test_0728_THIRD | | | | | | | | | | 90.75 19 | 97.04 8 | 98.05 6 | 92.09 4 | 99.55 12 | 95.64 4 | 99.13 3 | 99.13 1 |
|
MSP-MVS | | | 95.42 5 | 95.56 5 | 94.98 19 | 98.49 16 | 86.52 38 | 96.91 20 | 97.47 8 | 91.73 8 | 96.10 13 | 96.69 58 | 89.90 9 | 99.30 39 | 94.70 9 | 98.04 64 | 99.13 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 95.46 4 | 95.64 4 | 94.91 22 | 98.26 28 | 86.29 49 | 97.46 2 | 97.40 17 | 89.03 61 | 96.20 12 | 98.10 2 | 89.39 13 | 99.34 33 | 95.88 1 | 99.03 9 | 99.10 3 |
|
IU-MVS | | | | | | 98.77 4 | 86.00 54 | | 96.84 62 | 81.26 242 | 97.26 6 | | | | 95.50 7 | 99.13 3 | 99.03 4 |
|
test_0728_SECOND | | | | | 95.01 15 | 98.79 1 | 86.43 41 | 97.09 11 | 97.49 5 | | | | | 99.61 3 | 95.62 5 | 99.08 7 | 98.99 5 |
|
test_241102_TWO | | | | | | | | | 97.44 12 | 90.31 26 | 97.62 5 | 98.07 4 | 91.46 8 | 99.58 5 | 95.66 2 | 99.12 6 | 98.98 6 |
|
DPE-MVS |  | | 95.57 3 | 95.67 3 | 95.25 7 | 98.36 25 | 87.28 15 | 95.56 76 | 97.51 4 | 89.13 58 | 97.14 7 | 97.91 9 | 91.64 5 | 99.62 1 | 94.61 11 | 99.17 2 | 98.86 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SED-MVS | | | 95.91 1 | 96.28 1 | 94.80 33 | 98.77 4 | 85.99 55 | 97.13 9 | 97.44 12 | 90.31 26 | 97.71 1 | 98.07 4 | 92.31 2 | 99.58 5 | 95.66 2 | 99.13 3 | 98.84 8 |
|
OPU-MVS | | | | | 96.21 1 | 98.00 44 | 90.85 1 | 97.13 9 | | | | 97.08 40 | 92.59 1 | 98.94 84 | 92.25 46 | 98.99 10 | 98.84 8 |
|
SteuartSystems-ACMMP | | | 95.20 7 | 95.32 8 | 94.85 27 | 96.99 76 | 86.33 45 | 97.33 3 | 97.30 26 | 91.38 11 | 95.39 18 | 97.46 17 | 88.98 16 | 99.40 28 | 94.12 15 | 98.89 14 | 98.82 10 |
Skip Steuart: Steuart Systems R&D Blog. |
MCST-MVS | | | 94.45 20 | 94.20 28 | 95.19 9 | 98.46 18 | 87.50 13 | 95.00 108 | 97.12 40 | 87.13 109 | 92.51 75 | 96.30 74 | 89.24 14 | 99.34 33 | 93.46 21 | 98.62 44 | 98.73 11 |
|
testtj | | | 94.39 25 | 94.18 29 | 95.00 16 | 98.24 31 | 86.77 28 | 96.16 44 | 97.23 32 | 87.28 107 | 94.85 24 | 97.04 42 | 86.99 37 | 99.52 20 | 91.54 70 | 98.33 56 | 98.71 12 |
|
SMA-MVS |  | | 95.20 7 | 95.07 9 | 95.59 3 | 98.14 36 | 88.48 6 | 96.26 40 | 97.28 28 | 85.90 136 | 97.67 3 | 98.10 2 | 88.41 17 | 99.56 7 | 94.66 10 | 99.19 1 | 98.71 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CNVR-MVS | | | 95.40 6 | 95.37 6 | 95.50 5 | 98.11 37 | 88.51 5 | 95.29 88 | 96.96 52 | 92.09 3 | 95.32 19 | 97.08 40 | 89.49 12 | 99.33 36 | 95.10 8 | 98.85 15 | 98.66 14 |
|
ETH3 D test6400 | | | 93.64 49 | 93.22 55 | 94.92 20 | 97.79 52 | 86.84 22 | 95.31 83 | 97.26 29 | 82.67 209 | 93.81 39 | 96.29 75 | 87.29 32 | 99.27 42 | 89.87 91 | 98.67 37 | 98.65 15 |
|
NCCC | | | 94.81 13 | 94.69 15 | 95.17 10 | 97.83 51 | 87.46 14 | 95.66 71 | 96.93 55 | 92.34 2 | 93.94 36 | 96.58 65 | 87.74 24 | 99.44 27 | 92.83 34 | 98.40 53 | 98.62 16 |
|
ACMMP_NAP | | | 94.74 14 | 94.56 16 | 95.28 6 | 98.02 43 | 87.70 10 | 95.68 69 | 97.34 19 | 88.28 81 | 95.30 20 | 97.67 13 | 85.90 49 | 99.54 16 | 93.91 17 | 98.95 11 | 98.60 17 |
|
3Dnovator+ | | 87.14 4 | 92.42 72 | 91.37 80 | 95.55 4 | 95.63 122 | 88.73 4 | 97.07 13 | 96.77 71 | 90.84 16 | 84.02 237 | 96.62 63 | 75.95 157 | 99.34 33 | 87.77 114 | 97.68 76 | 98.59 18 |
|
region2R | | | 94.43 22 | 94.27 24 | 94.92 20 | 98.65 7 | 86.67 32 | 96.92 19 | 97.23 32 | 88.60 72 | 93.58 47 | 97.27 27 | 85.22 56 | 99.54 16 | 92.21 47 | 98.74 29 | 98.56 19 |
|
test1172 | | | 93.97 39 | 94.07 34 | 93.66 71 | 98.11 37 | 83.45 115 | 96.26 40 | 96.84 62 | 88.33 78 | 94.19 30 | 97.43 18 | 84.24 69 | 99.01 70 | 93.26 27 | 97.98 67 | 98.52 20 |
|
ZNCC-MVS | | | 94.47 18 | 94.28 22 | 95.03 14 | 98.52 14 | 86.96 17 | 96.85 23 | 97.32 24 | 88.24 82 | 93.15 55 | 97.04 42 | 86.17 44 | 99.62 1 | 92.40 42 | 98.81 18 | 98.52 20 |
|
ACMMPR | | | 94.43 22 | 94.28 22 | 94.91 22 | 98.63 8 | 86.69 30 | 96.94 15 | 97.32 24 | 88.63 70 | 93.53 50 | 97.26 29 | 85.04 59 | 99.54 16 | 92.35 44 | 98.78 21 | 98.50 22 |
|
DeepPCF-MVS | | 89.96 1 | 94.20 35 | 94.77 13 | 92.49 110 | 96.52 90 | 80.00 210 | 94.00 180 | 97.08 43 | 90.05 32 | 95.65 17 | 97.29 26 | 89.66 10 | 98.97 80 | 93.95 16 | 98.71 30 | 98.50 22 |
|
xxxxxxxxxxxxxcwj | | | 94.65 15 | 94.70 14 | 94.48 47 | 97.85 48 | 85.63 68 | 95.21 94 | 95.47 169 | 89.44 47 | 95.71 15 | 97.70 11 | 88.28 19 | 99.35 31 | 93.89 18 | 98.78 21 | 98.48 24 |
|
SF-MVS | | | 94.97 10 | 94.90 12 | 95.20 8 | 97.84 50 | 87.76 8 | 96.65 28 | 97.48 7 | 87.76 96 | 95.71 15 | 97.70 11 | 88.28 19 | 99.35 31 | 93.89 18 | 98.78 21 | 98.48 24 |
|
SR-MVS | | | 94.23 31 | 94.17 30 | 94.43 50 | 98.21 33 | 85.78 65 | 96.40 34 | 96.90 57 | 88.20 85 | 94.33 27 | 97.40 21 | 84.75 64 | 99.03 64 | 93.35 25 | 97.99 65 | 98.48 24 |
|
TSAR-MVS + MP. | | | 94.85 12 | 94.94 10 | 94.58 43 | 98.25 29 | 86.33 45 | 96.11 49 | 96.62 88 | 88.14 87 | 96.10 13 | 96.96 46 | 89.09 15 | 98.94 84 | 94.48 12 | 98.68 35 | 98.48 24 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
zzz-MVS | | | 94.47 18 | 94.30 21 | 95.00 16 | 98.42 20 | 86.95 18 | 95.06 106 | 96.97 49 | 91.07 13 | 93.14 56 | 97.56 14 | 84.30 67 | 99.56 7 | 93.43 22 | 98.75 27 | 98.47 28 |
|
MTAPA | | | 94.42 24 | 94.22 25 | 95.00 16 | 98.42 20 | 86.95 18 | 94.36 156 | 96.97 49 | 91.07 13 | 93.14 56 | 97.56 14 | 84.30 67 | 99.56 7 | 93.43 22 | 98.75 27 | 98.47 28 |
|
XVS | | | 94.45 20 | 94.32 20 | 94.85 27 | 98.54 12 | 86.60 36 | 96.93 17 | 97.19 35 | 90.66 23 | 92.85 61 | 97.16 37 | 85.02 60 | 99.49 23 | 91.99 56 | 98.56 47 | 98.47 28 |
|
X-MVStestdata | | | 88.31 163 | 86.13 205 | 94.85 27 | 98.54 12 | 86.60 36 | 96.93 17 | 97.19 35 | 90.66 23 | 92.85 61 | 23.41 362 | 85.02 60 | 99.49 23 | 91.99 56 | 98.56 47 | 98.47 28 |
|
DVP-MVS | | | 95.67 2 | 96.02 2 | 94.64 40 | 98.78 2 | 85.93 58 | 97.09 11 | 96.73 76 | 90.27 28 | 97.04 8 | 98.05 6 | 91.47 6 | 99.55 12 | 95.62 5 | 99.08 7 | 98.45 32 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MP-MVS |  | | 94.25 29 | 94.07 34 | 94.77 35 | 98.47 17 | 86.31 47 | 96.71 26 | 96.98 48 | 89.04 60 | 91.98 85 | 97.19 34 | 85.43 54 | 99.56 7 | 92.06 55 | 98.79 19 | 98.44 33 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
mPP-MVS | | | 93.99 38 | 93.78 43 | 94.63 41 | 98.50 15 | 85.90 63 | 96.87 21 | 96.91 56 | 88.70 68 | 91.83 91 | 97.17 36 | 83.96 73 | 99.55 12 | 91.44 73 | 98.64 43 | 98.43 34 |
|
ETH3D-3000-0.1 | | | 94.61 16 | 94.44 18 | 95.12 11 | 97.70 55 | 87.71 9 | 95.98 56 | 97.44 12 | 86.67 122 | 95.25 21 | 97.31 25 | 87.73 25 | 99.24 44 | 93.11 31 | 98.76 26 | 98.40 35 |
|
CANet | | | 93.54 51 | 93.20 57 | 94.55 44 | 95.65 121 | 85.73 67 | 94.94 111 | 96.69 82 | 91.89 5 | 90.69 107 | 95.88 93 | 81.99 97 | 99.54 16 | 93.14 30 | 97.95 69 | 98.39 36 |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 36 | 93.79 42 | 94.80 33 | 97.48 62 | 86.78 26 | 95.65 73 | 96.89 58 | 89.40 50 | 92.81 64 | 96.97 45 | 85.37 55 | 99.24 44 | 90.87 83 | 98.69 33 | 98.38 37 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MP-MVS-pluss | | | 94.21 33 | 94.00 37 | 94.85 27 | 98.17 34 | 86.65 33 | 94.82 120 | 97.17 38 | 86.26 130 | 92.83 63 | 97.87 10 | 85.57 52 | 99.56 7 | 94.37 14 | 98.92 13 | 98.34 38 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HPM-MVS |  | | 94.02 37 | 93.88 39 | 94.43 50 | 98.39 23 | 85.78 65 | 97.25 5 | 97.07 44 | 86.90 117 | 92.62 72 | 96.80 55 | 84.85 63 | 99.17 50 | 92.43 40 | 98.65 42 | 98.33 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
PGM-MVS | | | 93.96 40 | 93.72 45 | 94.68 38 | 98.43 19 | 86.22 50 | 95.30 86 | 97.78 1 | 87.45 105 | 93.26 51 | 97.33 24 | 84.62 65 | 99.51 21 | 90.75 85 | 98.57 46 | 98.32 40 |
|
GST-MVS | | | 94.21 33 | 93.97 38 | 94.90 24 | 98.41 22 | 86.82 23 | 96.54 31 | 97.19 35 | 88.24 82 | 93.26 51 | 96.83 51 | 85.48 53 | 99.59 4 | 91.43 74 | 98.40 53 | 98.30 41 |
|
HFP-MVS | | | 94.52 17 | 94.40 19 | 94.86 25 | 98.61 9 | 86.81 24 | 96.94 15 | 97.34 19 | 88.63 70 | 93.65 43 | 97.21 32 | 86.10 45 | 99.49 23 | 92.35 44 | 98.77 24 | 98.30 41 |
|
#test# | | | 94.32 28 | 94.14 31 | 94.86 25 | 98.61 9 | 86.81 24 | 96.43 32 | 97.34 19 | 87.51 102 | 93.65 43 | 97.21 32 | 86.10 45 | 99.49 23 | 91.68 68 | 98.77 24 | 98.30 41 |
|
baseline | | | 92.39 73 | 92.29 72 | 92.69 102 | 94.46 171 | 81.77 158 | 94.14 165 | 96.27 106 | 89.22 54 | 91.88 87 | 96.00 88 | 82.35 87 | 97.99 153 | 91.05 77 | 95.27 118 | 98.30 41 |
|
HPM-MVS++ |  | | 95.14 9 | 94.91 11 | 95.83 2 | 98.25 29 | 89.65 2 | 95.92 59 | 96.96 52 | 91.75 7 | 94.02 35 | 96.83 51 | 88.12 21 | 99.55 12 | 93.41 24 | 98.94 12 | 98.28 45 |
|
APD-MVS |  | | 94.24 30 | 94.07 34 | 94.75 36 | 98.06 41 | 86.90 21 | 95.88 60 | 96.94 54 | 85.68 142 | 95.05 23 | 97.18 35 | 87.31 31 | 99.07 58 | 91.90 64 | 98.61 45 | 98.28 45 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
agg_prior2 | | | | | | | | | | | | | | | 90.54 86 | 98.68 35 | 98.27 47 |
|
canonicalmvs | | | 93.27 58 | 92.75 65 | 94.85 27 | 95.70 120 | 87.66 11 | 96.33 35 | 96.41 99 | 90.00 34 | 94.09 33 | 94.60 136 | 82.33 88 | 98.62 106 | 92.40 42 | 92.86 158 | 98.27 47 |
|
APD-MVS_3200maxsize | | | 93.78 45 | 93.77 44 | 93.80 68 | 97.92 45 | 84.19 96 | 96.30 36 | 96.87 61 | 86.96 113 | 93.92 37 | 97.47 16 | 83.88 74 | 98.96 83 | 92.71 38 | 97.87 71 | 98.26 49 |
|
CP-MVS | | | 94.34 26 | 94.21 27 | 94.74 37 | 98.39 23 | 86.64 34 | 97.60 1 | 97.24 30 | 88.53 74 | 92.73 68 | 97.23 30 | 85.20 57 | 99.32 37 | 92.15 50 | 98.83 17 | 98.25 50 |
|
casdiffmvs | | | 92.51 70 | 92.43 70 | 92.74 98 | 94.41 174 | 81.98 154 | 94.54 138 | 96.23 111 | 89.57 45 | 91.96 86 | 96.17 84 | 82.58 84 | 98.01 151 | 90.95 81 | 95.45 113 | 98.23 51 |
|
IS-MVSNet | | | 91.43 85 | 91.09 87 | 92.46 111 | 95.87 115 | 81.38 171 | 96.95 14 | 93.69 248 | 89.72 42 | 89.50 119 | 95.98 89 | 78.57 132 | 97.77 163 | 83.02 170 | 96.50 99 | 98.22 52 |
|
LFMVS | | | 90.08 112 | 89.13 125 | 92.95 89 | 96.71 82 | 82.32 149 | 96.08 50 | 89.91 330 | 86.79 118 | 92.15 83 | 96.81 53 | 62.60 297 | 98.34 125 | 87.18 123 | 93.90 135 | 98.19 53 |
|
CDPH-MVS | | | 92.83 65 | 92.30 71 | 94.44 48 | 97.79 52 | 86.11 52 | 94.06 175 | 96.66 84 | 80.09 255 | 92.77 65 | 96.63 62 | 86.62 39 | 99.04 63 | 87.40 119 | 98.66 40 | 98.17 54 |
|
Regformer-2 | | | 94.33 27 | 94.22 25 | 94.68 38 | 95.54 124 | 86.75 29 | 94.57 136 | 96.70 80 | 91.84 6 | 94.41 25 | 96.56 67 | 87.19 34 | 99.13 54 | 93.50 20 | 97.65 78 | 98.16 55 |
|
alignmvs | | | 93.08 62 | 92.50 69 | 94.81 32 | 95.62 123 | 87.61 12 | 95.99 54 | 96.07 122 | 89.77 40 | 94.12 32 | 94.87 123 | 80.56 106 | 98.66 102 | 92.42 41 | 93.10 153 | 98.15 56 |
|
Regformer-1 | | | 94.22 32 | 94.13 32 | 94.51 46 | 95.54 124 | 86.36 44 | 94.57 136 | 96.44 96 | 91.69 9 | 94.32 28 | 96.56 67 | 87.05 36 | 99.03 64 | 93.35 25 | 97.65 78 | 98.15 56 |
|
VNet | | | 92.24 74 | 91.91 75 | 93.24 76 | 96.59 86 | 83.43 116 | 94.84 119 | 96.44 96 | 89.19 56 | 94.08 34 | 95.90 92 | 77.85 142 | 98.17 135 | 88.90 101 | 93.38 147 | 98.13 58 |
|
ETH3D cwj APD-0.16 | | | 93.91 41 | 93.53 49 | 95.06 13 | 96.76 81 | 87.78 7 | 94.92 113 | 97.21 34 | 84.33 172 | 93.89 38 | 97.09 39 | 87.20 33 | 99.29 41 | 91.90 64 | 98.44 51 | 98.12 59 |
|
PHI-MVS | | | 93.89 43 | 93.65 47 | 94.62 42 | 96.84 79 | 86.43 41 | 96.69 27 | 97.49 5 | 85.15 158 | 93.56 49 | 96.28 76 | 85.60 51 | 99.31 38 | 92.45 39 | 98.79 19 | 98.12 59 |
|
test_prior3 | | | 93.60 50 | 93.53 49 | 93.82 64 | 97.29 69 | 84.49 85 | 94.12 166 | 96.88 59 | 87.67 99 | 92.63 70 | 96.39 72 | 86.62 39 | 98.87 88 | 91.50 71 | 98.67 37 | 98.11 61 |
|
test_prior | | | | | 93.82 64 | 97.29 69 | 84.49 85 | | 96.88 59 | | | | | 98.87 88 | | | 98.11 61 |
|
test9_res | | | | | | | | | | | | | | | 91.91 61 | 98.71 30 | 98.07 63 |
|
CSCG | | | 93.23 60 | 93.05 59 | 93.76 69 | 98.04 42 | 84.07 98 | 96.22 42 | 97.37 18 | 84.15 174 | 90.05 114 | 95.66 100 | 87.77 23 | 99.15 53 | 89.91 90 | 98.27 58 | 98.07 63 |
|
EPNet | | | 91.79 78 | 91.02 88 | 94.10 58 | 90.10 309 | 85.25 73 | 96.03 53 | 92.05 280 | 92.83 1 | 87.39 154 | 95.78 96 | 79.39 122 | 99.01 70 | 88.13 111 | 97.48 80 | 98.05 65 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMMP |  | | 93.24 59 | 92.88 64 | 94.30 54 | 98.09 40 | 85.33 72 | 96.86 22 | 97.45 11 | 88.33 78 | 90.15 113 | 97.03 44 | 81.44 100 | 99.51 21 | 90.85 84 | 95.74 106 | 98.04 66 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SD-MVS | | | 94.96 11 | 95.33 7 | 93.88 62 | 97.25 73 | 86.69 30 | 96.19 43 | 97.11 42 | 90.42 25 | 96.95 10 | 97.27 27 | 89.53 11 | 96.91 237 | 94.38 13 | 98.85 15 | 98.03 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MVS_111021_HR | | | 93.45 52 | 93.31 52 | 93.84 63 | 96.99 76 | 84.84 75 | 93.24 214 | 97.24 30 | 88.76 67 | 91.60 96 | 95.85 94 | 86.07 47 | 98.66 102 | 91.91 61 | 98.16 60 | 98.03 67 |
|
Regformer-4 | | | 93.91 41 | 93.81 41 | 94.19 57 | 95.36 128 | 85.47 70 | 94.68 128 | 96.41 99 | 91.60 10 | 93.75 40 | 96.71 56 | 85.95 48 | 99.10 57 | 93.21 29 | 96.65 94 | 98.01 69 |
|
Anonymous202405211 | | | 87.68 179 | 86.13 205 | 92.31 120 | 96.66 83 | 80.74 189 | 94.87 117 | 91.49 297 | 80.47 251 | 89.46 120 | 95.44 104 | 54.72 335 | 98.23 131 | 82.19 185 | 89.89 189 | 97.97 70 |
|
Regformer-3 | | | 93.68 47 | 93.64 48 | 93.81 67 | 95.36 128 | 84.61 79 | 94.68 128 | 95.83 142 | 91.27 12 | 93.60 46 | 96.71 56 | 85.75 50 | 98.86 91 | 92.87 33 | 96.65 94 | 97.96 71 |
|
train_agg | | | 93.44 53 | 93.08 58 | 94.52 45 | 97.53 58 | 86.49 39 | 94.07 173 | 96.78 69 | 81.86 228 | 92.77 65 | 96.20 80 | 87.63 27 | 99.12 55 | 92.14 51 | 98.69 33 | 97.94 72 |
|
mvs_anonymous | | | 89.37 137 | 89.32 120 | 89.51 234 | 93.47 207 | 74.22 298 | 91.65 262 | 94.83 210 | 82.91 204 | 85.45 197 | 93.79 168 | 81.23 103 | 96.36 269 | 86.47 133 | 94.09 133 | 97.94 72 |
|
VDD-MVS | | | 90.74 97 | 89.92 109 | 93.20 77 | 96.27 96 | 83.02 127 | 95.73 66 | 93.86 243 | 88.42 77 | 92.53 73 | 96.84 50 | 62.09 300 | 98.64 104 | 90.95 81 | 92.62 161 | 97.93 74 |
|
HPM-MVS_fast | | | 93.40 55 | 93.22 55 | 93.94 61 | 98.36 25 | 84.83 76 | 97.15 8 | 96.80 68 | 85.77 139 | 92.47 76 | 97.13 38 | 82.38 86 | 99.07 58 | 90.51 87 | 98.40 53 | 97.92 75 |
|
agg_prior1 | | | 93.29 57 | 92.97 62 | 94.26 55 | 97.38 64 | 85.92 60 | 93.92 184 | 96.72 78 | 81.96 222 | 92.16 81 | 96.23 78 | 87.85 22 | 98.97 80 | 91.95 60 | 98.55 49 | 97.90 76 |
|
SR-MVS-dyc-post | | | 93.82 44 | 93.82 40 | 93.82 64 | 97.92 45 | 84.57 81 | 96.28 38 | 96.76 72 | 87.46 103 | 93.75 40 | 97.43 18 | 84.24 69 | 99.01 70 | 92.73 35 | 97.80 73 | 97.88 77 |
|
RE-MVS-def | | | | 93.68 46 | | 97.92 45 | 84.57 81 | 96.28 38 | 96.76 72 | 87.46 103 | 93.75 40 | 97.43 18 | 82.94 80 | | 92.73 35 | 97.80 73 | 97.88 77 |
|
test12 | | | | | 94.34 53 | 97.13 74 | 86.15 51 | | 96.29 105 | | 91.04 105 | | 85.08 58 | 99.01 70 | | 98.13 61 | 97.86 79 |
|
VDDNet | | | 89.56 127 | 88.49 140 | 92.76 96 | 95.07 140 | 82.09 151 | 96.30 36 | 93.19 255 | 81.05 247 | 91.88 87 | 96.86 49 | 61.16 310 | 98.33 127 | 88.43 107 | 92.49 164 | 97.84 80 |
|
TSAR-MVS + GP. | | | 93.66 48 | 93.41 51 | 94.41 52 | 96.59 86 | 86.78 26 | 94.40 148 | 93.93 239 | 89.77 40 | 94.21 29 | 95.59 103 | 87.35 30 | 98.61 107 | 92.72 37 | 96.15 103 | 97.83 81 |
|
Vis-MVSNet (Re-imp) | | | 89.59 126 | 89.44 115 | 90.03 212 | 95.74 117 | 75.85 287 | 95.61 74 | 90.80 315 | 87.66 101 | 87.83 143 | 95.40 107 | 76.79 147 | 96.46 263 | 78.37 240 | 96.73 91 | 97.80 82 |
|
3Dnovator | | 86.66 5 | 91.73 81 | 90.82 92 | 94.44 48 | 94.59 165 | 86.37 43 | 97.18 7 | 97.02 46 | 89.20 55 | 84.31 232 | 96.66 61 | 73.74 192 | 99.17 50 | 86.74 129 | 97.96 68 | 97.79 83 |
|
Vis-MVSNet |  | | 91.75 80 | 91.23 83 | 93.29 74 | 95.32 131 | 83.78 106 | 96.14 46 | 95.98 128 | 89.89 35 | 90.45 109 | 96.58 65 | 75.09 169 | 98.31 129 | 84.75 150 | 96.90 88 | 97.78 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
GeoE | | | 90.05 113 | 89.43 116 | 91.90 139 | 95.16 137 | 80.37 197 | 95.80 63 | 94.65 218 | 83.90 179 | 87.55 150 | 94.75 129 | 78.18 137 | 97.62 177 | 81.28 202 | 93.63 139 | 97.71 85 |
|
DELS-MVS | | | 93.43 54 | 93.25 54 | 93.97 59 | 95.42 127 | 85.04 74 | 93.06 221 | 97.13 39 | 90.74 20 | 91.84 89 | 95.09 117 | 86.32 43 | 99.21 47 | 91.22 75 | 98.45 50 | 97.65 86 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MG-MVS | | | 91.77 79 | 91.70 78 | 92.00 131 | 97.08 75 | 80.03 208 | 93.60 197 | 95.18 189 | 87.85 93 | 90.89 106 | 96.47 70 | 82.06 95 | 98.36 122 | 85.07 144 | 97.04 87 | 97.62 87 |
|
diffmvs | | | 91.37 87 | 91.23 83 | 91.77 146 | 93.09 217 | 80.27 198 | 92.36 241 | 95.52 166 | 87.03 112 | 91.40 100 | 94.93 120 | 80.08 111 | 97.44 190 | 92.13 52 | 94.56 127 | 97.61 88 |
|
PAPM_NR | | | 91.22 90 | 90.78 93 | 92.52 109 | 97.60 57 | 81.46 168 | 94.37 155 | 96.24 110 | 86.39 128 | 87.41 151 | 94.80 128 | 82.06 95 | 98.48 113 | 82.80 176 | 95.37 114 | 97.61 88 |
|
Effi-MVS+ | | | 91.59 84 | 91.11 85 | 93.01 86 | 94.35 178 | 83.39 118 | 94.60 133 | 95.10 193 | 87.10 110 | 90.57 108 | 93.10 191 | 81.43 101 | 98.07 147 | 89.29 97 | 94.48 129 | 97.59 90 |
|
DeepC-MVS | | 88.79 3 | 93.31 56 | 92.99 61 | 94.26 55 | 96.07 105 | 85.83 64 | 94.89 115 | 96.99 47 | 89.02 62 | 89.56 117 | 97.37 23 | 82.51 85 | 99.38 29 | 92.20 48 | 98.30 57 | 97.57 91 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EPP-MVSNet | | | 91.70 82 | 91.56 79 | 92.13 127 | 95.88 113 | 80.50 195 | 97.33 3 | 95.25 185 | 86.15 132 | 89.76 116 | 95.60 102 | 83.42 76 | 98.32 128 | 87.37 121 | 93.25 150 | 97.56 92 |
|
MVS_Test | | | 91.31 88 | 91.11 85 | 91.93 136 | 94.37 175 | 80.14 201 | 93.46 202 | 95.80 144 | 86.46 125 | 91.35 101 | 93.77 170 | 82.21 91 | 98.09 145 | 87.57 117 | 94.95 120 | 97.55 93 |
|
EIA-MVS | | | 91.95 76 | 91.94 74 | 91.98 132 | 95.16 137 | 80.01 209 | 95.36 80 | 96.73 76 | 88.44 75 | 89.34 121 | 92.16 219 | 83.82 75 | 98.45 118 | 89.35 96 | 97.06 86 | 97.48 94 |
|
PAPR | | | 90.02 114 | 89.27 123 | 92.29 122 | 95.78 116 | 80.95 183 | 92.68 230 | 96.22 112 | 81.91 225 | 86.66 167 | 93.75 172 | 82.23 90 | 98.44 119 | 79.40 234 | 94.79 121 | 97.48 94 |
|
UA-Net | | | 92.83 65 | 92.54 68 | 93.68 70 | 96.10 103 | 84.71 78 | 95.66 71 | 96.39 101 | 91.92 4 | 93.22 53 | 96.49 69 | 83.16 78 | 98.87 88 | 84.47 153 | 95.47 111 | 97.45 96 |
|
EI-MVSNet-Vis-set | | | 93.01 63 | 92.92 63 | 93.29 74 | 95.01 141 | 83.51 114 | 94.48 140 | 95.77 146 | 90.87 15 | 92.52 74 | 96.67 60 | 84.50 66 | 99.00 75 | 91.99 56 | 94.44 131 | 97.36 97 |
|
test_yl | | | 90.69 99 | 90.02 107 | 92.71 99 | 95.72 118 | 82.41 147 | 94.11 168 | 95.12 191 | 85.63 143 | 91.49 97 | 94.70 130 | 74.75 173 | 98.42 120 | 86.13 135 | 92.53 162 | 97.31 98 |
|
DCV-MVSNet | | | 90.69 99 | 90.02 107 | 92.71 99 | 95.72 118 | 82.41 147 | 94.11 168 | 95.12 191 | 85.63 143 | 91.49 97 | 94.70 130 | 74.75 173 | 98.42 120 | 86.13 135 | 92.53 162 | 97.31 98 |
|
abl_6 | | | 93.18 61 | 93.05 59 | 93.57 73 | 97.52 60 | 84.27 95 | 95.53 77 | 96.67 83 | 87.85 93 | 93.20 54 | 97.22 31 | 80.35 107 | 99.18 49 | 91.91 61 | 97.21 83 | 97.26 100 |
|
MVSFormer | | | 91.68 83 | 91.30 81 | 92.80 94 | 93.86 194 | 83.88 103 | 95.96 57 | 95.90 136 | 84.66 168 | 91.76 92 | 94.91 121 | 77.92 139 | 97.30 205 | 89.64 93 | 97.11 84 | 97.24 101 |
|
jason | | | 90.80 95 | 90.10 102 | 92.90 91 | 93.04 220 | 83.53 113 | 93.08 219 | 94.15 233 | 80.22 252 | 91.41 99 | 94.91 121 | 76.87 145 | 97.93 158 | 90.28 89 | 96.90 88 | 97.24 101 |
jason: jason. |
WTY-MVS | | | 89.60 125 | 88.92 130 | 91.67 149 | 95.47 126 | 81.15 177 | 92.38 240 | 94.78 214 | 83.11 198 | 89.06 126 | 94.32 143 | 78.67 130 | 96.61 250 | 81.57 199 | 90.89 178 | 97.24 101 |
|
HyFIR lowres test | | | 88.09 169 | 86.81 179 | 91.93 136 | 96.00 108 | 80.63 191 | 90.01 289 | 95.79 145 | 73.42 322 | 87.68 147 | 92.10 225 | 73.86 189 | 97.96 155 | 80.75 212 | 91.70 168 | 97.19 104 |
|
ET-MVSNet_ETH3D | | | 87.51 191 | 85.91 216 | 92.32 119 | 93.70 202 | 83.93 101 | 92.33 242 | 90.94 311 | 84.16 173 | 72.09 340 | 92.52 208 | 69.90 237 | 95.85 289 | 89.20 98 | 88.36 215 | 97.17 105 |
|
EI-MVSNet-UG-set | | | 92.74 67 | 92.62 67 | 93.12 80 | 94.86 152 | 83.20 121 | 94.40 148 | 95.74 149 | 90.71 22 | 92.05 84 | 96.60 64 | 84.00 72 | 98.99 77 | 91.55 69 | 93.63 139 | 97.17 105 |
|
lupinMVS | | | 90.92 94 | 90.21 98 | 93.03 85 | 93.86 194 | 83.88 103 | 92.81 228 | 93.86 243 | 79.84 258 | 91.76 92 | 94.29 145 | 77.92 139 | 98.04 149 | 90.48 88 | 97.11 84 | 97.17 105 |
|
CHOSEN 1792x2688 | | | 88.84 150 | 87.69 158 | 92.30 121 | 96.14 99 | 81.42 170 | 90.01 289 | 95.86 140 | 74.52 314 | 87.41 151 | 93.94 159 | 75.46 166 | 98.36 122 | 80.36 219 | 95.53 108 | 97.12 108 |
|
thisisatest0530 | | | 88.67 154 | 87.61 161 | 91.86 140 | 94.87 151 | 80.07 204 | 94.63 132 | 89.90 331 | 84.00 177 | 88.46 132 | 93.78 169 | 66.88 271 | 98.46 115 | 83.30 166 | 92.65 160 | 97.06 109 |
|
CPTT-MVS | | | 91.99 75 | 91.80 76 | 92.55 107 | 98.24 31 | 81.98 154 | 96.76 25 | 96.49 95 | 81.89 227 | 90.24 111 | 96.44 71 | 78.59 131 | 98.61 107 | 89.68 92 | 97.85 72 | 97.06 109 |
|
tttt0517 | | | 88.61 156 | 87.78 157 | 91.11 169 | 94.96 145 | 77.81 259 | 95.35 81 | 89.69 334 | 85.09 160 | 88.05 139 | 94.59 137 | 66.93 269 | 98.48 113 | 83.27 167 | 92.13 167 | 97.03 111 |
|
Anonymous20240529 | | | 88.09 169 | 86.59 190 | 92.58 106 | 96.53 89 | 81.92 156 | 95.99 54 | 95.84 141 | 74.11 317 | 89.06 126 | 95.21 112 | 61.44 305 | 98.81 97 | 83.67 164 | 87.47 226 | 97.01 112 |
|
114514_t | | | 89.51 128 | 88.50 138 | 92.54 108 | 98.11 37 | 81.99 153 | 95.16 99 | 96.36 103 | 70.19 340 | 85.81 181 | 95.25 110 | 76.70 149 | 98.63 105 | 82.07 187 | 96.86 90 | 97.00 113 |
|
旧先验1 | | | | | | 96.79 80 | 81.81 157 | | 95.67 153 | | | 96.81 53 | 86.69 38 | | | 97.66 77 | 96.97 114 |
|
ab-mvs | | | 89.41 134 | 88.35 142 | 92.60 104 | 95.15 139 | 82.65 142 | 92.20 247 | 95.60 160 | 83.97 178 | 88.55 130 | 93.70 174 | 74.16 184 | 98.21 134 | 82.46 181 | 89.37 197 | 96.94 115 |
|
DPM-MVS | | | 92.58 69 | 91.74 77 | 95.08 12 | 96.19 98 | 89.31 3 | 92.66 231 | 96.56 93 | 83.44 191 | 91.68 95 | 95.04 118 | 86.60 42 | 98.99 77 | 85.60 140 | 97.92 70 | 96.93 116 |
|
DP-MVS Recon | | | 91.95 76 | 91.28 82 | 93.96 60 | 98.33 27 | 85.92 60 | 94.66 131 | 96.66 84 | 82.69 208 | 90.03 115 | 95.82 95 | 82.30 89 | 99.03 64 | 84.57 152 | 96.48 100 | 96.91 117 |
|
QAPM | | | 89.51 128 | 88.15 149 | 93.59 72 | 94.92 148 | 84.58 80 | 96.82 24 | 96.70 80 | 78.43 278 | 83.41 253 | 96.19 83 | 73.18 200 | 99.30 39 | 77.11 255 | 96.54 97 | 96.89 118 |
|
OMC-MVS | | | 91.23 89 | 90.62 94 | 93.08 82 | 96.27 96 | 84.07 98 | 93.52 199 | 95.93 132 | 86.95 114 | 89.51 118 | 96.13 86 | 78.50 133 | 98.35 124 | 85.84 137 | 92.90 157 | 96.83 119 |
|
CS-MVS | | | 93.01 63 | 93.28 53 | 92.21 125 | 94.70 160 | 81.67 161 | 96.60 29 | 96.65 87 | 89.58 44 | 92.34 77 | 95.10 116 | 83.39 77 | 98.15 136 | 93.11 31 | 97.99 65 | 96.82 120 |
|
MSLP-MVS++ | | | 93.72 46 | 94.08 33 | 92.65 103 | 97.31 67 | 83.43 116 | 95.79 64 | 97.33 22 | 90.03 33 | 93.58 47 | 96.96 46 | 84.87 62 | 97.76 164 | 92.19 49 | 98.66 40 | 96.76 121 |
|
MVS_111021_LR | | | 92.47 71 | 92.29 72 | 92.98 87 | 95.99 109 | 84.43 92 | 93.08 219 | 96.09 120 | 88.20 85 | 91.12 104 | 95.72 99 | 81.33 102 | 97.76 164 | 91.74 66 | 97.37 82 | 96.75 122 |
|
UGNet | | | 89.95 117 | 88.95 129 | 92.95 89 | 94.51 168 | 83.31 119 | 95.70 68 | 95.23 186 | 89.37 51 | 87.58 148 | 93.94 159 | 64.00 292 | 98.78 99 | 83.92 159 | 96.31 102 | 96.74 123 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
UniMVSNet_ETH3D | | | 87.53 190 | 86.37 196 | 91.00 176 | 92.44 233 | 78.96 233 | 94.74 125 | 95.61 159 | 84.07 176 | 85.36 207 | 94.52 139 | 59.78 319 | 97.34 204 | 82.93 171 | 87.88 223 | 96.71 124 |
|
LCM-MVSNet-Re | | | 88.30 164 | 88.32 145 | 88.27 263 | 94.71 159 | 72.41 318 | 93.15 215 | 90.98 309 | 87.77 95 | 79.25 304 | 91.96 231 | 78.35 135 | 95.75 294 | 83.04 169 | 95.62 107 | 96.65 125 |
|
hse-mvs3 | | | 90.80 95 | 90.15 101 | 92.75 97 | 96.01 107 | 82.66 141 | 95.43 79 | 95.53 165 | 89.80 37 | 93.08 58 | 95.64 101 | 75.77 158 | 99.00 75 | 92.07 53 | 78.05 320 | 96.60 126 |
|
æ— å…ˆéªŒ | | | | | | | | 93.28 210 | 96.26 107 | 73.95 318 | | | | 99.05 60 | 80.56 216 | | 96.59 127 |
|
Fast-Effi-MVS+ | | | 89.41 134 | 88.64 135 | 91.71 148 | 94.74 156 | 80.81 187 | 93.54 198 | 95.10 193 | 83.11 198 | 86.82 165 | 90.67 270 | 79.74 116 | 97.75 167 | 80.51 218 | 93.55 141 | 96.57 128 |
|
sss | | | 88.93 148 | 88.26 148 | 90.94 180 | 94.05 184 | 80.78 188 | 91.71 259 | 95.38 179 | 81.55 236 | 88.63 129 | 93.91 163 | 75.04 170 | 95.47 305 | 82.47 180 | 91.61 169 | 96.57 128 |
|
ETV-MVS | | | 92.74 67 | 92.66 66 | 92.97 88 | 95.20 136 | 84.04 100 | 95.07 103 | 96.51 94 | 90.73 21 | 92.96 60 | 91.19 252 | 84.06 71 | 98.34 125 | 91.72 67 | 96.54 97 | 96.54 130 |
|
DP-MVS | | | 87.25 201 | 85.36 231 | 92.90 91 | 97.65 56 | 83.24 120 | 94.81 121 | 92.00 282 | 74.99 309 | 81.92 272 | 95.00 119 | 72.66 205 | 99.05 60 | 66.92 323 | 92.33 165 | 96.40 131 |
|
CANet_DTU | | | 90.26 110 | 89.41 117 | 92.81 93 | 93.46 208 | 83.01 128 | 93.48 200 | 94.47 221 | 89.43 49 | 87.76 146 | 94.23 149 | 70.54 232 | 99.03 64 | 84.97 145 | 96.39 101 | 96.38 132 |
|
TAMVS | | | 89.21 139 | 88.29 146 | 91.96 134 | 93.71 200 | 82.62 143 | 93.30 208 | 94.19 231 | 82.22 215 | 87.78 145 | 93.94 159 | 78.83 126 | 96.95 234 | 77.70 248 | 92.98 156 | 96.32 133 |
|
thisisatest0515 | | | 87.33 197 | 85.99 211 | 91.37 159 | 93.49 206 | 79.55 217 | 90.63 277 | 89.56 337 | 80.17 253 | 87.56 149 | 90.86 263 | 67.07 268 | 98.28 130 | 81.50 200 | 93.02 155 | 96.29 134 |
|
CDS-MVSNet | | | 89.45 131 | 88.51 137 | 92.29 122 | 93.62 203 | 83.61 112 | 93.01 222 | 94.68 217 | 81.95 223 | 87.82 144 | 93.24 185 | 78.69 129 | 96.99 232 | 80.34 220 | 93.23 151 | 96.28 135 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
1112_ss | | | 88.42 159 | 87.33 167 | 91.72 147 | 94.92 148 | 80.98 181 | 92.97 224 | 94.54 219 | 78.16 283 | 83.82 242 | 93.88 164 | 78.78 128 | 97.91 159 | 79.45 230 | 89.41 196 | 96.26 136 |
|
Test_1112_low_res | | | 87.65 181 | 86.51 193 | 91.08 170 | 94.94 147 | 79.28 228 | 91.77 256 | 94.30 227 | 76.04 299 | 83.51 251 | 92.37 212 | 77.86 141 | 97.73 168 | 78.69 239 | 89.13 203 | 96.22 137 |
|
GA-MVS | | | 86.61 222 | 85.27 232 | 90.66 183 | 91.33 270 | 78.71 235 | 90.40 280 | 93.81 246 | 85.34 152 | 85.12 210 | 89.57 291 | 61.25 307 | 97.11 222 | 80.99 208 | 89.59 195 | 96.15 138 |
|
原ACMM1 | | | | | 92.01 129 | 97.34 66 | 81.05 179 | | 96.81 67 | 78.89 269 | 90.45 109 | 95.92 91 | 82.65 83 | 98.84 96 | 80.68 214 | 98.26 59 | 96.14 139 |
|
TAPA-MVS | | 84.62 6 | 88.16 167 | 87.01 175 | 91.62 150 | 96.64 84 | 80.65 190 | 94.39 150 | 96.21 115 | 76.38 294 | 86.19 177 | 95.44 104 | 79.75 115 | 98.08 146 | 62.75 338 | 95.29 116 | 96.13 140 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
GSMVS | | | | | | | | | | | | | | | | | 96.12 141 |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 213 | | | | 96.12 141 |
|
SCA | | | 86.32 231 | 85.18 233 | 89.73 226 | 92.15 238 | 76.60 278 | 91.12 270 | 91.69 291 | 83.53 189 | 85.50 193 | 88.81 299 | 66.79 272 | 96.48 260 | 76.65 258 | 90.35 182 | 96.12 141 |
|
1121 | | | 90.42 107 | 89.49 113 | 93.20 77 | 97.27 71 | 84.46 88 | 92.63 232 | 95.51 167 | 71.01 338 | 91.20 103 | 96.21 79 | 82.92 81 | 99.05 60 | 80.56 216 | 98.07 63 | 96.10 144 |
|
PatchmatchNet |  | | 85.85 238 | 84.70 244 | 89.29 237 | 91.76 253 | 75.54 290 | 88.49 311 | 91.30 301 | 81.63 234 | 85.05 211 | 88.70 303 | 71.71 212 | 96.24 273 | 74.61 278 | 89.05 204 | 96.08 145 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
æ–°å‡ ä½•1 | | | | | 93.10 81 | 97.30 68 | 84.35 94 | | 95.56 161 | 71.09 337 | 91.26 102 | 96.24 77 | 82.87 82 | 98.86 91 | 79.19 235 | 98.10 62 | 96.07 146 |
|
PVSNet | | 78.82 18 | 85.55 242 | 84.65 245 | 88.23 266 | 94.72 158 | 71.93 319 | 87.12 324 | 92.75 264 | 78.80 272 | 84.95 213 | 90.53 272 | 64.43 291 | 96.71 244 | 74.74 276 | 93.86 136 | 96.06 147 |
|
test222 | | | | | | 96.55 88 | 81.70 159 | 92.22 246 | 95.01 196 | 68.36 343 | 90.20 112 | 96.14 85 | 80.26 110 | | | 97.80 73 | 96.05 148 |
|
PVSNet_Blended_VisFu | | | 91.38 86 | 90.91 90 | 92.80 94 | 96.39 93 | 83.17 122 | 94.87 117 | 96.66 84 | 83.29 195 | 89.27 122 | 94.46 140 | 80.29 109 | 99.17 50 | 87.57 117 | 95.37 114 | 96.05 148 |
|
testdata | | | | | 90.49 192 | 96.40 92 | 77.89 256 | | 95.37 181 | 72.51 330 | 93.63 45 | 96.69 58 | 82.08 94 | 97.65 173 | 83.08 168 | 97.39 81 | 95.94 150 |
|
XVG-OURS-SEG-HR | | | 89.95 117 | 89.45 114 | 91.47 156 | 94.00 189 | 81.21 176 | 91.87 254 | 96.06 124 | 85.78 138 | 88.55 130 | 95.73 98 | 74.67 176 | 97.27 209 | 88.71 104 | 89.64 194 | 95.91 151 |
|
MAR-MVS | | | 90.30 108 | 89.37 118 | 93.07 84 | 96.61 85 | 84.48 87 | 95.68 69 | 95.67 153 | 82.36 213 | 87.85 142 | 92.85 197 | 76.63 151 | 98.80 98 | 80.01 224 | 96.68 93 | 95.91 151 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
HY-MVS | | 83.01 12 | 89.03 144 | 87.94 155 | 92.29 122 | 94.86 152 | 82.77 133 | 92.08 252 | 94.49 220 | 81.52 237 | 86.93 160 | 92.79 203 | 78.32 136 | 98.23 131 | 79.93 225 | 90.55 179 | 95.88 153 |
|
BH-RMVSNet | | | 88.37 161 | 87.48 163 | 91.02 174 | 95.28 132 | 79.45 220 | 92.89 226 | 93.07 257 | 85.45 149 | 86.91 162 | 94.84 127 | 70.35 233 | 97.76 164 | 73.97 281 | 94.59 126 | 95.85 154 |
|
PVSNet_Blended | | | 90.73 98 | 90.32 97 | 91.98 132 | 96.12 100 | 81.25 173 | 92.55 236 | 96.83 64 | 82.04 220 | 89.10 124 | 92.56 207 | 81.04 104 | 98.85 94 | 86.72 131 | 95.91 104 | 95.84 155 |
|
Patchmatch-test | | | 81.37 291 | 79.30 297 | 87.58 278 | 90.92 287 | 74.16 300 | 80.99 349 | 87.68 344 | 70.52 339 | 76.63 319 | 88.81 299 | 71.21 218 | 92.76 337 | 60.01 346 | 86.93 235 | 95.83 156 |
|
XVG-OURS | | | 89.40 136 | 88.70 134 | 91.52 152 | 94.06 183 | 81.46 168 | 91.27 267 | 96.07 122 | 86.14 133 | 88.89 128 | 95.77 97 | 68.73 257 | 97.26 211 | 87.39 120 | 89.96 187 | 95.83 156 |
|
EPNet_dtu | | | 86.49 229 | 85.94 215 | 88.14 268 | 90.24 307 | 72.82 310 | 94.11 168 | 92.20 276 | 86.66 123 | 79.42 303 | 92.36 213 | 73.52 193 | 95.81 292 | 71.26 292 | 93.66 138 | 95.80 158 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tpm | | | 84.73 258 | 84.02 252 | 86.87 298 | 90.33 305 | 68.90 338 | 89.06 303 | 89.94 329 | 80.85 248 | 85.75 182 | 89.86 286 | 68.54 259 | 95.97 283 | 77.76 247 | 84.05 253 | 95.75 159 |
|
hse-mvs2 | | | 89.88 121 | 89.34 119 | 91.51 153 | 94.83 154 | 81.12 178 | 93.94 183 | 93.91 242 | 89.80 37 | 93.08 58 | 93.60 175 | 75.77 158 | 97.66 171 | 92.07 53 | 77.07 327 | 95.74 160 |
|
AUN-MVS | | | 87.78 177 | 86.54 192 | 91.48 155 | 94.82 155 | 81.05 179 | 93.91 187 | 93.93 239 | 83.00 201 | 86.93 160 | 93.53 176 | 69.50 244 | 97.67 170 | 86.14 134 | 77.12 326 | 95.73 161 |
|
Patchmatch-RL test | | | 81.67 285 | 79.96 291 | 86.81 299 | 85.42 345 | 71.23 324 | 82.17 347 | 87.50 345 | 78.47 277 | 77.19 315 | 82.50 343 | 70.81 225 | 93.48 329 | 82.66 178 | 72.89 334 | 95.71 162 |
|
LS3D | | | 87.89 173 | 86.32 200 | 92.59 105 | 96.07 105 | 82.92 131 | 95.23 92 | 94.92 204 | 75.66 301 | 82.89 260 | 95.98 89 | 72.48 208 | 99.21 47 | 68.43 312 | 95.23 119 | 95.64 163 |
|
CNLPA | | | 89.07 142 | 87.98 153 | 92.34 118 | 96.87 78 | 84.78 77 | 94.08 172 | 93.24 253 | 81.41 238 | 84.46 222 | 95.13 115 | 75.57 165 | 96.62 247 | 77.21 253 | 93.84 137 | 95.61 164 |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 359 | 87.62 322 | | 73.32 323 | 84.59 218 | | 70.33 234 | | 74.65 277 | | 95.50 165 |
|
mvs-test1 | | | 89.45 131 | 89.14 124 | 90.38 198 | 93.33 210 | 77.63 265 | 94.95 110 | 94.36 224 | 87.70 97 | 87.10 158 | 92.81 201 | 73.45 195 | 98.03 150 | 85.57 141 | 93.04 154 | 95.48 166 |
|
DWT-MVSNet_test | | | 84.95 255 | 83.68 257 | 88.77 248 | 91.43 264 | 73.75 302 | 91.74 258 | 90.98 309 | 80.66 250 | 83.84 241 | 87.36 321 | 62.44 298 | 97.11 222 | 78.84 238 | 85.81 239 | 95.46 167 |
|
baseline1 | | | 88.10 168 | 87.28 169 | 90.57 186 | 94.96 145 | 80.07 204 | 94.27 159 | 91.29 302 | 86.74 119 | 87.41 151 | 94.00 156 | 76.77 148 | 96.20 274 | 80.77 211 | 79.31 316 | 95.44 168 |
|
EPMVS | | | 83.90 268 | 82.70 270 | 87.51 279 | 90.23 308 | 72.67 312 | 88.62 310 | 81.96 354 | 81.37 239 | 85.01 212 | 88.34 307 | 66.31 279 | 94.45 315 | 75.30 271 | 87.12 232 | 95.43 169 |
|
CR-MVSNet | | | 85.35 246 | 83.76 256 | 90.12 208 | 90.58 300 | 79.34 224 | 85.24 334 | 91.96 286 | 78.27 280 | 85.55 188 | 87.87 316 | 71.03 221 | 95.61 296 | 73.96 282 | 89.36 198 | 95.40 170 |
|
tpmrst | | | 85.35 246 | 84.99 236 | 86.43 301 | 90.88 290 | 67.88 342 | 88.71 308 | 91.43 299 | 80.13 254 | 86.08 179 | 88.80 301 | 73.05 201 | 96.02 281 | 82.48 179 | 83.40 263 | 95.40 170 |
|
RPMNet | | | 83.95 266 | 81.53 276 | 91.21 163 | 90.58 300 | 79.34 224 | 85.24 334 | 96.76 72 | 71.44 335 | 85.55 188 | 82.97 342 | 70.87 224 | 98.91 86 | 61.01 342 | 89.36 198 | 95.40 170 |
|
CostFormer | | | 85.77 240 | 84.94 239 | 88.26 264 | 91.16 276 | 72.58 316 | 89.47 297 | 91.04 308 | 76.26 297 | 86.45 171 | 89.97 284 | 70.74 226 | 96.86 240 | 82.35 182 | 87.07 234 | 95.34 173 |
|
IB-MVS | | 80.51 15 | 85.24 250 | 83.26 262 | 91.19 164 | 92.13 240 | 79.86 213 | 91.75 257 | 91.29 302 | 83.28 196 | 80.66 285 | 88.49 305 | 61.28 306 | 98.46 115 | 80.99 208 | 79.46 314 | 95.25 174 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
baseline2 | | | 86.50 227 | 85.39 229 | 89.84 219 | 91.12 277 | 76.70 277 | 91.88 253 | 88.58 339 | 82.35 214 | 79.95 297 | 90.95 262 | 73.42 197 | 97.63 176 | 80.27 222 | 89.95 188 | 95.19 175 |
|
ADS-MVSNet2 | | | 81.66 286 | 79.71 294 | 87.50 280 | 91.35 268 | 74.19 299 | 83.33 343 | 88.48 340 | 72.90 327 | 82.24 267 | 85.77 333 | 64.98 288 | 93.20 333 | 64.57 332 | 83.74 255 | 95.12 176 |
|
ADS-MVSNet | | | 81.56 288 | 79.78 292 | 86.90 296 | 91.35 268 | 71.82 320 | 83.33 343 | 89.16 338 | 72.90 327 | 82.24 267 | 85.77 333 | 64.98 288 | 93.76 326 | 64.57 332 | 83.74 255 | 95.12 176 |
|
AdaColmap |  | | 89.89 120 | 89.07 126 | 92.37 117 | 97.41 63 | 83.03 126 | 94.42 147 | 95.92 133 | 82.81 206 | 86.34 174 | 94.65 134 | 73.89 188 | 99.02 68 | 80.69 213 | 95.51 109 | 95.05 178 |
|
PLC |  | 84.53 7 | 89.06 143 | 88.03 151 | 92.15 126 | 97.27 71 | 82.69 140 | 94.29 158 | 95.44 175 | 79.71 260 | 84.01 238 | 94.18 150 | 76.68 150 | 98.75 100 | 77.28 252 | 93.41 146 | 95.02 179 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Effi-MVS+-dtu | | | 88.65 155 | 88.35 142 | 89.54 231 | 93.33 210 | 76.39 282 | 94.47 143 | 94.36 224 | 87.70 97 | 85.43 200 | 89.56 292 | 73.45 195 | 97.26 211 | 85.57 141 | 91.28 171 | 94.97 180 |
|
test-LLR | | | 85.87 237 | 85.41 228 | 87.25 287 | 90.95 283 | 71.67 321 | 89.55 293 | 89.88 332 | 83.41 192 | 84.54 219 | 87.95 313 | 67.25 264 | 95.11 310 | 81.82 193 | 93.37 148 | 94.97 180 |
|
test-mter | | | 84.54 261 | 83.64 259 | 87.25 287 | 90.95 283 | 71.67 321 | 89.55 293 | 89.88 332 | 79.17 265 | 84.54 219 | 87.95 313 | 55.56 331 | 95.11 310 | 81.82 193 | 93.37 148 | 94.97 180 |
|
nrg030 | | | 91.08 93 | 90.39 95 | 93.17 79 | 93.07 218 | 86.91 20 | 96.41 33 | 96.26 107 | 88.30 80 | 88.37 134 | 94.85 126 | 82.19 92 | 97.64 175 | 91.09 76 | 82.95 264 | 94.96 183 |
|
thres600view7 | | | 87.65 181 | 86.67 185 | 90.59 185 | 96.08 104 | 78.72 234 | 94.88 116 | 91.58 293 | 87.06 111 | 88.08 137 | 92.30 215 | 68.91 254 | 98.10 139 | 70.05 305 | 91.10 172 | 94.96 183 |
|
thres400 | | | 87.62 186 | 86.64 186 | 90.57 186 | 95.99 109 | 78.64 236 | 94.58 134 | 91.98 284 | 86.94 115 | 88.09 135 | 91.77 235 | 69.18 251 | 98.10 139 | 70.13 302 | 91.10 172 | 94.96 183 |
|
PAPM | | | 86.68 221 | 85.39 229 | 90.53 188 | 93.05 219 | 79.33 227 | 89.79 292 | 94.77 215 | 78.82 271 | 81.95 271 | 93.24 185 | 76.81 146 | 97.30 205 | 66.94 321 | 93.16 152 | 94.95 186 |
|
MIMVSNet | | | 82.59 277 | 80.53 282 | 88.76 249 | 91.51 260 | 78.32 245 | 86.57 327 | 90.13 324 | 79.32 262 | 80.70 284 | 88.69 304 | 52.98 342 | 93.07 335 | 66.03 326 | 88.86 206 | 94.90 187 |
|
CVMVSNet | | | 84.69 260 | 84.79 243 | 84.37 319 | 91.84 250 | 64.92 350 | 93.70 194 | 91.47 298 | 66.19 346 | 86.16 178 | 95.28 108 | 67.18 266 | 93.33 331 | 80.89 210 | 90.42 181 | 94.88 188 |
|
PatchT | | | 82.68 276 | 81.27 278 | 86.89 297 | 90.09 310 | 70.94 329 | 84.06 340 | 90.15 323 | 74.91 310 | 85.63 187 | 83.57 339 | 69.37 245 | 94.87 314 | 65.19 328 | 88.50 211 | 94.84 189 |
|
OpenMVS |  | 83.78 11 | 88.74 153 | 87.29 168 | 93.08 82 | 92.70 229 | 85.39 71 | 96.57 30 | 96.43 98 | 78.74 274 | 80.85 282 | 96.07 87 | 69.64 242 | 99.01 70 | 78.01 246 | 96.65 94 | 94.83 190 |
|
PCF-MVS | | 84.11 10 | 87.74 178 | 86.08 209 | 92.70 101 | 94.02 185 | 84.43 92 | 89.27 299 | 95.87 139 | 73.62 321 | 84.43 224 | 94.33 142 | 78.48 134 | 98.86 91 | 70.27 298 | 94.45 130 | 94.81 191 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
F-COLMAP | | | 87.95 172 | 86.80 180 | 91.40 158 | 96.35 95 | 80.88 185 | 94.73 126 | 95.45 173 | 79.65 261 | 82.04 270 | 94.61 135 | 71.13 219 | 98.50 112 | 76.24 263 | 91.05 176 | 94.80 192 |
|
FIs | | | 90.51 106 | 90.35 96 | 90.99 177 | 93.99 190 | 80.98 181 | 95.73 66 | 97.54 3 | 89.15 57 | 86.72 166 | 94.68 132 | 81.83 99 | 97.24 213 | 85.18 143 | 88.31 216 | 94.76 193 |
|
FC-MVSNet-test | | | 90.27 109 | 90.18 100 | 90.53 188 | 93.71 200 | 79.85 214 | 95.77 65 | 97.59 2 | 89.31 52 | 86.27 175 | 94.67 133 | 81.93 98 | 97.01 231 | 84.26 155 | 88.09 220 | 94.71 194 |
|
test_part1 | | | 89.00 147 | 87.99 152 | 92.04 128 | 95.94 112 | 83.81 105 | 96.14 46 | 96.05 125 | 86.44 126 | 85.69 184 | 93.73 173 | 71.57 214 | 97.66 171 | 85.80 138 | 80.54 301 | 94.66 195 |
|
HQP_MVS | | | 90.60 105 | 90.19 99 | 91.82 143 | 94.70 160 | 82.73 137 | 95.85 61 | 96.22 112 | 90.81 17 | 86.91 162 | 94.86 124 | 74.23 180 | 98.12 137 | 88.15 109 | 89.99 185 | 94.63 196 |
|
plane_prior5 | | | | | | | | | 96.22 112 | | | | | 98.12 137 | 88.15 109 | 89.99 185 | 94.63 196 |
|
tpm2 | | | 84.08 264 | 82.94 266 | 87.48 282 | 91.39 266 | 71.27 323 | 89.23 301 | 90.37 320 | 71.95 333 | 84.64 216 | 89.33 293 | 67.30 263 | 96.55 257 | 75.17 272 | 87.09 233 | 94.63 196 |
|
RRT_test8_iter05 | | | 86.90 212 | 86.36 197 | 88.52 257 | 93.00 223 | 73.27 306 | 94.32 157 | 95.96 130 | 85.50 148 | 84.26 233 | 92.86 196 | 60.76 312 | 97.70 169 | 88.32 108 | 82.29 272 | 94.60 199 |
|
DU-MVS | | | 89.34 138 | 88.50 138 | 91.85 142 | 93.04 220 | 83.72 107 | 94.47 143 | 96.59 90 | 89.50 46 | 86.46 169 | 93.29 183 | 77.25 143 | 97.23 214 | 84.92 146 | 81.02 293 | 94.59 200 |
|
NR-MVSNet | | | 88.58 158 | 87.47 164 | 91.93 136 | 93.04 220 | 84.16 97 | 94.77 124 | 96.25 109 | 89.05 59 | 80.04 296 | 93.29 183 | 79.02 125 | 97.05 228 | 81.71 198 | 80.05 308 | 94.59 200 |
|
PS-MVSNAJss | | | 89.97 116 | 89.62 111 | 91.02 174 | 91.90 248 | 80.85 186 | 95.26 91 | 95.98 128 | 86.26 130 | 86.21 176 | 94.29 145 | 79.70 117 | 97.65 173 | 88.87 102 | 88.10 218 | 94.57 202 |
|
VPNet | | | 88.20 166 | 87.47 164 | 90.39 196 | 93.56 205 | 79.46 219 | 94.04 176 | 95.54 164 | 88.67 69 | 86.96 159 | 94.58 138 | 69.33 246 | 97.15 218 | 84.05 158 | 80.53 303 | 94.56 203 |
|
RPSCF | | | 85.07 252 | 84.27 249 | 87.48 282 | 92.91 226 | 70.62 331 | 91.69 261 | 92.46 269 | 76.20 298 | 82.67 263 | 95.22 111 | 63.94 293 | 97.29 208 | 77.51 251 | 85.80 240 | 94.53 204 |
|
VPA-MVSNet | | | 89.62 124 | 88.96 128 | 91.60 151 | 93.86 194 | 82.89 132 | 95.46 78 | 97.33 22 | 87.91 90 | 88.43 133 | 93.31 181 | 74.17 183 | 97.40 199 | 87.32 122 | 82.86 269 | 94.52 205 |
|
HQP4-MVS | | | | | | | | | | | 85.43 200 | | | 97.96 155 | | | 94.51 206 |
|
TranMVSNet+NR-MVSNet | | | 88.84 150 | 87.95 154 | 91.49 154 | 92.68 230 | 83.01 128 | 94.92 113 | 96.31 104 | 89.88 36 | 85.53 190 | 93.85 166 | 76.63 151 | 96.96 233 | 81.91 191 | 79.87 311 | 94.50 207 |
|
HQP-MVS | | | 89.80 122 | 89.28 122 | 91.34 160 | 94.17 180 | 81.56 162 | 94.39 150 | 96.04 126 | 88.81 64 | 85.43 200 | 93.97 158 | 73.83 190 | 97.96 155 | 87.11 126 | 89.77 192 | 94.50 207 |
|
UniMVSNet_NR-MVSNet | | | 89.92 119 | 89.29 121 | 91.81 145 | 93.39 209 | 83.72 107 | 94.43 146 | 97.12 40 | 89.80 37 | 86.46 169 | 93.32 180 | 83.16 78 | 97.23 214 | 84.92 146 | 81.02 293 | 94.49 209 |
|
thres100view900 | | | 87.63 184 | 86.71 183 | 90.38 198 | 96.12 100 | 78.55 238 | 95.03 107 | 91.58 293 | 87.15 108 | 88.06 138 | 92.29 216 | 68.91 254 | 98.10 139 | 70.13 302 | 91.10 172 | 94.48 210 |
|
tfpn200view9 | | | 87.58 188 | 86.64 186 | 90.41 195 | 95.99 109 | 78.64 236 | 94.58 134 | 91.98 284 | 86.94 115 | 88.09 135 | 91.77 235 | 69.18 251 | 98.10 139 | 70.13 302 | 91.10 172 | 94.48 210 |
|
WR-MVS | | | 88.38 160 | 87.67 160 | 90.52 190 | 93.30 212 | 80.18 199 | 93.26 211 | 95.96 130 | 88.57 73 | 85.47 196 | 92.81 201 | 76.12 153 | 96.91 237 | 81.24 203 | 82.29 272 | 94.47 212 |
|
TESTMET0.1,1 | | | 83.74 269 | 82.85 268 | 86.42 302 | 89.96 313 | 71.21 325 | 89.55 293 | 87.88 341 | 77.41 286 | 83.37 254 | 87.31 322 | 56.71 328 | 93.65 328 | 80.62 215 | 92.85 159 | 94.40 213 |
|
API-MVS | | | 90.66 101 | 90.07 103 | 92.45 112 | 96.36 94 | 84.57 81 | 96.06 52 | 95.22 188 | 82.39 211 | 89.13 123 | 94.27 148 | 80.32 108 | 98.46 115 | 80.16 223 | 96.71 92 | 94.33 214 |
|
PS-MVSNAJ | | | 91.18 91 | 90.92 89 | 91.96 134 | 95.26 134 | 82.60 144 | 92.09 251 | 95.70 151 | 86.27 129 | 91.84 89 | 92.46 209 | 79.70 117 | 98.99 77 | 89.08 99 | 95.86 105 | 94.29 215 |
|
xiu_mvs_v2_base | | | 91.13 92 | 90.89 91 | 91.86 140 | 94.97 144 | 82.42 145 | 92.24 245 | 95.64 158 | 86.11 135 | 91.74 94 | 93.14 189 | 79.67 120 | 98.89 87 | 89.06 100 | 95.46 112 | 94.28 216 |
|
xiu_mvs_v1_base_debu | | | 90.64 102 | 90.05 104 | 92.40 113 | 93.97 191 | 84.46 88 | 93.32 204 | 95.46 170 | 85.17 155 | 92.25 78 | 94.03 151 | 70.59 228 | 98.57 109 | 90.97 78 | 94.67 122 | 94.18 217 |
|
xiu_mvs_v1_base | | | 90.64 102 | 90.05 104 | 92.40 113 | 93.97 191 | 84.46 88 | 93.32 204 | 95.46 170 | 85.17 155 | 92.25 78 | 94.03 151 | 70.59 228 | 98.57 109 | 90.97 78 | 94.67 122 | 94.18 217 |
|
xiu_mvs_v1_base_debi | | | 90.64 102 | 90.05 104 | 92.40 113 | 93.97 191 | 84.46 88 | 93.32 204 | 95.46 170 | 85.17 155 | 92.25 78 | 94.03 151 | 70.59 228 | 98.57 109 | 90.97 78 | 94.67 122 | 94.18 217 |
|
Fast-Effi-MVS+-dtu | | | 87.44 194 | 86.72 182 | 89.63 229 | 92.04 243 | 77.68 264 | 94.03 177 | 93.94 238 | 85.81 137 | 82.42 264 | 91.32 249 | 70.33 234 | 97.06 227 | 80.33 221 | 90.23 183 | 94.14 220 |
|
1314 | | | 87.51 191 | 86.57 191 | 90.34 201 | 92.42 234 | 79.74 216 | 92.63 232 | 95.35 183 | 78.35 279 | 80.14 293 | 91.62 242 | 74.05 185 | 97.15 218 | 81.05 204 | 93.53 142 | 94.12 221 |
|
UniMVSNet (Re) | | | 89.80 122 | 89.07 126 | 92.01 129 | 93.60 204 | 84.52 84 | 94.78 123 | 97.47 8 | 89.26 53 | 86.44 172 | 92.32 214 | 82.10 93 | 97.39 202 | 84.81 149 | 80.84 297 | 94.12 221 |
|
BH-untuned | | | 88.60 157 | 88.13 150 | 90.01 214 | 95.24 135 | 78.50 241 | 93.29 209 | 94.15 233 | 84.75 166 | 84.46 222 | 93.40 177 | 75.76 160 | 97.40 199 | 77.59 249 | 94.52 128 | 94.12 221 |
|
dp | | | 81.47 290 | 80.23 287 | 85.17 314 | 89.92 314 | 65.49 348 | 86.74 325 | 90.10 325 | 76.30 296 | 81.10 279 | 87.12 326 | 62.81 296 | 95.92 285 | 68.13 315 | 79.88 310 | 94.09 224 |
|
ACMM | | 84.12 9 | 89.14 140 | 88.48 141 | 91.12 166 | 94.65 164 | 81.22 175 | 95.31 83 | 96.12 119 | 85.31 153 | 85.92 180 | 94.34 141 | 70.19 236 | 98.06 148 | 85.65 139 | 88.86 206 | 94.08 225 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20231211 | | | 86.59 224 | 85.13 234 | 90.98 179 | 96.52 90 | 81.50 164 | 96.14 46 | 96.16 116 | 73.78 319 | 83.65 247 | 92.15 220 | 63.26 295 | 97.37 203 | 82.82 175 | 81.74 282 | 94.06 226 |
|
test_djsdf | | | 89.03 144 | 88.64 135 | 90.21 203 | 90.74 295 | 79.28 228 | 95.96 57 | 95.90 136 | 84.66 168 | 85.33 208 | 92.94 195 | 74.02 186 | 97.30 205 | 89.64 93 | 88.53 209 | 94.05 227 |
|
cascas | | | 86.43 230 | 84.98 237 | 90.80 182 | 92.10 242 | 80.92 184 | 90.24 283 | 95.91 135 | 73.10 325 | 83.57 250 | 88.39 306 | 65.15 287 | 97.46 187 | 84.90 148 | 91.43 170 | 94.03 228 |
|
XXY-MVS | | | 87.65 181 | 86.85 178 | 90.03 212 | 92.14 239 | 80.60 193 | 93.76 190 | 95.23 186 | 82.94 203 | 84.60 217 | 94.02 154 | 74.27 179 | 95.49 304 | 81.04 205 | 83.68 257 | 94.01 229 |
|
RRT_MVS | | | 88.86 149 | 87.68 159 | 92.39 116 | 92.02 245 | 86.09 53 | 94.38 154 | 94.94 199 | 85.45 149 | 87.14 157 | 93.84 167 | 65.88 284 | 97.11 222 | 88.73 103 | 86.77 236 | 93.98 230 |
|
CLD-MVS | | | 89.47 130 | 88.90 131 | 91.18 165 | 94.22 179 | 82.07 152 | 92.13 249 | 96.09 120 | 87.90 91 | 85.37 206 | 92.45 210 | 74.38 178 | 97.56 180 | 87.15 124 | 90.43 180 | 93.93 231 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
jajsoiax | | | 88.24 165 | 87.50 162 | 90.48 193 | 90.89 289 | 80.14 201 | 95.31 83 | 95.65 157 | 84.97 162 | 84.24 234 | 94.02 154 | 65.31 286 | 97.42 192 | 88.56 105 | 88.52 210 | 93.89 232 |
|
IterMVS-LS | | | 88.36 162 | 87.91 156 | 89.70 227 | 93.80 197 | 78.29 247 | 93.73 191 | 95.08 195 | 85.73 140 | 84.75 215 | 91.90 233 | 79.88 113 | 96.92 236 | 83.83 160 | 82.51 270 | 93.89 232 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 89.10 141 | 88.86 133 | 89.80 223 | 91.84 250 | 78.30 246 | 93.70 194 | 95.01 196 | 85.73 140 | 87.15 155 | 95.28 108 | 79.87 114 | 97.21 216 | 83.81 161 | 87.36 229 | 93.88 234 |
|
mvs_tets | | | 88.06 171 | 87.28 169 | 90.38 198 | 90.94 285 | 79.88 212 | 95.22 93 | 95.66 155 | 85.10 159 | 84.21 235 | 93.94 159 | 63.53 294 | 97.40 199 | 88.50 106 | 88.40 214 | 93.87 235 |
|
MVSTER | | | 88.84 150 | 88.29 146 | 90.51 191 | 92.95 225 | 80.44 196 | 93.73 191 | 95.01 196 | 84.66 168 | 87.15 155 | 93.12 190 | 72.79 204 | 97.21 216 | 87.86 113 | 87.36 229 | 93.87 235 |
|
tpm cat1 | | | 81.96 280 | 80.27 286 | 87.01 293 | 91.09 278 | 71.02 327 | 87.38 323 | 91.53 296 | 66.25 345 | 80.17 291 | 86.35 329 | 68.22 262 | 96.15 277 | 69.16 307 | 82.29 272 | 93.86 237 |
|
v2v482 | | | 87.84 174 | 87.06 173 | 90.17 204 | 90.99 281 | 79.23 231 | 94.00 180 | 95.13 190 | 84.87 163 | 85.53 190 | 92.07 228 | 74.45 177 | 97.45 188 | 84.71 151 | 81.75 281 | 93.85 238 |
|
thres200 | | | 87.21 205 | 86.24 203 | 90.12 208 | 95.36 128 | 78.53 239 | 93.26 211 | 92.10 278 | 86.42 127 | 88.00 140 | 91.11 258 | 69.24 250 | 98.00 152 | 69.58 306 | 91.04 177 | 93.83 239 |
|
CP-MVSNet | | | 87.63 184 | 87.26 171 | 88.74 252 | 93.12 216 | 76.59 279 | 95.29 88 | 96.58 91 | 88.43 76 | 83.49 252 | 92.98 194 | 75.28 167 | 95.83 290 | 78.97 236 | 81.15 289 | 93.79 240 |
|
GBi-Net | | | 87.26 199 | 85.98 212 | 91.08 170 | 94.01 186 | 83.10 123 | 95.14 100 | 94.94 199 | 83.57 186 | 84.37 225 | 91.64 238 | 66.59 276 | 96.34 270 | 78.23 243 | 85.36 242 | 93.79 240 |
|
test1 | | | 87.26 199 | 85.98 212 | 91.08 170 | 94.01 186 | 83.10 123 | 95.14 100 | 94.94 199 | 83.57 186 | 84.37 225 | 91.64 238 | 66.59 276 | 96.34 270 | 78.23 243 | 85.36 242 | 93.79 240 |
|
FMVSNet1 | | | 85.85 238 | 84.11 251 | 91.08 170 | 92.81 227 | 83.10 123 | 95.14 100 | 94.94 199 | 81.64 233 | 82.68 262 | 91.64 238 | 59.01 323 | 96.34 270 | 75.37 270 | 83.78 254 | 93.79 240 |
|
LPG-MVS_test | | | 89.45 131 | 88.90 131 | 91.12 166 | 94.47 169 | 81.49 166 | 95.30 86 | 96.14 117 | 86.73 120 | 85.45 197 | 95.16 113 | 69.89 238 | 98.10 139 | 87.70 115 | 89.23 201 | 93.77 244 |
|
LGP-MVS_train | | | | | 91.12 166 | 94.47 169 | 81.49 166 | | 96.14 117 | 86.73 120 | 85.45 197 | 95.16 113 | 69.89 238 | 98.10 139 | 87.70 115 | 89.23 201 | 93.77 244 |
|
PS-CasMVS | | | 87.32 198 | 86.88 176 | 88.63 255 | 92.99 224 | 76.33 284 | 95.33 82 | 96.61 89 | 88.22 84 | 83.30 257 | 93.07 192 | 73.03 202 | 95.79 293 | 78.36 241 | 81.00 295 | 93.75 246 |
|
FMVSNet2 | | | 87.19 206 | 85.82 218 | 91.30 161 | 94.01 186 | 83.67 109 | 94.79 122 | 94.94 199 | 83.57 186 | 83.88 240 | 92.05 229 | 66.59 276 | 96.51 258 | 77.56 250 | 85.01 245 | 93.73 247 |
|
ACMP | | 84.23 8 | 89.01 146 | 88.35 142 | 90.99 177 | 94.73 157 | 81.27 172 | 95.07 103 | 95.89 138 | 86.48 124 | 83.67 246 | 94.30 144 | 69.33 246 | 97.99 153 | 87.10 128 | 88.55 208 | 93.72 248 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
FMVSNet3 | | | 87.40 196 | 86.11 207 | 91.30 161 | 93.79 199 | 83.64 110 | 94.20 163 | 94.81 212 | 83.89 180 | 84.37 225 | 91.87 234 | 68.45 260 | 96.56 255 | 78.23 243 | 85.36 242 | 93.70 249 |
|
OPM-MVS | | | 90.12 111 | 89.56 112 | 91.82 143 | 93.14 215 | 83.90 102 | 94.16 164 | 95.74 149 | 88.96 63 | 87.86 141 | 95.43 106 | 72.48 208 | 97.91 159 | 88.10 112 | 90.18 184 | 93.65 250 |
|
PEN-MVS | | | 86.80 216 | 86.27 202 | 88.40 259 | 92.32 236 | 75.71 289 | 95.18 97 | 96.38 102 | 87.97 88 | 82.82 261 | 93.15 188 | 73.39 198 | 95.92 285 | 76.15 264 | 79.03 318 | 93.59 251 |
|
TR-MVS | | | 86.78 217 | 85.76 222 | 89.82 220 | 94.37 175 | 78.41 243 | 92.47 237 | 92.83 261 | 81.11 246 | 86.36 173 | 92.40 211 | 68.73 257 | 97.48 185 | 73.75 284 | 89.85 191 | 93.57 252 |
|
v144192 | | | 87.19 206 | 86.35 198 | 89.74 224 | 90.64 298 | 78.24 248 | 93.92 184 | 95.43 176 | 81.93 224 | 85.51 192 | 91.05 260 | 74.21 182 | 97.45 188 | 82.86 173 | 81.56 283 | 93.53 253 |
|
v1921920 | | | 86.97 211 | 86.06 210 | 89.69 228 | 90.53 303 | 78.11 251 | 93.80 188 | 95.43 176 | 81.90 226 | 85.33 208 | 91.05 260 | 72.66 205 | 97.41 197 | 82.05 188 | 81.80 280 | 93.53 253 |
|
v1192 | | | 87.25 201 | 86.33 199 | 90.00 215 | 90.76 294 | 79.04 232 | 93.80 188 | 95.48 168 | 82.57 210 | 85.48 195 | 91.18 254 | 73.38 199 | 97.42 192 | 82.30 183 | 82.06 275 | 93.53 253 |
|
tpmvs | | | 83.35 273 | 82.07 271 | 87.20 291 | 91.07 279 | 71.00 328 | 88.31 314 | 91.70 290 | 78.91 268 | 80.49 288 | 87.18 325 | 69.30 249 | 97.08 225 | 68.12 316 | 83.56 259 | 93.51 256 |
|
v1240 | | | 86.78 217 | 85.85 217 | 89.56 230 | 90.45 304 | 77.79 260 | 93.61 196 | 95.37 181 | 81.65 232 | 85.43 200 | 91.15 256 | 71.50 216 | 97.43 191 | 81.47 201 | 82.05 277 | 93.47 257 |
|
eth_miper_zixun_eth | | | 86.50 227 | 85.77 221 | 88.68 253 | 91.94 247 | 75.81 288 | 90.47 279 | 94.89 205 | 82.05 218 | 84.05 236 | 90.46 273 | 75.96 156 | 96.77 241 | 82.76 177 | 79.36 315 | 93.46 258 |
|
v1144 | | | 87.61 187 | 86.79 181 | 90.06 211 | 91.01 280 | 79.34 224 | 93.95 182 | 95.42 178 | 83.36 194 | 85.66 186 | 91.31 250 | 74.98 171 | 97.42 192 | 83.37 165 | 82.06 275 | 93.42 259 |
|
cl-mvsnet2 | | | 86.78 217 | 85.98 212 | 89.18 240 | 92.34 235 | 77.62 266 | 90.84 274 | 94.13 235 | 81.33 240 | 83.97 239 | 90.15 279 | 73.96 187 | 96.60 252 | 84.19 156 | 82.94 265 | 93.33 260 |
|
v148 | | | 87.04 210 | 86.32 200 | 89.21 238 | 90.94 285 | 77.26 271 | 93.71 193 | 94.43 222 | 84.84 164 | 84.36 228 | 90.80 266 | 76.04 155 | 97.05 228 | 82.12 186 | 79.60 313 | 93.31 261 |
|
AllTest | | | 83.42 271 | 81.39 277 | 89.52 232 | 95.01 141 | 77.79 260 | 93.12 216 | 90.89 313 | 77.41 286 | 76.12 322 | 93.34 178 | 54.08 338 | 97.51 183 | 68.31 313 | 84.27 251 | 93.26 262 |
|
TestCases | | | | | 89.52 232 | 95.01 141 | 77.79 260 | | 90.89 313 | 77.41 286 | 76.12 322 | 93.34 178 | 54.08 338 | 97.51 183 | 68.31 313 | 84.27 251 | 93.26 262 |
|
cl_fuxian | | | 87.14 208 | 86.50 194 | 89.04 244 | 92.20 237 | 77.26 271 | 91.22 269 | 94.70 216 | 82.01 221 | 84.34 229 | 90.43 274 | 78.81 127 | 96.61 250 | 83.70 163 | 81.09 290 | 93.25 264 |
|
cl-mvsnet1 | | | 86.53 225 | 85.78 219 | 88.75 250 | 92.02 245 | 76.45 281 | 90.74 275 | 94.30 227 | 81.83 230 | 83.34 255 | 90.82 265 | 75.75 161 | 96.57 253 | 81.73 197 | 81.52 285 | 93.24 265 |
|
bset_n11_16_dypcd | | | 86.83 214 | 85.55 224 | 90.65 184 | 88.22 330 | 81.70 159 | 88.88 306 | 90.42 318 | 85.26 154 | 85.49 194 | 90.69 269 | 67.11 267 | 97.02 230 | 89.51 95 | 84.39 249 | 93.23 266 |
|
cl-mvsnet____ | | | 86.52 226 | 85.78 219 | 88.75 250 | 92.03 244 | 76.46 280 | 90.74 275 | 94.30 227 | 81.83 230 | 83.34 255 | 90.78 267 | 75.74 163 | 96.57 253 | 81.74 196 | 81.54 284 | 93.22 267 |
|
DTE-MVSNet | | | 86.11 233 | 85.48 227 | 87.98 271 | 91.65 259 | 74.92 292 | 94.93 112 | 95.75 148 | 87.36 106 | 82.26 266 | 93.04 193 | 72.85 203 | 95.82 291 | 74.04 280 | 77.46 324 | 93.20 268 |
|
SixPastTwentyTwo | | | 83.91 267 | 82.90 267 | 86.92 295 | 90.99 281 | 70.67 330 | 93.48 200 | 91.99 283 | 85.54 146 | 77.62 313 | 92.11 224 | 60.59 313 | 96.87 239 | 76.05 265 | 77.75 321 | 93.20 268 |
|
WR-MVS_H | | | 87.80 176 | 87.37 166 | 89.10 242 | 93.23 213 | 78.12 250 | 95.61 74 | 97.30 26 | 87.90 91 | 83.72 244 | 92.01 230 | 79.65 121 | 96.01 282 | 76.36 260 | 80.54 301 | 93.16 270 |
|
OurMVSNet-221017-0 | | | 85.35 246 | 84.64 246 | 87.49 281 | 90.77 293 | 72.59 315 | 94.01 179 | 94.40 223 | 84.72 167 | 79.62 302 | 93.17 187 | 61.91 302 | 96.72 242 | 81.99 189 | 81.16 287 | 93.16 270 |
|
gg-mvs-nofinetune | | | 81.77 283 | 79.37 296 | 88.99 246 | 90.85 291 | 77.73 263 | 86.29 328 | 79.63 358 | 74.88 312 | 83.19 258 | 69.05 353 | 60.34 314 | 96.11 278 | 75.46 269 | 94.64 125 | 93.11 272 |
|
MSDG | | | 84.86 257 | 83.09 264 | 90.14 207 | 93.80 197 | 80.05 206 | 89.18 302 | 93.09 256 | 78.89 269 | 78.19 307 | 91.91 232 | 65.86 285 | 97.27 209 | 68.47 311 | 88.45 212 | 93.11 272 |
|
v7n | | | 86.81 215 | 85.76 222 | 89.95 216 | 90.72 296 | 79.25 230 | 95.07 103 | 95.92 133 | 84.45 171 | 82.29 265 | 90.86 263 | 72.60 207 | 97.53 182 | 79.42 233 | 80.52 304 | 93.08 274 |
|
miper_ehance_all_eth | | | 87.22 204 | 86.62 189 | 89.02 245 | 92.13 240 | 77.40 270 | 90.91 273 | 94.81 212 | 81.28 241 | 84.32 230 | 90.08 281 | 79.26 123 | 96.62 247 | 83.81 161 | 82.94 265 | 93.04 275 |
|
miper_lstm_enhance | | | 85.27 249 | 84.59 247 | 87.31 284 | 91.28 271 | 74.63 293 | 87.69 320 | 94.09 237 | 81.20 245 | 81.36 277 | 89.85 287 | 74.97 172 | 94.30 319 | 81.03 207 | 79.84 312 | 93.01 276 |
|
ACMH | | 80.38 17 | 85.36 245 | 83.68 257 | 90.39 196 | 94.45 172 | 80.63 191 | 94.73 126 | 94.85 208 | 82.09 217 | 77.24 314 | 92.65 205 | 60.01 317 | 97.58 178 | 72.25 290 | 84.87 246 | 92.96 277 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
miper_enhance_ethall | | | 86.90 212 | 86.18 204 | 89.06 243 | 91.66 258 | 77.58 267 | 90.22 285 | 94.82 211 | 79.16 266 | 84.48 221 | 89.10 295 | 79.19 124 | 96.66 245 | 84.06 157 | 82.94 265 | 92.94 278 |
|
lessismore_v0 | | | | | 86.04 304 | 88.46 326 | 68.78 339 | | 80.59 356 | | 73.01 338 | 90.11 280 | 55.39 332 | 96.43 265 | 75.06 274 | 65.06 346 | 92.90 279 |
|
V42 | | | 87.68 179 | 86.86 177 | 90.15 206 | 90.58 300 | 80.14 201 | 94.24 161 | 95.28 184 | 83.66 184 | 85.67 185 | 91.33 247 | 74.73 175 | 97.41 197 | 84.43 154 | 81.83 279 | 92.89 280 |
|
XVG-ACMP-BASELINE | | | 86.00 234 | 84.84 242 | 89.45 235 | 91.20 272 | 78.00 252 | 91.70 260 | 95.55 162 | 85.05 161 | 82.97 259 | 92.25 218 | 54.49 336 | 97.48 185 | 82.93 171 | 87.45 228 | 92.89 280 |
|
v8 | | | 87.50 193 | 86.71 183 | 89.89 217 | 91.37 267 | 79.40 221 | 94.50 139 | 95.38 179 | 84.81 165 | 83.60 249 | 91.33 247 | 76.05 154 | 97.42 192 | 82.84 174 | 80.51 305 | 92.84 282 |
|
pm-mvs1 | | | 86.61 222 | 85.54 225 | 89.82 220 | 91.44 261 | 80.18 199 | 95.28 90 | 94.85 208 | 83.84 181 | 81.66 273 | 92.62 206 | 72.45 210 | 96.48 260 | 79.67 228 | 78.06 319 | 92.82 283 |
|
K. test v3 | | | 81.59 287 | 80.15 289 | 85.91 308 | 89.89 315 | 69.42 337 | 92.57 235 | 87.71 343 | 85.56 145 | 73.44 336 | 89.71 289 | 55.58 330 | 95.52 300 | 77.17 254 | 69.76 338 | 92.78 284 |
|
anonymousdsp | | | 87.84 174 | 87.09 172 | 90.12 208 | 89.13 319 | 80.54 194 | 94.67 130 | 95.55 162 | 82.05 218 | 83.82 242 | 92.12 222 | 71.47 217 | 97.15 218 | 87.15 124 | 87.80 225 | 92.67 285 |
|
IterMVS-SCA-FT | | | 85.45 243 | 84.53 248 | 88.18 267 | 91.71 255 | 76.87 276 | 90.19 286 | 92.65 267 | 85.40 151 | 81.44 275 | 90.54 271 | 66.79 272 | 95.00 313 | 81.04 205 | 81.05 291 | 92.66 286 |
|
v10 | | | 87.25 201 | 86.38 195 | 89.85 218 | 91.19 273 | 79.50 218 | 94.48 140 | 95.45 173 | 83.79 182 | 83.62 248 | 91.19 252 | 75.13 168 | 97.42 192 | 81.94 190 | 80.60 299 | 92.63 287 |
|
ACMH+ | | 81.04 14 | 85.05 253 | 83.46 261 | 89.82 220 | 94.66 163 | 79.37 222 | 94.44 145 | 94.12 236 | 82.19 216 | 78.04 309 | 92.82 200 | 58.23 325 | 97.54 181 | 73.77 283 | 82.90 268 | 92.54 288 |
|
pmmvs5 | | | 84.21 263 | 82.84 269 | 88.34 262 | 88.95 321 | 76.94 275 | 92.41 238 | 91.91 288 | 75.63 302 | 80.28 290 | 91.18 254 | 64.59 290 | 95.57 297 | 77.09 256 | 83.47 260 | 92.53 289 |
|
IterMVS | | | 84.88 256 | 83.98 254 | 87.60 277 | 91.44 261 | 76.03 286 | 90.18 287 | 92.41 270 | 83.24 197 | 81.06 281 | 90.42 275 | 66.60 275 | 94.28 320 | 79.46 229 | 80.98 296 | 92.48 290 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS | | | 87.44 194 | 86.10 208 | 91.44 157 | 92.61 231 | 83.62 111 | 92.63 232 | 95.66 155 | 67.26 344 | 81.47 274 | 92.15 220 | 77.95 138 | 98.22 133 | 79.71 227 | 95.48 110 | 92.47 291 |
|
testgi | | | 80.94 297 | 80.20 288 | 83.18 324 | 87.96 334 | 66.29 345 | 91.28 266 | 90.70 317 | 83.70 183 | 78.12 308 | 92.84 198 | 51.37 344 | 90.82 347 | 63.34 335 | 82.46 271 | 92.43 292 |
|
JIA-IIPM | | | 81.04 294 | 78.98 304 | 87.25 287 | 88.64 323 | 73.48 304 | 81.75 348 | 89.61 336 | 73.19 324 | 82.05 269 | 73.71 350 | 66.07 283 | 95.87 288 | 71.18 295 | 84.60 248 | 92.41 293 |
|
BH-w/o | | | 87.57 189 | 87.05 174 | 89.12 241 | 94.90 150 | 77.90 255 | 92.41 238 | 93.51 250 | 82.89 205 | 83.70 245 | 91.34 246 | 75.75 161 | 97.07 226 | 75.49 268 | 93.49 143 | 92.39 294 |
|
PMMVS | | | 85.71 241 | 84.96 238 | 87.95 272 | 88.90 322 | 77.09 273 | 88.68 309 | 90.06 326 | 72.32 331 | 86.47 168 | 90.76 268 | 72.15 211 | 94.40 316 | 81.78 195 | 93.49 143 | 92.36 295 |
|
PVSNet_BlendedMVS | | | 89.98 115 | 89.70 110 | 90.82 181 | 96.12 100 | 81.25 173 | 93.92 184 | 96.83 64 | 83.49 190 | 89.10 124 | 92.26 217 | 81.04 104 | 98.85 94 | 86.72 131 | 87.86 224 | 92.35 296 |
|
Patchmtry | | | 82.71 275 | 80.93 281 | 88.06 270 | 90.05 311 | 76.37 283 | 84.74 338 | 91.96 286 | 72.28 332 | 81.32 278 | 87.87 316 | 71.03 221 | 95.50 303 | 68.97 308 | 80.15 307 | 92.32 297 |
|
PatchMatch-RL | | | 86.77 220 | 85.54 225 | 90.47 194 | 95.88 113 | 82.71 139 | 90.54 278 | 92.31 273 | 79.82 259 | 84.32 230 | 91.57 245 | 68.77 256 | 96.39 266 | 73.16 286 | 93.48 145 | 92.32 297 |
|
pmmvs6 | | | 83.42 271 | 81.60 275 | 88.87 247 | 88.01 333 | 77.87 257 | 94.96 109 | 94.24 230 | 74.67 313 | 78.80 305 | 91.09 259 | 60.17 316 | 96.49 259 | 77.06 257 | 75.40 330 | 92.23 299 |
|
DSMNet-mixed | | | 76.94 315 | 76.29 314 | 78.89 331 | 83.10 351 | 56.11 358 | 87.78 318 | 79.77 357 | 60.65 350 | 75.64 325 | 88.71 302 | 61.56 304 | 88.34 351 | 60.07 345 | 89.29 200 | 92.21 300 |
|
CHOSEN 280x420 | | | 85.15 251 | 83.99 253 | 88.65 254 | 92.47 232 | 78.40 244 | 79.68 351 | 92.76 263 | 74.90 311 | 81.41 276 | 89.59 290 | 69.85 240 | 95.51 301 | 79.92 226 | 95.29 116 | 92.03 301 |
|
UnsupCasMVSNet_eth | | | 80.07 302 | 78.27 306 | 85.46 310 | 85.24 346 | 72.63 314 | 88.45 313 | 94.87 207 | 82.99 202 | 71.64 343 | 88.07 312 | 56.34 329 | 91.75 344 | 73.48 285 | 63.36 349 | 92.01 302 |
|
test0.0.03 1 | | | 82.41 278 | 81.69 274 | 84.59 317 | 88.23 329 | 72.89 309 | 90.24 283 | 87.83 342 | 83.41 192 | 79.86 298 | 89.78 288 | 67.25 264 | 88.99 350 | 65.18 329 | 83.42 262 | 91.90 303 |
|
pmmvs4 | | | 85.43 244 | 83.86 255 | 90.16 205 | 90.02 312 | 82.97 130 | 90.27 281 | 92.67 266 | 75.93 300 | 80.73 283 | 91.74 237 | 71.05 220 | 95.73 295 | 78.85 237 | 83.46 261 | 91.78 304 |
|
LTVRE_ROB | | 82.13 13 | 86.26 232 | 84.90 240 | 90.34 201 | 94.44 173 | 81.50 164 | 92.31 244 | 94.89 205 | 83.03 200 | 79.63 301 | 92.67 204 | 69.69 241 | 97.79 162 | 71.20 293 | 86.26 237 | 91.72 305 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ppachtmachnet_test | | | 81.84 282 | 80.07 290 | 87.15 292 | 88.46 326 | 74.43 297 | 89.04 304 | 92.16 277 | 75.33 305 | 77.75 311 | 88.99 296 | 66.20 280 | 95.37 306 | 65.12 330 | 77.60 322 | 91.65 306 |
|
COLMAP_ROB |  | 80.39 16 | 83.96 265 | 82.04 272 | 89.74 224 | 95.28 132 | 79.75 215 | 94.25 160 | 92.28 274 | 75.17 307 | 78.02 310 | 93.77 170 | 58.60 324 | 97.84 161 | 65.06 331 | 85.92 238 | 91.63 307 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
FMVSNet5 | | | 81.52 289 | 79.60 295 | 87.27 285 | 91.17 274 | 77.95 253 | 91.49 264 | 92.26 275 | 76.87 291 | 76.16 321 | 87.91 315 | 51.67 343 | 92.34 339 | 67.74 317 | 81.16 287 | 91.52 308 |
|
ITE_SJBPF | | | | | 88.24 265 | 91.88 249 | 77.05 274 | | 92.92 259 | 85.54 146 | 80.13 294 | 93.30 182 | 57.29 327 | 96.20 274 | 72.46 289 | 84.71 247 | 91.49 309 |
|
MDA-MVSNet-bldmvs | | | 78.85 310 | 76.31 313 | 86.46 300 | 89.76 316 | 73.88 301 | 88.79 307 | 90.42 318 | 79.16 266 | 59.18 352 | 88.33 308 | 60.20 315 | 94.04 322 | 62.00 339 | 68.96 342 | 91.48 310 |
|
MIMVSNet1 | | | 79.38 307 | 77.28 309 | 85.69 309 | 86.35 338 | 73.67 303 | 91.61 263 | 92.75 264 | 78.11 284 | 72.64 339 | 88.12 311 | 48.16 349 | 91.97 343 | 60.32 343 | 77.49 323 | 91.43 311 |
|
EU-MVSNet | | | 81.32 292 | 80.95 280 | 82.42 328 | 88.50 325 | 63.67 351 | 93.32 204 | 91.33 300 | 64.02 348 | 80.57 287 | 92.83 199 | 61.21 309 | 92.27 340 | 76.34 261 | 80.38 306 | 91.32 312 |
|
Baseline_NR-MVSNet | | | 87.07 209 | 86.63 188 | 88.40 259 | 91.44 261 | 77.87 257 | 94.23 162 | 92.57 268 | 84.12 175 | 85.74 183 | 92.08 226 | 77.25 143 | 96.04 279 | 82.29 184 | 79.94 309 | 91.30 313 |
|
D2MVS | | | 85.90 236 | 85.09 235 | 88.35 261 | 90.79 292 | 77.42 269 | 91.83 255 | 95.70 151 | 80.77 249 | 80.08 295 | 90.02 282 | 66.74 274 | 96.37 267 | 81.88 192 | 87.97 222 | 91.26 314 |
|
MVS_0304 | | | 83.46 270 | 81.92 273 | 88.10 269 | 90.63 299 | 77.49 268 | 93.26 211 | 93.75 247 | 80.04 256 | 80.44 289 | 87.24 324 | 47.94 350 | 95.55 298 | 75.79 266 | 88.16 217 | 91.26 314 |
|
TransMVSNet (Re) | | | 84.43 262 | 83.06 265 | 88.54 256 | 91.72 254 | 78.44 242 | 95.18 97 | 92.82 262 | 82.73 207 | 79.67 300 | 92.12 222 | 73.49 194 | 95.96 284 | 71.10 297 | 68.73 344 | 91.21 316 |
|
YYNet1 | | | 79.22 308 | 77.20 310 | 85.28 313 | 88.20 332 | 72.66 313 | 85.87 330 | 90.05 328 | 74.33 316 | 62.70 350 | 87.61 318 | 66.09 282 | 92.03 341 | 66.94 321 | 72.97 333 | 91.15 317 |
|
our_test_3 | | | 81.93 281 | 80.46 284 | 86.33 303 | 88.46 326 | 73.48 304 | 88.46 312 | 91.11 304 | 76.46 292 | 76.69 318 | 88.25 309 | 66.89 270 | 94.36 317 | 68.75 309 | 79.08 317 | 91.14 318 |
|
Anonymous20231206 | | | 81.03 295 | 79.77 293 | 84.82 316 | 87.85 335 | 70.26 333 | 91.42 265 | 92.08 279 | 73.67 320 | 77.75 311 | 89.25 294 | 62.43 299 | 93.08 334 | 61.50 341 | 82.00 278 | 91.12 319 |
|
CL-MVSNet_2432*1600 | | | 81.74 284 | 80.53 282 | 85.36 311 | 85.96 341 | 72.45 317 | 90.25 282 | 93.07 257 | 81.24 243 | 79.85 299 | 87.29 323 | 70.93 223 | 92.52 338 | 66.95 320 | 69.23 340 | 91.11 320 |
|
MDA-MVSNet_test_wron | | | 79.21 309 | 77.19 311 | 85.29 312 | 88.22 330 | 72.77 311 | 85.87 330 | 90.06 326 | 74.34 315 | 62.62 351 | 87.56 319 | 66.14 281 | 91.99 342 | 66.90 324 | 73.01 332 | 91.10 321 |
|
DIV-MVS_2432*1600 | | | 80.20 301 | 79.24 298 | 83.07 325 | 85.64 344 | 65.29 349 | 91.01 272 | 93.93 239 | 78.71 275 | 76.32 320 | 86.40 328 | 59.20 322 | 92.93 336 | 72.59 288 | 69.35 339 | 91.00 322 |
|
CMPMVS |  | 59.16 21 | 80.52 298 | 79.20 300 | 84.48 318 | 83.98 348 | 67.63 344 | 89.95 291 | 93.84 245 | 64.79 347 | 66.81 348 | 91.14 257 | 57.93 326 | 95.17 308 | 76.25 262 | 88.10 218 | 90.65 323 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ambc | | | | | 83.06 326 | 79.99 354 | 63.51 352 | 77.47 352 | 92.86 260 | | 74.34 333 | 84.45 336 | 28.74 358 | 95.06 312 | 73.06 287 | 68.89 343 | 90.61 324 |
|
USDC | | | 82.76 274 | 81.26 279 | 87.26 286 | 91.17 274 | 74.55 294 | 89.27 299 | 93.39 252 | 78.26 281 | 75.30 327 | 92.08 226 | 54.43 337 | 96.63 246 | 71.64 291 | 85.79 241 | 90.61 324 |
|
GG-mvs-BLEND | | | | | 87.94 273 | 89.73 317 | 77.91 254 | 87.80 317 | 78.23 360 | | 80.58 286 | 83.86 337 | 59.88 318 | 95.33 307 | 71.20 293 | 92.22 166 | 90.60 326 |
|
tfpnnormal | | | 84.72 259 | 83.23 263 | 89.20 239 | 92.79 228 | 80.05 206 | 94.48 140 | 95.81 143 | 82.38 212 | 81.08 280 | 91.21 251 | 69.01 253 | 96.95 234 | 61.69 340 | 80.59 300 | 90.58 327 |
|
N_pmnet | | | 68.89 321 | 68.44 324 | 70.23 337 | 89.07 320 | 28.79 367 | 88.06 315 | 19.50 368 | 69.47 341 | 71.86 342 | 84.93 335 | 61.24 308 | 91.75 344 | 54.70 350 | 77.15 325 | 90.15 328 |
|
Anonymous20240521 | | | 80.44 299 | 79.21 299 | 84.11 322 | 85.75 343 | 67.89 341 | 92.86 227 | 93.23 254 | 75.61 303 | 75.59 326 | 87.47 320 | 50.03 345 | 94.33 318 | 71.14 296 | 81.21 286 | 90.12 329 |
|
test20.03 | | | 79.95 303 | 79.08 302 | 82.55 327 | 85.79 342 | 67.74 343 | 91.09 271 | 91.08 305 | 81.23 244 | 74.48 332 | 89.96 285 | 61.63 303 | 90.15 348 | 60.08 344 | 76.38 328 | 89.76 330 |
|
TDRefinement | | | 79.81 304 | 77.34 308 | 87.22 290 | 79.24 355 | 75.48 291 | 93.12 216 | 92.03 281 | 76.45 293 | 75.01 328 | 91.58 243 | 49.19 348 | 96.44 264 | 70.22 301 | 69.18 341 | 89.75 331 |
|
KD-MVS_2432*1600 | | | 78.50 311 | 76.02 316 | 85.93 306 | 86.22 339 | 74.47 295 | 84.80 336 | 92.33 271 | 79.29 263 | 76.98 316 | 85.92 331 | 53.81 340 | 93.97 323 | 67.39 318 | 57.42 352 | 89.36 332 |
|
miper_refine_blended | | | 78.50 311 | 76.02 316 | 85.93 306 | 86.22 339 | 74.47 295 | 84.80 336 | 92.33 271 | 79.29 263 | 76.98 316 | 85.92 331 | 53.81 340 | 93.97 323 | 67.39 318 | 57.42 352 | 89.36 332 |
|
EG-PatchMatch MVS | | | 82.37 279 | 80.34 285 | 88.46 258 | 90.27 306 | 79.35 223 | 92.80 229 | 94.33 226 | 77.14 290 | 73.26 337 | 90.18 278 | 47.47 352 | 96.72 242 | 70.25 299 | 87.32 231 | 89.30 334 |
|
pmmvs-eth3d | | | 80.97 296 | 78.72 305 | 87.74 274 | 84.99 347 | 79.97 211 | 90.11 288 | 91.65 292 | 75.36 304 | 73.51 335 | 86.03 330 | 59.45 320 | 93.96 325 | 75.17 272 | 72.21 335 | 89.29 335 |
|
MVP-Stereo | | | 85.97 235 | 84.86 241 | 89.32 236 | 90.92 287 | 82.19 150 | 92.11 250 | 94.19 231 | 78.76 273 | 78.77 306 | 91.63 241 | 68.38 261 | 96.56 255 | 75.01 275 | 93.95 134 | 89.20 336 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
new-patchmatchnet | | | 76.41 316 | 75.17 318 | 80.13 330 | 82.65 353 | 59.61 353 | 87.66 321 | 91.08 305 | 78.23 282 | 69.85 344 | 83.22 340 | 54.76 334 | 91.63 346 | 64.14 334 | 64.89 347 | 89.16 337 |
|
MS-PatchMatch | | | 85.05 253 | 84.16 250 | 87.73 275 | 91.42 265 | 78.51 240 | 91.25 268 | 93.53 249 | 77.50 285 | 80.15 292 | 91.58 243 | 61.99 301 | 95.51 301 | 75.69 267 | 94.35 132 | 89.16 337 |
|
UnsupCasMVSNet_bld | | | 76.23 317 | 73.27 320 | 85.09 315 | 83.79 349 | 72.92 308 | 85.65 333 | 93.47 251 | 71.52 334 | 68.84 346 | 79.08 347 | 49.77 346 | 93.21 332 | 66.81 325 | 60.52 351 | 89.13 339 |
|
PM-MVS | | | 78.11 313 | 76.12 315 | 84.09 323 | 83.54 350 | 70.08 334 | 88.97 305 | 85.27 349 | 79.93 257 | 74.73 330 | 86.43 327 | 34.70 357 | 93.48 329 | 79.43 232 | 72.06 336 | 88.72 340 |
|
LF4IMVS | | | 80.37 300 | 79.07 303 | 84.27 321 | 86.64 337 | 69.87 336 | 89.39 298 | 91.05 307 | 76.38 294 | 74.97 329 | 90.00 283 | 47.85 351 | 94.25 321 | 74.55 279 | 80.82 298 | 88.69 341 |
|
TinyColmap | | | 79.76 305 | 77.69 307 | 85.97 305 | 91.71 255 | 73.12 307 | 89.55 293 | 90.36 321 | 75.03 308 | 72.03 341 | 90.19 277 | 46.22 353 | 96.19 276 | 63.11 336 | 81.03 292 | 88.59 342 |
|
test_0402 | | | 81.30 293 | 79.17 301 | 87.67 276 | 93.19 214 | 78.17 249 | 92.98 223 | 91.71 289 | 75.25 306 | 76.02 324 | 90.31 276 | 59.23 321 | 96.37 267 | 50.22 353 | 83.63 258 | 88.47 343 |
|
PVSNet_0 | | 73.20 20 | 77.22 314 | 74.83 319 | 84.37 319 | 90.70 297 | 71.10 326 | 83.09 345 | 89.67 335 | 72.81 329 | 73.93 334 | 83.13 341 | 60.79 311 | 93.70 327 | 68.54 310 | 50.84 355 | 88.30 344 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 306 | 77.03 312 | 86.93 294 | 87.00 336 | 76.23 285 | 92.33 242 | 90.74 316 | 68.93 342 | 74.52 331 | 88.23 310 | 49.58 347 | 96.62 247 | 57.64 348 | 84.29 250 | 87.94 345 |
|
LCM-MVSNet | | | 66.00 322 | 62.16 326 | 77.51 334 | 64.51 362 | 58.29 354 | 83.87 342 | 90.90 312 | 48.17 355 | 54.69 353 | 73.31 351 | 16.83 367 | 86.75 352 | 65.47 327 | 61.67 350 | 87.48 346 |
|
pmmvs3 | | | 71.81 320 | 68.71 323 | 81.11 329 | 75.86 356 | 70.42 332 | 86.74 325 | 83.66 351 | 58.95 351 | 68.64 347 | 80.89 345 | 36.93 356 | 89.52 349 | 63.10 337 | 63.59 348 | 83.39 347 |
|
MVS-HIRNet | | | 73.70 318 | 72.20 321 | 78.18 333 | 91.81 252 | 56.42 357 | 82.94 346 | 82.58 352 | 55.24 352 | 68.88 345 | 66.48 354 | 55.32 333 | 95.13 309 | 58.12 347 | 88.42 213 | 83.01 348 |
|
test_method | | | 50.52 328 | 48.47 330 | 56.66 342 | 52.26 366 | 18.98 369 | 41.51 361 | 81.40 355 | 10.10 362 | 44.59 357 | 75.01 349 | 28.51 359 | 68.16 359 | 53.54 351 | 49.31 356 | 82.83 349 |
|
new_pmnet | | | 72.15 319 | 70.13 322 | 78.20 332 | 82.95 352 | 65.68 346 | 83.91 341 | 82.40 353 | 62.94 349 | 64.47 349 | 79.82 346 | 42.85 355 | 86.26 353 | 57.41 349 | 74.44 331 | 82.65 350 |
|
ANet_high | | | 58.88 325 | 54.22 329 | 72.86 335 | 56.50 365 | 56.67 356 | 80.75 350 | 86.00 346 | 73.09 326 | 37.39 359 | 64.63 356 | 22.17 362 | 79.49 358 | 43.51 355 | 23.96 360 | 82.43 351 |
|
PMMVS2 | | | 59.60 324 | 56.40 327 | 69.21 338 | 68.83 359 | 46.58 362 | 73.02 356 | 77.48 361 | 55.07 353 | 49.21 355 | 72.95 352 | 17.43 366 | 80.04 357 | 49.32 354 | 44.33 357 | 80.99 352 |
|
FPMVS | | | 64.63 323 | 62.55 325 | 70.88 336 | 70.80 358 | 56.71 355 | 84.42 339 | 84.42 350 | 51.78 354 | 49.57 354 | 81.61 344 | 23.49 361 | 81.48 356 | 40.61 357 | 76.25 329 | 74.46 353 |
|
PMVS |  | 47.18 22 | 52.22 327 | 48.46 331 | 63.48 340 | 45.72 367 | 46.20 363 | 73.41 355 | 78.31 359 | 41.03 358 | 30.06 361 | 65.68 355 | 6.05 368 | 83.43 355 | 30.04 359 | 65.86 345 | 60.80 354 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 39.65 23 | 43.39 329 | 38.59 335 | 57.77 341 | 56.52 364 | 48.77 361 | 55.38 358 | 58.64 365 | 29.33 361 | 28.96 362 | 52.65 358 | 4.68 369 | 64.62 362 | 28.11 360 | 33.07 358 | 59.93 355 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | 56.31 343 | 74.23 357 | 51.81 360 | | 56.67 366 | 44.85 356 | 48.54 356 | 75.16 348 | 27.87 360 | 58.74 363 | 40.92 356 | 52.22 354 | 58.39 356 |
|
Gipuma |  | | 57.99 326 | 54.91 328 | 67.24 339 | 88.51 324 | 65.59 347 | 52.21 359 | 90.33 322 | 43.58 357 | 42.84 358 | 51.18 359 | 20.29 364 | 85.07 354 | 34.77 358 | 70.45 337 | 51.05 357 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 43.23 330 | 42.29 332 | 46.03 344 | 65.58 361 | 37.41 364 | 73.51 354 | 64.62 362 | 33.99 359 | 28.47 363 | 47.87 360 | 19.90 365 | 67.91 360 | 22.23 361 | 24.45 359 | 32.77 358 |
|
EMVS | | | 42.07 331 | 41.12 333 | 44.92 345 | 63.45 363 | 35.56 366 | 73.65 353 | 63.48 363 | 33.05 360 | 26.88 364 | 45.45 361 | 21.27 363 | 67.14 361 | 19.80 362 | 23.02 361 | 32.06 359 |
|
tmp_tt | | | 35.64 332 | 39.24 334 | 24.84 346 | 14.87 368 | 23.90 368 | 62.71 357 | 51.51 367 | 6.58 364 | 36.66 360 | 62.08 357 | 44.37 354 | 30.34 365 | 52.40 352 | 22.00 362 | 20.27 360 |
|
wuyk23d | | | 21.27 334 | 20.48 337 | 23.63 347 | 68.59 360 | 36.41 365 | 49.57 360 | 6.85 369 | 9.37 363 | 7.89 365 | 4.46 367 | 4.03 370 | 31.37 364 | 17.47 363 | 16.07 363 | 3.12 361 |
|
test123 | | | 8.76 336 | 11.22 339 | 1.39 348 | 0.85 370 | 0.97 370 | 85.76 332 | 0.35 371 | 0.54 366 | 2.45 367 | 8.14 366 | 0.60 371 | 0.48 366 | 2.16 365 | 0.17 365 | 2.71 362 |
|
testmvs | | | 8.92 335 | 11.52 338 | 1.12 349 | 1.06 369 | 0.46 371 | 86.02 329 | 0.65 370 | 0.62 365 | 2.74 366 | 9.52 365 | 0.31 372 | 0.45 367 | 2.38 364 | 0.39 364 | 2.46 363 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
cdsmvs_eth3d_5k | | | 22.14 333 | 29.52 336 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 95.76 147 | 0.00 367 | 0.00 368 | 94.29 145 | 75.66 164 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
pcd_1.5k_mvsjas | | | 6.64 338 | 8.86 341 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 79.70 117 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ab-mvs-re | | | 7.82 337 | 10.43 340 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 93.88 164 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ZD-MVS | | | | | | 98.15 35 | 86.62 35 | | 97.07 44 | 83.63 185 | 94.19 30 | 96.91 48 | 87.57 29 | 99.26 43 | 91.99 56 | 98.44 51 | |
|
test_241102_ONE | | | | | | 98.77 4 | 85.99 55 | | 97.44 12 | 90.26 30 | 97.71 1 | 97.96 8 | 92.31 2 | 99.38 29 | | | |
|
9.14 | | | | 94.47 17 | | 97.79 52 | | 96.08 50 | 97.44 12 | 86.13 134 | 95.10 22 | 97.40 21 | 88.34 18 | 99.22 46 | 93.25 28 | 98.70 32 | |
|
save fliter | | | | | | 97.85 48 | 85.63 68 | 95.21 94 | 96.82 66 | 89.44 47 | | | | | | | |
|
test0726 | | | | | | 98.78 2 | 85.93 58 | 97.19 6 | 97.47 8 | 90.27 28 | 97.64 4 | 98.13 1 | 91.47 6 | | | | |
|
test_part2 | | | | | | 98.55 11 | 87.22 16 | | | | 96.40 11 | | | | | | |
|
sam_mvs | | | | | | | | | | | | | 70.60 227 | | | | |
|
MTGPA |  | | | | | | | | 96.97 49 | | | | | | | | |
|
test_post1 | | | | | | | | 88.00 316 | | | | 9.81 364 | 69.31 248 | 95.53 299 | 76.65 258 | | |
|
test_post | | | | | | | | | | | | 10.29 363 | 70.57 231 | 95.91 287 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 338 | 71.53 215 | 96.48 260 | | | |
|
MTMP | | | | | | | | 96.16 44 | 60.64 364 | | | | | | | | |
|
gm-plane-assit | | | | | | 89.60 318 | 68.00 340 | | | 77.28 289 | | 88.99 296 | | 97.57 179 | 79.44 231 | | |
|
TEST9 | | | | | | 97.53 58 | 86.49 39 | 94.07 173 | 96.78 69 | 81.61 235 | 92.77 65 | 96.20 80 | 87.71 26 | 99.12 55 | | | |
|
test_8 | | | | | | 97.49 61 | 86.30 48 | 94.02 178 | 96.76 72 | 81.86 228 | 92.70 69 | 96.20 80 | 87.63 27 | 99.02 68 | | | |
|
agg_prior | | | | | | 97.38 64 | 85.92 60 | | 96.72 78 | | 92.16 81 | | | 98.97 80 | | | |
|
test_prior4 | | | | | | | 85.96 57 | 94.11 168 | | | | | | | | | |
|
test_prior2 | | | | | | | | 94.12 166 | | 87.67 99 | 92.63 70 | 96.39 72 | 86.62 39 | | 91.50 71 | 98.67 37 | |
|
旧先验2 | | | | | | | | 93.36 203 | | 71.25 336 | 94.37 26 | | | 97.13 221 | 86.74 129 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 93.11 218 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 92.94 225 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.75 100 | 78.30 242 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 35 | | | | |
|
testdata1 | | | | | | | | 92.15 248 | | 87.94 89 | | | | | | | |
|
plane_prior7 | | | | | | 94.70 160 | 82.74 136 | | | | | | | | | | |
|
plane_prior6 | | | | | | 94.52 167 | 82.75 134 | | | | | | 74.23 180 | | | | |
|
plane_prior4 | | | | | | | | | | | | 94.86 124 | | | | | |
|
plane_prior3 | | | | | | | 82.75 134 | | | 90.26 30 | 86.91 162 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 61 | | 90.81 17 | | | | | | | |
|
plane_prior1 | | | | | | 94.59 165 | | | | | | | | | | | |
|
plane_prior | | | | | | | 82.73 137 | 95.21 94 | | 89.66 43 | | | | | | 89.88 190 | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 347 | | | | | | | | |
|
test11 | | | | | | | | | 96.57 92 | | | | | | | | |
|
door | | | | | | | | | 85.33 348 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 162 | | | | | | | | | | |
|
HQP-NCC | | | | | | 94.17 180 | | 94.39 150 | | 88.81 64 | 85.43 200 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 180 | | 94.39 150 | | 88.81 64 | 85.43 200 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 126 | | |
|
HQP3-MVS | | | | | | | | | 96.04 126 | | | | | | | 89.77 192 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 190 | | | | |
|
NP-MVS | | | | | | 94.37 175 | 82.42 145 | | | | | 93.98 157 | | | | | |
|
MDTV_nov1_ep13 | | | | 83.56 260 | | 91.69 257 | 69.93 335 | 87.75 319 | 91.54 295 | 78.60 276 | 84.86 214 | 88.90 298 | 69.54 243 | 96.03 280 | 70.25 299 | 88.93 205 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 226 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 221 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 112 | | | | |
|