This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7476.46 22051.83 18879.67 10985.08 3265.02 1975.84 3588.58 6059.42 2285.08 10972.75 5683.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+66.72 475.84 4574.57 5579.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16089.24 5142.03 20489.38 1964.07 11886.50 5689.69 2
casdiffmvspermissive74.80 5274.89 5374.53 9975.59 23250.37 20678.17 13185.06 3462.80 5874.40 5687.86 7057.88 2783.61 13969.46 7682.79 8989.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS76.25 4075.98 3977.06 5080.15 11855.63 12084.51 3583.90 5763.24 4573.30 7087.27 8055.06 4786.30 8471.78 6384.58 6889.25 4
iter_conf0575.83 4775.63 4576.43 5880.84 10251.87 18778.13 13284.81 4059.65 11272.86 8487.47 7556.92 3488.17 3772.18 6087.79 4289.24 5
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5473.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 6
baseline74.61 5874.70 5474.34 10375.70 22849.99 21477.54 14884.63 4362.73 5973.98 6287.79 7357.67 3083.82 13569.49 7482.74 9089.20 7
MVSMamba_pp74.64 5774.07 6076.35 6179.76 12353.09 16279.97 10185.21 2955.21 20172.81 8685.37 13553.93 6387.17 5867.93 8586.46 5788.80 8
MVS_030478.73 1678.75 1578.66 3080.82 10357.62 8385.31 3081.31 11770.51 274.17 6091.24 1454.99 4889.56 1782.29 288.13 3488.80 8
alignmvs73.86 6673.99 6173.45 13578.20 16650.50 20578.57 12382.43 9359.40 11876.57 3286.71 9056.42 3981.23 19265.84 10681.79 9988.62 10
IS-MVSNet71.57 10071.00 10173.27 14178.86 14545.63 26780.22 9778.69 16564.14 3566.46 18587.36 7749.30 11985.60 9650.26 22983.71 7888.59 11
sasdasda74.67 5574.98 5173.71 12278.94 14350.56 20380.23 9583.87 6060.30 10077.15 2986.56 9759.65 1782.00 17566.01 10382.12 9388.58 12
canonicalmvs74.67 5574.98 5173.71 12278.94 14350.56 20380.23 9583.87 6060.30 10077.15 2986.56 9759.65 1782.00 17566.01 10382.12 9388.58 12
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
PC_three_145255.09 20484.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 14
iter_conf05_1173.52 6872.59 7576.30 6380.93 10151.97 18478.62 12183.48 7052.20 24371.53 10385.93 11954.01 6088.55 2861.08 14785.56 6388.39 16
IU-MVS87.77 459.15 6085.53 2553.93 22684.64 379.07 1190.87 588.37 17
MGCFI-Net72.45 8373.34 7069.81 21677.77 18143.21 28975.84 19081.18 12359.59 11675.45 3886.64 9157.74 2877.94 24963.92 12281.90 9888.30 18
VDDNet71.81 9571.33 9373.26 14282.80 7547.60 24778.74 11875.27 22459.59 11672.94 8289.40 4841.51 21483.91 13358.75 16582.99 8288.26 19
VDD-MVS72.50 8172.09 8173.75 12081.58 8649.69 21977.76 14377.63 19063.21 4773.21 7389.02 5342.14 20383.32 14361.72 14282.50 9188.25 20
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 21
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 21
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1679.85 591.48 188.19 23
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CS-MVS-test75.62 4875.31 4876.56 5780.63 10855.13 13083.88 4885.22 2862.05 7171.49 10486.03 11453.83 6586.36 8267.74 8786.91 5088.19 23
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 25
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 26
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EPP-MVSNet72.16 9171.31 9474.71 8978.68 15149.70 21782.10 7581.65 10460.40 9365.94 19485.84 12251.74 9686.37 8155.93 17979.55 12488.07 28
DELS-MVS74.76 5374.46 5675.65 7577.84 17952.25 17775.59 19384.17 4963.76 3873.15 7582.79 17659.58 2086.80 6767.24 9386.04 5987.89 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6277.08 2690.18 1587.87 31
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 32
Anonymous2024052969.91 13169.02 13472.56 15380.19 11647.65 24577.56 14780.99 12855.45 19669.88 12286.76 8639.24 23582.18 17354.04 19777.10 16287.85 32
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 8386.78 6880.66 489.64 1987.80 35
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PHI-MVS75.87 4475.36 4677.41 4680.62 10955.91 11384.28 3985.78 2056.08 18173.41 6986.58 9650.94 10788.54 2970.79 6989.71 1787.79 36
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 7967.78 370.09 11486.34 10454.92 5088.90 2572.68 5784.55 6987.76 37
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5790.06 1378.42 1989.02 2387.69 38
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6359.34 12079.37 1989.76 4559.84 1687.62 5076.69 2786.74 5387.68 39
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 40
MVS_Test72.45 8372.46 7872.42 15974.88 24148.50 23576.28 17883.14 8559.40 11872.46 9384.68 14055.66 4381.12 19365.98 10579.66 12187.63 41
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 42
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8684.02 5156.32 17574.05 6188.98 5453.34 7387.92 4469.23 7788.42 2887.59 43
OMC-MVS71.40 10470.60 10673.78 11676.60 21653.15 15979.74 10879.78 14358.37 13768.75 13986.45 10245.43 17380.60 20662.58 13377.73 15087.58 44
diffmvspermissive70.69 11570.43 10971.46 17869.45 32848.95 22972.93 24178.46 17457.27 15671.69 10083.97 15951.48 9977.92 25170.70 7077.95 14987.53 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet70.36 12270.10 11871.17 19078.64 15242.97 29276.53 17381.16 12566.95 668.53 14385.42 13351.61 9883.07 14852.32 21069.70 26187.46 46
nrg03072.96 7573.01 7172.84 14875.41 23550.24 20780.02 9982.89 8958.36 13874.44 5586.73 8858.90 2480.83 20265.84 10674.46 18487.44 47
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 3961.98 7473.06 8088.88 5553.72 6889.06 2368.27 7988.04 3887.42 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test250665.33 22464.61 21767.50 24479.46 13034.19 36774.43 21951.92 37458.72 12866.75 18088.05 6625.99 35780.92 20051.94 21584.25 7287.39 49
ECVR-MVScopyleft67.72 18367.51 16568.35 23779.46 13036.29 35574.79 21266.93 30158.72 12867.19 17088.05 6636.10 26781.38 18752.07 21384.25 7287.39 49
DU-MVS70.01 12869.53 12571.44 17978.05 17344.13 27975.01 20681.51 10764.37 2868.20 14784.52 14649.12 12582.82 15954.62 19370.43 24287.37 51
NR-MVSNet69.54 14368.85 13671.59 17678.05 17343.81 28374.20 22180.86 13165.18 1462.76 24884.52 14652.35 8683.59 14050.96 22570.78 23787.37 51
UniMVSNet_NR-MVSNet71.11 10671.00 10171.44 17979.20 13644.13 27976.02 18682.60 9266.48 1168.20 14784.60 14556.82 3682.82 15954.62 19370.43 24287.36 53
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3262.57 6073.09 7989.97 4150.90 10887.48 5275.30 3686.85 5187.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Effi-MVS+73.31 7172.54 7775.62 7677.87 17753.64 14879.62 11179.61 14761.63 7772.02 9882.61 18156.44 3885.97 8963.99 12179.07 13387.25 55
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 6288.68 2776.48 2889.63 2087.16 56
FIs70.82 11371.43 8968.98 22978.33 16338.14 33276.96 16483.59 6861.02 8367.33 16886.73 8855.07 4681.64 18154.61 19579.22 12987.14 57
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3566.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 58
test111167.21 19067.14 18167.42 24679.24 13534.76 36273.89 23065.65 31058.71 13066.96 17587.95 6936.09 26880.53 20752.03 21483.79 7786.97 59
mvsmamba71.15 10569.54 12475.99 6677.61 19253.46 15381.95 7775.11 23057.73 15266.95 17685.96 11737.14 25987.56 5167.94 8475.49 18086.97 59
FC-MVSNet-test69.80 13470.58 10867.46 24577.61 19234.73 36376.05 18483.19 8360.84 8565.88 19886.46 10154.52 5580.76 20552.52 20978.12 14686.91 61
UniMVSNet (Re)70.63 11670.20 11471.89 16578.55 15345.29 27075.94 18782.92 8763.68 4068.16 14983.59 16653.89 6483.49 14253.97 19871.12 23586.89 62
LFMVS71.78 9671.59 8572.32 16083.40 6746.38 25679.75 10771.08 26864.18 3272.80 8788.64 5942.58 19983.72 13657.41 17184.49 7086.86 63
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 64
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test1277.76 4384.52 5858.41 7583.36 7772.93 8354.61 5488.05 4088.12 3586.81 65
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 66
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3162.88 5378.10 2491.26 1352.51 8188.39 3179.34 890.52 1386.78 67
test_fmvsmconf_n73.01 7472.59 7574.27 10671.28 30355.88 11478.21 13075.56 21954.31 22174.86 4887.80 7254.72 5280.23 21678.07 2178.48 14286.70 68
test_fmvsmconf0.1_n72.81 7672.33 7974.24 10769.89 32355.81 11578.22 12975.40 22254.17 22375.00 4488.03 6853.82 6680.23 21678.08 2078.34 14586.69 69
tttt051767.83 18165.66 20674.33 10476.69 21350.82 19777.86 13973.99 24754.54 21764.64 22582.53 18635.06 27685.50 10155.71 18369.91 25586.67 70
EC-MVSNet75.84 4575.87 4275.74 7278.86 14552.65 16883.73 5086.08 1763.47 4272.77 8887.25 8153.13 7587.93 4371.97 6285.57 6286.66 71
test_fmvsmconf0.01_n72.17 8971.50 8774.16 10867.96 34055.58 12378.06 13574.67 23754.19 22274.54 5488.23 6150.35 11280.24 21578.07 2177.46 15486.65 72
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 8088.53 3074.79 4288.34 2986.63 73
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16274.91 4788.19 6259.15 2387.68 4973.67 5187.45 4386.57 74
test_fmvsm_n_192071.73 9871.14 9873.50 13272.52 27956.53 10175.60 19276.16 20948.11 29577.22 2885.56 12853.10 7677.43 25874.86 4077.14 16086.55 75
thisisatest053067.92 17965.78 20474.33 10476.29 22151.03 19276.89 16774.25 24453.67 22965.59 20281.76 20535.15 27585.50 10155.94 17872.47 21886.47 76
test_prior76.69 5384.20 6157.27 8884.88 3886.43 7986.38 77
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4566.73 874.67 5389.38 4955.30 4589.18 2174.19 4687.34 4486.38 77
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 9690.01 4047.95 13588.01 4171.55 6686.74 5386.37 79
X-MVStestdata70.21 12567.28 17479.00 2386.32 2962.62 1185.83 2283.92 5564.55 2372.17 966.49 40847.95 13588.01 4171.55 6686.74 5386.37 79
dcpmvs_274.55 6075.23 4972.48 15582.34 7753.34 15677.87 13881.46 10857.80 15175.49 3786.81 8562.22 1377.75 25471.09 6882.02 9686.34 81
WR-MVS68.47 16768.47 14768.44 23680.20 11539.84 31673.75 23376.07 21264.68 2268.11 15183.63 16550.39 11179.14 23449.78 23069.66 26286.34 81
Anonymous20240521166.84 20265.99 20169.40 22380.19 11642.21 29871.11 27171.31 26758.80 12767.90 15386.39 10329.83 32879.65 22149.60 23678.78 13786.33 83
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 6060.37 9679.89 1889.38 4954.97 4985.58 9876.12 3184.94 6686.33 83
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet_ETH3D67.60 18567.07 18269.18 22877.39 19942.29 29674.18 22275.59 21860.37 9666.77 17986.06 11337.64 25078.93 24152.16 21273.49 20186.32 85
UA-Net73.13 7272.93 7273.76 11883.58 6451.66 18978.75 11777.66 18967.75 472.61 9189.42 4749.82 11483.29 14453.61 20283.14 7986.32 85
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4862.82 5573.55 6890.56 2249.80 11588.24 3474.02 4887.03 4686.32 85
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5062.81 5773.30 7090.58 2149.90 11388.21 3573.78 5087.03 4686.29 88
mvs_anonymous68.03 17567.51 16569.59 21972.08 28844.57 27771.99 25675.23 22651.67 24667.06 17382.57 18254.68 5377.94 24956.56 17575.71 17786.26 89
fmvsm_s_conf0.1_n69.41 14868.60 14371.83 16771.07 30552.88 16577.85 14062.44 33449.58 27672.97 8186.22 10651.68 9776.48 27875.53 3470.10 25186.14 90
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4762.82 5573.96 6390.50 2453.20 7488.35 3274.02 4887.05 4586.13 91
v2v48270.50 11969.45 12873.66 12572.62 27650.03 21377.58 14580.51 13659.90 10769.52 12682.14 19747.53 14484.88 11765.07 11270.17 24986.09 92
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13860.76 1586.56 7467.86 8687.87 4186.06 93
PAPR71.72 9970.82 10374.41 10281.20 9751.17 19179.55 11283.33 7855.81 18666.93 17784.61 14450.95 10686.06 8555.79 18279.20 13086.00 94
fmvsm_s_conf0.5_n69.58 14168.84 13771.79 16972.31 28652.90 16477.90 13762.43 33549.97 27272.85 8585.90 12052.21 8776.49 27775.75 3370.26 24885.97 95
EPNet73.09 7372.16 8075.90 6875.95 22656.28 10483.05 5672.39 25966.53 1065.27 20887.00 8250.40 11085.47 10362.48 13586.32 5885.94 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GeoE71.01 10870.15 11673.60 13079.57 12852.17 17878.93 11678.12 18258.02 14467.76 16383.87 16052.36 8582.72 16156.90 17375.79 17585.92 97
PAPM_NR72.63 8071.80 8375.13 8481.72 8553.42 15579.91 10483.28 8159.14 12266.31 18985.90 12051.86 9386.06 8557.45 17080.62 10785.91 98
ETV-MVS74.46 6173.84 6476.33 6279.27 13455.24 12979.22 11485.00 3764.97 2172.65 9079.46 25053.65 7287.87 4567.45 9282.91 8585.89 99
FA-MVS(test-final)69.82 13368.48 14573.84 11478.44 15750.04 21275.58 19578.99 15858.16 14067.59 16482.14 19742.66 19785.63 9556.60 17476.19 17185.84 100
EI-MVSNet-Vis-set72.42 8571.59 8574.91 8678.47 15654.02 14277.05 16279.33 15365.03 1871.68 10179.35 25452.75 7884.89 11566.46 9874.23 18885.83 101
ET-MVSNet_ETH3D67.96 17865.72 20574.68 9176.67 21455.62 12275.11 20374.74 23552.91 23560.03 27880.12 23633.68 29282.64 16461.86 14176.34 16985.78 102
APD-MVS_3200maxsize74.96 5074.39 5776.67 5482.20 7858.24 7783.67 5183.29 8058.41 13673.71 6690.14 3345.62 16685.99 8869.64 7382.85 8885.78 102
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6461.71 7672.45 9590.34 2948.48 13188.13 3872.32 5886.85 5185.78 102
HPM-MVS_fast74.30 6373.46 6876.80 5284.45 6059.04 6683.65 5281.05 12660.15 10370.43 11089.84 4341.09 22085.59 9767.61 9082.90 8685.77 105
Vis-MVSNetpermissive72.18 8871.37 9274.61 9581.29 9355.41 12680.90 8978.28 18160.73 8869.23 13588.09 6444.36 18582.65 16357.68 16881.75 10285.77 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VNet69.68 13870.19 11568.16 23979.73 12541.63 30570.53 27777.38 19560.37 9670.69 10886.63 9351.08 10477.09 26453.61 20281.69 10485.75 107
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6963.89 3773.60 6790.60 2054.85 5186.72 6977.20 2588.06 3785.74 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PS-MVSNAJss72.24 8771.21 9575.31 8178.50 15455.93 11281.63 8082.12 9756.24 17870.02 11885.68 12747.05 15384.34 12565.27 11074.41 18785.67 109
EIA-MVS71.78 9670.60 10675.30 8279.85 12253.54 15177.27 15783.26 8257.92 14866.49 18479.39 25252.07 9086.69 7060.05 15579.14 13285.66 110
Fast-Effi-MVS+70.28 12469.12 13373.73 12178.50 15451.50 19075.01 20679.46 15156.16 18068.59 14079.55 24853.97 6184.05 12853.34 20477.53 15285.65 111
Anonymous2023121169.28 15068.47 14771.73 17180.28 11147.18 25179.98 10082.37 9454.61 21467.24 16984.01 15739.43 23182.41 17055.45 18772.83 21385.62 112
test_djsdf69.45 14767.74 15774.58 9774.57 25154.92 13382.79 6178.48 17251.26 25765.41 20583.49 16938.37 24383.24 14566.06 10169.25 26885.56 113
TSAR-MVS + GP.74.90 5174.15 5977.17 4982.00 8158.77 7281.80 7878.57 16858.58 13374.32 5884.51 14855.94 4287.22 5567.11 9484.48 7185.52 114
PEN-MVS66.60 20766.45 18767.04 25077.11 20636.56 34977.03 16380.42 13762.95 5062.51 25684.03 15646.69 15979.07 23544.22 28063.08 32285.51 115
test_yl69.69 13669.13 13171.36 18378.37 16145.74 26374.71 21380.20 14057.91 14970.01 11983.83 16142.44 20082.87 15554.97 18979.72 11985.48 116
DCV-MVSNet69.69 13669.13 13171.36 18378.37 16145.74 26374.71 21380.20 14057.91 14970.01 11983.83 16142.44 20082.87 15554.97 18979.72 11985.48 116
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3564.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 118
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CP-MVSNet66.49 21066.41 19166.72 25277.67 18536.33 35276.83 17079.52 14962.45 6362.54 25483.47 17046.32 16178.37 24345.47 27563.43 31985.45 118
PCF-MVS61.88 870.95 11069.49 12675.35 8077.63 18755.71 11776.04 18581.81 10250.30 26869.66 12585.40 13452.51 8184.89 11551.82 21780.24 11585.45 118
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PS-CasMVS66.42 21166.32 19566.70 25477.60 19436.30 35476.94 16579.61 14762.36 6562.43 25883.66 16445.69 16578.37 24345.35 27763.26 32085.42 121
CLD-MVS73.33 7072.68 7475.29 8378.82 14753.33 15778.23 12884.79 4161.30 8170.41 11181.04 21852.41 8487.12 6064.61 11682.49 9285.41 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tt080567.77 18267.24 17869.34 22474.87 24240.08 31377.36 15281.37 11155.31 19766.33 18884.65 14237.35 25482.55 16655.65 18572.28 22385.39 123
v114470.42 12169.31 12973.76 11873.22 26450.64 20077.83 14181.43 10958.58 13369.40 13081.16 21547.53 14485.29 10864.01 12070.64 23885.34 124
fmvsm_s_conf0.1_n_a69.32 14968.44 14971.96 16370.91 30753.78 14678.12 13362.30 33649.35 27873.20 7486.55 9951.99 9176.79 27174.83 4168.68 27885.32 125
EI-MVSNet-UG-set71.92 9471.06 10074.52 10077.98 17553.56 15076.62 17179.16 15464.40 2771.18 10578.95 25952.19 8884.66 12165.47 10973.57 19985.32 125
v870.33 12369.28 13073.49 13373.15 26650.22 20878.62 12180.78 13260.79 8666.45 18682.11 19949.35 11884.98 11263.58 12768.71 27685.28 127
v119269.97 13068.68 14173.85 11373.19 26550.94 19377.68 14481.36 11257.51 15468.95 13880.85 22545.28 17685.33 10762.97 13170.37 24485.27 128
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6565.37 1378.78 2290.64 1958.63 2587.24 5479.00 1290.37 1485.26 129
fmvsm_s_conf0.5_n_a69.54 14368.74 14071.93 16472.47 28153.82 14578.25 12762.26 33749.78 27473.12 7886.21 10752.66 7976.79 27175.02 3968.88 27385.18 130
CANet_DTU68.18 17367.71 16069.59 21974.83 24346.24 25878.66 12076.85 20259.60 11363.45 23982.09 20035.25 27477.41 25959.88 15878.76 13885.14 131
ACMMPcopyleft76.02 4375.33 4778.07 3885.20 4961.91 2085.49 2984.44 4463.04 4969.80 12489.74 4645.43 17387.16 5972.01 6182.87 8785.14 131
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TAPA-MVS59.36 1066.60 20765.20 21370.81 19676.63 21548.75 23176.52 17480.04 14250.64 26565.24 21284.93 13739.15 23678.54 24236.77 33076.88 16485.14 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1070.21 12569.02 13473.81 11573.51 26350.92 19578.74 11881.39 11060.05 10566.39 18781.83 20447.58 14285.41 10662.80 13268.86 27585.09 134
MG-MVS73.96 6573.89 6374.16 10885.65 4249.69 21981.59 8381.29 11961.45 7871.05 10688.11 6351.77 9587.73 4861.05 14883.09 8085.05 135
v192192069.47 14668.17 15373.36 13973.06 26850.10 21177.39 15180.56 13456.58 17168.59 14080.37 23044.72 18184.98 11262.47 13669.82 25785.00 136
DTE-MVSNet65.58 21965.34 21066.31 25976.06 22534.79 36076.43 17579.38 15262.55 6161.66 26683.83 16145.60 16779.15 23341.64 30760.88 33785.00 136
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9562.90 5271.77 9990.26 3146.61 16086.55 7571.71 6485.66 6184.97 138
v124069.24 15267.91 15673.25 14373.02 27049.82 21577.21 15880.54 13556.43 17368.34 14680.51 22943.33 19384.99 11062.03 14069.77 26084.95 139
v14419269.71 13568.51 14473.33 14073.10 26750.13 21077.54 14880.64 13356.65 16468.57 14280.55 22846.87 15884.96 11462.98 13069.66 26284.89 140
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4660.61 8979.05 2190.30 3055.54 4488.32 3373.48 5387.03 4684.83 141
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
bld_raw_dy_0_6472.13 9371.18 9774.96 8577.70 18251.88 18671.67 26184.69 4251.27 25665.06 21785.80 12654.50 5688.19 3664.51 11785.45 6484.82 142
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 20980.97 12965.13 1575.77 3690.88 1748.63 12886.66 7177.23 2488.17 3384.81 143
v7n69.01 15567.36 17173.98 11172.51 28052.65 16878.54 12581.30 11860.26 10262.67 25081.62 20743.61 19084.49 12257.01 17268.70 27784.79 144
WR-MVS_H67.02 19866.92 18367.33 24977.95 17637.75 33677.57 14682.11 9862.03 7362.65 25182.48 18750.57 10979.46 22442.91 29664.01 31284.79 144
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7362.44 6472.68 8990.50 2448.18 13387.34 5373.59 5285.71 6084.76 146
HQP_MVS74.31 6273.73 6576.06 6581.41 9056.31 10284.22 4084.01 5264.52 2569.27 13286.10 11145.26 17787.21 5668.16 8280.58 10984.65 147
plane_prior584.01 5287.21 5668.16 8280.58 10984.65 147
v14868.24 17267.19 18071.40 18270.43 31347.77 24475.76 19177.03 20058.91 12567.36 16780.10 23748.60 13081.89 17760.01 15666.52 29484.53 149
V4268.65 16167.35 17272.56 15368.93 33450.18 20972.90 24279.47 15056.92 16169.45 12980.26 23446.29 16282.99 14964.07 11867.82 28384.53 149
VPA-MVSNet69.02 15469.47 12767.69 24377.42 19841.00 31074.04 22379.68 14560.06 10469.26 13484.81 13951.06 10577.58 25654.44 19674.43 18684.48 151
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9659.99 10675.10 4190.35 2847.66 14086.52 7671.64 6582.99 8284.47 152
agg_prior273.09 5587.93 4084.33 153
HQP4-MVS67.85 15586.93 6484.32 154
HQP-MVS73.45 6972.80 7375.40 7980.66 10554.94 13182.31 7183.90 5762.10 6867.85 15585.54 13145.46 17186.93 6467.04 9580.35 11384.32 154
c3_l68.33 16967.56 16170.62 20070.87 30846.21 25974.47 21878.80 16256.22 17966.19 19078.53 26651.88 9281.40 18662.08 13769.04 27184.25 156
anonymousdsp67.00 19964.82 21673.57 13170.09 31956.13 10776.35 17677.35 19648.43 29164.99 22180.84 22633.01 29980.34 21164.66 11467.64 28584.23 157
MVSFormer71.50 10270.38 11174.88 8778.76 14857.15 9482.79 6178.48 17251.26 25769.49 12783.22 17143.99 18883.24 14566.06 10179.37 12584.23 157
jason69.65 13968.39 15173.43 13778.27 16556.88 9877.12 16073.71 25046.53 31469.34 13183.22 17143.37 19279.18 22964.77 11379.20 13084.23 157
jason: jason.
ab-mvs66.65 20666.42 19067.37 24776.17 22341.73 30270.41 28076.14 21153.99 22565.98 19383.51 16849.48 11776.24 28248.60 24373.46 20384.14 160
thisisatest051565.83 21663.50 23072.82 15073.75 26149.50 22271.32 26573.12 25549.39 27763.82 23576.50 30034.95 27884.84 11853.20 20675.49 18084.13 161
SR-MVS-dyc-post74.57 5973.90 6276.58 5683.49 6559.87 4984.29 3781.36 11258.07 14273.14 7690.07 3444.74 18085.84 9268.20 8081.76 10084.03 162
RE-MVS-def73.71 6683.49 6559.87 4984.29 3781.36 11258.07 14273.14 7690.07 3443.06 19568.20 8081.76 10084.03 162
cl2267.47 18766.45 18770.54 20269.85 32446.49 25573.85 23177.35 19655.07 20765.51 20377.92 27347.64 14181.10 19461.58 14569.32 26584.01 164
test_fmvsmvis_n_192070.84 11170.38 11172.22 16271.16 30455.39 12775.86 18872.21 26149.03 28273.28 7286.17 10951.83 9477.29 26175.80 3278.05 14783.98 165
lupinMVS69.57 14268.28 15273.44 13678.76 14857.15 9476.57 17273.29 25346.19 31769.49 12782.18 19343.99 18879.23 22864.66 11479.37 12583.93 166
GBi-Net67.21 19066.55 18569.19 22577.63 18743.33 28677.31 15377.83 18656.62 16765.04 21882.70 17741.85 20780.33 21247.18 25572.76 21483.92 167
test167.21 19066.55 18569.19 22577.63 18743.33 28677.31 15377.83 18656.62 16765.04 21882.70 17741.85 20780.33 21247.18 25572.76 21483.92 167
FMVSNet166.70 20565.87 20269.19 22577.49 19643.33 28677.31 15377.83 18656.45 17264.60 22682.70 17738.08 24880.33 21246.08 26472.31 22283.92 167
GA-MVS65.53 22063.70 22771.02 19470.87 30848.10 23970.48 27874.40 24056.69 16364.70 22476.77 29233.66 29381.10 19455.42 18870.32 24683.87 170
h-mvs3372.71 7971.49 8876.40 5981.99 8259.58 5276.92 16676.74 20560.40 9374.81 4985.95 11845.54 16985.76 9470.41 7170.61 24083.86 171
eth_miper_zixun_eth67.63 18466.28 19771.67 17371.60 29448.33 23773.68 23477.88 18455.80 18765.91 19578.62 26447.35 15082.88 15459.45 16266.25 29583.81 172
test9_res75.28 3788.31 3283.81 172
VPNet67.52 18668.11 15465.74 27279.18 13736.80 34772.17 25472.83 25662.04 7267.79 16185.83 12348.88 12776.60 27651.30 22172.97 21283.81 172
UGNet68.81 15767.39 16973.06 14478.33 16354.47 13779.77 10675.40 22260.45 9263.22 24084.40 14932.71 30680.91 20151.71 21980.56 11183.81 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
hse-mvs271.04 10769.86 11974.60 9679.58 12757.12 9673.96 22575.25 22560.40 9374.81 4981.95 20145.54 16982.90 15270.41 7166.83 29183.77 176
AUN-MVS68.45 16866.41 19174.57 9879.53 12957.08 9773.93 22875.23 22654.44 21966.69 18181.85 20337.10 26182.89 15362.07 13866.84 29083.75 177
HyFIR lowres test65.67 21863.01 23773.67 12479.97 12155.65 11969.07 29275.52 22042.68 34863.53 23877.95 27140.43 22381.64 18146.01 26571.91 22683.73 178
mvs_tets68.18 17366.36 19373.63 12875.61 23155.35 12880.77 9178.56 16952.48 24064.27 23084.10 15527.45 34681.84 17963.45 12970.56 24183.69 179
miper_ehance_all_eth68.03 17567.24 17870.40 20470.54 31146.21 25973.98 22478.68 16655.07 20766.05 19277.80 27752.16 8981.31 18961.53 14669.32 26583.67 180
jajsoiax68.25 17166.45 18773.66 12575.62 23055.49 12580.82 9078.51 17152.33 24164.33 22884.11 15428.28 34081.81 18063.48 12870.62 23983.67 180
OPM-MVS74.73 5474.25 5876.19 6480.81 10459.01 6782.60 6683.64 6663.74 3972.52 9287.49 7447.18 15185.88 9169.47 7580.78 10583.66 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8181.26 12055.86 18374.93 4588.81 5653.70 6984.68 11975.24 3888.33 3083.65 183
DPM-MVS75.47 4975.00 5076.88 5181.38 9259.16 5979.94 10285.71 2256.59 17072.46 9386.76 8656.89 3587.86 4666.36 9988.91 2583.64 184
DIV-MVS_self_test67.18 19366.26 19869.94 21170.20 31645.74 26373.29 23776.83 20355.10 20265.27 20879.58 24647.38 14980.53 20759.43 16369.22 26983.54 185
cl____67.18 19366.26 19869.94 21170.20 31645.74 26373.30 23676.83 20355.10 20265.27 20879.57 24747.39 14880.53 20759.41 16469.22 26983.53 186
MVSTER67.16 19565.58 20871.88 16670.37 31549.70 21770.25 28278.45 17551.52 25069.16 13680.37 23038.45 24282.50 16760.19 15471.46 23183.44 187
XVG-OURS-SEG-HR68.81 15767.47 16772.82 15074.40 25556.87 9970.59 27679.04 15654.77 21266.99 17486.01 11539.57 23078.21 24662.54 13473.33 20583.37 188
EI-MVSNet69.27 15168.44 14971.73 17174.47 25249.39 22475.20 20178.45 17559.60 11369.16 13676.51 29851.29 10082.50 16759.86 16071.45 23283.30 189
IterMVS-LS69.22 15368.48 14571.43 18174.44 25449.40 22376.23 17977.55 19159.60 11365.85 19981.59 21051.28 10181.58 18459.87 15969.90 25683.30 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_enhance_ethall67.11 19666.09 20070.17 20869.21 33145.98 26172.85 24378.41 17851.38 25365.65 20175.98 30651.17 10381.25 19060.82 15069.32 26583.29 191
ACMP63.53 672.30 8671.20 9675.59 7880.28 11157.54 8482.74 6382.84 9060.58 9065.24 21286.18 10839.25 23486.03 8766.95 9776.79 16583.22 192
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FMVSNet266.93 20066.31 19668.79 23277.63 18742.98 29176.11 18177.47 19256.62 16765.22 21482.17 19541.85 20780.18 21847.05 25872.72 21783.20 193
XVG-OURS68.76 16067.37 17072.90 14774.32 25757.22 8970.09 28378.81 16155.24 19967.79 16185.81 12536.54 26678.28 24562.04 13975.74 17683.19 194
LPG-MVS_test72.74 7871.74 8475.76 7080.22 11357.51 8682.55 6783.40 7561.32 7966.67 18287.33 7839.15 23686.59 7267.70 8877.30 15883.19 194
LGP-MVS_train75.76 7080.22 11357.51 8683.40 7561.32 7966.67 18287.33 7839.15 23686.59 7267.70 8877.30 15883.19 194
fmvsm_l_conf0.5_n70.99 10970.82 10371.48 17771.45 29654.40 13977.18 15970.46 27448.67 28675.17 4086.86 8353.77 6776.86 26976.33 3077.51 15383.17 197
DP-MVS Recon72.15 9270.73 10576.40 5986.57 2457.99 7981.15 8882.96 8657.03 15966.78 17885.56 12844.50 18388.11 3951.77 21880.23 11683.10 198
CDS-MVSNet66.80 20365.37 20971.10 19278.98 14253.13 16173.27 23871.07 26952.15 24464.72 22380.23 23543.56 19177.10 26345.48 27478.88 13483.05 199
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS66.78 20465.27 21271.33 18679.16 13953.67 14773.84 23269.59 28152.32 24265.28 20781.72 20644.49 18477.40 26042.32 30078.66 14082.92 200
Vis-MVSNet (Re-imp)63.69 24163.88 22363.14 29474.75 24531.04 38171.16 26963.64 32556.32 17559.80 28384.99 13644.51 18275.46 28539.12 31780.62 10782.92 200
FMVSNet366.32 21265.61 20768.46 23576.48 21942.34 29574.98 20877.15 19955.83 18565.04 21881.16 21539.91 22580.14 21947.18 25572.76 21482.90 202
3Dnovator64.47 572.49 8271.39 9175.79 6977.70 18258.99 6880.66 9383.15 8462.24 6665.46 20486.59 9542.38 20285.52 9959.59 16184.72 6782.85 203
fmvsm_l_conf0.5_n_a70.50 11970.27 11371.18 18971.30 30254.09 14176.89 16769.87 27747.90 29974.37 5786.49 10053.07 7776.69 27475.41 3577.11 16182.76 204
BH-RMVSNet68.81 15767.42 16872.97 14580.11 11952.53 17274.26 22076.29 20858.48 13568.38 14584.20 15142.59 19883.83 13446.53 26075.91 17382.56 205
FE-MVS65.91 21563.33 23373.63 12877.36 20051.95 18572.62 24675.81 21453.70 22865.31 20678.96 25828.81 33786.39 8043.93 28573.48 20282.55 206
pmmvs663.69 24162.82 24066.27 26170.63 31039.27 32373.13 23975.47 22152.69 23859.75 28582.30 19139.71 22977.03 26547.40 25264.35 31182.53 207
cascas65.98 21463.42 23173.64 12777.26 20252.58 17172.26 25377.21 19848.56 28761.21 27074.60 31932.57 31185.82 9350.38 22876.75 16682.52 208
PVSNet_Blended_VisFu71.45 10370.39 11074.65 9382.01 8058.82 7179.93 10380.35 13955.09 20465.82 20082.16 19649.17 12282.64 16460.34 15378.62 14182.50 209
MVS_111021_HR74.02 6473.46 6875.69 7383.01 7260.63 4077.29 15678.40 17961.18 8270.58 10985.97 11654.18 5984.00 13267.52 9182.98 8482.45 210
RPSCF55.80 30954.22 31860.53 31065.13 35842.91 29364.30 32757.62 35536.84 37158.05 30382.28 19228.01 34156.24 37437.14 32758.61 34782.44 211
testing9164.46 23463.80 22566.47 25678.43 15840.06 31467.63 30069.59 28159.06 12363.18 24278.05 26934.05 28676.99 26648.30 24675.87 17482.37 212
testing9964.05 23763.29 23466.34 25878.17 17039.76 31867.33 30568.00 29458.60 13263.03 24578.10 26832.57 31176.94 26848.22 24775.58 17882.34 213
pm-mvs165.24 22564.97 21566.04 26772.38 28339.40 32272.62 24675.63 21755.53 19362.35 26083.18 17347.45 14676.47 27949.06 24066.54 29382.24 214
miper_lstm_enhance62.03 26160.88 26465.49 27666.71 34846.25 25756.29 36775.70 21650.68 26361.27 26975.48 31240.21 22468.03 32356.31 17765.25 30282.18 215
114514_t70.83 11269.56 12374.64 9486.21 3154.63 13682.34 7081.81 10248.22 29363.01 24685.83 12340.92 22187.10 6157.91 16779.79 11882.18 215
Fast-Effi-MVS+-dtu67.37 18865.33 21173.48 13472.94 27157.78 8277.47 15076.88 20157.60 15361.97 26176.85 29139.31 23280.49 21054.72 19270.28 24782.17 217
LCM-MVSNet-Re61.88 26361.35 25663.46 29074.58 25031.48 38061.42 34158.14 35258.71 13053.02 34879.55 24843.07 19476.80 27045.69 26877.96 14882.11 218
HY-MVS56.14 1364.55 23363.89 22266.55 25574.73 24641.02 30769.96 28474.43 23949.29 27961.66 26680.92 22247.43 14776.68 27544.91 27971.69 22881.94 219
1112_ss64.00 23963.36 23265.93 26979.28 13342.58 29471.35 26472.36 26046.41 31560.55 27477.89 27546.27 16373.28 29446.18 26369.97 25381.92 220
K. test v360.47 27357.11 28970.56 20173.74 26248.22 23875.10 20562.55 33258.27 13953.62 34476.31 30127.81 34381.59 18347.42 25139.18 38981.88 221
MAR-MVS71.51 10170.15 11675.60 7781.84 8459.39 5581.38 8582.90 8854.90 21168.08 15278.70 26047.73 13885.51 10051.68 22084.17 7481.88 221
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Baseline_NR-MVSNet67.05 19767.56 16165.50 27575.65 22937.70 33875.42 19674.65 23859.90 10768.14 15083.15 17449.12 12577.20 26252.23 21169.78 25881.60 223
Effi-MVS+-dtu69.64 14067.53 16475.95 6776.10 22462.29 1580.20 9876.06 21359.83 11165.26 21177.09 28741.56 21284.02 13160.60 15271.09 23681.53 224
QAPM70.05 12768.81 13873.78 11676.54 21853.43 15483.23 5483.48 7052.89 23665.90 19686.29 10541.55 21386.49 7851.01 22378.40 14481.42 225
SDMVSNet68.03 17568.10 15567.84 24177.13 20448.72 23365.32 32079.10 15558.02 14465.08 21582.55 18347.83 13773.40 29363.92 12273.92 19281.41 226
sd_testset64.46 23464.45 21864.51 28577.13 20442.25 29762.67 33472.11 26258.02 14465.08 21582.55 18341.22 21969.88 31447.32 25373.92 19281.41 226
CHOSEN 1792x268865.08 22862.84 23971.82 16881.49 8956.26 10566.32 30974.20 24540.53 36063.16 24378.65 26241.30 21577.80 25345.80 26774.09 18981.40 228
thres600view763.30 24562.27 24566.41 25777.18 20338.87 32572.35 25169.11 28856.98 16062.37 25980.96 22137.01 26379.00 23931.43 36673.05 21181.36 229
thres40063.31 24462.18 24766.72 25276.85 21139.62 31971.96 25869.44 28456.63 16562.61 25279.83 24037.18 25679.17 23031.84 35973.25 20781.36 229
CPTT-MVS72.78 7772.08 8274.87 8884.88 5761.41 2684.15 4377.86 18555.27 19867.51 16688.08 6541.93 20681.85 17869.04 7880.01 11781.35 231
Test_1112_low_res62.32 25661.77 25164.00 28879.08 14139.53 32168.17 29670.17 27543.25 34359.03 29379.90 23944.08 18671.24 30543.79 28868.42 27981.25 232
xiu_mvs_v1_base_debu68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
xiu_mvs_v1_base68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
xiu_mvs_v1_base_debi68.58 16367.28 17472.48 15578.19 16757.19 9175.28 19875.09 23151.61 24770.04 11581.41 21232.79 30279.02 23663.81 12477.31 15581.22 233
baseline263.42 24361.26 25969.89 21572.55 27847.62 24671.54 26268.38 29250.11 26954.82 33075.55 31143.06 19580.96 19748.13 24867.16 28981.11 236
IB-MVS56.42 1265.40 22362.73 24173.40 13874.89 24052.78 16773.09 24075.13 22955.69 18958.48 30073.73 32432.86 30186.32 8350.63 22670.11 25081.10 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSLP-MVS++73.77 6773.47 6774.66 9283.02 7159.29 5882.30 7481.88 10059.34 12071.59 10286.83 8445.94 16483.65 13865.09 11185.22 6581.06 238
testing22262.29 25861.31 25765.25 28077.87 17738.53 32968.34 29566.31 30756.37 17463.15 24477.58 28328.47 33876.18 28437.04 32876.65 16881.05 239
TransMVSNet (Re)64.72 22964.33 21965.87 27175.22 23738.56 32874.66 21575.08 23458.90 12661.79 26482.63 18051.18 10278.07 24843.63 28955.87 35880.99 240
PAPM67.92 17966.69 18471.63 17578.09 17149.02 22777.09 16181.24 12251.04 26060.91 27283.98 15847.71 13984.99 11040.81 30879.32 12880.90 241
PS-MVSNAJ70.51 11869.70 12272.93 14681.52 8755.79 11674.92 20979.00 15755.04 20969.88 12278.66 26147.05 15382.19 17261.61 14379.58 12280.83 242
xiu_mvs_v2_base70.52 11769.75 12072.84 14881.21 9655.63 12075.11 20378.92 15954.92 21069.96 12179.68 24547.00 15782.09 17461.60 14479.37 12580.81 243
CL-MVSNet_self_test61.53 26660.94 26363.30 29268.95 33336.93 34667.60 30172.80 25755.67 19059.95 28076.63 29445.01 17972.22 30039.74 31562.09 33080.74 244
lessismore_v069.91 21371.42 29947.80 24250.90 37950.39 36075.56 31027.43 34781.33 18845.91 26634.10 39580.59 245
XVG-ACMP-BASELINE64.36 23662.23 24670.74 19872.35 28452.45 17570.80 27578.45 17553.84 22759.87 28181.10 21716.24 38279.32 22755.64 18671.76 22780.47 246
CostFormer64.04 23862.51 24268.61 23471.88 29145.77 26271.30 26670.60 27347.55 30364.31 22976.61 29641.63 21079.62 22349.74 23269.00 27280.42 247
SixPastTwentyTwo61.65 26558.80 27770.20 20775.80 22747.22 25075.59 19369.68 27954.61 21454.11 33879.26 25527.07 35082.96 15043.27 29149.79 37680.41 248
patch_mono-269.85 13271.09 9966.16 26379.11 14054.80 13571.97 25774.31 24253.50 23170.90 10784.17 15257.63 3163.31 34266.17 10082.02 9680.38 249
ACMM61.98 770.80 11469.73 12174.02 11080.59 11058.59 7482.68 6482.02 9955.46 19567.18 17184.39 15038.51 24183.17 14760.65 15176.10 17280.30 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TR-MVS66.59 20965.07 21471.17 19079.18 13749.63 22173.48 23575.20 22852.95 23467.90 15380.33 23339.81 22883.68 13743.20 29373.56 20080.20 251
CNLPA65.43 22164.02 22169.68 21778.73 15058.07 7877.82 14270.71 27251.49 25161.57 26883.58 16738.23 24670.82 30643.90 28670.10 25180.16 252
PVSNet_Blended68.59 16267.72 15871.19 18877.03 20850.57 20172.51 24981.52 10551.91 24564.22 23377.77 28049.13 12382.87 15555.82 18079.58 12280.14 253
baseline163.81 24063.87 22463.62 28976.29 22136.36 35071.78 26067.29 29856.05 18264.23 23282.95 17547.11 15274.41 29047.30 25461.85 33180.10 254
OpenMVScopyleft61.03 968.85 15667.56 16172.70 15274.26 25853.99 14381.21 8781.34 11652.70 23762.75 24985.55 13038.86 23984.14 12748.41 24583.01 8179.97 255
ACMH+57.40 1166.12 21364.06 22072.30 16177.79 18052.83 16680.39 9478.03 18357.30 15557.47 30682.55 18327.68 34484.17 12645.54 27169.78 25879.90 256
KD-MVS_self_test55.22 31353.89 32059.21 31557.80 38727.47 39157.75 36074.32 24147.38 30550.90 35570.00 35128.45 33970.30 31240.44 31057.92 34979.87 257
UWE-MVS60.18 27459.78 26961.39 30777.67 18533.92 37069.04 29363.82 32348.56 28764.27 23077.64 28227.20 34870.40 31133.56 35076.24 17079.83 258
thres100view90063.28 24662.41 24465.89 27077.31 20138.66 32772.65 24469.11 28857.07 15862.45 25781.03 21937.01 26379.17 23031.84 35973.25 20779.83 258
tfpn200view963.18 24862.18 24766.21 26276.85 21139.62 31971.96 25869.44 28456.63 16562.61 25279.83 24037.18 25679.17 23031.84 35973.25 20779.83 258
PVSNet_BlendedMVS68.56 16667.72 15871.07 19377.03 20850.57 20174.50 21781.52 10553.66 23064.22 23379.72 24449.13 12382.87 15555.82 18073.92 19279.77 261
131464.61 23263.21 23568.80 23171.87 29247.46 24873.95 22678.39 18042.88 34759.97 27976.60 29738.11 24779.39 22654.84 19172.32 22179.55 262
OurMVSNet-221017-061.37 26958.63 27969.61 21872.05 28948.06 24073.93 22872.51 25847.23 30954.74 33180.92 22221.49 37481.24 19148.57 24456.22 35779.53 263
IterMVS-SCA-FT62.49 25361.52 25465.40 27771.99 29050.80 19871.15 27069.63 28045.71 32360.61 27377.93 27237.45 25265.99 33455.67 18463.50 31879.42 264
tpm262.07 26060.10 26867.99 24072.79 27343.86 28271.05 27366.85 30243.14 34562.77 24775.39 31338.32 24480.80 20341.69 30468.88 27379.32 265
MVS_111021_LR69.50 14568.78 13971.65 17478.38 15959.33 5674.82 21170.11 27658.08 14167.83 15984.68 14041.96 20576.34 28165.62 10877.54 15179.30 266
testing1162.81 25161.90 25065.54 27478.38 15940.76 31167.59 30266.78 30355.48 19460.13 27677.11 28631.67 31776.79 27145.53 27274.45 18579.06 267
ITE_SJBPF62.09 30166.16 35344.55 27864.32 31947.36 30655.31 32480.34 23219.27 37662.68 34536.29 33862.39 32779.04 268
无先验79.66 11074.30 24348.40 29280.78 20453.62 20179.03 269
tfpnnormal62.47 25461.63 25364.99 28274.81 24439.01 32471.22 26773.72 24955.22 20060.21 27580.09 23841.26 21876.98 26730.02 37268.09 28178.97 270
D2MVS62.30 25760.29 26768.34 23866.46 35148.42 23665.70 31273.42 25147.71 30158.16 30275.02 31530.51 32177.71 25553.96 19971.68 22978.90 271
MDTV_nov1_ep13_2view25.89 39761.22 34340.10 36351.10 35332.97 30038.49 31978.61 272
API-MVS72.17 8971.41 9074.45 10181.95 8357.22 8984.03 4580.38 13859.89 11068.40 14482.33 19049.64 11687.83 4751.87 21684.16 7578.30 273
EPNet_dtu61.90 26261.97 24961.68 30272.89 27239.78 31775.85 18965.62 31155.09 20454.56 33479.36 25337.59 25167.02 32839.80 31476.95 16378.25 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM174.69 9085.39 4759.40 5483.42 7451.47 25270.27 11386.61 9448.61 12986.51 7753.85 20087.96 3978.16 275
PatchmatchNetpermissive59.84 27758.24 28264.65 28473.05 26946.70 25469.42 28962.18 33847.55 30358.88 29471.96 33534.49 28269.16 31642.99 29563.60 31678.07 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GSMVS78.05 277
sam_mvs134.74 27978.05 277
SCA60.49 27258.38 28166.80 25174.14 26048.06 24063.35 33163.23 32849.13 28159.33 29172.10 33337.45 25274.27 29144.17 28162.57 32578.05 277
旧先验183.04 7053.15 15967.52 29587.85 7144.08 18680.76 10678.03 280
ETVMVS59.51 28158.81 27561.58 30477.46 19734.87 35964.94 32559.35 34754.06 22461.08 27176.67 29329.54 32971.87 30232.16 35574.07 19078.01 281
WB-MVSnew59.66 27959.69 27059.56 31175.19 23935.78 35769.34 29064.28 32046.88 31261.76 26575.79 30740.61 22265.20 33732.16 35571.21 23377.70 282
IterMVS62.79 25261.27 25867.35 24869.37 32952.04 18271.17 26868.24 29352.63 23959.82 28276.91 29037.32 25572.36 29752.80 20863.19 32177.66 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PLCcopyleft56.13 1465.09 22763.21 23570.72 19981.04 9954.87 13478.57 12377.47 19248.51 28955.71 31981.89 20233.71 29179.71 22041.66 30570.37 24477.58 284
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB55.42 1663.15 24961.23 26068.92 23076.57 21747.80 24259.92 35076.39 20754.35 22058.67 29682.46 18829.44 33281.49 18542.12 30171.14 23477.46 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ambc65.13 28163.72 36537.07 34447.66 38778.78 16354.37 33771.42 33911.24 39480.94 19845.64 26953.85 36577.38 286
Patchmatch-RL test58.16 28855.49 30566.15 26467.92 34148.89 23060.66 34851.07 37847.86 30059.36 28862.71 38034.02 28872.27 29956.41 17659.40 34477.30 287
Patchmatch-test49.08 34048.28 34251.50 36064.40 36130.85 38245.68 39048.46 38435.60 37346.10 37472.10 33334.47 28346.37 39327.08 38360.65 34077.27 288
MIMVSNet155.17 31454.31 31657.77 32870.03 32032.01 37865.68 31364.81 31549.19 28046.75 37176.00 30325.53 36064.04 34028.65 37762.13 32977.26 289
ACMH55.70 1565.20 22663.57 22970.07 20978.07 17252.01 18379.48 11379.69 14455.75 18856.59 31380.98 22027.12 34980.94 19842.90 29771.58 23077.25 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres20062.20 25961.16 26165.34 27875.38 23639.99 31569.60 28769.29 28655.64 19261.87 26376.99 28837.07 26278.96 24031.28 36773.28 20677.06 291
AdaColmapbinary69.99 12968.66 14273.97 11284.94 5457.83 8082.63 6578.71 16456.28 17764.34 22784.14 15341.57 21187.06 6346.45 26178.88 13477.02 292
tpm cat159.25 28256.95 29266.15 26472.19 28746.96 25268.09 29765.76 30940.03 36457.81 30470.56 34538.32 24474.51 28938.26 32161.50 33477.00 293
F-COLMAP63.05 25060.87 26569.58 22176.99 21053.63 14978.12 13376.16 20947.97 29852.41 34981.61 20827.87 34278.11 24740.07 31166.66 29277.00 293
ppachtmachnet_test58.06 29055.38 30666.10 26669.51 32648.99 22868.01 29866.13 30844.50 33154.05 33970.74 34432.09 31572.34 29836.68 33356.71 35676.99 295
BH-untuned68.27 17067.29 17371.21 18779.74 12453.22 15876.06 18377.46 19457.19 15766.10 19181.61 20845.37 17583.50 14145.42 27676.68 16776.91 296
AllTest57.08 29654.65 31064.39 28671.44 29749.03 22569.92 28567.30 29645.97 32047.16 36879.77 24217.47 37767.56 32533.65 34759.16 34576.57 297
TestCases64.39 28671.44 29749.03 22567.30 29645.97 32047.16 36879.77 24217.47 37767.56 32533.65 34759.16 34576.57 297
tpm57.34 29458.16 28354.86 34171.80 29334.77 36167.47 30456.04 36548.20 29460.10 27776.92 28937.17 25853.41 38240.76 30965.01 30376.40 299
LS3D64.71 23062.50 24371.34 18579.72 12655.71 11779.82 10574.72 23648.50 29056.62 31284.62 14333.59 29482.34 17129.65 37475.23 18275.97 300
新几何170.76 19785.66 4161.13 3066.43 30544.68 32970.29 11286.64 9141.29 21675.23 28649.72 23381.75 10275.93 301
CVMVSNet59.63 28059.14 27361.08 30974.47 25238.84 32675.20 20168.74 29031.15 37958.24 30176.51 29832.39 31368.58 31949.77 23165.84 29875.81 302
tpmrst58.24 28758.70 27856.84 33166.97 34534.32 36569.57 28861.14 34347.17 31058.58 29971.60 33841.28 21760.41 35249.20 23862.84 32375.78 303
EPMVS53.96 31853.69 32154.79 34266.12 35431.96 37962.34 33749.05 38144.42 33355.54 32071.33 34130.22 32456.70 36941.65 30662.54 32675.71 304
FMVSNet555.86 30854.93 30858.66 32071.05 30636.35 35164.18 32962.48 33346.76 31350.66 35974.73 31825.80 35864.04 34033.11 35165.57 30075.59 305
testing356.54 30055.92 30258.41 32177.52 19527.93 38969.72 28656.36 36154.75 21358.63 29877.80 27720.88 37571.75 30325.31 38762.25 32875.53 306
PVSNet50.76 1958.40 28657.39 28861.42 30575.53 23344.04 28161.43 34063.45 32647.04 31156.91 31073.61 32527.00 35164.76 33839.12 31772.40 21975.47 307
MIMVSNet57.35 29357.07 29058.22 32374.21 25937.18 34162.46 33560.88 34448.88 28455.29 32575.99 30531.68 31662.04 34731.87 35872.35 22075.43 308
MVS67.37 18866.33 19470.51 20375.46 23450.94 19373.95 22681.85 10141.57 35462.54 25478.57 26547.98 13485.47 10352.97 20782.05 9575.14 309
EU-MVSNet55.61 31054.41 31459.19 31665.41 35733.42 37272.44 25071.91 26428.81 38151.27 35273.87 32324.76 36369.08 31743.04 29458.20 34875.06 310
CR-MVSNet59.91 27657.90 28765.96 26869.96 32152.07 18065.31 32163.15 32942.48 34959.36 28874.84 31635.83 27070.75 30745.50 27364.65 30775.06 310
RPMNet61.53 26658.42 28070.86 19569.96 32152.07 18065.31 32181.36 11243.20 34459.36 28870.15 35035.37 27385.47 10336.42 33764.65 30775.06 310
test22283.14 6858.68 7372.57 24863.45 32641.78 35067.56 16586.12 11037.13 26078.73 13974.98 313
MSDG61.81 26459.23 27269.55 22272.64 27552.63 17070.45 27975.81 21451.38 25353.70 34176.11 30229.52 33081.08 19637.70 32365.79 29974.93 314
WTY-MVS59.75 27860.39 26657.85 32772.32 28537.83 33561.05 34664.18 32145.95 32261.91 26279.11 25747.01 15660.88 35042.50 29969.49 26474.83 315
gg-mvs-nofinetune57.86 29156.43 29862.18 30072.62 27635.35 35866.57 30656.33 36250.65 26457.64 30557.10 38630.65 32076.36 28037.38 32578.88 13474.82 316
testdata64.66 28381.52 8752.93 16365.29 31346.09 31873.88 6487.46 7638.08 24866.26 33353.31 20578.48 14274.78 317
pmmvs461.48 26859.39 27167.76 24271.57 29553.86 14471.42 26365.34 31244.20 33459.46 28777.92 27335.90 26974.71 28843.87 28764.87 30574.71 318
new-patchmatchnet47.56 34447.73 34447.06 36558.81 3859.37 41348.78 38459.21 34843.28 34244.22 37868.66 35925.67 35957.20 36831.57 36549.35 37774.62 319
our_test_356.49 30154.42 31362.68 29869.51 32645.48 26866.08 31061.49 34144.11 33750.73 35869.60 35533.05 29868.15 32038.38 32056.86 35374.40 320
Patchmtry57.16 29556.47 29759.23 31469.17 33234.58 36462.98 33263.15 32944.53 33056.83 31174.84 31635.83 27068.71 31840.03 31260.91 33674.39 321
BH-w/o66.85 20165.83 20369.90 21479.29 13252.46 17474.66 21576.65 20654.51 21864.85 22278.12 26745.59 16882.95 15143.26 29275.54 17974.27 322
XXY-MVS60.68 27161.67 25257.70 32970.43 31338.45 33064.19 32866.47 30448.05 29763.22 24080.86 22449.28 12060.47 35145.25 27867.28 28874.19 323
UnsupCasMVSNet_eth53.16 32752.47 32555.23 33959.45 38333.39 37359.43 35269.13 28745.98 31950.35 36172.32 33029.30 33358.26 36442.02 30344.30 38274.05 324
COLMAP_ROBcopyleft52.97 1761.27 27058.81 27568.64 23374.63 24952.51 17378.42 12673.30 25249.92 27350.96 35481.51 21123.06 36779.40 22531.63 36365.85 29774.01 325
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs-eth3d58.81 28456.31 29966.30 26067.61 34252.42 17672.30 25264.76 31643.55 34054.94 32974.19 32228.95 33472.60 29643.31 29057.21 35273.88 326
test20.0353.87 32054.02 31953.41 35261.47 37428.11 38861.30 34259.21 34851.34 25552.09 35077.43 28433.29 29758.55 36229.76 37360.27 34273.58 327
EG-PatchMatch MVS64.71 23062.87 23870.22 20577.68 18453.48 15277.99 13678.82 16053.37 23256.03 31877.41 28524.75 36484.04 12946.37 26273.42 20473.14 328
Anonymous2023120655.10 31555.30 30754.48 34369.81 32533.94 36962.91 33362.13 33941.08 35655.18 32675.65 30932.75 30556.59 37230.32 37167.86 28272.91 329
Anonymous2024052155.30 31154.41 31457.96 32660.92 38141.73 30271.09 27271.06 27041.18 35548.65 36473.31 32616.93 37959.25 35842.54 29864.01 31272.90 330
pmmvs556.47 30255.68 30458.86 31861.41 37536.71 34866.37 30862.75 33140.38 36153.70 34176.62 29534.56 28067.05 32740.02 31365.27 30172.83 331
USDC56.35 30454.24 31762.69 29764.74 35940.31 31265.05 32373.83 24843.93 33847.58 36677.71 28115.36 38575.05 28738.19 32261.81 33272.70 332
OpenMVS_ROBcopyleft52.78 1860.03 27558.14 28465.69 27370.47 31244.82 27275.33 19770.86 27145.04 32656.06 31776.00 30326.89 35279.65 22135.36 34267.29 28772.60 333
MDA-MVSNet-bldmvs53.87 32050.81 33263.05 29566.25 35248.58 23456.93 36563.82 32348.09 29641.22 38370.48 34830.34 32368.00 32434.24 34545.92 38172.57 334
ANet_high41.38 35437.47 36153.11 35339.73 40724.45 40056.94 36469.69 27847.65 30226.04 39952.32 38912.44 38962.38 34621.80 39110.61 40872.49 335
DP-MVS65.68 21763.66 22871.75 17084.93 5556.87 9980.74 9273.16 25453.06 23359.09 29282.35 18936.79 26585.94 9032.82 35369.96 25472.45 336
MVP-Stereo65.41 22263.80 22570.22 20577.62 19155.53 12476.30 17778.53 17050.59 26656.47 31678.65 26239.84 22782.68 16244.10 28472.12 22572.44 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test-LLR58.15 28958.13 28558.22 32368.57 33544.80 27365.46 31757.92 35350.08 27055.44 32269.82 35232.62 30857.44 36649.66 23473.62 19772.41 338
test-mter56.42 30355.82 30358.22 32368.57 33544.80 27365.46 31757.92 35339.94 36555.44 32269.82 35221.92 37057.44 36649.66 23473.62 19772.41 338
testgi51.90 32952.37 32650.51 36260.39 38223.55 40258.42 35458.15 35149.03 28251.83 35179.21 25622.39 36855.59 37629.24 37662.64 32472.40 340
sss56.17 30656.57 29654.96 34066.93 34636.32 35357.94 35861.69 34041.67 35258.64 29775.32 31438.72 24056.25 37342.04 30266.19 29672.31 341
GG-mvs-BLEND62.34 29971.36 30137.04 34569.20 29157.33 35854.73 33265.48 37430.37 32277.82 25234.82 34374.93 18372.17 342
test0.0.03 153.32 32553.59 32252.50 35662.81 36929.45 38459.51 35154.11 37050.08 27054.40 33674.31 32132.62 30855.92 37530.50 37063.95 31472.15 343
test_fmvs344.30 34842.55 35149.55 36342.83 40127.15 39453.03 37444.93 39122.03 39653.69 34364.94 3754.21 40649.63 38847.47 25049.82 37571.88 344
test_vis1_n_192058.86 28359.06 27458.25 32263.76 36343.14 29067.49 30366.36 30640.22 36265.89 19771.95 33631.04 31859.75 35659.94 15764.90 30471.85 345
tpmvs58.47 28556.95 29263.03 29670.20 31641.21 30667.90 29967.23 29949.62 27554.73 33270.84 34334.14 28576.24 28236.64 33461.29 33571.64 346
test_fmvs1_n51.37 33250.35 33554.42 34552.85 39137.71 33761.16 34551.93 37328.15 38363.81 23669.73 35413.72 38653.95 38051.16 22260.65 34071.59 347
test_fmvs248.69 34147.49 34652.29 35848.63 39733.06 37557.76 35948.05 38525.71 38959.76 28469.60 35511.57 39252.23 38649.45 23756.86 35371.58 348
TDRefinement53.44 32450.72 33361.60 30364.31 36246.96 25270.89 27465.27 31441.78 35044.61 37777.98 27011.52 39366.36 33228.57 37851.59 37071.49 349
Syy-MVS56.00 30756.23 30055.32 33874.69 24726.44 39565.52 31557.49 35650.97 26156.52 31472.18 33139.89 22668.09 32124.20 38864.59 30971.44 350
myMVS_eth3d54.86 31654.61 31155.61 33774.69 24727.31 39265.52 31557.49 35650.97 26156.52 31472.18 33121.87 37368.09 32127.70 38064.59 30971.44 350
YYNet150.73 33548.96 33756.03 33561.10 37741.78 30151.94 37756.44 36040.94 35844.84 37567.80 36230.08 32555.08 37836.77 33050.71 37271.22 352
CMPMVSbinary42.80 2157.81 29255.97 30163.32 29160.98 37947.38 24964.66 32669.50 28332.06 37846.83 37077.80 27729.50 33171.36 30448.68 24273.75 19571.21 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_040263.25 24761.01 26269.96 21080.00 12054.37 14076.86 16972.02 26354.58 21658.71 29580.79 22735.00 27784.36 12426.41 38564.71 30671.15 354
MDA-MVSNet_test_wron50.71 33648.95 33856.00 33661.17 37641.84 30051.90 37856.45 35940.96 35744.79 37667.84 36130.04 32655.07 37936.71 33250.69 37371.11 355
test_vis1_n49.89 33948.69 34153.50 35053.97 38837.38 34061.53 33947.33 38728.54 38259.62 28667.10 36813.52 38752.27 38549.07 23957.52 35070.84 356
PatchT53.17 32653.44 32352.33 35768.29 33925.34 39958.21 35654.41 36944.46 33254.56 33469.05 35833.32 29660.94 34936.93 32961.76 33370.73 357
test_cas_vis1_n_192056.91 29756.71 29557.51 33059.13 38445.40 26963.58 33061.29 34236.24 37267.14 17271.85 33729.89 32756.69 37057.65 16963.58 31770.46 358
KD-MVS_2432*160053.45 32251.50 33059.30 31262.82 36737.14 34255.33 36871.79 26547.34 30755.09 32770.52 34621.91 37170.45 30935.72 34042.97 38470.31 359
miper_refine_blended53.45 32251.50 33059.30 31262.82 36737.14 34255.33 36871.79 26547.34 30755.09 32770.52 34621.91 37170.45 30935.72 34042.97 38470.31 359
TESTMET0.1,155.28 31254.90 30956.42 33366.56 34943.67 28465.46 31756.27 36339.18 36753.83 34067.44 36424.21 36555.46 37748.04 24973.11 21070.13 361
test_fmvs151.32 33450.48 33453.81 34753.57 38937.51 33960.63 34951.16 37628.02 38563.62 23769.23 35716.41 38153.93 38151.01 22360.70 33969.99 362
dmvs_re56.77 29956.83 29456.61 33269.23 33041.02 30758.37 35564.18 32150.59 26657.45 30771.42 33935.54 27258.94 36037.23 32667.45 28669.87 363
LCM-MVSNet40.30 35635.88 36253.57 34942.24 40229.15 38545.21 39260.53 34522.23 39528.02 39750.98 3933.72 40861.78 34831.22 36838.76 39069.78 364
ADS-MVSNet251.33 33348.76 34059.07 31766.02 35544.60 27650.90 38059.76 34636.90 36950.74 35666.18 37226.38 35363.11 34327.17 38154.76 36169.50 365
ADS-MVSNet48.48 34247.77 34350.63 36166.02 35529.92 38350.90 38050.87 38036.90 36950.74 35666.18 37226.38 35352.47 38427.17 38154.76 36169.50 365
TinyColmap54.14 31751.72 32861.40 30666.84 34741.97 29966.52 30768.51 29144.81 32742.69 38275.77 30811.66 39172.94 29531.96 35756.77 35569.27 367
dp51.89 33051.60 32952.77 35568.44 33832.45 37762.36 33654.57 36844.16 33549.31 36367.91 36028.87 33656.61 37133.89 34654.89 36069.24 368
JIA-IIPM51.56 33147.68 34563.21 29364.61 36050.73 19947.71 38658.77 35042.90 34648.46 36551.72 39024.97 36270.24 31336.06 33953.89 36468.64 369
UnsupCasMVSNet_bld50.07 33848.87 33953.66 34860.97 38033.67 37157.62 36164.56 31839.47 36647.38 36764.02 37827.47 34559.32 35734.69 34443.68 38367.98 370
mamv456.85 29858.00 28653.43 35172.46 28254.47 13757.56 36254.74 36638.81 36857.42 30879.45 25147.57 14338.70 40160.88 14953.07 36667.11 371
MS-PatchMatch62.42 25561.46 25565.31 27975.21 23852.10 17972.05 25574.05 24646.41 31557.42 30874.36 32034.35 28477.57 25745.62 27073.67 19666.26 372
N_pmnet39.35 35840.28 35636.54 38163.76 3631.62 41849.37 3830.76 41734.62 37543.61 38066.38 37126.25 35542.57 39726.02 38651.77 36965.44 373
PM-MVS52.33 32850.19 33658.75 31962.10 37245.14 27165.75 31140.38 39743.60 33953.52 34572.65 3289.16 39965.87 33550.41 22754.18 36365.24 374
dmvs_testset50.16 33751.90 32744.94 37066.49 35011.78 41061.01 34751.50 37551.17 25950.30 36267.44 36439.28 23360.29 35322.38 39057.49 35162.76 375
PatchMatch-RL56.25 30554.55 31261.32 30877.06 20756.07 10965.57 31454.10 37144.13 33653.49 34771.27 34225.20 36166.78 32936.52 33663.66 31561.12 376
pmmvs344.92 34741.95 35453.86 34652.58 39343.55 28562.11 33846.90 38926.05 38840.63 38460.19 38211.08 39657.91 36531.83 36246.15 38060.11 377
WB-MVS43.26 34943.41 35042.83 37463.32 36610.32 41258.17 35745.20 39045.42 32440.44 38667.26 36734.01 28958.98 35911.96 40324.88 39759.20 378
test_vis1_rt41.35 35539.45 35747.03 36646.65 40037.86 33447.76 38538.65 39823.10 39244.21 37951.22 39211.20 39544.08 39539.27 31653.02 36759.14 379
LF4IMVS42.95 35042.26 35245.04 36848.30 39832.50 37654.80 37048.49 38328.03 38440.51 38570.16 3499.24 39843.89 39631.63 36349.18 37858.72 380
DSMNet-mixed39.30 35938.72 35841.03 37651.22 39419.66 40545.53 39131.35 40415.83 40339.80 38867.42 36622.19 36945.13 39422.43 38952.69 36858.31 381
SSC-MVS41.96 35341.99 35341.90 37562.46 3719.28 41457.41 36344.32 39343.38 34138.30 39166.45 37032.67 30758.42 36310.98 40421.91 40057.99 382
CHOSEN 280x42047.83 34346.36 34752.24 35967.37 34449.78 21638.91 39843.11 39535.00 37443.27 38163.30 37928.95 33449.19 38936.53 33560.80 33857.76 383
PMMVS53.96 31853.26 32456.04 33462.60 37050.92 19561.17 34456.09 36432.81 37753.51 34666.84 36934.04 28759.93 35544.14 28368.18 28057.27 384
mvsany_test332.62 36530.57 37038.77 37936.16 41024.20 40138.10 39920.63 41219.14 39840.36 38757.43 3855.06 40336.63 40429.59 37528.66 39655.49 385
PVSNet_043.31 2047.46 34545.64 34852.92 35467.60 34344.65 27554.06 37254.64 36741.59 35346.15 37358.75 38330.99 31958.66 36132.18 35424.81 39855.46 386
mvsany_test139.38 35738.16 36043.02 37349.05 39534.28 36644.16 39425.94 40822.74 39446.57 37262.21 38123.85 36641.16 40033.01 35235.91 39253.63 387
PMMVS227.40 37125.91 37431.87 38639.46 4086.57 41531.17 40128.52 40623.96 39020.45 40348.94 3974.20 40737.94 40216.51 39519.97 40151.09 388
test_f31.86 36731.05 36834.28 38232.33 41321.86 40332.34 40030.46 40516.02 40239.78 38955.45 3874.80 40432.36 40730.61 36937.66 39148.64 389
test_vis3_rt32.09 36630.20 37137.76 38035.36 41127.48 39040.60 39728.29 40716.69 40132.52 39540.53 4001.96 41237.40 40333.64 34942.21 38648.39 390
EGC-MVSNET42.47 35138.48 35954.46 34474.33 25648.73 23270.33 28151.10 3770.03 4110.18 41267.78 36313.28 38866.49 33118.91 39450.36 37448.15 391
APD_test137.39 36034.94 36344.72 37148.88 39633.19 37452.95 37544.00 39419.49 39727.28 39858.59 3843.18 41052.84 38318.92 39341.17 38748.14 392
MVS-HIRNet45.52 34644.48 34948.65 36468.49 33734.05 36859.41 35344.50 39227.03 38637.96 39250.47 39426.16 35664.10 33926.74 38459.52 34347.82 393
new_pmnet34.13 36434.29 36533.64 38352.63 39218.23 40744.43 39333.90 40322.81 39330.89 39653.18 38810.48 39735.72 40520.77 39239.51 38846.98 394
FPMVS42.18 35241.11 35545.39 36758.03 38641.01 30949.50 38253.81 37230.07 38033.71 39464.03 37611.69 39052.08 38714.01 39855.11 35943.09 395
testf131.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39113.63 39934.56 39341.60 396
APD_test231.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39113.63 39934.56 39341.60 396
test_method19.68 37518.10 37824.41 39013.68 4153.11 41712.06 40642.37 3962.00 40911.97 40736.38 4015.77 40229.35 40915.06 39623.65 39940.76 398
MVEpermissive17.77 2321.41 37417.77 37932.34 38534.34 41225.44 39816.11 40424.11 40911.19 40613.22 40631.92 4021.58 41330.95 40810.47 40517.03 40440.62 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft28.69 2236.22 36133.29 36645.02 36936.82 40935.98 35654.68 37148.74 38226.31 38721.02 40251.61 3912.88 41160.10 3549.99 40747.58 37938.99 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai34.52 36334.94 36333.26 38461.06 37816.00 40952.79 37623.78 41040.71 35939.33 39048.65 39816.91 38048.34 39012.18 40219.05 40235.44 401
Gipumacopyleft34.77 36231.91 36743.33 37262.05 37337.87 33320.39 40367.03 30023.23 39118.41 40425.84 4044.24 40562.73 34414.71 39751.32 37129.38 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan29.62 37030.82 36926.02 38952.99 39016.22 40851.09 37922.71 41133.91 37633.99 39340.85 39915.89 38333.11 4067.59 41018.37 40328.72 403
E-PMN23.77 37222.73 37626.90 38742.02 40320.67 40442.66 39535.70 40117.43 39910.28 40925.05 4056.42 40142.39 39810.28 40614.71 40517.63 404
EMVS22.97 37321.84 37726.36 38840.20 40619.53 40641.95 39634.64 40217.09 4009.73 41022.83 4067.29 40042.22 3999.18 40813.66 40617.32 405
DeepMVS_CXcopyleft12.03 39217.97 41410.91 41110.60 4157.46 40711.07 40828.36 4033.28 40911.29 4118.01 4099.74 41013.89 406
tmp_tt9.43 37811.14 3814.30 3932.38 4164.40 41613.62 40516.08 4140.39 41015.89 40513.06 40715.80 3845.54 41212.63 40110.46 4092.95 407
wuyk23d13.32 37712.52 38015.71 39147.54 39926.27 39631.06 4021.98 4164.93 4085.18 4111.94 4110.45 41618.54 4106.81 41112.83 4072.33 408
test1234.73 3806.30 3830.02 3940.01 4170.01 41956.36 3660.00 4180.01 4120.04 4130.21 4130.01 4170.00 4130.03 4130.00 4110.04 409
testmvs4.52 3816.03 3840.01 3950.01 4170.00 42053.86 3730.00 4180.01 4120.04 4130.27 4120.00 4180.00 4130.04 4120.00 4110.03 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
cdsmvs_eth3d_5k17.50 37623.34 3750.00 3960.00 4190.00 4200.00 40778.63 1670.00 4140.00 41582.18 19349.25 1210.00 4130.00 4140.00 4110.00 411
pcd_1.5k_mvsjas3.92 3825.23 3850.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 41447.05 1530.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
ab-mvs-re6.49 3798.65 3820.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 41577.89 2750.00 4180.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
WAC-MVS27.31 39227.77 379
FOURS186.12 3660.82 3788.18 183.61 6760.87 8481.50 16
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 419
eth-test0.00 419
ZD-MVS86.64 2160.38 4382.70 9157.95 14778.10 2490.06 3656.12 4188.84 2674.05 4787.00 49
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6677.39 2389.52 21
save fliter86.17 3361.30 2883.98 4779.66 14659.00 124
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
test_part287.58 960.47 4283.42 12
sam_mvs33.43 295
MTGPAbinary80.97 129
test_post168.67 2943.64 40932.39 31369.49 31544.17 281
test_post3.55 41033.90 29066.52 330
patchmatchnet-post64.03 37634.50 28174.27 291
MTMP86.03 1917.08 413
gm-plane-assit71.40 30041.72 30448.85 28573.31 32682.48 16948.90 241
TEST985.58 4361.59 2481.62 8181.26 12055.65 19174.93 4588.81 5653.70 6984.68 119
test_885.40 4660.96 3481.54 8481.18 12355.86 18374.81 4988.80 5853.70 6984.45 123
agg_prior85.04 5059.96 4781.04 12774.68 5284.04 129
test_prior462.51 1482.08 76
test_prior281.75 7960.37 9675.01 4389.06 5256.22 4072.19 5988.96 24
旧先验276.08 18245.32 32576.55 3365.56 33658.75 165
新几何276.12 180
原ACMM279.02 115
testdata272.18 30146.95 259
segment_acmp54.23 58
testdata172.65 24460.50 91
plane_prior781.41 9055.96 111
plane_prior681.20 9756.24 10645.26 177
plane_prior486.10 111
plane_prior356.09 10863.92 3669.27 132
plane_prior284.22 4064.52 25
plane_prior181.27 95
plane_prior56.31 10283.58 5363.19 4880.48 112
n20.00 418
nn0.00 418
door-mid47.19 388
test1183.47 72
door47.60 386
HQP5-MVS54.94 131
HQP-NCC80.66 10582.31 7162.10 6867.85 155
ACMP_Plane80.66 10582.31 7162.10 6867.85 155
BP-MVS67.04 95
HQP3-MVS83.90 5780.35 113
HQP2-MVS45.46 171
NP-MVS80.98 10056.05 11085.54 131
MDTV_nov1_ep1357.00 29172.73 27438.26 33165.02 32464.73 31744.74 32855.46 32172.48 32932.61 31070.47 30837.47 32467.75 284
ACMMP++_ref74.07 190
ACMMP++72.16 224
Test By Simon48.33 132