This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS88.67 291.62 185.22 390.47 1792.36 190.69 976.15 393.08 182.75 492.19 590.71 280.45 589.27 587.91 890.82 1195.84 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS88.85 191.59 285.67 190.54 1592.29 291.71 376.40 292.41 283.24 292.50 390.64 381.10 289.53 288.02 791.00 895.73 2
DPE-MVScopyleft88.63 391.29 385.53 290.87 892.20 391.98 276.00 590.55 782.09 693.85 190.75 181.25 188.62 787.59 1390.96 995.48 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS88.09 490.84 484.88 690.00 2391.80 591.63 475.80 691.99 381.23 992.54 289.18 580.89 387.99 1487.91 889.70 4394.51 6
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS88.00 590.50 585.08 490.95 791.58 692.03 175.53 1291.15 480.10 1592.27 488.34 1080.80 488.00 1386.99 1891.09 695.16 5
SMA-MVScopyleft87.56 690.17 684.52 991.71 290.57 990.77 875.19 1390.67 680.50 1486.59 1788.86 778.09 1689.92 189.41 190.84 1095.19 4
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS87.47 789.70 784.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 788.93 678.82 987.42 1986.23 3091.28 393.90 12
SD-MVS86.96 989.45 884.05 1590.13 2089.23 2289.77 1874.59 1489.17 1080.70 1189.93 1189.67 478.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.86.88 1089.23 984.14 1389.78 2688.67 3190.59 1073.46 2788.99 1180.52 1391.26 688.65 879.91 786.96 3086.22 3290.59 1893.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP86.52 1289.01 1083.62 1790.28 1990.09 1390.32 1374.05 2088.32 1479.74 1687.04 1585.59 2376.97 2989.35 388.44 490.35 2994.27 10
DeepPCF-MVS79.04 185.30 2188.93 1181.06 3288.77 3690.48 1085.46 4673.08 2990.97 573.77 3784.81 2285.95 2077.43 2388.22 1087.73 1087.85 7994.34 8
HPM-MVS++copyleft87.09 888.92 1284.95 592.61 187.91 4090.23 1576.06 488.85 1281.20 1087.33 1387.93 1179.47 888.59 888.23 590.15 3493.60 20
APD-MVScopyleft86.84 1188.91 1384.41 1090.66 1190.10 1290.78 775.64 987.38 1778.72 1990.68 1086.82 1680.15 687.13 2586.45 2890.51 2093.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + ACMM85.10 2488.81 1480.77 3589.55 2988.53 3388.59 2872.55 3187.39 1671.90 4390.95 987.55 1274.57 3487.08 2786.54 2687.47 8693.67 17
SteuartSystems-ACMMP85.99 1588.31 1583.27 2190.73 1089.84 1490.27 1474.31 1584.56 3075.88 3087.32 1485.04 2477.31 2489.01 688.46 391.14 593.96 11
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS86.36 1388.19 1684.23 1291.33 489.84 1490.34 1175.56 1087.36 1878.97 1881.19 2886.76 1778.74 1189.30 488.58 290.45 2694.33 9
HFP-MVS86.15 1487.95 1784.06 1490.80 989.20 2389.62 2074.26 1687.52 1580.63 1286.82 1684.19 2978.22 1487.58 1787.19 1690.81 1293.13 24
CSCG85.28 2287.68 1882.49 2589.95 2491.99 488.82 2571.20 3886.41 2279.63 1779.26 2988.36 973.94 3986.64 3286.67 2591.40 294.41 7
ACMMPR85.52 1787.53 1983.17 2290.13 2089.27 2089.30 2173.97 2186.89 2077.14 2586.09 1883.18 3277.74 2087.42 1987.20 1590.77 1392.63 25
MP-MVScopyleft85.50 1887.40 2083.28 2090.65 1289.51 1989.16 2474.11 1983.70 3478.06 2285.54 2084.89 2777.31 2487.40 2287.14 1790.41 2793.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg84.86 2587.21 2182.11 2790.59 1385.47 5589.81 1673.55 2683.95 3273.30 3889.84 1287.23 1475.61 3286.47 3485.46 3989.78 3992.06 32
zzz-MVS85.71 1686.88 2284.34 1190.54 1587.11 4489.77 1874.17 1888.54 1383.08 378.60 3286.10 1978.11 1587.80 1687.46 1490.35 2992.56 26
MCST-MVS85.13 2386.62 2383.39 1890.55 1489.82 1689.29 2273.89 2384.38 3176.03 2979.01 3185.90 2178.47 1287.81 1586.11 3492.11 193.29 22
NCCC85.34 2086.59 2483.88 1691.48 388.88 2589.79 1775.54 1186.67 2177.94 2376.55 3584.99 2578.07 1788.04 1187.68 1190.46 2593.31 21
TSAR-MVS + GP.83.69 3086.58 2580.32 3685.14 5586.96 4584.91 5070.25 4284.71 2973.91 3685.16 2185.63 2277.92 1885.44 4185.71 3789.77 4092.45 27
CP-MVS84.74 2786.43 2682.77 2489.48 3088.13 3988.64 2673.93 2284.92 2576.77 2681.94 2683.50 3077.29 2686.92 3186.49 2790.49 2193.14 23
PGM-MVS84.42 2886.29 2782.23 2690.04 2288.82 2789.23 2371.74 3682.82 3774.61 3384.41 2382.09 3577.03 2887.13 2586.73 2490.73 1592.06 32
DeepC-MVS78.47 284.81 2686.03 2883.37 1989.29 3290.38 1188.61 2776.50 186.25 2377.22 2475.12 3980.28 4577.59 2288.39 988.17 691.02 793.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS82.36 3685.89 2978.24 4986.40 4889.52 1885.52 4469.52 4982.38 4065.67 6981.35 2782.36 3473.07 4587.31 2486.76 2389.24 5091.56 35
xxxxxxxxxxxxxcwj85.35 1985.76 3084.86 791.26 591.10 790.90 575.65 789.21 881.25 791.12 761.35 11678.82 987.42 1986.23 3091.28 393.90 12
DeepC-MVS_fast78.24 384.27 2985.50 3182.85 2390.46 1889.24 2187.83 3374.24 1784.88 2676.23 2875.26 3881.05 4377.62 2188.02 1287.62 1290.69 1692.41 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft83.42 3185.27 3281.26 3188.47 3788.49 3488.31 3172.09 3383.42 3572.77 4182.65 2478.22 4975.18 3386.24 3885.76 3690.74 1492.13 31
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
X-MVS83.23 3385.20 3380.92 3489.71 2788.68 2888.21 3273.60 2482.57 3871.81 4677.07 3381.92 3771.72 5886.98 2986.86 2090.47 2292.36 29
CDPH-MVS82.64 3485.03 3479.86 3989.41 3188.31 3688.32 3071.84 3580.11 4567.47 6282.09 2581.44 4171.85 5685.89 4086.15 3390.24 3291.25 38
DPM-MVS83.30 3284.33 3582.11 2789.56 2888.49 3490.33 1273.24 2883.85 3376.46 2772.43 4882.65 3373.02 4786.37 3686.91 1990.03 3689.62 51
MVS_030481.73 3983.86 3679.26 4286.22 5089.18 2486.41 3867.15 6375.28 5570.75 5374.59 4183.49 3174.42 3687.05 2886.34 2990.58 1991.08 40
CANet81.62 4083.41 3779.53 4187.06 4388.59 3285.47 4567.96 5976.59 5374.05 3474.69 4081.98 3672.98 4886.14 3985.47 3889.68 4490.42 46
HQP-MVS81.19 4183.27 3878.76 4687.40 4185.45 5686.95 3570.47 4181.31 4266.91 6579.24 3076.63 5371.67 5984.43 5083.78 5089.19 5392.05 34
CPTT-MVS81.77 3883.10 3980.21 3785.93 5186.45 5087.72 3470.98 3982.54 3971.53 4974.23 4481.49 4076.31 3182.85 6481.87 6188.79 6192.26 30
3Dnovator+75.73 482.40 3582.76 4081.97 2988.02 3889.67 1786.60 3771.48 3781.28 4378.18 2164.78 8377.96 5177.13 2787.32 2386.83 2190.41 2791.48 36
MSLP-MVS++82.09 3782.66 4181.42 3087.03 4487.22 4385.82 4270.04 4380.30 4478.66 2068.67 6781.04 4477.81 1985.19 4684.88 4489.19 5391.31 37
OMC-MVS80.26 4282.59 4277.54 5283.04 6385.54 5483.25 5865.05 7887.32 1972.42 4272.04 5078.97 4773.30 4383.86 5381.60 6588.15 7088.83 55
canonicalmvs79.16 5282.37 4375.41 6282.33 6986.38 5180.80 6363.18 9282.90 3667.34 6372.79 4776.07 5569.62 6883.46 6084.41 4689.20 5290.60 44
TSAR-MVS + COLMAP78.34 5781.64 4474.48 7280.13 8885.01 6081.73 5965.93 7384.75 2861.68 8285.79 1966.27 10271.39 6182.91 6380.78 7486.01 12785.98 77
MVS_111021_HR80.13 4381.46 4578.58 4785.77 5285.17 5983.45 5769.28 5074.08 6170.31 5474.31 4375.26 5873.13 4486.46 3585.15 4289.53 4689.81 49
CLD-MVS79.35 5081.23 4677.16 5485.01 5886.92 4685.87 4160.89 12780.07 4775.35 3272.96 4673.21 6568.43 7685.41 4384.63 4587.41 8785.44 86
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LGP-MVS_train79.83 4481.22 4778.22 5086.28 4985.36 5886.76 3669.59 4777.34 5065.14 7175.68 3770.79 7571.37 6284.60 4884.01 4790.18 3390.74 42
DELS-MVS79.15 5381.07 4876.91 5583.54 6287.31 4284.45 5164.92 7969.98 6769.34 5571.62 5276.26 5469.84 6786.57 3385.90 3589.39 4889.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet79.08 5480.62 4977.28 5388.90 3583.17 7683.65 5572.41 3274.41 5867.15 6476.78 3474.37 6064.43 9683.70 5683.69 5187.15 9088.19 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMP73.23 779.79 4580.53 5078.94 4485.61 5385.68 5385.61 4369.59 4777.33 5171.00 5274.45 4269.16 8871.88 5483.15 6183.37 5389.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator73.76 579.75 4680.52 5178.84 4584.94 6087.35 4184.43 5265.54 7478.29 4973.97 3563.00 9175.62 5774.07 3885.00 4785.34 4090.11 3589.04 53
PCF-MVS73.28 679.42 4980.41 5278.26 4884.88 6188.17 3786.08 3969.85 4475.23 5768.43 5768.03 7078.38 4871.76 5781.26 8280.65 8388.56 6491.18 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS79.21 5180.32 5377.92 5187.46 4088.15 3883.95 5367.48 6274.28 5968.25 5864.70 8477.04 5272.17 5285.42 4285.00 4388.22 6787.62 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
QAPM78.47 5680.22 5476.43 5785.03 5786.75 4880.62 6666.00 7173.77 6265.35 7065.54 7978.02 5072.69 4983.71 5583.36 5488.87 5990.41 47
TAPA-MVS71.42 977.69 5980.05 5574.94 6680.68 8084.52 6281.36 6063.14 9384.77 2764.82 7368.72 6575.91 5671.86 5581.62 7179.55 9987.80 8185.24 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_111021_LR78.13 5879.85 5676.13 5881.12 7681.50 8680.28 6765.25 7676.09 5471.32 5176.49 3672.87 6772.21 5182.79 6581.29 6786.59 11287.91 61
OPM-MVS79.68 4879.28 5780.15 3887.99 3986.77 4788.52 2972.72 3064.55 9367.65 6167.87 7174.33 6174.31 3786.37 3685.25 4189.73 4289.81 49
ETV-MVS77.32 6078.81 5875.58 6182.24 7083.64 7079.98 6864.02 8669.64 7163.90 7670.89 5669.94 8273.41 4285.39 4483.91 4989.92 3788.31 58
AdaColmapbinary79.74 4778.62 5981.05 3389.23 3386.06 5284.95 4971.96 3479.39 4875.51 3163.16 8968.84 9376.51 3083.55 5782.85 5588.13 7186.46 75
casdiffmvs76.76 6378.46 6074.77 6880.32 8583.73 6980.65 6563.24 9173.58 6366.11 6769.39 6274.09 6269.49 7082.52 6779.35 10488.84 6086.52 74
ACMM72.26 878.86 5578.13 6179.71 4086.89 4583.40 7386.02 4070.50 4075.28 5571.49 5063.01 9069.26 8773.57 4184.11 5283.98 4889.76 4187.84 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS76.92 6278.01 6275.64 6081.47 7383.59 7180.68 6462.47 11168.39 7365.83 6867.84 7270.74 7673.07 4585.31 4582.79 5690.33 3187.42 65
PVSNet_Blended_VisFu76.57 6477.90 6375.02 6580.56 8186.58 4979.24 7866.18 6864.81 9068.18 5965.61 7771.45 7067.05 7984.16 5181.80 6288.90 5790.92 41
UA-Net74.47 7477.80 6470.59 9085.33 5485.40 5773.54 13765.98 7260.65 12556.00 10772.11 4979.15 4654.63 16283.13 6282.25 5888.04 7381.92 123
UGNet72.78 8377.67 6567.07 13271.65 15983.24 7475.20 10963.62 8864.93 8956.72 10371.82 5173.30 6349.02 17581.02 8780.70 8186.22 11888.67 56
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA77.20 6177.54 6676.80 5682.63 6584.31 6379.77 7264.64 8085.17 2473.18 3956.37 12569.81 8374.53 3581.12 8678.69 11086.04 12687.29 68
PVSNet_BlendedMVS76.21 6577.52 6774.69 6979.46 9183.79 6777.50 9564.34 8469.88 6871.88 4468.54 6870.42 7867.05 7983.48 5879.63 9587.89 7786.87 71
PVSNet_Blended76.21 6577.52 6774.69 6979.46 9183.79 6777.50 9564.34 8469.88 6871.88 4468.54 6870.42 7867.05 7983.48 5879.63 9587.89 7786.87 71
EPP-MVSNet74.00 7877.41 6970.02 9680.53 8283.91 6574.99 11562.68 10665.06 8849.77 14268.68 6672.09 6963.06 10482.49 6880.73 7589.12 5588.91 54
diffmvs74.86 7377.37 7071.93 8075.62 12180.35 10179.42 7760.15 13772.81 6564.63 7471.51 5373.11 6666.53 8979.02 11577.98 11885.25 14186.83 73
IS_MVSNet73.33 8077.34 7168.65 11081.29 7483.47 7274.45 11963.58 8965.75 8548.49 14667.11 7670.61 7754.63 16284.51 4983.58 5289.48 4786.34 76
Vis-MVSNetpermissive72.77 8477.20 7267.59 12274.19 13584.01 6476.61 10561.69 12160.62 12650.61 13870.25 5971.31 7355.57 15883.85 5482.28 5786.90 9988.08 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_Test75.37 7077.13 7373.31 7779.07 9481.32 8979.98 6860.12 13869.72 7064.11 7570.53 5773.22 6468.90 7280.14 10279.48 10187.67 8385.50 84
CANet_DTU73.29 8176.96 7469.00 10777.04 11182.06 8279.49 7656.30 16367.85 7553.29 12371.12 5570.37 8061.81 11881.59 7280.96 7286.09 12184.73 97
OpenMVScopyleft70.44 1076.15 6776.82 7575.37 6385.01 5884.79 6178.99 8262.07 11671.27 6667.88 6057.91 11872.36 6870.15 6682.23 6981.41 6688.12 7287.78 63
EIA-MVS75.64 6976.60 7674.53 7182.43 6883.84 6678.32 8862.28 11565.96 8363.28 8068.95 6367.54 9871.61 6082.55 6681.63 6489.24 5085.72 80
Effi-MVS+75.28 7176.20 7774.20 7381.15 7583.24 7481.11 6163.13 9466.37 7960.27 8664.30 8768.88 9270.93 6581.56 7381.69 6388.61 6287.35 66
DI_MVS_plusplus_trai75.13 7276.12 7873.96 7478.18 9981.55 8480.97 6262.54 10868.59 7265.13 7261.43 9374.81 5969.32 7181.01 8879.59 9787.64 8485.89 78
DCV-MVSNet73.65 7975.78 7971.16 8480.19 8679.27 11077.45 9761.68 12266.73 7858.72 9165.31 8069.96 8162.19 10981.29 8180.97 7186.74 10586.91 70
PLCcopyleft68.99 1175.68 6875.31 8076.12 5982.94 6481.26 9079.94 7066.10 6977.15 5266.86 6659.13 10868.53 9573.73 4080.38 9579.04 10587.13 9481.68 125
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FC-MVSNet-train72.60 8575.07 8169.71 9981.10 7778.79 11673.74 13665.23 7766.10 8253.34 12270.36 5863.40 11156.92 14781.44 7580.96 7287.93 7584.46 101
GeoE74.23 7674.84 8273.52 7580.42 8481.46 8779.77 7261.06 12567.23 7763.67 7759.56 10568.74 9467.90 7780.25 10079.37 10388.31 6687.26 69
MVSTER72.06 8774.24 8369.51 10270.39 17075.97 14676.91 10157.36 16064.64 9261.39 8468.86 6463.76 10963.46 10181.44 7579.70 9487.56 8585.31 88
ET-MVSNet_ETH3D72.46 8674.19 8470.44 9162.50 19481.17 9179.90 7162.46 11264.52 9457.52 9971.49 5459.15 12672.08 5378.61 12081.11 6988.16 6983.29 111
baseline70.45 10174.09 8566.20 14070.95 16775.67 14774.26 12653.57 16768.33 7458.42 9369.87 6071.45 7061.55 11974.84 15174.76 15478.42 17383.72 108
Fast-Effi-MVS+73.11 8273.66 8672.48 7977.72 10580.88 9678.55 8558.83 15365.19 8760.36 8559.98 10262.42 11471.22 6381.66 7080.61 8588.20 6884.88 96
Vis-MVSNet (Re-imp)67.83 13173.52 8761.19 16478.37 9876.72 14066.80 16962.96 9565.50 8634.17 19067.19 7569.68 8539.20 19379.39 11179.44 10285.68 13376.73 160
test_part174.24 7573.44 8875.18 6482.02 7282.34 8183.88 5462.40 11360.93 12368.68 5649.25 17569.71 8465.73 9481.26 8281.98 6088.35 6588.60 57
LS3D74.08 7773.39 8974.88 6785.05 5682.62 7979.71 7468.66 5372.82 6458.80 9057.61 11961.31 11771.07 6480.32 9678.87 10986.00 12880.18 137
GBi-Net70.78 9673.37 9067.76 11572.95 14778.00 12375.15 11062.72 10164.13 9651.44 13158.37 11369.02 8957.59 13981.33 7880.72 7686.70 10682.02 117
test170.78 9673.37 9067.76 11572.95 14778.00 12375.15 11062.72 10164.13 9651.44 13158.37 11369.02 8957.59 13981.33 7880.72 7686.70 10682.02 117
thisisatest053071.48 9273.01 9269.70 10073.83 14078.62 11874.53 11859.12 14764.13 9658.63 9264.60 8558.63 12864.27 9780.28 9880.17 9187.82 8084.64 99
tttt051771.41 9372.95 9369.60 10173.70 14278.70 11774.42 12259.12 14763.89 10058.35 9564.56 8658.39 13064.27 9780.29 9780.17 9187.74 8284.69 98
FMVSNet370.49 10072.90 9467.67 12072.88 15077.98 12674.96 11662.72 10164.13 9651.44 13158.37 11369.02 8957.43 14279.43 11079.57 9886.59 11281.81 124
IterMVS-LS71.69 9072.82 9570.37 9277.54 10776.34 14375.13 11360.46 13361.53 11857.57 9864.89 8267.33 9966.04 9277.09 13677.37 13085.48 13785.18 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet270.39 10272.67 9667.72 11872.95 14778.00 12375.15 11062.69 10563.29 10451.25 13555.64 12768.49 9657.59 13980.91 8980.35 8886.70 10682.02 117
Anonymous2023121171.90 8872.48 9771.21 8380.14 8781.53 8576.92 10062.89 9764.46 9558.94 8843.80 18670.98 7462.22 10880.70 9080.19 9086.18 11985.73 79
UniMVSNet_NR-MVSNet70.59 9972.19 9868.72 10877.72 10580.72 9773.81 13469.65 4661.99 11343.23 17160.54 9857.50 13358.57 13279.56 10881.07 7089.34 4983.97 103
baseline170.10 10672.17 9967.69 11979.74 8976.80 13873.91 13064.38 8362.74 10948.30 14864.94 8164.08 10854.17 16481.46 7478.92 10785.66 13476.22 161
Anonymous20240521172.16 10080.85 7981.85 8376.88 10265.40 7562.89 10846.35 18267.99 9762.05 11181.15 8580.38 8785.97 12984.50 100
UniMVSNet (Re)69.53 11171.90 10166.76 13776.42 11480.93 9372.59 14468.03 5861.75 11641.68 17658.34 11657.23 13553.27 16779.53 10980.62 8488.57 6384.90 95
Effi-MVS+-dtu71.82 8971.86 10271.78 8178.77 9580.47 9978.55 8561.67 12360.68 12455.49 10858.48 11265.48 10468.85 7376.92 13775.55 14987.35 8885.46 85
IB-MVS66.94 1271.21 9571.66 10370.68 8779.18 9382.83 7872.61 14361.77 12059.66 13063.44 7953.26 14759.65 12459.16 13176.78 14082.11 5987.90 7687.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RPSCF67.64 13671.25 10463.43 15761.86 19670.73 17167.26 16450.86 18474.20 6058.91 8967.49 7369.33 8664.10 9971.41 17068.45 18477.61 17577.17 156
EPNet_dtu68.08 12671.00 10564.67 14879.64 9068.62 17975.05 11463.30 9066.36 8045.27 16667.40 7466.84 10143.64 18475.37 14774.98 15381.15 16377.44 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DU-MVS69.63 11070.91 10668.13 11475.99 11679.54 10673.81 13469.20 5161.20 12143.23 17158.52 11053.50 15858.57 13279.22 11280.45 8687.97 7483.97 103
TranMVSNet+NR-MVSNet69.25 11570.81 10767.43 12377.23 11079.46 10873.48 13969.66 4560.43 12739.56 17958.82 10953.48 16055.74 15679.59 10681.21 6888.89 5882.70 113
NR-MVSNet68.79 12070.56 10866.71 13977.48 10879.54 10673.52 13869.20 5161.20 12139.76 17858.52 11050.11 18451.37 17180.26 9980.71 8088.97 5683.59 109
MS-PatchMatch70.17 10570.49 10969.79 9880.98 7877.97 12877.51 9458.95 15062.33 11155.22 11153.14 15065.90 10362.03 11279.08 11477.11 13484.08 15177.91 151
FMVSNet168.84 11970.47 11066.94 13471.35 16477.68 13174.71 11762.35 11456.93 14549.94 14150.01 17064.59 10657.07 14481.33 7880.72 7686.25 11782.00 120
baseline269.69 10970.27 11169.01 10675.72 12077.13 13673.82 13358.94 15161.35 11957.09 10161.68 9257.17 13661.99 11378.10 12576.58 14186.48 11579.85 139
ACMH+66.54 1371.36 9470.09 11272.85 7882.59 6681.13 9278.56 8468.04 5761.55 11752.52 12951.50 16454.14 15168.56 7578.85 11779.50 10086.82 10283.94 105
ACMH65.37 1470.71 9870.00 11371.54 8282.51 6782.47 8077.78 9268.13 5656.19 15246.06 16254.30 13551.20 17868.68 7480.66 9180.72 7686.07 12284.45 102
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSDG71.52 9169.87 11473.44 7682.21 7179.35 10979.52 7564.59 8166.15 8161.87 8153.21 14956.09 14165.85 9378.94 11678.50 11286.60 11176.85 159
v870.23 10369.86 11570.67 8874.69 13079.82 10578.79 8359.18 14658.80 13458.20 9655.00 13257.33 13466.31 9177.51 13076.71 13986.82 10283.88 106
CDS-MVSNet67.65 13569.83 11665.09 14475.39 12376.55 14174.42 12263.75 8753.55 17049.37 14459.41 10662.45 11344.44 18279.71 10579.82 9383.17 15777.36 155
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v1070.22 10469.76 11770.74 8574.79 12980.30 10379.22 7959.81 14157.71 14156.58 10554.22 14055.31 14466.95 8278.28 12377.47 12787.12 9685.07 92
V4268.76 12169.63 11867.74 11764.93 19078.01 12278.30 8956.48 16258.65 13556.30 10654.26 13857.03 13764.85 9577.47 13177.01 13585.60 13584.96 94
CostFormer68.92 11869.58 11968.15 11375.98 11876.17 14578.22 9051.86 17965.80 8461.56 8363.57 8862.83 11261.85 11670.40 18368.67 18079.42 16979.62 142
Fast-Effi-MVS+-dtu68.34 12369.47 12067.01 13375.15 12477.97 12877.12 9955.40 16557.87 13646.68 15856.17 12660.39 11862.36 10776.32 14476.25 14585.35 14081.34 127
v2v48270.05 10769.46 12170.74 8574.62 13180.32 10279.00 8160.62 13057.41 14356.89 10255.43 13155.14 14666.39 9077.25 13377.14 13386.90 9983.57 110
v114469.93 10869.36 12270.61 8974.89 12880.93 9379.11 8060.64 12955.97 15455.31 11053.85 14254.14 15166.54 8878.10 12577.44 12887.14 9385.09 91
CHOSEN 1792x268869.20 11669.26 12369.13 10476.86 11278.93 11277.27 9860.12 13861.86 11554.42 11242.54 19061.61 11566.91 8478.55 12178.14 11779.23 17183.23 112
IterMVS-SCA-FT66.89 14469.22 12464.17 15071.30 16575.64 14871.33 14853.17 17157.63 14249.08 14560.72 9660.05 12263.09 10374.99 15073.92 15777.07 17981.57 126
GA-MVS68.14 12469.17 12566.93 13573.77 14178.50 12074.45 11958.28 15555.11 15948.44 14760.08 10053.99 15461.50 12078.43 12277.57 12585.13 14280.54 133
PMMVS65.06 15169.17 12560.26 16955.25 20863.43 19566.71 17043.01 20462.41 11050.64 13769.44 6167.04 10063.29 10274.36 15473.54 16082.68 15873.99 177
HyFIR lowres test69.47 11368.94 12770.09 9576.77 11382.93 7776.63 10460.17 13659.00 13354.03 11640.54 19565.23 10567.89 7876.54 14378.30 11585.03 14480.07 138
v119269.50 11268.83 12870.29 9374.49 13280.92 9578.55 8560.54 13155.04 16054.21 11352.79 15652.33 17166.92 8377.88 12777.35 13187.04 9785.51 83
thisisatest051567.40 13968.78 12965.80 14270.02 17275.24 15369.36 15657.37 15954.94 16353.67 12055.53 13054.85 14758.00 13778.19 12478.91 10886.39 11683.78 107
Baseline_NR-MVSNet67.53 13868.77 13066.09 14175.99 11674.75 15772.43 14568.41 5461.33 12038.33 18351.31 16554.13 15356.03 15279.22 11278.19 11685.37 13982.45 115
tfpn200view968.11 12568.72 13167.40 12477.83 10378.93 11274.28 12462.81 9856.64 14746.82 15652.65 15753.47 16156.59 14880.41 9278.43 11386.11 12080.52 134
v14419269.34 11468.68 13270.12 9474.06 13680.54 9878.08 9160.54 13154.99 16254.13 11552.92 15452.80 16966.73 8677.13 13576.72 13887.15 9085.63 81
thres40067.95 12868.62 13367.17 12977.90 10078.59 11974.27 12562.72 10156.34 15145.77 16453.00 15253.35 16456.46 14980.21 10178.43 11385.91 13180.43 135
thres20067.98 12768.55 13467.30 12777.89 10278.86 11474.18 12862.75 9956.35 15046.48 15952.98 15353.54 15756.46 14980.41 9277.97 11986.05 12479.78 141
thres600view767.68 13368.43 13566.80 13677.90 10078.86 11473.84 13262.75 9956.07 15344.70 16952.85 15552.81 16855.58 15780.41 9277.77 12186.05 12480.28 136
v192192069.03 11768.32 13669.86 9774.03 13780.37 10077.55 9360.25 13554.62 16453.59 12152.36 16051.50 17766.75 8577.17 13476.69 14086.96 9885.56 82
IterMVS66.36 14568.30 13764.10 15169.48 17774.61 15873.41 14050.79 18557.30 14448.28 14960.64 9759.92 12360.85 12774.14 15572.66 16481.80 16078.82 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres100view90067.60 13768.02 13867.12 13177.83 10377.75 13073.90 13162.52 10956.64 14746.82 15652.65 15753.47 16155.92 15378.77 11877.62 12485.72 13279.23 144
anonymousdsp65.28 15067.98 13962.13 16058.73 20273.98 16067.10 16650.69 18648.41 19047.66 15454.27 13652.75 17061.45 12276.71 14180.20 8987.13 9489.53 52
USDC67.36 14067.90 14066.74 13871.72 15775.23 15471.58 14760.28 13467.45 7650.54 13960.93 9445.20 19862.08 11076.56 14274.50 15584.25 15075.38 169
v124068.64 12267.89 14169.51 10273.89 13980.26 10476.73 10359.97 14053.43 17253.08 12451.82 16350.84 18066.62 8776.79 13976.77 13786.78 10485.34 87
v14867.85 13067.53 14268.23 11273.25 14577.57 13474.26 12657.36 16055.70 15557.45 10053.53 14355.42 14361.96 11475.23 14873.92 15785.08 14381.32 128
GG-mvs-BLEND46.86 20367.51 14322.75 2090.05 22076.21 14464.69 1790.04 21761.90 1140.09 22155.57 12871.32 720.08 21670.54 17967.19 18871.58 19869.86 185
pm-mvs165.62 14767.42 14463.53 15673.66 14376.39 14269.66 15360.87 12849.73 18743.97 17051.24 16657.00 13848.16 17679.89 10377.84 12084.85 14879.82 140
WR-MVS63.03 16067.40 14557.92 17975.14 12577.60 13360.56 19266.10 6954.11 16923.88 20153.94 14153.58 15634.50 19773.93 15677.71 12287.35 8880.94 130
pmmvs467.89 12967.39 14668.48 11171.60 16173.57 16174.45 11960.98 12664.65 9157.97 9754.95 13351.73 17661.88 11573.78 15775.11 15183.99 15377.91 151
UniMVSNet_ETH3D67.18 14267.03 14767.36 12574.44 13378.12 12174.07 12966.38 6652.22 17746.87 15548.64 17651.84 17556.96 14577.29 13278.53 11185.42 13882.59 114
v7n67.05 14366.94 14867.17 12972.35 15278.97 11173.26 14258.88 15251.16 18350.90 13648.21 17850.11 18460.96 12377.70 12877.38 12986.68 10985.05 93
EG-PatchMatch MVS67.24 14166.94 14867.60 12178.73 9681.35 8873.28 14159.49 14346.89 19451.42 13443.65 18753.49 15955.50 15981.38 7780.66 8287.15 9081.17 129
COLMAP_ROBcopyleft62.73 1567.66 13466.76 15068.70 10980.49 8377.98 12675.29 10862.95 9663.62 10249.96 14047.32 18150.72 18158.57 13276.87 13875.50 15084.94 14675.33 170
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL67.78 13266.65 15169.10 10573.01 14672.69 16468.49 15961.85 11962.93 10760.20 8756.83 12450.42 18269.52 6975.62 14674.46 15681.51 16173.62 178
SCA65.40 14966.58 15264.02 15270.65 16873.37 16267.35 16353.46 16963.66 10154.14 11460.84 9560.20 12161.50 12069.96 18468.14 18577.01 18069.91 184
CVMVSNet62.55 16465.89 15358.64 17766.95 18369.15 17666.49 17356.29 16452.46 17632.70 19159.27 10758.21 13250.09 17371.77 16971.39 16979.31 17078.99 146
WR-MVS_H61.83 17565.87 15457.12 18271.72 15776.87 13761.45 19066.19 6751.97 18022.92 20553.13 15152.30 17333.80 19871.03 17575.00 15286.65 11080.78 131
PEN-MVS62.96 16165.77 15559.70 17273.98 13875.45 15063.39 18567.61 6152.49 17525.49 20053.39 14449.12 18740.85 19071.94 16877.26 13286.86 10180.72 132
TransMVSNet (Re)64.74 15365.66 15663.66 15577.40 10975.33 15269.86 15262.67 10747.63 19241.21 17750.01 17052.33 17145.31 18179.57 10777.69 12385.49 13677.07 158
CR-MVSNet64.83 15265.54 15764.01 15370.64 16969.41 17465.97 17452.74 17457.81 13852.65 12654.27 13656.31 14060.92 12472.20 16673.09 16281.12 16475.69 166
CP-MVSNet62.68 16365.49 15859.40 17571.84 15575.34 15162.87 18767.04 6452.64 17427.19 19853.38 14548.15 18941.40 18871.26 17175.68 14786.07 12282.00 120
MDTV_nov1_ep1364.37 15565.24 15963.37 15868.94 17970.81 17072.40 14650.29 18860.10 12953.91 11860.07 10159.15 12657.21 14369.43 18767.30 18777.47 17669.78 186
FC-MVSNet-test56.90 18965.20 16047.21 20066.98 18263.20 19749.11 20858.60 15459.38 13211.50 21565.60 7856.68 13924.66 20771.17 17371.36 17072.38 19769.02 188
PS-CasMVS62.38 16965.06 16159.25 17671.73 15675.21 15562.77 18866.99 6551.94 18126.96 19952.00 16247.52 19241.06 18971.16 17475.60 14885.97 12981.97 122
gg-mvs-nofinetune62.55 16465.05 16259.62 17378.72 9777.61 13270.83 15153.63 16639.71 20622.04 20736.36 19964.32 10747.53 17781.16 8479.03 10685.00 14577.17 156
TDRefinement66.09 14665.03 16367.31 12669.73 17476.75 13975.33 10664.55 8260.28 12849.72 14345.63 18442.83 20160.46 12875.75 14575.95 14684.08 15178.04 150
DTE-MVSNet61.85 17364.96 16458.22 17874.32 13474.39 15961.01 19167.85 6051.76 18221.91 20853.28 14648.17 18837.74 19472.22 16576.44 14286.52 11478.49 148
PatchmatchNetpermissive64.21 15764.65 16563.69 15471.29 16668.66 17869.63 15451.70 18163.04 10553.77 11959.83 10458.34 13160.23 12968.54 19066.06 19275.56 18668.08 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-mter60.84 17964.62 16656.42 18455.99 20664.18 19065.39 17634.23 20954.39 16746.21 16157.40 12259.49 12555.86 15471.02 17669.65 17480.87 16676.20 162
test-LLR64.42 15464.36 16764.49 14975.02 12663.93 19266.61 17161.96 11754.41 16547.77 15157.46 12060.25 11955.20 16070.80 17769.33 17580.40 16774.38 174
TESTMET0.1,161.10 17864.36 16757.29 18157.53 20363.93 19266.61 17136.22 20854.41 16547.77 15157.46 12060.25 11955.20 16070.80 17769.33 17580.40 16774.38 174
pmmvs562.37 17064.04 16960.42 16765.03 18871.67 16867.17 16552.70 17650.30 18444.80 16754.23 13951.19 17949.37 17472.88 16073.48 16183.45 15474.55 173
PatchT61.97 17264.04 16959.55 17460.49 19867.40 18256.54 19948.65 19456.69 14652.65 12651.10 16752.14 17460.92 12472.20 16673.09 16278.03 17475.69 166
tpm cat165.41 14863.81 17167.28 12875.61 12272.88 16375.32 10752.85 17362.97 10663.66 7853.24 14853.29 16661.83 11765.54 19464.14 19674.43 19174.60 172
tfpnnormal64.27 15663.64 17265.02 14575.84 11975.61 14971.24 15062.52 10947.79 19142.97 17342.65 18944.49 19952.66 16978.77 11876.86 13684.88 14779.29 143
tpm62.41 16763.15 17361.55 16372.24 15363.79 19471.31 14946.12 20257.82 13755.33 10959.90 10354.74 14853.63 16567.24 19364.29 19570.65 20174.25 176
dps64.00 15862.99 17465.18 14373.29 14472.07 16668.98 15853.07 17257.74 14058.41 9455.55 12947.74 19160.89 12669.53 18667.14 18976.44 18371.19 182
pmmvs662.41 16762.88 17561.87 16171.38 16375.18 15667.76 16259.45 14541.64 20242.52 17537.33 19752.91 16746.87 17877.67 12976.26 14483.23 15679.18 145
RPMNet61.71 17762.88 17560.34 16869.51 17669.41 17463.48 18449.23 19057.81 13845.64 16550.51 16850.12 18353.13 16868.17 19268.49 18381.07 16575.62 168
TAMVS59.58 18362.81 17755.81 18666.03 18665.64 18963.86 18348.74 19349.95 18637.07 18754.77 13458.54 12944.44 18272.29 16371.79 16674.70 19066.66 192
LTVRE_ROB59.44 1661.82 17662.64 17860.87 16672.83 15177.19 13564.37 18158.97 14933.56 21128.00 19752.59 15942.21 20263.93 10074.52 15276.28 14377.15 17882.13 116
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary47.78 1762.49 16662.52 17962.46 15970.01 17370.66 17262.97 18651.84 18051.98 17956.71 10442.87 18853.62 15557.80 13872.23 16470.37 17275.45 18875.91 163
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SixPastTwentyTwo61.84 17462.45 18061.12 16569.20 17872.20 16562.03 18957.40 15846.54 19538.03 18557.14 12341.72 20358.12 13669.67 18571.58 16881.94 15978.30 149
pmmvs-eth3d63.52 15962.44 18164.77 14766.82 18570.12 17369.41 15559.48 14454.34 16852.71 12546.24 18344.35 20056.93 14672.37 16173.77 15983.30 15575.91 163
tpmrst62.00 17162.35 18261.58 16271.62 16064.14 19169.07 15748.22 19862.21 11253.93 11758.26 11755.30 14555.81 15563.22 19962.62 19870.85 20070.70 183
EPMVS60.00 18261.97 18357.71 18068.46 18063.17 19864.54 18048.23 19763.30 10344.72 16860.19 9956.05 14250.85 17265.27 19762.02 19969.44 20363.81 197
CHOSEN 280x42058.70 18561.88 18454.98 18955.45 20750.55 21064.92 17840.36 20555.21 15738.13 18448.31 17763.76 10963.03 10573.73 15868.58 18268.00 20673.04 179
test0.0.03 158.80 18461.58 18555.56 18775.02 12668.45 18059.58 19661.96 11752.74 17329.57 19449.75 17354.56 14931.46 20071.19 17269.77 17375.75 18464.57 195
MIMVSNet58.52 18661.34 18655.22 18860.76 19767.01 18466.81 16849.02 19256.43 14938.90 18140.59 19454.54 15040.57 19173.16 15971.65 16775.30 18966.00 193
TinyColmap62.84 16261.03 18764.96 14669.61 17571.69 16768.48 16059.76 14255.41 15647.69 15347.33 18034.20 21062.76 10674.52 15272.59 16581.44 16271.47 181
PM-MVS60.48 18060.94 18859.94 17058.85 20166.83 18564.27 18251.39 18255.03 16148.03 15050.00 17240.79 20558.26 13569.20 18867.13 19078.84 17277.60 153
MDTV_nov1_ep13_2view60.16 18160.51 18959.75 17165.39 18769.05 17768.00 16148.29 19651.99 17845.95 16348.01 17949.64 18653.39 16668.83 18966.52 19177.47 17669.55 187
FMVSNet557.24 18760.02 19053.99 19256.45 20562.74 19965.27 17747.03 19955.14 15839.55 18040.88 19253.42 16341.83 18572.35 16271.10 17173.79 19364.50 196
EU-MVSNet54.63 19358.69 19149.90 19856.99 20462.70 20056.41 20050.64 18745.95 19723.14 20450.42 16946.51 19436.63 19565.51 19564.85 19475.57 18574.91 171
ADS-MVSNet55.94 19158.01 19253.54 19462.48 19558.48 20459.12 19746.20 20159.65 13142.88 17452.34 16153.31 16546.31 17962.00 20160.02 20264.23 20860.24 204
testgi54.39 19557.86 19350.35 19771.59 16267.24 18354.95 20153.25 17043.36 19923.78 20244.64 18547.87 19024.96 20570.45 18068.66 18173.60 19462.78 200
Anonymous2023120656.36 19057.80 19454.67 19070.08 17166.39 18660.46 19357.54 15749.50 18929.30 19533.86 20246.64 19335.18 19670.44 18168.88 17975.47 18768.88 189
gm-plane-assit57.00 18857.62 19556.28 18576.10 11562.43 20147.62 20946.57 20033.84 21023.24 20337.52 19640.19 20659.61 13079.81 10477.55 12684.55 14972.03 180
pmnet_mix0255.30 19257.01 19653.30 19564.14 19159.09 20358.39 19850.24 18953.47 17138.68 18249.75 17345.86 19640.14 19265.38 19660.22 20168.19 20565.33 194
test20.0353.93 19656.28 19751.19 19672.19 15465.83 18753.20 20361.08 12442.74 20022.08 20637.07 19845.76 19724.29 20870.44 18169.04 17774.31 19263.05 199
ambc53.42 19864.99 18963.36 19649.96 20647.07 19337.12 18628.97 20616.36 21841.82 18675.10 14967.34 18671.55 19975.72 165
MIMVSNet149.27 19953.25 19944.62 20244.61 21061.52 20253.61 20252.18 17741.62 20318.68 21128.14 20841.58 20425.50 20368.46 19169.04 17773.15 19562.37 201
MDA-MVSNet-bldmvs53.37 19753.01 20053.79 19343.67 21267.95 18159.69 19557.92 15643.69 19832.41 19241.47 19127.89 21552.38 17056.97 20765.99 19376.68 18167.13 191
MVS-HIRNet54.41 19452.10 20157.11 18358.99 20056.10 20749.68 20749.10 19146.18 19652.15 13033.18 20346.11 19556.10 15163.19 20059.70 20376.64 18260.25 203
N_pmnet47.35 20150.13 20244.11 20359.98 19951.64 20951.86 20444.80 20349.58 18820.76 20940.65 19340.05 20729.64 20159.84 20355.15 20557.63 20954.00 207
FPMVS51.87 19850.00 20354.07 19166.83 18457.25 20560.25 19450.91 18350.25 18534.36 18936.04 20032.02 21241.49 18758.98 20556.07 20470.56 20259.36 205
new-patchmatchnet46.97 20249.47 20444.05 20462.82 19356.55 20645.35 21052.01 17842.47 20117.04 21335.73 20135.21 20921.84 21161.27 20254.83 20665.26 20760.26 202
pmmvs347.65 20049.08 20545.99 20144.61 21054.79 20850.04 20531.95 21233.91 20929.90 19330.37 20433.53 21146.31 17963.50 19863.67 19773.14 19663.77 198
PMVScopyleft39.38 1846.06 20443.30 20649.28 19962.93 19238.75 21241.88 21153.50 16833.33 21235.46 18828.90 20731.01 21333.04 19958.61 20654.63 20768.86 20457.88 206
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 20542.64 20733.44 20637.54 21545.00 21136.60 21232.72 21140.27 20412.72 21429.89 20528.90 21424.78 20653.17 20852.90 20856.31 21048.34 208
Gipumacopyleft36.38 20635.80 20837.07 20545.76 20933.90 21329.81 21348.47 19539.91 20518.02 2128.00 2168.14 22025.14 20459.29 20461.02 20055.19 21140.31 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS225.60 20729.75 20920.76 21028.00 21630.93 21423.10 21529.18 21323.14 2141.46 22018.23 21216.54 2175.08 21440.22 20941.40 21037.76 21237.79 211
test_method22.26 20825.94 21017.95 2113.24 2197.17 21923.83 2147.27 21537.35 20820.44 21021.87 21139.16 20818.67 21234.56 21020.84 21434.28 21320.64 215
MVEpermissive19.12 1920.47 21123.27 21117.20 21212.66 21825.41 21510.52 21934.14 21014.79 2176.53 2198.79 2154.68 22116.64 21329.49 21241.63 20922.73 21738.11 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN21.77 20918.24 21225.89 20740.22 21319.58 21612.46 21839.87 20618.68 2166.71 2179.57 2134.31 22322.36 21019.89 21427.28 21233.73 21428.34 213
EMVS20.98 21017.15 21325.44 20839.51 21419.37 21712.66 21739.59 20719.10 2156.62 2189.27 2144.40 22222.43 20917.99 21524.40 21331.81 21525.53 214
testmvs0.09 2120.15 2140.02 2140.01 2210.02 2210.05 2220.01 2180.11 2180.01 2220.26 2180.01 2240.06 2180.10 2160.10 2150.01 2190.43 217
test1230.09 2120.14 2150.02 2140.00 2220.02 2210.02 2230.01 2180.09 2190.00 2230.30 2170.00 2250.08 2160.03 2170.09 2160.01 2190.45 216
uanet_test0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2220.00 2230.00 2240.00 2200.00 2200.00 2230.00 2190.00 2250.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def46.24 160
9.1486.88 15
SR-MVS88.99 3473.57 2587.54 13
our_test_367.93 18170.99 16966.89 167
MTAPA83.48 186.45 18
MTMP82.66 584.91 26
Patchmatch-RL test2.85 221
tmp_tt14.50 21314.68 2177.17 21910.46 2202.21 21637.73 20728.71 19625.26 20916.98 2164.37 21531.49 21129.77 21126.56 216
XVS86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
X-MVStestdata86.63 4688.68 2885.00 4771.81 4681.92 3790.47 22
abl_679.05 4387.27 4288.85 2683.62 5668.25 5581.68 4172.94 4073.79 4584.45 2872.55 5089.66 4590.64 43
mPP-MVS89.90 2581.29 42
NP-MVS80.10 46
Patchmtry65.80 18865.97 17452.74 17452.65 126
DeepMVS_CXcopyleft18.74 21818.55 2168.02 21426.96 2137.33 21623.81 21013.05 21925.99 20225.17 21322.45 21836.25 212