This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2999.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2798.04 6999.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10696.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2598.85 1998.66 20
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25594.38 3198.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3398.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11784.62 8096.15 5597.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6897.17 113
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15697.67 398.10 788.41 2099.56 1294.66 2899.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6096.62 8888.14 9996.10 2096.96 5589.09 1898.94 7894.48 3098.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MM95.10 1194.91 1395.68 596.09 10288.34 996.68 3394.37 24095.08 194.68 3697.72 2482.94 8599.64 197.85 198.76 2899.06 7
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4896.83 6188.12 2499.55 1693.41 4498.94 1698.28 50
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11295.71 2797.70 2588.28 2399.35 3393.89 3798.78 2598.48 30
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17684.96 7496.15 5597.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7697.96 75
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11996.52 8880.00 22294.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3598.71 3298.50 27
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4996.58 7687.74 2799.44 2992.83 5298.40 5598.62 21
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3698.95 1598.60 23
9.1494.47 2097.79 4996.08 6197.44 1586.13 15495.10 3397.40 3388.34 2299.22 4493.25 4698.70 34
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 14085.43 6895.68 8696.43 9886.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 9997.16 117
CS-MVS94.12 3794.44 2293.17 7896.55 8583.08 13197.63 396.95 5491.71 1193.50 6096.21 8685.61 4998.24 14293.64 3998.17 6198.19 60
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13984.98 7395.61 9396.28 11286.31 14696.75 1697.86 2187.40 3398.74 9597.07 897.02 9297.07 119
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5497.21 4286.10 4599.49 2692.35 6498.77 2798.30 47
MVS_030494.60 1894.38 2595.23 1195.41 13687.49 1696.53 3892.75 28393.82 293.07 6997.84 2283.66 7699.59 897.61 298.76 2898.61 22
patch_mono-293.74 4794.32 2692.01 13597.54 5778.37 25993.40 21997.19 3588.02 10294.99 3597.21 4288.35 2198.44 12794.07 3498.09 6699.23 1
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7397.16 4785.02 6099.49 2691.99 7998.56 4998.47 33
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25884.80 7796.18 5296.82 6889.29 5995.68 2898.11 585.10 5798.99 7097.38 497.75 8097.86 83
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 7195.77 10885.02 6098.33 13793.03 4998.62 4598.13 64
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6597.04 5286.17 4499.62 292.40 6198.81 2298.52 26
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5997.26 4085.04 5999.54 2092.35 6498.78 2598.50 27
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5697.27 3885.22 5599.54 2092.21 6998.74 3198.56 25
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17096.97 5091.07 1393.14 6697.56 2784.30 6999.56 1293.43 4298.75 3098.47 33
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 8197.23 4185.20 5699.32 3892.15 7298.83 2198.25 57
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12497.12 4187.13 12392.51 8796.30 8389.24 1799.34 3493.46 4198.62 4598.73 17
dcpmvs_293.49 5294.19 3691.38 17097.69 5476.78 29194.25 17396.29 10988.33 9094.46 3896.88 5888.07 2598.64 10293.62 4098.09 6698.73 17
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4096.90 5988.20 9794.33 4097.40 3384.75 6699.03 5893.35 4597.99 7098.48 30
MSLP-MVS++93.72 4894.08 3892.65 11197.31 6583.43 11695.79 8197.33 2590.03 3693.58 5696.96 5584.87 6497.76 18092.19 7198.66 4196.76 138
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9797.19 4485.43 5399.56 1292.06 7898.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16295.05 3497.18 4587.31 3599.07 5391.90 8598.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9895.62 12883.17 12496.14 5796.12 12888.13 10095.82 2698.04 1683.43 7798.48 11696.97 996.23 11196.92 131
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13597.17 3986.26 14892.83 7597.87 2085.57 5199.56 1294.37 3298.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6296.83 6185.48 5299.59 891.43 9398.40 5598.30 47
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8496.80 6584.85 6599.17 4792.43 5998.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3184.24 7099.01 6392.73 5397.80 7797.88 81
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7696.97 5485.37 5499.24 4390.87 10398.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10697.17 4683.96 7399.55 1691.44 9298.64 4498.43 38
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4396.87 6286.96 12793.92 5097.47 2983.88 7498.96 7792.71 5697.87 7498.26 56
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 9095.02 15283.67 10896.19 5096.10 13087.27 12195.98 2498.05 1383.07 8498.45 12596.68 1195.51 12096.88 134
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10497.78 187.45 11993.26 6297.33 3684.62 6799.51 2490.75 10598.57 4898.32 46
EC-MVSNet93.44 5593.71 5192.63 11295.21 14582.43 15497.27 996.71 8290.57 2692.88 7295.80 10683.16 8198.16 14893.68 3898.14 6397.31 105
RE-MVS-def93.68 5297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3182.94 8592.73 5397.80 7797.88 81
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9993.75 22083.13 12696.02 6995.74 16187.68 11495.89 2598.17 282.78 8898.46 12196.71 1096.17 11296.98 127
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17593.56 5896.28 8485.60 5099.31 3992.45 5898.79 2398.12 66
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22484.26 9595.83 7996.14 12589.00 7292.43 8997.50 2883.37 8098.72 9696.61 1297.44 8496.32 153
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16393.93 25689.77 4794.21 4195.59 11587.35 3498.61 10792.72 5596.15 11397.83 86
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23197.24 3288.76 7791.60 11195.85 10386.07 4698.66 10091.91 8398.16 6298.03 72
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9292.49 25683.62 11196.02 6995.72 16486.78 13496.04 2298.19 182.30 9798.43 12996.38 1395.42 12696.86 135
DELS-MVS93.43 5893.25 5993.97 5695.42 13585.04 7293.06 23897.13 4090.74 2191.84 10495.09 13686.32 4299.21 4591.22 9498.45 5397.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 15992.47 8897.13 4882.38 9399.07 5390.51 10898.40 5597.92 80
CANet93.54 5193.20 6194.55 4395.65 12585.73 6594.94 12796.69 8491.89 890.69 12295.88 10281.99 10799.54 2093.14 4897.95 7298.39 39
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25492.77 7896.20 8787.63 2999.12 5192.14 7398.69 3697.94 77
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 4997.37 2184.15 19690.05 13395.66 11287.77 2699.15 5089.91 11298.27 5998.07 68
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35184.42 9396.06 6596.29 10989.06 6694.68 3698.13 379.22 13598.98 7497.22 597.24 8797.74 90
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10485.83 6194.89 13096.99 4889.02 7189.56 13797.37 3582.51 9299.38 3192.20 7098.30 5897.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf05_1192.98 7092.96 6693.03 8695.91 11382.49 15296.06 6596.37 10486.94 12994.09 4495.16 13281.94 10998.67 9991.65 8998.56 4997.95 76
EI-MVSNet-Vis-set93.01 6992.92 6793.29 7395.01 15383.51 11594.48 15595.77 15890.87 1592.52 8696.67 6884.50 6899.00 6891.99 7994.44 14997.36 104
iter_conf0592.85 7292.89 6892.73 10696.58 8482.47 15394.20 17796.16 12384.42 19390.65 12395.56 11685.01 6398.69 9894.96 2698.47 5297.03 123
ACMMPcopyleft93.24 6392.88 6994.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13297.03 5381.44 11299.51 2490.85 10495.74 11698.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
casdiffmvs_mvgpermissive92.96 7192.83 7093.35 7294.59 17783.40 11895.00 12496.34 10690.30 3092.05 9596.05 9583.43 7798.15 14992.07 7595.67 11798.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sasdasda93.27 6192.75 7194.85 2595.70 12287.66 1296.33 4196.41 10090.00 3794.09 4494.60 15882.33 9598.62 10592.40 6192.86 17898.27 52
canonicalmvs93.27 6192.75 7194.85 2595.70 12287.66 1296.33 4196.41 10090.00 3794.09 4494.60 15882.33 9598.62 10592.40 6192.86 17898.27 52
MVSMamba_pp92.75 7592.66 7393.02 8895.09 15082.85 13994.72 14396.46 9686.35 14593.33 6194.96 13981.98 10898.55 11392.35 6498.70 3497.67 92
ETV-MVS92.74 7692.66 7392.97 9295.20 14684.04 10095.07 12096.51 9490.73 2292.96 7091.19 27684.06 7198.34 13591.72 8796.54 10596.54 149
MGCFI-Net93.03 6892.63 7594.23 5395.62 12885.92 5796.08 6196.33 10789.86 4193.89 5194.66 15582.11 10298.50 11492.33 6792.82 18198.27 52
EI-MVSNet-UG-set92.74 7692.62 7693.12 8094.86 16483.20 12394.40 16395.74 16190.71 2392.05 9596.60 7584.00 7298.99 7091.55 9093.63 15997.17 113
UA-Net92.83 7392.54 7793.68 6896.10 10184.71 7995.66 8996.39 10291.92 793.22 6496.49 7983.16 8198.87 8284.47 17795.47 12397.45 103
alignmvs93.08 6792.50 7894.81 3295.62 12887.61 1495.99 7196.07 13389.77 4794.12 4394.87 14380.56 11898.66 10092.42 6093.10 17498.15 63
casdiffmvspermissive92.51 7992.43 7992.74 10594.41 19081.98 16594.54 15396.23 11889.57 5191.96 9996.17 9182.58 9098.01 16790.95 10195.45 12598.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDPH-MVS92.83 7392.30 8094.44 4597.79 4986.11 4994.06 18996.66 8580.09 28392.77 7896.63 7386.62 3899.04 5787.40 13998.66 4198.17 62
baseline92.39 8292.29 8192.69 11094.46 18681.77 17094.14 18096.27 11389.22 6191.88 10296.00 9682.35 9497.99 16991.05 9695.27 13198.30 47
MVS_111021_LR92.47 8092.29 8192.98 9195.99 11084.43 9193.08 23696.09 13188.20 9791.12 11895.72 11181.33 11497.76 18091.74 8697.37 8696.75 139
EIA-MVS91.95 8591.94 8391.98 13995.16 14780.01 22195.36 9996.73 7988.44 8789.34 14192.16 24283.82 7598.45 12589.35 11697.06 9097.48 101
VNet92.24 8391.91 8493.24 7596.59 8283.43 11694.84 13496.44 9789.19 6394.08 4795.90 10177.85 15498.17 14788.90 12193.38 16898.13 64
CPTT-MVS91.99 8491.80 8592.55 11698.24 3181.98 16596.76 3096.49 9581.89 25390.24 12896.44 8178.59 14398.61 10789.68 11397.85 7597.06 120
mamv490.92 10391.78 8688.33 28395.67 12470.75 36092.92 24396.02 13981.90 25188.11 15795.34 12285.88 4896.97 25095.22 2495.01 13497.26 108
DPM-MVS92.58 7891.74 8795.08 1596.19 9689.31 592.66 25096.56 9383.44 21491.68 11095.04 13786.60 4098.99 7085.60 16397.92 7396.93 130
MG-MVS91.77 8891.70 8892.00 13897.08 7180.03 22093.60 21395.18 20187.85 11090.89 12096.47 8082.06 10598.36 13285.07 16797.04 9197.62 94
EPP-MVSNet91.70 9191.56 8992.13 13495.88 11480.50 20597.33 795.25 19786.15 15189.76 13695.60 11483.42 7998.32 13987.37 14193.25 17197.56 99
3Dnovator+87.14 492.42 8191.37 9095.55 795.63 12788.73 697.07 1896.77 7490.84 1684.02 26896.62 7475.95 17099.34 3487.77 13497.68 8198.59 24
MVSFormer91.68 9291.30 9192.80 10193.86 21483.88 10395.96 7395.90 14984.66 18991.76 10794.91 14177.92 15197.30 22489.64 11497.11 8897.24 109
DP-MVS Recon91.95 8591.28 9293.96 5798.33 2785.92 5794.66 14796.66 8582.69 23490.03 13495.82 10582.30 9799.03 5884.57 17596.48 10896.91 132
diffmvspermissive91.37 9691.23 9391.77 15693.09 23980.27 20992.36 25995.52 18087.03 12691.40 11594.93 14080.08 12297.44 20992.13 7494.56 14497.61 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive91.75 8991.23 9393.29 7395.32 13883.78 10596.14 5795.98 14089.89 3990.45 12596.58 7675.09 18298.31 14084.75 17396.90 9597.78 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+91.59 9391.11 9593.01 8994.35 19583.39 11994.60 14995.10 20587.10 12490.57 12493.10 21481.43 11398.07 16389.29 11794.48 14797.59 97
MVS_Test91.31 9791.11 9591.93 14394.37 19180.14 21393.46 21895.80 15686.46 14291.35 11693.77 19382.21 10098.09 16087.57 13794.95 13597.55 100
IS-MVSNet91.43 9491.09 9792.46 12095.87 11681.38 18196.95 1993.69 26689.72 4989.50 13995.98 9878.57 14497.77 17983.02 19596.50 10798.22 59
EPNet91.79 8791.02 9894.10 5490.10 33985.25 7196.03 6892.05 30292.83 387.39 17795.78 10779.39 13399.01 6388.13 13097.48 8398.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-MVSNAJ91.18 10090.92 9991.96 14195.26 14382.60 15192.09 27195.70 16586.27 14791.84 10492.46 23279.70 12898.99 7089.08 11995.86 11594.29 243
PVSNet_Blended_VisFu91.38 9590.91 10092.80 10196.39 9183.17 12494.87 13296.66 8583.29 21989.27 14294.46 16380.29 12099.17 4787.57 13795.37 12796.05 170
xiu_mvs_v2_base91.13 10190.89 10191.86 14994.97 15682.42 15592.24 26595.64 17286.11 15591.74 10993.14 21279.67 13198.89 8189.06 12095.46 12494.28 244
3Dnovator86.66 591.73 9090.82 10294.44 4594.59 17786.37 4197.18 1297.02 4789.20 6284.31 26496.66 6973.74 20699.17 4786.74 14997.96 7197.79 88
PAPM_NR91.22 9990.78 10392.52 11897.60 5681.46 17894.37 16996.24 11786.39 14487.41 17494.80 14982.06 10598.48 11682.80 20195.37 12797.61 95
OMC-MVS91.23 9890.62 10493.08 8396.27 9484.07 9893.52 21595.93 14486.95 12889.51 13896.13 9378.50 14598.35 13485.84 16192.90 17796.83 137
nrg03091.08 10290.39 10593.17 7893.07 24086.91 2296.41 3996.26 11488.30 9288.37 15694.85 14682.19 10197.64 19191.09 9582.95 29994.96 209
FIs90.51 11690.35 10690.99 19093.99 21080.98 19195.73 8397.54 489.15 6486.72 19194.68 15381.83 11197.24 23285.18 16688.31 24894.76 220
PVSNet_Blended90.73 10890.32 10791.98 13996.12 9881.25 18392.55 25496.83 6682.04 24689.10 14492.56 23081.04 11698.85 8686.72 15195.91 11495.84 177
lupinMVS90.92 10390.21 10893.03 8693.86 21483.88 10392.81 24793.86 26079.84 28691.76 10794.29 16877.92 15198.04 16590.48 10997.11 8897.17 113
HQP_MVS90.60 11590.19 10991.82 15294.70 17282.73 14495.85 7796.22 11990.81 1786.91 18494.86 14474.23 19498.12 15088.15 12889.99 21494.63 222
FC-MVSNet-test90.27 11890.18 11090.53 20293.71 22179.85 22795.77 8297.59 389.31 5886.27 20294.67 15481.93 11097.01 24884.26 17988.09 25194.71 221
h-mvs3390.80 10590.15 11192.75 10496.01 10682.66 14895.43 9895.53 17989.80 4393.08 6795.64 11375.77 17199.00 6892.07 7578.05 35496.60 144
jason90.80 10590.10 11292.90 9693.04 24383.53 11493.08 23694.15 24980.22 28091.41 11494.91 14176.87 15897.93 17490.28 11196.90 9597.24 109
jason: jason.
API-MVS90.66 11190.07 11392.45 12196.36 9284.57 8296.06 6595.22 20082.39 23789.13 14394.27 17180.32 11998.46 12180.16 25196.71 10294.33 242
xiu_mvs_v1_base_debu90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
xiu_mvs_v1_base90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
xiu_mvs_v1_base_debi90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
test_yl90.69 10990.02 11792.71 10795.72 12082.41 15794.11 18295.12 20385.63 16391.49 11294.70 15174.75 18698.42 13086.13 15692.53 18597.31 105
DCV-MVSNet90.69 10990.02 11792.71 10795.72 12082.41 15794.11 18295.12 20385.63 16391.49 11294.70 15174.75 18698.42 13086.13 15692.53 18597.31 105
VDD-MVS90.74 10789.92 11993.20 7796.27 9483.02 13395.73 8393.86 26088.42 8992.53 8596.84 6062.09 32198.64 10290.95 10192.62 18397.93 79
test_vis1_n_192089.39 14989.84 12088.04 29192.97 24772.64 33994.71 14496.03 13886.18 15091.94 10196.56 7861.63 32495.74 31693.42 4395.11 13395.74 182
PVSNet_BlendedMVS89.98 12689.70 12190.82 19596.12 9881.25 18393.92 20096.83 6683.49 21389.10 14492.26 24081.04 11698.85 8686.72 15187.86 25592.35 324
bld_raw_dy_0_6490.17 12189.64 12291.79 15595.65 12582.00 16390.56 30595.93 14475.32 34085.34 23694.26 17282.58 9098.48 11690.30 11096.78 10094.88 214
PS-MVSNAJss89.97 12789.62 12391.02 18791.90 27680.85 19695.26 10995.98 14086.26 14886.21 20494.29 16879.70 12897.65 18888.87 12388.10 24994.57 227
SDMVSNet90.19 12089.61 12491.93 14396.00 10783.09 13092.89 24495.98 14088.73 7886.85 18895.20 13072.09 22697.08 24288.90 12189.85 22095.63 187
OPM-MVS90.12 12289.56 12591.82 15293.14 23783.90 10294.16 17995.74 16188.96 7387.86 16495.43 12072.48 22297.91 17588.10 13290.18 21393.65 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvsmamba89.96 12889.50 12691.33 17392.90 25081.82 16896.68 3392.37 29189.03 6987.00 18094.85 14673.05 21497.65 18891.03 9788.63 23994.51 232
XVG-OURS-SEG-HR89.95 12989.45 12791.47 16794.00 20981.21 18691.87 27596.06 13585.78 15888.55 15295.73 11074.67 19097.27 22888.71 12489.64 22595.91 173
Vis-MVSNet (Re-imp)89.59 13989.44 12890.03 22795.74 11975.85 30595.61 9390.80 33887.66 11687.83 16695.40 12176.79 16096.46 28178.37 26896.73 10197.80 87
GeoE90.05 12489.43 12991.90 14895.16 14780.37 20895.80 8094.65 23383.90 20187.55 17394.75 15078.18 14997.62 19381.28 23193.63 15997.71 91
CANet_DTU90.26 11989.41 13092.81 10093.46 23083.01 13493.48 21694.47 23689.43 5487.76 16994.23 17370.54 24699.03 5884.97 16896.39 10996.38 152
MAR-MVS90.30 11789.37 13193.07 8596.61 8184.48 8795.68 8695.67 16782.36 23987.85 16592.85 21976.63 16498.80 9080.01 25296.68 10395.91 173
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
hse-mvs289.88 13389.34 13291.51 16494.83 16681.12 18893.94 19893.91 25989.80 4393.08 6793.60 19775.77 17197.66 18792.07 7577.07 36195.74 182
mvs_anonymous89.37 15089.32 13389.51 25393.47 22974.22 32291.65 28294.83 22382.91 22985.45 22593.79 19181.23 11596.36 28886.47 15394.09 15297.94 77
UniMVSNet_NR-MVSNet89.92 13189.29 13491.81 15493.39 23283.72 10694.43 16197.12 4189.80 4386.46 19593.32 20383.16 8197.23 23384.92 16981.02 32894.49 236
HQP-MVS89.80 13489.28 13591.34 17294.17 19981.56 17294.39 16596.04 13688.81 7485.43 22893.97 18273.83 20497.96 17187.11 14689.77 22394.50 234
PAPR90.02 12589.27 13692.29 13095.78 11880.95 19392.68 24996.22 11981.91 25086.66 19293.75 19582.23 9998.44 12779.40 26394.79 13797.48 101
LFMVS90.08 12389.13 13792.95 9496.71 7782.32 15996.08 6189.91 35486.79 13392.15 9496.81 6362.60 31998.34 13587.18 14393.90 15598.19 60
UniMVSNet (Re)89.80 13489.07 13892.01 13593.60 22684.52 8594.78 13897.47 1189.26 6086.44 19892.32 23782.10 10397.39 22184.81 17280.84 33294.12 249
AdaColmapbinary89.89 13289.07 13892.37 12597.41 6283.03 13294.42 16295.92 14682.81 23186.34 20194.65 15673.89 20299.02 6180.69 24295.51 12095.05 204
VPA-MVSNet89.62 13788.96 14091.60 16193.86 21482.89 13895.46 9797.33 2587.91 10588.43 15593.31 20474.17 19797.40 21887.32 14282.86 30494.52 230
UGNet89.95 12988.95 14192.95 9494.51 18383.31 12095.70 8595.23 19889.37 5687.58 17193.94 18364.00 31098.78 9183.92 18496.31 11096.74 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS89.60 13888.92 14291.67 15995.47 13481.15 18792.38 25894.78 22783.11 22389.06 14694.32 16678.67 14296.61 26881.57 22890.89 20497.24 109
FA-MVS(test-final)89.66 13688.91 14391.93 14394.57 18080.27 20991.36 28794.74 22984.87 18189.82 13592.61 22974.72 18998.47 12083.97 18393.53 16297.04 122
LPG-MVS_test89.45 14488.90 14491.12 17994.47 18481.49 17695.30 10496.14 12586.73 13685.45 22595.16 13269.89 25298.10 15287.70 13589.23 23293.77 272
CLD-MVS89.47 14388.90 14491.18 17894.22 19882.07 16292.13 26996.09 13187.90 10685.37 23492.45 23374.38 19297.56 19687.15 14490.43 20993.93 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EI-MVSNet89.10 15488.86 14689.80 24091.84 27878.30 26193.70 21095.01 20885.73 16087.15 17895.28 12479.87 12597.21 23583.81 18687.36 26393.88 261
test_cas_vis1_n_192088.83 16688.85 14788.78 26991.15 30676.72 29293.85 20394.93 21583.23 22292.81 7696.00 9661.17 33394.45 33791.67 8894.84 13695.17 201
XVG-OURS89.40 14888.70 14891.52 16394.06 20381.46 17891.27 29196.07 13386.14 15288.89 14895.77 10868.73 27297.26 23087.39 14089.96 21695.83 178
test111189.10 15488.64 14990.48 20795.53 13374.97 31396.08 6184.89 38288.13 10090.16 13196.65 7063.29 31598.10 15286.14 15496.90 9598.39 39
Fast-Effi-MVS+89.41 14688.64 14991.71 15894.74 16880.81 19793.54 21495.10 20583.11 22386.82 19090.67 29579.74 12797.75 18380.51 24693.55 16196.57 147
test_djsdf89.03 15988.64 14990.21 21890.74 32579.28 24295.96 7395.90 14984.66 18985.33 23792.94 21874.02 20097.30 22489.64 11488.53 24194.05 255
ECVR-MVScopyleft89.09 15688.53 15290.77 19795.62 12875.89 30496.16 5384.22 38487.89 10890.20 12996.65 7063.19 31798.10 15285.90 15996.94 9398.33 43
CDS-MVSNet89.45 14488.51 15392.29 13093.62 22583.61 11393.01 23994.68 23281.95 24887.82 16793.24 20878.69 14196.99 24980.34 24893.23 17296.28 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DU-MVS89.34 15188.50 15491.85 15193.04 24383.72 10694.47 15896.59 9089.50 5286.46 19593.29 20677.25 15697.23 23384.92 16981.02 32894.59 225
114514_t89.51 14188.50 15492.54 11798.11 3681.99 16495.16 11696.36 10570.19 37985.81 21095.25 12676.70 16298.63 10482.07 21696.86 9897.00 126
VDDNet89.56 14088.49 15692.76 10395.07 15182.09 16196.30 4393.19 27381.05 27591.88 10296.86 5961.16 33498.33 13788.43 12792.49 18797.84 85
ACMM84.12 989.14 15388.48 15791.12 17994.65 17581.22 18595.31 10296.12 12885.31 17185.92 20994.34 16470.19 25098.06 16485.65 16288.86 23794.08 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu88.65 16988.35 15889.54 25093.33 23376.39 29894.47 15894.36 24187.70 11385.43 22889.56 32173.45 20997.26 23085.57 16491.28 19694.97 206
ab-mvs89.41 14688.35 15892.60 11395.15 14982.65 14992.20 26795.60 17483.97 20088.55 15293.70 19674.16 19898.21 14682.46 20689.37 22896.94 129
ACMP84.23 889.01 16188.35 15890.99 19094.73 16981.27 18295.07 12095.89 15186.48 14083.67 27694.30 16769.33 26097.99 16987.10 14888.55 24093.72 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re88.30 17988.32 16188.27 28494.71 17172.41 34493.15 23290.98 33287.77 11179.25 33591.96 25478.35 14795.75 31583.04 19495.62 11896.65 143
MVSTER88.84 16388.29 16290.51 20592.95 24880.44 20693.73 20795.01 20884.66 18987.15 17893.12 21372.79 21897.21 23587.86 13387.36 26393.87 262
TAMVS89.21 15288.29 16291.96 14193.71 22182.62 15093.30 22694.19 24782.22 24187.78 16893.94 18378.83 13896.95 25277.70 27792.98 17696.32 153
sss88.93 16288.26 16490.94 19394.05 20480.78 19891.71 27995.38 19181.55 26488.63 15193.91 18775.04 18395.47 32782.47 20591.61 19296.57 147
QAPM89.51 14188.15 16593.59 7094.92 16084.58 8196.82 2996.70 8378.43 30983.41 28396.19 9073.18 21399.30 4077.11 28496.54 10596.89 133
BH-untuned88.60 17188.13 16690.01 23095.24 14478.50 25593.29 22794.15 24984.75 18684.46 25493.40 20075.76 17397.40 21877.59 27894.52 14694.12 249
PLCcopyleft84.53 789.06 15888.03 16792.15 13397.27 6882.69 14794.29 17195.44 18779.71 28884.01 26994.18 17476.68 16398.75 9377.28 28193.41 16795.02 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA89.07 15787.98 16892.34 12696.87 7484.78 7894.08 18693.24 27181.41 26684.46 25495.13 13575.57 17896.62 26577.21 28293.84 15795.61 189
TranMVSNet+NR-MVSNet88.84 16387.95 16991.49 16592.68 25483.01 13494.92 12996.31 10889.88 4085.53 21993.85 19076.63 16496.96 25181.91 22079.87 34594.50 234
HY-MVS83.01 1289.03 15987.94 17092.29 13094.86 16482.77 14092.08 27294.49 23581.52 26586.93 18292.79 22578.32 14898.23 14379.93 25390.55 20795.88 175
IterMVS-LS88.36 17787.91 17189.70 24493.80 21778.29 26293.73 20795.08 20785.73 16084.75 24691.90 25679.88 12496.92 25483.83 18582.51 30593.89 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
sd_testset88.59 17287.85 17290.83 19496.00 10780.42 20792.35 26094.71 23088.73 7886.85 18895.20 13067.31 27996.43 28379.64 25789.85 22095.63 187
tttt051788.61 17087.78 17391.11 18294.96 15777.81 27495.35 10089.69 35885.09 17788.05 16294.59 16066.93 28598.48 11683.27 19292.13 19097.03 123
CHOSEN 1792x268888.84 16387.69 17492.30 12996.14 9781.42 18090.01 32095.86 15374.52 34987.41 17493.94 18375.46 17998.36 13280.36 24795.53 11997.12 118
WR-MVS88.38 17587.67 17590.52 20493.30 23480.18 21193.26 22995.96 14388.57 8585.47 22492.81 22376.12 16696.91 25581.24 23282.29 30894.47 239
thisisatest053088.67 16887.61 17691.86 14994.87 16380.07 21694.63 14889.90 35584.00 19988.46 15493.78 19266.88 28798.46 12183.30 19192.65 18297.06 120
test_fmvs187.34 21387.56 17786.68 32490.59 32971.80 34894.01 19394.04 25478.30 31191.97 9895.22 12756.28 35793.71 35292.89 5194.71 13894.52 230
jajsoiax88.24 18087.50 17890.48 20790.89 31980.14 21395.31 10295.65 17184.97 17984.24 26594.02 17865.31 30397.42 21188.56 12588.52 24293.89 259
BH-RMVSNet88.37 17687.48 17991.02 18795.28 14079.45 23492.89 24493.07 27585.45 16886.91 18494.84 14870.35 24797.76 18073.97 31194.59 14395.85 176
VPNet88.20 18187.47 18090.39 21293.56 22779.46 23394.04 19095.54 17888.67 8186.96 18194.58 16169.33 26097.15 23784.05 18280.53 33794.56 228
NR-MVSNet88.58 17387.47 18091.93 14393.04 24384.16 9794.77 13996.25 11689.05 6780.04 32693.29 20679.02 13797.05 24681.71 22780.05 34294.59 225
WR-MVS_H87.80 19187.37 18289.10 26293.23 23578.12 26595.61 9397.30 2987.90 10683.72 27492.01 25379.65 13296.01 30276.36 29080.54 33693.16 297
1112_ss88.42 17487.33 18391.72 15794.92 16080.98 19192.97 24194.54 23478.16 31583.82 27293.88 18878.78 14097.91 17579.45 25989.41 22796.26 157
OpenMVScopyleft83.78 1188.74 16787.29 18493.08 8392.70 25385.39 6996.57 3696.43 9878.74 30480.85 31396.07 9469.64 25699.01 6378.01 27596.65 10494.83 217
mvs_tets88.06 18687.28 18590.38 21490.94 31579.88 22595.22 11195.66 16985.10 17684.21 26693.94 18363.53 31397.40 21888.50 12688.40 24693.87 262
baseline188.10 18387.28 18590.57 20094.96 15780.07 21694.27 17291.29 32586.74 13587.41 17494.00 18076.77 16196.20 29480.77 24079.31 35095.44 191
CP-MVSNet87.63 19987.26 18788.74 27393.12 23876.59 29595.29 10696.58 9188.43 8883.49 28292.98 21775.28 18095.83 31078.97 26581.15 32493.79 267
anonymousdsp87.84 18987.09 18890.12 22389.13 35280.54 20494.67 14695.55 17682.05 24483.82 27292.12 24571.47 23197.15 23787.15 14487.80 25892.67 312
v2v48287.84 18987.06 18990.17 21990.99 31179.23 24594.00 19595.13 20284.87 18185.53 21992.07 25174.45 19197.45 20684.71 17481.75 31693.85 265
BH-w/o87.57 20487.05 19089.12 26194.90 16277.90 27092.41 25693.51 26882.89 23083.70 27591.34 27075.75 17497.07 24475.49 29793.49 16492.39 322
test_fmvs1_n87.03 23087.04 19186.97 31689.74 34771.86 34694.55 15294.43 23778.47 30791.95 10095.50 11751.16 37693.81 35093.02 5094.56 14495.26 198
TAPA-MVS84.62 688.16 18287.01 19291.62 16096.64 8080.65 20094.39 16596.21 12276.38 32886.19 20595.44 11879.75 12698.08 16262.75 37395.29 12996.13 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PS-CasMVS87.32 21586.88 19388.63 27692.99 24676.33 30095.33 10196.61 8988.22 9683.30 28793.07 21573.03 21695.79 31478.36 26981.00 33093.75 274
V4287.68 19486.86 19490.15 22190.58 33080.14 21394.24 17595.28 19683.66 20785.67 21491.33 27174.73 18897.41 21684.43 17881.83 31492.89 307
XXY-MVS87.65 19686.85 19590.03 22792.14 26680.60 20393.76 20695.23 19882.94 22884.60 24994.02 17874.27 19395.49 32681.04 23483.68 29294.01 257
HyFIR lowres test88.09 18486.81 19691.93 14396.00 10780.63 20190.01 32095.79 15773.42 36087.68 17092.10 24873.86 20397.96 17180.75 24191.70 19197.19 112
F-COLMAP87.95 18786.80 19791.40 16996.35 9380.88 19594.73 14195.45 18579.65 28982.04 30094.61 15771.13 23398.50 11476.24 29391.05 20294.80 219
v114487.61 20286.79 19890.06 22691.01 31079.34 23893.95 19795.42 19083.36 21885.66 21591.31 27474.98 18497.42 21183.37 19082.06 31093.42 287
Fast-Effi-MVS+-dtu87.44 20986.72 19989.63 24892.04 27077.68 28094.03 19193.94 25585.81 15782.42 29491.32 27370.33 24897.06 24580.33 24990.23 21294.14 248
thres100view90087.63 19986.71 20090.38 21496.12 9878.55 25295.03 12391.58 31687.15 12288.06 16192.29 23968.91 26998.10 15270.13 33591.10 19794.48 237
v887.50 20886.71 20089.89 23491.37 29679.40 23594.50 15495.38 19184.81 18483.60 27991.33 27176.05 16797.42 21182.84 19980.51 33992.84 309
thres600view787.65 19686.67 20290.59 19996.08 10378.72 24894.88 13191.58 31687.06 12588.08 16092.30 23868.91 26998.10 15270.05 33891.10 19794.96 209
tfpn200view987.58 20386.64 20390.41 21195.99 11078.64 25094.58 15091.98 30686.94 12988.09 15891.77 25869.18 26598.10 15270.13 33591.10 19794.48 237
thres40087.62 20186.64 20390.57 20095.99 11078.64 25094.58 15091.98 30686.94 12988.09 15891.77 25869.18 26598.10 15270.13 33591.10 19794.96 209
Baseline_NR-MVSNet87.07 22886.63 20588.40 27991.44 29177.87 27294.23 17692.57 28884.12 19785.74 21392.08 24977.25 15696.04 29982.29 21079.94 34391.30 345
miper_ehance_all_eth87.22 22186.62 20689.02 26592.13 26777.40 28490.91 30094.81 22581.28 26984.32 26290.08 31079.26 13496.62 26583.81 18682.94 30093.04 302
Anonymous2024052988.09 18486.59 20792.58 11596.53 8781.92 16795.99 7195.84 15474.11 35389.06 14695.21 12961.44 32798.81 8983.67 18987.47 26097.01 125
131487.51 20686.57 20890.34 21692.42 26079.74 22992.63 25195.35 19578.35 31080.14 32391.62 26574.05 19997.15 23781.05 23393.53 16294.12 249
AUN-MVS87.78 19286.54 20991.48 16694.82 16781.05 18993.91 20293.93 25683.00 22686.93 18293.53 19869.50 25897.67 18586.14 15477.12 36095.73 184
Test_1112_low_res87.65 19686.51 21091.08 18394.94 15979.28 24291.77 27794.30 24376.04 33383.51 28192.37 23577.86 15397.73 18478.69 26789.13 23496.22 158
c3_l87.14 22686.50 21189.04 26492.20 26477.26 28591.22 29494.70 23182.01 24784.34 26190.43 29978.81 13996.61 26883.70 18881.09 32593.25 292
test_vis1_n86.56 24586.49 21286.78 32388.51 35772.69 33694.68 14593.78 26479.55 29090.70 12195.31 12348.75 38193.28 35893.15 4793.99 15394.38 241
v1087.25 21886.38 21389.85 23591.19 30279.50 23294.48 15595.45 18583.79 20583.62 27891.19 27675.13 18197.42 21181.94 21980.60 33492.63 314
UniMVSNet_ETH3D87.53 20586.37 21491.00 18992.44 25978.96 24794.74 14095.61 17384.07 19885.36 23594.52 16259.78 34297.34 22382.93 19687.88 25496.71 141
v14419287.19 22486.35 21589.74 24190.64 32878.24 26393.92 20095.43 18881.93 24985.51 22191.05 28474.21 19697.45 20682.86 19881.56 31893.53 281
v119287.25 21886.33 21690.00 23190.76 32479.04 24693.80 20495.48 18182.57 23585.48 22391.18 27873.38 21297.42 21182.30 20982.06 31093.53 281
v14887.04 22986.32 21789.21 25890.94 31577.26 28593.71 20994.43 23784.84 18384.36 26090.80 29176.04 16897.05 24682.12 21379.60 34793.31 289
LS3D87.89 18886.32 21792.59 11496.07 10482.92 13795.23 11094.92 21675.66 33582.89 29095.98 9872.48 22299.21 4568.43 34595.23 13295.64 186
test250687.21 22286.28 21990.02 22995.62 12873.64 32796.25 4871.38 40687.89 10890.45 12596.65 7055.29 36398.09 16086.03 15896.94 9398.33 43
PEN-MVS86.80 23586.27 22088.40 27992.32 26275.71 30795.18 11496.38 10387.97 10382.82 29193.15 21173.39 21195.92 30576.15 29479.03 35293.59 279
thres20087.21 22286.24 22190.12 22395.36 13778.53 25393.26 22992.10 30086.42 14388.00 16391.11 28269.24 26498.00 16869.58 33991.04 20393.83 266
testing9187.11 22786.18 22289.92 23394.43 18975.38 31291.53 28492.27 29686.48 14086.50 19390.24 30261.19 33297.53 19882.10 21490.88 20596.84 136
miper_enhance_ethall86.90 23386.18 22289.06 26391.66 28777.58 28290.22 31594.82 22479.16 29584.48 25389.10 32679.19 13696.66 26384.06 18182.94 30092.94 305
Anonymous20240521187.68 19486.13 22492.31 12896.66 7980.74 19994.87 13291.49 32080.47 27989.46 14095.44 11854.72 36598.23 14382.19 21289.89 21897.97 74
X-MVStestdata88.31 17886.13 22494.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7323.41 40885.02 6099.49 2691.99 7998.56 4998.47 33
FMVSNet387.40 21186.11 22691.30 17493.79 21983.64 11094.20 17794.81 22583.89 20284.37 25791.87 25768.45 27596.56 27378.23 27285.36 27793.70 277
MVS87.44 20986.10 22791.44 16892.61 25583.62 11192.63 25195.66 16967.26 38481.47 30592.15 24377.95 15098.22 14579.71 25595.48 12292.47 318
PCF-MVS84.11 1087.74 19386.08 22892.70 10994.02 20584.43 9189.27 33295.87 15273.62 35884.43 25694.33 16578.48 14698.86 8470.27 33194.45 14894.81 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v192192086.97 23186.06 22989.69 24590.53 33378.11 26693.80 20495.43 18881.90 25185.33 23791.05 28472.66 21997.41 21682.05 21781.80 31593.53 281
FE-MVS87.40 21186.02 23091.57 16294.56 18179.69 23090.27 30993.72 26580.57 27888.80 14991.62 26565.32 30298.59 10974.97 30594.33 15196.44 150
thisisatest051587.33 21485.99 23191.37 17193.49 22879.55 23190.63 30489.56 36180.17 28187.56 17290.86 28767.07 28498.28 14181.50 22993.02 17596.29 155
cl2286.78 23685.98 23289.18 26092.34 26177.62 28190.84 30194.13 25181.33 26883.97 27090.15 30773.96 20196.60 27084.19 18082.94 30093.33 288
GBi-Net87.26 21685.98 23291.08 18394.01 20683.10 12795.14 11794.94 21183.57 20984.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
test187.26 21685.98 23291.08 18394.01 20683.10 12795.14 11794.94 21183.57 20984.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
EPNet_dtu86.49 25085.94 23588.14 28990.24 33772.82 33494.11 18292.20 29886.66 13879.42 33492.36 23673.52 20795.81 31271.26 32393.66 15895.80 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D87.51 20685.91 23692.32 12793.70 22383.93 10192.33 26290.94 33484.16 19572.09 37592.52 23169.90 25195.85 30989.20 11888.36 24797.17 113
v124086.78 23685.85 23789.56 24990.45 33477.79 27693.61 21295.37 19381.65 26085.43 22891.15 28071.50 23097.43 21081.47 23082.05 31293.47 285
FMVSNet287.19 22485.82 23891.30 17494.01 20683.67 10894.79 13794.94 21183.57 20983.88 27192.05 25266.59 29296.51 27677.56 27985.01 28093.73 275
cl____86.52 24785.78 23988.75 27192.03 27176.46 29690.74 30294.30 24381.83 25683.34 28590.78 29275.74 17696.57 27181.74 22581.54 31993.22 294
DIV-MVS_self_test86.53 24685.78 23988.75 27192.02 27276.45 29790.74 30294.30 24381.83 25683.34 28590.82 29075.75 17496.57 27181.73 22681.52 32093.24 293
eth_miper_zixun_eth86.50 24885.77 24188.68 27491.94 27375.81 30690.47 30794.89 21782.05 24484.05 26790.46 29875.96 16996.77 25982.76 20279.36 34993.46 286
v7n86.81 23485.76 24289.95 23290.72 32679.25 24495.07 12095.92 14684.45 19282.29 29590.86 28772.60 22197.53 19879.42 26280.52 33893.08 301
TR-MVS86.78 23685.76 24289.82 23794.37 19178.41 25792.47 25592.83 28081.11 27486.36 19992.40 23468.73 27297.48 20273.75 31489.85 22093.57 280
tt080586.92 23285.74 24490.48 20792.22 26379.98 22395.63 9294.88 21983.83 20484.74 24792.80 22457.61 35297.67 18585.48 16584.42 28493.79 267
testing9986.72 24085.73 24589.69 24594.23 19774.91 31591.35 28890.97 33386.14 15286.36 19990.22 30359.41 34497.48 20282.24 21190.66 20696.69 142
pm-mvs186.61 24285.54 24689.82 23791.44 29180.18 21195.28 10894.85 22183.84 20381.66 30392.62 22872.45 22496.48 27879.67 25678.06 35392.82 310
PatchMatch-RL86.77 23985.54 24690.47 21095.88 11482.71 14690.54 30692.31 29479.82 28784.32 26291.57 26968.77 27196.39 28573.16 31693.48 16692.32 325
DTE-MVSNet86.11 25585.48 24887.98 29291.65 28874.92 31494.93 12895.75 16087.36 12082.26 29693.04 21672.85 21795.82 31174.04 31077.46 35893.20 295
test-LLR85.87 25985.41 24987.25 30890.95 31371.67 35089.55 32689.88 35683.41 21584.54 25187.95 34567.25 28195.11 33281.82 22293.37 16994.97 206
baseline286.50 24885.39 25089.84 23691.12 30776.70 29391.88 27488.58 36482.35 24079.95 32790.95 28673.42 21097.63 19280.27 25089.95 21795.19 200
PAPM86.68 24185.39 25090.53 20293.05 24279.33 24189.79 32394.77 22878.82 30181.95 30193.24 20876.81 15997.30 22466.94 35593.16 17394.95 212
DP-MVS87.25 21885.36 25292.90 9697.65 5583.24 12194.81 13692.00 30474.99 34481.92 30295.00 13872.66 21999.05 5566.92 35792.33 18896.40 151
testing1186.44 25185.35 25389.69 24594.29 19675.40 31191.30 28990.53 34184.76 18585.06 24090.13 30858.95 34897.45 20682.08 21591.09 20196.21 159
mvsany_test185.42 26785.30 25485.77 33487.95 36875.41 31087.61 35880.97 39276.82 32588.68 15095.83 10477.44 15590.82 38085.90 15986.51 27091.08 353
GA-MVS86.61 24285.27 25590.66 19891.33 29978.71 24990.40 30893.81 26385.34 17085.12 23989.57 32061.25 32997.11 24180.99 23789.59 22696.15 160
SCA86.32 25385.18 25689.73 24392.15 26576.60 29491.12 29591.69 31383.53 21285.50 22288.81 33166.79 28896.48 27876.65 28790.35 21196.12 163
Anonymous2023121186.59 24485.13 25790.98 19296.52 8881.50 17496.14 5796.16 12373.78 35683.65 27792.15 24363.26 31697.37 22282.82 20081.74 31794.06 254
D2MVS85.90 25885.09 25888.35 28190.79 32277.42 28391.83 27695.70 16580.77 27780.08 32590.02 31166.74 29096.37 28681.88 22187.97 25391.26 346
tpmrst85.35 26984.99 25986.43 32690.88 32067.88 37388.71 34191.43 32280.13 28286.08 20788.80 33373.05 21496.02 30182.48 20483.40 29895.40 193
cascas86.43 25284.98 26090.80 19692.10 26980.92 19490.24 31395.91 14873.10 36383.57 28088.39 33865.15 30497.46 20584.90 17191.43 19494.03 256
PMMVS85.71 26384.96 26187.95 29388.90 35577.09 28788.68 34290.06 35072.32 37086.47 19490.76 29372.15 22594.40 33981.78 22493.49 16492.36 323
CostFormer85.77 26284.94 26288.26 28591.16 30572.58 34289.47 33091.04 33176.26 33186.45 19789.97 31370.74 24096.86 25882.35 20887.07 26895.34 197
LTVRE_ROB82.13 1386.26 25484.90 26390.34 21694.44 18881.50 17492.31 26494.89 21783.03 22579.63 33292.67 22669.69 25597.79 17871.20 32486.26 27291.72 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo85.97 25784.86 26489.32 25690.92 31782.19 16092.11 27094.19 24778.76 30378.77 34091.63 26468.38 27696.56 27375.01 30493.95 15489.20 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE86.00 25684.84 26589.45 25491.20 30178.00 26791.70 28095.55 17685.05 17882.97 28992.25 24154.49 36697.48 20282.93 19687.45 26292.89 307
CVMVSNet84.69 28384.79 26684.37 34791.84 27864.92 38393.70 21091.47 32166.19 38686.16 20695.28 12467.18 28393.33 35780.89 23990.42 21094.88 214
PatchmatchNetpermissive85.85 26084.70 26789.29 25791.76 28275.54 30888.49 34491.30 32481.63 26285.05 24188.70 33571.71 22796.24 29374.61 30889.05 23596.08 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet78.82 1885.55 26484.65 26888.23 28794.72 17071.93 34587.12 36192.75 28378.80 30284.95 24390.53 29764.43 30896.71 26274.74 30693.86 15696.06 169
OurMVSNet-221017-085.35 26984.64 26987.49 30290.77 32372.59 34194.01 19394.40 23984.72 18779.62 33393.17 21061.91 32396.72 26081.99 21881.16 32293.16 297
miper_lstm_enhance85.27 27284.59 27087.31 30591.28 30074.63 31787.69 35594.09 25381.20 27381.36 30889.85 31674.97 18594.30 34281.03 23679.84 34693.01 303
IterMVS-SCA-FT85.45 26584.53 27188.18 28891.71 28476.87 29090.19 31692.65 28785.40 16981.44 30690.54 29666.79 28895.00 33581.04 23481.05 32692.66 313
RPSCF85.07 27584.27 27287.48 30392.91 24970.62 36291.69 28192.46 28976.20 33282.67 29395.22 12763.94 31197.29 22777.51 28085.80 27494.53 229
MS-PatchMatch85.05 27684.16 27387.73 29691.42 29478.51 25491.25 29293.53 26777.50 31880.15 32291.58 26761.99 32295.51 32375.69 29694.35 15089.16 371
FMVSNet185.85 26084.11 27491.08 18392.81 25183.10 12795.14 11794.94 21181.64 26182.68 29291.64 26159.01 34796.34 28975.37 29983.78 28993.79 267
test_fmvs283.98 29084.03 27583.83 35287.16 37167.53 37693.93 19992.89 27877.62 31786.89 18793.53 19847.18 38592.02 37090.54 10686.51 27091.93 332
tpm84.73 28184.02 27686.87 32190.33 33568.90 36989.06 33789.94 35380.85 27685.75 21289.86 31568.54 27495.97 30377.76 27684.05 28895.75 181
CHOSEN 280x42085.15 27483.99 27788.65 27592.47 25778.40 25879.68 39692.76 28274.90 34681.41 30789.59 31969.85 25495.51 32379.92 25495.29 12992.03 330
IterMVS84.88 27883.98 27887.60 29891.44 29176.03 30290.18 31792.41 29083.24 22181.06 31290.42 30066.60 29194.28 34379.46 25880.98 33192.48 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs485.43 26683.86 27990.16 22090.02 34282.97 13690.27 30992.67 28675.93 33480.73 31491.74 26071.05 23495.73 31778.85 26683.46 29691.78 334
CR-MVSNet85.35 26983.76 28090.12 22390.58 33079.34 23885.24 37491.96 30878.27 31285.55 21787.87 34871.03 23595.61 31973.96 31289.36 22995.40 193
ACMH80.38 1785.36 26883.68 28190.39 21294.45 18780.63 20194.73 14194.85 22182.09 24377.24 34892.65 22760.01 34097.58 19472.25 32084.87 28192.96 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test-mter84.54 28483.64 28287.25 30890.95 31371.67 35089.55 32689.88 35679.17 29484.54 25187.95 34555.56 35995.11 33281.82 22293.37 16994.97 206
MDTV_nov1_ep1383.56 28391.69 28669.93 36687.75 35491.54 31878.60 30684.86 24488.90 33069.54 25796.03 30070.25 33288.93 236
ACMH+81.04 1485.05 27683.46 28489.82 23794.66 17479.37 23694.44 16094.12 25282.19 24278.04 34392.82 22258.23 35097.54 19773.77 31382.90 30392.54 315
testing22284.84 28083.32 28589.43 25594.15 20275.94 30391.09 29689.41 36284.90 18085.78 21189.44 32252.70 37396.28 29270.80 33091.57 19396.07 167
WB-MVSnew83.77 29583.28 28685.26 34191.48 29071.03 35691.89 27387.98 36778.91 29784.78 24590.22 30369.11 26794.02 34664.70 36690.44 20890.71 355
IB-MVS80.51 1585.24 27383.26 28791.19 17792.13 26779.86 22691.75 27891.29 32583.28 22080.66 31688.49 33761.28 32898.46 12180.99 23779.46 34895.25 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal84.72 28283.23 28889.20 25992.79 25280.05 21894.48 15595.81 15582.38 23881.08 31191.21 27569.01 26896.95 25261.69 37580.59 33590.58 360
dmvs_re84.20 28883.22 28987.14 31491.83 28077.81 27490.04 31990.19 34684.70 18881.49 30489.17 32564.37 30991.13 37871.58 32285.65 27692.46 319
UWE-MVS83.69 29783.09 29085.48 33693.06 24165.27 38290.92 29986.14 37579.90 28586.26 20390.72 29457.17 35495.81 31271.03 32992.62 18395.35 196
MSDG84.86 27983.09 29090.14 22293.80 21780.05 21889.18 33593.09 27478.89 29978.19 34191.91 25565.86 30197.27 22868.47 34488.45 24493.11 299
TransMVSNet (Re)84.43 28583.06 29288.54 27791.72 28378.44 25695.18 11492.82 28182.73 23379.67 33192.12 24573.49 20895.96 30471.10 32868.73 38391.21 347
tpm284.08 28982.94 29387.48 30391.39 29571.27 35289.23 33490.37 34371.95 37284.64 24889.33 32367.30 28096.55 27575.17 30187.09 26794.63 222
ETVMVS84.43 28582.92 29488.97 26794.37 19174.67 31691.23 29388.35 36683.37 21786.06 20889.04 32755.38 36195.67 31867.12 35391.34 19596.58 146
SixPastTwentyTwo83.91 29382.90 29586.92 31890.99 31170.67 36193.48 21691.99 30585.54 16677.62 34792.11 24760.59 33696.87 25776.05 29577.75 35593.20 295
TESTMET0.1,183.74 29682.85 29686.42 32789.96 34371.21 35489.55 32687.88 36877.41 31983.37 28487.31 35356.71 35593.65 35480.62 24492.85 18094.40 240
pmmvs584.21 28782.84 29788.34 28288.95 35476.94 28992.41 25691.91 31075.63 33680.28 32091.18 27864.59 30795.57 32077.09 28583.47 29592.53 316
EPMVS83.90 29482.70 29887.51 30090.23 33872.67 33788.62 34381.96 39081.37 26785.01 24288.34 33966.31 29594.45 33775.30 30087.12 26695.43 192
tpmvs83.35 30082.07 29987.20 31291.07 30971.00 35888.31 34791.70 31278.91 29780.49 31987.18 35769.30 26397.08 24268.12 34983.56 29493.51 284
COLMAP_ROBcopyleft80.39 1683.96 29182.04 30089.74 24195.28 14079.75 22894.25 17392.28 29575.17 34278.02 34493.77 19358.60 34997.84 17765.06 36585.92 27391.63 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test0.0.03 182.41 30581.69 30184.59 34588.23 36372.89 33390.24 31387.83 36983.41 21579.86 32989.78 31767.25 28188.99 38865.18 36383.42 29791.90 333
pmmvs683.42 29881.60 30288.87 26888.01 36677.87 27294.96 12694.24 24674.67 34878.80 33991.09 28360.17 33996.49 27777.06 28675.40 36792.23 327
RPMNet83.95 29281.53 30391.21 17690.58 33079.34 23885.24 37496.76 7571.44 37485.55 21782.97 38170.87 23898.91 8061.01 37789.36 22995.40 193
AllTest83.42 29881.39 30489.52 25195.01 15377.79 27693.12 23390.89 33677.41 31976.12 35693.34 20154.08 36897.51 20068.31 34684.27 28693.26 290
PatchT82.68 30381.27 30586.89 32090.09 34070.94 35984.06 38190.15 34774.91 34585.63 21683.57 37669.37 25994.87 33665.19 36288.50 24394.84 216
USDC82.76 30181.26 30687.26 30791.17 30374.55 31889.27 33293.39 27078.26 31375.30 36192.08 24954.43 36796.63 26471.64 32185.79 27590.61 357
EU-MVSNet81.32 31980.95 30782.42 35988.50 35963.67 38793.32 22291.33 32364.02 38980.57 31892.83 22161.21 33192.27 36876.34 29180.38 34091.32 344
Patchmtry82.71 30280.93 30888.06 29090.05 34176.37 29984.74 37991.96 30872.28 37181.32 30987.87 34871.03 23595.50 32568.97 34180.15 34192.32 325
CL-MVSNet_self_test81.74 31180.53 30985.36 33885.96 37772.45 34390.25 31193.07 27581.24 27179.85 33087.29 35470.93 23792.52 36566.95 35469.23 37991.11 351
MIMVSNet82.59 30480.53 30988.76 27091.51 28978.32 26086.57 36590.13 34879.32 29180.70 31588.69 33652.98 37293.07 36266.03 36088.86 23794.90 213
our_test_381.93 30880.46 31186.33 32888.46 36073.48 32988.46 34591.11 32776.46 32676.69 35288.25 34166.89 28694.36 34068.75 34279.08 35191.14 349
EG-PatchMatch MVS82.37 30680.34 31288.46 27890.27 33679.35 23792.80 24894.33 24277.14 32373.26 37290.18 30647.47 38496.72 26070.25 33287.32 26589.30 368
tpm cat181.96 30780.27 31387.01 31591.09 30871.02 35787.38 35991.53 31966.25 38580.17 32186.35 36368.22 27796.15 29769.16 34082.29 30893.86 264
dp81.47 31780.23 31485.17 34289.92 34465.49 38086.74 36390.10 34976.30 33081.10 31087.12 35862.81 31895.92 30568.13 34879.88 34494.09 252
testgi80.94 32480.20 31583.18 35387.96 36766.29 37791.28 29090.70 34083.70 20678.12 34292.84 22051.37 37590.82 38063.34 37082.46 30692.43 320
K. test v381.59 31480.15 31685.91 33389.89 34569.42 36892.57 25387.71 37085.56 16573.44 37189.71 31855.58 35895.52 32277.17 28369.76 37792.78 311
ppachtmachnet_test81.84 30980.07 31787.15 31388.46 36074.43 32189.04 33892.16 29975.33 33977.75 34588.99 32866.20 29795.37 32865.12 36477.60 35691.65 336
Patchmatch-RL test81.67 31279.96 31886.81 32285.42 38271.23 35382.17 38987.50 37278.47 30777.19 34982.50 38370.81 23993.48 35582.66 20372.89 37195.71 185
Syy-MVS80.07 33079.78 31980.94 36291.92 27459.93 39389.75 32487.40 37381.72 25878.82 33787.20 35566.29 29691.29 37647.06 39487.84 25691.60 338
ADS-MVSNet81.56 31579.78 31986.90 31991.35 29771.82 34783.33 38489.16 36372.90 36582.24 29785.77 36764.98 30593.76 35164.57 36783.74 29095.12 202
Anonymous2023120681.03 32279.77 32184.82 34487.85 36970.26 36491.42 28692.08 30173.67 35777.75 34589.25 32462.43 32093.08 36161.50 37682.00 31391.12 350
ADS-MVSNet281.66 31379.71 32287.50 30191.35 29774.19 32383.33 38488.48 36572.90 36582.24 29785.77 36764.98 30593.20 36064.57 36783.74 29095.12 202
FMVSNet581.52 31679.60 32387.27 30691.17 30377.95 26891.49 28592.26 29776.87 32476.16 35587.91 34751.67 37492.34 36767.74 35081.16 32291.52 340
testing380.46 32679.59 32483.06 35593.44 23164.64 38493.33 22185.47 37984.34 19479.93 32890.84 28944.35 38992.39 36657.06 38787.56 25992.16 329
gg-mvs-nofinetune81.77 31079.37 32588.99 26690.85 32177.73 27986.29 36679.63 39574.88 34783.19 28869.05 39760.34 33796.11 29875.46 29894.64 14293.11 299
Patchmatch-test81.37 31879.30 32687.58 29990.92 31774.16 32480.99 39187.68 37170.52 37876.63 35388.81 33171.21 23292.76 36460.01 38186.93 26995.83 178
KD-MVS_self_test80.20 32979.24 32783.07 35485.64 38165.29 38191.01 29893.93 25678.71 30576.32 35486.40 36259.20 34692.93 36372.59 31869.35 37891.00 354
Anonymous2024052180.44 32779.21 32884.11 35085.75 38067.89 37292.86 24693.23 27275.61 33775.59 36087.47 35250.03 37794.33 34171.14 32781.21 32190.12 362
CMPMVSbinary59.16 2180.52 32579.20 32984.48 34683.98 38567.63 37589.95 32293.84 26264.79 38866.81 38691.14 28157.93 35195.17 33076.25 29288.10 24990.65 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040281.30 32079.17 33087.67 29793.19 23678.17 26492.98 24091.71 31175.25 34176.02 35890.31 30159.23 34596.37 28650.22 39283.63 29388.47 377
test20.0379.95 33279.08 33182.55 35785.79 37967.74 37491.09 29691.08 32881.23 27274.48 36789.96 31461.63 32490.15 38260.08 37976.38 36389.76 363
LF4IMVS80.37 32879.07 33284.27 34986.64 37369.87 36789.39 33191.05 33076.38 32874.97 36390.00 31247.85 38394.25 34474.55 30980.82 33388.69 375
JIA-IIPM81.04 32178.98 33387.25 30888.64 35673.48 32981.75 39089.61 36073.19 36282.05 29973.71 39366.07 30095.87 30871.18 32684.60 28392.41 321
myMVS_eth3d79.67 33578.79 33482.32 36091.92 27464.08 38589.75 32487.40 37381.72 25878.82 33787.20 35545.33 38791.29 37659.09 38387.84 25691.60 338
pmmvs-eth3d80.97 32378.72 33587.74 29584.99 38479.97 22490.11 31891.65 31475.36 33873.51 37086.03 36459.45 34393.96 34975.17 30172.21 37289.29 369
UnsupCasMVSNet_eth80.07 33078.27 33685.46 33785.24 38372.63 34088.45 34694.87 22082.99 22771.64 37888.07 34456.34 35691.75 37373.48 31563.36 39092.01 331
TinyColmap79.76 33477.69 33785.97 33091.71 28473.12 33189.55 32690.36 34475.03 34372.03 37690.19 30546.22 38696.19 29663.11 37181.03 32788.59 376
TDRefinement79.81 33377.34 33887.22 31179.24 39775.48 30993.12 23392.03 30376.45 32775.01 36291.58 26749.19 38096.44 28270.22 33469.18 38089.75 364
MIMVSNet179.38 33777.28 33985.69 33586.35 37473.67 32691.61 28392.75 28378.11 31672.64 37488.12 34348.16 38291.97 37260.32 37877.49 35791.43 343
YYNet179.22 33877.20 34085.28 34088.20 36572.66 33885.87 36890.05 35274.33 35162.70 38887.61 35066.09 29992.03 36966.94 35572.97 37091.15 348
MDA-MVSNet_test_wron79.21 33977.19 34185.29 33988.22 36472.77 33585.87 36890.06 35074.34 35062.62 39087.56 35166.14 29891.99 37166.90 35873.01 36991.10 352
test_fmvs377.67 34577.16 34279.22 36579.52 39661.14 39192.34 26191.64 31573.98 35478.86 33686.59 35927.38 40187.03 39088.12 13175.97 36589.50 365
OpenMVS_ROBcopyleft74.94 1979.51 33677.03 34386.93 31787.00 37276.23 30192.33 26290.74 33968.93 38174.52 36688.23 34249.58 37996.62 26557.64 38584.29 28587.94 380
test_vis1_rt77.96 34476.46 34482.48 35885.89 37871.74 34990.25 31178.89 39671.03 37771.30 37981.35 38542.49 39191.05 37984.55 17682.37 30784.65 383
MDA-MVSNet-bldmvs78.85 34076.31 34586.46 32589.76 34673.88 32588.79 34090.42 34279.16 29559.18 39388.33 34060.20 33894.04 34562.00 37468.96 38191.48 342
DSMNet-mixed76.94 34776.29 34678.89 36683.10 38956.11 40287.78 35279.77 39460.65 39275.64 35988.71 33461.56 32688.34 38960.07 38089.29 23192.21 328
PM-MVS78.11 34376.12 34784.09 35183.54 38770.08 36588.97 33985.27 38179.93 28474.73 36586.43 36134.70 39793.48 35579.43 26172.06 37388.72 374
KD-MVS_2432*160078.50 34176.02 34885.93 33186.22 37574.47 31984.80 37792.33 29279.29 29276.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
miper_refine_blended78.50 34176.02 34885.93 33186.22 37574.47 31984.80 37792.33 29279.29 29276.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
dmvs_testset74.57 35175.81 35070.86 37687.72 37040.47 41187.05 36277.90 40182.75 23271.15 38085.47 36967.98 27884.12 39845.26 39576.98 36288.00 379
new-patchmatchnet76.41 34875.17 35180.13 36382.65 39159.61 39487.66 35691.08 32878.23 31469.85 38283.22 37754.76 36491.63 37564.14 36964.89 38889.16 371
PVSNet_073.20 2077.22 34674.83 35284.37 34790.70 32771.10 35583.09 38689.67 35972.81 36773.93 36983.13 37860.79 33593.70 35368.54 34350.84 39988.30 378
UnsupCasMVSNet_bld76.23 34973.27 35385.09 34383.79 38672.92 33285.65 37193.47 26971.52 37368.84 38479.08 38849.77 37893.21 35966.81 35960.52 39289.13 373
mvsany_test374.95 35073.26 35480.02 36474.61 40063.16 38985.53 37278.42 39774.16 35274.89 36486.46 36036.02 39689.09 38782.39 20766.91 38487.82 381
MVS-HIRNet73.70 35272.20 35578.18 36991.81 28156.42 40182.94 38782.58 38855.24 39568.88 38366.48 39855.32 36295.13 33158.12 38488.42 24583.01 386
test_f71.95 35470.87 35675.21 37274.21 40259.37 39585.07 37685.82 37765.25 38770.42 38183.13 37823.62 40282.93 40078.32 27071.94 37483.33 385
new_pmnet72.15 35370.13 35778.20 36882.95 39065.68 37883.91 38282.40 38962.94 39164.47 38779.82 38742.85 39086.26 39457.41 38674.44 36882.65 388
pmmvs371.81 35568.71 35881.11 36175.86 39970.42 36386.74 36383.66 38558.95 39468.64 38580.89 38636.93 39589.52 38563.10 37263.59 38983.39 384
N_pmnet68.89 35768.44 35970.23 37789.07 35328.79 41688.06 34819.50 41669.47 38071.86 37784.93 37061.24 33091.75 37354.70 38977.15 35990.15 361
WB-MVS67.92 35867.49 36069.21 38081.09 39241.17 41088.03 34978.00 40073.50 35962.63 38983.11 38063.94 31186.52 39225.66 40651.45 39879.94 391
SSC-MVS67.06 35966.56 36168.56 38280.54 39340.06 41287.77 35377.37 40372.38 36961.75 39182.66 38263.37 31486.45 39324.48 40748.69 40179.16 393
APD_test169.04 35666.26 36277.36 37180.51 39462.79 39085.46 37383.51 38654.11 39759.14 39484.79 37223.40 40489.61 38455.22 38870.24 37679.68 392
test_vis3_rt65.12 36162.60 36372.69 37471.44 40360.71 39287.17 36065.55 40763.80 39053.22 39765.65 40014.54 41189.44 38676.65 28765.38 38667.91 398
FPMVS64.63 36262.55 36470.88 37570.80 40456.71 39784.42 38084.42 38351.78 39849.57 39881.61 38423.49 40381.48 40140.61 40176.25 36474.46 394
LCM-MVSNet66.00 36062.16 36577.51 37064.51 41058.29 39683.87 38390.90 33548.17 39954.69 39673.31 39416.83 41086.75 39165.47 36161.67 39187.48 382
dongtai58.82 36858.24 36660.56 38583.13 38845.09 40982.32 38848.22 41567.61 38361.70 39269.15 39638.75 39376.05 40432.01 40341.31 40360.55 400
PMMVS259.60 36456.40 36769.21 38068.83 40746.58 40673.02 40177.48 40255.07 39649.21 39972.95 39517.43 40980.04 40249.32 39344.33 40280.99 390
EGC-MVSNET61.97 36356.37 36878.77 36789.63 34973.50 32889.12 33682.79 3870.21 4131.24 41484.80 37139.48 39290.04 38344.13 39675.94 36672.79 395
testf159.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
APD_test259.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
Gipumacopyleft57.99 36954.91 37167.24 38388.51 35765.59 37952.21 40490.33 34543.58 40142.84 40451.18 40520.29 40785.07 39534.77 40270.45 37551.05 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high58.88 36754.22 37272.86 37356.50 41356.67 39880.75 39286.00 37673.09 36437.39 40564.63 40122.17 40579.49 40343.51 39723.96 40782.43 389
kuosan53.51 37053.30 37354.13 38976.06 39845.36 40880.11 39548.36 41459.63 39354.84 39563.43 40237.41 39462.07 40920.73 40939.10 40454.96 403
test_method50.52 37248.47 37456.66 38752.26 41418.98 41841.51 40681.40 39110.10 40844.59 40375.01 39228.51 39968.16 40553.54 39049.31 40082.83 387
PMVScopyleft47.18 2252.22 37148.46 37563.48 38445.72 41546.20 40773.41 40078.31 39841.03 40430.06 40765.68 3996.05 41483.43 39930.04 40465.86 38560.80 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN43.23 37442.29 37646.03 39065.58 40937.41 41373.51 39964.62 40833.99 40528.47 40947.87 40619.90 40867.91 40622.23 40824.45 40632.77 405
EMVS42.07 37541.12 37744.92 39163.45 41135.56 41573.65 39863.48 40933.05 40626.88 41045.45 40721.27 40667.14 40719.80 41023.02 40832.06 406
tmp_tt35.64 37639.24 37824.84 39214.87 41623.90 41762.71 40251.51 4136.58 41036.66 40662.08 40344.37 38830.34 41252.40 39122.00 40920.27 407
MVEpermissive39.65 2343.39 37338.59 37957.77 38656.52 41248.77 40555.38 40358.64 41129.33 40728.96 40852.65 4044.68 41564.62 40828.11 40533.07 40559.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k22.14 37729.52 3800.00 3960.00 4190.00 4210.00 40795.76 1590.00 4140.00 41594.29 16875.66 1770.00 4150.00 4140.00 4130.00 411
wuyk23d21.27 37820.48 38123.63 39368.59 40836.41 41449.57 4056.85 4179.37 4097.89 4114.46 4134.03 41631.37 41117.47 41116.07 4103.12 408
testmvs8.92 37911.52 3821.12 3951.06 4170.46 42086.02 3670.65 4180.62 4112.74 4129.52 4110.31 4180.45 4142.38 4120.39 4112.46 410
test1238.76 38011.22 3831.39 3940.85 4180.97 41985.76 3700.35 4190.54 4122.45 4138.14 4120.60 4170.48 4132.16 4130.17 4122.71 409
ab-mvs-re7.82 38110.43 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41593.88 1880.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.64 3828.86 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41479.70 1280.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS64.08 38559.14 382
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
PC_three_145282.47 23697.09 1097.07 5192.72 198.04 16592.70 5799.02 1298.86 11
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 419
eth-test0.00 419
ZD-MVS98.15 3486.62 3397.07 4583.63 20894.19 4296.91 5787.57 3199.26 4291.99 7998.44 54
IU-MVS98.77 586.00 5096.84 6581.26 27097.26 795.50 2399.13 399.03 8
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6898.99 1498.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
save fliter97.85 4685.63 6695.21 11296.82 6889.44 53
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 163
test_part298.55 1287.22 1996.40 17
sam_mvs171.70 22896.12 163
sam_mvs70.60 241
ambc83.06 35579.99 39563.51 38877.47 39792.86 27974.34 36884.45 37328.74 39895.06 33473.06 31768.89 38290.61 357
MTGPAbinary96.97 50
test_post188.00 3509.81 41069.31 26295.53 32176.65 287
test_post10.29 40970.57 24595.91 307
patchmatchnet-post83.76 37571.53 22996.48 278
GG-mvs-BLEND87.94 29489.73 34877.91 26987.80 35178.23 39980.58 31783.86 37459.88 34195.33 32971.20 32492.22 18990.60 359
MTMP96.16 5360.64 410
gm-plane-assit89.60 35068.00 37177.28 32288.99 32897.57 19579.44 260
test9_res91.91 8398.71 3298.07 68
TEST997.53 5886.49 3794.07 18796.78 7281.61 26392.77 7896.20 8787.71 2899.12 51
test_897.49 6086.30 4594.02 19296.76 7581.86 25492.70 8296.20 8787.63 2999.02 61
agg_prior290.54 10698.68 3898.27 52
agg_prior97.38 6385.92 5796.72 8192.16 9398.97 75
TestCases89.52 25195.01 15377.79 27690.89 33677.41 31976.12 35693.34 20154.08 36897.51 20068.31 34684.27 28693.26 290
test_prior485.96 5494.11 182
test_prior294.12 18187.67 11592.63 8396.39 8286.62 3891.50 9198.67 40
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
旧先验293.36 22071.25 37594.37 3997.13 24086.74 149
新几何293.11 235
新几何193.10 8197.30 6684.35 9495.56 17571.09 37691.26 11796.24 8582.87 8798.86 8479.19 26498.10 6596.07 167
旧先验196.79 7681.81 16995.67 16796.81 6386.69 3797.66 8296.97 128
无先验93.28 22896.26 11473.95 35599.05 5580.56 24596.59 145
原ACMM292.94 242
原ACMM192.01 13597.34 6481.05 18996.81 7078.89 29990.45 12595.92 10082.65 8998.84 8880.68 24398.26 6096.14 161
test22296.55 8581.70 17192.22 26695.01 20868.36 38290.20 12996.14 9280.26 12197.80 7796.05 170
testdata298.75 9378.30 271
segment_acmp87.16 36
testdata90.49 20696.40 9077.89 27195.37 19372.51 36893.63 5596.69 6682.08 10497.65 18883.08 19397.39 8595.94 172
testdata192.15 26887.94 104
test1294.34 5097.13 7086.15 4896.29 10991.04 11985.08 5899.01 6398.13 6497.86 83
plane_prior794.70 17282.74 143
plane_prior694.52 18282.75 14174.23 194
plane_prior596.22 11998.12 15088.15 12889.99 21494.63 222
plane_prior494.86 144
plane_prior382.75 14190.26 3386.91 184
plane_prior295.85 7790.81 17
plane_prior194.59 177
plane_prior82.73 14495.21 11289.66 5089.88 219
n20.00 420
nn0.00 420
door-mid85.49 378
lessismore_v086.04 32988.46 36068.78 37080.59 39373.01 37390.11 30955.39 36096.43 28375.06 30365.06 38792.90 306
LGP-MVS_train91.12 17994.47 18481.49 17696.14 12586.73 13685.45 22595.16 13269.89 25298.10 15287.70 13589.23 23293.77 272
test1196.57 92
door85.33 380
HQP5-MVS81.56 172
HQP-NCC94.17 19994.39 16588.81 7485.43 228
ACMP_Plane94.17 19994.39 16588.81 7485.43 228
BP-MVS87.11 146
HQP4-MVS85.43 22897.96 17194.51 232
HQP3-MVS96.04 13689.77 223
HQP2-MVS73.83 204
NP-MVS94.37 19182.42 15593.98 181
MDTV_nov1_ep13_2view55.91 40387.62 35773.32 36184.59 25070.33 24874.65 30795.50 190
ACMMP++_ref87.47 260
ACMMP++88.01 252
Test By Simon80.02 123
ITE_SJBPF88.24 28691.88 27777.05 28892.92 27785.54 16680.13 32493.30 20557.29 35396.20 29472.46 31984.71 28291.49 341
DeepMVS_CXcopyleft56.31 38874.23 40151.81 40456.67 41244.85 40048.54 40075.16 39127.87 40058.74 41040.92 40052.22 39758.39 402