| casdiffmvs_mvg |  | | 76.14 41 | 76.30 36 | 75.66 74 | 76.46 220 | 51.83 188 | 79.67 109 | 85.08 32 | 65.02 19 | 75.84 35 | 88.58 60 | 59.42 22 | 85.08 109 | 72.75 56 | 83.93 76 | 90.08 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 3Dnovator+ | | 66.72 4 | 75.84 45 | 74.57 55 | 79.66 9 | 82.40 76 | 59.92 48 | 85.83 22 | 86.32 16 | 66.92 7 | 67.80 160 | 89.24 51 | 42.03 204 | 89.38 19 | 64.07 118 | 86.50 56 | 89.69 2 |
|
| casdiffmvs |  | | 74.80 52 | 74.89 53 | 74.53 99 | 75.59 232 | 50.37 206 | 78.17 131 | 85.06 34 | 62.80 58 | 74.40 56 | 87.86 70 | 57.88 27 | 83.61 139 | 69.46 76 | 82.79 89 | 89.59 3 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CS-MVS | | | 76.25 40 | 75.98 39 | 77.06 50 | 80.15 118 | 55.63 120 | 84.51 35 | 83.90 57 | 63.24 45 | 73.30 70 | 87.27 80 | 55.06 47 | 86.30 84 | 71.78 63 | 84.58 68 | 89.25 4 |
|
| iter_conf05 | | | 75.83 47 | 75.63 45 | 76.43 58 | 80.84 102 | 51.87 187 | 78.13 132 | 84.81 40 | 59.65 112 | 72.86 84 | 87.47 75 | 56.92 34 | 88.17 37 | 72.18 60 | 87.79 42 | 89.24 5 |
|
| MM | | | 80.20 7 | 80.28 8 | 79.99 2 | 82.19 79 | 60.01 46 | 86.19 17 | 83.93 54 | 73.19 1 | 77.08 31 | 91.21 15 | 57.23 33 | 90.73 10 | 83.35 1 | 88.12 35 | 89.22 6 |
|
| baseline | | | 74.61 58 | 74.70 54 | 74.34 103 | 75.70 228 | 49.99 214 | 77.54 148 | 84.63 43 | 62.73 59 | 73.98 62 | 87.79 73 | 57.67 30 | 83.82 135 | 69.49 74 | 82.74 90 | 89.20 7 |
|
| MVSMamba_pp | | | 74.64 57 | 74.07 60 | 76.35 61 | 79.76 123 | 53.09 162 | 79.97 101 | 85.21 29 | 55.21 201 | 72.81 86 | 85.37 135 | 53.93 63 | 87.17 58 | 67.93 85 | 86.46 57 | 88.80 8 |
|
| MVS_0304 | | | 78.73 16 | 78.75 15 | 78.66 30 | 80.82 103 | 57.62 83 | 85.31 30 | 81.31 117 | 70.51 2 | 74.17 60 | 91.24 14 | 54.99 48 | 89.56 17 | 82.29 2 | 88.13 34 | 88.80 8 |
|
| alignmvs | | | 73.86 66 | 73.99 61 | 73.45 135 | 78.20 166 | 50.50 205 | 78.57 123 | 82.43 93 | 59.40 118 | 76.57 32 | 86.71 90 | 56.42 39 | 81.23 192 | 65.84 106 | 81.79 99 | 88.62 10 |
|
| IS-MVSNet | | | 71.57 100 | 71.00 101 | 73.27 141 | 78.86 145 | 45.63 267 | 80.22 97 | 78.69 165 | 64.14 35 | 66.46 185 | 87.36 77 | 49.30 119 | 85.60 96 | 50.26 229 | 83.71 78 | 88.59 11 |
|
| sasdasda | | | 74.67 55 | 74.98 51 | 73.71 122 | 78.94 143 | 50.56 203 | 80.23 95 | 83.87 60 | 60.30 100 | 77.15 29 | 86.56 97 | 59.65 17 | 82.00 175 | 66.01 103 | 82.12 93 | 88.58 12 |
|
| canonicalmvs | | | 74.67 55 | 74.98 51 | 73.71 122 | 78.94 143 | 50.56 203 | 80.23 95 | 83.87 60 | 60.30 100 | 77.15 29 | 86.56 97 | 59.65 17 | 82.00 175 | 66.01 103 | 82.12 93 | 88.58 12 |
|
| DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 10 | 87.24 14 | 59.15 60 | 88.18 1 | 87.15 3 | 65.04 16 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 6 | 91.38 2 | 88.42 14 |
|
| PC_three_1452 | | | | | | | | | | 55.09 204 | 84.46 4 | 89.84 43 | 66.68 5 | 89.41 18 | 74.24 44 | 91.38 2 | 88.42 14 |
|
| iter_conf05_11 | | | 73.52 68 | 72.59 75 | 76.30 63 | 80.93 101 | 51.97 184 | 78.62 121 | 83.48 70 | 52.20 243 | 71.53 103 | 85.93 119 | 54.01 60 | 88.55 28 | 61.08 147 | 85.56 63 | 88.39 16 |
|
| IU-MVS | | | | | | 87.77 4 | 59.15 60 | | 85.53 25 | 53.93 226 | 84.64 3 | | | | 79.07 11 | 90.87 5 | 88.37 17 |
|
| MGCFI-Net | | | 72.45 83 | 73.34 70 | 69.81 216 | 77.77 181 | 43.21 289 | 75.84 190 | 81.18 123 | 59.59 116 | 75.45 38 | 86.64 91 | 57.74 28 | 77.94 249 | 63.92 122 | 81.90 98 | 88.30 18 |
|
| VDDNet | | | 71.81 95 | 71.33 93 | 73.26 142 | 82.80 75 | 47.60 247 | 78.74 118 | 75.27 224 | 59.59 116 | 72.94 82 | 89.40 48 | 41.51 214 | 83.91 133 | 58.75 165 | 82.99 82 | 88.26 19 |
|
| VDD-MVS | | | 72.50 81 | 72.09 81 | 73.75 120 | 81.58 86 | 49.69 219 | 77.76 143 | 77.63 190 | 63.21 47 | 73.21 73 | 89.02 53 | 42.14 203 | 83.32 143 | 61.72 142 | 82.50 91 | 88.25 20 |
|
| SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 13 | 87.77 4 | 58.90 69 | 87.82 7 | 86.78 10 | 64.18 32 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 17 | 90.87 5 | 88.23 21 |
|
| OPU-MVS | | | | | 79.83 7 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 42 | 67.01 1 | 90.33 12 | 73.16 54 | 91.15 4 | 88.23 21 |
|
| SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 4 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 62 | 82.20 15 | 92.28 1 | 56.53 37 | 89.70 16 | 79.85 5 | 91.48 1 | 88.19 23 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CS-MVS-test | | | 75.62 48 | 75.31 48 | 76.56 57 | 80.63 108 | 55.13 130 | 83.88 48 | 85.22 28 | 62.05 71 | 71.49 104 | 86.03 114 | 53.83 65 | 86.36 82 | 67.74 87 | 86.91 50 | 88.19 23 |
|
| DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 19 | 84.92 56 | 60.32 44 | 83.03 57 | 85.33 27 | 62.86 54 | 80.17 17 | 90.03 38 | 61.76 14 | 88.95 24 | 74.21 45 | 88.67 26 | 88.12 25 |
|
| test_0728_THIRD | | | | | | | | | | 65.04 16 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 6 | 90.63 10 | 88.09 26 |
|
| MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 18 | 86.83 8 | 65.51 12 | 83.81 10 | 90.51 23 | 63.71 12 | 89.23 20 | 81.51 3 | 88.44 27 | 88.09 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| EPP-MVSNet | | | 72.16 91 | 71.31 94 | 74.71 89 | 78.68 151 | 49.70 217 | 82.10 75 | 81.65 104 | 60.40 93 | 65.94 194 | 85.84 122 | 51.74 96 | 86.37 81 | 55.93 179 | 79.55 124 | 88.07 28 |
|
| DELS-MVS | | | 74.76 53 | 74.46 56 | 75.65 75 | 77.84 179 | 52.25 177 | 75.59 193 | 84.17 49 | 63.76 38 | 73.15 75 | 82.79 176 | 59.58 20 | 86.80 67 | 67.24 93 | 86.04 59 | 87.89 29 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| DeepC-MVS | | 69.38 2 | 78.56 18 | 78.14 22 | 79.83 7 | 83.60 63 | 61.62 23 | 84.17 42 | 86.85 6 | 63.23 46 | 73.84 65 | 90.25 32 | 57.68 29 | 89.96 14 | 74.62 43 | 89.03 22 | 87.89 29 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 44 | 82.88 74 | 57.83 80 | 84.99 32 | 88.13 2 | 61.86 75 | 79.16 20 | 90.75 18 | 57.96 26 | 87.09 62 | 77.08 26 | 90.18 15 | 87.87 31 |
|
| MSC_two_6792asdad | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 32 |
|
| No_MVS | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 32 |
|
| Anonymous20240529 | | | 69.91 131 | 69.02 134 | 72.56 153 | 80.19 116 | 47.65 245 | 77.56 147 | 80.99 128 | 55.45 196 | 69.88 122 | 86.76 86 | 39.24 235 | 82.18 173 | 54.04 197 | 77.10 162 | 87.85 32 |
|
| MP-MVS-pluss | | | 78.35 20 | 78.46 18 | 78.03 40 | 84.96 52 | 59.52 53 | 82.93 59 | 85.39 26 | 62.15 67 | 76.41 34 | 91.51 11 | 52.47 83 | 86.78 68 | 80.66 4 | 89.64 19 | 87.80 35 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| PHI-MVS | | | 75.87 44 | 75.36 46 | 77.41 46 | 80.62 109 | 55.91 113 | 84.28 39 | 85.78 20 | 56.08 181 | 73.41 69 | 86.58 96 | 50.94 107 | 88.54 29 | 70.79 69 | 89.71 17 | 87.79 36 |
|
| CANet | | | 76.46 37 | 75.93 40 | 78.06 39 | 81.29 93 | 57.53 85 | 82.35 69 | 83.31 79 | 67.78 3 | 70.09 114 | 86.34 104 | 54.92 50 | 88.90 25 | 72.68 57 | 84.55 69 | 87.76 37 |
|
| SteuartSystems-ACMMP | | | 79.48 11 | 79.31 11 | 79.98 3 | 83.01 72 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 9 | 78.03 26 | 90.98 16 | 54.26 57 | 90.06 13 | 78.42 19 | 89.02 23 | 87.69 38 |
| Skip Steuart: Steuart Systems R&D Blog. |
| TSAR-MVS + MP. | | | 78.44 19 | 78.28 20 | 78.90 26 | 84.96 52 | 61.41 26 | 84.03 45 | 83.82 63 | 59.34 120 | 79.37 19 | 89.76 45 | 59.84 16 | 87.62 50 | 76.69 27 | 86.74 53 | 87.68 39 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 32 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 17 | 90.70 7 | 87.65 40 |
|
| MVS_Test | | | 72.45 83 | 72.46 78 | 72.42 159 | 74.88 241 | 48.50 235 | 76.28 178 | 83.14 85 | 59.40 118 | 72.46 93 | 84.68 140 | 55.66 43 | 81.12 193 | 65.98 105 | 79.66 121 | 87.63 41 |
|
| test_0728_SECOND | | | | | 79.19 16 | 87.82 3 | 59.11 63 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 15 | 90.61 11 | 87.62 42 |
|
| CDPH-MVS | | | 76.31 38 | 75.67 44 | 78.22 37 | 85.35 48 | 59.14 62 | 81.31 86 | 84.02 51 | 56.32 175 | 74.05 61 | 88.98 54 | 53.34 73 | 87.92 44 | 69.23 77 | 88.42 28 | 87.59 43 |
|
| OMC-MVS | | | 71.40 104 | 70.60 106 | 73.78 116 | 76.60 216 | 53.15 159 | 79.74 108 | 79.78 143 | 58.37 137 | 68.75 139 | 86.45 102 | 45.43 173 | 80.60 206 | 62.58 133 | 77.73 150 | 87.58 44 |
|
| diffmvs |  | | 70.69 115 | 70.43 109 | 71.46 178 | 69.45 328 | 48.95 229 | 72.93 241 | 78.46 174 | 57.27 156 | 71.69 100 | 83.97 159 | 51.48 99 | 77.92 251 | 70.70 70 | 77.95 149 | 87.53 45 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| TranMVSNet+NR-MVSNet | | | 70.36 122 | 70.10 118 | 71.17 190 | 78.64 152 | 42.97 292 | 76.53 173 | 81.16 125 | 66.95 6 | 68.53 143 | 85.42 133 | 51.61 98 | 83.07 148 | 52.32 210 | 69.70 261 | 87.46 46 |
|
| nrg030 | | | 72.96 75 | 73.01 71 | 72.84 148 | 75.41 235 | 50.24 207 | 80.02 99 | 82.89 89 | 58.36 138 | 74.44 55 | 86.73 88 | 58.90 24 | 80.83 202 | 65.84 106 | 74.46 184 | 87.44 47 |
|
| DeepC-MVS_fast | | 68.24 3 | 77.25 30 | 76.63 33 | 79.12 20 | 86.15 34 | 60.86 36 | 84.71 33 | 84.85 39 | 61.98 74 | 73.06 80 | 88.88 55 | 53.72 68 | 89.06 23 | 68.27 79 | 88.04 38 | 87.42 48 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test2506 | | | 65.33 224 | 64.61 217 | 67.50 244 | 79.46 130 | 34.19 367 | 74.43 219 | 51.92 374 | 58.72 128 | 66.75 180 | 88.05 66 | 25.99 357 | 80.92 200 | 51.94 215 | 84.25 72 | 87.39 49 |
|
| ECVR-MVS |  | | 67.72 183 | 67.51 165 | 68.35 237 | 79.46 130 | 36.29 355 | 74.79 212 | 66.93 301 | 58.72 128 | 67.19 170 | 88.05 66 | 36.10 267 | 81.38 187 | 52.07 213 | 84.25 72 | 87.39 49 |
|
| DU-MVS | | | 70.01 128 | 69.53 125 | 71.44 179 | 78.05 173 | 44.13 279 | 75.01 206 | 81.51 107 | 64.37 28 | 68.20 147 | 84.52 146 | 49.12 125 | 82.82 159 | 54.62 193 | 70.43 242 | 87.37 51 |
|
| NR-MVSNet | | | 69.54 143 | 68.85 136 | 71.59 176 | 78.05 173 | 43.81 283 | 74.20 221 | 80.86 131 | 65.18 14 | 62.76 248 | 84.52 146 | 52.35 86 | 83.59 140 | 50.96 225 | 70.78 237 | 87.37 51 |
|
| UniMVSNet_NR-MVSNet | | | 71.11 106 | 71.00 101 | 71.44 179 | 79.20 136 | 44.13 279 | 76.02 186 | 82.60 92 | 66.48 11 | 68.20 147 | 84.60 145 | 56.82 36 | 82.82 159 | 54.62 193 | 70.43 242 | 87.36 53 |
|
| HPM-MVS |  | | 77.28 29 | 76.85 30 | 78.54 32 | 85.00 51 | 60.81 38 | 82.91 60 | 85.08 32 | 62.57 60 | 73.09 79 | 89.97 41 | 50.90 108 | 87.48 52 | 75.30 36 | 86.85 51 | 87.33 54 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| Effi-MVS+ | | | 73.31 71 | 72.54 77 | 75.62 76 | 77.87 177 | 53.64 148 | 79.62 111 | 79.61 147 | 61.63 77 | 72.02 98 | 82.61 181 | 56.44 38 | 85.97 89 | 63.99 121 | 79.07 133 | 87.25 55 |
|
| ZNCC-MVS | | | 78.82 13 | 78.67 17 | 79.30 14 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 43 | 75.08 42 | 90.47 26 | 53.96 62 | 88.68 27 | 76.48 28 | 89.63 20 | 87.16 56 |
|
| FIs | | | 70.82 113 | 71.43 89 | 68.98 229 | 78.33 163 | 38.14 332 | 76.96 164 | 83.59 68 | 61.02 83 | 67.33 168 | 86.73 88 | 55.07 46 | 81.64 181 | 54.61 195 | 79.22 129 | 87.14 57 |
|
| CNVR-MVS | | | 79.84 10 | 79.97 10 | 79.45 11 | 87.90 2 | 62.17 17 | 84.37 36 | 85.03 35 | 66.96 5 | 77.58 27 | 90.06 36 | 59.47 21 | 89.13 22 | 78.67 14 | 89.73 16 | 87.03 58 |
|
| test1111 | | | 67.21 190 | 67.14 181 | 67.42 246 | 79.24 135 | 34.76 362 | 73.89 230 | 65.65 310 | 58.71 130 | 66.96 175 | 87.95 69 | 36.09 268 | 80.53 207 | 52.03 214 | 83.79 77 | 86.97 59 |
|
| mvsmamba | | | 71.15 105 | 69.54 124 | 75.99 66 | 77.61 192 | 53.46 153 | 81.95 77 | 75.11 230 | 57.73 152 | 66.95 176 | 85.96 117 | 37.14 259 | 87.56 51 | 67.94 84 | 75.49 180 | 86.97 59 |
|
| FC-MVSNet-test | | | 69.80 134 | 70.58 108 | 67.46 245 | 77.61 192 | 34.73 363 | 76.05 184 | 83.19 83 | 60.84 85 | 65.88 198 | 86.46 101 | 54.52 55 | 80.76 205 | 52.52 209 | 78.12 146 | 86.91 61 |
|
| UniMVSNet (Re) | | | 70.63 116 | 70.20 114 | 71.89 165 | 78.55 153 | 45.29 270 | 75.94 187 | 82.92 87 | 63.68 40 | 68.16 149 | 83.59 166 | 53.89 64 | 83.49 142 | 53.97 198 | 71.12 235 | 86.89 62 |
|
| LFMVS | | | 71.78 96 | 71.59 85 | 72.32 160 | 83.40 67 | 46.38 256 | 79.75 107 | 71.08 268 | 64.18 32 | 72.80 87 | 88.64 59 | 42.58 199 | 83.72 136 | 57.41 171 | 84.49 70 | 86.86 63 |
|
| DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 15 | 87.27 13 | 60.56 41 | 85.71 26 | 86.42 14 | 63.28 44 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 11 | 76.41 29 | 89.67 18 | 86.84 64 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test12 | | | | | 77.76 43 | 84.52 58 | 58.41 75 | | 83.36 77 | | 72.93 83 | | 54.61 54 | 88.05 40 | | 88.12 35 | 86.81 65 |
|
| APDe-MVS |  | | 80.16 8 | 80.59 6 | 78.86 28 | 86.64 21 | 60.02 45 | 88.12 3 | 86.42 14 | 62.94 51 | 82.40 14 | 92.12 2 | 59.64 19 | 89.76 15 | 78.70 13 | 88.32 31 | 86.79 66 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMP_NAP | | | 78.77 15 | 78.78 14 | 78.74 29 | 85.44 45 | 61.04 31 | 83.84 49 | 85.16 31 | 62.88 53 | 78.10 24 | 91.26 13 | 52.51 81 | 88.39 31 | 79.34 8 | 90.52 13 | 86.78 67 |
|
| test_fmvsmconf_n | | | 73.01 74 | 72.59 75 | 74.27 106 | 71.28 303 | 55.88 114 | 78.21 130 | 75.56 219 | 54.31 221 | 74.86 48 | 87.80 72 | 54.72 52 | 80.23 216 | 78.07 21 | 78.48 142 | 86.70 68 |
|
| test_fmvsmconf0.1_n | | | 72.81 76 | 72.33 79 | 74.24 107 | 69.89 323 | 55.81 115 | 78.22 129 | 75.40 222 | 54.17 223 | 75.00 44 | 88.03 68 | 53.82 66 | 80.23 216 | 78.08 20 | 78.34 145 | 86.69 69 |
|
| tttt0517 | | | 67.83 181 | 65.66 206 | 74.33 104 | 76.69 213 | 50.82 197 | 77.86 139 | 73.99 247 | 54.54 217 | 64.64 225 | 82.53 186 | 35.06 276 | 85.50 101 | 55.71 183 | 69.91 255 | 86.67 70 |
|
| EC-MVSNet | | | 75.84 45 | 75.87 42 | 75.74 72 | 78.86 145 | 52.65 168 | 83.73 50 | 86.08 17 | 63.47 42 | 72.77 88 | 87.25 81 | 53.13 75 | 87.93 43 | 71.97 62 | 85.57 62 | 86.66 71 |
|
| test_fmvsmconf0.01_n | | | 72.17 89 | 71.50 87 | 74.16 108 | 67.96 340 | 55.58 123 | 78.06 135 | 74.67 237 | 54.19 222 | 74.54 54 | 88.23 61 | 50.35 112 | 80.24 215 | 78.07 21 | 77.46 154 | 86.65 72 |
|
| GST-MVS | | | 78.14 22 | 77.85 24 | 78.99 25 | 86.05 38 | 61.82 22 | 85.84 21 | 85.21 29 | 63.56 41 | 74.29 59 | 90.03 38 | 52.56 80 | 88.53 30 | 74.79 42 | 88.34 29 | 86.63 73 |
|
| MCST-MVS | | | 77.48 28 | 77.45 27 | 77.54 45 | 86.67 20 | 58.36 76 | 83.22 55 | 86.93 5 | 56.91 162 | 74.91 47 | 88.19 62 | 59.15 23 | 87.68 49 | 73.67 51 | 87.45 43 | 86.57 74 |
|
| test_fmvsm_n_1920 | | | 71.73 98 | 71.14 98 | 73.50 132 | 72.52 279 | 56.53 101 | 75.60 192 | 76.16 209 | 48.11 295 | 77.22 28 | 85.56 128 | 53.10 76 | 77.43 258 | 74.86 40 | 77.14 160 | 86.55 75 |
|
| thisisatest0530 | | | 67.92 179 | 65.78 204 | 74.33 104 | 76.29 221 | 51.03 192 | 76.89 167 | 74.25 244 | 53.67 229 | 65.59 202 | 81.76 205 | 35.15 275 | 85.50 101 | 55.94 178 | 72.47 218 | 86.47 76 |
|
| test_prior | | | | | 76.69 53 | 84.20 61 | 57.27 88 | | 84.88 38 | | | | | 86.43 79 | | | 86.38 77 |
|
| NCCC | | | 78.58 17 | 78.31 19 | 79.39 12 | 87.51 12 | 62.61 13 | 85.20 31 | 84.42 45 | 66.73 8 | 74.67 53 | 89.38 49 | 55.30 45 | 89.18 21 | 74.19 46 | 87.34 44 | 86.38 77 |
|
| XVS | | | 77.17 31 | 76.56 34 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 55 | 64.55 23 | 72.17 96 | 90.01 40 | 47.95 135 | 88.01 41 | 71.55 66 | 86.74 53 | 86.37 79 |
|
| X-MVStestdata | | | 70.21 125 | 67.28 174 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 55 | 64.55 23 | 72.17 96 | 6.49 408 | 47.95 135 | 88.01 41 | 71.55 66 | 86.74 53 | 86.37 79 |
|
| dcpmvs_2 | | | 74.55 60 | 75.23 49 | 72.48 155 | 82.34 77 | 53.34 156 | 77.87 138 | 81.46 108 | 57.80 151 | 75.49 37 | 86.81 85 | 62.22 13 | 77.75 254 | 71.09 68 | 82.02 96 | 86.34 81 |
|
| WR-MVS | | | 68.47 167 | 68.47 147 | 68.44 236 | 80.20 115 | 39.84 316 | 73.75 233 | 76.07 212 | 64.68 22 | 68.11 151 | 83.63 165 | 50.39 111 | 79.14 234 | 49.78 230 | 69.66 262 | 86.34 81 |
|
| Anonymous202405211 | | | 66.84 202 | 65.99 201 | 69.40 223 | 80.19 116 | 42.21 298 | 71.11 271 | 71.31 267 | 58.80 127 | 67.90 153 | 86.39 103 | 29.83 328 | 79.65 221 | 49.60 236 | 78.78 137 | 86.33 83 |
|
| SD-MVS | | | 77.70 26 | 77.62 26 | 77.93 42 | 84.47 59 | 61.88 21 | 84.55 34 | 83.87 60 | 60.37 96 | 79.89 18 | 89.38 49 | 54.97 49 | 85.58 98 | 76.12 31 | 84.94 66 | 86.33 83 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| UniMVSNet_ETH3D | | | 67.60 185 | 67.07 182 | 69.18 228 | 77.39 199 | 42.29 296 | 74.18 222 | 75.59 218 | 60.37 96 | 66.77 179 | 86.06 113 | 37.64 250 | 78.93 241 | 52.16 212 | 73.49 201 | 86.32 85 |
|
| UA-Net | | | 73.13 72 | 72.93 72 | 73.76 118 | 83.58 64 | 51.66 189 | 78.75 117 | 77.66 189 | 67.75 4 | 72.61 91 | 89.42 47 | 49.82 114 | 83.29 144 | 53.61 202 | 83.14 79 | 86.32 85 |
|
| ACMMPR | | | 77.71 25 | 77.23 28 | 79.16 17 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 48 | 62.82 55 | 73.55 68 | 90.56 22 | 49.80 115 | 88.24 34 | 74.02 48 | 87.03 46 | 86.32 85 |
|
| region2R | | | 77.67 27 | 77.18 29 | 79.15 18 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 50 | 62.81 57 | 73.30 70 | 90.58 21 | 49.90 113 | 88.21 35 | 73.78 50 | 87.03 46 | 86.29 88 |
|
| mvs_anonymous | | | 68.03 175 | 67.51 165 | 69.59 219 | 72.08 288 | 44.57 277 | 71.99 256 | 75.23 226 | 51.67 246 | 67.06 173 | 82.57 182 | 54.68 53 | 77.94 249 | 56.56 175 | 75.71 177 | 86.26 89 |
|
| fmvsm_s_conf0.1_n | | | 69.41 148 | 68.60 143 | 71.83 167 | 71.07 305 | 52.88 165 | 77.85 140 | 62.44 334 | 49.58 276 | 72.97 81 | 86.22 106 | 51.68 97 | 76.48 278 | 75.53 34 | 70.10 251 | 86.14 90 |
|
| HFP-MVS | | | 78.01 24 | 77.65 25 | 79.10 21 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 47 | 62.82 55 | 73.96 63 | 90.50 24 | 53.20 74 | 88.35 32 | 74.02 48 | 87.05 45 | 86.13 91 |
|
| v2v482 | | | 70.50 119 | 69.45 128 | 73.66 125 | 72.62 276 | 50.03 213 | 77.58 145 | 80.51 136 | 59.90 107 | 69.52 126 | 82.14 197 | 47.53 144 | 84.88 117 | 65.07 112 | 70.17 249 | 86.09 92 |
|
| CSCG | | | 76.92 33 | 76.75 31 | 77.41 46 | 83.96 62 | 59.60 51 | 82.95 58 | 86.50 13 | 60.78 87 | 75.27 39 | 84.83 138 | 60.76 15 | 86.56 74 | 67.86 86 | 87.87 41 | 86.06 93 |
|
| PAPR | | | 71.72 99 | 70.82 103 | 74.41 102 | 81.20 97 | 51.17 191 | 79.55 112 | 83.33 78 | 55.81 186 | 66.93 177 | 84.61 144 | 50.95 106 | 86.06 85 | 55.79 182 | 79.20 130 | 86.00 94 |
|
| fmvsm_s_conf0.5_n | | | 69.58 141 | 68.84 137 | 71.79 169 | 72.31 286 | 52.90 164 | 77.90 137 | 62.43 335 | 49.97 272 | 72.85 85 | 85.90 120 | 52.21 87 | 76.49 277 | 75.75 33 | 70.26 248 | 85.97 95 |
|
| EPNet | | | 73.09 73 | 72.16 80 | 75.90 68 | 75.95 226 | 56.28 104 | 83.05 56 | 72.39 259 | 66.53 10 | 65.27 208 | 87.00 82 | 50.40 110 | 85.47 103 | 62.48 135 | 86.32 58 | 85.94 96 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| GeoE | | | 71.01 108 | 70.15 116 | 73.60 130 | 79.57 128 | 52.17 178 | 78.93 116 | 78.12 182 | 58.02 144 | 67.76 163 | 83.87 160 | 52.36 85 | 82.72 161 | 56.90 173 | 75.79 175 | 85.92 97 |
|
| PAPM_NR | | | 72.63 80 | 71.80 83 | 75.13 84 | 81.72 85 | 53.42 155 | 79.91 104 | 83.28 81 | 59.14 122 | 66.31 189 | 85.90 120 | 51.86 93 | 86.06 85 | 57.45 170 | 80.62 107 | 85.91 98 |
|
| ETV-MVS | | | 74.46 61 | 73.84 64 | 76.33 62 | 79.27 134 | 55.24 129 | 79.22 114 | 85.00 37 | 64.97 21 | 72.65 90 | 79.46 250 | 53.65 72 | 87.87 45 | 67.45 92 | 82.91 85 | 85.89 99 |
|
| FA-MVS(test-final) | | | 69.82 133 | 68.48 145 | 73.84 114 | 78.44 157 | 50.04 212 | 75.58 195 | 78.99 158 | 58.16 140 | 67.59 164 | 82.14 197 | 42.66 197 | 85.63 95 | 56.60 174 | 76.19 171 | 85.84 100 |
|
| EI-MVSNet-Vis-set | | | 72.42 85 | 71.59 85 | 74.91 86 | 78.47 156 | 54.02 142 | 77.05 162 | 79.33 153 | 65.03 18 | 71.68 101 | 79.35 254 | 52.75 78 | 84.89 115 | 66.46 98 | 74.23 188 | 85.83 101 |
|
| ET-MVSNet_ETH3D | | | 67.96 178 | 65.72 205 | 74.68 91 | 76.67 214 | 55.62 122 | 75.11 203 | 74.74 235 | 52.91 235 | 60.03 278 | 80.12 236 | 33.68 292 | 82.64 164 | 61.86 141 | 76.34 169 | 85.78 102 |
|
| APD-MVS_3200maxsize | | | 74.96 50 | 74.39 57 | 76.67 54 | 82.20 78 | 58.24 77 | 83.67 51 | 83.29 80 | 58.41 136 | 73.71 66 | 90.14 33 | 45.62 166 | 85.99 88 | 69.64 73 | 82.85 88 | 85.78 102 |
|
| PGM-MVS | | | 76.77 35 | 76.06 38 | 78.88 27 | 86.14 35 | 62.73 9 | 82.55 67 | 83.74 64 | 61.71 76 | 72.45 95 | 90.34 29 | 48.48 131 | 88.13 38 | 72.32 58 | 86.85 51 | 85.78 102 |
|
| HPM-MVS_fast | | | 74.30 63 | 73.46 68 | 76.80 52 | 84.45 60 | 59.04 66 | 83.65 52 | 81.05 126 | 60.15 103 | 70.43 110 | 89.84 43 | 41.09 220 | 85.59 97 | 67.61 90 | 82.90 86 | 85.77 105 |
|
| Vis-MVSNet |  | | 72.18 88 | 71.37 92 | 74.61 95 | 81.29 93 | 55.41 126 | 80.90 89 | 78.28 181 | 60.73 88 | 69.23 135 | 88.09 64 | 44.36 185 | 82.65 163 | 57.68 168 | 81.75 102 | 85.77 105 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| VNet | | | 69.68 138 | 70.19 115 | 68.16 239 | 79.73 125 | 41.63 305 | 70.53 277 | 77.38 195 | 60.37 96 | 70.69 108 | 86.63 93 | 51.08 104 | 77.09 264 | 53.61 202 | 81.69 104 | 85.75 107 |
|
| MP-MVS |  | | 78.35 20 | 78.26 21 | 78.64 31 | 86.54 25 | 63.47 4 | 86.02 20 | 83.55 69 | 63.89 37 | 73.60 67 | 90.60 20 | 54.85 51 | 86.72 69 | 77.20 25 | 88.06 37 | 85.74 108 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| PS-MVSNAJss | | | 72.24 87 | 71.21 95 | 75.31 81 | 78.50 154 | 55.93 112 | 81.63 80 | 82.12 97 | 56.24 178 | 70.02 118 | 85.68 127 | 47.05 153 | 84.34 125 | 65.27 110 | 74.41 187 | 85.67 109 |
|
| EIA-MVS | | | 71.78 96 | 70.60 106 | 75.30 82 | 79.85 122 | 53.54 151 | 77.27 157 | 83.26 82 | 57.92 148 | 66.49 184 | 79.39 252 | 52.07 90 | 86.69 70 | 60.05 155 | 79.14 132 | 85.66 110 |
|
| Fast-Effi-MVS+ | | | 70.28 124 | 69.12 133 | 73.73 121 | 78.50 154 | 51.50 190 | 75.01 206 | 79.46 151 | 56.16 180 | 68.59 140 | 79.55 248 | 53.97 61 | 84.05 128 | 53.34 204 | 77.53 152 | 85.65 111 |
|
| Anonymous20231211 | | | 69.28 150 | 68.47 147 | 71.73 171 | 80.28 111 | 47.18 251 | 79.98 100 | 82.37 94 | 54.61 214 | 67.24 169 | 84.01 157 | 39.43 231 | 82.41 170 | 55.45 187 | 72.83 213 | 85.62 112 |
|
| test_djsdf | | | 69.45 147 | 67.74 157 | 74.58 97 | 74.57 251 | 54.92 133 | 82.79 61 | 78.48 172 | 51.26 257 | 65.41 205 | 83.49 169 | 38.37 243 | 83.24 145 | 66.06 101 | 69.25 268 | 85.56 113 |
|
| TSAR-MVS + GP. | | | 74.90 51 | 74.15 59 | 77.17 49 | 82.00 81 | 58.77 72 | 81.80 78 | 78.57 168 | 58.58 133 | 74.32 58 | 84.51 148 | 55.94 42 | 87.22 55 | 67.11 94 | 84.48 71 | 85.52 114 |
|
| PEN-MVS | | | 66.60 207 | 66.45 187 | 67.04 250 | 77.11 206 | 36.56 349 | 77.03 163 | 80.42 137 | 62.95 50 | 62.51 256 | 84.03 156 | 46.69 159 | 79.07 235 | 44.22 280 | 63.08 322 | 85.51 115 |
|
| test_yl | | | 69.69 136 | 69.13 131 | 71.36 183 | 78.37 161 | 45.74 263 | 74.71 213 | 80.20 140 | 57.91 149 | 70.01 119 | 83.83 161 | 42.44 200 | 82.87 155 | 54.97 189 | 79.72 119 | 85.48 116 |
|
| DCV-MVSNet | | | 69.69 136 | 69.13 131 | 71.36 183 | 78.37 161 | 45.74 263 | 74.71 213 | 80.20 140 | 57.91 149 | 70.01 119 | 83.83 161 | 42.44 200 | 82.87 155 | 54.97 189 | 79.72 119 | 85.48 116 |
|
| DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 34 | 87.75 7 | 59.07 64 | 87.85 5 | 85.03 35 | 64.26 29 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 15 | 90.61 11 | 85.45 118 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| CP-MVSNet | | | 66.49 210 | 66.41 191 | 66.72 252 | 77.67 185 | 36.33 352 | 76.83 170 | 79.52 149 | 62.45 63 | 62.54 254 | 83.47 170 | 46.32 161 | 78.37 243 | 45.47 275 | 63.43 319 | 85.45 118 |
|
| PCF-MVS | | 61.88 8 | 70.95 110 | 69.49 126 | 75.35 80 | 77.63 187 | 55.71 117 | 76.04 185 | 81.81 102 | 50.30 268 | 69.66 125 | 85.40 134 | 52.51 81 | 84.89 115 | 51.82 217 | 80.24 115 | 85.45 118 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PS-CasMVS | | | 66.42 211 | 66.32 195 | 66.70 254 | 77.60 194 | 36.30 354 | 76.94 165 | 79.61 147 | 62.36 65 | 62.43 258 | 83.66 164 | 45.69 165 | 78.37 243 | 45.35 277 | 63.26 320 | 85.42 121 |
|
| CLD-MVS | | | 73.33 70 | 72.68 74 | 75.29 83 | 78.82 147 | 53.33 157 | 78.23 128 | 84.79 41 | 61.30 81 | 70.41 111 | 81.04 218 | 52.41 84 | 87.12 60 | 64.61 116 | 82.49 92 | 85.41 122 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| tt0805 | | | 67.77 182 | 67.24 178 | 69.34 224 | 74.87 242 | 40.08 313 | 77.36 152 | 81.37 111 | 55.31 197 | 66.33 188 | 84.65 142 | 37.35 254 | 82.55 166 | 55.65 185 | 72.28 223 | 85.39 123 |
|
| v1144 | | | 70.42 121 | 69.31 129 | 73.76 118 | 73.22 264 | 50.64 200 | 77.83 141 | 81.43 109 | 58.58 133 | 69.40 130 | 81.16 215 | 47.53 144 | 85.29 108 | 64.01 120 | 70.64 238 | 85.34 124 |
|
| fmvsm_s_conf0.1_n_a | | | 69.32 149 | 68.44 149 | 71.96 163 | 70.91 307 | 53.78 146 | 78.12 133 | 62.30 336 | 49.35 278 | 73.20 74 | 86.55 99 | 51.99 91 | 76.79 271 | 74.83 41 | 68.68 278 | 85.32 125 |
|
| EI-MVSNet-UG-set | | | 71.92 94 | 71.06 100 | 74.52 100 | 77.98 175 | 53.56 150 | 76.62 171 | 79.16 154 | 64.40 27 | 71.18 105 | 78.95 259 | 52.19 88 | 84.66 121 | 65.47 109 | 73.57 199 | 85.32 125 |
|
| v8 | | | 70.33 123 | 69.28 130 | 73.49 133 | 73.15 266 | 50.22 208 | 78.62 121 | 80.78 132 | 60.79 86 | 66.45 186 | 82.11 199 | 49.35 118 | 84.98 112 | 63.58 127 | 68.71 276 | 85.28 127 |
|
| v1192 | | | 69.97 130 | 68.68 141 | 73.85 113 | 73.19 265 | 50.94 193 | 77.68 144 | 81.36 112 | 57.51 154 | 68.95 138 | 80.85 225 | 45.28 176 | 85.33 107 | 62.97 131 | 70.37 244 | 85.27 128 |
|
| HPM-MVS++ |  | | 79.88 9 | 80.14 9 | 79.10 21 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 65 | 65.37 13 | 78.78 22 | 90.64 19 | 58.63 25 | 87.24 54 | 79.00 12 | 90.37 14 | 85.26 129 |
|
| fmvsm_s_conf0.5_n_a | | | 69.54 143 | 68.74 140 | 71.93 164 | 72.47 281 | 53.82 145 | 78.25 127 | 62.26 337 | 49.78 274 | 73.12 78 | 86.21 107 | 52.66 79 | 76.79 271 | 75.02 39 | 68.88 273 | 85.18 130 |
|
| CANet_DTU | | | 68.18 173 | 67.71 160 | 69.59 219 | 74.83 243 | 46.24 258 | 78.66 120 | 76.85 202 | 59.60 113 | 63.45 239 | 82.09 200 | 35.25 274 | 77.41 259 | 59.88 158 | 78.76 138 | 85.14 131 |
|
| ACMMP |  | | 76.02 43 | 75.33 47 | 78.07 38 | 85.20 49 | 61.91 20 | 85.49 29 | 84.44 44 | 63.04 49 | 69.80 124 | 89.74 46 | 45.43 173 | 87.16 59 | 72.01 61 | 82.87 87 | 85.14 131 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| TAPA-MVS | | 59.36 10 | 66.60 207 | 65.20 213 | 70.81 196 | 76.63 215 | 48.75 231 | 76.52 174 | 80.04 142 | 50.64 265 | 65.24 212 | 84.93 137 | 39.15 236 | 78.54 242 | 36.77 330 | 76.88 164 | 85.14 131 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 70.21 125 | 69.02 134 | 73.81 115 | 73.51 263 | 50.92 195 | 78.74 118 | 81.39 110 | 60.05 105 | 66.39 187 | 81.83 204 | 47.58 142 | 85.41 106 | 62.80 132 | 68.86 275 | 85.09 134 |
|
| MG-MVS | | | 73.96 65 | 73.89 63 | 74.16 108 | 85.65 42 | 49.69 219 | 81.59 83 | 81.29 119 | 61.45 78 | 71.05 106 | 88.11 63 | 51.77 95 | 87.73 48 | 61.05 148 | 83.09 80 | 85.05 135 |
|
| v1921920 | | | 69.47 146 | 68.17 153 | 73.36 139 | 73.06 268 | 50.10 211 | 77.39 151 | 80.56 134 | 56.58 171 | 68.59 140 | 80.37 230 | 44.72 181 | 84.98 112 | 62.47 136 | 69.82 257 | 85.00 136 |
|
| DTE-MVSNet | | | 65.58 219 | 65.34 210 | 66.31 259 | 76.06 225 | 34.79 360 | 76.43 175 | 79.38 152 | 62.55 61 | 61.66 266 | 83.83 161 | 45.60 167 | 79.15 233 | 41.64 307 | 60.88 337 | 85.00 136 |
|
| mPP-MVS | | | 76.54 36 | 75.93 40 | 78.34 36 | 86.47 26 | 63.50 3 | 85.74 25 | 82.28 95 | 62.90 52 | 71.77 99 | 90.26 31 | 46.61 160 | 86.55 75 | 71.71 64 | 85.66 61 | 84.97 138 |
|
| v1240 | | | 69.24 152 | 67.91 156 | 73.25 143 | 73.02 270 | 49.82 215 | 77.21 158 | 80.54 135 | 56.43 173 | 68.34 146 | 80.51 229 | 43.33 193 | 84.99 110 | 62.03 140 | 69.77 260 | 84.95 139 |
|
| v144192 | | | 69.71 135 | 68.51 144 | 73.33 140 | 73.10 267 | 50.13 210 | 77.54 148 | 80.64 133 | 56.65 164 | 68.57 142 | 80.55 228 | 46.87 158 | 84.96 114 | 62.98 130 | 69.66 262 | 84.89 140 |
|
| APD-MVS |  | | 78.02 23 | 78.04 23 | 77.98 41 | 86.44 27 | 60.81 38 | 85.52 27 | 84.36 46 | 60.61 89 | 79.05 21 | 90.30 30 | 55.54 44 | 88.32 33 | 73.48 53 | 87.03 46 | 84.83 141 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| bld_raw_dy_0_64 | | | 72.13 93 | 71.18 97 | 74.96 85 | 77.70 182 | 51.88 186 | 71.67 261 | 84.69 42 | 51.27 256 | 65.06 217 | 85.80 126 | 54.50 56 | 88.19 36 | 64.51 117 | 85.45 64 | 84.82 142 |
|
| MTAPA | | | 76.90 34 | 76.42 35 | 78.35 35 | 86.08 37 | 63.57 2 | 74.92 209 | 80.97 129 | 65.13 15 | 75.77 36 | 90.88 17 | 48.63 128 | 86.66 71 | 77.23 24 | 88.17 33 | 84.81 143 |
|
| v7n | | | 69.01 155 | 67.36 171 | 73.98 111 | 72.51 280 | 52.65 168 | 78.54 125 | 81.30 118 | 60.26 102 | 62.67 250 | 81.62 207 | 43.61 190 | 84.49 122 | 57.01 172 | 68.70 277 | 84.79 144 |
|
| WR-MVS_H | | | 67.02 198 | 66.92 183 | 67.33 249 | 77.95 176 | 37.75 336 | 77.57 146 | 82.11 98 | 62.03 73 | 62.65 251 | 82.48 187 | 50.57 109 | 79.46 224 | 42.91 296 | 64.01 312 | 84.79 144 |
|
| CP-MVS | | | 77.12 32 | 76.68 32 | 78.43 33 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 73 | 62.44 64 | 72.68 89 | 90.50 24 | 48.18 133 | 87.34 53 | 73.59 52 | 85.71 60 | 84.76 146 |
|
| HQP_MVS | | | 74.31 62 | 73.73 65 | 76.06 65 | 81.41 90 | 56.31 102 | 84.22 40 | 84.01 52 | 64.52 25 | 69.27 132 | 86.10 111 | 45.26 177 | 87.21 56 | 68.16 82 | 80.58 109 | 84.65 147 |
|
| plane_prior5 | | | | | | | | | 84.01 52 | | | | | 87.21 56 | 68.16 82 | 80.58 109 | 84.65 147 |
|
| v148 | | | 68.24 172 | 67.19 180 | 71.40 182 | 70.43 313 | 47.77 244 | 75.76 191 | 77.03 200 | 58.91 125 | 67.36 167 | 80.10 237 | 48.60 130 | 81.89 177 | 60.01 156 | 66.52 294 | 84.53 149 |
|
| V42 | | | 68.65 161 | 67.35 172 | 72.56 153 | 68.93 334 | 50.18 209 | 72.90 242 | 79.47 150 | 56.92 161 | 69.45 129 | 80.26 234 | 46.29 162 | 82.99 149 | 64.07 118 | 67.82 283 | 84.53 149 |
|
| VPA-MVSNet | | | 69.02 154 | 69.47 127 | 67.69 243 | 77.42 198 | 41.00 310 | 74.04 223 | 79.68 145 | 60.06 104 | 69.26 134 | 84.81 139 | 51.06 105 | 77.58 256 | 54.44 196 | 74.43 186 | 84.48 151 |
|
| SR-MVS | | | 76.13 42 | 75.70 43 | 77.40 48 | 85.87 40 | 61.20 29 | 85.52 27 | 82.19 96 | 59.99 106 | 75.10 41 | 90.35 28 | 47.66 140 | 86.52 76 | 71.64 65 | 82.99 82 | 84.47 152 |
|
| agg_prior2 | | | | | | | | | | | | | | | 73.09 55 | 87.93 40 | 84.33 153 |
|
| HQP4-MVS | | | | | | | | | | | 67.85 155 | | | 86.93 64 | | | 84.32 154 |
|
| HQP-MVS | | | 73.45 69 | 72.80 73 | 75.40 79 | 80.66 105 | 54.94 131 | 82.31 71 | 83.90 57 | 62.10 68 | 67.85 155 | 85.54 131 | 45.46 171 | 86.93 64 | 67.04 95 | 80.35 113 | 84.32 154 |
|
| c3_l | | | 68.33 169 | 67.56 161 | 70.62 200 | 70.87 308 | 46.21 259 | 74.47 218 | 78.80 162 | 56.22 179 | 66.19 190 | 78.53 266 | 51.88 92 | 81.40 186 | 62.08 137 | 69.04 271 | 84.25 156 |
|
| anonymousdsp | | | 67.00 199 | 64.82 216 | 73.57 131 | 70.09 319 | 56.13 107 | 76.35 176 | 77.35 196 | 48.43 291 | 64.99 221 | 80.84 226 | 33.01 299 | 80.34 211 | 64.66 114 | 67.64 285 | 84.23 157 |
|
| MVSFormer | | | 71.50 102 | 70.38 111 | 74.88 87 | 78.76 148 | 57.15 94 | 82.79 61 | 78.48 172 | 51.26 257 | 69.49 127 | 83.22 171 | 43.99 188 | 83.24 145 | 66.06 101 | 79.37 125 | 84.23 157 |
|
| jason | | | 69.65 139 | 68.39 151 | 73.43 137 | 78.27 165 | 56.88 98 | 77.12 160 | 73.71 250 | 46.53 314 | 69.34 131 | 83.22 171 | 43.37 192 | 79.18 229 | 64.77 113 | 79.20 130 | 84.23 157 |
| jason: jason. |
| ab-mvs | | | 66.65 206 | 66.42 190 | 67.37 247 | 76.17 223 | 41.73 302 | 70.41 280 | 76.14 211 | 53.99 225 | 65.98 193 | 83.51 168 | 49.48 117 | 76.24 282 | 48.60 243 | 73.46 203 | 84.14 160 |
|
| thisisatest0515 | | | 65.83 216 | 63.50 230 | 72.82 150 | 73.75 261 | 49.50 222 | 71.32 265 | 73.12 255 | 49.39 277 | 63.82 235 | 76.50 300 | 34.95 278 | 84.84 118 | 53.20 206 | 75.49 180 | 84.13 161 |
|
| SR-MVS-dyc-post | | | 74.57 59 | 73.90 62 | 76.58 56 | 83.49 65 | 59.87 49 | 84.29 37 | 81.36 112 | 58.07 142 | 73.14 76 | 90.07 34 | 44.74 180 | 85.84 92 | 68.20 80 | 81.76 100 | 84.03 162 |
|
| RE-MVS-def | | | | 73.71 66 | | 83.49 65 | 59.87 49 | 84.29 37 | 81.36 112 | 58.07 142 | 73.14 76 | 90.07 34 | 43.06 195 | | 68.20 80 | 81.76 100 | 84.03 162 |
|
| cl22 | | | 67.47 187 | 66.45 187 | 70.54 202 | 69.85 324 | 46.49 255 | 73.85 231 | 77.35 196 | 55.07 207 | 65.51 203 | 77.92 273 | 47.64 141 | 81.10 194 | 61.58 145 | 69.32 265 | 84.01 164 |
|
| test_fmvsmvis_n_1920 | | | 70.84 111 | 70.38 111 | 72.22 162 | 71.16 304 | 55.39 127 | 75.86 188 | 72.21 261 | 49.03 282 | 73.28 72 | 86.17 109 | 51.83 94 | 77.29 261 | 75.80 32 | 78.05 147 | 83.98 165 |
|
| lupinMVS | | | 69.57 142 | 68.28 152 | 73.44 136 | 78.76 148 | 57.15 94 | 76.57 172 | 73.29 253 | 46.19 317 | 69.49 127 | 82.18 193 | 43.99 188 | 79.23 228 | 64.66 114 | 79.37 125 | 83.93 166 |
|
| GBi-Net | | | 67.21 190 | 66.55 185 | 69.19 225 | 77.63 187 | 43.33 286 | 77.31 153 | 77.83 186 | 56.62 167 | 65.04 218 | 82.70 177 | 41.85 207 | 80.33 212 | 47.18 255 | 72.76 214 | 83.92 167 |
|
| test1 | | | 67.21 190 | 66.55 185 | 69.19 225 | 77.63 187 | 43.33 286 | 77.31 153 | 77.83 186 | 56.62 167 | 65.04 218 | 82.70 177 | 41.85 207 | 80.33 212 | 47.18 255 | 72.76 214 | 83.92 167 |
|
| FMVSNet1 | | | 66.70 205 | 65.87 202 | 69.19 225 | 77.49 196 | 43.33 286 | 77.31 153 | 77.83 186 | 56.45 172 | 64.60 226 | 82.70 177 | 38.08 248 | 80.33 212 | 46.08 264 | 72.31 222 | 83.92 167 |
|
| GA-MVS | | | 65.53 220 | 63.70 227 | 71.02 194 | 70.87 308 | 48.10 239 | 70.48 278 | 74.40 240 | 56.69 163 | 64.70 224 | 76.77 292 | 33.66 293 | 81.10 194 | 55.42 188 | 70.32 246 | 83.87 170 |
|
| h-mvs33 | | | 72.71 79 | 71.49 88 | 76.40 59 | 81.99 82 | 59.58 52 | 76.92 166 | 76.74 205 | 60.40 93 | 74.81 49 | 85.95 118 | 45.54 169 | 85.76 94 | 70.41 71 | 70.61 240 | 83.86 171 |
|
| eth_miper_zixun_eth | | | 67.63 184 | 66.28 197 | 71.67 173 | 71.60 294 | 48.33 237 | 73.68 234 | 77.88 184 | 55.80 187 | 65.91 195 | 78.62 264 | 47.35 150 | 82.88 154 | 59.45 162 | 66.25 295 | 83.81 172 |
|
| test9_res | | | | | | | | | | | | | | | 75.28 37 | 88.31 32 | 83.81 172 |
|
| VPNet | | | 67.52 186 | 68.11 154 | 65.74 272 | 79.18 137 | 36.80 347 | 72.17 254 | 72.83 256 | 62.04 72 | 67.79 161 | 85.83 123 | 48.88 127 | 76.60 276 | 51.30 221 | 72.97 212 | 83.81 172 |
|
| UGNet | | | 68.81 157 | 67.39 169 | 73.06 144 | 78.33 163 | 54.47 137 | 79.77 106 | 75.40 222 | 60.45 92 | 63.22 240 | 84.40 149 | 32.71 306 | 80.91 201 | 51.71 219 | 80.56 111 | 83.81 172 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| hse-mvs2 | | | 71.04 107 | 69.86 119 | 74.60 96 | 79.58 127 | 57.12 96 | 73.96 225 | 75.25 225 | 60.40 93 | 74.81 49 | 81.95 201 | 45.54 169 | 82.90 152 | 70.41 71 | 66.83 291 | 83.77 176 |
|
| AUN-MVS | | | 68.45 168 | 66.41 191 | 74.57 98 | 79.53 129 | 57.08 97 | 73.93 228 | 75.23 226 | 54.44 219 | 66.69 181 | 81.85 203 | 37.10 261 | 82.89 153 | 62.07 138 | 66.84 290 | 83.75 177 |
|
| HyFIR lowres test | | | 65.67 218 | 63.01 237 | 73.67 124 | 79.97 121 | 55.65 119 | 69.07 292 | 75.52 220 | 42.68 348 | 63.53 238 | 77.95 271 | 40.43 223 | 81.64 181 | 46.01 265 | 71.91 226 | 83.73 178 |
|
| mvs_tets | | | 68.18 173 | 66.36 193 | 73.63 128 | 75.61 231 | 55.35 128 | 80.77 91 | 78.56 169 | 52.48 240 | 64.27 230 | 84.10 155 | 27.45 346 | 81.84 179 | 63.45 129 | 70.56 241 | 83.69 179 |
|
| miper_ehance_all_eth | | | 68.03 175 | 67.24 178 | 70.40 204 | 70.54 311 | 46.21 259 | 73.98 224 | 78.68 166 | 55.07 207 | 66.05 192 | 77.80 277 | 52.16 89 | 81.31 189 | 61.53 146 | 69.32 265 | 83.67 180 |
|
| jajsoiax | | | 68.25 171 | 66.45 187 | 73.66 125 | 75.62 230 | 55.49 125 | 80.82 90 | 78.51 171 | 52.33 241 | 64.33 228 | 84.11 154 | 28.28 340 | 81.81 180 | 63.48 128 | 70.62 239 | 83.67 180 |
|
| OPM-MVS | | | 74.73 54 | 74.25 58 | 76.19 64 | 80.81 104 | 59.01 67 | 82.60 66 | 83.64 66 | 63.74 39 | 72.52 92 | 87.49 74 | 47.18 151 | 85.88 91 | 69.47 75 | 80.78 105 | 83.66 182 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| train_agg | | | 76.27 39 | 76.15 37 | 76.64 55 | 85.58 43 | 61.59 24 | 81.62 81 | 81.26 120 | 55.86 183 | 74.93 45 | 88.81 56 | 53.70 69 | 84.68 119 | 75.24 38 | 88.33 30 | 83.65 183 |
|
| DPM-MVS | | | 75.47 49 | 75.00 50 | 76.88 51 | 81.38 92 | 59.16 59 | 79.94 102 | 85.71 22 | 56.59 170 | 72.46 93 | 86.76 86 | 56.89 35 | 87.86 46 | 66.36 99 | 88.91 25 | 83.64 184 |
|
| DIV-MVS_self_test | | | 67.18 193 | 66.26 198 | 69.94 211 | 70.20 316 | 45.74 263 | 73.29 237 | 76.83 203 | 55.10 202 | 65.27 208 | 79.58 246 | 47.38 149 | 80.53 207 | 59.43 163 | 69.22 269 | 83.54 185 |
|
| cl____ | | | 67.18 193 | 66.26 198 | 69.94 211 | 70.20 316 | 45.74 263 | 73.30 236 | 76.83 203 | 55.10 202 | 65.27 208 | 79.57 247 | 47.39 148 | 80.53 207 | 59.41 164 | 69.22 269 | 83.53 186 |
|
| MVSTER | | | 67.16 195 | 65.58 208 | 71.88 166 | 70.37 315 | 49.70 217 | 70.25 282 | 78.45 175 | 51.52 250 | 69.16 136 | 80.37 230 | 38.45 242 | 82.50 167 | 60.19 154 | 71.46 231 | 83.44 187 |
|
| XVG-OURS-SEG-HR | | | 68.81 157 | 67.47 167 | 72.82 150 | 74.40 255 | 56.87 99 | 70.59 276 | 79.04 156 | 54.77 212 | 66.99 174 | 86.01 115 | 39.57 230 | 78.21 246 | 62.54 134 | 73.33 205 | 83.37 188 |
|
| EI-MVSNet | | | 69.27 151 | 68.44 149 | 71.73 171 | 74.47 252 | 49.39 224 | 75.20 201 | 78.45 175 | 59.60 113 | 69.16 136 | 76.51 298 | 51.29 100 | 82.50 167 | 59.86 160 | 71.45 232 | 83.30 189 |
|
| IterMVS-LS | | | 69.22 153 | 68.48 145 | 71.43 181 | 74.44 254 | 49.40 223 | 76.23 179 | 77.55 191 | 59.60 113 | 65.85 199 | 81.59 210 | 51.28 101 | 81.58 184 | 59.87 159 | 69.90 256 | 83.30 189 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| miper_enhance_ethall | | | 67.11 196 | 66.09 200 | 70.17 208 | 69.21 331 | 45.98 261 | 72.85 243 | 78.41 178 | 51.38 253 | 65.65 201 | 75.98 306 | 51.17 103 | 81.25 190 | 60.82 150 | 69.32 265 | 83.29 191 |
|
| ACMP | | 63.53 6 | 72.30 86 | 71.20 96 | 75.59 78 | 80.28 111 | 57.54 84 | 82.74 63 | 82.84 90 | 60.58 90 | 65.24 212 | 86.18 108 | 39.25 234 | 86.03 87 | 66.95 97 | 76.79 165 | 83.22 192 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| FMVSNet2 | | | 66.93 200 | 66.31 196 | 68.79 232 | 77.63 187 | 42.98 291 | 76.11 181 | 77.47 192 | 56.62 167 | 65.22 214 | 82.17 195 | 41.85 207 | 80.18 218 | 47.05 258 | 72.72 217 | 83.20 193 |
|
| XVG-OURS | | | 68.76 160 | 67.37 170 | 72.90 147 | 74.32 257 | 57.22 89 | 70.09 283 | 78.81 161 | 55.24 199 | 67.79 161 | 85.81 125 | 36.54 266 | 78.28 245 | 62.04 139 | 75.74 176 | 83.19 194 |
|
| LPG-MVS_test | | | 72.74 78 | 71.74 84 | 75.76 70 | 80.22 113 | 57.51 86 | 82.55 67 | 83.40 75 | 61.32 79 | 66.67 182 | 87.33 78 | 39.15 236 | 86.59 72 | 67.70 88 | 77.30 158 | 83.19 194 |
|
| LGP-MVS_train | | | | | 75.76 70 | 80.22 113 | 57.51 86 | | 83.40 75 | 61.32 79 | 66.67 182 | 87.33 78 | 39.15 236 | 86.59 72 | 67.70 88 | 77.30 158 | 83.19 194 |
|
| fmvsm_l_conf0.5_n | | | 70.99 109 | 70.82 103 | 71.48 177 | 71.45 296 | 54.40 139 | 77.18 159 | 70.46 274 | 48.67 286 | 75.17 40 | 86.86 83 | 53.77 67 | 76.86 269 | 76.33 30 | 77.51 153 | 83.17 197 |
|
| DP-MVS Recon | | | 72.15 92 | 70.73 105 | 76.40 59 | 86.57 24 | 57.99 79 | 81.15 88 | 82.96 86 | 57.03 159 | 66.78 178 | 85.56 128 | 44.50 183 | 88.11 39 | 51.77 218 | 80.23 116 | 83.10 198 |
|
| CDS-MVSNet | | | 66.80 203 | 65.37 209 | 71.10 192 | 78.98 142 | 53.13 161 | 73.27 238 | 71.07 269 | 52.15 244 | 64.72 223 | 80.23 235 | 43.56 191 | 77.10 263 | 45.48 274 | 78.88 134 | 83.05 199 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| TAMVS | | | 66.78 204 | 65.27 212 | 71.33 186 | 79.16 139 | 53.67 147 | 73.84 232 | 69.59 281 | 52.32 242 | 65.28 207 | 81.72 206 | 44.49 184 | 77.40 260 | 42.32 300 | 78.66 140 | 82.92 200 |
|
| Vis-MVSNet (Re-imp) | | | 63.69 241 | 63.88 223 | 63.14 294 | 74.75 245 | 31.04 381 | 71.16 269 | 63.64 325 | 56.32 175 | 59.80 283 | 84.99 136 | 44.51 182 | 75.46 285 | 39.12 317 | 80.62 107 | 82.92 200 |
|
| FMVSNet3 | | | 66.32 212 | 65.61 207 | 68.46 235 | 76.48 219 | 42.34 295 | 74.98 208 | 77.15 199 | 55.83 185 | 65.04 218 | 81.16 215 | 39.91 225 | 80.14 219 | 47.18 255 | 72.76 214 | 82.90 202 |
|
| 3Dnovator | | 64.47 5 | 72.49 82 | 71.39 91 | 75.79 69 | 77.70 182 | 58.99 68 | 80.66 93 | 83.15 84 | 62.24 66 | 65.46 204 | 86.59 95 | 42.38 202 | 85.52 99 | 59.59 161 | 84.72 67 | 82.85 203 |
|
| fmvsm_l_conf0.5_n_a | | | 70.50 119 | 70.27 113 | 71.18 189 | 71.30 302 | 54.09 141 | 76.89 167 | 69.87 277 | 47.90 299 | 74.37 57 | 86.49 100 | 53.07 77 | 76.69 274 | 75.41 35 | 77.11 161 | 82.76 204 |
|
| BH-RMVSNet | | | 68.81 157 | 67.42 168 | 72.97 145 | 80.11 119 | 52.53 172 | 74.26 220 | 76.29 208 | 58.48 135 | 68.38 145 | 84.20 151 | 42.59 198 | 83.83 134 | 46.53 260 | 75.91 173 | 82.56 205 |
|
| FE-MVS | | | 65.91 215 | 63.33 233 | 73.63 128 | 77.36 200 | 51.95 185 | 72.62 246 | 75.81 214 | 53.70 228 | 65.31 206 | 78.96 258 | 28.81 337 | 86.39 80 | 43.93 285 | 73.48 202 | 82.55 206 |
|
| pmmvs6 | | | 63.69 241 | 62.82 240 | 66.27 261 | 70.63 310 | 39.27 323 | 73.13 239 | 75.47 221 | 52.69 238 | 59.75 285 | 82.30 191 | 39.71 229 | 77.03 265 | 47.40 252 | 64.35 311 | 82.53 207 |
|
| cascas | | | 65.98 214 | 63.42 231 | 73.64 127 | 77.26 202 | 52.58 171 | 72.26 253 | 77.21 198 | 48.56 287 | 61.21 270 | 74.60 319 | 32.57 311 | 85.82 93 | 50.38 228 | 76.75 166 | 82.52 208 |
|
| PVSNet_Blended_VisFu | | | 71.45 103 | 70.39 110 | 74.65 93 | 82.01 80 | 58.82 71 | 79.93 103 | 80.35 139 | 55.09 204 | 65.82 200 | 82.16 196 | 49.17 122 | 82.64 164 | 60.34 153 | 78.62 141 | 82.50 209 |
|
| MVS_111021_HR | | | 74.02 64 | 73.46 68 | 75.69 73 | 83.01 72 | 60.63 40 | 77.29 156 | 78.40 179 | 61.18 82 | 70.58 109 | 85.97 116 | 54.18 59 | 84.00 132 | 67.52 91 | 82.98 84 | 82.45 210 |
|
| RPSCF | | | 55.80 309 | 54.22 318 | 60.53 310 | 65.13 358 | 42.91 293 | 64.30 327 | 57.62 355 | 36.84 371 | 58.05 303 | 82.28 192 | 28.01 341 | 56.24 374 | 37.14 327 | 58.61 347 | 82.44 211 |
|
| testing91 | | | 64.46 234 | 63.80 225 | 66.47 256 | 78.43 158 | 40.06 314 | 67.63 300 | 69.59 281 | 59.06 123 | 63.18 242 | 78.05 269 | 34.05 286 | 76.99 266 | 48.30 246 | 75.87 174 | 82.37 212 |
|
| testing99 | | | 64.05 237 | 63.29 234 | 66.34 258 | 78.17 170 | 39.76 318 | 67.33 305 | 68.00 294 | 58.60 132 | 63.03 245 | 78.10 268 | 32.57 311 | 76.94 268 | 48.22 247 | 75.58 178 | 82.34 213 |
|
| pm-mvs1 | | | 65.24 225 | 64.97 215 | 66.04 267 | 72.38 283 | 39.40 322 | 72.62 246 | 75.63 217 | 55.53 193 | 62.35 260 | 83.18 173 | 47.45 146 | 76.47 279 | 49.06 240 | 66.54 293 | 82.24 214 |
|
| miper_lstm_enhance | | | 62.03 261 | 60.88 264 | 65.49 276 | 66.71 348 | 46.25 257 | 56.29 367 | 75.70 216 | 50.68 263 | 61.27 269 | 75.48 312 | 40.21 224 | 68.03 323 | 56.31 177 | 65.25 302 | 82.18 215 |
|
| 114514_t | | | 70.83 112 | 69.56 123 | 74.64 94 | 86.21 31 | 54.63 136 | 82.34 70 | 81.81 102 | 48.22 293 | 63.01 246 | 85.83 123 | 40.92 221 | 87.10 61 | 57.91 167 | 79.79 118 | 82.18 215 |
|
| Fast-Effi-MVS+-dtu | | | 67.37 188 | 65.33 211 | 73.48 134 | 72.94 271 | 57.78 82 | 77.47 150 | 76.88 201 | 57.60 153 | 61.97 261 | 76.85 291 | 39.31 232 | 80.49 210 | 54.72 192 | 70.28 247 | 82.17 217 |
|
| LCM-MVSNet-Re | | | 61.88 263 | 61.35 256 | 63.46 290 | 74.58 250 | 31.48 380 | 61.42 341 | 58.14 352 | 58.71 130 | 53.02 348 | 79.55 248 | 43.07 194 | 76.80 270 | 45.69 268 | 77.96 148 | 82.11 218 |
|
| HY-MVS | | 56.14 13 | 64.55 233 | 63.89 222 | 66.55 255 | 74.73 246 | 41.02 307 | 69.96 284 | 74.43 239 | 49.29 279 | 61.66 266 | 80.92 222 | 47.43 147 | 76.68 275 | 44.91 279 | 71.69 228 | 81.94 219 |
|
| 1112_ss | | | 64.00 239 | 63.36 232 | 65.93 269 | 79.28 133 | 42.58 294 | 71.35 264 | 72.36 260 | 46.41 315 | 60.55 274 | 77.89 275 | 46.27 163 | 73.28 294 | 46.18 263 | 69.97 253 | 81.92 220 |
|
| K. test v3 | | | 60.47 273 | 57.11 289 | 70.56 201 | 73.74 262 | 48.22 238 | 75.10 205 | 62.55 332 | 58.27 139 | 53.62 344 | 76.31 301 | 27.81 343 | 81.59 183 | 47.42 251 | 39.18 389 | 81.88 221 |
|
| MAR-MVS | | | 71.51 101 | 70.15 116 | 75.60 77 | 81.84 84 | 59.39 55 | 81.38 85 | 82.90 88 | 54.90 211 | 68.08 152 | 78.70 260 | 47.73 138 | 85.51 100 | 51.68 220 | 84.17 74 | 81.88 221 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| Baseline_NR-MVSNet | | | 67.05 197 | 67.56 161 | 65.50 275 | 75.65 229 | 37.70 338 | 75.42 196 | 74.65 238 | 59.90 107 | 68.14 150 | 83.15 174 | 49.12 125 | 77.20 262 | 52.23 211 | 69.78 258 | 81.60 223 |
|
| Effi-MVS+-dtu | | | 69.64 140 | 67.53 164 | 75.95 67 | 76.10 224 | 62.29 15 | 80.20 98 | 76.06 213 | 59.83 111 | 65.26 211 | 77.09 287 | 41.56 212 | 84.02 131 | 60.60 152 | 71.09 236 | 81.53 224 |
|
| QAPM | | | 70.05 127 | 68.81 138 | 73.78 116 | 76.54 218 | 53.43 154 | 83.23 54 | 83.48 70 | 52.89 236 | 65.90 196 | 86.29 105 | 41.55 213 | 86.49 78 | 51.01 223 | 78.40 144 | 81.42 225 |
|
| SDMVSNet | | | 68.03 175 | 68.10 155 | 67.84 241 | 77.13 204 | 48.72 233 | 65.32 320 | 79.10 155 | 58.02 144 | 65.08 215 | 82.55 183 | 47.83 137 | 73.40 293 | 63.92 122 | 73.92 192 | 81.41 226 |
|
| sd_testset | | | 64.46 234 | 64.45 218 | 64.51 285 | 77.13 204 | 42.25 297 | 62.67 334 | 72.11 262 | 58.02 144 | 65.08 215 | 82.55 183 | 41.22 219 | 69.88 314 | 47.32 253 | 73.92 192 | 81.41 226 |
|
| CHOSEN 1792x2688 | | | 65.08 228 | 62.84 239 | 71.82 168 | 81.49 89 | 56.26 105 | 66.32 309 | 74.20 245 | 40.53 360 | 63.16 243 | 78.65 262 | 41.30 215 | 77.80 253 | 45.80 267 | 74.09 189 | 81.40 228 |
|
| thres600view7 | | | 63.30 245 | 62.27 245 | 66.41 257 | 77.18 203 | 38.87 325 | 72.35 251 | 69.11 288 | 56.98 160 | 62.37 259 | 80.96 221 | 37.01 263 | 79.00 239 | 31.43 366 | 73.05 211 | 81.36 229 |
|
| thres400 | | | 63.31 244 | 62.18 247 | 66.72 252 | 76.85 211 | 39.62 319 | 71.96 258 | 69.44 284 | 56.63 165 | 62.61 252 | 79.83 240 | 37.18 256 | 79.17 230 | 31.84 359 | 73.25 207 | 81.36 229 |
|
| CPTT-MVS | | | 72.78 77 | 72.08 82 | 74.87 88 | 84.88 57 | 61.41 26 | 84.15 43 | 77.86 185 | 55.27 198 | 67.51 166 | 88.08 65 | 41.93 206 | 81.85 178 | 69.04 78 | 80.01 117 | 81.35 231 |
|
| Test_1112_low_res | | | 62.32 256 | 61.77 251 | 64.00 288 | 79.08 141 | 39.53 321 | 68.17 296 | 70.17 275 | 43.25 343 | 59.03 293 | 79.90 239 | 44.08 186 | 71.24 305 | 43.79 288 | 68.42 279 | 81.25 232 |
|
| xiu_mvs_v1_base_debu | | | 68.58 163 | 67.28 174 | 72.48 155 | 78.19 167 | 57.19 91 | 75.28 198 | 75.09 231 | 51.61 247 | 70.04 115 | 81.41 212 | 32.79 302 | 79.02 236 | 63.81 124 | 77.31 155 | 81.22 233 |
|
| xiu_mvs_v1_base | | | 68.58 163 | 67.28 174 | 72.48 155 | 78.19 167 | 57.19 91 | 75.28 198 | 75.09 231 | 51.61 247 | 70.04 115 | 81.41 212 | 32.79 302 | 79.02 236 | 63.81 124 | 77.31 155 | 81.22 233 |
|
| xiu_mvs_v1_base_debi | | | 68.58 163 | 67.28 174 | 72.48 155 | 78.19 167 | 57.19 91 | 75.28 198 | 75.09 231 | 51.61 247 | 70.04 115 | 81.41 212 | 32.79 302 | 79.02 236 | 63.81 124 | 77.31 155 | 81.22 233 |
|
| baseline2 | | | 63.42 243 | 61.26 259 | 69.89 215 | 72.55 278 | 47.62 246 | 71.54 262 | 68.38 292 | 50.11 269 | 54.82 330 | 75.55 311 | 43.06 195 | 80.96 197 | 48.13 248 | 67.16 289 | 81.11 236 |
|
| IB-MVS | | 56.42 12 | 65.40 223 | 62.73 241 | 73.40 138 | 74.89 240 | 52.78 167 | 73.09 240 | 75.13 229 | 55.69 189 | 58.48 300 | 73.73 324 | 32.86 301 | 86.32 83 | 50.63 226 | 70.11 250 | 81.10 237 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MSLP-MVS++ | | | 73.77 67 | 73.47 67 | 74.66 92 | 83.02 71 | 59.29 58 | 82.30 74 | 81.88 100 | 59.34 120 | 71.59 102 | 86.83 84 | 45.94 164 | 83.65 138 | 65.09 111 | 85.22 65 | 81.06 238 |
|
| testing222 | | | 62.29 258 | 61.31 257 | 65.25 280 | 77.87 177 | 38.53 329 | 68.34 295 | 66.31 307 | 56.37 174 | 63.15 244 | 77.58 283 | 28.47 338 | 76.18 284 | 37.04 328 | 76.65 168 | 81.05 239 |
|
| TransMVSNet (Re) | | | 64.72 229 | 64.33 219 | 65.87 271 | 75.22 237 | 38.56 328 | 74.66 215 | 75.08 234 | 58.90 126 | 61.79 264 | 82.63 180 | 51.18 102 | 78.07 248 | 43.63 289 | 55.87 358 | 80.99 240 |
|
| PAPM | | | 67.92 179 | 66.69 184 | 71.63 175 | 78.09 171 | 49.02 227 | 77.09 161 | 81.24 122 | 51.04 260 | 60.91 272 | 83.98 158 | 47.71 139 | 84.99 110 | 40.81 308 | 79.32 128 | 80.90 241 |
|
| PS-MVSNAJ | | | 70.51 118 | 69.70 122 | 72.93 146 | 81.52 87 | 55.79 116 | 74.92 209 | 79.00 157 | 55.04 209 | 69.88 122 | 78.66 261 | 47.05 153 | 82.19 172 | 61.61 143 | 79.58 122 | 80.83 242 |
|
| xiu_mvs_v2_base | | | 70.52 117 | 69.75 120 | 72.84 148 | 81.21 96 | 55.63 120 | 75.11 203 | 78.92 159 | 54.92 210 | 69.96 121 | 79.68 245 | 47.00 157 | 82.09 174 | 61.60 144 | 79.37 125 | 80.81 243 |
|
| CL-MVSNet_self_test | | | 61.53 266 | 60.94 263 | 63.30 292 | 68.95 333 | 36.93 346 | 67.60 301 | 72.80 257 | 55.67 190 | 59.95 280 | 76.63 294 | 45.01 179 | 72.22 300 | 39.74 315 | 62.09 330 | 80.74 244 |
|
| lessismore_v0 | | | | | 69.91 213 | 71.42 299 | 47.80 242 | | 50.90 379 | | 50.39 360 | 75.56 310 | 27.43 347 | 81.33 188 | 45.91 266 | 34.10 395 | 80.59 245 |
|
| XVG-ACMP-BASELINE | | | 64.36 236 | 62.23 246 | 70.74 198 | 72.35 284 | 52.45 175 | 70.80 275 | 78.45 175 | 53.84 227 | 59.87 281 | 81.10 217 | 16.24 382 | 79.32 227 | 55.64 186 | 71.76 227 | 80.47 246 |
|
| CostFormer | | | 64.04 238 | 62.51 242 | 68.61 234 | 71.88 291 | 45.77 262 | 71.30 266 | 70.60 273 | 47.55 303 | 64.31 229 | 76.61 296 | 41.63 210 | 79.62 223 | 49.74 232 | 69.00 272 | 80.42 247 |
|
| SixPastTwentyTwo | | | 61.65 265 | 58.80 277 | 70.20 207 | 75.80 227 | 47.22 250 | 75.59 193 | 69.68 279 | 54.61 214 | 54.11 338 | 79.26 255 | 27.07 350 | 82.96 150 | 43.27 291 | 49.79 376 | 80.41 248 |
|
| patch_mono-2 | | | 69.85 132 | 71.09 99 | 66.16 263 | 79.11 140 | 54.80 135 | 71.97 257 | 74.31 242 | 53.50 231 | 70.90 107 | 84.17 152 | 57.63 31 | 63.31 342 | 66.17 100 | 82.02 96 | 80.38 249 |
|
| ACMM | | 61.98 7 | 70.80 114 | 69.73 121 | 74.02 110 | 80.59 110 | 58.59 74 | 82.68 64 | 82.02 99 | 55.46 195 | 67.18 171 | 84.39 150 | 38.51 241 | 83.17 147 | 60.65 151 | 76.10 172 | 80.30 250 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| TR-MVS | | | 66.59 209 | 65.07 214 | 71.17 190 | 79.18 137 | 49.63 221 | 73.48 235 | 75.20 228 | 52.95 234 | 67.90 153 | 80.33 233 | 39.81 228 | 83.68 137 | 43.20 293 | 73.56 200 | 80.20 251 |
|
| CNLPA | | | 65.43 221 | 64.02 221 | 69.68 217 | 78.73 150 | 58.07 78 | 77.82 142 | 70.71 272 | 51.49 251 | 61.57 268 | 83.58 167 | 38.23 246 | 70.82 306 | 43.90 286 | 70.10 251 | 80.16 252 |
|
| PVSNet_Blended | | | 68.59 162 | 67.72 158 | 71.19 188 | 77.03 208 | 50.57 201 | 72.51 249 | 81.52 105 | 51.91 245 | 64.22 233 | 77.77 280 | 49.13 123 | 82.87 155 | 55.82 180 | 79.58 122 | 80.14 253 |
|
| baseline1 | | | 63.81 240 | 63.87 224 | 63.62 289 | 76.29 221 | 36.36 350 | 71.78 260 | 67.29 298 | 56.05 182 | 64.23 232 | 82.95 175 | 47.11 152 | 74.41 290 | 47.30 254 | 61.85 331 | 80.10 254 |
|
| OpenMVS |  | 61.03 9 | 68.85 156 | 67.56 161 | 72.70 152 | 74.26 258 | 53.99 143 | 81.21 87 | 81.34 116 | 52.70 237 | 62.75 249 | 85.55 130 | 38.86 239 | 84.14 127 | 48.41 245 | 83.01 81 | 79.97 255 |
|
| ACMH+ | | 57.40 11 | 66.12 213 | 64.06 220 | 72.30 161 | 77.79 180 | 52.83 166 | 80.39 94 | 78.03 183 | 57.30 155 | 57.47 306 | 82.55 183 | 27.68 344 | 84.17 126 | 45.54 271 | 69.78 258 | 79.90 256 |
|
| KD-MVS_self_test | | | 55.22 313 | 53.89 320 | 59.21 315 | 57.80 387 | 27.47 391 | 57.75 360 | 74.32 241 | 47.38 305 | 50.90 355 | 70.00 351 | 28.45 339 | 70.30 312 | 40.44 310 | 57.92 349 | 79.87 257 |
|
| UWE-MVS | | | 60.18 274 | 59.78 269 | 61.39 307 | 77.67 185 | 33.92 370 | 69.04 293 | 63.82 323 | 48.56 287 | 64.27 230 | 77.64 282 | 27.20 348 | 70.40 311 | 33.56 350 | 76.24 170 | 79.83 258 |
|
| thres100view900 | | | 63.28 246 | 62.41 244 | 65.89 270 | 77.31 201 | 38.66 327 | 72.65 244 | 69.11 288 | 57.07 158 | 62.45 257 | 81.03 219 | 37.01 263 | 79.17 230 | 31.84 359 | 73.25 207 | 79.83 258 |
|
| tfpn200view9 | | | 63.18 248 | 62.18 247 | 66.21 262 | 76.85 211 | 39.62 319 | 71.96 258 | 69.44 284 | 56.63 165 | 62.61 252 | 79.83 240 | 37.18 256 | 79.17 230 | 31.84 359 | 73.25 207 | 79.83 258 |
|
| PVSNet_BlendedMVS | | | 68.56 166 | 67.72 158 | 71.07 193 | 77.03 208 | 50.57 201 | 74.50 217 | 81.52 105 | 53.66 230 | 64.22 233 | 79.72 244 | 49.13 123 | 82.87 155 | 55.82 180 | 73.92 192 | 79.77 261 |
|
| 1314 | | | 64.61 232 | 63.21 235 | 68.80 231 | 71.87 292 | 47.46 248 | 73.95 226 | 78.39 180 | 42.88 347 | 59.97 279 | 76.60 297 | 38.11 247 | 79.39 226 | 54.84 191 | 72.32 221 | 79.55 262 |
|
| OurMVSNet-221017-0 | | | 61.37 269 | 58.63 279 | 69.61 218 | 72.05 289 | 48.06 240 | 73.93 228 | 72.51 258 | 47.23 309 | 54.74 331 | 80.92 222 | 21.49 374 | 81.24 191 | 48.57 244 | 56.22 357 | 79.53 263 |
|
| IterMVS-SCA-FT | | | 62.49 253 | 61.52 254 | 65.40 277 | 71.99 290 | 50.80 198 | 71.15 270 | 69.63 280 | 45.71 323 | 60.61 273 | 77.93 272 | 37.45 252 | 65.99 334 | 55.67 184 | 63.50 318 | 79.42 264 |
|
| tpm2 | | | 62.07 260 | 60.10 268 | 67.99 240 | 72.79 273 | 43.86 282 | 71.05 273 | 66.85 302 | 43.14 345 | 62.77 247 | 75.39 313 | 38.32 244 | 80.80 203 | 41.69 304 | 68.88 273 | 79.32 265 |
|
| MVS_111021_LR | | | 69.50 145 | 68.78 139 | 71.65 174 | 78.38 159 | 59.33 56 | 74.82 211 | 70.11 276 | 58.08 141 | 67.83 159 | 84.68 140 | 41.96 205 | 76.34 281 | 65.62 108 | 77.54 151 | 79.30 266 |
|
| testing11 | | | 62.81 251 | 61.90 250 | 65.54 274 | 78.38 159 | 40.76 311 | 67.59 302 | 66.78 303 | 55.48 194 | 60.13 276 | 77.11 286 | 31.67 317 | 76.79 271 | 45.53 272 | 74.45 185 | 79.06 267 |
|
| ITE_SJBPF | | | | | 62.09 301 | 66.16 353 | 44.55 278 | | 64.32 319 | 47.36 306 | 55.31 324 | 80.34 232 | 19.27 376 | 62.68 345 | 36.29 338 | 62.39 327 | 79.04 268 |
|
| æ— å…ˆéªŒ | | | | | | | | 79.66 110 | 74.30 243 | 48.40 292 | | | | 80.78 204 | 53.62 201 | | 79.03 269 |
|
| tfpnnormal | | | 62.47 254 | 61.63 253 | 64.99 282 | 74.81 244 | 39.01 324 | 71.22 267 | 73.72 249 | 55.22 200 | 60.21 275 | 80.09 238 | 41.26 218 | 76.98 267 | 30.02 372 | 68.09 281 | 78.97 270 |
|
| D2MVS | | | 62.30 257 | 60.29 267 | 68.34 238 | 66.46 351 | 48.42 236 | 65.70 312 | 73.42 251 | 47.71 301 | 58.16 302 | 75.02 315 | 30.51 321 | 77.71 255 | 53.96 199 | 71.68 229 | 78.90 271 |
|
| MDTV_nov1_ep13_2view | | | | | | | 25.89 397 | 61.22 343 | | 40.10 363 | 51.10 353 | | 32.97 300 | | 38.49 319 | | 78.61 272 |
|
| API-MVS | | | 72.17 89 | 71.41 90 | 74.45 101 | 81.95 83 | 57.22 89 | 84.03 45 | 80.38 138 | 59.89 110 | 68.40 144 | 82.33 190 | 49.64 116 | 87.83 47 | 51.87 216 | 84.16 75 | 78.30 273 |
|
| EPNet_dtu | | | 61.90 262 | 61.97 249 | 61.68 302 | 72.89 272 | 39.78 317 | 75.85 189 | 65.62 311 | 55.09 204 | 54.56 334 | 79.36 253 | 37.59 251 | 67.02 328 | 39.80 314 | 76.95 163 | 78.25 274 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| 原ACMM1 | | | | | 74.69 90 | 85.39 47 | 59.40 54 | | 83.42 74 | 51.47 252 | 70.27 113 | 86.61 94 | 48.61 129 | 86.51 77 | 53.85 200 | 87.96 39 | 78.16 275 |
|
| PatchmatchNet |  | | 59.84 277 | 58.24 282 | 64.65 284 | 73.05 269 | 46.70 254 | 69.42 289 | 62.18 338 | 47.55 303 | 58.88 294 | 71.96 335 | 34.49 282 | 69.16 316 | 42.99 295 | 63.60 316 | 78.07 276 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| GSMVS | | | | | | | | | | | | | | | | | 78.05 277 |
|
| sam_mvs1 | | | | | | | | | | | | | 34.74 279 | | | | 78.05 277 |
|
| SCA | | | 60.49 272 | 58.38 281 | 66.80 251 | 74.14 260 | 48.06 240 | 63.35 331 | 63.23 328 | 49.13 281 | 59.33 291 | 72.10 333 | 37.45 252 | 74.27 291 | 44.17 281 | 62.57 325 | 78.05 277 |
|
| 旧先验1 | | | | | | 83.04 70 | 53.15 159 | | 67.52 295 | | | 87.85 71 | 44.08 186 | | | 80.76 106 | 78.03 280 |
|
| ETVMVS | | | 59.51 281 | 58.81 275 | 61.58 304 | 77.46 197 | 34.87 359 | 64.94 325 | 59.35 347 | 54.06 224 | 61.08 271 | 76.67 293 | 29.54 329 | 71.87 302 | 32.16 355 | 74.07 190 | 78.01 281 |
|
| WB-MVSnew | | | 59.66 279 | 59.69 270 | 59.56 311 | 75.19 239 | 35.78 357 | 69.34 290 | 64.28 320 | 46.88 312 | 61.76 265 | 75.79 307 | 40.61 222 | 65.20 337 | 32.16 355 | 71.21 233 | 77.70 282 |
|
| IterMVS | | | 62.79 252 | 61.27 258 | 67.35 248 | 69.37 329 | 52.04 182 | 71.17 268 | 68.24 293 | 52.63 239 | 59.82 282 | 76.91 290 | 37.32 255 | 72.36 297 | 52.80 208 | 63.19 321 | 77.66 283 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PLC |  | 56.13 14 | 65.09 227 | 63.21 235 | 70.72 199 | 81.04 99 | 54.87 134 | 78.57 123 | 77.47 192 | 48.51 289 | 55.71 319 | 81.89 202 | 33.71 291 | 79.71 220 | 41.66 305 | 70.37 244 | 77.58 284 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| LTVRE_ROB | | 55.42 16 | 63.15 249 | 61.23 260 | 68.92 230 | 76.57 217 | 47.80 242 | 59.92 350 | 76.39 207 | 54.35 220 | 58.67 296 | 82.46 188 | 29.44 332 | 81.49 185 | 42.12 301 | 71.14 234 | 77.46 285 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ambc | | | | | 65.13 281 | 63.72 365 | 37.07 344 | 47.66 387 | 78.78 163 | | 54.37 337 | 71.42 339 | 11.24 394 | 80.94 198 | 45.64 269 | 53.85 365 | 77.38 286 |
|
| Patchmatch-RL test | | | 58.16 288 | 55.49 305 | 66.15 264 | 67.92 341 | 48.89 230 | 60.66 348 | 51.07 378 | 47.86 300 | 59.36 288 | 62.71 380 | 34.02 288 | 72.27 299 | 56.41 176 | 59.40 344 | 77.30 287 |
|
| Patchmatch-test | | | 49.08 340 | 48.28 342 | 51.50 360 | 64.40 361 | 30.85 382 | 45.68 390 | 48.46 384 | 35.60 373 | 46.10 374 | 72.10 333 | 34.47 283 | 46.37 393 | 27.08 383 | 60.65 340 | 77.27 288 |
|
| MIMVSNet1 | | | 55.17 314 | 54.31 316 | 57.77 328 | 70.03 320 | 32.01 378 | 65.68 313 | 64.81 315 | 49.19 280 | 46.75 371 | 76.00 303 | 25.53 360 | 64.04 340 | 28.65 377 | 62.13 329 | 77.26 289 |
|
| ACMH | | 55.70 15 | 65.20 226 | 63.57 229 | 70.07 209 | 78.07 172 | 52.01 183 | 79.48 113 | 79.69 144 | 55.75 188 | 56.59 313 | 80.98 220 | 27.12 349 | 80.94 198 | 42.90 297 | 71.58 230 | 77.25 290 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| thres200 | | | 62.20 259 | 61.16 261 | 65.34 278 | 75.38 236 | 39.99 315 | 69.60 287 | 69.29 286 | 55.64 192 | 61.87 263 | 76.99 288 | 37.07 262 | 78.96 240 | 31.28 367 | 73.28 206 | 77.06 291 |
|
| AdaColmap |  | | 69.99 129 | 68.66 142 | 73.97 112 | 84.94 54 | 57.83 80 | 82.63 65 | 78.71 164 | 56.28 177 | 64.34 227 | 84.14 153 | 41.57 211 | 87.06 63 | 46.45 261 | 78.88 134 | 77.02 292 |
|
| tpm cat1 | | | 59.25 282 | 56.95 292 | 66.15 264 | 72.19 287 | 46.96 252 | 68.09 297 | 65.76 309 | 40.03 364 | 57.81 304 | 70.56 345 | 38.32 244 | 74.51 289 | 38.26 321 | 61.50 334 | 77.00 293 |
|
| F-COLMAP | | | 63.05 250 | 60.87 265 | 69.58 221 | 76.99 210 | 53.63 149 | 78.12 133 | 76.16 209 | 47.97 298 | 52.41 349 | 81.61 208 | 27.87 342 | 78.11 247 | 40.07 311 | 66.66 292 | 77.00 293 |
|
| ppachtmachnet_test | | | 58.06 290 | 55.38 306 | 66.10 266 | 69.51 326 | 48.99 228 | 68.01 298 | 66.13 308 | 44.50 331 | 54.05 339 | 70.74 344 | 32.09 315 | 72.34 298 | 36.68 333 | 56.71 356 | 76.99 295 |
|
| BH-untuned | | | 68.27 170 | 67.29 173 | 71.21 187 | 79.74 124 | 53.22 158 | 76.06 183 | 77.46 194 | 57.19 157 | 66.10 191 | 81.61 208 | 45.37 175 | 83.50 141 | 45.42 276 | 76.68 167 | 76.91 296 |
|
| AllTest | | | 57.08 296 | 54.65 310 | 64.39 286 | 71.44 297 | 49.03 225 | 69.92 285 | 67.30 296 | 45.97 320 | 47.16 368 | 79.77 242 | 17.47 377 | 67.56 325 | 33.65 347 | 59.16 345 | 76.57 297 |
|
| TestCases | | | | | 64.39 286 | 71.44 297 | 49.03 225 | | 67.30 296 | 45.97 320 | 47.16 368 | 79.77 242 | 17.47 377 | 67.56 325 | 33.65 347 | 59.16 345 | 76.57 297 |
|
| tpm | | | 57.34 294 | 58.16 283 | 54.86 341 | 71.80 293 | 34.77 361 | 67.47 304 | 56.04 365 | 48.20 294 | 60.10 277 | 76.92 289 | 37.17 258 | 53.41 382 | 40.76 309 | 65.01 303 | 76.40 299 |
|
| LS3D | | | 64.71 230 | 62.50 243 | 71.34 185 | 79.72 126 | 55.71 117 | 79.82 105 | 74.72 236 | 48.50 290 | 56.62 312 | 84.62 143 | 33.59 294 | 82.34 171 | 29.65 374 | 75.23 182 | 75.97 300 |
|
| æ–°å‡ ä½•1 | | | | | 70.76 197 | 85.66 41 | 61.13 30 | | 66.43 305 | 44.68 329 | 70.29 112 | 86.64 91 | 41.29 216 | 75.23 286 | 49.72 233 | 81.75 102 | 75.93 301 |
|
| CVMVSNet | | | 59.63 280 | 59.14 273 | 61.08 309 | 74.47 252 | 38.84 326 | 75.20 201 | 68.74 290 | 31.15 379 | 58.24 301 | 76.51 298 | 32.39 313 | 68.58 319 | 49.77 231 | 65.84 298 | 75.81 302 |
|
| tpmrst | | | 58.24 287 | 58.70 278 | 56.84 331 | 66.97 345 | 34.32 365 | 69.57 288 | 61.14 343 | 47.17 310 | 58.58 299 | 71.60 338 | 41.28 217 | 60.41 352 | 49.20 238 | 62.84 323 | 75.78 303 |
|
| EPMVS | | | 53.96 318 | 53.69 321 | 54.79 342 | 66.12 354 | 31.96 379 | 62.34 337 | 49.05 381 | 44.42 333 | 55.54 320 | 71.33 341 | 30.22 324 | 56.70 369 | 41.65 306 | 62.54 326 | 75.71 304 |
|
| FMVSNet5 | | | 55.86 308 | 54.93 308 | 58.66 320 | 71.05 306 | 36.35 351 | 64.18 329 | 62.48 333 | 46.76 313 | 50.66 359 | 74.73 318 | 25.80 358 | 64.04 340 | 33.11 351 | 65.57 300 | 75.59 305 |
|
| testing3 | | | 56.54 300 | 55.92 302 | 58.41 321 | 77.52 195 | 27.93 389 | 69.72 286 | 56.36 361 | 54.75 213 | 58.63 298 | 77.80 277 | 20.88 375 | 71.75 303 | 25.31 387 | 62.25 328 | 75.53 306 |
|
| PVSNet | | 50.76 19 | 58.40 286 | 57.39 288 | 61.42 305 | 75.53 233 | 44.04 281 | 61.43 340 | 63.45 326 | 47.04 311 | 56.91 310 | 73.61 325 | 27.00 351 | 64.76 338 | 39.12 317 | 72.40 219 | 75.47 307 |
|
| MIMVSNet | | | 57.35 293 | 57.07 290 | 58.22 323 | 74.21 259 | 37.18 341 | 62.46 335 | 60.88 344 | 48.88 284 | 55.29 325 | 75.99 305 | 31.68 316 | 62.04 347 | 31.87 358 | 72.35 220 | 75.43 308 |
|
| MVS | | | 67.37 188 | 66.33 194 | 70.51 203 | 75.46 234 | 50.94 193 | 73.95 226 | 81.85 101 | 41.57 354 | 62.54 254 | 78.57 265 | 47.98 134 | 85.47 103 | 52.97 207 | 82.05 95 | 75.14 309 |
|
| EU-MVSNet | | | 55.61 310 | 54.41 314 | 59.19 316 | 65.41 357 | 33.42 372 | 72.44 250 | 71.91 264 | 28.81 381 | 51.27 352 | 73.87 323 | 24.76 363 | 69.08 317 | 43.04 294 | 58.20 348 | 75.06 310 |
|
| CR-MVSNet | | | 59.91 276 | 57.90 287 | 65.96 268 | 69.96 321 | 52.07 180 | 65.31 321 | 63.15 329 | 42.48 349 | 59.36 288 | 74.84 316 | 35.83 270 | 70.75 307 | 45.50 273 | 64.65 307 | 75.06 310 |
|
| RPMNet | | | 61.53 266 | 58.42 280 | 70.86 195 | 69.96 321 | 52.07 180 | 65.31 321 | 81.36 112 | 43.20 344 | 59.36 288 | 70.15 350 | 35.37 273 | 85.47 103 | 36.42 337 | 64.65 307 | 75.06 310 |
|
| test222 | | | | | | 83.14 68 | 58.68 73 | 72.57 248 | 63.45 326 | 41.78 350 | 67.56 165 | 86.12 110 | 37.13 260 | | | 78.73 139 | 74.98 313 |
|
| MSDG | | | 61.81 264 | 59.23 272 | 69.55 222 | 72.64 275 | 52.63 170 | 70.45 279 | 75.81 214 | 51.38 253 | 53.70 341 | 76.11 302 | 29.52 330 | 81.08 196 | 37.70 323 | 65.79 299 | 74.93 314 |
|
| WTY-MVS | | | 59.75 278 | 60.39 266 | 57.85 327 | 72.32 285 | 37.83 335 | 61.05 346 | 64.18 321 | 45.95 322 | 61.91 262 | 79.11 257 | 47.01 156 | 60.88 350 | 42.50 299 | 69.49 264 | 74.83 315 |
|
| gg-mvs-nofinetune | | | 57.86 291 | 56.43 298 | 62.18 300 | 72.62 276 | 35.35 358 | 66.57 306 | 56.33 362 | 50.65 264 | 57.64 305 | 57.10 386 | 30.65 320 | 76.36 280 | 37.38 325 | 78.88 134 | 74.82 316 |
|
| testdata | | | | | 64.66 283 | 81.52 87 | 52.93 163 | | 65.29 313 | 46.09 318 | 73.88 64 | 87.46 76 | 38.08 248 | 66.26 333 | 53.31 205 | 78.48 142 | 74.78 317 |
|
| pmmvs4 | | | 61.48 268 | 59.39 271 | 67.76 242 | 71.57 295 | 53.86 144 | 71.42 263 | 65.34 312 | 44.20 334 | 59.46 287 | 77.92 273 | 35.90 269 | 74.71 288 | 43.87 287 | 64.87 305 | 74.71 318 |
|
| new-patchmatchnet | | | 47.56 344 | 47.73 344 | 47.06 365 | 58.81 385 | 9.37 413 | 48.78 384 | 59.21 348 | 43.28 342 | 44.22 378 | 68.66 359 | 25.67 359 | 57.20 368 | 31.57 365 | 49.35 377 | 74.62 319 |
|
| our_test_3 | | | 56.49 301 | 54.42 313 | 62.68 298 | 69.51 326 | 45.48 268 | 66.08 310 | 61.49 341 | 44.11 337 | 50.73 358 | 69.60 355 | 33.05 298 | 68.15 320 | 38.38 320 | 56.86 353 | 74.40 320 |
|
| Patchmtry | | | 57.16 295 | 56.47 297 | 59.23 314 | 69.17 332 | 34.58 364 | 62.98 332 | 63.15 329 | 44.53 330 | 56.83 311 | 74.84 316 | 35.83 270 | 68.71 318 | 40.03 312 | 60.91 336 | 74.39 321 |
|
| BH-w/o | | | 66.85 201 | 65.83 203 | 69.90 214 | 79.29 132 | 52.46 174 | 74.66 215 | 76.65 206 | 54.51 218 | 64.85 222 | 78.12 267 | 45.59 168 | 82.95 151 | 43.26 292 | 75.54 179 | 74.27 322 |
|
| XXY-MVS | | | 60.68 271 | 61.67 252 | 57.70 329 | 70.43 313 | 38.45 330 | 64.19 328 | 66.47 304 | 48.05 297 | 63.22 240 | 80.86 224 | 49.28 120 | 60.47 351 | 45.25 278 | 67.28 288 | 74.19 323 |
|
| UnsupCasMVSNet_eth | | | 53.16 327 | 52.47 325 | 55.23 339 | 59.45 383 | 33.39 373 | 59.43 352 | 69.13 287 | 45.98 319 | 50.35 361 | 72.32 330 | 29.30 333 | 58.26 364 | 42.02 303 | 44.30 382 | 74.05 324 |
|
| COLMAP_ROB |  | 52.97 17 | 61.27 270 | 58.81 275 | 68.64 233 | 74.63 249 | 52.51 173 | 78.42 126 | 73.30 252 | 49.92 273 | 50.96 354 | 81.51 211 | 23.06 367 | 79.40 225 | 31.63 363 | 65.85 297 | 74.01 325 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| pmmvs-eth3d | | | 58.81 284 | 56.31 299 | 66.30 260 | 67.61 342 | 52.42 176 | 72.30 252 | 64.76 316 | 43.55 340 | 54.94 329 | 74.19 322 | 28.95 334 | 72.60 296 | 43.31 290 | 57.21 352 | 73.88 326 |
|
| test20.03 | | | 53.87 320 | 54.02 319 | 53.41 352 | 61.47 374 | 28.11 388 | 61.30 342 | 59.21 348 | 51.34 255 | 52.09 350 | 77.43 284 | 33.29 297 | 58.55 362 | 29.76 373 | 60.27 342 | 73.58 327 |
|
| EG-PatchMatch MVS | | | 64.71 230 | 62.87 238 | 70.22 205 | 77.68 184 | 53.48 152 | 77.99 136 | 78.82 160 | 53.37 232 | 56.03 318 | 77.41 285 | 24.75 364 | 84.04 129 | 46.37 262 | 73.42 204 | 73.14 328 |
|
| Anonymous20231206 | | | 55.10 315 | 55.30 307 | 54.48 343 | 69.81 325 | 33.94 369 | 62.91 333 | 62.13 339 | 41.08 356 | 55.18 326 | 75.65 309 | 32.75 305 | 56.59 372 | 30.32 371 | 67.86 282 | 72.91 329 |
|
| Anonymous20240521 | | | 55.30 311 | 54.41 314 | 57.96 326 | 60.92 381 | 41.73 302 | 71.09 272 | 71.06 270 | 41.18 355 | 48.65 364 | 73.31 326 | 16.93 379 | 59.25 358 | 42.54 298 | 64.01 312 | 72.90 330 |
|
| pmmvs5 | | | 56.47 302 | 55.68 304 | 58.86 318 | 61.41 375 | 36.71 348 | 66.37 308 | 62.75 331 | 40.38 361 | 53.70 341 | 76.62 295 | 34.56 280 | 67.05 327 | 40.02 313 | 65.27 301 | 72.83 331 |
|
| USDC | | | 56.35 304 | 54.24 317 | 62.69 297 | 64.74 359 | 40.31 312 | 65.05 323 | 73.83 248 | 43.93 338 | 47.58 366 | 77.71 281 | 15.36 385 | 75.05 287 | 38.19 322 | 61.81 332 | 72.70 332 |
|
| OpenMVS_ROB |  | 52.78 18 | 60.03 275 | 58.14 284 | 65.69 273 | 70.47 312 | 44.82 272 | 75.33 197 | 70.86 271 | 45.04 326 | 56.06 317 | 76.00 303 | 26.89 352 | 79.65 221 | 35.36 342 | 67.29 287 | 72.60 333 |
|
| MDA-MVSNet-bldmvs | | | 53.87 320 | 50.81 332 | 63.05 295 | 66.25 352 | 48.58 234 | 56.93 365 | 63.82 323 | 48.09 296 | 41.22 383 | 70.48 348 | 30.34 323 | 68.00 324 | 34.24 345 | 45.92 381 | 72.57 334 |
|
| ANet_high | | | 41.38 354 | 37.47 361 | 53.11 353 | 39.73 407 | 24.45 400 | 56.94 364 | 69.69 278 | 47.65 302 | 26.04 399 | 52.32 389 | 12.44 389 | 62.38 346 | 21.80 391 | 10.61 408 | 72.49 335 |
|
| DP-MVS | | | 65.68 217 | 63.66 228 | 71.75 170 | 84.93 55 | 56.87 99 | 80.74 92 | 73.16 254 | 53.06 233 | 59.09 292 | 82.35 189 | 36.79 265 | 85.94 90 | 32.82 353 | 69.96 254 | 72.45 336 |
|
| MVP-Stereo | | | 65.41 222 | 63.80 225 | 70.22 205 | 77.62 191 | 55.53 124 | 76.30 177 | 78.53 170 | 50.59 266 | 56.47 316 | 78.65 262 | 39.84 227 | 82.68 162 | 44.10 284 | 72.12 225 | 72.44 337 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| test-LLR | | | 58.15 289 | 58.13 285 | 58.22 323 | 68.57 335 | 44.80 273 | 65.46 317 | 57.92 353 | 50.08 270 | 55.44 322 | 69.82 352 | 32.62 308 | 57.44 366 | 49.66 234 | 73.62 197 | 72.41 338 |
|
| test-mter | | | 56.42 303 | 55.82 303 | 58.22 323 | 68.57 335 | 44.80 273 | 65.46 317 | 57.92 353 | 39.94 365 | 55.44 322 | 69.82 352 | 21.92 370 | 57.44 366 | 49.66 234 | 73.62 197 | 72.41 338 |
|
| testgi | | | 51.90 329 | 52.37 326 | 50.51 362 | 60.39 382 | 23.55 402 | 58.42 354 | 58.15 351 | 49.03 282 | 51.83 351 | 79.21 256 | 22.39 368 | 55.59 376 | 29.24 376 | 62.64 324 | 72.40 340 |
|
| sss | | | 56.17 306 | 56.57 296 | 54.96 340 | 66.93 346 | 36.32 353 | 57.94 358 | 61.69 340 | 41.67 352 | 58.64 297 | 75.32 314 | 38.72 240 | 56.25 373 | 42.04 302 | 66.19 296 | 72.31 341 |
|
| GG-mvs-BLEND | | | | | 62.34 299 | 71.36 301 | 37.04 345 | 69.20 291 | 57.33 358 | | 54.73 332 | 65.48 374 | 30.37 322 | 77.82 252 | 34.82 343 | 74.93 183 | 72.17 342 |
|
| test0.0.03 1 | | | 53.32 325 | 53.59 322 | 52.50 356 | 62.81 369 | 29.45 384 | 59.51 351 | 54.11 370 | 50.08 270 | 54.40 336 | 74.31 321 | 32.62 308 | 55.92 375 | 30.50 370 | 63.95 314 | 72.15 343 |
|
| test_fmvs3 | | | 44.30 348 | 42.55 351 | 49.55 363 | 42.83 401 | 27.15 394 | 53.03 374 | 44.93 391 | 22.03 396 | 53.69 343 | 64.94 375 | 4.21 406 | 49.63 388 | 47.47 250 | 49.82 375 | 71.88 344 |
|
| test_vis1_n_1920 | | | 58.86 283 | 59.06 274 | 58.25 322 | 63.76 363 | 43.14 290 | 67.49 303 | 66.36 306 | 40.22 362 | 65.89 197 | 71.95 336 | 31.04 318 | 59.75 356 | 59.94 157 | 64.90 304 | 71.85 345 |
|
| tpmvs | | | 58.47 285 | 56.95 292 | 63.03 296 | 70.20 316 | 41.21 306 | 67.90 299 | 67.23 299 | 49.62 275 | 54.73 332 | 70.84 343 | 34.14 285 | 76.24 282 | 36.64 334 | 61.29 335 | 71.64 346 |
|
| test_fmvs1_n | | | 51.37 332 | 50.35 335 | 54.42 345 | 52.85 391 | 37.71 337 | 61.16 345 | 51.93 373 | 28.15 383 | 63.81 236 | 69.73 354 | 13.72 386 | 53.95 380 | 51.16 222 | 60.65 340 | 71.59 347 |
|
| test_fmvs2 | | | 48.69 341 | 47.49 346 | 52.29 358 | 48.63 397 | 33.06 375 | 57.76 359 | 48.05 385 | 25.71 389 | 59.76 284 | 69.60 355 | 11.57 392 | 52.23 386 | 49.45 237 | 56.86 353 | 71.58 348 |
|
| TDRefinement | | | 53.44 324 | 50.72 333 | 61.60 303 | 64.31 362 | 46.96 252 | 70.89 274 | 65.27 314 | 41.78 350 | 44.61 377 | 77.98 270 | 11.52 393 | 66.36 332 | 28.57 378 | 51.59 370 | 71.49 349 |
|
| Syy-MVS | | | 56.00 307 | 56.23 300 | 55.32 338 | 74.69 247 | 26.44 395 | 65.52 315 | 57.49 356 | 50.97 261 | 56.52 314 | 72.18 331 | 39.89 226 | 68.09 321 | 24.20 388 | 64.59 309 | 71.44 350 |
|
| myMVS_eth3d | | | 54.86 316 | 54.61 311 | 55.61 337 | 74.69 247 | 27.31 392 | 65.52 315 | 57.49 356 | 50.97 261 | 56.52 314 | 72.18 331 | 21.87 373 | 68.09 321 | 27.70 380 | 64.59 309 | 71.44 350 |
|
| YYNet1 | | | 50.73 335 | 48.96 337 | 56.03 335 | 61.10 377 | 41.78 301 | 51.94 377 | 56.44 360 | 40.94 358 | 44.84 375 | 67.80 362 | 30.08 325 | 55.08 378 | 36.77 330 | 50.71 372 | 71.22 352 |
|
| CMPMVS |  | 42.80 21 | 57.81 292 | 55.97 301 | 63.32 291 | 60.98 379 | 47.38 249 | 64.66 326 | 69.50 283 | 32.06 378 | 46.83 370 | 77.80 277 | 29.50 331 | 71.36 304 | 48.68 242 | 73.75 195 | 71.21 353 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test_0402 | | | 63.25 247 | 61.01 262 | 69.96 210 | 80.00 120 | 54.37 140 | 76.86 169 | 72.02 263 | 54.58 216 | 58.71 295 | 80.79 227 | 35.00 277 | 84.36 124 | 26.41 385 | 64.71 306 | 71.15 354 |
|
| MDA-MVSNet_test_wron | | | 50.71 336 | 48.95 338 | 56.00 336 | 61.17 376 | 41.84 300 | 51.90 378 | 56.45 359 | 40.96 357 | 44.79 376 | 67.84 361 | 30.04 326 | 55.07 379 | 36.71 332 | 50.69 373 | 71.11 355 |
|
| test_vis1_n | | | 49.89 339 | 48.69 341 | 53.50 350 | 53.97 388 | 37.38 340 | 61.53 339 | 47.33 387 | 28.54 382 | 59.62 286 | 67.10 368 | 13.52 387 | 52.27 385 | 49.07 239 | 57.52 350 | 70.84 356 |
|
| PatchT | | | 53.17 326 | 53.44 323 | 52.33 357 | 68.29 339 | 25.34 399 | 58.21 356 | 54.41 369 | 44.46 332 | 54.56 334 | 69.05 358 | 33.32 296 | 60.94 349 | 36.93 329 | 61.76 333 | 70.73 357 |
|
| test_cas_vis1_n_1920 | | | 56.91 297 | 56.71 295 | 57.51 330 | 59.13 384 | 45.40 269 | 63.58 330 | 61.29 342 | 36.24 372 | 67.14 172 | 71.85 337 | 29.89 327 | 56.69 370 | 57.65 169 | 63.58 317 | 70.46 358 |
|
| KD-MVS_2432*1600 | | | 53.45 322 | 51.50 330 | 59.30 312 | 62.82 367 | 37.14 342 | 55.33 368 | 71.79 265 | 47.34 307 | 55.09 327 | 70.52 346 | 21.91 371 | 70.45 309 | 35.72 340 | 42.97 384 | 70.31 359 |
|
| miper_refine_blended | | | 53.45 322 | 51.50 330 | 59.30 312 | 62.82 367 | 37.14 342 | 55.33 368 | 71.79 265 | 47.34 307 | 55.09 327 | 70.52 346 | 21.91 371 | 70.45 309 | 35.72 340 | 42.97 384 | 70.31 359 |
|
| TESTMET0.1,1 | | | 55.28 312 | 54.90 309 | 56.42 333 | 66.56 349 | 43.67 284 | 65.46 317 | 56.27 363 | 39.18 367 | 53.83 340 | 67.44 364 | 24.21 365 | 55.46 377 | 48.04 249 | 73.11 210 | 70.13 361 |
|
| test_fmvs1 | | | 51.32 334 | 50.48 334 | 53.81 347 | 53.57 389 | 37.51 339 | 60.63 349 | 51.16 376 | 28.02 385 | 63.62 237 | 69.23 357 | 16.41 381 | 53.93 381 | 51.01 223 | 60.70 339 | 69.99 362 |
|
| dmvs_re | | | 56.77 299 | 56.83 294 | 56.61 332 | 69.23 330 | 41.02 307 | 58.37 355 | 64.18 321 | 50.59 266 | 57.45 307 | 71.42 339 | 35.54 272 | 58.94 360 | 37.23 326 | 67.45 286 | 69.87 363 |
|
| LCM-MVSNet | | | 40.30 356 | 35.88 362 | 53.57 349 | 42.24 402 | 29.15 385 | 45.21 392 | 60.53 345 | 22.23 395 | 28.02 397 | 50.98 393 | 3.72 408 | 61.78 348 | 31.22 368 | 38.76 390 | 69.78 364 |
|
| ADS-MVSNet2 | | | 51.33 333 | 48.76 340 | 59.07 317 | 66.02 355 | 44.60 276 | 50.90 380 | 59.76 346 | 36.90 369 | 50.74 356 | 66.18 372 | 26.38 353 | 63.11 343 | 27.17 381 | 54.76 361 | 69.50 365 |
|
| ADS-MVSNet | | | 48.48 342 | 47.77 343 | 50.63 361 | 66.02 355 | 29.92 383 | 50.90 380 | 50.87 380 | 36.90 369 | 50.74 356 | 66.18 372 | 26.38 353 | 52.47 384 | 27.17 381 | 54.76 361 | 69.50 365 |
|
| TinyColmap | | | 54.14 317 | 51.72 328 | 61.40 306 | 66.84 347 | 41.97 299 | 66.52 307 | 68.51 291 | 44.81 327 | 42.69 382 | 75.77 308 | 11.66 391 | 72.94 295 | 31.96 357 | 56.77 355 | 69.27 367 |
|
| dp | | | 51.89 330 | 51.60 329 | 52.77 355 | 68.44 338 | 32.45 377 | 62.36 336 | 54.57 368 | 44.16 335 | 49.31 363 | 67.91 360 | 28.87 336 | 56.61 371 | 33.89 346 | 54.89 360 | 69.24 368 |
|
| JIA-IIPM | | | 51.56 331 | 47.68 345 | 63.21 293 | 64.61 360 | 50.73 199 | 47.71 386 | 58.77 350 | 42.90 346 | 48.46 365 | 51.72 390 | 24.97 362 | 70.24 313 | 36.06 339 | 53.89 364 | 68.64 369 |
|
| UnsupCasMVSNet_bld | | | 50.07 338 | 48.87 339 | 53.66 348 | 60.97 380 | 33.67 371 | 57.62 361 | 64.56 318 | 39.47 366 | 47.38 367 | 64.02 378 | 27.47 345 | 59.32 357 | 34.69 344 | 43.68 383 | 67.98 370 |
|
| mamv4 | | | 56.85 298 | 58.00 286 | 53.43 351 | 72.46 282 | 54.47 137 | 57.56 362 | 54.74 366 | 38.81 368 | 57.42 308 | 79.45 251 | 47.57 143 | 38.70 401 | 60.88 149 | 53.07 366 | 67.11 371 |
|
| MS-PatchMatch | | | 62.42 255 | 61.46 255 | 65.31 279 | 75.21 238 | 52.10 179 | 72.05 255 | 74.05 246 | 46.41 315 | 57.42 308 | 74.36 320 | 34.35 284 | 77.57 257 | 45.62 270 | 73.67 196 | 66.26 372 |
|
| N_pmnet | | | 39.35 358 | 40.28 356 | 36.54 381 | 63.76 363 | 1.62 418 | 49.37 383 | 0.76 417 | 34.62 375 | 43.61 380 | 66.38 371 | 26.25 355 | 42.57 397 | 26.02 386 | 51.77 369 | 65.44 373 |
|
| PM-MVS | | | 52.33 328 | 50.19 336 | 58.75 319 | 62.10 372 | 45.14 271 | 65.75 311 | 40.38 397 | 43.60 339 | 53.52 345 | 72.65 328 | 9.16 399 | 65.87 335 | 50.41 227 | 54.18 363 | 65.24 374 |
|
| dmvs_testset | | | 50.16 337 | 51.90 327 | 44.94 370 | 66.49 350 | 11.78 410 | 61.01 347 | 51.50 375 | 51.17 259 | 50.30 362 | 67.44 364 | 39.28 233 | 60.29 353 | 22.38 390 | 57.49 351 | 62.76 375 |
|
| PatchMatch-RL | | | 56.25 305 | 54.55 312 | 61.32 308 | 77.06 207 | 56.07 109 | 65.57 314 | 54.10 371 | 44.13 336 | 53.49 347 | 71.27 342 | 25.20 361 | 66.78 329 | 36.52 336 | 63.66 315 | 61.12 376 |
|
| pmmvs3 | | | 44.92 347 | 41.95 354 | 53.86 346 | 52.58 393 | 43.55 285 | 62.11 338 | 46.90 389 | 26.05 388 | 40.63 384 | 60.19 382 | 11.08 396 | 57.91 365 | 31.83 362 | 46.15 380 | 60.11 377 |
|
| WB-MVS | | | 43.26 349 | 43.41 350 | 42.83 374 | 63.32 366 | 10.32 412 | 58.17 357 | 45.20 390 | 45.42 324 | 40.44 386 | 67.26 367 | 34.01 289 | 58.98 359 | 11.96 403 | 24.88 397 | 59.20 378 |
|
| test_vis1_rt | | | 41.35 355 | 39.45 357 | 47.03 366 | 46.65 400 | 37.86 334 | 47.76 385 | 38.65 398 | 23.10 392 | 44.21 379 | 51.22 392 | 11.20 395 | 44.08 395 | 39.27 316 | 53.02 367 | 59.14 379 |
|
| LF4IMVS | | | 42.95 350 | 42.26 352 | 45.04 368 | 48.30 398 | 32.50 376 | 54.80 370 | 48.49 383 | 28.03 384 | 40.51 385 | 70.16 349 | 9.24 398 | 43.89 396 | 31.63 363 | 49.18 378 | 58.72 380 |
|
| DSMNet-mixed | | | 39.30 359 | 38.72 358 | 41.03 376 | 51.22 394 | 19.66 405 | 45.53 391 | 31.35 404 | 15.83 403 | 39.80 388 | 67.42 366 | 22.19 369 | 45.13 394 | 22.43 389 | 52.69 368 | 58.31 381 |
|
| SSC-MVS | | | 41.96 353 | 41.99 353 | 41.90 375 | 62.46 371 | 9.28 414 | 57.41 363 | 44.32 393 | 43.38 341 | 38.30 391 | 66.45 370 | 32.67 307 | 58.42 363 | 10.98 404 | 21.91 400 | 57.99 382 |
|
| CHOSEN 280x420 | | | 47.83 343 | 46.36 347 | 52.24 359 | 67.37 344 | 49.78 216 | 38.91 398 | 43.11 395 | 35.00 374 | 43.27 381 | 63.30 379 | 28.95 334 | 49.19 389 | 36.53 335 | 60.80 338 | 57.76 383 |
|
| PMMVS | | | 53.96 318 | 53.26 324 | 56.04 334 | 62.60 370 | 50.92 195 | 61.17 344 | 56.09 364 | 32.81 377 | 53.51 346 | 66.84 369 | 34.04 287 | 59.93 355 | 44.14 283 | 68.18 280 | 57.27 384 |
|
| mvsany_test3 | | | 32.62 365 | 30.57 370 | 38.77 379 | 36.16 410 | 24.20 401 | 38.10 399 | 20.63 412 | 19.14 398 | 40.36 387 | 57.43 385 | 5.06 403 | 36.63 404 | 29.59 375 | 28.66 396 | 55.49 385 |
|
| PVSNet_0 | | 43.31 20 | 47.46 345 | 45.64 348 | 52.92 354 | 67.60 343 | 44.65 275 | 54.06 372 | 54.64 367 | 41.59 353 | 46.15 373 | 58.75 383 | 30.99 319 | 58.66 361 | 32.18 354 | 24.81 398 | 55.46 386 |
|
| mvsany_test1 | | | 39.38 357 | 38.16 360 | 43.02 373 | 49.05 395 | 34.28 366 | 44.16 394 | 25.94 408 | 22.74 394 | 46.57 372 | 62.21 381 | 23.85 366 | 41.16 400 | 33.01 352 | 35.91 392 | 53.63 387 |
|
| PMMVS2 | | | 27.40 371 | 25.91 374 | 31.87 386 | 39.46 408 | 6.57 415 | 31.17 401 | 28.52 406 | 23.96 390 | 20.45 403 | 48.94 397 | 4.20 407 | 37.94 402 | 16.51 395 | 19.97 401 | 51.09 388 |
|
| test_f | | | 31.86 367 | 31.05 368 | 34.28 382 | 32.33 413 | 21.86 403 | 32.34 400 | 30.46 405 | 16.02 402 | 39.78 389 | 55.45 387 | 4.80 404 | 32.36 407 | 30.61 369 | 37.66 391 | 48.64 389 |
|
| test_vis3_rt | | | 32.09 366 | 30.20 371 | 37.76 380 | 35.36 411 | 27.48 390 | 40.60 397 | 28.29 407 | 16.69 401 | 32.52 395 | 40.53 400 | 1.96 412 | 37.40 403 | 33.64 349 | 42.21 386 | 48.39 390 |
|
| EGC-MVSNET | | | 42.47 351 | 38.48 359 | 54.46 344 | 74.33 256 | 48.73 232 | 70.33 281 | 51.10 377 | 0.03 411 | 0.18 412 | 67.78 363 | 13.28 388 | 66.49 331 | 18.91 394 | 50.36 374 | 48.15 391 |
|
| APD_test1 | | | 37.39 360 | 34.94 363 | 44.72 371 | 48.88 396 | 33.19 374 | 52.95 375 | 44.00 394 | 19.49 397 | 27.28 398 | 58.59 384 | 3.18 410 | 52.84 383 | 18.92 393 | 41.17 387 | 48.14 392 |
|
| MVS-HIRNet | | | 45.52 346 | 44.48 349 | 48.65 364 | 68.49 337 | 34.05 368 | 59.41 353 | 44.50 392 | 27.03 386 | 37.96 392 | 50.47 394 | 26.16 356 | 64.10 339 | 26.74 384 | 59.52 343 | 47.82 393 |
|
| new_pmnet | | | 34.13 364 | 34.29 365 | 33.64 383 | 52.63 392 | 18.23 407 | 44.43 393 | 33.90 403 | 22.81 393 | 30.89 396 | 53.18 388 | 10.48 397 | 35.72 405 | 20.77 392 | 39.51 388 | 46.98 394 |
|
| FPMVS | | | 42.18 352 | 41.11 355 | 45.39 367 | 58.03 386 | 41.01 309 | 49.50 382 | 53.81 372 | 30.07 380 | 33.71 394 | 64.03 376 | 11.69 390 | 52.08 387 | 14.01 398 | 55.11 359 | 43.09 395 |
|
| testf1 | | | 31.46 368 | 28.89 372 | 39.16 377 | 41.99 404 | 28.78 386 | 46.45 388 | 37.56 399 | 14.28 404 | 21.10 400 | 48.96 395 | 1.48 414 | 47.11 391 | 13.63 399 | 34.56 393 | 41.60 396 |
|
| APD_test2 | | | 31.46 368 | 28.89 372 | 39.16 377 | 41.99 404 | 28.78 386 | 46.45 388 | 37.56 399 | 14.28 404 | 21.10 400 | 48.96 395 | 1.48 414 | 47.11 391 | 13.63 399 | 34.56 393 | 41.60 396 |
|
| test_method | | | 19.68 375 | 18.10 378 | 24.41 390 | 13.68 415 | 3.11 417 | 12.06 406 | 42.37 396 | 2.00 409 | 11.97 407 | 36.38 401 | 5.77 402 | 29.35 409 | 15.06 396 | 23.65 399 | 40.76 398 |
|
| MVE |  | 17.77 23 | 21.41 374 | 17.77 379 | 32.34 385 | 34.34 412 | 25.44 398 | 16.11 404 | 24.11 409 | 11.19 406 | 13.22 406 | 31.92 402 | 1.58 413 | 30.95 408 | 10.47 405 | 17.03 404 | 40.62 399 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMVS |  | 28.69 22 | 36.22 361 | 33.29 366 | 45.02 369 | 36.82 409 | 35.98 356 | 54.68 371 | 48.74 382 | 26.31 387 | 21.02 402 | 51.61 391 | 2.88 411 | 60.10 354 | 9.99 407 | 47.58 379 | 38.99 400 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| dongtai | | | 34.52 363 | 34.94 363 | 33.26 384 | 61.06 378 | 16.00 409 | 52.79 376 | 23.78 410 | 40.71 359 | 39.33 390 | 48.65 398 | 16.91 380 | 48.34 390 | 12.18 402 | 19.05 402 | 35.44 401 |
|
| Gipuma |  | | 34.77 362 | 31.91 367 | 43.33 372 | 62.05 373 | 37.87 333 | 20.39 403 | 67.03 300 | 23.23 391 | 18.41 404 | 25.84 404 | 4.24 405 | 62.73 344 | 14.71 397 | 51.32 371 | 29.38 402 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| kuosan | | | 29.62 370 | 30.82 369 | 26.02 389 | 52.99 390 | 16.22 408 | 51.09 379 | 22.71 411 | 33.91 376 | 33.99 393 | 40.85 399 | 15.89 383 | 33.11 406 | 7.59 410 | 18.37 403 | 28.72 403 |
|
| E-PMN | | | 23.77 372 | 22.73 376 | 26.90 387 | 42.02 403 | 20.67 404 | 42.66 395 | 35.70 401 | 17.43 399 | 10.28 409 | 25.05 405 | 6.42 401 | 42.39 398 | 10.28 406 | 14.71 405 | 17.63 404 |
|
| EMVS | | | 22.97 373 | 21.84 377 | 26.36 388 | 40.20 406 | 19.53 406 | 41.95 396 | 34.64 402 | 17.09 400 | 9.73 410 | 22.83 406 | 7.29 400 | 42.22 399 | 9.18 408 | 13.66 406 | 17.32 405 |
|
| DeepMVS_CX |  | | | | 12.03 392 | 17.97 414 | 10.91 411 | | 10.60 415 | 7.46 407 | 11.07 408 | 28.36 403 | 3.28 409 | 11.29 411 | 8.01 409 | 9.74 410 | 13.89 406 |
|
| tmp_tt | | | 9.43 378 | 11.14 381 | 4.30 393 | 2.38 416 | 4.40 416 | 13.62 405 | 16.08 414 | 0.39 410 | 15.89 405 | 13.06 407 | 15.80 384 | 5.54 412 | 12.63 401 | 10.46 409 | 2.95 407 |
|
| wuyk23d | | | 13.32 377 | 12.52 380 | 15.71 391 | 47.54 399 | 26.27 396 | 31.06 402 | 1.98 416 | 4.93 408 | 5.18 411 | 1.94 411 | 0.45 416 | 18.54 410 | 6.81 411 | 12.83 407 | 2.33 408 |
|
| test123 | | | 4.73 380 | 6.30 383 | 0.02 394 | 0.01 417 | 0.01 419 | 56.36 366 | 0.00 418 | 0.01 412 | 0.04 413 | 0.21 413 | 0.01 417 | 0.00 413 | 0.03 413 | 0.00 411 | 0.04 409 |
|
| testmvs | | | 4.52 381 | 6.03 384 | 0.01 395 | 0.01 417 | 0.00 420 | 53.86 373 | 0.00 418 | 0.01 412 | 0.04 413 | 0.27 412 | 0.00 418 | 0.00 413 | 0.04 412 | 0.00 411 | 0.03 410 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 418 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 418 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 418 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| cdsmvs_eth3d_5k | | | 17.50 376 | 23.34 375 | 0.00 396 | 0.00 419 | 0.00 420 | 0.00 407 | 78.63 167 | 0.00 414 | 0.00 415 | 82.18 193 | 49.25 121 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 3.92 382 | 5.23 385 | 0.00 396 | 0.00 419 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 414 | 0.00 415 | 0.00 414 | 47.05 153 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 418 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 418 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 418 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 418 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| ab-mvs-re | | | 6.49 379 | 8.65 382 | 0.00 396 | 0.00 419 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 414 | 0.00 415 | 77.89 275 | 0.00 418 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 420 | 0.00 407 | 0.00 418 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 418 | 0.00 413 | 0.00 414 | 0.00 411 | 0.00 411 |
|
| WAC-MVS | | | | | | | 27.31 392 | | | | | | | | 27.77 379 | | |
|
| FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 67 | 60.87 84 | 81.50 16 | | | | | | |
|
| test_one_0601 | | | | | | 87.58 9 | 59.30 57 | | 86.84 7 | 65.01 20 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 86.64 21 | 60.38 43 | | 82.70 91 | 57.95 147 | 78.10 24 | 90.06 36 | 56.12 41 | 88.84 26 | 74.05 47 | 87.00 49 | |
|
| test_241102_ONE | | | | | | 87.77 4 | 58.90 69 | | 86.78 10 | 64.20 31 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
| 9.14 | | | | 78.75 15 | | 83.10 69 | | 84.15 43 | 88.26 1 | 59.90 107 | 78.57 23 | 90.36 27 | 57.51 32 | 86.86 66 | 77.39 23 | 89.52 21 | |
|
| save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 47 | 79.66 146 | 59.00 124 | | | | | | | |
|
| test0726 | | | | | | 87.75 7 | 59.07 64 | 87.86 4 | 86.83 8 | 64.26 29 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
| test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
| sam_mvs | | | | | | | | | | | | | 33.43 295 | | | | |
|
| MTGPA |  | | | | | | | | 80.97 129 | | | | | | | | |
|
| test_post1 | | | | | | | | 68.67 294 | | | | 3.64 409 | 32.39 313 | 69.49 315 | 44.17 281 | | |
|
| test_post | | | | | | | | | | | | 3.55 410 | 33.90 290 | 66.52 330 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 64.03 376 | 34.50 281 | 74.27 291 | | | |
|
| MTMP | | | | | | | | 86.03 19 | 17.08 413 | | | | | | | | |
|
| gm-plane-assit | | | | | | 71.40 300 | 41.72 304 | | | 48.85 285 | | 73.31 326 | | 82.48 169 | 48.90 241 | | |
|
| TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 81 | 81.26 120 | 55.65 191 | 74.93 45 | 88.81 56 | 53.70 69 | 84.68 119 | | | |
|
| test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 84 | 81.18 123 | 55.86 183 | 74.81 49 | 88.80 58 | 53.70 69 | 84.45 123 | | | |
|
| agg_prior | | | | | | 85.04 50 | 59.96 47 | | 81.04 127 | | 74.68 52 | | | 84.04 129 | | | |
|
| test_prior4 | | | | | | | 62.51 14 | 82.08 76 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 81.75 79 | | 60.37 96 | 75.01 43 | 89.06 52 | 56.22 40 | | 72.19 59 | 88.96 24 | |
|
| 旧先验2 | | | | | | | | 76.08 182 | | 45.32 325 | 76.55 33 | | | 65.56 336 | 58.75 165 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 76.12 180 | | | | | | | | | |
|
| 原ACMM2 | | | | | | | | 79.02 115 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 72.18 301 | 46.95 259 | | |
|
| segment_acmp | | | | | | | | | | | | | 54.23 58 | | | | |
|
| testdata1 | | | | | | | | 72.65 244 | | 60.50 91 | | | | | | | |
|
| plane_prior7 | | | | | | 81.41 90 | 55.96 111 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 81.20 97 | 56.24 106 | | | | | | 45.26 177 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 86.10 111 | | | | | |
|
| plane_prior3 | | | | | | | 56.09 108 | | | 63.92 36 | 69.27 132 | | | | | | |
|
| plane_prior2 | | | | | | | | 84.22 40 | | 64.52 25 | | | | | | | |
|
| plane_prior1 | | | | | | 81.27 95 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 56.31 102 | 83.58 53 | | 63.19 48 | | | | | | 80.48 112 | |
|
| n2 | | | | | | | | | 0.00 418 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 418 | | | | | | | | |
|
| door-mid | | | | | | | | | 47.19 388 | | | | | | | | |
|
| test11 | | | | | | | | | 83.47 72 | | | | | | | | |
|
| door | | | | | | | | | 47.60 386 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 54.94 131 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 80.66 105 | | 82.31 71 | | 62.10 68 | 67.85 155 | | | | | | |
|
| ACMP_Plane | | | | | | 80.66 105 | | 82.31 71 | | 62.10 68 | 67.85 155 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.04 95 | | |
|
| HQP3-MVS | | | | | | | | | 83.90 57 | | | | | | | 80.35 113 | |
|
| HQP2-MVS | | | | | | | | | | | | | 45.46 171 | | | | |
|
| NP-MVS | | | | | | 80.98 100 | 56.05 110 | | | | | 85.54 131 | | | | | |
|
| MDTV_nov1_ep13 | | | | 57.00 291 | | 72.73 274 | 38.26 331 | 65.02 324 | 64.73 317 | 44.74 328 | 55.46 321 | 72.48 329 | 32.61 310 | 70.47 308 | 37.47 324 | 67.75 284 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 190 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 72.16 224 | |
|
| Test By Simon | | | | | | | | | | | | | 48.33 132 | | | | |
|