180.01 35076.35 37965.67 37686.22 36987.58 37264.83 37162.38 37280.29 37126.78 38188.49 37563.79 36954.07 37785.88 367
LCM-MVSNet72.55 33669.39 34082.03 34970.81 38565.42 37790.12 36094.36 33155.02 37565.88 36981.72 36924.16 38389.96 37074.32 35268.10 37190.71 362
DeepMVS_CXcopyleft74.68 35990.84 35364.34 37881.61 38265.34 37067.47 36888.01 36148.60 36980.13 38062.33 37173.68 36279.58 371
testf169.31 33966.76 34276.94 35578.61 37761.93 37988.27 36686.11 37655.62 37359.69 37385.31 36620.19 38589.32 37157.62 37269.44 36979.58 371
APD_test269.31 33966.76 34276.94 35578.61 37761.93 37988.27 36686.11 37655.62 37359.69 37385.31 36620.19 38589.32 37157.62 37269.44 36979.58 371
FPMVS71.27 33769.85 33975.50 35774.64 38059.03 38191.30 34991.50 35958.80 37257.92 37688.28 35729.98 37985.53 37753.43 37682.84 33481.95 370
MVEpermissive50.73 2353.25 34748.81 35266.58 36265.34 38657.50 38272.49 37670.94 38740.15 38039.28 38263.51 3786.89 38973.48 38338.29 38042.38 37868.76 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset81.38 33082.60 32677.73 35391.74 34851.49 38393.03 33684.21 37989.07 21478.28 35891.25 34076.97 27588.53 37456.57 37582.24 33693.16 335
PMVScopyleft53.92 2258.58 34555.40 34868.12 36151.00 38848.64 38478.86 37487.10 37446.77 37735.84 38374.28 3738.76 38786.34 37642.07 37973.91 36169.38 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 34652.56 35055.43 36374.43 38147.13 38583.63 37376.30 38342.23 37842.59 38062.22 37928.57 38074.40 38131.53 38131.51 37944.78 378
N_pmnet78.73 33478.71 33578.79 35292.80 33546.50 38694.14 30543.71 38978.61 35680.83 34591.66 33774.94 29396.36 33467.24 36784.45 31793.50 331
EMVS52.08 34851.31 35154.39 36472.62 38345.39 38783.84 37275.51 38541.13 37940.77 38159.65 38030.08 37873.60 38228.31 38229.90 38144.18 379
tmp_tt51.94 34953.82 34946.29 36533.73 38945.30 38878.32 37567.24 38818.02 38250.93 37887.05 36552.99 36653.11 38470.76 36325.29 38240.46 380
wuyk23d25.11 35024.57 35426.74 36673.98 38239.89 38957.88 3799.80 39012.27 38310.39 3846.97 3867.03 38836.44 38525.43 38317.39 3833.89 383
test_method66.11 34364.89 34569.79 36072.62 38335.23 39065.19 37892.83 34820.35 38165.20 37088.08 36043.14 37282.70 37873.12 35663.46 37391.45 358
test12313.04 35315.66 3565.18 3674.51 3913.45 39192.50 3441.81 3922.50 3857.58 38620.15 3833.67 3902.18 3877.13 3851.07 3859.90 381
testmvs13.36 35216.33 3554.48 3685.04 3902.26 39293.18 3303.28 3912.70 3848.24 38521.66 3822.29 3912.19 3867.58 3842.96 3849.00 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.24 35130.99 3530.00 3690.00 3920.00 3930.00 38097.63 1310.00 3870.00 38896.88 14584.38 1480.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.39 3559.85 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38788.65 900.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.06 35410.74 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38896.69 1540.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
PC_three_145290.77 16598.89 998.28 5596.24 198.35 20495.76 6399.58 2199.59 20
eth-test20.00 392
eth-test0.00 392
test_241102_TWO98.27 3295.13 1998.93 798.89 694.99 1199.85 1797.52 1299.65 1299.74 7
9.1496.75 3398.93 4797.73 8598.23 4291.28 15197.88 2798.44 3493.00 2499.65 5295.76 6399.47 38
test_0728_THIRD94.78 3498.73 1198.87 895.87 499.84 2297.45 1699.72 299.77 1
GSMVS98.45 131
sam_mvs182.76 18098.45 131
sam_mvs81.94 199
MTGPAbinary98.08 66
test_post192.81 34016.58 38580.53 21997.68 28386.20 261
test_post17.58 38481.76 20198.08 233
patchmatchnet-post90.45 34482.65 18498.10 229
MTMP97.86 7182.03 381
test9_res94.81 9399.38 5199.45 42
agg_prior293.94 11199.38 5199.50 37
test_prior296.35 22092.80 10996.03 8597.59 10892.01 4195.01 8799.38 51
旧先验295.94 24581.66 34097.34 3898.82 15892.26 139
新几何295.79 251
无先验95.79 25197.87 10383.87 32499.65 5287.68 23598.89 99
原ACMM295.67 255
testdata299.67 5085.96 269
segment_acmp92.89 25
testdata195.26 27693.10 95
plane_prior597.51 14498.60 18293.02 13292.23 21695.86 231
plane_prior496.64 158
plane_prior297.74 8394.85 27
plane_prior196.14 209
n20.00 393
nn0.00 393
door-mid91.06 362
test1197.88 101
door91.13 361
HQP-NCC95.86 21696.65 19493.55 7090.14 216
ACMP_Plane95.86 21696.65 19493.55 7090.14 216
BP-MVS92.13 145
HQP4-MVS90.14 21698.50 19095.78 240
HQP3-MVS97.39 16792.10 221
HQP2-MVS80.95 210
ACMMP++_ref90.30 254
ACMMP++91.02 242
Test By Simon88.73 89