This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_0728_THIRD94.78 3398.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2199.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 299.45 295.93 398.21 3698.28 2699.86 897.52 299.67 699.75 3
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3498.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
IU-MVS99.42 695.39 997.94 10290.40 17298.94 597.41 799.66 899.74 5
test_241102_TWO98.27 2895.13 1798.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13298.35 1995.16 1698.71 1098.80 995.05 799.89 396.70 2099.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9298.19 4492.82 9697.93 2098.74 1191.60 5399.86 896.26 3199.52 2599.67 8
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1898.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2499.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 8097.14 4198.34 4191.59 5499.87 795.46 6799.59 1599.64 10
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6998.22 3992.74 9997.59 2498.20 5791.96 4499.86 894.21 9599.25 6599.63 11
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5598.18 4690.57 16898.85 798.94 193.33 1799.83 2296.72 1999.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2696.59 6098.29 5091.70 5099.80 2795.66 5599.40 4599.62 13
X-MVStestdata91.71 19789.67 25697.81 3099.38 1494.03 5098.59 798.20 4294.85 2696.59 6032.69 36291.70 5099.80 2795.66 5599.40 4599.62 13
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7797.15 4098.33 4491.35 5999.86 895.63 6099.59 1599.62 13
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7695.95 8798.33 4491.04 6699.88 495.20 7099.57 2099.60 16
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13898.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4099.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12598.08 6495.07 2196.11 7898.59 1590.88 7099.90 196.18 4099.50 3299.58 17
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10396.39 7098.18 5891.61 5299.88 495.59 6599.55 2199.57 19
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8598.98 192.22 11197.14 4198.44 2891.17 6499.85 1494.35 9399.46 3899.57 19
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12398.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 1099.49 3499.57 19
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2998.27 2895.13 1799.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
OPU-MVS98.55 198.82 5696.86 198.25 2998.26 5396.04 199.24 12195.36 6899.59 1599.56 22
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16598.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1599.29 5799.56 22
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11598.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5299.17 7299.56 22
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5498.04 8193.79 5897.35 3398.53 2191.40 5799.56 8196.30 3099.30 5699.55 26
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16597.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1799.29 5799.55 26
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 14098.07 7093.54 6896.08 8097.69 9093.86 1399.71 3896.50 2599.39 4799.55 26
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4998.07 7093.75 5997.45 2898.48 2591.43 5699.59 6896.22 3499.27 6199.54 29
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7797.18 3898.29 5092.08 3999.83 2295.63 6099.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3998.32 2092.57 10497.18 3898.29 5092.08 3999.83 2295.12 7399.59 1599.54 29
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8696.45 6898.30 4991.90 4599.85 1495.61 6299.68 499.54 29
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7798.10 6191.50 13298.01 1898.32 4692.33 3599.58 7194.85 8199.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14597.22 18395.35 898.27 1498.65 1393.33 1799.72 3596.49 2699.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3398.27 2892.37 10898.27 1498.65 1393.33 1799.72 3596.49 2699.52 2599.51 34
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4998.06 7393.11 8397.44 2998.55 1990.93 6899.55 8496.06 4299.25 6599.51 34
agg_prior293.94 10299.38 4899.50 37
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15398.01 9195.12 1997.14 4198.42 3191.82 4699.61 6296.90 1299.13 7599.50 37
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1998.06 7393.37 7295.54 10498.34 4190.59 7599.88 494.83 8399.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14896.40 6997.99 6990.99 6799.58 7195.61 6299.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14298.21 4088.16 23496.64 5797.70 8991.18 6399.67 4992.44 12799.47 3699.48 41
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3697.85 11194.92 2498.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15397.76 11595.01 2397.08 4698.42 3191.71 4999.54 8696.80 1599.13 7599.48 41
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2598.13 5492.72 10096.70 5298.06 6491.35 5999.86 894.83 8399.28 5999.47 44
test9_res94.81 8599.38 4899.45 45
DeepPCF-MVS93.97 196.61 4897.09 1295.15 16098.09 10586.63 26496.00 23498.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1899.48 3599.45 45
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4497.85 11193.72 6098.57 1198.35 3893.69 1599.40 10997.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15895.34 1398.48 1697.87 10794.65 3888.53 25998.02 6783.69 16199.71 3893.18 11998.96 8699.44 47
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2291.40 5799.56 8196.05 4399.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9497.98 4998.03 8493.52 6997.43 3198.51 2290.71 7396.05 4399.26 6399.43 49
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8198.24 3491.57 13097.90 2198.37 3692.61 2999.66 5295.59 6599.51 2999.43 49
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10798.04 8194.81 3196.59 6098.37 3691.24 6199.64 6195.16 7199.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9697.97 9995.59 496.61 5897.89 7292.57 3099.84 1995.95 4799.51 2999.40 53
train_agg96.30 5795.83 6497.72 3998.70 6094.19 4096.41 20198.02 8888.58 22096.03 8197.56 10592.73 2599.59 6895.04 7599.37 5299.39 54
CDPH-MVS95.97 6795.38 7497.77 3598.93 4794.44 3196.35 20997.88 10586.98 26496.65 5697.89 7291.99 4399.47 10092.26 12899.46 3899.39 54
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15398.06 7390.67 15995.55 10298.78 1091.07 6599.86 896.58 2399.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16896.77 4998.35 3890.21 7999.53 8994.80 8699.63 1299.38 56
ACMMPcopyleft96.27 5895.93 6197.28 5999.24 2892.62 8798.25 2998.81 392.99 8694.56 11698.39 3588.96 8999.85 1494.57 9297.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3698.45 1589.86 18097.11 4498.01 6892.52 3299.69 4496.03 4699.53 2499.36 58
agg_prior196.22 6095.77 6597.56 4898.67 6293.79 5596.28 21798.00 9388.76 21795.68 9697.55 10792.70 2799.57 7995.01 7699.32 5399.32 60
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5798.14 5394.82 3099.01 398.55 1994.18 1197.41 30096.94 1199.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CANet96.39 5596.02 6097.50 5097.62 12993.38 6797.02 14597.96 10095.42 794.86 11297.81 8287.38 11499.82 2596.88 1399.20 7099.29 62
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20998.00 9392.80 9796.03 8197.59 10192.01 4199.41 10795.01 7699.38 4899.29 62
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22498.90 294.30 4695.86 8997.74 8792.33 3599.38 11296.04 4599.42 4399.28 65
ETH3D cwj APD-0.1696.56 5096.06 5998.05 1798.26 9295.19 1896.99 15098.05 8089.85 18297.26 3598.22 5691.80 4799.69 4494.84 8299.28 5999.27 66
test1297.65 4498.46 7494.26 3797.66 12995.52 10590.89 6999.46 10199.25 6599.22 67
CHOSEN 1792x268894.15 11093.51 11996.06 11598.27 8989.38 19395.18 27098.48 1485.60 28493.76 13297.11 12683.15 17199.61 6291.33 15398.72 9399.19 68
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17693.36 6998.65 698.36 1694.12 4889.25 24398.06 6482.20 19699.77 2993.41 11599.32 5399.18 69
旧先验198.38 8193.38 6797.75 11698.09 6292.30 3899.01 8499.16 70
VNet95.89 6995.45 7197.21 6598.07 10792.94 7997.50 9998.15 5193.87 5397.52 2597.61 10085.29 14099.53 8995.81 5395.27 16999.16 70
CSCG96.05 6495.91 6296.46 9399.24 2890.47 15998.30 2498.57 1189.01 20393.97 12897.57 10392.62 2899.76 3094.66 8999.27 6199.15 72
IS-MVSNet94.90 9594.52 9696.05 11697.67 12690.56 15698.44 1796.22 25593.21 7793.99 12697.74 8785.55 13898.45 19289.98 17097.86 11399.14 73
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13496.89 16097.73 11894.74 3596.49 6498.49 2490.88 7099.58 7196.44 2898.32 10299.13 74
baseline95.58 7595.42 7396.08 11396.78 16490.41 16297.16 13697.45 15893.69 6395.65 10097.85 7887.29 11598.68 17295.66 5597.25 13399.13 74
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 23097.48 14793.47 7195.67 9998.10 6089.17 8799.25 12091.27 15598.77 9199.13 74
LFMVS93.60 13292.63 14596.52 8598.13 10491.27 12997.94 5593.39 33590.57 16896.29 7298.31 4769.00 32299.16 12894.18 9795.87 15899.12 77
UA-Net95.95 6895.53 6797.20 6697.67 12692.98 7897.65 8598.13 5494.81 3196.61 5898.35 3888.87 9099.51 9490.36 16797.35 12999.11 78
EPNet95.20 8694.56 9397.14 6892.80 32292.68 8497.85 6394.87 31296.64 192.46 15797.80 8486.23 12799.65 5393.72 10898.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
casdiffmvs95.64 7395.49 6996.08 11396.76 16790.45 16097.29 12297.44 16294.00 5095.46 10697.98 7087.52 11198.73 16795.64 5997.33 13099.08 80
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16996.72 22694.17 4797.44 2997.66 9392.76 2399.33 11496.86 1497.76 11899.08 80
HyFIR lowres test93.66 13092.92 13695.87 12598.24 9389.88 17594.58 27898.49 1285.06 29393.78 13195.78 19982.86 18098.67 17391.77 14295.71 16399.07 82
mvs_anonymous93.82 12593.74 10994.06 20796.44 18485.41 28295.81 24397.05 19989.85 18290.09 21596.36 16987.44 11397.75 27093.97 10096.69 14599.02 83
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5898.03 8493.34 7597.22 3798.42 3187.93 10399.72 3595.10 7499.07 8099.02 83
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2298.11 5987.79 24595.17 10998.03 6687.09 11899.61 6293.51 11199.42 4399.02 83
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 17197.61 13087.92 23598.10 4195.80 26992.22 11193.02 14897.45 10984.53 15097.91 25688.24 20797.97 11199.02 83
GeoE93.89 12293.28 12895.72 13496.96 15789.75 17898.24 3296.92 21389.47 19192.12 16997.21 12084.42 15198.39 19787.71 21896.50 14999.01 87
Anonymous20240521192.07 18990.83 20895.76 12898.19 10088.75 21297.58 9395.00 30386.00 27993.64 13397.45 10966.24 33899.53 8990.68 16492.71 20299.01 87
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14191.58 12098.26 2898.12 5694.38 4494.90 11198.15 5982.28 19498.92 15191.45 15298.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23698.18 4695.23 1295.87 8897.65 9491.45 5599.70 4395.87 4899.44 4299.00 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12597.73 11891.80 12592.93 15496.62 15689.13 8899.14 13189.21 19397.78 11698.97 91
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8298.49 1294.66 3797.24 3698.41 3492.31 3798.94 15096.61 2299.46 3898.96 92
DeepC-MVS93.07 396.06 6395.66 6697.29 5897.96 10993.17 7397.30 12198.06 7393.92 5293.38 14198.66 1286.83 12099.73 3295.60 6499.22 6898.96 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs95.87 7095.23 7897.78 3397.56 13495.19 1897.86 6097.17 18694.39 4396.47 6696.40 16785.89 13399.20 12396.21 3895.11 17398.95 94
114514_t93.95 12093.06 13296.63 8099.07 3991.61 11797.46 10697.96 10077.99 34393.00 14997.57 10386.14 13299.33 11489.22 19299.15 7398.94 95
WTY-MVS94.71 10294.02 10496.79 7697.71 12592.05 10696.59 19297.35 17490.61 16594.64 11596.93 13286.41 12699.39 11091.20 15794.71 18198.94 95
EPP-MVSNet95.22 8595.04 8395.76 12897.49 13589.56 18398.67 597.00 20590.69 15894.24 12297.62 9989.79 8498.81 16093.39 11696.49 15098.92 97
canonicalmvs96.02 6595.45 7197.75 3797.59 13295.15 2198.28 2697.60 13594.52 4096.27 7396.12 17987.65 10799.18 12696.20 3994.82 17798.91 98
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 16197.72 12194.67 3696.16 7798.46 2690.43 7699.58 7196.23 3397.96 11298.90 99
PAPR94.18 10993.42 12596.48 9097.64 12891.42 12695.55 25297.71 12688.99 20492.34 16395.82 19489.19 8699.11 13386.14 25097.38 12798.90 99
无先验95.79 24497.87 10783.87 30999.65 5387.68 22298.89 101
DP-MVS92.76 16591.51 18496.52 8598.77 5790.99 14297.38 11396.08 26082.38 32089.29 24097.87 7583.77 16099.69 4481.37 30296.69 14598.89 101
diffmvs95.25 8395.13 8195.63 13896.43 18589.34 19595.99 23597.35 17492.83 9596.31 7197.37 11386.44 12598.67 17396.26 3197.19 13598.87 103
MVSFormer95.37 7995.16 8095.99 12096.34 18991.21 13298.22 3497.57 13991.42 13696.22 7497.32 11486.20 13097.92 25394.07 9899.05 8198.85 104
jason94.84 9894.39 10196.18 11195.52 22290.93 14696.09 22896.52 24289.28 19696.01 8597.32 11484.70 14798.77 16495.15 7298.91 8998.85 104
jason: jason.
Effi-MVS+94.93 9494.45 9996.36 10196.61 17091.47 12396.41 20197.41 16791.02 15394.50 11795.92 18887.53 11098.78 16293.89 10496.81 14098.84 106
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26697.62 13490.43 17195.55 10297.07 12891.72 4899.50 9789.62 18198.94 8798.82 107
lupinMVS94.99 9394.56 9396.29 10696.34 18991.21 13295.83 24296.27 25288.93 20896.22 7496.88 13786.20 13098.85 15795.27 6999.05 8198.82 107
test_yl94.78 10094.23 10296.43 9497.74 12391.22 13096.85 16297.10 19291.23 14695.71 9496.93 13284.30 15399.31 11693.10 12095.12 17198.75 109
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12391.22 13096.85 16297.10 19291.23 14695.71 9496.93 13284.30 15399.31 11693.10 12095.12 17198.75 109
CVMVSNet91.23 22391.75 17389.67 32195.77 21374.69 34996.44 19794.88 30985.81 28192.18 16697.64 9779.07 24695.58 33788.06 21095.86 15998.74 111
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 23097.73 11881.56 32795.68 9697.85 7890.23 7899.65 5387.68 22299.12 7898.73 112
test22298.24 9392.21 10095.33 26197.60 13579.22 33995.25 10797.84 8188.80 9299.15 7398.72 113
MVS_Test94.89 9694.62 9195.68 13696.83 16289.55 18496.70 17797.17 18691.17 14895.60 10196.11 18287.87 10498.76 16593.01 12497.17 13698.72 113
VDD-MVS93.82 12593.08 13196.02 11897.88 11689.96 17497.72 7795.85 26792.43 10695.86 8998.44 2868.42 32699.39 11096.31 2994.85 17598.71 115
新几何197.32 5698.60 6893.59 6197.75 11681.58 32695.75 9397.85 7890.04 8199.67 4986.50 24499.13 7598.69 116
sss94.51 10493.80 10896.64 7897.07 14791.97 11096.32 21398.06 7388.94 20794.50 11796.78 13984.60 14899.27 11991.90 13896.02 15498.68 117
testdata95.46 15398.18 10288.90 21097.66 12982.73 31997.03 4798.07 6390.06 8098.85 15789.67 17998.98 8598.64 118
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12796.24 22298.79 493.99 5195.80 9197.65 9489.92 8399.24 12195.87 4899.20 7098.58 119
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12398.25 3390.21 17394.18 12397.27 11687.48 11299.73 3293.53 11097.77 11798.55 120
EIA-MVS95.53 7795.47 7095.71 13597.06 15089.63 17997.82 6597.87 10793.57 6493.92 12995.04 23090.61 7498.95 14994.62 9098.68 9498.54 121
TAMVS94.01 11993.46 12195.64 13796.16 19890.45 16096.71 17696.89 21689.27 19793.46 13996.92 13587.29 11597.94 25088.70 20395.74 16198.53 122
ET-MVSNet_ETH3D91.49 20990.11 23895.63 13896.40 18691.57 12195.34 26093.48 33390.60 16775.58 34795.49 21680.08 23096.79 32094.25 9489.76 24798.52 123
PatchmatchNetpermissive91.91 19291.35 18693.59 23395.38 22884.11 29993.15 31895.39 28389.54 18892.10 17093.68 29382.82 18298.13 21684.81 26995.32 16898.52 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM93.45 13792.27 15996.98 7496.77 16592.62 8798.39 2098.12 5684.50 30188.27 26597.77 8582.39 19399.81 2685.40 26398.81 9098.51 125
1112_ss93.37 13992.42 15596.21 11097.05 15290.99 14296.31 21496.72 22686.87 26789.83 22296.69 14686.51 12499.14 13188.12 20993.67 19298.50 126
ab-mvs93.57 13492.55 14996.64 7897.28 13791.96 11195.40 25897.45 15889.81 18493.22 14796.28 17279.62 24099.46 10190.74 16293.11 19898.50 126
原ACMM196.38 9998.59 6991.09 14197.89 10387.41 25695.22 10897.68 9190.25 7799.54 8687.95 21299.12 7898.49 128
Test_1112_low_res92.84 16291.84 17195.85 12697.04 15389.97 17395.53 25496.64 23585.38 28789.65 22895.18 22585.86 13499.10 13487.70 21993.58 19798.49 128
Patchmatch-test89.42 27187.99 27893.70 22895.27 24085.11 28688.98 34894.37 32281.11 32887.10 28993.69 29182.28 19497.50 29274.37 33694.76 17898.48 130
VDDNet93.05 15092.07 16296.02 11896.84 16090.39 16398.08 4395.85 26786.22 27695.79 9298.46 2667.59 32999.19 12494.92 8094.85 17598.47 131
PVSNet86.66 1892.24 18291.74 17593.73 22597.77 12283.69 30592.88 32296.72 22687.91 24093.00 14994.86 23778.51 25899.05 14386.53 24297.45 12698.47 131
GSMVS98.45 133
sam_mvs182.76 18398.45 133
SCA91.84 19491.18 19793.83 22195.59 21884.95 29094.72 27595.58 27990.82 15492.25 16593.69 29175.80 28598.10 22186.20 24895.98 15598.45 133
CDS-MVSNet94.14 11393.54 11695.93 12296.18 19691.46 12496.33 21297.04 20188.97 20693.56 13496.51 16087.55 10997.89 25789.80 17595.95 15698.44 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14298.08 6488.35 22795.09 11097.65 9489.97 8299.48 9992.08 13798.59 9798.44 136
Patchmatch-RL test87.38 29286.24 29390.81 30788.74 35078.40 34488.12 35093.17 33687.11 26382.17 33089.29 33981.95 20195.60 33688.64 20477.02 33798.41 138
LCM-MVSNet-Re92.50 16892.52 15292.44 27196.82 16381.89 31796.92 15793.71 33192.41 10784.30 31594.60 25185.08 14397.03 31191.51 14997.36 12898.40 139
PVSNet_Blended94.87 9794.56 9395.81 12798.27 8989.46 19095.47 25698.36 1688.84 21194.36 11996.09 18388.02 10099.58 7193.44 11398.18 10698.40 139
tttt051792.96 15492.33 15794.87 17497.11 14587.16 25297.97 5392.09 34490.63 16393.88 13097.01 13176.50 27999.06 14290.29 16995.45 16698.38 141
MDTV_nov1_ep13_2view70.35 35493.10 32083.88 30893.55 13582.47 19186.25 24798.38 141
BH-RMVSNet92.72 16691.97 16794.97 16997.16 14287.99 23496.15 22695.60 27790.62 16491.87 17497.15 12478.41 26198.57 18383.16 28497.60 12098.36 143
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12896.43 19997.57 13992.04 12094.77 11497.96 7187.01 11999.09 13791.31 15496.77 14198.36 143
thisisatest053093.03 15192.21 16095.49 14997.07 14789.11 20697.49 10392.19 34390.16 17594.09 12496.41 16676.43 28299.05 14390.38 16695.68 16498.31 145
hse-mvs394.15 11093.52 11896.04 11797.81 11990.22 16597.62 9197.58 13895.19 1496.74 5097.45 10983.67 16299.61 6295.85 5079.73 33098.29 146
Anonymous2024052991.98 19190.73 21295.73 13398.14 10389.40 19297.99 4897.72 12179.63 33793.54 13697.41 11269.94 32099.56 8191.04 15891.11 22998.22 147
GA-MVS91.38 21490.31 22794.59 18694.65 27387.62 24294.34 28896.19 25790.73 15790.35 20293.83 28571.84 30597.96 24787.22 23493.61 19598.21 148
TAPA-MVS90.10 792.30 17891.22 19595.56 14298.33 8589.60 18196.79 16997.65 13181.83 32491.52 17897.23 11987.94 10298.91 15371.31 34698.37 10198.17 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS96.12 6296.17 5895.97 12196.69 16991.17 13998.49 1497.72 12193.80 5796.17 7697.13 12589.42 8598.60 17997.05 999.03 8398.15 150
UGNet94.04 11893.28 12896.31 10396.85 15991.19 13597.88 5997.68 12794.40 4293.00 14996.18 17573.39 30299.61 6291.72 14398.46 9998.13 151
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+93.46 13692.75 14195.59 14196.77 16590.03 16796.81 16897.13 18988.19 23091.30 18594.27 26986.21 12998.63 17687.66 22496.46 15298.12 152
tpm90.25 25789.74 25591.76 29193.92 29579.73 33693.98 29893.54 33288.28 22891.99 17293.25 30377.51 27497.44 29787.30 23387.94 26198.12 152
PMMVS92.86 16092.34 15694.42 19694.92 25986.73 26094.53 28096.38 24884.78 29894.27 12195.12 22983.13 17298.40 19491.47 15196.49 15098.12 152
EPMVS90.70 24789.81 25093.37 24494.73 27084.21 29793.67 30888.02 35589.50 19092.38 16093.49 29877.82 27297.78 26786.03 25492.68 20398.11 155
LS3D93.57 13492.61 14796.47 9197.59 13291.61 11797.67 8297.72 12185.17 29190.29 20398.34 4184.60 14899.73 3283.85 28298.27 10398.06 156
UniMVSNet_ETH3D91.34 21990.22 23594.68 18594.86 26487.86 23897.23 13097.46 15287.99 23789.90 21996.92 13566.35 33698.23 20590.30 16890.99 23297.96 157
HY-MVS89.66 993.87 12392.95 13596.63 8097.10 14692.49 9195.64 25096.64 23589.05 20293.00 14995.79 19885.77 13699.45 10389.16 19694.35 18397.96 157
DWT-MVSNet_test90.76 24289.89 24693.38 24395.04 25383.70 30495.85 24194.30 32588.19 23090.46 19992.80 30773.61 30098.50 18788.16 20890.58 23797.95 159
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 19296.88 21790.13 17691.91 17397.24 11885.21 14199.09 13787.64 22597.83 11497.92 160
CostFormer91.18 22990.70 21392.62 26994.84 26581.76 31894.09 29794.43 31984.15 30492.72 15693.77 28979.43 24298.20 20990.70 16392.18 21297.90 161
tpmrst91.44 21191.32 18891.79 28895.15 24779.20 34093.42 31395.37 28588.55 22393.49 13893.67 29482.49 19098.27 20390.41 16589.34 25097.90 161
EPNet_dtu91.71 19791.28 19192.99 25793.76 30183.71 30396.69 17995.28 29093.15 8187.02 29195.95 18783.37 16897.38 30279.46 31496.84 13997.88 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051592.29 17991.30 19095.25 15796.60 17188.90 21094.36 28792.32 34287.92 23993.43 14094.57 25277.28 27599.00 14689.42 18595.86 15997.86 164
ADS-MVSNet289.45 27088.59 27292.03 28095.86 20882.26 31690.93 33794.32 32483.23 31691.28 18891.81 32479.01 25195.99 32879.52 31191.39 22597.84 165
ADS-MVSNet89.89 26588.68 27193.53 23695.86 20884.89 29190.93 33795.07 30183.23 31691.28 18891.81 32479.01 25197.85 25979.52 31191.39 22597.84 165
MAR-MVS94.22 10893.46 12196.51 8898.00 10892.19 10397.67 8297.47 15088.13 23693.00 14995.84 19284.86 14699.51 9487.99 21198.17 10797.83 167
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS96.02 6595.89 6396.40 9697.16 14292.44 9297.47 10497.77 11494.55 3996.48 6594.51 25391.23 6298.92 15195.65 5898.19 10597.82 168
CANet_DTU94.37 10593.65 11396.55 8496.46 18392.13 10496.21 22396.67 23494.38 4493.53 13797.03 13079.34 24399.71 3890.76 16198.45 10097.82 168
PLCcopyleft91.00 694.11 11493.43 12396.13 11298.58 7191.15 14096.69 17997.39 16887.29 25991.37 18196.71 14288.39 9899.52 9387.33 23297.13 13797.73 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dp88.90 27788.26 27790.81 30794.58 27876.62 34692.85 32394.93 30785.12 29290.07 21793.07 30475.81 28498.12 21980.53 30687.42 26897.71 171
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 19297.81 11389.87 17992.15 16797.06 12983.62 16499.54 8689.34 18798.07 10997.70 172
baseline192.82 16391.90 16995.55 14497.20 14090.77 15297.19 13394.58 31792.20 11392.36 16196.34 17084.16 15698.21 20789.20 19483.90 31397.68 173
test-LLR91.42 21291.19 19692.12 27894.59 27680.66 32494.29 29192.98 33791.11 15090.76 19592.37 31479.02 24998.07 22988.81 20096.74 14297.63 174
test-mter90.19 26089.54 25992.12 27894.59 27680.66 32494.29 29192.98 33787.68 25090.76 19592.37 31467.67 32898.07 22988.81 20096.74 14297.63 174
PAPM91.52 20890.30 22895.20 15895.30 23989.83 17693.38 31496.85 22186.26 27588.59 25795.80 19584.88 14598.15 21575.67 33295.93 15797.63 174
F-COLMAP93.58 13392.98 13495.37 15598.40 7888.98 20897.18 13497.29 17987.75 24890.49 19897.10 12785.21 14199.50 9786.70 24196.72 14497.63 174
TESTMET0.1,190.06 26289.42 26091.97 28194.41 28380.62 32694.29 29191.97 34687.28 26090.44 20092.47 31368.79 32397.67 27588.50 20696.60 14797.61 178
CR-MVSNet90.82 24189.77 25293.95 21594.45 28187.19 25090.23 34295.68 27586.89 26692.40 15892.36 31780.91 21597.05 31081.09 30493.95 19097.60 179
RPMNet88.98 27487.05 28994.77 18294.45 28187.19 25090.23 34298.03 8477.87 34592.40 15887.55 34780.17 22999.51 9468.84 35093.95 19097.60 179
MIMVSNet88.50 28386.76 29193.72 22794.84 26587.77 24091.39 33294.05 32786.41 27387.99 27392.59 31163.27 34595.82 33377.44 32292.84 20197.57 181
PatchT88.87 27887.42 28393.22 25094.08 29285.10 28789.51 34694.64 31681.92 32392.36 16188.15 34480.05 23197.01 31472.43 34293.65 19397.54 182
tpm289.96 26389.21 26492.23 27794.91 26281.25 32193.78 30494.42 32080.62 33391.56 17793.44 30076.44 28197.94 25085.60 26092.08 21697.49 183
IB-MVS87.33 1789.91 26488.28 27694.79 18195.26 24387.70 24195.12 27293.95 33089.35 19587.03 29092.49 31270.74 31399.19 12489.18 19581.37 32697.49 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
AUN-MVS91.76 19690.75 21194.81 17797.00 15588.57 21796.65 18396.49 24389.63 18792.15 16796.12 17978.66 25698.50 18790.83 16079.18 33397.36 185
hse-mvs293.45 13792.99 13394.81 17797.02 15488.59 21696.69 17996.47 24495.19 1496.74 5096.16 17883.67 16298.48 19195.85 5079.13 33497.35 186
CHOSEN 280x42093.12 14792.72 14394.34 19996.71 16887.27 24690.29 34197.72 12186.61 27191.34 18295.29 22184.29 15598.41 19393.25 11898.94 8797.35 186
BH-untuned92.94 15692.62 14693.92 21997.22 13886.16 27396.40 20496.25 25490.06 17789.79 22396.17 17783.19 16998.35 19987.19 23597.27 13297.24 188
131492.81 16492.03 16495.14 16195.33 23689.52 18796.04 23097.44 16287.72 24986.25 29995.33 22083.84 15998.79 16189.26 19097.05 13897.11 189
PCF-MVS89.48 1191.56 20489.95 24496.36 10196.60 17192.52 9092.51 32897.26 18079.41 33888.90 24796.56 15884.04 15899.55 8477.01 32897.30 13197.01 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.49 17091.60 17895.18 15997.91 11489.47 18897.65 8594.66 31492.18 11793.33 14294.91 23478.06 26899.10 13481.61 29694.06 18996.98 191
thres40092.42 17291.52 18295.12 16397.85 11789.29 19897.41 10794.88 30992.19 11593.27 14594.46 25878.17 26499.08 13981.40 29994.08 18696.98 191
XVG-OURS-SEG-HR93.86 12493.55 11594.81 17797.06 15088.53 21995.28 26497.45 15891.68 12894.08 12597.68 9182.41 19298.90 15493.84 10692.47 20696.98 191
MSDG91.42 21290.24 23294.96 17097.15 14488.91 20993.69 30796.32 25085.72 28386.93 29396.47 16280.24 22798.98 14880.57 30595.05 17496.98 191
XVG-OURS93.72 12993.35 12694.80 18097.07 14788.61 21594.79 27497.46 15291.97 12393.99 12697.86 7781.74 20598.88 15692.64 12692.67 20496.92 195
PatchMatch-RL92.90 15892.02 16595.56 14298.19 10090.80 15095.27 26697.18 18487.96 23891.86 17595.68 20680.44 22398.99 14784.01 27897.54 12196.89 196
mvs-test193.63 13193.69 11193.46 24096.02 20584.61 29497.24 12596.72 22693.85 5492.30 16495.76 20083.08 17398.89 15591.69 14696.54 14896.87 197
tpmvs89.83 26889.15 26691.89 28394.92 25980.30 33093.11 31995.46 28286.28 27488.08 27092.65 30980.44 22398.52 18681.47 29889.92 24596.84 198
baseline291.63 20090.86 20493.94 21794.33 28586.32 26795.92 23891.64 34889.37 19486.94 29294.69 24681.62 20798.69 17188.64 20494.57 18296.81 199
TR-MVS91.48 21090.59 21794.16 20496.40 18687.33 24495.67 24795.34 28987.68 25091.46 17995.52 21576.77 27898.35 19982.85 28893.61 19596.79 200
OpenMVScopyleft89.19 1292.86 16091.68 17696.40 9695.34 23392.73 8398.27 2798.12 5684.86 29685.78 30297.75 8678.89 25499.74 3187.50 22998.65 9596.73 201
tpm cat188.36 28487.21 28791.81 28795.13 24980.55 32792.58 32795.70 27274.97 34787.45 28091.96 32278.01 27098.17 21480.39 30788.74 25696.72 202
DSMNet-mixed86.34 30086.12 29687.00 33189.88 34470.43 35394.93 27390.08 35377.97 34485.42 30792.78 30874.44 29393.96 34774.43 33595.14 17096.62 203
API-MVS94.84 9894.49 9795.90 12497.90 11592.00 10997.80 6797.48 14789.19 19994.81 11396.71 14288.84 9199.17 12788.91 19998.76 9296.53 204
gg-mvs-nofinetune87.82 28985.61 29894.44 19394.46 28089.27 20191.21 33684.61 36080.88 33089.89 22174.98 35471.50 30797.53 28985.75 25997.21 13496.51 205
Effi-MVS+-dtu93.08 14893.21 13092.68 26896.02 20583.25 30897.14 13996.72 22693.85 5491.20 19293.44 30083.08 17398.30 20291.69 14695.73 16296.50 206
thres100view90092.43 17191.58 17994.98 16897.92 11389.37 19497.71 7994.66 31492.20 11393.31 14394.90 23578.06 26899.08 13981.40 29994.08 18696.48 207
tfpn200view992.38 17491.52 18294.95 17197.85 11789.29 19897.41 10794.88 30992.19 11593.27 14594.46 25878.17 26499.08 13981.40 29994.08 18696.48 207
JIA-IIPM88.26 28687.04 29091.91 28293.52 30781.42 32089.38 34794.38 32180.84 33190.93 19480.74 35279.22 24597.92 25382.76 28991.62 22096.38 209
cascas91.20 22590.08 23994.58 19094.97 25589.16 20593.65 30997.59 13779.90 33689.40 23592.92 30675.36 28998.36 19892.14 13394.75 17996.23 210
RPSCF90.75 24490.86 20490.42 31496.84 16076.29 34795.61 25196.34 24983.89 30791.38 18097.87 7576.45 28098.78 16287.16 23792.23 20996.20 211
thres20092.23 18391.39 18594.75 18497.61 13089.03 20796.60 19195.09 30092.08 11993.28 14494.00 28178.39 26299.04 14581.26 30394.18 18596.19 212
xiu_mvs_v2_base95.32 8195.29 7795.40 15497.22 13890.50 15895.44 25797.44 16293.70 6296.46 6796.18 17588.59 9799.53 8994.79 8897.81 11596.17 213
PS-MVSNAJ95.37 7995.33 7695.49 14997.35 13690.66 15595.31 26397.48 14793.85 5496.51 6395.70 20588.65 9499.65 5394.80 8698.27 10396.17 213
AllTest90.23 25888.98 26793.98 21197.94 11186.64 26196.51 19695.54 28085.38 28785.49 30596.77 14070.28 31699.15 12980.02 30992.87 19996.15 215
TestCases93.98 21197.94 11186.64 26195.54 28085.38 28785.49 30596.77 14070.28 31699.15 12980.02 30992.87 19996.15 215
BH-w/o92.14 18891.75 17393.31 24696.99 15685.73 27795.67 24795.69 27388.73 21889.26 24294.82 24082.97 17898.07 22985.26 26596.32 15396.13 217
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
xiu_mvs_v1_base95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 13096.58 17391.71 11396.25 21997.35 17492.99 8696.70 5296.63 15382.67 18499.44 10496.22 3497.46 12296.11 218
Fast-Effi-MVS+-dtu92.29 17991.99 16693.21 25195.27 24085.52 28097.03 14296.63 23892.09 11889.11 24595.14 22780.33 22698.08 22687.54 22894.74 18096.03 221
nrg03094.05 11793.31 12796.27 10795.22 24494.59 2898.34 2197.46 15292.93 9391.21 19196.64 14987.23 11798.22 20694.99 7985.80 28295.98 222
RRT_test8_iter0591.19 22890.78 20992.41 27395.76 21583.14 30997.32 11897.46 15291.37 14089.07 24695.57 21070.33 31598.21 20793.56 10986.62 27695.89 223
PS-MVSNAJss93.74 12893.51 11994.44 19393.91 29689.28 20097.75 7197.56 14292.50 10589.94 21896.54 15988.65 9498.18 21293.83 10790.90 23495.86 224
HQP_MVS93.78 12793.43 12394.82 17596.21 19389.99 17097.74 7297.51 14594.85 2691.34 18296.64 14981.32 21098.60 17993.02 12292.23 20995.86 224
plane_prior597.51 14598.60 17993.02 12292.23 20995.86 224
FIs94.09 11593.70 11095.27 15695.70 21692.03 10798.10 4198.68 793.36 7490.39 20196.70 14487.63 10897.94 25092.25 13090.50 24095.84 227
FC-MVSNet-test93.94 12193.57 11495.04 16495.48 22491.45 12598.12 4098.71 593.37 7290.23 20496.70 14487.66 10697.85 25991.49 15090.39 24195.83 228
MVS91.71 19790.44 22295.51 14695.20 24691.59 11996.04 23097.45 15873.44 35087.36 28495.60 20985.42 13999.10 13485.97 25597.46 12295.83 228
VPNet92.23 18391.31 18994.99 16695.56 22090.96 14497.22 13197.86 11092.96 9290.96 19396.62 15675.06 29098.20 20991.90 13883.65 31595.80 230
DU-MVS92.90 15892.04 16395.49 14994.95 25792.83 8097.16 13698.24 3493.02 8590.13 21095.71 20383.47 16597.85 25991.71 14483.93 31095.78 231
NR-MVSNet92.34 17591.27 19295.53 14594.95 25793.05 7597.39 11198.07 7092.65 10284.46 31395.71 20385.00 14497.77 26989.71 17783.52 31695.78 231
HQP4-MVS90.14 20698.50 18795.78 231
HQP-MVS93.19 14692.74 14294.54 19195.86 20889.33 19696.65 18397.39 16893.55 6590.14 20695.87 19080.95 21398.50 18792.13 13492.10 21495.78 231
VPA-MVSNet93.24 14392.48 15495.51 14695.70 21692.39 9397.86 6098.66 992.30 10992.09 17195.37 21980.49 22298.40 19493.95 10185.86 28195.75 235
TranMVSNet+NR-MVSNet92.50 16891.63 17795.14 16194.76 26892.07 10597.53 9798.11 5992.90 9489.56 23196.12 17983.16 17097.60 28389.30 18883.20 31995.75 235
UniMVSNet_NR-MVSNet93.37 13992.67 14495.47 15295.34 23392.83 8097.17 13598.58 1092.98 9190.13 21095.80 19588.37 9997.85 25991.71 14483.93 31095.73 237
test_part192.21 18591.10 19995.51 14697.80 12092.66 8598.02 4797.68 12789.79 18588.80 25396.02 18476.85 27798.18 21290.86 15984.11 30895.69 238
WR-MVS92.34 17591.53 18194.77 18295.13 24990.83 14996.40 20497.98 9891.88 12489.29 24095.54 21482.50 18997.80 26489.79 17685.27 29095.69 238
XXY-MVS92.16 18691.23 19494.95 17194.75 26990.94 14597.47 10497.43 16589.14 20088.90 24796.43 16479.71 23798.24 20489.56 18287.68 26495.67 240
ACMM89.79 892.96 15492.50 15394.35 19896.30 19188.71 21397.58 9397.36 17391.40 13990.53 19796.65 14879.77 23698.75 16691.24 15691.64 21995.59 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121190.63 24989.42 26094.27 20198.24 9389.19 20498.05 4597.89 10379.95 33588.25 26694.96 23172.56 30398.13 21689.70 17885.14 29295.49 242
jajsoiax92.42 17291.89 17094.03 20993.33 31488.50 22097.73 7497.53 14392.00 12288.85 25096.50 16175.62 28898.11 22093.88 10591.56 22295.48 243
testgi87.97 28787.21 28790.24 31692.86 32080.76 32396.67 18294.97 30591.74 12685.52 30495.83 19362.66 34794.47 34576.25 32988.36 25995.48 243
MVSTER93.20 14592.81 13894.37 19796.56 17689.59 18297.06 14197.12 19091.24 14591.30 18595.96 18682.02 19998.05 23293.48 11290.55 23895.47 245
RRT_MVS93.21 14492.32 15895.91 12394.92 25994.15 4396.92 15796.86 22091.42 13691.28 18896.43 16479.66 23998.10 22193.29 11790.06 24395.46 246
UniMVSNet (Re)93.31 14192.55 14995.61 14095.39 22793.34 7097.39 11198.71 593.14 8290.10 21494.83 23987.71 10598.03 23691.67 14883.99 30995.46 246
mvs_tets92.31 17791.76 17293.94 21793.41 31188.29 22397.63 9097.53 14392.04 12088.76 25496.45 16374.62 29298.09 22593.91 10391.48 22395.45 248
EI-MVSNet93.03 15192.88 13793.48 23895.77 21386.98 25596.44 19797.12 19090.66 16191.30 18597.64 9786.56 12298.05 23289.91 17290.55 23895.41 249
EU-MVSNet88.72 28188.90 26888.20 32693.15 31774.21 35096.63 18894.22 32685.18 29087.32 28595.97 18576.16 28394.98 34185.27 26486.17 27895.41 249
test0.0.03 189.37 27288.70 27091.41 29892.47 32785.63 27895.22 26992.70 34091.11 15086.91 29493.65 29579.02 24993.19 35178.00 32189.18 25195.41 249
test_djsdf93.07 14992.76 13994.00 21093.49 30988.70 21498.22 3497.57 13991.42 13690.08 21695.55 21382.85 18197.92 25394.07 9891.58 22195.40 252
IterMVS-LS92.29 17991.94 16893.34 24596.25 19286.97 25696.57 19597.05 19990.67 15989.50 23494.80 24186.59 12197.64 27889.91 17286.11 28095.40 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS92.98 15392.53 15194.32 20096.12 20289.20 20295.28 26497.47 15092.66 10189.90 21995.62 20880.58 22098.40 19492.73 12592.40 20795.38 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CP-MVSNet91.89 19391.24 19393.82 22295.05 25288.57 21797.82 6598.19 4491.70 12788.21 26795.76 20081.96 20097.52 29187.86 21384.65 29995.37 255
FMVSNet391.78 19590.69 21495.03 16596.53 17892.27 9997.02 14596.93 20989.79 18589.35 23794.65 24977.01 27697.47 29486.12 25188.82 25395.35 256
FMVSNet291.31 22090.08 23994.99 16696.51 17992.21 10097.41 10796.95 20788.82 21388.62 25694.75 24373.87 29697.42 29985.20 26688.55 25895.35 256
PS-CasMVS91.55 20590.84 20793.69 22994.96 25688.28 22497.84 6498.24 3491.46 13488.04 27195.80 19579.67 23897.48 29387.02 23884.54 30395.31 258
LPG-MVS_test92.94 15692.56 14894.10 20596.16 19888.26 22597.65 8597.46 15291.29 14190.12 21297.16 12279.05 24798.73 16792.25 13091.89 21795.31 258
LGP-MVS_train94.10 20596.16 19888.26 22597.46 15291.29 14190.12 21297.16 12279.05 24798.73 16792.25 13091.89 21795.31 258
GBi-Net91.35 21790.27 23094.59 18696.51 17991.18 13697.50 9996.93 20988.82 21389.35 23794.51 25373.87 29697.29 30686.12 25188.82 25395.31 258
test191.35 21790.27 23094.59 18696.51 17991.18 13697.50 9996.93 20988.82 21389.35 23794.51 25373.87 29697.29 30686.12 25188.82 25395.31 258
FMVSNet189.88 26688.31 27594.59 18695.41 22691.18 13697.50 9996.93 20986.62 27087.41 28294.51 25365.94 34097.29 30683.04 28687.43 26795.31 258
PVSNet_082.17 1985.46 30983.64 31290.92 30595.27 24079.49 33790.55 34095.60 27783.76 31083.00 32889.95 33571.09 31097.97 24382.75 29060.79 35695.31 258
bset_n11_16_dypcd91.55 20590.59 21794.44 19391.51 33490.25 16492.70 32593.42 33492.27 11090.22 20594.74 24478.42 26097.80 26494.19 9687.86 26395.29 265
ACMP89.59 1092.62 16792.14 16194.05 20896.40 18688.20 22897.36 11497.25 18291.52 13188.30 26396.64 14978.46 25998.72 17091.86 14191.48 22395.23 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v2v48291.59 20190.85 20693.80 22393.87 29888.17 23096.94 15696.88 21789.54 18889.53 23294.90 23581.70 20698.02 23789.25 19185.04 29695.20 267
PEN-MVS91.20 22590.44 22293.48 23894.49 27987.91 23797.76 7098.18 4691.29 14187.78 27695.74 20280.35 22597.33 30485.46 26282.96 32095.19 268
OurMVSNet-221017-090.51 25290.19 23791.44 29793.41 31181.25 32196.98 15296.28 25191.68 12886.55 29796.30 17174.20 29597.98 24088.96 19887.40 26995.09 269
OPM-MVS93.28 14292.76 13994.82 17594.63 27590.77 15296.65 18397.18 18493.72 6091.68 17697.26 11779.33 24498.63 17692.13 13492.28 20895.07 270
eth_miper_zixun_eth91.02 23390.59 21792.34 27595.33 23684.35 29594.10 29696.90 21488.56 22288.84 25194.33 26484.08 15797.60 28388.77 20284.37 30595.06 271
ACMH87.59 1690.53 25189.42 26093.87 22096.21 19387.92 23597.24 12596.94 20888.45 22483.91 32296.27 17371.92 30498.62 17884.43 27589.43 24995.05 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl-mvsnet291.21 22490.56 22093.14 25396.09 20486.80 25894.41 28596.58 24187.80 24488.58 25893.99 28280.85 21897.62 28189.87 17486.93 27194.99 273
v119291.07 23090.23 23393.58 23493.70 30287.82 23996.73 17397.07 19687.77 24689.58 22994.32 26680.90 21797.97 24386.52 24385.48 28594.95 274
COLMAP_ROBcopyleft87.81 1590.40 25489.28 26393.79 22497.95 11087.13 25396.92 15795.89 26682.83 31886.88 29597.18 12173.77 29999.29 11878.44 31993.62 19494.95 274
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v192192090.85 24090.03 24393.29 24793.55 30586.96 25796.74 17297.04 20187.36 25789.52 23394.34 26380.23 22897.97 24386.27 24685.21 29194.94 276
SixPastTwentyTwo89.15 27388.54 27390.98 30493.49 30980.28 33196.70 17794.70 31390.78 15584.15 31895.57 21071.78 30697.71 27384.63 27285.07 29494.94 276
cl-mvsnet190.97 23690.33 22592.88 26195.36 23186.19 27294.46 28396.63 23887.82 24288.18 26894.23 27282.99 17697.53 28987.72 21685.57 28494.93 278
v14419291.06 23190.28 22993.39 24293.66 30487.23 24996.83 16597.07 19687.43 25589.69 22694.28 26881.48 20898.00 23987.18 23684.92 29894.93 278
cl-mvsnet____90.96 23790.32 22692.89 26095.37 23086.21 27194.46 28396.64 23587.82 24288.15 26994.18 27582.98 17797.54 28787.70 21985.59 28394.92 280
v124090.70 24789.85 24893.23 24993.51 30886.80 25896.61 18997.02 20487.16 26289.58 22994.31 26779.55 24197.98 24085.52 26185.44 28694.90 281
cl_fuxian91.38 21490.89 20292.88 26195.58 21986.30 26894.68 27696.84 22288.17 23288.83 25294.23 27285.65 13797.47 29489.36 18684.63 30094.89 282
pmmvs589.86 26788.87 26992.82 26392.86 32086.23 27096.26 21895.39 28384.24 30387.12 28794.51 25374.27 29497.36 30387.61 22787.57 26594.86 283
v114491.37 21690.60 21693.68 23093.89 29788.23 22796.84 16497.03 20388.37 22689.69 22694.39 26082.04 19897.98 24087.80 21585.37 28794.84 284
K. test v387.64 29186.75 29290.32 31593.02 31979.48 33896.61 18992.08 34590.66 16180.25 33994.09 27867.21 33296.65 32285.96 25680.83 32894.83 285
IterMVS90.15 26189.67 25691.61 29395.48 22483.72 30294.33 28996.12 25989.99 17887.31 28694.15 27775.78 28796.27 32686.97 23986.89 27494.83 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_lstm_enhance90.50 25390.06 24291.83 28595.33 23683.74 30193.86 30296.70 23187.56 25387.79 27593.81 28883.45 16796.92 31787.39 23084.62 30194.82 287
IterMVS-SCA-FT90.31 25589.81 25091.82 28695.52 22284.20 29894.30 29096.15 25890.61 16587.39 28394.27 26975.80 28596.44 32387.34 23186.88 27594.82 287
WR-MVS_H92.00 19091.35 18693.95 21595.09 25189.47 18898.04 4698.68 791.46 13488.34 26194.68 24785.86 13497.56 28585.77 25884.24 30694.82 287
GG-mvs-BLEND93.62 23193.69 30389.20 20292.39 33083.33 36187.98 27489.84 33771.00 31196.87 31882.08 29595.40 16794.80 290
v14890.99 23490.38 22492.81 26493.83 29985.80 27696.78 17196.68 23289.45 19288.75 25593.93 28482.96 17997.82 26387.83 21483.25 31794.80 290
miper_ehance_all_eth91.59 20191.13 19892.97 25895.55 22186.57 26594.47 28196.88 21787.77 24688.88 24994.01 28086.22 12897.54 28789.49 18386.93 27194.79 292
XVG-ACMP-BASELINE90.93 23890.21 23693.09 25494.31 28785.89 27595.33 26197.26 18091.06 15289.38 23695.44 21868.61 32498.60 17989.46 18491.05 23094.79 292
DTE-MVSNet90.56 25089.75 25493.01 25693.95 29487.25 24797.64 8997.65 13190.74 15687.12 28795.68 20679.97 23397.00 31583.33 28381.66 32594.78 294
ACMH+87.92 1490.20 25989.18 26593.25 24896.48 18286.45 26696.99 15096.68 23288.83 21284.79 31296.22 17470.16 31898.53 18584.42 27688.04 26094.77 295
miper_enhance_ethall91.54 20791.01 20093.15 25295.35 23287.07 25493.97 29996.90 21486.79 26889.17 24493.43 30286.55 12397.64 27889.97 17186.93 27194.74 296
lessismore_v090.45 31391.96 33379.09 34287.19 35880.32 33894.39 26066.31 33797.55 28684.00 27976.84 33894.70 297
Patchmtry88.64 28287.25 28592.78 26594.09 29186.64 26189.82 34595.68 27580.81 33287.63 27992.36 31780.91 21597.03 31178.86 31785.12 29394.67 298
v7n90.76 24289.86 24793.45 24193.54 30687.60 24397.70 8097.37 17188.85 21087.65 27894.08 27981.08 21298.10 22184.68 27183.79 31494.66 299
V4291.58 20390.87 20393.73 22594.05 29388.50 22097.32 11896.97 20688.80 21689.71 22494.33 26482.54 18898.05 23289.01 19785.07 29494.64 300
v891.29 22290.53 22193.57 23594.15 28988.12 23297.34 11597.06 19888.99 20488.32 26294.26 27183.08 17398.01 23887.62 22683.92 31294.57 301
anonymousdsp92.16 18691.55 18093.97 21392.58 32689.55 18497.51 9897.42 16689.42 19388.40 26094.84 23880.66 21997.88 25891.87 14091.28 22794.48 302
pm-mvs190.72 24689.65 25893.96 21494.29 28889.63 17997.79 6896.82 22389.07 20186.12 30195.48 21778.61 25797.78 26786.97 23981.67 32494.46 303
LTVRE_ROB88.41 1390.99 23489.92 24594.19 20296.18 19689.55 18496.31 21497.09 19487.88 24185.67 30395.91 18978.79 25598.57 18381.50 29789.98 24494.44 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
YYNet185.87 30684.23 31090.78 31092.38 33082.46 31493.17 31695.14 29882.12 32267.69 35092.36 31778.16 26695.50 33977.31 32479.73 33094.39 305
PVSNet_BlendedMVS94.06 11693.92 10594.47 19298.27 8989.46 19096.73 17398.36 1690.17 17494.36 11995.24 22488.02 10099.58 7193.44 11390.72 23694.36 306
v1091.04 23290.23 23393.49 23794.12 29088.16 23197.32 11897.08 19588.26 22988.29 26494.22 27482.17 19797.97 24386.45 24584.12 30794.33 307
MDA-MVSNet-bldmvs85.00 31082.95 31491.17 30393.13 31883.33 30794.56 27995.00 30384.57 30065.13 35592.65 30970.45 31495.85 33173.57 33977.49 33694.33 307
MDA-MVSNet_test_wron85.87 30684.23 31090.80 30992.38 33082.57 31193.17 31695.15 29782.15 32167.65 35192.33 32078.20 26395.51 33877.33 32379.74 32994.31 309
our_test_388.78 28087.98 27991.20 30292.45 32882.53 31293.61 31195.69 27385.77 28284.88 31093.71 29079.99 23296.78 32179.47 31386.24 27794.28 310
pmmvs490.93 23889.85 24894.17 20393.34 31390.79 15194.60 27796.02 26184.62 29987.45 28095.15 22681.88 20397.45 29687.70 21987.87 26294.27 311
MVS_030488.79 27987.57 28192.46 27094.65 27386.15 27496.40 20497.17 18686.44 27288.02 27291.71 32656.68 35397.03 31184.47 27492.58 20594.19 312
ppachtmachnet_test88.35 28587.29 28491.53 29492.45 32883.57 30693.75 30595.97 26284.28 30285.32 30894.18 27579.00 25396.93 31675.71 33184.99 29794.10 313
UnsupCasMVSNet_eth85.99 30484.45 30890.62 31189.97 34382.40 31593.62 31097.37 17189.86 18078.59 34492.37 31465.25 34295.35 34082.27 29470.75 34894.10 313
pmmvs687.81 29086.19 29492.69 26791.32 33586.30 26897.34 11596.41 24780.59 33484.05 32194.37 26267.37 33197.67 27584.75 27079.51 33294.09 315
ITE_SJBPF92.43 27295.34 23385.37 28395.92 26391.47 13387.75 27796.39 16871.00 31197.96 24782.36 29389.86 24693.97 316
FMVSNet587.29 29385.79 29791.78 28994.80 26787.28 24595.49 25595.28 29084.09 30583.85 32391.82 32362.95 34694.17 34678.48 31885.34 28993.91 317
Anonymous2023120687.09 29486.14 29589.93 31991.22 33680.35 32896.11 22795.35 28683.57 31384.16 31793.02 30573.54 30195.61 33572.16 34386.14 27993.84 318
USDC88.94 27587.83 28092.27 27694.66 27284.96 28993.86 30295.90 26587.34 25883.40 32495.56 21267.43 33098.19 21182.64 29289.67 24893.66 319
D2MVS91.30 22190.95 20192.35 27494.71 27185.52 28096.18 22598.21 4088.89 20986.60 29693.82 28779.92 23497.95 24989.29 18990.95 23393.56 320
N_pmnet78.73 32178.71 32378.79 33692.80 32246.50 36594.14 29543.71 36878.61 34180.83 33391.66 32774.94 29196.36 32467.24 35184.45 30493.50 321
MIMVSNet184.93 31183.05 31390.56 31289.56 34684.84 29295.40 25895.35 28683.91 30680.38 33792.21 32157.23 35193.34 35070.69 34982.75 32393.50 321
TransMVSNet (Re)88.94 27587.56 28293.08 25594.35 28488.45 22297.73 7495.23 29487.47 25484.26 31695.29 22179.86 23597.33 30479.44 31574.44 34393.45 323
Baseline_NR-MVSNet91.20 22590.62 21592.95 25993.83 29988.03 23397.01 14995.12 29988.42 22589.70 22595.13 22883.47 16597.44 29789.66 18083.24 31893.37 324
CL-MVSNet_2432*160086.31 30185.15 30389.80 32088.83 34981.74 31993.93 30196.22 25586.67 26985.03 30990.80 33078.09 26794.50 34374.92 33371.86 34793.15 325
TDRefinement86.53 29784.76 30791.85 28482.23 35784.25 29696.38 20795.35 28684.97 29584.09 31994.94 23265.76 34198.34 20184.60 27374.52 34292.97 326
DIV-MVS_2432*160085.95 30584.95 30488.96 32389.55 34779.11 34195.13 27196.42 24685.91 28084.07 32090.48 33170.03 31994.82 34280.04 30872.94 34692.94 327
ambc86.56 33283.60 35570.00 35585.69 35294.97 30580.60 33688.45 34037.42 36096.84 31982.69 29175.44 34192.86 328
MS-PatchMatch90.27 25689.77 25291.78 28994.33 28584.72 29395.55 25296.73 22586.17 27786.36 29895.28 22371.28 30997.80 26484.09 27798.14 10892.81 329
KD-MVS_2432*160084.81 31282.64 31591.31 29991.07 33785.34 28491.22 33495.75 27085.56 28583.09 32690.21 33367.21 33295.89 32977.18 32662.48 35492.69 330
miper_refine_blended84.81 31282.64 31591.31 29991.07 33785.34 28491.22 33495.75 27085.56 28583.09 32690.21 33367.21 33295.89 32977.18 32662.48 35492.69 330
tfpnnormal89.70 26988.40 27493.60 23295.15 24790.10 16697.56 9598.16 5087.28 26086.16 30094.63 25077.57 27398.05 23274.48 33484.59 30292.65 332
EG-PatchMatch MVS87.02 29585.44 29991.76 29192.67 32485.00 28896.08 22996.45 24583.41 31579.52 34193.49 29857.10 35297.72 27279.34 31690.87 23592.56 333
TinyColmap86.82 29685.35 30291.21 30194.91 26282.99 31093.94 30094.02 32983.58 31281.56 33194.68 24762.34 34898.13 21675.78 33087.35 27092.52 334
CMPMVSbinary62.92 2185.62 30884.92 30587.74 32889.14 34873.12 35294.17 29496.80 22473.98 34873.65 34994.93 23366.36 33597.61 28283.95 28091.28 22792.48 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0386.14 30385.40 30188.35 32490.12 34180.06 33395.90 23995.20 29588.59 21981.29 33293.62 29671.43 30892.65 35271.26 34781.17 32792.34 336
LF4IMVS87.94 28887.25 28589.98 31892.38 33080.05 33494.38 28695.25 29387.59 25284.34 31494.74 24464.31 34397.66 27784.83 26887.45 26692.23 337
Anonymous2024052186.42 29985.44 29989.34 32290.33 34079.79 33596.73 17395.92 26383.71 31183.25 32591.36 32963.92 34496.01 32778.39 32085.36 28892.22 338
MVS-HIRNet82.47 31881.21 32086.26 33395.38 22869.21 35688.96 34989.49 35466.28 35280.79 33474.08 35668.48 32597.39 30171.93 34495.47 16592.18 339
MVP-Stereo90.74 24590.08 23992.71 26693.19 31688.20 22895.86 24096.27 25286.07 27884.86 31194.76 24277.84 27197.75 27083.88 28198.01 11092.17 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs-eth3d86.22 30284.45 30891.53 29488.34 35187.25 24794.47 28195.01 30283.47 31479.51 34289.61 33869.75 32195.71 33483.13 28576.73 33991.64 341
UnsupCasMVSNet_bld82.13 31979.46 32290.14 31788.00 35282.47 31390.89 33996.62 24078.94 34075.61 34684.40 35056.63 35496.31 32577.30 32566.77 35291.63 342
test_040286.46 29884.79 30691.45 29695.02 25485.55 27996.29 21694.89 30880.90 32982.21 32993.97 28368.21 32797.29 30662.98 35488.68 25791.51 343
PM-MVS83.48 31581.86 31988.31 32587.83 35377.59 34593.43 31291.75 34786.91 26580.63 33589.91 33644.42 35895.84 33285.17 26776.73 33991.50 344
new-patchmatchnet83.18 31681.87 31887.11 33086.88 35475.99 34893.70 30695.18 29685.02 29477.30 34588.40 34165.99 33993.88 34874.19 33870.18 34991.47 345
test_method66.11 32664.89 32969.79 34172.62 36235.23 36965.19 36092.83 33920.35 36265.20 35488.08 34543.14 35982.70 35873.12 34163.46 35391.45 346
OpenMVS_ROBcopyleft81.14 2084.42 31482.28 31790.83 30690.06 34284.05 30095.73 24694.04 32873.89 34980.17 34091.53 32859.15 35097.64 27866.92 35289.05 25290.80 347
LCM-MVSNet72.55 32269.39 32682.03 33470.81 36465.42 35990.12 34494.36 32355.02 35665.88 35381.72 35124.16 36789.96 35374.32 33768.10 35190.71 348
new_pmnet82.89 31781.12 32188.18 32789.63 34580.18 33291.77 33192.57 34176.79 34675.56 34888.23 34361.22 34994.48 34471.43 34582.92 32189.87 349
pmmvs379.97 32077.50 32487.39 32982.80 35679.38 33992.70 32590.75 35270.69 35178.66 34387.47 34851.34 35693.40 34973.39 34069.65 35089.38 350
PMMVS270.19 32466.92 32780.01 33576.35 35865.67 35886.22 35187.58 35764.83 35462.38 35680.29 35326.78 36588.49 35563.79 35354.07 35785.88 351
ANet_high63.94 32759.58 33077.02 33761.24 36666.06 35785.66 35387.93 35678.53 34242.94 36071.04 35725.42 36680.71 35952.60 35730.83 36084.28 352
FPMVS71.27 32369.85 32575.50 33874.64 35959.03 36191.30 33391.50 34958.80 35557.92 35788.28 34229.98 36385.53 35753.43 35682.84 32281.95 353
DeepMVS_CXcopyleft74.68 34090.84 33964.34 36081.61 36365.34 35367.47 35288.01 34648.60 35780.13 36062.33 35573.68 34579.58 354
PMVScopyleft53.92 2258.58 32855.40 33168.12 34251.00 36748.64 36378.86 35687.10 35946.77 35835.84 36474.28 3558.76 36886.34 35642.07 35973.91 34469.38 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 33048.81 33566.58 34365.34 36557.50 36272.49 35870.94 36640.15 36139.28 36363.51 3596.89 37073.48 36338.29 36042.38 35868.76 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft67.86 32565.41 32875.18 33992.66 32573.45 35166.50 35994.52 31853.33 35757.80 35866.07 35830.81 36189.20 35448.15 35878.88 33562.90 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN53.28 32952.56 33355.43 34474.43 36047.13 36483.63 35576.30 36442.23 35942.59 36162.22 36028.57 36474.40 36131.53 36131.51 35944.78 358
EMVS52.08 33151.31 33454.39 34572.62 36245.39 36683.84 35475.51 36541.13 36040.77 36259.65 36130.08 36273.60 36228.31 36229.90 36144.18 359
tmp_tt51.94 33253.82 33246.29 34633.73 36845.30 36778.32 35767.24 36718.02 36350.93 35987.05 34952.99 35553.11 36470.76 34825.29 36240.46 360
test12313.04 33615.66 3395.18 3484.51 3703.45 37092.50 3291.81 3712.50 3667.58 36720.15 3643.67 3712.18 3677.13 3651.07 3659.90 361
testmvs13.36 33516.33 3384.48 3495.04 3692.26 37193.18 3153.28 3702.70 3658.24 36621.66 3632.29 3722.19 3667.58 3642.96 3649.00 362
wuyk23d25.11 33324.57 33726.74 34773.98 36139.89 36857.88 3619.80 36912.27 36410.39 3656.97 3677.03 36936.44 36525.43 36317.39 3633.89 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.24 33430.99 3360.00 3500.00 3710.00 3720.00 36297.63 1330.00 3670.00 36896.88 13784.38 1520.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.39 3389.85 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36888.65 940.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.06 33710.74 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36896.69 1460.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.05 4194.59 2898.08 6489.22 19897.03 4798.10 6092.52 3299.65 5394.58 9199.31 55
test_241102_ONE99.42 695.30 1598.27 2895.09 2099.19 198.81 895.54 399.65 53
9.1496.75 3398.93 4797.73 7498.23 3891.28 14497.88 2298.44 2893.00 2199.65 5395.76 5499.47 36
save fliter98.91 4994.28 3597.02 14598.02 8895.35 8
test072699.45 295.36 1098.31 2398.29 2494.92 2498.99 498.92 295.08 5
test_part299.28 2595.74 698.10 17
sam_mvs81.94 202
MTGPAbinary98.08 64
test_post192.81 32416.58 36680.53 22197.68 27486.20 248
test_post17.58 36581.76 20498.08 226
patchmatchnet-post90.45 33282.65 18798.10 221
MTMP97.86 6082.03 362
gm-plane-assit93.22 31578.89 34384.82 29793.52 29798.64 17587.72 216
TEST998.70 6094.19 4096.41 20198.02 8888.17 23296.03 8197.56 10592.74 2499.59 68
test_898.67 6294.06 4996.37 20898.01 9188.58 22095.98 8697.55 10792.73 2599.58 71
agg_prior98.67 6293.79 5598.00 9395.68 9699.57 79
test_prior493.66 5996.42 200
test_prior296.35 20992.80 9796.03 8197.59 10192.01 4195.01 7699.38 48
旧先验295.94 23781.66 32597.34 3498.82 15992.26 128
新几何295.79 244
原ACMM295.67 247
testdata299.67 4985.96 256
segment_acmp92.89 22
testdata195.26 26893.10 84
plane_prior796.21 19389.98 172
plane_prior696.10 20390.00 16881.32 210
plane_prior496.64 149
plane_prior390.00 16894.46 4191.34 182
plane_prior297.74 7294.85 26
plane_prior196.14 201
plane_prior89.99 17097.24 12594.06 4992.16 213
n20.00 372
nn0.00 372
door-mid91.06 351
test1197.88 105
door91.13 350
HQP5-MVS89.33 196
HQP-NCC95.86 20896.65 18393.55 6590.14 206
ACMP_Plane95.86 20896.65 18393.55 6590.14 206
BP-MVS92.13 134
HQP3-MVS97.39 16892.10 214
HQP2-MVS80.95 213
NP-MVS95.99 20789.81 17795.87 190
MDTV_nov1_ep1390.76 21095.22 24480.33 32993.03 32195.28 29088.14 23592.84 15593.83 28581.34 20998.08 22682.86 28794.34 184
ACMMP++_ref90.30 242
ACMMP++91.02 231
Test By Simon88.73 93