This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 2299.90 399.83 4598.98 2699.93 7299.59 299.95 699.86 13
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1999.88 599.85 3299.18 1099.96 1999.22 4299.92 1199.90 1
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 2299.89 499.82 5299.01 1999.92 8399.56 599.95 699.85 16
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9299.49 13299.02 1999.88 599.80 8199.00 2599.94 5799.45 1999.92 1199.84 20
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9299.44 19499.01 2299.87 1199.80 8198.97 2799.91 9499.44 2199.92 1199.83 31
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1599.91 199.81 6599.20 799.96 1998.91 7499.85 5899.79 60
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15799.52 9199.11 1099.88 599.91 899.43 197.70 35798.72 10999.93 1099.77 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS++99.59 399.50 899.88 699.51 15799.88 899.87 599.51 10498.99 2999.88 599.81 6599.27 599.96 1998.85 8899.80 8799.81 44
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4499.78 3499.85 3299.36 299.94 5798.84 9199.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9899.37 23199.10 1199.81 2499.80 8198.94 3499.96 1998.93 7199.86 5199.81 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
Regformer-199.53 1299.47 1099.72 6499.71 9199.44 9999.49 14399.46 17398.95 3899.83 1999.76 11199.01 1999.93 7299.17 4899.87 4099.80 54
Regformer-299.54 1099.47 1099.75 5499.71 9199.52 8899.49 14399.49 13298.94 3999.83 1999.76 11199.01 1999.94 5799.15 5199.87 4099.80 54
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13999.16 12899.41 17799.71 1398.98 3299.45 12099.78 10099.19 999.54 23899.28 3799.84 6599.63 131
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14499.74 12298.81 4899.94 5798.79 10099.86 5199.84 20
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8499.51 10498.62 6599.79 2999.83 4599.28 499.97 1198.48 14599.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS99.48 2099.42 1499.65 7599.72 8599.40 10499.05 27699.66 2799.14 699.57 9899.80 8198.46 8299.94 5799.57 499.84 6599.60 137
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16399.76 4199.75 11699.13 1299.92 8399.07 5899.92 1199.85 16
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
DROMVSNet99.44 3199.39 1899.58 9099.56 14999.49 9199.88 199.58 4998.38 8499.73 4799.69 14698.20 10099.70 20899.64 199.82 8099.54 150
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12599.59 7399.36 20199.46 17399.07 1799.79 2999.82 5298.85 4499.92 8398.68 11699.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 11299.68 5899.69 14699.06 1699.96 1998.69 11499.87 4099.84 20
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32499.60 13991.75 36198.61 33599.44 19499.35 199.83 1999.85 3298.70 6599.81 16299.02 6299.91 1699.81 44
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 20199.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 11299.67 6499.69 14698.95 3199.96 1998.69 11499.87 4099.84 20
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10698.61 19499.07 27199.33 24899.00 2699.82 2299.81 6599.06 1699.84 14099.09 5699.42 14099.65 120
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11499.66 6999.68 15398.96 2899.96 1998.62 12399.87 4099.84 20
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8899.79 2999.82 5298.86 4399.95 4698.62 12399.81 8399.78 68
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.75 5998.61 12699.81 8399.77 70
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15499.48 14598.05 13199.76 4199.86 2698.82 4799.93 7298.82 9899.91 1699.84 20
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12599.55 10399.64 17398.91 3999.96 1998.72 10999.90 2399.82 38
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30699.85 698.82 5099.65 7599.74 12298.51 7899.80 16798.83 9499.89 3399.64 127
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25999.53 8599.00 2699.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 20199.51 10498.73 5999.88 599.84 4198.72 6399.96 1998.16 17599.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14598.94 16298.97 29999.46 17398.92 4399.71 5199.24 29799.01 1999.98 699.35 2799.66 12398.97 221
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12699.53 10699.63 17998.93 3899.97 1198.74 10599.91 1699.83 31
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8599.47 9598.95 30499.85 698.82 5099.54 10499.73 12998.51 7899.74 18598.91 7499.88 3699.77 70
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11899.41 13299.80 8198.37 9199.96 1998.99 6499.96 599.72 94
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11699.63 8099.84 4198.73 6299.96 1998.55 14099.83 7499.81 44
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.53 7599.95 4698.61 12699.81 8399.77 70
CS-MVS99.34 5399.31 3999.43 12699.44 18599.47 9599.68 4599.56 5798.41 8199.62 8499.41 25598.35 9299.76 18199.52 799.76 10099.05 212
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9299.65 3297.84 14899.71 5199.80 8199.12 1399.97 1198.33 16199.87 4099.83 31
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11499.82 2299.81 6598.60 7299.96 1998.46 14999.88 3699.79 60
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 8099.83 1799.56 10599.47 16397.45 19299.78 3499.82 5299.18 1099.91 9498.79 10099.89 3399.81 44
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 22199.40 21298.79 5599.52 10999.62 18598.91 3999.90 10998.64 12199.75 10299.82 38
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11699.50 11299.75 11698.78 5199.97 1198.57 13499.89 3399.83 31
CNVR-MVS99.42 4099.30 4399.78 4899.62 13199.71 4999.26 23799.52 9198.82 5099.39 13999.71 13498.96 2899.85 13498.59 13199.80 8799.77 70
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9699.74 4599.79 9398.53 7599.95 4698.55 14099.78 9499.79 60
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8499.62 3398.21 10699.73 4799.79 9398.68 6699.96 1998.44 15199.77 9799.79 60
UA-Net99.42 4099.29 4799.80 4399.62 13199.55 8099.50 13399.70 1598.79 5599.77 3699.96 197.45 12199.96 1998.92 7399.90 2399.89 2
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11499.67 2297.83 14999.68 5899.69 14699.06 1699.96 1998.39 15399.87 4099.84 20
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17599.68 5899.63 17998.91 3999.94 5798.58 13299.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15499.93 297.66 17199.71 5199.86 2697.73 11699.96 1999.47 1799.82 8099.79 60
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 6199.77 3699.49 23098.21 9999.95 4698.46 14999.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26199.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
CS-MVS-test99.30 5899.25 5799.45 12099.46 17899.23 12099.80 1999.57 5198.28 9699.53 10699.44 24598.16 10499.79 17099.38 2499.61 13199.34 187
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15398.91 16699.02 28599.45 18598.80 5499.71 5199.26 29598.94 3499.98 699.34 3199.23 15598.98 220
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9899.54 7497.82 15499.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13799.63 8099.68 15398.52 7799.95 4698.38 15599.86 5199.81 44
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16899.51 10498.68 6399.27 16699.53 21798.64 7199.96 1998.44 15199.80 8799.79 60
ETV-MVS99.26 6699.21 6299.40 12899.46 17899.30 11299.56 10599.52 9198.52 7199.44 12499.27 29398.41 8899.86 12899.10 5599.59 13299.04 213
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21799.52 9197.18 21899.60 9199.79 9398.79 5099.95 4698.83 9499.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5399.19 6499.79 4699.61 13599.65 6299.30 21799.48 14598.86 4699.21 18299.63 17998.72 6399.90 10998.25 16699.63 12899.80 54
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3999.63 8099.95 295.82 17799.94 5799.37 2699.97 399.73 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS99.30 5899.17 6699.70 6799.56 14999.52 8899.58 9299.80 897.12 22499.62 8499.73 12998.58 7399.90 10998.61 12699.91 1699.68 110
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 12199.48 11699.74 12298.29 9699.96 1997.93 19399.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet99.25 6899.14 6899.59 8799.41 19099.16 12899.35 20799.57 5198.82 5099.51 11199.61 18996.46 15499.95 4699.59 299.98 299.65 120
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11597.89 23898.43 34599.71 1398.88 4599.62 8499.76 11196.63 14999.70 20899.46 1899.99 199.66 116
MVSFormer99.17 7699.12 7099.29 14699.51 15798.94 16299.88 199.46 17397.55 18099.80 2799.65 16697.39 12299.28 28099.03 6099.85 5899.65 120
LS3D99.27 6499.12 7099.74 5999.18 24899.75 4399.56 10599.57 5198.45 7799.49 11599.85 3297.77 11599.94 5798.33 16199.84 6599.52 156
9.1499.10 7299.72 8599.40 18599.51 10497.53 18599.64 7999.78 10098.84 4599.91 9497.63 22099.82 80
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18999.94 198.73 5999.11 20099.89 1395.50 18799.94 5799.50 1099.97 399.89 2
EIA-MVS99.18 7499.09 7499.45 12099.49 16999.18 12599.67 4899.53 8597.66 17199.40 13799.44 24598.10 10699.81 16298.94 6999.62 12999.35 185
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13399.50 12497.16 22099.77 3699.82 5298.78 5199.94 5797.56 22999.86 5199.80 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 8899.08 7599.24 15499.46 17898.55 19799.51 12799.46 17398.09 12199.45 12099.82 5298.34 9399.51 23998.70 11198.93 18099.67 113
test_prior399.21 7099.05 7799.68 6899.67 10699.48 9398.96 30099.56 5798.34 9099.01 21999.52 22098.68 6699.83 15197.96 19099.74 10599.74 81
sss99.17 7699.05 7799.53 10299.62 13198.97 15399.36 20199.62 3397.83 14999.67 6499.65 16697.37 12699.95 4699.19 4599.19 15899.68 110
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 26199.66 5999.84 999.74 1099.09 1498.92 23599.90 1095.94 17199.98 698.95 6899.92 1199.79 60
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17599.54 7497.29 20899.41 13299.59 19598.42 8799.93 7298.19 17099.69 11599.73 88
OMC-MVS99.08 9999.04 8099.20 15799.67 10698.22 22199.28 22399.52 9198.07 12699.66 6999.81 6597.79 11499.78 17597.79 20499.81 8399.60 137
jason99.13 8299.03 8299.45 12099.46 17898.87 16999.12 26199.26 27498.03 13499.79 2999.65 16697.02 13699.85 13499.02 6299.90 2399.65 120
jason: jason.
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18798.73 18399.45 15899.46 17398.11 11899.46 11999.77 10798.01 10999.37 26198.70 11198.92 18299.66 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
API-MVS99.04 10499.03 8299.06 16899.40 19599.31 11199.55 11499.56 5798.54 6999.33 15499.39 26398.76 5699.78 17596.98 26899.78 9498.07 339
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 8099.69 5299.38 19499.51 10497.45 19299.61 8799.75 11698.51 7899.91 9497.45 24199.83 7499.71 101
diffmvs99.14 8099.02 8599.51 11099.61 13598.96 15799.28 22399.49 13298.46 7699.72 5099.71 13496.50 15399.88 12299.31 3499.11 16499.67 113
baseline99.15 7999.02 8599.53 10299.66 11599.14 13399.72 3599.48 14598.35 8999.42 12899.84 4196.07 16599.79 17099.51 999.14 16299.67 113
MG-MVS99.13 8299.02 8599.45 12099.57 14598.63 19199.07 27199.34 24198.99 2999.61 8799.82 5297.98 11099.87 12597.00 26699.80 8799.85 16
lupinMVS99.13 8299.01 8999.46 11999.51 15798.94 16299.05 27699.16 28997.86 14499.80 2799.56 20597.39 12299.86 12898.94 6999.85 5899.58 145
mvs_anonymous99.03 10698.99 9099.16 16199.38 19998.52 20399.51 12799.38 22297.79 15599.38 14299.81 6597.30 12799.45 24499.35 2798.99 17799.51 162
EPP-MVSNet99.13 8298.99 9099.53 10299.65 12099.06 14399.81 1599.33 24897.43 19699.60 9199.88 1897.14 13199.84 14099.13 5298.94 17999.69 106
CNLPA99.14 8098.99 9099.59 8799.58 14399.41 10299.16 25399.44 19498.45 7799.19 18899.49 23098.08 10799.89 11797.73 21199.75 10299.48 167
casdiffmvs99.13 8298.98 9399.56 9499.65 12099.16 12899.56 10599.50 12498.33 9399.41 13299.86 2695.92 17299.83 15199.45 1999.16 15999.70 103
MVS_Test99.10 9698.97 9499.48 11499.49 16999.14 13399.67 4899.34 24197.31 20699.58 9699.76 11197.65 11899.82 15898.87 8199.07 17099.46 174
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 32199.91 396.74 25399.67 6499.49 23097.53 11999.88 12298.98 6599.85 5899.60 137
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7399.86 1299.87 2394.77 21699.84 14099.19 4599.41 14199.74 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25499.68 5499.81 1599.51 10499.20 498.72 26199.89 1395.68 18299.97 1198.86 8699.86 5199.81 44
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22899.57 5196.40 28399.42 12899.68 15398.75 5999.80 16797.98 18999.72 10999.44 177
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17799.50 12497.03 23599.04 21699.88 1897.39 12299.92 8398.66 11999.90 2399.87 12
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 31098.53 19999.78 2599.54 7498.07 12699.00 22499.76 11199.01 1999.37 26199.13 5297.23 26098.81 231
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28599.91 397.67 17099.59 9499.75 11695.90 17499.73 19299.53 699.02 17599.86 13
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25799.41 20696.60 26699.60 9199.55 20898.83 4699.90 10997.48 23699.83 7499.78 68
VNet99.11 9398.90 10399.73 6199.52 15599.56 7899.41 17799.39 21699.01 2299.74 4599.78 10095.56 18599.92 8399.52 798.18 21899.72 94
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8499.49 13297.03 23599.63 8099.69 14697.27 12999.96 1997.82 20299.84 6599.81 44
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20996.91 28499.57 9899.30 26598.47 7499.41 13298.99 32396.78 14399.74 18598.73 10799.38 14298.74 246
WTY-MVS99.06 10198.88 10699.61 8599.62 13199.16 12899.37 19799.56 5798.04 13299.53 10699.62 18596.84 14199.94 5798.85 8898.49 20499.72 94
testtj99.12 8898.87 10799.86 2199.72 8599.79 3399.44 16299.51 10497.29 20899.59 9499.74 12298.15 10599.96 1996.74 28199.69 11599.81 44
CANet_DTU98.97 11498.87 10799.25 15299.33 20998.42 21499.08 27099.30 26599.16 599.43 12599.75 11695.27 19599.97 1198.56 13799.95 699.36 184
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22899.48 14596.82 25199.25 17399.65 16698.38 8999.93 7297.53 23299.67 12299.73 88
IS-MVSNet99.05 10398.87 10799.57 9299.73 8099.32 10899.75 3199.20 28498.02 13599.56 9999.86 2696.54 15299.67 21498.09 17999.13 16399.73 88
canonicalmvs99.02 10798.86 11199.51 11099.42 18799.32 10899.80 1999.48 14598.63 6499.31 15698.81 33297.09 13399.75 18499.27 3997.90 22899.47 172
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11599.01 14899.24 24199.52 9196.85 24799.27 16699.48 23698.25 9899.91 9497.76 20799.62 12999.65 120
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15799.60 7099.23 24299.44 19497.04 23399.39 13999.67 15998.30 9599.92 8397.27 24899.69 11599.64 127
mvs-test198.86 12298.84 11398.89 19899.33 20997.77 24499.44 16299.30 26598.47 7499.10 20399.43 24896.78 14399.95 4698.73 10799.02 17598.96 223
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18999.38 22297.70 16599.28 16399.28 29098.34 9399.85 13496.96 27099.45 13899.69 106
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 8097.28 25798.32 35199.60 4097.86 14499.50 11299.57 20296.75 14699.86 12898.56 13799.70 11499.54 150
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 19096.99 27899.52 12399.49 13298.11 11899.24 17499.34 27696.96 13999.79 17097.95 19299.45 13899.02 216
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 22399.91 397.42 19899.67 6499.37 26797.53 11999.88 12298.98 6597.29 25998.42 322
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14999.54 8299.18 25199.70 1598.18 11099.35 15099.63 17996.32 15999.90 10997.48 23699.77 9799.55 148
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32499.55 6797.25 21299.47 11799.77 10797.82 11399.87 12596.93 27399.90 2399.54 150
train_agg99.02 10798.77 12199.77 5099.67 10699.65 6299.05 27699.41 20696.28 28798.95 23099.49 23098.76 5699.91 9497.63 22099.72 10999.75 76
1112_ss98.98 11298.77 12199.59 8799.68 10599.02 14699.25 23999.48 14597.23 21599.13 19699.58 19896.93 14099.90 10998.87 8198.78 19199.84 20
agg_prior199.01 11098.76 12399.76 5399.67 10699.62 6698.99 29299.40 21296.26 29098.87 24399.49 23098.77 5499.91 9497.69 21799.72 10999.75 76
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 21099.59 4397.55 18098.70 26899.89 1395.83 17699.90 10998.10 17899.90 2399.08 205
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10599.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 9198.88 16899.80 1999.44 19497.91 14299.36 14799.78 10095.49 18899.43 25397.91 19499.11 16499.62 133
DPM-MVS98.95 11598.71 12799.66 7199.63 12599.55 8098.64 33499.10 29597.93 14099.42 12899.55 20898.67 6999.80 16795.80 30399.68 12099.61 135
EPNet98.86 12298.71 12799.30 14397.20 35798.18 22299.62 7098.91 31799.28 298.63 27999.81 6595.96 16899.99 199.24 4199.72 10999.73 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet98.87 11998.69 12999.40 12899.22 23998.72 18499.44 16299.68 1999.24 399.18 19199.42 25192.74 27099.96 1999.34 3199.94 999.53 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS98.73 14298.68 13098.88 20199.70 9897.73 24698.92 30799.55 6798.52 7199.45 12099.84 4195.27 19599.91 9498.08 18398.84 18799.00 217
EI-MVSNet98.67 14798.67 13198.68 22899.35 20497.97 23299.50 13399.38 22296.93 24499.20 18599.83 4597.87 11199.36 26598.38 15597.56 24098.71 250
CVMVSNet98.57 15398.67 13198.30 26899.35 20495.59 31899.50 13399.55 6798.60 6799.39 13999.83 4594.48 23099.45 24498.75 10498.56 20099.85 16
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34799.71 5199.78 10098.06 10899.90 10998.84 9199.91 1699.74 81
Test_1112_low_res98.89 11898.66 13499.57 9299.69 10198.95 15999.03 28299.47 16396.98 23799.15 19499.23 29896.77 14599.89 11798.83 9498.78 19199.86 13
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18799.08 14099.62 7099.36 23297.39 20199.28 16399.68 15396.44 15699.92 8398.37 15798.22 21399.40 182
test_yl98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 30098.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 30098.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
FIs98.78 13898.63 13699.23 15699.18 24899.54 8299.83 1299.59 4398.28 9698.79 25599.81 6596.75 14699.37 26199.08 5796.38 27898.78 234
ab-mvs98.86 12298.63 13699.54 9699.64 12299.19 12399.44 16299.54 7497.77 15799.30 15899.81 6594.20 23899.93 7299.17 4898.82 18899.49 166
MAR-MVS98.86 12298.63 13699.54 9699.37 20199.66 5999.45 15899.54 7496.61 26499.01 21999.40 25997.09 13399.86 12897.68 21999.53 13699.10 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GeoE98.85 13098.62 14199.53 10299.61 13599.08 14099.80 1999.51 10497.10 22899.31 15699.78 10095.23 19999.77 17798.21 16899.03 17399.75 76
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 27099.45 9899.86 899.60 4098.23 10398.70 26899.82 5296.80 14299.22 29099.07 5896.38 27898.79 233
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 9197.74 24599.12 26199.54 7498.44 8099.42 12899.71 13494.20 23899.92 8398.54 14298.90 18499.00 217
RPSCF98.22 17498.62 14196.99 32599.82 3891.58 36299.72 3599.44 19496.61 26499.66 6999.89 1395.92 17299.82 15897.46 23999.10 16799.57 146
PatchMatch-RL98.84 13398.62 14199.52 10899.71 9199.28 11499.06 27499.77 997.74 16299.50 11299.53 21795.41 18999.84 14097.17 25999.64 12699.44 177
PMMVS98.80 13798.62 14199.34 13399.27 22798.70 18598.76 32399.31 26197.34 20399.21 18299.07 31497.20 13099.82 15898.56 13798.87 18599.52 156
Effi-MVS+98.81 13498.59 14799.48 11499.46 17899.12 13798.08 35799.50 12497.50 18899.38 14299.41 25596.37 15899.81 16299.11 5498.54 20199.51 162
test_djsdf98.67 14798.57 14898.98 17998.70 32198.91 16699.88 199.46 17397.55 18099.22 17999.88 1895.73 18099.28 28099.03 6097.62 23598.75 242
alignmvs98.81 13498.56 14999.58 9099.43 18699.42 10199.51 12798.96 31098.61 6699.35 15098.92 32994.78 21399.77 17799.35 2798.11 22499.54 150
131498.68 14698.54 15099.11 16598.89 29498.65 18999.27 22899.49 13296.89 24597.99 31699.56 20597.72 11799.83 15197.74 21099.27 15398.84 230
D2MVS98.41 16198.50 15198.15 27999.26 22996.62 29499.40 18599.61 3597.71 16498.98 22699.36 27096.04 16699.67 21498.70 11197.41 25598.15 337
tpmrst98.33 16798.48 15297.90 29699.16 25694.78 33899.31 21599.11 29497.27 21099.45 12099.59 19595.33 19399.84 14098.48 14598.61 19499.09 204
RRT_MVS98.60 15298.44 15399.05 17098.88 29599.14 13399.49 14399.38 22297.76 15899.29 16199.86 2695.38 19099.36 26598.81 9997.16 26498.64 282
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15799.28 11499.52 12399.47 16396.11 30599.01 21999.34 27696.20 16399.84 14097.88 19698.82 18899.39 183
nrg03098.64 15098.42 15599.28 14999.05 27699.69 5299.81 1599.46 17398.04 13299.01 21999.82 5296.69 14899.38 25899.34 3194.59 31898.78 234
IterMVS-LS98.46 15698.42 15598.58 23599.59 14198.00 23099.37 19799.43 20296.94 24399.07 21099.59 19597.87 11199.03 31798.32 16395.62 29898.71 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned98.42 15998.36 15798.59 23299.49 16996.70 29099.27 22899.13 29397.24 21498.80 25399.38 26495.75 17999.74 18597.07 26499.16 15999.33 189
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25695.32 32799.27 22898.92 31497.37 20299.37 14499.58 19894.90 20799.70 20897.43 24399.21 15699.54 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ETH3 D test640098.70 14398.35 15999.73 6199.69 10199.60 7099.16 25399.45 18595.42 31699.27 16699.60 19297.39 12299.91 9495.36 31499.83 7499.70 103
PAPR98.63 15198.34 16099.51 11099.40 19599.03 14598.80 31999.36 23296.33 28499.00 22499.12 31298.46 8299.84 14095.23 31699.37 14999.66 116
ACMM97.58 598.37 16598.34 16098.48 24699.41 19097.10 26599.56 10599.45 18598.53 7099.04 21699.85 3293.00 26299.71 20298.74 10597.45 25198.64 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVSTER98.49 15498.32 16299.00 17799.35 20499.02 14699.54 11799.38 22297.41 19999.20 18599.73 12993.86 25099.36 26598.87 8197.56 24098.62 292
MDTV_nov1_ep1398.32 16299.11 26394.44 34199.27 22898.74 33197.51 18799.40 13799.62 18594.78 21399.76 18197.59 22398.81 190
QAPM98.67 14798.30 16499.80 4399.20 24399.67 5799.77 2799.72 1194.74 32898.73 26099.90 1095.78 17899.98 696.96 27099.88 3699.76 75
anonymousdsp98.44 15798.28 16598.94 18598.50 33698.96 15799.77 2799.50 12497.07 23098.87 24399.77 10794.76 21799.28 28098.66 11997.60 23698.57 307
jajsoiax98.43 15898.28 16598.88 20198.60 33198.43 21299.82 1399.53 8598.19 10798.63 27999.80 8193.22 26099.44 24999.22 4297.50 24698.77 238
mvs_tets98.40 16398.23 16798.91 19398.67 32498.51 20599.66 5299.53 8598.19 10798.65 27799.81 6592.75 26899.44 24999.31 3497.48 25098.77 238
HQP_MVS98.27 17398.22 16898.44 25599.29 22296.97 28099.39 18999.47 16398.97 3599.11 20099.61 18992.71 27399.69 21297.78 20597.63 23398.67 270
SCA98.19 17898.16 16998.27 27399.30 21895.55 31999.07 27198.97 30897.57 17899.43 12599.57 20292.72 27199.74 18597.58 22499.20 15799.52 156
LCM-MVSNet-Re97.83 23198.15 17096.87 33099.30 21892.25 35999.59 8498.26 34697.43 19696.20 34599.13 30996.27 16198.73 34098.17 17498.99 17799.64 127
tttt051798.42 15998.14 17199.28 14999.66 11598.38 21599.74 3496.85 36297.68 16799.79 2999.74 12291.39 30699.89 11798.83 9499.56 13399.57 146
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20997.05 27199.58 9299.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24498.68 263
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27799.53 8599.82 1399.72 1194.56 33198.08 31199.88 1894.73 21999.98 697.47 23899.76 10099.06 211
test111198.04 19998.11 17497.83 30099.74 7293.82 34799.58 9295.40 36999.12 999.65 7599.93 490.73 31499.84 14099.43 2299.38 14299.82 38
miper_ehance_all_eth98.18 18098.10 17598.41 25799.23 23597.72 24798.72 32799.31 26196.60 26698.88 24199.29 28897.29 12899.13 30497.60 22295.99 28798.38 327
OPM-MVS98.19 17898.10 17598.45 25298.88 29597.07 26999.28 22399.38 22298.57 6899.22 17999.81 6592.12 28999.66 21798.08 18397.54 24298.61 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS98.16 18298.10 17598.33 26499.29 22296.82 28798.75 32499.44 19497.83 14999.13 19699.55 20892.92 26499.67 21498.32 16397.69 23298.48 313
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS98.38 16498.09 17899.24 15499.26 22999.32 10899.56 10599.55 6797.45 19298.71 26299.83 4593.23 25899.63 22998.88 7796.32 28098.76 240
miper_enhance_ethall98.16 18298.08 17998.41 25798.96 28997.72 24798.45 34499.32 25896.95 24198.97 22899.17 30497.06 13599.22 29097.86 19895.99 28798.29 330
ADS-MVSNet98.20 17798.08 17998.56 23899.33 20996.48 29899.23 24299.15 29096.24 29299.10 20399.67 15994.11 24299.71 20296.81 27899.05 17199.48 167
BH-RMVSNet98.41 16198.08 17999.40 12899.41 19098.83 17699.30 21798.77 32797.70 16598.94 23299.65 16692.91 26699.74 18596.52 28999.55 13599.64 127
ADS-MVSNet298.02 20398.07 18297.87 29799.33 20995.19 33099.23 24299.08 29896.24 29299.10 20399.67 15994.11 24298.93 33496.81 27899.05 17199.48 167
ECVR-MVScopyleft98.04 19998.05 18398.00 28999.74 7294.37 34299.59 8494.98 37099.13 799.66 6999.93 490.67 31599.84 14099.40 2399.38 14299.80 54
c3_l98.12 18898.04 18498.38 26199.30 21897.69 25098.81 31899.33 24896.67 25898.83 24999.34 27697.11 13298.99 32397.58 22495.34 30498.48 313
thisisatest053098.35 16698.03 18599.31 13999.63 12598.56 19699.54 11796.75 36497.53 18599.73 4799.65 16691.25 30999.89 11798.62 12399.56 13399.48 167
EU-MVSNet97.98 21098.03 18597.81 30398.72 31896.65 29399.66 5299.66 2798.09 12198.35 30099.82 5295.25 19898.01 35097.41 24495.30 30598.78 234
tpmvs97.98 21098.02 18797.84 29999.04 27794.73 33999.31 21599.20 28496.10 30998.76 25899.42 25194.94 20399.81 16296.97 26998.45 20598.97 221
UniMVSNet (Re)98.29 17198.00 18899.13 16499.00 28299.36 10699.49 14399.51 10497.95 13898.97 22899.13 30996.30 16099.38 25898.36 15993.34 33498.66 278
ACMH97.28 898.10 18997.99 18998.44 25599.41 19096.96 28299.60 7799.56 5798.09 12198.15 30999.91 890.87 31399.70 20898.88 7797.45 25198.67 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521198.30 17097.98 19099.26 15199.57 14598.16 22399.41 17798.55 34396.03 31099.19 18899.74 12291.87 29399.92 8399.16 5098.29 21299.70 103
bset_n11_16_dypcd98.16 18297.97 19198.73 22398.26 34198.28 21997.99 35998.01 35297.68 16799.10 20399.63 17995.68 18299.15 30098.78 10396.55 27398.75 242
UniMVSNet_NR-MVSNet98.22 17497.97 19198.96 18298.92 29298.98 15099.48 14999.53 8597.76 15898.71 26299.46 24396.43 15799.22 29098.57 13492.87 34198.69 258
eth_miper_zixun_eth98.05 19897.96 19398.33 26499.26 22997.38 25598.56 34099.31 26196.65 26098.88 24199.52 22096.58 15099.12 30897.39 24595.53 30198.47 315
EPNet_dtu98.03 20197.96 19398.23 27498.27 34095.54 32199.23 24298.75 32899.02 1997.82 32199.71 13496.11 16499.48 24093.04 34199.65 12599.69 106
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPA-MVSNet98.29 17197.95 19599.30 14399.16 25699.54 8299.50 13399.58 4998.27 9999.35 15099.37 26792.53 28099.65 22199.35 2794.46 31998.72 248
baseline198.31 16897.95 19599.38 13199.50 16798.74 18299.59 8498.93 31298.41 8199.14 19599.60 19294.59 22599.79 17098.48 14593.29 33599.61 135
ACMP97.20 1198.06 19397.94 19798.45 25299.37 20197.01 27699.44 16299.49 13297.54 18398.45 29299.79 9391.95 29299.72 19697.91 19497.49 24998.62 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet98.17 18197.93 19898.87 20599.18 24898.49 20799.22 24799.33 24896.96 23999.56 9999.38 26494.33 23499.00 32294.83 32298.58 19799.14 197
miper_lstm_enhance98.00 20897.91 19998.28 27299.34 20897.43 25498.88 31199.36 23296.48 27698.80 25399.55 20895.98 16798.91 33597.27 24895.50 30298.51 311
pmmvs498.13 18697.90 20098.81 21698.61 33098.87 16998.99 29299.21 28396.44 27999.06 21499.58 19895.90 17499.11 30997.18 25896.11 28498.46 319
test-LLR98.06 19397.90 20098.55 24098.79 30797.10 26598.67 33097.75 35597.34 20398.61 28298.85 33094.45 23199.45 24497.25 25099.38 14299.10 200
HQP-MVS98.02 20397.90 20098.37 26299.19 24596.83 28598.98 29699.39 21698.24 10098.66 27199.40 25992.47 28299.64 22497.19 25697.58 23898.64 282
LTVRE_ROB97.16 1298.02 20397.90 20098.40 25999.23 23596.80 28899.70 3899.60 4097.12 22498.18 30899.70 13891.73 29899.72 19698.39 15397.45 25198.68 263
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-w/o98.00 20897.89 20498.32 26699.35 20496.20 30799.01 29098.90 31996.42 28198.38 29799.00 32295.26 19799.72 19696.06 29798.61 19499.03 214
WR-MVS_H98.13 18697.87 20598.90 19599.02 28098.84 17399.70 3899.59 4397.27 21098.40 29699.19 30395.53 18699.23 28798.34 16093.78 33098.61 301
DIV-MVS_self_test98.01 20697.85 20698.48 24699.24 23497.95 23698.71 32899.35 23796.50 27198.60 28499.54 21395.72 18199.03 31797.21 25295.77 29398.46 319
cl____98.01 20697.84 20798.55 24099.25 23397.97 23298.71 32899.34 24196.47 27898.59 28599.54 21395.65 18499.21 29597.21 25295.77 29398.46 319
dp97.75 24597.80 20897.59 31199.10 26693.71 35099.32 21398.88 32196.48 27699.08 20999.55 20892.67 27699.82 15896.52 28998.58 19799.24 193
thisisatest051598.14 18597.79 20999.19 15899.50 16798.50 20698.61 33596.82 36396.95 24199.54 10499.43 24891.66 30299.86 12898.08 18399.51 13799.22 194
V4298.06 19397.79 20998.86 20898.98 28698.84 17399.69 4099.34 24196.53 27099.30 15899.37 26794.67 22299.32 27597.57 22894.66 31698.42 322
DU-MVS98.08 19297.79 20998.96 18298.87 29998.98 15099.41 17799.45 18597.87 14398.71 26299.50 22794.82 21099.22 29098.57 13492.87 34198.68 263
CP-MVSNet98.09 19097.78 21299.01 17598.97 28899.24 11999.67 4899.46 17397.25 21298.48 29199.64 17393.79 25199.06 31398.63 12294.10 32698.74 246
ACMH+97.24 1097.92 21897.78 21298.32 26699.46 17896.68 29299.56 10599.54 7498.41 8197.79 32399.87 2390.18 32299.66 21798.05 18797.18 26398.62 292
v2v48298.06 19397.77 21498.92 18998.90 29398.82 17799.57 9899.36 23296.65 26099.19 18899.35 27394.20 23899.25 28597.72 21394.97 31298.69 258
OurMVSNet-221017-097.88 22197.77 21498.19 27698.71 32096.53 29699.88 199.00 30597.79 15598.78 25699.94 391.68 29999.35 26997.21 25296.99 26798.69 258
IterMVS97.83 23197.77 21498.02 28699.58 14396.27 30599.02 28599.48 14597.22 21698.71 26299.70 13892.75 26899.13 30497.46 23996.00 28698.67 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet398.03 20197.76 21798.84 21299.39 19898.98 15099.40 18599.38 22296.67 25899.07 21099.28 29092.93 26398.98 32497.10 26196.65 26998.56 308
IterMVS-SCA-FT97.82 23497.75 21898.06 28399.57 14596.36 30299.02 28599.49 13297.18 21898.71 26299.72 13392.72 27199.14 30197.44 24295.86 29298.67 270
MVP-Stereo97.81 23697.75 21897.99 29097.53 35096.60 29598.96 30098.85 32397.22 21697.23 33299.36 27095.28 19499.46 24395.51 30999.78 9497.92 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS98.06 19397.73 22099.06 16898.86 30299.25 11899.19 25099.35 23797.30 20798.66 27199.43 24893.94 24799.21 29598.58 13294.28 32398.71 250
CostFormer97.72 25197.73 22097.71 30799.15 25994.02 34699.54 11799.02 30494.67 32999.04 21699.35 27392.35 28899.77 17798.50 14497.94 22799.34 187
XVG-ACMP-BASELINE97.83 23197.71 22298.20 27599.11 26396.33 30399.41 17799.52 9198.06 13099.05 21599.50 22789.64 32899.73 19297.73 21197.38 25798.53 309
v114497.98 21097.69 22398.85 21198.87 29998.66 18899.54 11799.35 23796.27 28999.23 17899.35 27394.67 22299.23 28796.73 28295.16 30898.68 263
Anonymous2024052998.09 19097.68 22499.34 13399.66 11598.44 21199.40 18599.43 20293.67 33899.22 17999.89 1390.23 32199.93 7299.26 4098.33 20799.66 116
our_test_397.65 26497.68 22497.55 31398.62 32894.97 33498.84 31599.30 26596.83 25098.19 30799.34 27697.01 13799.02 31995.00 32096.01 28598.64 282
TranMVSNet+NR-MVSNet97.93 21597.66 22698.76 22298.78 31098.62 19299.65 5999.49 13297.76 15898.49 29099.60 19294.23 23798.97 33198.00 18892.90 33998.70 254
Patchmatch-test97.93 21597.65 22798.77 22199.18 24897.07 26999.03 28299.14 29296.16 30098.74 25999.57 20294.56 22799.72 19693.36 33799.11 16499.52 156
EPMVS97.82 23497.65 22798.35 26398.88 29595.98 31199.49 14394.71 37297.57 17899.26 17199.48 23692.46 28599.71 20297.87 19799.08 16999.35 185
cl2297.85 22697.64 22998.48 24699.09 26897.87 23998.60 33799.33 24897.11 22798.87 24399.22 29992.38 28799.17 29998.21 16895.99 28798.42 322
v897.95 21497.63 23098.93 18798.95 29098.81 17999.80 1999.41 20696.03 31099.10 20399.42 25194.92 20699.30 27896.94 27294.08 32798.66 278
NR-MVSNet97.97 21397.61 23199.02 17498.87 29999.26 11799.47 15499.42 20497.63 17397.08 33799.50 22795.07 20299.13 30497.86 19893.59 33298.68 263
v14419297.92 21897.60 23298.87 20598.83 30598.65 18999.55 11499.34 24196.20 29599.32 15599.40 25994.36 23399.26 28496.37 29495.03 31198.70 254
RRT_test8_iter0597.72 25197.60 23298.08 28199.23 23596.08 31099.63 6499.49 13297.54 18398.94 23299.81 6587.99 34599.35 26999.21 4496.51 27598.81 231
PS-CasMVS97.93 21597.59 23498.95 18498.99 28399.06 14399.68 4599.52 9197.13 22298.31 30299.68 15392.44 28699.05 31498.51 14394.08 32798.75 242
v14897.79 23997.55 23598.50 24398.74 31597.72 24799.54 11799.33 24896.26 29098.90 23899.51 22494.68 22199.14 30197.83 20193.15 33898.63 290
baseline297.87 22397.55 23598.82 21499.18 24898.02 22999.41 17796.58 36696.97 23896.51 34299.17 30493.43 25599.57 23497.71 21499.03 17398.86 228
tpm97.67 26297.55 23598.03 28499.02 28095.01 33399.43 16898.54 34496.44 27999.12 19899.34 27691.83 29599.60 23297.75 20996.46 27699.48 167
Anonymous2023121197.88 22197.54 23898.90 19599.71 9198.53 19999.48 14999.57 5194.16 33498.81 25199.68 15393.23 25899.42 25498.84 9194.42 32198.76 240
v7n97.87 22397.52 23998.92 18998.76 31498.58 19599.84 999.46 17396.20 29598.91 23699.70 13894.89 20899.44 24996.03 29893.89 32998.75 242
v1097.85 22697.52 23998.86 20898.99 28398.67 18799.75 3199.41 20695.70 31398.98 22699.41 25594.75 21899.23 28796.01 29994.63 31798.67 270
thres600view797.86 22597.51 24198.92 18999.72 8597.95 23699.59 8498.74 33197.94 13999.27 16698.62 33991.75 29699.86 12893.73 33398.19 21798.96 223
testgi97.65 26497.50 24298.13 28099.36 20396.45 29999.42 17599.48 14597.76 15897.87 31999.45 24491.09 31098.81 33894.53 32498.52 20299.13 199
GBi-Net97.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32497.10 26196.65 26998.62 292
test197.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32497.10 26196.65 26998.62 292
tfpnnormal97.84 22997.47 24598.98 17999.20 24399.22 12299.64 6299.61 3596.32 28598.27 30599.70 13893.35 25799.44 24995.69 30595.40 30398.27 331
GA-MVS97.85 22697.47 24599.00 17799.38 19997.99 23198.57 33899.15 29097.04 23398.90 23899.30 28689.83 32499.38 25896.70 28498.33 20799.62 133
LF4IMVS97.52 27197.46 24797.70 30898.98 28695.55 31999.29 22198.82 32698.07 12698.66 27199.64 17389.97 32399.61 23197.01 26596.68 26897.94 349
ppachtmachnet_test97.49 27797.45 24897.61 31098.62 32895.24 32898.80 31999.46 17396.11 30598.22 30699.62 18596.45 15598.97 33193.77 33295.97 29098.61 301
thres100view90097.76 24197.45 24898.69 22799.72 8597.86 24199.59 8498.74 33197.93 14099.26 17198.62 33991.75 29699.83 15193.22 33898.18 21898.37 328
v192192097.80 23897.45 24898.84 21298.80 30698.53 19999.52 12399.34 24196.15 30299.24 17499.47 23993.98 24699.29 27995.40 31295.13 30998.69 258
Baseline_NR-MVSNet97.76 24197.45 24898.68 22899.09 26898.29 21799.41 17798.85 32395.65 31498.63 27999.67 15994.82 21099.10 31198.07 18692.89 34098.64 282
MIMVSNet97.73 24997.45 24898.57 23699.45 18497.50 25299.02 28598.98 30796.11 30599.41 13299.14 30890.28 31798.74 33995.74 30498.93 18099.47 172
v119297.81 23697.44 25398.91 19398.88 29598.68 18699.51 12799.34 24196.18 29799.20 18599.34 27694.03 24599.36 26595.32 31595.18 30798.69 258
VPNet97.84 22997.44 25399.01 17599.21 24198.94 16299.48 14999.57 5198.38 8499.28 16399.73 12988.89 33499.39 25699.19 4593.27 33698.71 250
PEN-MVS97.76 24197.44 25398.72 22598.77 31398.54 19899.78 2599.51 10497.06 23298.29 30499.64 17392.63 27798.89 33798.09 17993.16 33798.72 248
cascas97.69 25797.43 25698.48 24698.60 33197.30 25698.18 35699.39 21692.96 34698.41 29598.78 33593.77 25299.27 28398.16 17598.61 19498.86 228
test0.0.03 197.71 25597.42 25798.56 23898.41 33997.82 24298.78 32198.63 34097.34 20398.05 31598.98 32694.45 23198.98 32495.04 31997.15 26598.89 227
TR-MVS97.76 24197.41 25898.82 21499.06 27397.87 23998.87 31398.56 34296.63 26398.68 27099.22 29992.49 28199.65 22195.40 31297.79 23098.95 226
DWT-MVSNet_test97.53 27097.40 25997.93 29399.03 27994.86 33799.57 9898.63 34096.59 26898.36 29998.79 33389.32 33099.74 18598.14 17798.16 22299.20 196
Patchmtry97.75 24597.40 25998.81 21699.10 26698.87 16999.11 26799.33 24894.83 32698.81 25199.38 26494.33 23499.02 31996.10 29695.57 29998.53 309
tfpn200view997.72 25197.38 26198.72 22599.69 10197.96 23499.50 13398.73 33697.83 14999.17 19298.45 34491.67 30099.83 15193.22 33898.18 21898.37 328
thres40097.77 24097.38 26198.92 18999.69 10197.96 23499.50 13398.73 33697.83 14999.17 19298.45 34491.67 30099.83 15193.22 33898.18 21898.96 223
tpm cat197.39 28097.36 26397.50 31599.17 25493.73 34999.43 16899.31 26191.27 35198.71 26299.08 31394.31 23699.77 17796.41 29398.50 20399.00 217
FMVSNet297.72 25197.36 26398.80 21899.51 15798.84 17399.45 15899.42 20496.49 27298.86 24899.29 28890.26 31898.98 32496.44 29196.56 27298.58 306
LFMVS97.90 22097.35 26599.54 9699.52 15599.01 14899.39 18998.24 34797.10 22899.65 7599.79 9384.79 35799.91 9499.28 3798.38 20699.69 106
VDD-MVS97.73 24997.35 26598.88 20199.47 17797.12 26499.34 21098.85 32398.19 10799.67 6499.85 3282.98 36099.92 8399.49 1498.32 21199.60 137
DSMNet-mixed97.25 28497.35 26596.95 32897.84 34793.61 35399.57 9896.63 36596.13 30498.87 24398.61 34194.59 22597.70 35795.08 31898.86 18699.55 148
tpm297.44 27997.34 26897.74 30699.15 25994.36 34399.45 15898.94 31193.45 34398.90 23899.44 24591.35 30799.59 23397.31 24698.07 22599.29 191
TAPA-MVS97.07 1597.74 24897.34 26898.94 18599.70 9897.53 25199.25 23999.51 10491.90 34999.30 15899.63 17998.78 5199.64 22488.09 36199.87 4099.65 120
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SixPastTwentyTwo97.50 27497.33 27098.03 28498.65 32596.23 30699.77 2798.68 33997.14 22197.90 31899.93 490.45 31699.18 29897.00 26696.43 27798.67 270
MS-PatchMatch97.24 28597.32 27196.99 32598.45 33893.51 35498.82 31799.32 25897.41 19998.13 31099.30 28688.99 33399.56 23595.68 30699.80 8797.90 352
v124097.69 25797.32 27198.79 21998.85 30398.43 21299.48 14999.36 23296.11 30599.27 16699.36 27093.76 25399.24 28694.46 32595.23 30698.70 254
pmmvs597.52 27197.30 27398.16 27898.57 33396.73 28999.27 22898.90 31996.14 30398.37 29899.53 21791.54 30599.14 30197.51 23495.87 29198.63 290
h-mvs3397.70 25697.28 27498.97 18199.70 9897.27 25899.36 20199.45 18598.94 3999.66 6999.64 17394.93 20499.99 199.48 1584.36 35899.65 120
pm-mvs197.68 25997.28 27498.88 20199.06 27398.62 19299.50 13399.45 18596.32 28597.87 31999.79 9392.47 28299.35 26997.54 23193.54 33398.67 270
thres20097.61 26697.28 27498.62 23099.64 12298.03 22899.26 23798.74 33197.68 16799.09 20898.32 34891.66 30299.81 16292.88 34298.22 21398.03 342
TESTMET0.1,197.55 26897.27 27798.40 25998.93 29196.53 29698.67 33097.61 35896.96 23998.64 27899.28 29088.63 33899.45 24497.30 24799.38 14299.21 195
test_part197.75 24597.24 27899.29 14699.59 14199.63 6599.65 5999.49 13296.17 29898.44 29399.69 14689.80 32599.47 24198.68 11693.66 33198.78 234
USDC97.34 28197.20 27997.75 30599.07 27195.20 32998.51 34299.04 30397.99 13698.31 30299.86 2689.02 33299.55 23795.67 30797.36 25898.49 312
DTE-MVSNet97.51 27397.19 28098.46 25198.63 32798.13 22699.84 999.48 14596.68 25797.97 31799.67 15992.92 26498.56 34196.88 27792.60 34498.70 254
hse-mvs297.50 27497.14 28198.59 23299.49 16997.05 27199.28 22399.22 28098.94 3999.66 6999.42 25194.93 20499.65 22199.48 1583.80 36099.08 205
test-mter97.49 27797.13 28298.55 24098.79 30797.10 26598.67 33097.75 35596.65 26098.61 28298.85 33088.23 34299.45 24497.25 25099.38 14299.10 200
PAPM97.59 26797.09 28399.07 16799.06 27398.26 22098.30 35299.10 29594.88 32598.08 31199.34 27696.27 16199.64 22489.87 35498.92 18299.31 190
PCF-MVS97.08 1497.66 26397.06 28499.47 11799.61 13599.09 13998.04 35899.25 27691.24 35298.51 28899.70 13894.55 22899.91 9492.76 34599.85 5899.42 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet97.55 26897.02 28599.16 16199.49 16998.12 22799.38 19499.30 26595.35 31799.68 5899.90 1082.62 36299.93 7299.31 3498.13 22399.42 179
JIA-IIPM97.50 27497.02 28598.93 18798.73 31697.80 24399.30 21798.97 30891.73 35098.91 23694.86 36395.10 20199.71 20297.58 22497.98 22699.28 192
TinyColmap97.12 28796.89 28797.83 30099.07 27195.52 32298.57 33898.74 33197.58 17797.81 32299.79 9388.16 34399.56 23595.10 31797.21 26198.39 326
UniMVSNet_ETH3D97.32 28296.81 28898.87 20599.40 19597.46 25399.51 12799.53 8595.86 31298.54 28799.77 10782.44 36399.66 21798.68 11697.52 24399.50 165
K. test v397.10 28896.79 28998.01 28798.72 31896.33 30399.87 597.05 36197.59 17596.16 34699.80 8188.71 33599.04 31596.69 28596.55 27398.65 280
test250696.81 29296.65 29097.29 32099.74 7292.21 36099.60 7785.06 37999.13 799.77 3699.93 487.82 34999.85 13499.38 2499.38 14299.80 54
TransMVSNet (Re)97.15 28696.58 29198.86 20899.12 26198.85 17299.49 14398.91 31795.48 31597.16 33599.80 8193.38 25699.11 30994.16 33091.73 34698.62 292
MVS97.28 28396.55 29299.48 11498.78 31098.95 15999.27 22899.39 21683.53 36298.08 31199.54 21396.97 13899.87 12594.23 32899.16 15999.63 131
MVS_030496.79 29396.52 29397.59 31199.22 23994.92 33699.04 28199.59 4396.49 27298.43 29498.99 32380.48 36699.39 25697.15 26099.27 15398.47 315
PatchT97.03 28996.44 29498.79 21998.99 28398.34 21699.16 25399.07 30092.13 34899.52 10997.31 35894.54 22998.98 32488.54 35998.73 19399.03 214
FMVSNet196.84 29196.36 29598.29 26999.32 21697.26 26099.43 16899.48 14595.11 32098.55 28699.32 28383.95 35998.98 32495.81 30296.26 28198.62 292
AUN-MVS96.88 29096.31 29698.59 23299.48 17697.04 27499.27 22899.22 28097.44 19598.51 28899.41 25591.97 29199.66 21797.71 21483.83 35999.07 210
test_040296.64 29596.24 29797.85 29898.85 30396.43 30099.44 16299.26 27493.52 34096.98 33999.52 22088.52 33999.20 29792.58 34797.50 24697.93 350
FMVSNet596.43 30096.19 29897.15 32199.11 26395.89 31399.32 21399.52 9194.47 33398.34 30199.07 31487.54 35097.07 36192.61 34695.72 29698.47 315
UnsupCasMVSNet_eth96.44 29996.12 29997.40 31798.65 32595.65 31699.36 20199.51 10497.13 22296.04 34898.99 32388.40 34098.17 34696.71 28390.27 34998.40 325
pmmvs696.53 29796.09 30097.82 30298.69 32295.47 32399.37 19799.47 16393.46 34297.41 32899.78 10087.06 35199.33 27396.92 27592.70 34398.65 280
Anonymous2023120696.22 30296.03 30196.79 33297.31 35594.14 34599.63 6499.08 29896.17 29897.04 33899.06 31693.94 24797.76 35686.96 36495.06 31098.47 315
new_pmnet96.38 30196.03 30197.41 31698.13 34495.16 33299.05 27699.20 28493.94 33597.39 32998.79 33391.61 30499.04 31590.43 35295.77 29398.05 341
test20.0396.12 30695.96 30396.63 33397.44 35195.45 32499.51 12799.38 22296.55 26996.16 34699.25 29693.76 25396.17 36687.35 36394.22 32498.27 331
RPMNet96.72 29495.90 30499.19 15899.18 24898.49 20799.22 24799.52 9188.72 35899.56 9997.38 35594.08 24499.95 4686.87 36598.58 19799.14 197
Anonymous2024052196.20 30495.89 30597.13 32397.72 34994.96 33599.79 2499.29 27093.01 34597.20 33499.03 31989.69 32798.36 34491.16 35096.13 28398.07 339
N_pmnet94.95 31895.83 30692.31 34498.47 33779.33 37199.12 26192.81 37793.87 33697.68 32499.13 30993.87 24999.01 32191.38 34996.19 28298.59 305
Patchmatch-RL test95.84 30995.81 30795.95 33895.61 36390.57 36398.24 35398.39 34595.10 32295.20 35198.67 33894.78 21397.77 35596.28 29590.02 35099.51 162
EG-PatchMatch MVS95.97 30895.69 30896.81 33197.78 34892.79 35799.16 25398.93 31296.16 30094.08 35599.22 29982.72 36199.47 24195.67 30797.50 24698.17 336
ET-MVSNet_ETH3D96.49 29895.64 30999.05 17099.53 15398.82 17798.84 31597.51 35997.63 17384.77 36399.21 30292.09 29098.91 33598.98 6592.21 34599.41 181
PVSNet_094.43 1996.09 30795.47 31097.94 29299.31 21794.34 34497.81 36099.70 1597.12 22497.46 32798.75 33689.71 32699.79 17097.69 21781.69 36299.68 110
X-MVStestdata96.55 29695.45 31199.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14464.01 37598.81 4899.94 5798.79 10099.86 5199.84 20
IB-MVS95.67 1896.22 30295.44 31298.57 23699.21 24196.70 29098.65 33397.74 35796.71 25597.27 33198.54 34286.03 35399.92 8398.47 14886.30 35699.10 200
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune96.17 30595.32 31398.73 22398.79 30798.14 22599.38 19494.09 37391.07 35498.07 31491.04 36889.62 32999.35 26996.75 28099.09 16898.68 263
MVS-HIRNet95.75 31095.16 31497.51 31499.30 21893.69 35198.88 31195.78 36785.09 36198.78 25692.65 36591.29 30899.37 26194.85 32199.85 5899.46 174
MIMVSNet195.51 31195.04 31596.92 32997.38 35295.60 31799.52 12399.50 12493.65 33996.97 34099.17 30485.28 35696.56 36588.36 36095.55 30098.60 304
CMPMVSbinary69.68 2394.13 32494.90 31691.84 34597.24 35680.01 37098.52 34199.48 14589.01 35691.99 36099.67 15985.67 35599.13 30495.44 31097.03 26696.39 361
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d95.34 31594.73 31797.15 32195.53 36595.94 31299.35 20799.10 29595.13 31893.55 35697.54 35388.15 34497.91 35294.58 32389.69 35297.61 354
MDA-MVSNet_test_wron95.45 31294.60 31898.01 28798.16 34397.21 26399.11 26799.24 27893.49 34180.73 36898.98 32693.02 26198.18 34594.22 32994.45 32098.64 282
TDRefinement95.42 31394.57 31997.97 29189.83 37296.11 30999.48 14998.75 32896.74 25396.68 34199.88 1888.65 33799.71 20298.37 15782.74 36198.09 338
YYNet195.36 31494.51 32097.92 29497.89 34697.10 26599.10 26999.23 27993.26 34480.77 36799.04 31892.81 26798.02 34994.30 32694.18 32598.64 282
KD-MVS_self_test95.00 31694.34 32196.96 32797.07 36095.39 32699.56 10599.44 19495.11 32097.13 33697.32 35791.86 29497.27 36090.35 35381.23 36398.23 335
new-patchmatchnet94.48 32294.08 32295.67 33995.08 36692.41 35899.18 25199.28 27294.55 33293.49 35797.37 35687.86 34897.01 36291.57 34888.36 35397.61 354
MDA-MVSNet-bldmvs94.96 31793.98 32397.92 29498.24 34297.27 25899.15 25799.33 24893.80 33780.09 36999.03 31988.31 34197.86 35493.49 33694.36 32298.62 292
CL-MVSNet_self_test94.49 32193.97 32496.08 33796.16 36193.67 35298.33 35099.38 22295.13 31897.33 33098.15 35092.69 27596.57 36488.67 35879.87 36497.99 346
KD-MVS_2432*160094.62 31993.72 32597.31 31897.19 35895.82 31498.34 34899.20 28495.00 32397.57 32598.35 34687.95 34698.10 34792.87 34377.00 36698.01 343
miper_refine_blended94.62 31993.72 32597.31 31897.19 35895.82 31498.34 34899.20 28495.00 32397.57 32598.35 34687.95 34698.10 34792.87 34377.00 36698.01 343
OpenMVS_ROBcopyleft92.34 2094.38 32393.70 32796.41 33697.38 35293.17 35599.06 27498.75 32886.58 35994.84 35498.26 34981.53 36499.32 27589.01 35797.87 22996.76 359
pmmvs394.09 32593.25 32896.60 33494.76 36794.49 34098.92 30798.18 35089.66 35596.48 34398.06 35186.28 35297.33 35989.68 35587.20 35597.97 348
UnsupCasMVSNet_bld93.53 32692.51 32996.58 33597.38 35293.82 34798.24 35399.48 14591.10 35393.10 35896.66 35974.89 36798.37 34394.03 33187.71 35497.56 356
PM-MVS92.96 32792.23 33095.14 34095.61 36389.98 36599.37 19798.21 34894.80 32795.04 35397.69 35265.06 36997.90 35394.30 32689.98 35197.54 357
test_method91.10 32891.36 33190.31 34895.85 36273.72 37694.89 36599.25 27668.39 36895.82 34999.02 32180.50 36598.95 33393.64 33494.89 31598.25 333
Gipumacopyleft90.99 32990.15 33293.51 34198.73 31690.12 36493.98 36699.45 18579.32 36492.28 35994.91 36269.61 36897.98 35187.42 36295.67 29792.45 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS84.93 33285.65 33382.75 35386.77 37463.39 37898.35 34798.92 31474.11 36583.39 36598.98 32650.85 37392.40 37084.54 36794.97 31292.46 364
PMMVS286.87 33085.37 33491.35 34790.21 37183.80 36698.89 31097.45 36083.13 36391.67 36195.03 36148.49 37494.70 36885.86 36677.62 36595.54 362
LCM-MVSNet86.80 33185.22 33591.53 34687.81 37380.96 36998.23 35598.99 30671.05 36690.13 36296.51 36048.45 37596.88 36390.51 35185.30 35796.76 359
tmp_tt82.80 33381.52 33686.66 34966.61 37968.44 37792.79 36897.92 35368.96 36780.04 37099.85 3285.77 35496.15 36797.86 19843.89 37295.39 363
E-PMN80.61 33579.88 33782.81 35290.75 37076.38 37497.69 36195.76 36866.44 37083.52 36492.25 36662.54 37187.16 37268.53 37161.40 36984.89 370
EMVS80.02 33679.22 33882.43 35491.19 36976.40 37397.55 36392.49 37866.36 37183.01 36691.27 36764.63 37085.79 37365.82 37260.65 37085.08 369
EGC-MVSNET82.80 33377.86 33997.62 30997.91 34596.12 30899.33 21299.28 2728.40 37625.05 37799.27 29384.11 35899.33 27389.20 35698.22 21397.42 358
PMVScopyleft70.75 2275.98 33974.97 34079.01 35570.98 37855.18 37993.37 36798.21 34865.08 37261.78 37393.83 36421.74 38092.53 36978.59 36891.12 34889.34 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high77.30 33774.86 34184.62 35175.88 37777.61 37297.63 36293.15 37688.81 35764.27 37289.29 36936.51 37683.93 37475.89 36952.31 37192.33 366
MVEpermissive76.82 2176.91 33874.31 34284.70 35085.38 37676.05 37596.88 36493.17 37567.39 36971.28 37189.01 37021.66 38187.69 37171.74 37072.29 36890.35 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 34143.78 34325.37 35836.04 38116.84 38298.36 34626.56 38020.06 37438.51 37567.32 37129.64 37815.30 37737.59 37439.90 37343.98 372
test12339.01 34242.50 34428.53 35739.17 38020.91 38198.75 32419.17 38219.83 37538.57 37466.67 37233.16 37715.42 37637.50 37529.66 37449.26 371
wuyk23d40.18 34041.29 34536.84 35686.18 37549.12 38079.73 36922.81 38127.64 37325.46 37628.45 37621.98 37948.89 37555.80 37323.56 37512.51 373
cdsmvs_eth3d_5k24.64 34332.85 3460.00 3590.00 3820.00 3830.00 37099.51 1040.00 3770.00 37899.56 20596.58 1500.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.30 34411.06 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.58 1980.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas8.27 34511.03 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 37899.01 190.00 3780.00 3760.00 3760.00 374
test_blank0.13 3460.17 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3781.57 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.02 3470.03 3500.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.27 3780.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.91 199.93 199.87 599.56 5799.10 1199.81 24
MSC_two_6792asdad99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
PC_three_145298.18 11099.84 1499.70 13899.31 398.52 34298.30 16599.80 8799.81 44
No_MVS99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
test_one_060199.81 4199.88 899.49 13298.97 3599.65 7599.81 6599.09 14
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.71 9199.79 3399.61 3596.84 24899.56 9999.54 21398.58 7399.96 1996.93 27399.75 102
IU-MVS99.84 3399.88 899.32 25898.30 9599.84 1498.86 8699.85 5899.89 2
OPU-MVS99.64 8099.56 14999.72 4799.60 7799.70 13899.27 599.42 25498.24 16799.80 8799.79 60
test_241102_TWO99.48 14599.08 1599.88 599.81 6598.94 3499.96 1998.91 7499.84 6599.88 7
test_241102_ONE99.84 3399.90 299.48 14599.07 1799.91 199.74 12299.20 799.76 181
save fliter99.76 5499.59 7399.14 25999.40 21299.00 26
test_0728_THIRD98.99 2999.81 2499.80 8199.09 1499.96 1998.85 8899.90 2399.88 7
test_0728_SECOND99.91 299.84 3399.89 499.57 9899.51 10499.96 1998.93 7199.86 5199.88 7
test072699.85 2699.89 499.62 7099.50 12499.10 1199.86 1299.82 5298.94 34
GSMVS99.52 156
test_part299.81 4199.83 1799.77 36
sam_mvs194.86 20999.52 156
sam_mvs94.72 220
ambc93.06 34392.68 36882.36 36798.47 34398.73 33695.09 35297.41 35455.55 37299.10 31196.42 29291.32 34797.71 353
MTGPAbinary99.47 163
test_post199.23 24265.14 37494.18 24199.71 20297.58 224
test_post65.99 37394.65 22499.73 192
patchmatchnet-post98.70 33794.79 21299.74 185
GG-mvs-BLEND98.45 25298.55 33498.16 22399.43 16893.68 37497.23 33298.46 34389.30 33199.22 29095.43 31198.22 21397.98 347
MTMP99.54 11798.88 321
gm-plane-assit98.54 33592.96 35694.65 33099.15 30799.64 22497.56 229
test9_res97.49 23599.72 10999.75 76
TEST999.67 10699.65 6299.05 27699.41 20696.22 29498.95 23099.49 23098.77 5499.91 94
test_899.67 10699.61 6899.03 28299.41 20696.28 28798.93 23499.48 23698.76 5699.91 94
agg_prior297.21 25299.73 10899.75 76
agg_prior99.67 10699.62 6699.40 21298.87 24399.91 94
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
test_prior499.56 7898.99 292
test_prior298.96 30098.34 9099.01 21999.52 22098.68 6697.96 19099.74 105
test_prior99.68 6899.67 10699.48 9399.56 5799.83 15199.74 81
旧先验298.96 30096.70 25699.47 11799.94 5798.19 170
新几何299.01 290
新几何199.75 5499.75 6499.59 7399.54 7496.76 25299.29 16199.64 17398.43 8499.94 5796.92 27599.66 12399.72 94
旧先验199.74 7299.59 7399.54 7499.69 14698.47 8199.68 12099.73 88
无先验98.99 29299.51 10496.89 24599.93 7297.53 23299.72 94
原ACMM298.95 304
原ACMM199.65 7599.73 8099.33 10799.47 16397.46 18999.12 19899.66 16598.67 6999.91 9497.70 21699.69 11599.71 101
test22299.75 6499.49 9198.91 30999.49 13296.42 28199.34 15399.65 16698.28 9799.69 11599.72 94
testdata299.95 4696.67 286
segment_acmp98.96 28
testdata99.54 9699.75 6498.95 15999.51 10497.07 23099.43 12599.70 13898.87 4299.94 5797.76 20799.64 12699.72 94
testdata198.85 31498.32 94
test1299.75 5499.64 12299.61 6899.29 27099.21 18298.38 8999.89 11799.74 10599.74 81
plane_prior799.29 22297.03 275
plane_prior699.27 22796.98 27992.71 273
plane_prior599.47 16399.69 21297.78 20597.63 23398.67 270
plane_prior499.61 189
plane_prior397.00 27798.69 6299.11 200
plane_prior299.39 18998.97 35
plane_prior199.26 229
plane_prior96.97 28099.21 24998.45 7797.60 236
n20.00 383
nn0.00 383
door-mid98.05 351
lessismore_v097.79 30498.69 32295.44 32594.75 37195.71 35099.87 2388.69 33699.32 27595.89 30094.93 31498.62 292
LGP-MVS_train98.49 24499.33 20997.05 27199.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24498.68 263
test1199.35 237
door97.92 353
HQP5-MVS96.83 285
HQP-NCC99.19 24598.98 29698.24 10098.66 271
ACMP_Plane99.19 24598.98 29698.24 10098.66 271
BP-MVS97.19 256
HQP4-MVS98.66 27199.64 22498.64 282
HQP3-MVS99.39 21697.58 238
HQP2-MVS92.47 282
NP-MVS99.23 23596.92 28399.40 259
MDTV_nov1_ep13_2view95.18 33199.35 20796.84 24899.58 9695.19 20097.82 20299.46 174
ACMMP++_ref97.19 262
ACMMP++97.43 254
Test By Simon98.75 59
ITE_SJBPF98.08 28199.29 22296.37 30198.92 31498.34 9098.83 24999.75 11691.09 31099.62 23095.82 30197.40 25698.25 333
DeepMVS_CXcopyleft93.34 34299.29 22282.27 36899.22 28085.15 36096.33 34499.05 31790.97 31299.73 19293.57 33597.77 23198.01 343