This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
casdiffmvs85.11 6785.14 6585.01 8987.20 21265.77 17887.75 15192.83 6177.84 3784.36 7292.38 8072.15 5193.93 13981.27 7990.48 10395.33 1
3Dnovator+77.84 485.48 5984.47 7488.51 691.08 9273.49 1793.18 1193.78 2180.79 1076.66 18793.37 6060.40 18896.75 2577.20 11493.73 6895.29 2
TSAR-MVS + MP.88.02 1788.11 1687.72 3293.68 4972.13 5091.41 4792.35 8074.62 11688.90 2193.85 5275.75 2096.00 5387.80 1594.63 5395.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
baseline84.93 7084.98 6784.80 10087.30 21065.39 18687.30 16392.88 5877.62 4084.04 7892.26 8171.81 5393.96 13381.31 7890.30 10595.03 4
DVP-MVS++90.23 191.01 187.89 2494.34 2971.25 6395.06 194.23 578.38 3392.78 495.74 682.45 397.49 389.42 496.68 294.95 5
PC_three_145268.21 23492.02 1294.00 4882.09 595.98 5584.58 4096.68 294.95 5
IS-MVSNet83.15 8782.81 8784.18 12089.94 11863.30 22791.59 4288.46 20979.04 2679.49 13292.16 8265.10 11794.28 11967.71 19891.86 8894.95 5
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 8072.96 2693.73 593.67 2280.19 1488.10 2794.80 1673.76 3997.11 1387.51 1895.82 2494.90 8
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS90.08 290.85 287.77 2695.30 270.98 7093.57 794.06 1277.24 5193.10 195.72 882.99 197.44 589.07 996.63 494.88 9
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 1983.77 5396.48 894.88 9
SMA-MVScopyleft89.08 789.23 788.61 594.25 3373.73 1092.40 2293.63 2374.77 11292.29 795.97 274.28 3497.24 1188.58 1396.91 194.87 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test250677.30 21576.49 21279.74 24290.08 11252.02 34187.86 15063.10 36874.88 10980.16 12792.79 7638.29 34192.35 20468.74 19192.50 8094.86 12
ECVR-MVScopyleft79.61 15579.26 14780.67 22490.08 11254.69 32587.89 14877.44 33574.88 10980.27 12492.79 7648.96 28592.45 19868.55 19292.50 8094.86 12
IU-MVS95.30 271.25 6392.95 5666.81 24292.39 688.94 1196.63 494.85 14
test111179.43 16279.18 15080.15 23489.99 11653.31 33887.33 16277.05 33875.04 10580.23 12692.77 7848.97 28492.33 20668.87 18992.40 8294.81 15
xxxxxxxxxxxxxcwj87.88 1987.92 1987.77 2693.80 4472.35 4590.47 6689.69 16874.31 12289.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 16
SF-MVS88.46 1188.74 1187.64 3892.78 6971.95 5392.40 2294.74 275.71 9089.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 16
ETH3D-3000-0.188.09 1388.29 1487.50 4192.76 7071.89 5691.43 4694.70 374.47 11988.86 2294.61 2175.23 2495.84 5886.62 2695.92 2194.78 18
canonicalmvs85.91 5385.87 5486.04 7289.84 12069.44 10890.45 6993.00 4776.70 7188.01 2991.23 10473.28 4193.91 14081.50 7788.80 12294.77 19
ETH3 D test640087.50 2587.44 2687.70 3593.71 4671.75 5790.62 6194.05 1570.80 18187.59 3393.51 5677.57 1496.63 3183.31 5595.77 2694.72 20
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 789.42 496.57 794.67 21
MSP-MVS89.51 489.91 588.30 994.28 3273.46 1892.90 1694.11 880.27 1291.35 1494.16 4178.35 1396.77 2389.59 394.22 6494.67 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
alignmvs85.48 5985.32 6185.96 7489.51 12769.47 10589.74 8592.47 7476.17 8287.73 3291.46 10070.32 6793.78 14581.51 7688.95 11994.63 23
MP-MVS-pluss87.67 2287.72 2287.54 3993.64 5072.04 5289.80 8393.50 2875.17 10386.34 4095.29 1270.86 6096.00 5388.78 1296.04 1694.58 24
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5692.24 7869.03 11089.57 8993.39 3577.53 4689.79 1894.12 4378.98 1296.58 3685.66 2795.72 2994.58 24
VDD-MVS83.01 9282.36 9384.96 9191.02 9466.40 16488.91 10588.11 21277.57 4284.39 7193.29 6252.19 24393.91 14077.05 11688.70 12494.57 26
VDDNet81.52 11580.67 11884.05 12690.44 10564.13 20989.73 8685.91 25271.11 17683.18 8793.48 5750.54 26693.49 16073.40 14888.25 13094.54 27
APDe-MVS89.15 689.63 687.73 3094.49 2071.69 5893.83 493.96 1675.70 9291.06 1696.03 176.84 1597.03 1589.09 695.65 3294.47 28
MSC_two_6792asdad89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 29
No_MVS89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 29
MCST-MVS87.37 3087.25 3087.73 3094.53 1972.46 4089.82 8193.82 1973.07 14884.86 6192.89 7176.22 1796.33 3984.89 3595.13 4194.40 31
CANet86.45 4486.10 5187.51 4090.09 11170.94 7489.70 8792.59 7281.78 481.32 11191.43 10170.34 6697.23 1284.26 4693.36 7094.37 32
PHI-MVS86.43 4586.17 5087.24 4690.88 9770.96 7292.27 3094.07 1172.45 15385.22 5291.90 8769.47 7696.42 3883.28 5895.94 2094.35 33
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 990.51 6393.00 4780.90 988.06 2894.06 4676.43 1696.84 2088.48 1495.99 1994.34 34
ZNCC-MVS87.94 1887.85 2088.20 1194.39 2673.33 2093.03 1493.81 2076.81 6585.24 5194.32 3571.76 5496.93 1885.53 2995.79 2594.32 35
HPM-MVScopyleft87.11 3586.98 3587.50 4193.88 4372.16 4992.19 3293.33 3676.07 8483.81 8193.95 5169.77 7496.01 5285.15 3194.66 5294.32 35
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS85.76 5685.29 6387.17 4893.49 5371.08 6888.58 12192.42 7868.32 23384.61 6693.48 5772.32 4996.15 4879.00 9495.43 3494.28 37
test_241102_TWO94.06 1277.24 5192.78 495.72 881.26 897.44 589.07 996.58 694.26 38
test_0728_SECOND87.71 3495.34 171.43 6293.49 994.23 597.49 389.08 796.41 1294.21 39
DeepC-MVS_fast79.65 386.91 3886.62 4187.76 2993.52 5272.37 4491.26 4893.04 4376.62 7284.22 7393.36 6171.44 5796.76 2480.82 8395.33 3894.16 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet83.40 8483.02 8484.57 10490.13 11064.47 20292.32 2890.73 13874.45 12179.35 13491.10 10869.05 8295.12 9072.78 15587.22 14294.13 41
NCCC88.06 1488.01 1888.24 1094.41 2473.62 1191.22 5192.83 6181.50 685.79 4593.47 5973.02 4597.00 1784.90 3394.94 4494.10 42
ACMMP_NAP88.05 1688.08 1787.94 1793.70 4773.05 2390.86 5693.59 2576.27 8188.14 2695.09 1571.06 5996.67 2887.67 1696.37 1494.09 43
XVS87.18 3486.91 3788.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8394.17 4067.45 9396.60 3483.06 6094.50 5694.07 44
X-MVStestdata80.37 14377.83 17988.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8312.47 37167.45 9396.60 3483.06 6094.50 5694.07 44
region2R87.42 2887.20 3288.09 1294.63 1473.55 1393.03 1493.12 4276.73 7084.45 6894.52 2369.09 8096.70 2684.37 4494.83 5094.03 46
Regformer-485.68 5885.45 5886.35 6288.95 15369.67 10088.29 13391.29 12481.73 585.36 4990.01 13272.62 4795.35 8483.28 5887.57 13494.03 46
Regformer-286.63 4386.53 4286.95 5189.33 13471.24 6788.43 12392.05 9382.50 186.88 3690.09 12974.45 2995.61 6384.38 4390.63 10194.01 48
ACMMPR87.44 2687.23 3188.08 1394.64 1373.59 1293.04 1293.20 3976.78 6784.66 6594.52 2368.81 8496.65 2984.53 4194.90 4594.00 49
Regformer-186.41 4786.33 4486.64 5889.33 13470.93 7588.43 12391.39 12282.14 386.65 3890.09 12974.39 3295.01 9783.97 5190.63 10193.97 50
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3291.59 4294.10 1075.90 8892.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 51
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_prior386.73 3986.86 3986.33 6392.61 7469.59 10188.85 10892.97 5475.41 9684.91 5693.54 5474.28 3495.48 7183.31 5595.86 2293.91 52
test_prior86.33 6392.61 7469.59 10192.97 5495.48 7193.91 52
GST-MVS87.42 2887.26 2987.89 2494.12 3972.97 2592.39 2493.43 3376.89 6384.68 6293.99 5070.67 6496.82 2184.18 4995.01 4293.90 54
Regformer-385.23 6485.07 6685.70 7688.95 15369.01 11288.29 13389.91 16280.95 885.01 5390.01 13272.45 4894.19 12682.50 7187.57 13493.90 54
Anonymous20240521178.25 19077.01 19881.99 19391.03 9360.67 26384.77 22883.90 27570.65 18780.00 12891.20 10641.08 33191.43 23465.21 22185.26 16593.85 56
LFMVS81.82 10881.23 10983.57 14191.89 8463.43 22589.84 8081.85 30377.04 6083.21 8693.10 6552.26 24293.43 16571.98 15989.95 11293.85 56
Effi-MVS+83.62 8083.08 8285.24 8388.38 17667.45 14788.89 10689.15 18575.50 9582.27 9888.28 18069.61 7594.45 11677.81 10887.84 13293.84 58
testtj87.78 2087.78 2187.77 2694.55 1872.47 3992.23 3193.49 3074.75 11388.33 2594.43 3273.27 4297.02 1684.18 4994.84 4893.82 59
Anonymous2024052980.19 14778.89 15584.10 12290.60 10164.75 19688.95 10490.90 13565.97 25780.59 12191.17 10749.97 27193.73 15169.16 18682.70 19893.81 60
MVS_Test83.15 8783.06 8383.41 14686.86 21663.21 23086.11 19892.00 9774.31 12282.87 9289.44 15370.03 7093.21 17077.39 11388.50 12893.81 60
ETH3D cwj APD-0.1687.31 3287.27 2887.44 4391.60 8772.45 4190.02 7794.37 471.76 16487.28 3494.27 3675.18 2596.08 4985.16 3095.77 2693.80 62
GeoE81.71 11081.01 11483.80 13789.51 12764.45 20388.97 10388.73 20471.27 17478.63 14589.76 13866.32 10493.20 17269.89 17886.02 16093.74 63
diffmvs82.10 10181.88 10382.76 18083.00 28263.78 21583.68 25289.76 16572.94 15182.02 10189.85 13665.96 11190.79 25182.38 7387.30 14193.71 64
HFP-MVS87.58 2387.47 2587.94 1794.58 1673.54 1593.04 1293.24 3776.78 6784.91 5694.44 3070.78 6196.61 3284.53 4194.89 4693.66 65
#test#87.33 3187.13 3387.94 1794.58 1673.54 1592.34 2793.24 3775.23 10084.91 5694.44 3070.78 6196.61 3283.75 5494.89 4693.66 65
VNet82.21 10082.41 9181.62 19990.82 9860.93 25884.47 23689.78 16476.36 7984.07 7791.88 8864.71 12290.26 25770.68 16988.89 12093.66 65
PGM-MVS86.68 4186.27 4687.90 2194.22 3573.38 1990.22 7493.04 4375.53 9483.86 7994.42 3367.87 9096.64 3082.70 6994.57 5593.66 65
DELS-MVS85.41 6285.30 6285.77 7588.49 17167.93 13985.52 21793.44 3278.70 2983.63 8589.03 16174.57 2895.71 6280.26 9094.04 6593.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SD-MVS88.06 1488.50 1386.71 5792.60 7672.71 3091.81 4093.19 4077.87 3690.32 1794.00 4874.83 2793.78 14587.63 1794.27 6393.65 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS79.81 287.08 3786.88 3887.69 3691.16 9172.32 4790.31 7193.94 1777.12 5782.82 9494.23 3972.13 5297.09 1484.83 3695.37 3593.65 70
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EIA-MVS83.31 8682.80 8884.82 9889.59 12365.59 18188.21 13692.68 6674.66 11578.96 13786.42 23669.06 8195.26 8575.54 13190.09 10993.62 72
MP-MVScopyleft87.71 2187.64 2387.93 2094.36 2873.88 792.71 2192.65 7077.57 4283.84 8094.40 3472.24 5096.28 4185.65 2895.30 4093.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast85.35 6384.95 7086.57 6193.69 4870.58 8592.15 3491.62 11373.89 13382.67 9794.09 4462.60 14595.54 6980.93 8192.93 7293.57 74
CSCG86.41 4786.19 4987.07 5092.91 6572.48 3890.81 5793.56 2673.95 13083.16 8891.07 11075.94 1895.19 8879.94 9294.38 6093.55 75
test1286.80 5592.63 7370.70 8191.79 10882.71 9671.67 5596.16 4794.50 5693.54 76
APD-MVS_3200maxsize85.97 5285.88 5386.22 6792.69 7269.53 10391.93 3692.99 4973.54 14085.94 4194.51 2665.80 11295.61 6383.04 6292.51 7993.53 77
mvs_anonymous79.42 16379.11 15180.34 23084.45 25257.97 28982.59 26887.62 22567.40 24076.17 20188.56 17368.47 8589.59 26870.65 17086.05 15993.47 78
mPP-MVS86.67 4286.32 4587.72 3294.41 2473.55 1392.74 1992.22 8776.87 6482.81 9594.25 3866.44 10296.24 4282.88 6494.28 6293.38 79
EPNet83.72 7882.92 8686.14 6984.22 25569.48 10491.05 5485.27 25781.30 776.83 18291.65 9266.09 10795.56 6676.00 12693.85 6693.38 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive83.46 8282.80 8885.43 7990.25 10868.74 12090.30 7290.13 15676.33 8080.87 11992.89 7161.00 17794.20 12572.45 15890.97 9793.35 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DVP-MVScopyleft89.60 390.35 387.33 4595.27 571.25 6393.49 992.73 6577.33 4992.12 995.78 480.98 997.40 789.08 796.41 1293.33 82
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D79.10 17278.24 17081.70 19886.85 21760.24 26987.28 16488.79 19874.25 12576.84 18190.53 12249.48 27791.56 23067.98 19682.15 20293.29 83
EI-MVSNet-Vis-set84.19 7483.81 7685.31 8088.18 18067.85 14087.66 15389.73 16780.05 1682.95 9089.59 14570.74 6394.82 10680.66 8684.72 17093.28 84
zzz-MVS87.53 2487.41 2787.90 2194.18 3774.25 590.23 7392.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 85
MTAPA87.23 3387.00 3487.90 2194.18 3774.25 586.58 18592.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 85
CP-MVS87.11 3586.92 3687.68 3794.20 3673.86 893.98 392.82 6476.62 7283.68 8294.46 2767.93 8895.95 5684.20 4894.39 5993.23 85
ACMMPcopyleft85.89 5485.39 5987.38 4493.59 5172.63 3492.74 1993.18 4176.78 6780.73 12093.82 5364.33 12396.29 4082.67 7090.69 10093.23 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAPM_NR83.02 9182.41 9184.82 9892.47 7766.37 16587.93 14691.80 10773.82 13477.32 17290.66 11967.90 8994.90 10270.37 17289.48 11693.19 89
OMC-MVS82.69 9581.97 10284.85 9788.75 16367.42 14887.98 14290.87 13674.92 10879.72 13091.65 9262.19 15593.96 13375.26 13386.42 15493.16 90
PAPR81.66 11380.89 11683.99 13290.27 10764.00 21086.76 18191.77 11168.84 22677.13 18089.50 14667.63 9194.88 10467.55 20088.52 12793.09 91
UA-Net85.08 6884.96 6985.45 7892.07 8168.07 13789.78 8490.86 13782.48 284.60 6793.20 6369.35 7795.22 8771.39 16490.88 9993.07 92
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2592.85 6080.26 1387.78 3094.27 3675.89 1996.81 2287.45 1996.44 993.05 93
thisisatest053079.40 16477.76 18384.31 11687.69 19865.10 19287.36 16084.26 27170.04 19577.42 16988.26 18249.94 27294.79 10870.20 17384.70 17193.03 94
train_agg86.43 4586.20 4887.13 4993.26 5672.96 2688.75 11391.89 10368.69 22885.00 5493.10 6574.43 3095.41 7784.97 3295.71 3093.02 95
agg_prior186.22 4986.09 5286.62 5992.85 6671.94 5488.59 12091.78 10968.96 22384.41 6993.18 6474.94 2694.93 9884.75 3895.33 3893.01 96
DROMVSNet86.01 5186.38 4384.91 9589.31 13966.27 16792.32 2893.63 2379.37 2184.17 7591.88 8869.04 8395.43 7583.93 5293.77 6793.01 96
EI-MVSNet-UG-set83.81 7683.38 7985.09 8787.87 18967.53 14687.44 15989.66 16979.74 1882.23 9989.41 15470.24 6994.74 10979.95 9183.92 17892.99 98
tttt051779.40 16477.91 17683.90 13688.10 18363.84 21388.37 13084.05 27371.45 17276.78 18489.12 15849.93 27494.89 10370.18 17483.18 19092.96 99
test117286.20 5086.22 4786.12 7093.95 4269.89 9691.79 4192.28 8275.07 10486.40 3994.58 2265.00 12095.56 6684.34 4592.60 7792.90 100
test9_res84.90 3395.70 3192.87 101
SR-MVS86.73 3986.67 4086.91 5294.11 4072.11 5192.37 2692.56 7374.50 11786.84 3794.65 2067.31 9595.77 6084.80 3792.85 7492.84 102
ETV-MVS84.90 7284.67 7385.59 7789.39 13268.66 12688.74 11592.64 7179.97 1784.10 7685.71 24869.32 7895.38 8080.82 8391.37 9392.72 103
agg_prior282.91 6395.45 3392.70 104
APD-MVScopyleft87.44 2687.52 2487.19 4794.24 3472.39 4291.86 3992.83 6173.01 15088.58 2394.52 2373.36 4096.49 3784.26 4695.01 4292.70 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ET-MVSNet_ETH3D78.63 18276.63 21184.64 10386.73 22169.47 10585.01 22384.61 26469.54 20666.51 31586.59 22950.16 26991.75 22576.26 12284.24 17692.69 106
Vis-MVSNet (Re-imp)78.36 18978.45 16278.07 26988.64 16751.78 34486.70 18279.63 32474.14 12875.11 22790.83 11761.29 17189.75 26558.10 28191.60 8992.69 106
TSAR-MVS + GP.85.71 5785.33 6086.84 5391.34 8972.50 3789.07 10187.28 23276.41 7485.80 4490.22 12774.15 3795.37 8381.82 7591.88 8592.65 108
test_yl81.17 12080.47 12283.24 15289.13 14863.62 21686.21 19589.95 16072.43 15681.78 10789.61 14357.50 20493.58 15470.75 16786.90 14692.52 109
DCV-MVSNet81.17 12080.47 12283.24 15289.13 14863.62 21686.21 19589.95 16072.43 15681.78 10789.61 14357.50 20493.58 15470.75 16786.90 14692.52 109
SR-MVS-dyc-post85.77 5585.61 5686.23 6693.06 6270.63 8291.88 3792.27 8373.53 14185.69 4694.45 2865.00 12095.56 6682.75 6591.87 8692.50 111
RE-MVS-def85.48 5793.06 6270.63 8291.88 3792.27 8373.53 14185.69 4694.45 2863.87 12782.75 6591.87 8692.50 111
nrg03083.88 7583.53 7784.96 9186.77 22069.28 10990.46 6892.67 6774.79 11182.95 9091.33 10372.70 4693.09 18080.79 8579.28 23692.50 111
MG-MVS83.41 8383.45 7883.28 14992.74 7162.28 24488.17 13889.50 17275.22 10181.49 11092.74 7966.75 9895.11 9172.85 15491.58 9092.45 114
FIs82.07 10382.42 9081.04 21788.80 16058.34 28388.26 13593.49 3076.93 6278.47 14991.04 11169.92 7292.34 20569.87 17984.97 16792.44 115
FC-MVSNet-test81.52 11582.02 10080.03 23688.42 17555.97 31987.95 14493.42 3477.10 5877.38 17090.98 11669.96 7191.79 22468.46 19484.50 17292.33 116
Fast-Effi-MVS+80.81 12979.92 13083.47 14288.85 15564.51 19985.53 21589.39 17470.79 18278.49 14885.06 26467.54 9293.58 15467.03 20986.58 15192.32 117
test_part182.78 9482.08 9884.89 9690.66 10066.97 15890.96 5592.93 5777.19 5480.53 12290.04 13163.44 13095.39 7976.04 12576.90 25692.31 118
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18587.85 19062.33 24287.74 15291.33 12380.55 1177.99 16089.86 13565.23 11692.62 19267.05 20875.24 28992.30 119
ab-mvs79.51 15878.97 15481.14 21488.46 17360.91 25983.84 25089.24 18170.36 19079.03 13688.87 16463.23 13690.21 25965.12 22282.57 19992.28 120
CANet_DTU80.61 13679.87 13182.83 17285.60 23463.17 23387.36 16088.65 20576.37 7875.88 20688.44 17653.51 23393.07 18173.30 14989.74 11492.25 121
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 16988.46 17363.46 22387.13 16692.37 7980.19 1478.38 15089.14 15671.66 5693.05 18270.05 17576.46 26492.25 121
DU-MVS81.12 12280.52 12182.90 17087.80 19263.46 22387.02 17091.87 10579.01 2778.38 15089.07 15965.02 11893.05 18270.05 17576.46 26492.20 123
NR-MVSNet80.23 14579.38 14382.78 17887.80 19263.34 22686.31 19291.09 13279.01 2772.17 25889.07 15967.20 9692.81 19166.08 21575.65 27592.20 123
TAPA-MVS73.13 979.15 17077.94 17582.79 17789.59 12362.99 23788.16 13991.51 11765.77 25877.14 17991.09 10960.91 17893.21 17050.26 32187.05 14492.17 125
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
3Dnovator76.31 583.38 8582.31 9486.59 6087.94 18872.94 2990.64 6092.14 9177.21 5375.47 21292.83 7358.56 19594.72 11073.24 15192.71 7692.13 126
MVS_111021_HR85.14 6684.75 7286.32 6591.65 8672.70 3185.98 20090.33 15076.11 8382.08 10091.61 9571.36 5894.17 12881.02 8092.58 7892.08 127
CS-MVS-test85.02 6985.21 6484.46 10889.28 14165.70 17991.16 5293.56 2677.83 3881.80 10589.89 13470.67 6495.61 6380.39 8792.34 8392.06 128
MVSFormer82.85 9382.05 9985.24 8387.35 20570.21 8890.50 6490.38 14668.55 23081.32 11189.47 14861.68 16093.46 16378.98 9590.26 10692.05 129
jason81.39 11880.29 12684.70 10286.63 22269.90 9585.95 20186.77 24063.24 28581.07 11789.47 14861.08 17692.15 21378.33 10490.07 11192.05 129
jason: jason.
HyFIR lowres test77.53 21075.40 22683.94 13589.59 12366.62 16180.36 29088.64 20656.29 34176.45 19085.17 26157.64 20293.28 16861.34 25483.10 19291.91 131
mvs-test180.88 12479.40 14285.29 8185.13 24369.75 9989.28 9288.10 21374.99 10676.44 19386.72 22057.27 20794.26 12473.53 14483.18 19091.87 132
XVG-OURS-SEG-HR80.81 12979.76 13483.96 13485.60 23468.78 11783.54 25890.50 14370.66 18676.71 18691.66 9160.69 18191.26 23876.94 11881.58 20891.83 133
lupinMVS81.39 11880.27 12784.76 10187.35 20570.21 8885.55 21386.41 24462.85 29281.32 11188.61 17061.68 16092.24 21078.41 10390.26 10691.83 133
abl_685.23 6484.95 7086.07 7192.23 7970.48 8690.80 5892.08 9273.51 14385.26 5094.16 4162.75 14495.92 5782.46 7291.30 9591.81 135
WR-MVS79.49 15979.22 14980.27 23288.79 16158.35 28285.06 22288.61 20778.56 3077.65 16588.34 17863.81 12990.66 25464.98 22477.22 25291.80 136
h-mvs3383.15 8782.19 9586.02 7390.56 10270.85 7888.15 14089.16 18476.02 8584.67 6391.39 10261.54 16395.50 7082.71 6775.48 27991.72 137
UniMVSNet (Re)81.60 11481.11 11183.09 16088.38 17664.41 20487.60 15493.02 4678.42 3278.56 14688.16 18469.78 7393.26 16969.58 18276.49 26391.60 138
UGNet80.83 12879.59 13884.54 10588.04 18568.09 13689.42 9088.16 21176.95 6176.22 19789.46 15049.30 28093.94 13668.48 19390.31 10491.60 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS80.41 14179.23 14883.97 13385.64 23369.02 11183.03 26690.39 14571.09 17777.63 16691.49 9954.62 22591.35 23675.71 12783.47 18691.54 140
LCM-MVSNet-Re77.05 21876.94 20177.36 27987.20 21251.60 34580.06 29380.46 31675.20 10267.69 29986.72 22062.48 14888.98 27963.44 23289.25 11891.51 141
DP-MVS Recon83.11 9082.09 9786.15 6894.44 2170.92 7688.79 11192.20 8870.53 18879.17 13591.03 11364.12 12596.03 5068.39 19590.14 10891.50 142
PS-MVSNAJss82.07 10381.31 10784.34 11586.51 22367.27 15289.27 9391.51 11771.75 16579.37 13390.22 12763.15 13894.27 12077.69 10982.36 20191.49 143
thisisatest051577.33 21475.38 22783.18 15685.27 23963.80 21482.11 27383.27 28665.06 26675.91 20483.84 27849.54 27694.27 12067.24 20586.19 15791.48 144
DPM-MVS84.93 7084.29 7586.84 5390.20 10973.04 2487.12 16793.04 4369.80 20182.85 9391.22 10573.06 4496.02 5176.72 12194.63 5391.46 145
RRT_test8_iter0578.38 18877.40 19181.34 20886.00 22858.86 27886.55 18791.26 12572.13 16275.91 20487.42 20244.97 30993.73 15177.02 11775.30 28691.45 146
HQP_MVS83.64 7983.14 8185.14 8590.08 11268.71 12291.25 4992.44 7579.12 2478.92 13991.00 11460.42 18695.38 8078.71 9786.32 15591.33 147
plane_prior592.44 7595.38 8078.71 9786.32 15591.33 147
GA-MVS76.87 22275.17 23181.97 19482.75 28862.58 23981.44 28186.35 24772.16 16174.74 23482.89 29046.20 30192.02 21768.85 19081.09 21291.30 149
VPA-MVSNet80.60 13780.55 12080.76 22288.07 18460.80 26186.86 17591.58 11575.67 9380.24 12589.45 15263.34 13290.25 25870.51 17179.22 23791.23 150
CS-MVS84.53 7384.97 6883.23 15487.54 20463.27 22888.82 11093.50 2875.98 8783.07 8989.73 13970.29 6895.23 8682.07 7493.70 6991.18 151
Effi-MVS+-dtu80.03 14978.57 16084.42 11085.13 24368.74 12088.77 11288.10 21374.99 10674.97 23183.49 28457.27 20793.36 16673.53 14480.88 21491.18 151
v2v48280.23 14579.29 14683.05 16383.62 26564.14 20887.04 16989.97 15973.61 13778.18 15687.22 20861.10 17593.82 14376.11 12376.78 26191.18 151
Anonymous2023121178.97 17677.69 18682.81 17490.54 10364.29 20690.11 7691.51 11765.01 26876.16 20288.13 18950.56 26593.03 18569.68 18177.56 24991.11 154
hse-mvs281.72 10980.94 11584.07 12488.72 16467.68 14485.87 20487.26 23376.02 8584.67 6388.22 18361.54 16393.48 16182.71 6773.44 30691.06 155
AUN-MVS79.21 16977.60 18884.05 12688.71 16567.61 14585.84 20687.26 23369.08 21877.23 17588.14 18853.20 23693.47 16275.50 13273.45 30591.06 155
HQP4-MVS77.24 17495.11 9191.03 157
HQP-MVS82.61 9782.02 10084.37 11289.33 13466.98 15689.17 9592.19 8976.41 7477.23 17590.23 12660.17 18995.11 9177.47 11185.99 16191.03 157
RPSCF73.23 26371.46 26478.54 26282.50 29459.85 27182.18 27282.84 29458.96 32371.15 26889.41 15445.48 30884.77 31658.82 27471.83 31791.02 159
test_djsdf80.30 14479.32 14583.27 15083.98 26065.37 18790.50 6490.38 14668.55 23076.19 19888.70 16656.44 21393.46 16378.98 9580.14 22690.97 160
PCF-MVS73.52 780.38 14278.84 15685.01 8987.71 19668.99 11383.65 25391.46 12163.00 28977.77 16490.28 12466.10 10695.09 9561.40 25288.22 13190.94 161
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPNet78.69 18178.66 15878.76 25888.31 17855.72 32184.45 23986.63 24276.79 6678.26 15390.55 12159.30 19189.70 26766.63 21077.05 25490.88 162
CPTT-MVS83.73 7783.33 8084.92 9493.28 5570.86 7792.09 3590.38 14668.75 22779.57 13192.83 7360.60 18493.04 18480.92 8291.56 9190.86 163
CLD-MVS82.31 9981.65 10584.29 11788.47 17267.73 14385.81 20892.35 8075.78 8978.33 15286.58 23164.01 12694.35 11776.05 12487.48 13990.79 164
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v119279.59 15778.43 16483.07 16283.55 26764.52 19886.93 17390.58 14170.83 18077.78 16385.90 24459.15 19293.94 13673.96 14177.19 25390.76 165
IterMVS-LS80.06 14879.38 14382.11 18985.89 22963.20 23186.79 17889.34 17574.19 12675.45 21586.72 22066.62 9992.39 20172.58 15676.86 25890.75 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14079.98 12982.12 18884.28 25363.19 23286.41 18988.95 19574.18 12778.69 14287.54 19966.62 9992.43 19972.57 15780.57 22090.74 167
v192192079.22 16878.03 17382.80 17583.30 27263.94 21286.80 17790.33 15069.91 19977.48 16885.53 25358.44 19693.75 14973.60 14376.85 25990.71 168
QAPM80.88 12479.50 14085.03 8888.01 18768.97 11491.59 4292.00 9766.63 24975.15 22692.16 8257.70 20195.45 7363.52 23088.76 12390.66 169
v14419279.47 16078.37 16682.78 17883.35 27063.96 21186.96 17190.36 14969.99 19677.50 16785.67 25060.66 18293.77 14774.27 13876.58 26290.62 170
v124078.99 17577.78 18182.64 18183.21 27463.54 22086.62 18490.30 15269.74 20577.33 17185.68 24957.04 21093.76 14873.13 15276.92 25590.62 170
v114480.03 14979.03 15283.01 16583.78 26364.51 19987.11 16890.57 14271.96 16378.08 15986.20 24161.41 16793.94 13674.93 13477.23 25190.60 172
1112_ss77.40 21376.43 21480.32 23189.11 15260.41 26883.65 25387.72 22462.13 30073.05 24886.72 22062.58 14789.97 26262.11 24680.80 21690.59 173
CP-MVSNet78.22 19178.34 16777.84 27187.83 19154.54 32787.94 14591.17 12977.65 3973.48 24388.49 17462.24 15488.43 28762.19 24374.07 29790.55 174
PS-CasMVS78.01 20078.09 17277.77 27387.71 19654.39 32988.02 14191.22 12677.50 4773.26 24588.64 16960.73 17988.41 28861.88 24773.88 30190.53 175
CDS-MVSNet79.07 17377.70 18583.17 15787.60 19968.23 13484.40 24286.20 24867.49 23976.36 19486.54 23361.54 16390.79 25161.86 24887.33 14090.49 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS78.89 17877.51 19083.03 16487.80 19267.79 14284.72 22985.05 26067.63 23676.75 18587.70 19362.25 15390.82 25058.53 27787.13 14390.49 176
PEN-MVS77.73 20577.69 18677.84 27187.07 21553.91 33287.91 14791.18 12877.56 4473.14 24788.82 16561.23 17289.17 27559.95 26272.37 31290.43 178
Test_1112_low_res76.40 23075.44 22479.27 25189.28 14158.09 28581.69 27787.07 23659.53 31972.48 25486.67 22661.30 17089.33 27260.81 25880.15 22590.41 179
HY-MVS69.67 1277.95 20177.15 19680.36 22987.57 20360.21 27083.37 26087.78 22366.11 25375.37 21887.06 21563.27 13490.48 25661.38 25382.43 20090.40 180
RRT_MVS79.88 15278.38 16584.38 11185.42 23770.60 8488.71 11788.75 20372.30 15878.83 14189.14 15644.44 31292.18 21278.50 10079.33 23590.35 181
CHOSEN 1792x268877.63 20975.69 21983.44 14389.98 11768.58 12878.70 30887.50 22856.38 34075.80 20886.84 21658.67 19491.40 23561.58 25185.75 16490.34 182
114514_t80.68 13579.51 13984.20 11994.09 4167.27 15289.64 8891.11 13158.75 32674.08 24090.72 11858.10 19795.04 9669.70 18089.42 11790.30 183
eth_miper_zixun_eth77.92 20276.69 20981.61 20183.00 28261.98 24783.15 26289.20 18369.52 20774.86 23384.35 27161.76 15992.56 19571.50 16372.89 31090.28 184
PVSNet_Blended_VisFu82.62 9681.83 10484.96 9190.80 9969.76 9888.74 11591.70 11269.39 20878.96 13788.46 17565.47 11494.87 10574.42 13688.57 12590.24 185
MVS_111021_LR82.61 9782.11 9684.11 12188.82 15871.58 5985.15 22086.16 24974.69 11480.47 12391.04 11162.29 15290.55 25580.33 8990.08 11090.20 186
MSLP-MVS++85.43 6185.76 5584.45 10991.93 8370.24 8790.71 5992.86 5977.46 4884.22 7392.81 7567.16 9792.94 18680.36 8894.35 6190.16 187
mvs_tets79.13 17177.77 18283.22 15584.70 24866.37 16589.17 9590.19 15469.38 20975.40 21789.46 15044.17 31493.15 17676.78 12080.70 21890.14 188
BH-RMVSNet79.61 15578.44 16383.14 15889.38 13365.93 17384.95 22587.15 23573.56 13978.19 15589.79 13756.67 21293.36 16659.53 26686.74 14990.13 189
c3_l78.75 17977.91 17681.26 21082.89 28661.56 25384.09 24889.13 18769.97 19775.56 21084.29 27266.36 10392.09 21573.47 14775.48 27990.12 190
v7n78.97 17677.58 18983.14 15883.45 26965.51 18288.32 13191.21 12773.69 13672.41 25586.32 23957.93 19893.81 14469.18 18575.65 27590.11 191
jajsoiax79.29 16777.96 17483.27 15084.68 24966.57 16389.25 9490.16 15569.20 21575.46 21489.49 14745.75 30693.13 17876.84 11980.80 21690.11 191
v14878.72 18077.80 18081.47 20382.73 28961.96 24886.30 19388.08 21573.26 14676.18 19985.47 25562.46 14992.36 20371.92 16073.82 30290.09 193
GBi-Net78.40 18677.40 19181.40 20587.60 19963.01 23488.39 12789.28 17771.63 16775.34 21987.28 20454.80 21991.11 24162.72 23779.57 22990.09 193
test178.40 18677.40 19181.40 20587.60 19963.01 23488.39 12789.28 17771.63 16775.34 21987.28 20454.80 21991.11 24162.72 23779.57 22990.09 193
FMVSNet177.44 21176.12 21881.40 20586.81 21963.01 23488.39 12789.28 17770.49 18974.39 23787.28 20449.06 28391.11 24160.91 25678.52 23990.09 193
WR-MVS_H78.51 18578.49 16178.56 26188.02 18656.38 31488.43 12392.67 6777.14 5673.89 24187.55 19866.25 10589.24 27458.92 27273.55 30490.06 197
DTE-MVSNet76.99 21976.80 20477.54 27886.24 22553.06 34087.52 15690.66 13977.08 5972.50 25388.67 16860.48 18589.52 26957.33 28870.74 32390.05 198
v879.97 15179.02 15382.80 17584.09 25764.50 20187.96 14390.29 15374.13 12975.24 22486.81 21762.88 14393.89 14274.39 13775.40 28390.00 199
thres600view776.50 22675.44 22479.68 24489.40 13157.16 30085.53 21583.23 28773.79 13576.26 19687.09 21351.89 25191.89 22248.05 33483.72 18490.00 199
thres40076.50 22675.37 22879.86 23989.13 14857.65 29585.17 21883.60 27873.41 14476.45 19086.39 23752.12 24491.95 21948.33 32983.75 18190.00 199
cl2278.07 19777.01 19881.23 21182.37 29861.83 25083.55 25787.98 21768.96 22375.06 22983.87 27661.40 16891.88 22373.53 14476.39 26689.98 202
OPM-MVS83.50 8182.95 8585.14 8588.79 16170.95 7389.13 10091.52 11677.55 4580.96 11891.75 9060.71 18094.50 11579.67 9386.51 15389.97 203
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline275.70 23873.83 24681.30 20983.26 27361.79 25182.57 26980.65 31266.81 24266.88 30783.42 28557.86 20092.19 21163.47 23179.57 22989.91 204
v1079.74 15478.67 15782.97 16884.06 25864.95 19387.88 14990.62 14073.11 14775.11 22786.56 23261.46 16694.05 13273.68 14275.55 27789.90 205
MVSTER79.01 17477.88 17882.38 18683.07 27964.80 19584.08 24988.95 19569.01 22278.69 14287.17 21154.70 22392.43 19974.69 13580.57 22089.89 206
ACMP74.13 681.51 11780.57 11984.36 11389.42 13068.69 12589.97 7991.50 12074.46 12075.04 23090.41 12353.82 23194.54 11277.56 11082.91 19389.86 207
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test82.08 10281.27 10884.50 10689.23 14468.76 11890.22 7491.94 10175.37 9876.64 18891.51 9754.29 22694.91 10078.44 10183.78 17989.83 208
LGP-MVS_train84.50 10689.23 14468.76 11891.94 10175.37 9876.64 18891.51 9754.29 22694.91 10078.44 10183.78 17989.83 208
V4279.38 16678.24 17082.83 17281.10 31765.50 18385.55 21389.82 16371.57 17078.21 15486.12 24260.66 18293.18 17575.64 12875.46 28189.81 210
MAR-MVS81.84 10780.70 11785.27 8291.32 9071.53 6089.82 8190.92 13469.77 20278.50 14786.21 24062.36 15194.52 11465.36 22092.05 8489.77 211
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DIV-MVS_self_test77.72 20676.76 20680.58 22582.48 29660.48 26683.09 26387.86 22169.22 21374.38 23885.24 25962.10 15691.53 23171.09 16575.40 28389.74 212
cl____77.72 20676.76 20680.58 22582.49 29560.48 26683.09 26387.87 22069.22 21374.38 23885.22 26062.10 15691.53 23171.09 16575.41 28289.73 213
miper_ehance_all_eth78.59 18477.76 18381.08 21682.66 29161.56 25383.65 25389.15 18568.87 22575.55 21183.79 28066.49 10192.03 21673.25 15076.39 26689.64 214
anonymousdsp78.60 18377.15 19682.98 16780.51 32367.08 15487.24 16589.53 17165.66 26075.16 22587.19 21052.52 23792.25 20977.17 11579.34 23489.61 215
FMVSNet278.20 19377.21 19581.20 21287.60 19962.89 23887.47 15889.02 19071.63 16775.29 22387.28 20454.80 21991.10 24462.38 24179.38 23389.61 215
baseline176.98 22076.75 20877.66 27488.13 18155.66 32285.12 22181.89 30173.04 14976.79 18388.90 16262.43 15087.78 29563.30 23471.18 32189.55 217
FMVSNet377.88 20376.85 20380.97 21886.84 21862.36 24186.52 18888.77 19971.13 17575.34 21986.66 22754.07 22991.10 24462.72 23779.57 22989.45 218
miper_enhance_ethall77.87 20476.86 20280.92 21981.65 30561.38 25582.68 26788.98 19265.52 26275.47 21282.30 29865.76 11392.00 21872.95 15376.39 26689.39 219
cascas76.72 22474.64 23482.99 16685.78 23165.88 17582.33 27189.21 18260.85 30872.74 25081.02 30947.28 29393.75 14967.48 20185.02 16689.34 220
Fast-Effi-MVS+-dtu78.02 19976.49 21282.62 18283.16 27866.96 15986.94 17287.45 23072.45 15371.49 26584.17 27354.79 22291.58 22967.61 19980.31 22389.30 221
IB-MVS68.01 1575.85 23773.36 24983.31 14884.76 24766.03 16983.38 25985.06 25970.21 19469.40 28881.05 30845.76 30594.66 11165.10 22375.49 27889.25 222
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90076.50 22675.55 22279.33 25089.52 12656.99 30385.83 20783.23 28773.94 13176.32 19587.12 21251.89 25191.95 21948.33 32983.75 18189.07 223
tfpn200view976.42 22975.37 22879.55 24989.13 14857.65 29585.17 21883.60 27873.41 14476.45 19086.39 23752.12 24491.95 21948.33 32983.75 18189.07 223
xiu_mvs_v1_base_debu80.80 13179.72 13584.03 12987.35 20570.19 9085.56 21088.77 19969.06 21981.83 10288.16 18450.91 26092.85 18878.29 10587.56 13689.06 225
xiu_mvs_v1_base80.80 13179.72 13584.03 12987.35 20570.19 9085.56 21088.77 19969.06 21981.83 10288.16 18450.91 26092.85 18878.29 10587.56 13689.06 225
xiu_mvs_v1_base_debi80.80 13179.72 13584.03 12987.35 20570.19 9085.56 21088.77 19969.06 21981.83 10288.16 18450.91 26092.85 18878.29 10587.56 13689.06 225
EPNet_dtu75.46 24174.86 23277.23 28382.57 29354.60 32686.89 17483.09 29171.64 16666.25 31785.86 24655.99 21488.04 29254.92 29986.55 15289.05 228
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs177.25 21676.68 21078.93 25684.22 25558.62 28186.41 18988.36 21071.37 17373.31 24488.01 19061.22 17389.15 27664.24 22873.01 30989.03 229
PVSNet_Blended80.98 12380.34 12482.90 17088.85 15565.40 18484.43 24092.00 9767.62 23778.11 15785.05 26566.02 10994.27 12071.52 16189.50 11589.01 230
PAPM77.68 20876.40 21581.51 20287.29 21161.85 24983.78 25189.59 17064.74 27071.23 26688.70 16662.59 14693.66 15352.66 30887.03 14589.01 230
WTY-MVS75.65 23975.68 22075.57 29586.40 22456.82 30577.92 31682.40 29765.10 26576.18 19987.72 19263.13 14180.90 33560.31 26081.96 20489.00 232
无先验87.48 15788.98 19260.00 31494.12 12967.28 20388.97 233
GSMVS88.96 234
sam_mvs151.32 25788.96 234
SCA74.22 25172.33 25879.91 23884.05 25962.17 24579.96 29579.29 32666.30 25272.38 25680.13 31851.95 24988.60 28559.25 26877.67 24888.96 234
miper_lstm_enhance74.11 25273.11 25277.13 28480.11 32659.62 27372.23 33886.92 23966.76 24470.40 27382.92 28956.93 21182.92 32769.06 18772.63 31188.87 237
ACMM73.20 880.78 13479.84 13283.58 14089.31 13968.37 13089.99 7891.60 11470.28 19277.25 17389.66 14153.37 23493.53 15974.24 13982.85 19488.85 238
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs674.69 24773.39 24878.61 26081.38 31157.48 29886.64 18387.95 21864.99 26970.18 27686.61 22850.43 26789.52 26962.12 24570.18 32588.83 239
原ACMM184.35 11493.01 6468.79 11692.44 7563.96 28381.09 11691.57 9666.06 10895.45 7367.19 20694.82 5188.81 240
CNLPA78.08 19676.79 20581.97 19490.40 10671.07 6987.59 15584.55 26566.03 25672.38 25689.64 14257.56 20386.04 30659.61 26583.35 18788.79 241
K. test v371.19 27768.51 28579.21 25383.04 28157.78 29484.35 24376.91 33972.90 15262.99 33682.86 29139.27 33691.09 24661.65 25052.66 35888.75 242
旧先验191.96 8265.79 17786.37 24693.08 6969.31 7992.74 7588.74 243
PatchmatchNetpermissive73.12 26471.33 26778.49 26483.18 27660.85 26079.63 29778.57 32864.13 27771.73 26279.81 32351.20 25885.97 30757.40 28776.36 26988.66 244
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SixPastTwentyTwo73.37 25971.26 26979.70 24385.08 24557.89 29185.57 20983.56 28071.03 17865.66 31985.88 24542.10 32692.57 19459.11 27063.34 34488.65 245
PS-MVSNAJ81.69 11181.02 11383.70 13889.51 12768.21 13584.28 24490.09 15770.79 18281.26 11585.62 25263.15 13894.29 11875.62 12988.87 12188.59 246
xiu_mvs_v2_base81.69 11181.05 11283.60 13989.15 14768.03 13884.46 23890.02 15870.67 18581.30 11486.53 23463.17 13794.19 12675.60 13088.54 12688.57 247
DWT-MVSNet_test73.70 25671.86 26179.21 25382.91 28558.94 27782.34 27082.17 29865.21 26371.05 26978.31 33244.21 31390.17 26063.29 23577.28 25088.53 248
CostFormer75.24 24573.90 24479.27 25182.65 29258.27 28480.80 28382.73 29561.57 30375.33 22283.13 28855.52 21591.07 24764.98 22478.34 24388.45 249
lessismore_v078.97 25581.01 31857.15 30165.99 36361.16 34182.82 29239.12 33791.34 23759.67 26446.92 36388.43 250
OpenMVScopyleft72.83 1079.77 15378.33 16884.09 12385.17 24069.91 9490.57 6290.97 13366.70 24572.17 25891.91 8654.70 22393.96 13361.81 24990.95 9888.41 251
OurMVSNet-221017-074.26 25072.42 25779.80 24183.76 26459.59 27485.92 20386.64 24166.39 25166.96 30687.58 19639.46 33591.60 22865.76 21869.27 32788.22 252
LS3D76.95 22174.82 23383.37 14790.45 10467.36 15189.15 9986.94 23861.87 30269.52 28790.61 12051.71 25494.53 11346.38 34186.71 15088.21 253
XVG-ACMP-BASELINE76.11 23474.27 24181.62 19983.20 27564.67 19783.60 25689.75 16669.75 20371.85 26187.09 21332.78 35492.11 21469.99 17780.43 22288.09 254
bset_n11_16_dypcd77.12 21775.47 22382.06 19081.12 31665.99 17181.37 28283.20 28969.94 19876.09 20383.38 28647.75 29092.26 20878.51 9977.91 24587.95 255
tpm273.26 26271.46 26478.63 25983.34 27156.71 30880.65 28780.40 31756.63 33973.55 24282.02 30351.80 25391.24 23956.35 29578.42 24287.95 255
MDTV_nov1_ep13_2view37.79 36875.16 32955.10 34466.53 31249.34 27953.98 30287.94 257
Patchmatch-test64.82 31763.24 31769.57 33079.42 33749.82 35463.49 35969.05 35951.98 35259.95 34580.13 31850.91 26070.98 36340.66 35573.57 30387.90 258
PLCcopyleft70.83 1178.05 19876.37 21683.08 16191.88 8567.80 14188.19 13789.46 17364.33 27669.87 28488.38 17753.66 23293.58 15458.86 27382.73 19687.86 259
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm72.37 27271.71 26374.35 30782.19 30052.00 34279.22 30277.29 33664.56 27272.95 24983.68 28351.35 25683.26 32658.33 27975.80 27387.81 260
Patchmatch-RL test70.24 28667.78 29777.61 27677.43 34459.57 27571.16 34070.33 35362.94 29168.65 29372.77 35150.62 26485.49 31069.58 18266.58 33687.77 261
F-COLMAP76.38 23174.33 24082.50 18489.28 14166.95 16088.41 12689.03 18964.05 28066.83 30988.61 17046.78 29692.89 18757.48 28578.55 23887.67 262
Baseline_NR-MVSNet78.15 19578.33 16877.61 27685.79 23056.21 31786.78 17985.76 25373.60 13877.93 16187.57 19765.02 11888.99 27867.14 20775.33 28587.63 263
CL-MVSNet_self_test72.37 27271.46 26475.09 30079.49 33653.53 33480.76 28585.01 26169.12 21770.51 27182.05 30257.92 19984.13 31952.27 30966.00 33887.60 264
ACMH+68.96 1476.01 23574.01 24282.03 19288.60 16865.31 18888.86 10787.55 22670.25 19367.75 29887.47 20141.27 32993.19 17458.37 27875.94 27287.60 264
131476.53 22575.30 23080.21 23383.93 26162.32 24384.66 23088.81 19760.23 31270.16 27884.07 27555.30 21790.73 25367.37 20283.21 18987.59 266
API-MVS81.99 10581.23 10984.26 11890.94 9570.18 9391.10 5389.32 17671.51 17178.66 14488.28 18065.26 11595.10 9464.74 22691.23 9687.51 267
AdaColmapbinary80.58 13979.42 14184.06 12593.09 6168.91 11589.36 9188.97 19469.27 21175.70 20989.69 14057.20 20995.77 6063.06 23688.41 12987.50 268
PVSNet_BlendedMVS80.60 13780.02 12882.36 18788.85 15565.40 18486.16 19792.00 9769.34 21078.11 15786.09 24366.02 10994.27 12071.52 16182.06 20387.39 269
sss73.60 25773.64 24773.51 31282.80 28755.01 32476.12 32281.69 30462.47 29774.68 23585.85 24757.32 20678.11 34560.86 25780.93 21387.39 269
IterMVS-SCA-FT75.43 24273.87 24580.11 23582.69 29064.85 19481.57 27983.47 28369.16 21670.49 27284.15 27451.95 24988.15 29069.23 18472.14 31587.34 271
PVSNet64.34 1872.08 27470.87 27375.69 29386.21 22656.44 31274.37 33480.73 31162.06 30170.17 27782.23 30042.86 32083.31 32554.77 30084.45 17487.32 272
新几何183.42 14493.13 5870.71 8085.48 25557.43 33481.80 10591.98 8563.28 13392.27 20764.60 22792.99 7187.27 273
112180.84 12679.77 13384.05 12693.11 6070.78 7984.66 23085.42 25657.37 33581.76 10992.02 8463.41 13194.12 12967.28 20392.93 7287.26 274
TR-MVS77.44 21176.18 21781.20 21288.24 17963.24 22984.61 23486.40 24567.55 23877.81 16286.48 23554.10 22893.15 17657.75 28482.72 19787.20 275
TransMVSNet (Re)75.39 24474.56 23677.86 27085.50 23657.10 30286.78 17986.09 25172.17 16071.53 26487.34 20363.01 14289.31 27356.84 29261.83 34687.17 276
ACMH67.68 1675.89 23673.93 24381.77 19788.71 16566.61 16288.62 11989.01 19169.81 20066.78 31086.70 22541.95 32891.51 23355.64 29778.14 24487.17 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
KD-MVS_self_test68.81 29567.59 30072.46 31874.29 35645.45 36077.93 31587.00 23763.12 28663.99 33178.99 32942.32 32384.77 31656.55 29464.09 34387.16 278
EPMVS69.02 29468.16 28971.59 32079.61 33449.80 35577.40 31866.93 36262.82 29370.01 27979.05 32545.79 30477.86 34756.58 29375.26 28887.13 279
CR-MVSNet73.37 25971.27 26879.67 24581.32 31465.19 18975.92 32480.30 31859.92 31572.73 25181.19 30652.50 23886.69 30159.84 26377.71 24687.11 280
RPMNet73.51 25870.49 27482.58 18381.32 31465.19 18975.92 32492.27 8357.60 33372.73 25176.45 34352.30 24195.43 7548.14 33377.71 24687.11 280
XXY-MVS75.41 24375.56 22174.96 30183.59 26657.82 29380.59 28883.87 27666.54 25074.93 23288.31 17963.24 13580.09 33862.16 24476.85 25986.97 282
tpmrst72.39 27072.13 25973.18 31680.54 32249.91 35379.91 29679.08 32763.11 28771.69 26379.95 32055.32 21682.77 32865.66 21973.89 30086.87 283
thres20075.55 24074.47 23878.82 25787.78 19557.85 29283.07 26583.51 28172.44 15575.84 20784.42 27052.08 24691.75 22547.41 33683.64 18586.86 284
ITE_SJBPF78.22 26681.77 30460.57 26483.30 28569.25 21267.54 30087.20 20936.33 34787.28 29954.34 30174.62 29486.80 285
test22291.50 8868.26 13384.16 24583.20 28954.63 34679.74 12991.63 9458.97 19391.42 9286.77 286
MIMVSNet70.69 28169.30 28074.88 30284.52 25056.35 31575.87 32679.42 32564.59 27167.76 29782.41 29641.10 33081.54 33246.64 34081.34 20986.75 287
BH-untuned79.47 16078.60 15982.05 19189.19 14665.91 17486.07 19988.52 20872.18 15975.42 21687.69 19461.15 17493.54 15860.38 25986.83 14886.70 288
LTVRE_ROB69.57 1376.25 23274.54 23781.41 20488.60 16864.38 20579.24 30189.12 18870.76 18469.79 28687.86 19149.09 28293.20 17256.21 29680.16 22486.65 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
testdata79.97 23790.90 9664.21 20784.71 26259.27 32185.40 4892.91 7062.02 15889.08 27768.95 18891.37 9386.63 290
MIMVSNet168.58 29866.78 30573.98 31080.07 32751.82 34380.77 28484.37 26664.40 27459.75 34682.16 30136.47 34683.63 32342.73 35170.33 32486.48 291
tfpnnormal74.39 24873.16 25178.08 26886.10 22758.05 28684.65 23387.53 22770.32 19171.22 26785.63 25154.97 21889.86 26343.03 35075.02 29086.32 292
D2MVS74.82 24673.21 25079.64 24679.81 33062.56 24080.34 29187.35 23164.37 27568.86 29182.66 29446.37 29890.10 26167.91 19781.24 21186.25 293
tpm cat170.57 28268.31 28777.35 28082.41 29757.95 29078.08 31380.22 32052.04 35168.54 29577.66 33852.00 24887.84 29451.77 31072.07 31686.25 293
CVMVSNet72.99 26672.58 25574.25 30884.28 25350.85 35086.41 18983.45 28444.56 35673.23 24687.54 19949.38 27885.70 30865.90 21678.44 24186.19 295
AllTest70.96 27968.09 29179.58 24785.15 24163.62 21684.58 23579.83 32262.31 29860.32 34386.73 21832.02 35588.96 28150.28 31971.57 31986.15 296
TestCases79.58 24785.15 24163.62 21679.83 32262.31 29860.32 34386.73 21832.02 35588.96 28150.28 31971.57 31986.15 296
test-LLR72.94 26772.43 25674.48 30581.35 31258.04 28778.38 30977.46 33366.66 24669.95 28279.00 32748.06 28879.24 33966.13 21284.83 16886.15 296
test-mter71.41 27670.39 27774.48 30581.35 31258.04 28778.38 30977.46 33360.32 31169.95 28279.00 32736.08 34879.24 33966.13 21284.83 16886.15 296
IterMVS74.29 24972.94 25378.35 26581.53 30863.49 22281.58 27882.49 29668.06 23569.99 28183.69 28251.66 25585.54 30965.85 21771.64 31886.01 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS76.78 22374.57 23583.42 14493.29 5469.46 10788.55 12283.70 27763.98 28270.20 27588.89 16354.01 23094.80 10746.66 33881.88 20686.01 300
ppachtmachnet_test70.04 28867.34 30178.14 26779.80 33161.13 25679.19 30380.59 31359.16 32265.27 32279.29 32446.75 29787.29 29849.33 32566.72 33486.00 302
Patchmtry70.74 28069.16 28275.49 29780.72 31954.07 33174.94 33380.30 31858.34 32770.01 27981.19 30652.50 23886.54 30253.37 30571.09 32285.87 303
ambc75.24 29973.16 36150.51 35263.05 36087.47 22964.28 32877.81 33717.80 36789.73 26657.88 28360.64 34985.49 304
UnsupCasMVSNet_eth67.33 30465.99 30771.37 32273.48 35951.47 34775.16 32985.19 25865.20 26460.78 34280.93 31342.35 32277.20 34957.12 28953.69 35785.44 305
PatchT68.46 30067.85 29470.29 32880.70 32043.93 36372.47 33774.88 34460.15 31370.55 27076.57 34249.94 27281.59 33150.58 31574.83 29285.34 306
Anonymous2024052168.80 29667.22 30273.55 31174.33 35554.11 33083.18 26185.61 25458.15 32861.68 33980.94 31130.71 35881.27 33457.00 29173.34 30885.28 307
ADS-MVSNet266.20 31463.33 31674.82 30379.92 32858.75 28067.55 35375.19 34353.37 34865.25 32375.86 34442.32 32380.53 33741.57 35368.91 32985.18 308
ADS-MVSNet64.36 31862.88 32068.78 33579.92 32847.17 35867.55 35371.18 35253.37 34865.25 32375.86 34442.32 32373.99 36141.57 35368.91 32985.18 308
FMVSNet569.50 29167.96 29274.15 30982.97 28455.35 32380.01 29482.12 30062.56 29663.02 33481.53 30536.92 34581.92 33048.42 32874.06 29885.17 310
pmmvs571.55 27570.20 27875.61 29477.83 34256.39 31381.74 27680.89 30857.76 33167.46 30184.49 26949.26 28185.32 31257.08 29075.29 28785.11 311
CMPMVSbinary51.72 2170.19 28768.16 28976.28 28973.15 36257.55 29779.47 29983.92 27448.02 35556.48 35484.81 26643.13 31886.42 30462.67 24081.81 20784.89 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi66.67 30866.53 30667.08 33975.62 35141.69 36675.93 32376.50 34066.11 25365.20 32586.59 22935.72 34974.71 35843.71 34873.38 30784.84 313
MSDG73.36 26170.99 27080.49 22784.51 25165.80 17680.71 28686.13 25065.70 25965.46 32083.74 28144.60 31090.91 24951.13 31476.89 25784.74 314
pmmvs474.03 25471.91 26080.39 22881.96 30268.32 13181.45 28082.14 29959.32 32069.87 28485.13 26252.40 24088.13 29160.21 26174.74 29384.73 315
MVS_030472.48 26970.89 27277.24 28282.20 29959.68 27284.11 24783.49 28267.10 24166.87 30880.59 31435.00 35187.40 29759.07 27179.58 22884.63 316
gg-mvs-nofinetune69.95 28967.96 29275.94 29183.07 27954.51 32877.23 31970.29 35463.11 28770.32 27462.33 35743.62 31688.69 28453.88 30387.76 13384.62 317
BH-w/o78.21 19277.33 19480.84 22088.81 15965.13 19184.87 22687.85 22269.75 20374.52 23684.74 26861.34 16993.11 17958.24 28085.84 16384.27 318
MVS78.19 19476.99 20081.78 19685.66 23266.99 15584.66 23090.47 14455.08 34572.02 26085.27 25863.83 12894.11 13166.10 21489.80 11384.24 319
COLMAP_ROBcopyleft66.92 1773.01 26570.41 27680.81 22187.13 21465.63 18088.30 13284.19 27262.96 29063.80 33387.69 19438.04 34292.56 19546.66 33874.91 29184.24 319
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet61.73 32161.73 32361.70 34272.74 36324.50 37669.16 34978.03 33061.40 30456.72 35375.53 34738.42 33976.48 35245.95 34357.67 35284.13 321
TESTMET0.1,169.89 29069.00 28372.55 31779.27 33956.85 30478.38 30974.71 34757.64 33268.09 29677.19 34037.75 34376.70 35063.92 22984.09 17784.10 322
our_test_369.14 29367.00 30375.57 29579.80 33158.80 27977.96 31477.81 33159.55 31862.90 33778.25 33447.43 29183.97 32051.71 31167.58 33383.93 323
tpmvs71.09 27869.29 28176.49 28882.04 30156.04 31878.92 30681.37 30764.05 28067.18 30578.28 33349.74 27589.77 26449.67 32472.37 31283.67 324
test20.0367.45 30366.95 30468.94 33275.48 35244.84 36277.50 31777.67 33266.66 24663.01 33583.80 27947.02 29478.40 34342.53 35268.86 33183.58 325
test0.0.03 168.00 30167.69 29868.90 33377.55 34347.43 35775.70 32772.95 35166.66 24666.56 31182.29 29948.06 28875.87 35444.97 34774.51 29583.41 326
Anonymous2023120668.60 29767.80 29671.02 32680.23 32550.75 35178.30 31280.47 31556.79 33866.11 31882.63 29546.35 29978.95 34143.62 34975.70 27483.36 327
EU-MVSNet68.53 29967.61 29971.31 32578.51 34147.01 35984.47 23684.27 27042.27 35766.44 31684.79 26740.44 33383.76 32158.76 27568.54 33283.17 328
dp66.80 30665.43 30870.90 32779.74 33348.82 35675.12 33174.77 34559.61 31764.08 33077.23 33942.89 31980.72 33648.86 32766.58 33683.16 329
pmmvs-eth3d70.50 28467.83 29578.52 26377.37 34566.18 16881.82 27481.51 30558.90 32463.90 33280.42 31642.69 32186.28 30558.56 27665.30 34083.11 330
YYNet165.03 31562.91 31971.38 32175.85 34956.60 31069.12 35074.66 34857.28 33654.12 35677.87 33645.85 30374.48 35949.95 32261.52 34883.05 331
MDA-MVSNet-bldmvs66.68 30763.66 31575.75 29279.28 33860.56 26573.92 33578.35 32964.43 27350.13 36079.87 32244.02 31583.67 32246.10 34256.86 35383.03 332
MDA-MVSNet_test_wron65.03 31562.92 31871.37 32275.93 34856.73 30669.09 35174.73 34657.28 33654.03 35777.89 33545.88 30274.39 36049.89 32361.55 34782.99 333
USDC70.33 28568.37 28676.21 29080.60 32156.23 31679.19 30386.49 24360.89 30761.29 34085.47 25531.78 35789.47 27153.37 30576.21 27082.94 334
OpenMVS_ROBcopyleft64.09 1970.56 28368.19 28877.65 27580.26 32459.41 27685.01 22382.96 29358.76 32565.43 32182.33 29737.63 34491.23 24045.34 34676.03 27182.32 335
JIA-IIPM66.32 31162.82 32176.82 28677.09 34661.72 25265.34 35675.38 34258.04 33064.51 32762.32 35842.05 32786.51 30351.45 31369.22 32882.21 336
EG-PatchMatch MVS74.04 25371.82 26280.71 22384.92 24667.42 14885.86 20588.08 21566.04 25564.22 32983.85 27735.10 35092.56 19557.44 28680.83 21582.16 337
MVP-Stereo76.12 23374.46 23981.13 21585.37 23869.79 9784.42 24187.95 21865.03 26767.46 30185.33 25753.28 23591.73 22758.01 28283.27 18881.85 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TDRefinement67.49 30264.34 31176.92 28573.47 36061.07 25784.86 22782.98 29259.77 31658.30 34985.13 26226.06 36087.89 29347.92 33560.59 35081.81 339
GG-mvs-BLEND75.38 29881.59 30755.80 32079.32 30069.63 35667.19 30473.67 35043.24 31788.90 28350.41 31684.50 17281.45 340
KD-MVS_2432*160066.22 31263.89 31373.21 31375.47 35353.42 33670.76 34384.35 26764.10 27866.52 31378.52 33034.55 35284.98 31350.40 31750.33 36181.23 341
miper_refine_blended66.22 31263.89 31373.21 31375.47 35353.42 33670.76 34384.35 26764.10 27866.52 31378.52 33034.55 35284.98 31350.40 31750.33 36181.23 341
test_040272.79 26870.44 27579.84 24088.13 18165.99 17185.93 20284.29 26965.57 26167.40 30385.49 25446.92 29592.61 19335.88 35974.38 29680.94 343
UnsupCasMVSNet_bld63.70 32061.53 32470.21 32973.69 35851.39 34872.82 33681.89 30155.63 34357.81 35071.80 35338.67 33878.61 34249.26 32652.21 35980.63 344
LCM-MVSNet54.25 32649.68 33267.97 33753.73 37145.28 36166.85 35580.78 31035.96 36339.45 36362.23 3598.70 37578.06 34648.24 33251.20 36080.57 345
N_pmnet52.79 32853.26 32951.40 34878.99 3407.68 37969.52 3463.89 37951.63 35357.01 35274.98 34840.83 33265.96 36637.78 35864.67 34180.56 346
TinyColmap67.30 30564.81 30974.76 30481.92 30356.68 30980.29 29281.49 30660.33 31056.27 35583.22 28724.77 36187.66 29645.52 34469.47 32679.95 347
PM-MVS66.41 31064.14 31273.20 31573.92 35756.45 31178.97 30564.96 36663.88 28464.72 32680.24 31719.84 36683.44 32466.24 21164.52 34279.71 348
ANet_high50.57 33146.10 33463.99 34048.67 37439.13 36770.99 34280.85 30961.39 30531.18 36557.70 36217.02 36873.65 36231.22 36115.89 37179.18 349
LF4IMVS64.02 31962.19 32269.50 33170.90 36453.29 33976.13 32177.18 33752.65 35058.59 34780.98 31023.55 36376.52 35153.06 30766.66 33578.68 350
PatchMatch-RL72.38 27170.90 27176.80 28788.60 16867.38 15079.53 29876.17 34162.75 29469.36 28982.00 30445.51 30784.89 31553.62 30480.58 21978.12 351
MS-PatchMatch73.83 25572.67 25477.30 28183.87 26266.02 17081.82 27484.66 26361.37 30668.61 29482.82 29247.29 29288.21 28959.27 26784.32 17577.68 352
DSMNet-mixed57.77 32556.90 32760.38 34367.70 36635.61 36969.18 34853.97 37132.30 36657.49 35179.88 32140.39 33468.57 36538.78 35772.37 31276.97 353
CHOSEN 280x42066.51 30964.71 31071.90 31981.45 30963.52 22157.98 36168.95 36053.57 34762.59 33876.70 34146.22 30075.29 35755.25 29879.68 22776.88 354
PMMVS69.34 29268.67 28471.35 32475.67 35062.03 24675.17 32873.46 34950.00 35468.68 29279.05 32552.07 24778.13 34461.16 25582.77 19573.90 355
pmmvs357.79 32454.26 32868.37 33664.02 36856.72 30775.12 33165.17 36440.20 35952.93 35869.86 35520.36 36575.48 35645.45 34555.25 35672.90 356
PVSNet_057.27 2061.67 32259.27 32568.85 33479.61 33457.44 29968.01 35273.44 35055.93 34258.54 34870.41 35444.58 31177.55 34847.01 33735.91 36471.55 357
PMMVS240.82 33438.86 33746.69 34953.84 37016.45 37748.61 36449.92 37237.49 36231.67 36460.97 3608.14 37656.42 36828.42 36330.72 36667.19 358
new_pmnet50.91 33050.29 33152.78 34768.58 36534.94 37163.71 35856.63 37039.73 36044.95 36165.47 35621.93 36458.48 36734.98 36056.62 35464.92 359
MVS-HIRNet59.14 32357.67 32663.57 34181.65 30543.50 36471.73 33965.06 36539.59 36151.43 35957.73 36138.34 34082.58 32939.53 35673.95 29964.62 360
test_method31.52 33629.28 34038.23 35127.03 3786.50 38020.94 36962.21 3694.05 37222.35 37052.50 36413.33 37047.58 37127.04 36534.04 36560.62 361
EGC-MVSNET52.07 32947.05 33367.14 33883.51 26860.71 26280.50 28967.75 3610.07 3740.43 37575.85 34624.26 36281.54 33228.82 36262.25 34559.16 362
FPMVS53.68 32751.64 33059.81 34465.08 36751.03 34969.48 34769.58 35741.46 35840.67 36272.32 35216.46 36970.00 36424.24 36665.42 33958.40 363
PMVScopyleft37.38 2244.16 33340.28 33655.82 34540.82 37642.54 36565.12 35763.99 36734.43 36424.48 36757.12 3633.92 37776.17 35317.10 36955.52 35548.75 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 33825.89 34243.81 35044.55 37535.46 37028.87 36839.07 37518.20 36918.58 37140.18 3662.68 37847.37 37217.07 37023.78 36848.60 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 33241.86 33555.16 34677.03 34751.52 34632.50 36780.52 31432.46 36527.12 36635.02 3679.52 37475.50 35522.31 36760.21 35138.45 366
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 35440.17 37726.90 37424.59 37817.44 37023.95 36848.61 3659.77 37326.48 37318.06 36824.47 36728.83 367
E-PMN31.77 33530.64 33835.15 35252.87 37227.67 37357.09 36247.86 37324.64 36716.40 37233.05 36811.23 37254.90 36914.46 37118.15 36922.87 368
EMVS30.81 33729.65 33934.27 35350.96 37325.95 37556.58 36346.80 37424.01 36815.53 37330.68 36912.47 37154.43 37012.81 37217.05 37022.43 369
tmp_tt18.61 34021.40 34310.23 3564.82 37910.11 37834.70 36630.74 3771.48 37323.91 36926.07 37028.42 35913.41 37527.12 36415.35 3727.17 370
wuyk23d16.82 34115.94 34419.46 35558.74 36931.45 37239.22 3653.74 3806.84 3716.04 3742.70 3741.27 37924.29 37410.54 37314.40 3732.63 371
test1236.12 3438.11 3460.14 3570.06 3810.09 38171.05 3410.03 3820.04 3760.25 3771.30 3760.05 3800.03 3770.21 3750.01 3750.29 372
testmvs6.04 3448.02 3470.10 3580.08 3800.03 38269.74 3450.04 3810.05 3750.31 3761.68 3750.02 3810.04 3760.24 3740.02 3740.25 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k19.96 33926.61 3410.00 3590.00 3820.00 3830.00 37089.26 1800.00 3770.00 37888.61 17061.62 1620.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas5.26 3457.02 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37763.15 1380.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.23 3429.64 3450.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37886.72 2200.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS195.00 1072.39 4295.06 193.84 1874.49 11891.30 15
test_one_060195.07 771.46 6194.14 778.27 3592.05 1195.74 680.83 11
eth-test20.00 382
eth-test0.00 382
ZD-MVS94.38 2772.22 4892.67 6770.98 17987.75 3194.07 4574.01 3896.70 2684.66 3994.84 48
test_241102_ONE95.30 270.98 7094.06 1277.17 5593.10 195.39 1182.99 197.27 10
9.1488.26 1592.84 6891.52 4594.75 173.93 13288.57 2494.67 1975.57 2395.79 5986.77 2395.76 28
save fliter93.80 4472.35 4590.47 6691.17 12974.31 122
test072695.27 571.25 6393.60 694.11 877.33 4992.81 395.79 380.98 9
test_part295.06 872.65 3391.80 13
sam_mvs50.01 270
MTGPAbinary92.02 94
test_post178.90 3075.43 37348.81 28785.44 31159.25 268
test_post5.46 37250.36 26884.24 318
patchmatchnet-post74.00 34951.12 25988.60 285
MTMP92.18 3332.83 376
gm-plane-assit81.40 31053.83 33362.72 29580.94 31192.39 20163.40 233
TEST993.26 5672.96 2688.75 11391.89 10368.44 23285.00 5493.10 6574.36 3395.41 77
test_893.13 5872.57 3688.68 11891.84 10668.69 22884.87 6093.10 6574.43 3095.16 89
agg_prior92.85 6671.94 5491.78 10984.41 6994.93 98
test_prior472.60 3589.01 102
test_prior288.85 10875.41 9684.91 5693.54 5474.28 3483.31 5595.86 22
旧先验286.56 18658.10 32987.04 3588.98 27974.07 140
新几何286.29 194
原ACMM286.86 175
testdata291.01 24862.37 242
segment_acmp73.08 43
testdata184.14 24675.71 90
plane_prior790.08 11268.51 129
plane_prior689.84 12068.70 12460.42 186
plane_prior491.00 114
plane_prior368.60 12778.44 3178.92 139
plane_prior291.25 4979.12 24
plane_prior189.90 119
plane_prior68.71 12290.38 7077.62 4086.16 158
n20.00 383
nn0.00 383
door-mid69.98 355
test1192.23 86
door69.44 358
HQP5-MVS66.98 156
HQP-NCC89.33 13489.17 9576.41 7477.23 175
ACMP_Plane89.33 13489.17 9576.41 7477.23 175
BP-MVS77.47 111
HQP3-MVS92.19 8985.99 161
HQP2-MVS60.17 189
NP-MVS89.62 12268.32 13190.24 125
MDTV_nov1_ep1369.97 27983.18 27653.48 33577.10 32080.18 32160.45 30969.33 29080.44 31548.89 28686.90 30051.60 31278.51 240
ACMMP++_ref81.95 205
ACMMP++81.25 210
Test By Simon64.33 123