This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
Regformer-286.63 4386.53 4286.95 5189.33 13471.24 6788.43 12392.05 9382.50 186.88 3690.09 12974.45 2995.61 6384.38 4390.63 10194.01 48
UA-Net85.08 6884.96 6985.45 7892.07 8168.07 13789.78 8490.86 13782.48 284.60 6793.20 6369.35 7795.22 8771.39 16490.88 9993.07 92
Regformer-186.41 4786.33 4486.64 5889.33 13470.93 7588.43 12391.39 12282.14 386.65 3890.09 12974.39 3295.01 9783.97 5190.63 10193.97 50
CANet86.45 4486.10 5187.51 4090.09 11170.94 7489.70 8792.59 7281.78 481.32 11191.43 10170.34 6697.23 1284.26 4693.36 7094.37 32
Regformer-485.68 5885.45 5886.35 6288.95 15369.67 10088.29 13391.29 12481.73 585.36 4990.01 13272.62 4795.35 8483.28 5887.57 13494.03 46
NCCC88.06 1488.01 1888.24 1094.41 2473.62 1191.22 5192.83 6181.50 685.79 4593.47 5973.02 4597.00 1784.90 3394.94 4494.10 42
EPNet83.72 7882.92 8686.14 6984.22 25569.48 10491.05 5485.27 25781.30 776.83 18291.65 9266.09 10795.56 6676.00 12693.85 6693.38 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Regformer-385.23 6485.07 6685.70 7688.95 15369.01 11288.29 13389.91 16280.95 885.01 5390.01 13272.45 4894.19 12682.50 7187.57 13493.90 54
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 990.51 6393.00 4780.90 988.06 2894.06 4676.43 1696.84 2088.48 1495.99 1994.34 34
3Dnovator+77.84 485.48 5984.47 7488.51 691.08 9273.49 1793.18 1193.78 2180.79 1076.66 18793.37 6060.40 18896.75 2577.20 11493.73 6895.29 2
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18587.85 19062.33 24287.74 15291.33 12380.55 1177.99 16089.86 13565.23 11692.62 19267.05 20875.24 28992.30 119
MSP-MVS89.51 489.91 588.30 994.28 3273.46 1892.90 1694.11 880.27 1291.35 1494.16 4178.35 1396.77 2389.59 394.22 6494.67 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2592.85 6080.26 1387.78 3094.27 3675.89 1996.81 2287.45 1996.44 993.05 93
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 16988.46 17363.46 22387.13 16692.37 7980.19 1478.38 15089.14 15671.66 5693.05 18270.05 17576.46 26492.25 121
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 8072.96 2693.73 593.67 2280.19 1488.10 2794.80 1673.76 3997.11 1387.51 1895.82 2494.90 8
Skip Steuart: Steuart Systems R&D Blog.
EI-MVSNet-Vis-set84.19 7483.81 7685.31 8088.18 18067.85 14087.66 15389.73 16780.05 1682.95 9089.59 14570.74 6394.82 10680.66 8684.72 17093.28 84
ETV-MVS84.90 7284.67 7385.59 7789.39 13268.66 12688.74 11592.64 7179.97 1784.10 7685.71 24869.32 7895.38 8080.82 8391.37 9392.72 103
EI-MVSNet-UG-set83.81 7683.38 7985.09 8787.87 18967.53 14687.44 15989.66 16979.74 1882.23 9989.41 15470.24 6994.74 10979.95 9183.92 17892.99 98
zzz-MVS87.53 2487.41 2787.90 2194.18 3774.25 590.23 7392.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 85
MTAPA87.23 3387.00 3487.90 2194.18 3774.25 586.58 18592.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 85
DROMVSNet86.01 5186.38 4384.91 9589.31 13966.27 16792.32 2893.63 2379.37 2184.17 7591.88 8869.04 8395.43 7583.93 5293.77 6793.01 96
XVS87.18 3486.91 3788.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8394.17 4067.45 9396.60 3483.06 6094.50 5694.07 44
X-MVStestdata80.37 14377.83 17988.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8312.47 37167.45 9396.60 3483.06 6094.50 5694.07 44
HQP_MVS83.64 7983.14 8185.14 8590.08 11268.71 12291.25 4992.44 7579.12 2478.92 13991.00 11460.42 18695.38 8078.71 9786.32 15591.33 147
plane_prior291.25 4979.12 24
IS-MVSNet83.15 8782.81 8784.18 12089.94 11863.30 22791.59 4288.46 20979.04 2679.49 13292.16 8265.10 11794.28 11967.71 19891.86 8894.95 5
DU-MVS81.12 12280.52 12182.90 17087.80 19263.46 22387.02 17091.87 10579.01 2778.38 15089.07 15965.02 11893.05 18270.05 17576.46 26492.20 123
NR-MVSNet80.23 14579.38 14382.78 17887.80 19263.34 22686.31 19291.09 13279.01 2772.17 25889.07 15967.20 9692.81 19166.08 21575.65 27592.20 123
DELS-MVS85.41 6285.30 6285.77 7588.49 17167.93 13985.52 21793.44 3278.70 2983.63 8589.03 16174.57 2895.71 6280.26 9094.04 6593.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS79.49 15979.22 14980.27 23288.79 16158.35 28285.06 22288.61 20778.56 3077.65 16588.34 17863.81 12990.66 25464.98 22477.22 25291.80 136
plane_prior368.60 12778.44 3178.92 139
UniMVSNet (Re)81.60 11481.11 11183.09 16088.38 17664.41 20487.60 15493.02 4678.42 3278.56 14688.16 18469.78 7393.26 16969.58 18276.49 26391.60 138
DVP-MVS++90.23 191.01 187.89 2494.34 2971.25 6395.06 194.23 578.38 3392.78 495.74 682.45 397.49 389.42 496.68 294.95 5
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 789.42 496.57 794.67 21
test_one_060195.07 771.46 6194.14 778.27 3592.05 1195.74 680.83 11
SD-MVS88.06 1488.50 1386.71 5792.60 7672.71 3091.81 4093.19 4077.87 3690.32 1794.00 4874.83 2793.78 14587.63 1794.27 6393.65 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs85.11 6785.14 6585.01 8987.20 21265.77 17887.75 15192.83 6177.84 3784.36 7292.38 8072.15 5193.93 13981.27 7990.48 10395.33 1
CS-MVS-test85.02 6985.21 6484.46 10889.28 14165.70 17991.16 5293.56 2677.83 3881.80 10589.89 13470.67 6495.61 6380.39 8792.34 8392.06 128
CP-MVSNet78.22 19178.34 16777.84 27187.83 19154.54 32787.94 14591.17 12977.65 3973.48 24388.49 17462.24 15488.43 28762.19 24374.07 29790.55 174
plane_prior68.71 12290.38 7077.62 4086.16 158
baseline84.93 7084.98 6784.80 10087.30 21065.39 18687.30 16392.88 5877.62 4084.04 7892.26 8171.81 5393.96 13381.31 7890.30 10595.03 4
VDD-MVS83.01 9282.36 9384.96 9191.02 9466.40 16488.91 10588.11 21277.57 4284.39 7193.29 6252.19 24393.91 14077.05 11688.70 12494.57 26
MP-MVScopyleft87.71 2187.64 2387.93 2094.36 2873.88 792.71 2192.65 7077.57 4283.84 8094.40 3472.24 5096.28 4185.65 2895.30 4093.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS77.73 20577.69 18677.84 27187.07 21553.91 33287.91 14791.18 12877.56 4473.14 24788.82 16561.23 17289.17 27559.95 26272.37 31290.43 178
OPM-MVS83.50 8182.95 8585.14 8588.79 16170.95 7389.13 10091.52 11677.55 4580.96 11891.75 9060.71 18094.50 11579.67 9386.51 15389.97 203
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5692.24 7869.03 11089.57 8993.39 3577.53 4689.79 1894.12 4378.98 1296.58 3685.66 2795.72 2994.58 24
PS-CasMVS78.01 20078.09 17277.77 27387.71 19654.39 32988.02 14191.22 12677.50 4773.26 24588.64 16960.73 17988.41 28861.88 24773.88 30190.53 175
MSLP-MVS++85.43 6185.76 5584.45 10991.93 8370.24 8790.71 5992.86 5977.46 4884.22 7392.81 7567.16 9792.94 18680.36 8894.35 6190.16 187
DVP-MVScopyleft89.60 390.35 387.33 4595.27 571.25 6393.49 992.73 6577.33 4992.12 995.78 480.98 997.40 789.08 796.41 1293.33 82
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 6393.60 694.11 877.33 4992.81 395.79 380.98 9
SED-MVS90.08 290.85 287.77 2695.30 270.98 7093.57 794.06 1277.24 5193.10 195.72 882.99 197.44 589.07 996.63 494.88 9
test_241102_TWO94.06 1277.24 5192.78 495.72 881.26 897.44 589.07 996.58 694.26 38
3Dnovator76.31 583.38 8582.31 9486.59 6087.94 18872.94 2990.64 6092.14 9177.21 5375.47 21292.83 7358.56 19594.72 11073.24 15192.71 7692.13 126
test_part182.78 9482.08 9884.89 9690.66 10066.97 15890.96 5592.93 5777.19 5480.53 12290.04 13163.44 13095.39 7976.04 12576.90 25692.31 118
test_241102_ONE95.30 270.98 7094.06 1277.17 5593.10 195.39 1182.99 197.27 10
WR-MVS_H78.51 18578.49 16178.56 26188.02 18656.38 31488.43 12392.67 6777.14 5673.89 24187.55 19866.25 10589.24 27458.92 27273.55 30490.06 197
DeepC-MVS79.81 287.08 3786.88 3887.69 3691.16 9172.32 4790.31 7193.94 1777.12 5782.82 9494.23 3972.13 5297.09 1484.83 3695.37 3593.65 70
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test81.52 11582.02 10080.03 23688.42 17555.97 31987.95 14493.42 3477.10 5877.38 17090.98 11669.96 7191.79 22468.46 19484.50 17292.33 116
DTE-MVSNet76.99 21976.80 20477.54 27886.24 22553.06 34087.52 15690.66 13977.08 5972.50 25388.67 16860.48 18589.52 26957.33 28870.74 32390.05 198
LFMVS81.82 10881.23 10983.57 14191.89 8463.43 22589.84 8081.85 30377.04 6083.21 8693.10 6552.26 24293.43 16571.98 15989.95 11293.85 56
UGNet80.83 12879.59 13884.54 10588.04 18568.09 13689.42 9088.16 21176.95 6176.22 19789.46 15049.30 28093.94 13668.48 19390.31 10491.60 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FIs82.07 10382.42 9081.04 21788.80 16058.34 28388.26 13593.49 3076.93 6278.47 14991.04 11169.92 7292.34 20569.87 17984.97 16792.44 115
GST-MVS87.42 2887.26 2987.89 2494.12 3972.97 2592.39 2493.43 3376.89 6384.68 6293.99 5070.67 6496.82 2184.18 4995.01 4293.90 54
mPP-MVS86.67 4286.32 4587.72 3294.41 2473.55 1392.74 1992.22 8776.87 6482.81 9594.25 3866.44 10296.24 4282.88 6494.28 6293.38 79
ZNCC-MVS87.94 1887.85 2088.20 1194.39 2673.33 2093.03 1493.81 2076.81 6585.24 5194.32 3571.76 5496.93 1885.53 2995.79 2594.32 35
VPNet78.69 18178.66 15878.76 25888.31 17855.72 32184.45 23986.63 24276.79 6678.26 15390.55 12159.30 19189.70 26766.63 21077.05 25490.88 162
HFP-MVS87.58 2387.47 2587.94 1794.58 1673.54 1593.04 1293.24 3776.78 6784.91 5694.44 3070.78 6196.61 3284.53 4194.89 4693.66 65
ACMMPR87.44 2687.23 3188.08 1394.64 1373.59 1293.04 1293.20 3976.78 6784.66 6594.52 2368.81 8496.65 2984.53 4194.90 4594.00 49
ACMMPcopyleft85.89 5485.39 5987.38 4493.59 5172.63 3492.74 1993.18 4176.78 6780.73 12093.82 5364.33 12396.29 4082.67 7090.69 10093.23 85
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R87.42 2887.20 3288.09 1294.63 1473.55 1393.03 1493.12 4276.73 7084.45 6894.52 2369.09 8096.70 2684.37 4494.83 5094.03 46
canonicalmvs85.91 5385.87 5486.04 7289.84 12069.44 10890.45 6993.00 4776.70 7188.01 2991.23 10473.28 4193.91 14081.50 7788.80 12294.77 19
CP-MVS87.11 3586.92 3687.68 3794.20 3673.86 893.98 392.82 6476.62 7283.68 8294.46 2767.93 8895.95 5684.20 4894.39 5993.23 85
DeepC-MVS_fast79.65 386.91 3886.62 4187.76 2993.52 5272.37 4491.26 4893.04 4376.62 7284.22 7393.36 6171.44 5796.76 2480.82 8395.33 3894.16 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.85.71 5785.33 6086.84 5391.34 8972.50 3789.07 10187.28 23276.41 7485.80 4490.22 12774.15 3795.37 8381.82 7591.88 8592.65 108
HQP-NCC89.33 13489.17 9576.41 7477.23 175
ACMP_Plane89.33 13489.17 9576.41 7477.23 175
HQP-MVS82.61 9782.02 10084.37 11289.33 13466.98 15689.17 9592.19 8976.41 7477.23 17590.23 12660.17 18995.11 9177.47 11185.99 16191.03 157
CANet_DTU80.61 13679.87 13182.83 17285.60 23463.17 23387.36 16088.65 20576.37 7875.88 20688.44 17653.51 23393.07 18173.30 14989.74 11492.25 121
VNet82.21 10082.41 9181.62 19990.82 9860.93 25884.47 23689.78 16476.36 7984.07 7791.88 8864.71 12290.26 25770.68 16988.89 12093.66 65
Vis-MVSNetpermissive83.46 8282.80 8885.43 7990.25 10868.74 12090.30 7290.13 15676.33 8080.87 11992.89 7161.00 17794.20 12572.45 15890.97 9793.35 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMP_NAP88.05 1688.08 1787.94 1793.70 4773.05 2390.86 5693.59 2576.27 8188.14 2695.09 1571.06 5996.67 2887.67 1696.37 1494.09 43
alignmvs85.48 5985.32 6185.96 7489.51 12769.47 10589.74 8592.47 7476.17 8287.73 3291.46 10070.32 6793.78 14581.51 7688.95 11994.63 23
MVS_111021_HR85.14 6684.75 7286.32 6591.65 8672.70 3185.98 20090.33 15076.11 8382.08 10091.61 9571.36 5894.17 12881.02 8092.58 7892.08 127
HPM-MVScopyleft87.11 3586.98 3587.50 4193.88 4372.16 4992.19 3293.33 3676.07 8483.81 8193.95 5169.77 7496.01 5285.15 3194.66 5294.32 35
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3383.15 8782.19 9586.02 7390.56 10270.85 7888.15 14089.16 18476.02 8584.67 6391.39 10261.54 16395.50 7082.71 6775.48 27991.72 137
hse-mvs281.72 10980.94 11584.07 12488.72 16467.68 14485.87 20487.26 23376.02 8584.67 6388.22 18361.54 16393.48 16182.71 6773.44 30691.06 155
CS-MVS84.53 7384.97 6883.23 15487.54 20463.27 22888.82 11093.50 2875.98 8783.07 8989.73 13970.29 6895.23 8682.07 7493.70 6991.18 151
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3291.59 4294.10 1075.90 8892.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 51
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CLD-MVS82.31 9981.65 10584.29 11788.47 17267.73 14385.81 20892.35 8075.78 8978.33 15286.58 23164.01 12694.35 11776.05 12487.48 13990.79 164
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS88.46 1188.74 1187.64 3892.78 6971.95 5392.40 2294.74 275.71 9089.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 16
testdata184.14 24675.71 90
APDe-MVS89.15 689.63 687.73 3094.49 2071.69 5893.83 493.96 1675.70 9291.06 1696.03 176.84 1597.03 1589.09 695.65 3294.47 28
VPA-MVSNet80.60 13780.55 12080.76 22288.07 18460.80 26186.86 17591.58 11575.67 9380.24 12589.45 15263.34 13290.25 25870.51 17179.22 23791.23 150
PGM-MVS86.68 4186.27 4687.90 2194.22 3573.38 1990.22 7493.04 4375.53 9483.86 7994.42 3367.87 9096.64 3082.70 6994.57 5593.66 65
Effi-MVS+83.62 8083.08 8285.24 8388.38 17667.45 14788.89 10689.15 18575.50 9582.27 9888.28 18069.61 7594.45 11677.81 10887.84 13293.84 58
test_prior386.73 3986.86 3986.33 6392.61 7469.59 10188.85 10892.97 5475.41 9684.91 5693.54 5474.28 3495.48 7183.31 5595.86 2293.91 52
test_prior288.85 10875.41 9684.91 5693.54 5474.28 3483.31 5595.86 22
LPG-MVS_test82.08 10281.27 10884.50 10689.23 14468.76 11890.22 7491.94 10175.37 9876.64 18891.51 9754.29 22694.91 10078.44 10183.78 17989.83 208
LGP-MVS_train84.50 10689.23 14468.76 11891.94 10175.37 9876.64 18891.51 9754.29 22694.91 10078.44 10183.78 17989.83 208
#test#87.33 3187.13 3387.94 1794.58 1673.54 1592.34 2793.24 3775.23 10084.91 5694.44 3070.78 6196.61 3283.75 5494.89 4693.66 65
MG-MVS83.41 8383.45 7883.28 14992.74 7162.28 24488.17 13889.50 17275.22 10181.49 11092.74 7966.75 9895.11 9172.85 15491.58 9092.45 114
LCM-MVSNet-Re77.05 21876.94 20177.36 27987.20 21251.60 34580.06 29380.46 31675.20 10267.69 29986.72 22062.48 14888.98 27963.44 23289.25 11891.51 141
MP-MVS-pluss87.67 2287.72 2287.54 3993.64 5072.04 5289.80 8393.50 2875.17 10386.34 4095.29 1270.86 6096.00 5388.78 1296.04 1694.58 24
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test117286.20 5086.22 4786.12 7093.95 4269.89 9691.79 4192.28 8275.07 10486.40 3994.58 2265.00 12095.56 6684.34 4592.60 7792.90 100
test111179.43 16279.18 15080.15 23489.99 11653.31 33887.33 16277.05 33875.04 10580.23 12692.77 7848.97 28492.33 20668.87 18992.40 8294.81 15
Effi-MVS+-dtu80.03 14978.57 16084.42 11085.13 24368.74 12088.77 11288.10 21374.99 10674.97 23183.49 28457.27 20793.36 16673.53 14480.88 21491.18 151
mvs-test180.88 12479.40 14285.29 8185.13 24369.75 9989.28 9288.10 21374.99 10676.44 19386.72 22057.27 20794.26 12473.53 14483.18 19091.87 132
OMC-MVS82.69 9581.97 10284.85 9788.75 16367.42 14887.98 14290.87 13674.92 10879.72 13091.65 9262.19 15593.96 13375.26 13386.42 15493.16 90
test250677.30 21576.49 21279.74 24290.08 11252.02 34187.86 15063.10 36874.88 10980.16 12792.79 7638.29 34192.35 20468.74 19192.50 8094.86 12
ECVR-MVScopyleft79.61 15579.26 14780.67 22490.08 11254.69 32587.89 14877.44 33574.88 10980.27 12492.79 7648.96 28592.45 19868.55 19292.50 8094.86 12
nrg03083.88 7583.53 7784.96 9186.77 22069.28 10990.46 6892.67 6774.79 11182.95 9091.33 10372.70 4693.09 18080.79 8579.28 23692.50 111
SMA-MVScopyleft89.08 789.23 788.61 594.25 3373.73 1092.40 2293.63 2374.77 11292.29 795.97 274.28 3497.24 1188.58 1396.91 194.87 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testtj87.78 2087.78 2187.77 2694.55 1872.47 3992.23 3193.49 3074.75 11388.33 2594.43 3273.27 4297.02 1684.18 4994.84 4893.82 59
MVS_111021_LR82.61 9782.11 9684.11 12188.82 15871.58 5985.15 22086.16 24974.69 11480.47 12391.04 11162.29 15290.55 25580.33 8990.08 11090.20 186
EIA-MVS83.31 8682.80 8884.82 9889.59 12365.59 18188.21 13692.68 6674.66 11578.96 13786.42 23669.06 8195.26 8575.54 13190.09 10993.62 72
TSAR-MVS + MP.88.02 1788.11 1687.72 3293.68 4972.13 5091.41 4792.35 8074.62 11688.90 2193.85 5275.75 2096.00 5387.80 1594.63 5395.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3986.67 4086.91 5294.11 4072.11 5192.37 2692.56 7374.50 11786.84 3794.65 2067.31 9595.77 6084.80 3792.85 7492.84 102
FOURS195.00 1072.39 4295.06 193.84 1874.49 11891.30 15
ETH3D-3000-0.188.09 1388.29 1487.50 4192.76 7071.89 5691.43 4694.70 374.47 11988.86 2294.61 2175.23 2495.84 5886.62 2695.92 2194.78 18
ACMP74.13 681.51 11780.57 11984.36 11389.42 13068.69 12589.97 7991.50 12074.46 12075.04 23090.41 12353.82 23194.54 11277.56 11082.91 19389.86 207
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPP-MVSNet83.40 8483.02 8484.57 10490.13 11064.47 20292.32 2890.73 13874.45 12179.35 13491.10 10869.05 8295.12 9072.78 15587.22 14294.13 41
xxxxxxxxxxxxxcwj87.88 1987.92 1987.77 2693.80 4472.35 4590.47 6689.69 16874.31 12289.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 16
save fliter93.80 4472.35 4590.47 6691.17 12974.31 122
MVS_Test83.15 8783.06 8383.41 14686.86 21663.21 23086.11 19892.00 9774.31 12282.87 9289.44 15370.03 7093.21 17077.39 11388.50 12893.81 60
UniMVSNet_ETH3D79.10 17278.24 17081.70 19886.85 21760.24 26987.28 16488.79 19874.25 12576.84 18190.53 12249.48 27791.56 23067.98 19682.15 20293.29 83
IterMVS-LS80.06 14879.38 14382.11 18985.89 22963.20 23186.79 17889.34 17574.19 12675.45 21586.72 22066.62 9992.39 20172.58 15676.86 25890.75 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14079.98 12982.12 18884.28 25363.19 23286.41 18988.95 19574.18 12778.69 14287.54 19966.62 9992.43 19972.57 15780.57 22090.74 167
Vis-MVSNet (Re-imp)78.36 18978.45 16278.07 26988.64 16751.78 34486.70 18279.63 32474.14 12875.11 22790.83 11761.29 17189.75 26558.10 28191.60 8992.69 106
v879.97 15179.02 15382.80 17584.09 25764.50 20187.96 14390.29 15374.13 12975.24 22486.81 21762.88 14393.89 14274.39 13775.40 28390.00 199
CSCG86.41 4786.19 4987.07 5092.91 6572.48 3890.81 5793.56 2673.95 13083.16 8891.07 11075.94 1895.19 8879.94 9294.38 6093.55 75
thres100view90076.50 22675.55 22279.33 25089.52 12656.99 30385.83 20783.23 28773.94 13176.32 19587.12 21251.89 25191.95 21948.33 32983.75 18189.07 223
9.1488.26 1592.84 6891.52 4594.75 173.93 13288.57 2494.67 1975.57 2395.79 5986.77 2395.76 28
HPM-MVS_fast85.35 6384.95 7086.57 6193.69 4870.58 8592.15 3491.62 11373.89 13382.67 9794.09 4462.60 14595.54 6980.93 8192.93 7293.57 74
PAPM_NR83.02 9182.41 9184.82 9892.47 7766.37 16587.93 14691.80 10773.82 13477.32 17290.66 11967.90 8994.90 10270.37 17289.48 11693.19 89
thres600view776.50 22675.44 22479.68 24489.40 13157.16 30085.53 21583.23 28773.79 13576.26 19687.09 21351.89 25191.89 22248.05 33483.72 18490.00 199
v7n78.97 17677.58 18983.14 15883.45 26965.51 18288.32 13191.21 12773.69 13672.41 25586.32 23957.93 19893.81 14469.18 18575.65 27590.11 191
v2v48280.23 14579.29 14683.05 16383.62 26564.14 20887.04 16989.97 15973.61 13778.18 15687.22 20861.10 17593.82 14376.11 12376.78 26191.18 151
Baseline_NR-MVSNet78.15 19578.33 16877.61 27685.79 23056.21 31786.78 17985.76 25373.60 13877.93 16187.57 19765.02 11888.99 27867.14 20775.33 28587.63 263
BH-RMVSNet79.61 15578.44 16383.14 15889.38 13365.93 17384.95 22587.15 23573.56 13978.19 15589.79 13756.67 21293.36 16659.53 26686.74 14990.13 189
APD-MVS_3200maxsize85.97 5285.88 5386.22 6792.69 7269.53 10391.93 3692.99 4973.54 14085.94 4194.51 2665.80 11295.61 6383.04 6292.51 7993.53 77
SR-MVS-dyc-post85.77 5585.61 5686.23 6693.06 6270.63 8291.88 3792.27 8373.53 14185.69 4694.45 2865.00 12095.56 6682.75 6591.87 8692.50 111
RE-MVS-def85.48 5793.06 6270.63 8291.88 3792.27 8373.53 14185.69 4694.45 2863.87 12782.75 6591.87 8692.50 111
abl_685.23 6484.95 7086.07 7192.23 7970.48 8690.80 5892.08 9273.51 14385.26 5094.16 4162.75 14495.92 5782.46 7291.30 9591.81 135
tfpn200view976.42 22975.37 22879.55 24989.13 14857.65 29585.17 21883.60 27873.41 14476.45 19086.39 23752.12 24491.95 21948.33 32983.75 18189.07 223
thres40076.50 22675.37 22879.86 23989.13 14857.65 29585.17 21883.60 27873.41 14476.45 19086.39 23752.12 24491.95 21948.33 32983.75 18190.00 199
v14878.72 18077.80 18081.47 20382.73 28961.96 24886.30 19388.08 21573.26 14676.18 19985.47 25562.46 14992.36 20371.92 16073.82 30290.09 193
v1079.74 15478.67 15782.97 16884.06 25864.95 19387.88 14990.62 14073.11 14775.11 22786.56 23261.46 16694.05 13273.68 14275.55 27789.90 205
MCST-MVS87.37 3087.25 3087.73 3094.53 1972.46 4089.82 8193.82 1973.07 14884.86 6192.89 7176.22 1796.33 3984.89 3595.13 4194.40 31
baseline176.98 22076.75 20877.66 27488.13 18155.66 32285.12 22181.89 30173.04 14976.79 18388.90 16262.43 15087.78 29563.30 23471.18 32189.55 217
APD-MVScopyleft87.44 2687.52 2487.19 4794.24 3472.39 4291.86 3992.83 6173.01 15088.58 2394.52 2373.36 4096.49 3784.26 4695.01 4292.70 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
diffmvs82.10 10181.88 10382.76 18083.00 28263.78 21583.68 25289.76 16572.94 15182.02 10189.85 13665.96 11190.79 25182.38 7387.30 14193.71 64
K. test v371.19 27768.51 28579.21 25383.04 28157.78 29484.35 24376.91 33972.90 15262.99 33682.86 29139.27 33691.09 24661.65 25052.66 35888.75 242
Fast-Effi-MVS+-dtu78.02 19976.49 21282.62 18283.16 27866.96 15986.94 17287.45 23072.45 15371.49 26584.17 27354.79 22291.58 22967.61 19980.31 22389.30 221
PHI-MVS86.43 4586.17 5087.24 4690.88 9770.96 7292.27 3094.07 1172.45 15385.22 5291.90 8769.47 7696.42 3883.28 5895.94 2094.35 33
thres20075.55 24074.47 23878.82 25787.78 19557.85 29283.07 26583.51 28172.44 15575.84 20784.42 27052.08 24691.75 22547.41 33683.64 18586.86 284
test_yl81.17 12080.47 12283.24 15289.13 14863.62 21686.21 19589.95 16072.43 15681.78 10789.61 14357.50 20493.58 15470.75 16786.90 14692.52 109
DCV-MVSNet81.17 12080.47 12283.24 15289.13 14863.62 21686.21 19589.95 16072.43 15681.78 10789.61 14357.50 20493.58 15470.75 16786.90 14692.52 109
RRT_MVS79.88 15278.38 16584.38 11185.42 23770.60 8488.71 11788.75 20372.30 15878.83 14189.14 15644.44 31292.18 21278.50 10079.33 23590.35 181
BH-untuned79.47 16078.60 15982.05 19189.19 14665.91 17486.07 19988.52 20872.18 15975.42 21687.69 19461.15 17493.54 15860.38 25986.83 14886.70 288
TransMVSNet (Re)75.39 24474.56 23677.86 27085.50 23657.10 30286.78 17986.09 25172.17 16071.53 26487.34 20363.01 14289.31 27356.84 29261.83 34687.17 276
GA-MVS76.87 22275.17 23181.97 19482.75 28862.58 23981.44 28186.35 24772.16 16174.74 23482.89 29046.20 30192.02 21768.85 19081.09 21291.30 149
RRT_test8_iter0578.38 18877.40 19181.34 20886.00 22858.86 27886.55 18791.26 12572.13 16275.91 20487.42 20244.97 30993.73 15177.02 11775.30 28691.45 146
v114480.03 14979.03 15283.01 16583.78 26364.51 19987.11 16890.57 14271.96 16378.08 15986.20 24161.41 16793.94 13674.93 13477.23 25190.60 172
ETH3D cwj APD-0.1687.31 3287.27 2887.44 4391.60 8772.45 4190.02 7794.37 471.76 16487.28 3494.27 3675.18 2596.08 4985.16 3095.77 2693.80 62
PS-MVSNAJss82.07 10381.31 10784.34 11586.51 22367.27 15289.27 9391.51 11771.75 16579.37 13390.22 12763.15 13894.27 12077.69 10982.36 20191.49 143
EPNet_dtu75.46 24174.86 23277.23 28382.57 29354.60 32686.89 17483.09 29171.64 16666.25 31785.86 24655.99 21488.04 29254.92 29986.55 15289.05 228
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GBi-Net78.40 18677.40 19181.40 20587.60 19963.01 23488.39 12789.28 17771.63 16775.34 21987.28 20454.80 21991.11 24162.72 23779.57 22990.09 193
test178.40 18677.40 19181.40 20587.60 19963.01 23488.39 12789.28 17771.63 16775.34 21987.28 20454.80 21991.11 24162.72 23779.57 22990.09 193
FMVSNet278.20 19377.21 19581.20 21287.60 19962.89 23887.47 15889.02 19071.63 16775.29 22387.28 20454.80 21991.10 24462.38 24179.38 23389.61 215
V4279.38 16678.24 17082.83 17281.10 31765.50 18385.55 21389.82 16371.57 17078.21 15486.12 24260.66 18293.18 17575.64 12875.46 28189.81 210
API-MVS81.99 10581.23 10984.26 11890.94 9570.18 9391.10 5389.32 17671.51 17178.66 14488.28 18065.26 11595.10 9464.74 22691.23 9687.51 267
tttt051779.40 16477.91 17683.90 13688.10 18363.84 21388.37 13084.05 27371.45 17276.78 18489.12 15849.93 27494.89 10370.18 17483.18 19092.96 99
pm-mvs177.25 21676.68 21078.93 25684.22 25558.62 28186.41 18988.36 21071.37 17373.31 24488.01 19061.22 17389.15 27664.24 22873.01 30989.03 229
GeoE81.71 11081.01 11483.80 13789.51 12764.45 20388.97 10388.73 20471.27 17478.63 14589.76 13866.32 10493.20 17269.89 17886.02 16093.74 63
FMVSNet377.88 20376.85 20380.97 21886.84 21862.36 24186.52 18888.77 19971.13 17575.34 21986.66 22754.07 22991.10 24462.72 23779.57 22989.45 218
VDDNet81.52 11580.67 11884.05 12690.44 10564.13 20989.73 8685.91 25271.11 17683.18 8793.48 5750.54 26693.49 16073.40 14888.25 13094.54 27
XVG-OURS80.41 14179.23 14883.97 13385.64 23369.02 11183.03 26690.39 14571.09 17777.63 16691.49 9954.62 22591.35 23675.71 12783.47 18691.54 140
SixPastTwentyTwo73.37 25971.26 26979.70 24385.08 24557.89 29185.57 20983.56 28071.03 17865.66 31985.88 24542.10 32692.57 19459.11 27063.34 34488.65 245
ZD-MVS94.38 2772.22 4892.67 6770.98 17987.75 3194.07 4574.01 3896.70 2684.66 3994.84 48
v119279.59 15778.43 16483.07 16283.55 26764.52 19886.93 17390.58 14170.83 18077.78 16385.90 24459.15 19293.94 13673.96 14177.19 25390.76 165
ETH3 D test640087.50 2587.44 2687.70 3593.71 4671.75 5790.62 6194.05 1570.80 18187.59 3393.51 5677.57 1496.63 3183.31 5595.77 2694.72 20
Fast-Effi-MVS+80.81 12979.92 13083.47 14288.85 15564.51 19985.53 21589.39 17470.79 18278.49 14885.06 26467.54 9293.58 15467.03 20986.58 15192.32 117
PS-MVSNAJ81.69 11181.02 11383.70 13889.51 12768.21 13584.28 24490.09 15770.79 18281.26 11585.62 25263.15 13894.29 11875.62 12988.87 12188.59 246
LTVRE_ROB69.57 1376.25 23274.54 23781.41 20488.60 16864.38 20579.24 30189.12 18870.76 18469.79 28687.86 19149.09 28293.20 17256.21 29680.16 22486.65 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
xiu_mvs_v2_base81.69 11181.05 11283.60 13989.15 14768.03 13884.46 23890.02 15870.67 18581.30 11486.53 23463.17 13794.19 12675.60 13088.54 12688.57 247
XVG-OURS-SEG-HR80.81 12979.76 13483.96 13485.60 23468.78 11783.54 25890.50 14370.66 18676.71 18691.66 9160.69 18191.26 23876.94 11881.58 20891.83 133
Anonymous20240521178.25 19077.01 19881.99 19391.03 9360.67 26384.77 22883.90 27570.65 18780.00 12891.20 10641.08 33191.43 23465.21 22185.26 16593.85 56
DP-MVS Recon83.11 9082.09 9786.15 6894.44 2170.92 7688.79 11192.20 8870.53 18879.17 13591.03 11364.12 12596.03 5068.39 19590.14 10891.50 142
FMVSNet177.44 21176.12 21881.40 20586.81 21963.01 23488.39 12789.28 17770.49 18974.39 23787.28 20449.06 28391.11 24160.91 25678.52 23990.09 193
ab-mvs79.51 15878.97 15481.14 21488.46 17360.91 25983.84 25089.24 18170.36 19079.03 13688.87 16463.23 13690.21 25965.12 22282.57 19992.28 120
tfpnnormal74.39 24873.16 25178.08 26886.10 22758.05 28684.65 23387.53 22770.32 19171.22 26785.63 25154.97 21889.86 26343.03 35075.02 29086.32 292
ACMM73.20 880.78 13479.84 13283.58 14089.31 13968.37 13089.99 7891.60 11470.28 19277.25 17389.66 14153.37 23493.53 15974.24 13982.85 19488.85 238
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+68.96 1476.01 23574.01 24282.03 19288.60 16865.31 18888.86 10787.55 22670.25 19367.75 29887.47 20141.27 32993.19 17458.37 27875.94 27287.60 264
IB-MVS68.01 1575.85 23773.36 24983.31 14884.76 24766.03 16983.38 25985.06 25970.21 19469.40 28881.05 30845.76 30594.66 11165.10 22375.49 27889.25 222
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest053079.40 16477.76 18384.31 11687.69 19865.10 19287.36 16084.26 27170.04 19577.42 16988.26 18249.94 27294.79 10870.20 17384.70 17193.03 94
v14419279.47 16078.37 16682.78 17883.35 27063.96 21186.96 17190.36 14969.99 19677.50 16785.67 25060.66 18293.77 14774.27 13876.58 26290.62 170
c3_l78.75 17977.91 17681.26 21082.89 28661.56 25384.09 24889.13 18769.97 19775.56 21084.29 27266.36 10392.09 21573.47 14775.48 27990.12 190
bset_n11_16_dypcd77.12 21775.47 22382.06 19081.12 31665.99 17181.37 28283.20 28969.94 19876.09 20383.38 28647.75 29092.26 20878.51 9977.91 24587.95 255
v192192079.22 16878.03 17382.80 17583.30 27263.94 21286.80 17790.33 15069.91 19977.48 16885.53 25358.44 19693.75 14973.60 14376.85 25990.71 168
ACMH67.68 1675.89 23673.93 24381.77 19788.71 16566.61 16288.62 11989.01 19169.81 20066.78 31086.70 22541.95 32891.51 23355.64 29778.14 24487.17 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPM-MVS84.93 7084.29 7586.84 5390.20 10973.04 2487.12 16793.04 4369.80 20182.85 9391.22 10573.06 4496.02 5176.72 12194.63 5391.46 145
MAR-MVS81.84 10780.70 11785.27 8291.32 9071.53 6089.82 8190.92 13469.77 20278.50 14786.21 24062.36 15194.52 11465.36 22092.05 8489.77 211
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-ACMP-BASELINE76.11 23474.27 24181.62 19983.20 27564.67 19783.60 25689.75 16669.75 20371.85 26187.09 21332.78 35492.11 21469.99 17780.43 22288.09 254
BH-w/o78.21 19277.33 19480.84 22088.81 15965.13 19184.87 22687.85 22269.75 20374.52 23684.74 26861.34 16993.11 17958.24 28085.84 16384.27 318
v124078.99 17577.78 18182.64 18183.21 27463.54 22086.62 18490.30 15269.74 20577.33 17185.68 24957.04 21093.76 14873.13 15276.92 25590.62 170
ET-MVSNet_ETH3D78.63 18276.63 21184.64 10386.73 22169.47 10585.01 22384.61 26469.54 20666.51 31586.59 22950.16 26991.75 22576.26 12284.24 17692.69 106
eth_miper_zixun_eth77.92 20276.69 20981.61 20183.00 28261.98 24783.15 26289.20 18369.52 20774.86 23384.35 27161.76 15992.56 19571.50 16372.89 31090.28 184
PVSNet_Blended_VisFu82.62 9681.83 10484.96 9190.80 9969.76 9888.74 11591.70 11269.39 20878.96 13788.46 17565.47 11494.87 10574.42 13688.57 12590.24 185
mvs_tets79.13 17177.77 18283.22 15584.70 24866.37 16589.17 9590.19 15469.38 20975.40 21789.46 15044.17 31493.15 17676.78 12080.70 21890.14 188
PVSNet_BlendedMVS80.60 13780.02 12882.36 18788.85 15565.40 18486.16 19792.00 9769.34 21078.11 15786.09 24366.02 10994.27 12071.52 16182.06 20387.39 269
AdaColmapbinary80.58 13979.42 14184.06 12593.09 6168.91 11589.36 9188.97 19469.27 21175.70 20989.69 14057.20 20995.77 6063.06 23688.41 12987.50 268
ITE_SJBPF78.22 26681.77 30460.57 26483.30 28569.25 21267.54 30087.20 20936.33 34787.28 29954.34 30174.62 29486.80 285
cl____77.72 20676.76 20680.58 22582.49 29560.48 26683.09 26387.87 22069.22 21374.38 23885.22 26062.10 15691.53 23171.09 16575.41 28289.73 213
DIV-MVS_self_test77.72 20676.76 20680.58 22582.48 29660.48 26683.09 26387.86 22169.22 21374.38 23885.24 25962.10 15691.53 23171.09 16575.40 28389.74 212
jajsoiax79.29 16777.96 17483.27 15084.68 24966.57 16389.25 9490.16 15569.20 21575.46 21489.49 14745.75 30693.13 17876.84 11980.80 21690.11 191
IterMVS-SCA-FT75.43 24273.87 24580.11 23582.69 29064.85 19481.57 27983.47 28369.16 21670.49 27284.15 27451.95 24988.15 29069.23 18472.14 31587.34 271
CL-MVSNet_self_test72.37 27271.46 26475.09 30079.49 33653.53 33480.76 28585.01 26169.12 21770.51 27182.05 30257.92 19984.13 31952.27 30966.00 33887.60 264
AUN-MVS79.21 16977.60 18884.05 12688.71 16567.61 14585.84 20687.26 23369.08 21877.23 17588.14 18853.20 23693.47 16275.50 13273.45 30591.06 155
xiu_mvs_v1_base_debu80.80 13179.72 13584.03 12987.35 20570.19 9085.56 21088.77 19969.06 21981.83 10288.16 18450.91 26092.85 18878.29 10587.56 13689.06 225
xiu_mvs_v1_base80.80 13179.72 13584.03 12987.35 20570.19 9085.56 21088.77 19969.06 21981.83 10288.16 18450.91 26092.85 18878.29 10587.56 13689.06 225
xiu_mvs_v1_base_debi80.80 13179.72 13584.03 12987.35 20570.19 9085.56 21088.77 19969.06 21981.83 10288.16 18450.91 26092.85 18878.29 10587.56 13689.06 225
MVSTER79.01 17477.88 17882.38 18683.07 27964.80 19584.08 24988.95 19569.01 22278.69 14287.17 21154.70 22392.43 19974.69 13580.57 22089.89 206
cl2278.07 19777.01 19881.23 21182.37 29861.83 25083.55 25787.98 21768.96 22375.06 22983.87 27661.40 16891.88 22373.53 14476.39 26689.98 202
agg_prior186.22 4986.09 5286.62 5992.85 6671.94 5488.59 12091.78 10968.96 22384.41 6993.18 6474.94 2694.93 9884.75 3895.33 3893.01 96
miper_ehance_all_eth78.59 18477.76 18381.08 21682.66 29161.56 25383.65 25389.15 18568.87 22575.55 21183.79 28066.49 10192.03 21673.25 15076.39 26689.64 214
PAPR81.66 11380.89 11683.99 13290.27 10764.00 21086.76 18191.77 11168.84 22677.13 18089.50 14667.63 9194.88 10467.55 20088.52 12793.09 91
CPTT-MVS83.73 7783.33 8084.92 9493.28 5570.86 7792.09 3590.38 14668.75 22779.57 13192.83 7360.60 18493.04 18480.92 8291.56 9190.86 163
train_agg86.43 4586.20 4887.13 4993.26 5672.96 2688.75 11391.89 10368.69 22885.00 5493.10 6574.43 3095.41 7784.97 3295.71 3093.02 95
test_893.13 5872.57 3688.68 11891.84 10668.69 22884.87 6093.10 6574.43 3095.16 89
MVSFormer82.85 9382.05 9985.24 8387.35 20570.21 8890.50 6490.38 14668.55 23081.32 11189.47 14861.68 16093.46 16378.98 9590.26 10692.05 129
test_djsdf80.30 14479.32 14583.27 15083.98 26065.37 18790.50 6490.38 14668.55 23076.19 19888.70 16656.44 21393.46 16378.98 9580.14 22690.97 160
TEST993.26 5672.96 2688.75 11391.89 10368.44 23285.00 5493.10 6574.36 3395.41 77
CDPH-MVS85.76 5685.29 6387.17 4893.49 5371.08 6888.58 12192.42 7868.32 23384.61 6693.48 5772.32 4996.15 4879.00 9495.43 3494.28 37
PC_three_145268.21 23492.02 1294.00 4882.09 595.98 5584.58 4096.68 294.95 5
IterMVS74.29 24972.94 25378.35 26581.53 30863.49 22281.58 27882.49 29668.06 23569.99 28183.69 28251.66 25585.54 30965.85 21771.64 31886.01 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS78.89 17877.51 19083.03 16487.80 19267.79 14284.72 22985.05 26067.63 23676.75 18587.70 19362.25 15390.82 25058.53 27787.13 14390.49 176
PVSNet_Blended80.98 12380.34 12482.90 17088.85 15565.40 18484.43 24092.00 9767.62 23778.11 15785.05 26566.02 10994.27 12071.52 16189.50 11589.01 230
TR-MVS77.44 21176.18 21781.20 21288.24 17963.24 22984.61 23486.40 24567.55 23877.81 16286.48 23554.10 22893.15 17657.75 28482.72 19787.20 275
CDS-MVSNet79.07 17377.70 18583.17 15787.60 19968.23 13484.40 24286.20 24867.49 23976.36 19486.54 23361.54 16390.79 25161.86 24887.33 14090.49 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvs_anonymous79.42 16379.11 15180.34 23084.45 25257.97 28982.59 26887.62 22567.40 24076.17 20188.56 17368.47 8589.59 26870.65 17086.05 15993.47 78
MVS_030472.48 26970.89 27277.24 28282.20 29959.68 27284.11 24783.49 28267.10 24166.87 30880.59 31435.00 35187.40 29759.07 27179.58 22884.63 316
IU-MVS95.30 271.25 6392.95 5666.81 24292.39 688.94 1196.63 494.85 14
baseline275.70 23873.83 24681.30 20983.26 27361.79 25182.57 26980.65 31266.81 24266.88 30783.42 28557.86 20092.19 21163.47 23179.57 22989.91 204
miper_lstm_enhance74.11 25273.11 25277.13 28480.11 32659.62 27372.23 33886.92 23966.76 24470.40 27382.92 28956.93 21182.92 32769.06 18772.63 31188.87 237
OpenMVScopyleft72.83 1079.77 15378.33 16884.09 12385.17 24069.91 9490.57 6290.97 13366.70 24572.17 25891.91 8654.70 22393.96 13361.81 24990.95 9888.41 251
test-LLR72.94 26772.43 25674.48 30581.35 31258.04 28778.38 30977.46 33366.66 24669.95 28279.00 32748.06 28879.24 33966.13 21284.83 16886.15 296
test20.0367.45 30366.95 30468.94 33275.48 35244.84 36277.50 31777.67 33266.66 24663.01 33583.80 27947.02 29478.40 34342.53 35268.86 33183.58 325
test0.0.03 168.00 30167.69 29868.90 33377.55 34347.43 35775.70 32772.95 35166.66 24666.56 31182.29 29948.06 28875.87 35444.97 34774.51 29583.41 326
QAPM80.88 12479.50 14085.03 8888.01 18768.97 11491.59 4292.00 9766.63 24975.15 22692.16 8257.70 20195.45 7363.52 23088.76 12390.66 169
XXY-MVS75.41 24375.56 22174.96 30183.59 26657.82 29380.59 28883.87 27666.54 25074.93 23288.31 17963.24 13580.09 33862.16 24476.85 25986.97 282
OurMVSNet-221017-074.26 25072.42 25779.80 24183.76 26459.59 27485.92 20386.64 24166.39 25166.96 30687.58 19639.46 33591.60 22865.76 21869.27 32788.22 252
SCA74.22 25172.33 25879.91 23884.05 25962.17 24579.96 29579.29 32666.30 25272.38 25680.13 31851.95 24988.60 28559.25 26877.67 24888.96 234
testgi66.67 30866.53 30667.08 33975.62 35141.69 36675.93 32376.50 34066.11 25365.20 32586.59 22935.72 34974.71 35843.71 34873.38 30784.84 313
HY-MVS69.67 1277.95 20177.15 19680.36 22987.57 20360.21 27083.37 26087.78 22366.11 25375.37 21887.06 21563.27 13490.48 25661.38 25382.43 20090.40 180
EG-PatchMatch MVS74.04 25371.82 26280.71 22384.92 24667.42 14885.86 20588.08 21566.04 25564.22 32983.85 27735.10 35092.56 19557.44 28680.83 21582.16 337
CNLPA78.08 19676.79 20581.97 19490.40 10671.07 6987.59 15584.55 26566.03 25672.38 25689.64 14257.56 20386.04 30659.61 26583.35 18788.79 241
Anonymous2024052980.19 14778.89 15584.10 12290.60 10164.75 19688.95 10490.90 13565.97 25780.59 12191.17 10749.97 27193.73 15169.16 18682.70 19893.81 60
TAPA-MVS73.13 979.15 17077.94 17582.79 17789.59 12362.99 23788.16 13991.51 11765.77 25877.14 17991.09 10960.91 17893.21 17050.26 32187.05 14492.17 125
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSDG73.36 26170.99 27080.49 22784.51 25165.80 17680.71 28686.13 25065.70 25965.46 32083.74 28144.60 31090.91 24951.13 31476.89 25784.74 314
anonymousdsp78.60 18377.15 19682.98 16780.51 32367.08 15487.24 16589.53 17165.66 26075.16 22587.19 21052.52 23792.25 20977.17 11579.34 23489.61 215
test_040272.79 26870.44 27579.84 24088.13 18165.99 17185.93 20284.29 26965.57 26167.40 30385.49 25446.92 29592.61 19335.88 35974.38 29680.94 343
miper_enhance_ethall77.87 20476.86 20280.92 21981.65 30561.38 25582.68 26788.98 19265.52 26275.47 21282.30 29865.76 11392.00 21872.95 15376.39 26689.39 219
DWT-MVSNet_test73.70 25671.86 26179.21 25382.91 28558.94 27782.34 27082.17 29865.21 26371.05 26978.31 33244.21 31390.17 26063.29 23577.28 25088.53 248
UnsupCasMVSNet_eth67.33 30465.99 30771.37 32273.48 35951.47 34775.16 32985.19 25865.20 26460.78 34280.93 31342.35 32277.20 34957.12 28953.69 35785.44 305
WTY-MVS75.65 23975.68 22075.57 29586.40 22456.82 30577.92 31682.40 29765.10 26576.18 19987.72 19263.13 14180.90 33560.31 26081.96 20489.00 232
thisisatest051577.33 21475.38 22783.18 15685.27 23963.80 21482.11 27383.27 28665.06 26675.91 20483.84 27849.54 27694.27 12067.24 20586.19 15791.48 144
MVP-Stereo76.12 23374.46 23981.13 21585.37 23869.79 9784.42 24187.95 21865.03 26767.46 30185.33 25753.28 23591.73 22758.01 28283.27 18881.85 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2023121178.97 17677.69 18682.81 17490.54 10364.29 20690.11 7691.51 11765.01 26876.16 20288.13 18950.56 26593.03 18569.68 18177.56 24991.11 154
pmmvs674.69 24773.39 24878.61 26081.38 31157.48 29886.64 18387.95 21864.99 26970.18 27686.61 22850.43 26789.52 26962.12 24570.18 32588.83 239
PAPM77.68 20876.40 21581.51 20287.29 21161.85 24983.78 25189.59 17064.74 27071.23 26688.70 16662.59 14693.66 15352.66 30887.03 14589.01 230
MIMVSNet70.69 28169.30 28074.88 30284.52 25056.35 31575.87 32679.42 32564.59 27167.76 29782.41 29641.10 33081.54 33246.64 34081.34 20986.75 287
tpm72.37 27271.71 26374.35 30782.19 30052.00 34279.22 30277.29 33664.56 27272.95 24983.68 28351.35 25683.26 32658.33 27975.80 27387.81 260
MDA-MVSNet-bldmvs66.68 30763.66 31575.75 29279.28 33860.56 26573.92 33578.35 32964.43 27350.13 36079.87 32244.02 31583.67 32246.10 34256.86 35383.03 332
MIMVSNet168.58 29866.78 30573.98 31080.07 32751.82 34380.77 28484.37 26664.40 27459.75 34682.16 30136.47 34683.63 32342.73 35170.33 32486.48 291
D2MVS74.82 24673.21 25079.64 24679.81 33062.56 24080.34 29187.35 23164.37 27568.86 29182.66 29446.37 29890.10 26167.91 19781.24 21186.25 293
PLCcopyleft70.83 1178.05 19876.37 21683.08 16191.88 8567.80 14188.19 13789.46 17364.33 27669.87 28488.38 17753.66 23293.58 15458.86 27382.73 19687.86 259
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchmatchNetpermissive73.12 26471.33 26778.49 26483.18 27660.85 26079.63 29778.57 32864.13 27771.73 26279.81 32351.20 25885.97 30757.40 28776.36 26988.66 244
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
KD-MVS_2432*160066.22 31263.89 31373.21 31375.47 35353.42 33670.76 34384.35 26764.10 27866.52 31378.52 33034.55 35284.98 31350.40 31750.33 36181.23 341
miper_refine_blended66.22 31263.89 31373.21 31375.47 35353.42 33670.76 34384.35 26764.10 27866.52 31378.52 33034.55 35284.98 31350.40 31750.33 36181.23 341
tpmvs71.09 27869.29 28176.49 28882.04 30156.04 31878.92 30681.37 30764.05 28067.18 30578.28 33349.74 27589.77 26449.67 32472.37 31283.67 324
F-COLMAP76.38 23174.33 24082.50 18489.28 14166.95 16088.41 12689.03 18964.05 28066.83 30988.61 17046.78 29692.89 18757.48 28578.55 23887.67 262
DP-MVS76.78 22374.57 23583.42 14493.29 5469.46 10788.55 12283.70 27763.98 28270.20 27588.89 16354.01 23094.80 10746.66 33881.88 20686.01 300
原ACMM184.35 11493.01 6468.79 11692.44 7563.96 28381.09 11691.57 9666.06 10895.45 7367.19 20694.82 5188.81 240
PM-MVS66.41 31064.14 31273.20 31573.92 35756.45 31178.97 30564.96 36663.88 28464.72 32680.24 31719.84 36683.44 32466.24 21164.52 34279.71 348
jason81.39 11880.29 12684.70 10286.63 22269.90 9585.95 20186.77 24063.24 28581.07 11789.47 14861.08 17692.15 21378.33 10490.07 11192.05 129
jason: jason.
KD-MVS_self_test68.81 29567.59 30072.46 31874.29 35645.45 36077.93 31587.00 23763.12 28663.99 33178.99 32942.32 32384.77 31656.55 29464.09 34387.16 278
gg-mvs-nofinetune69.95 28967.96 29275.94 29183.07 27954.51 32877.23 31970.29 35463.11 28770.32 27462.33 35743.62 31688.69 28453.88 30387.76 13384.62 317
tpmrst72.39 27072.13 25973.18 31680.54 32249.91 35379.91 29679.08 32763.11 28771.69 26379.95 32055.32 21682.77 32865.66 21973.89 30086.87 283
PCF-MVS73.52 780.38 14278.84 15685.01 8987.71 19668.99 11383.65 25391.46 12163.00 28977.77 16490.28 12466.10 10695.09 9561.40 25288.22 13190.94 161
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft66.92 1773.01 26570.41 27680.81 22187.13 21465.63 18088.30 13284.19 27262.96 29063.80 33387.69 19438.04 34292.56 19546.66 33874.91 29184.24 319
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmatch-RL test70.24 28667.78 29777.61 27677.43 34459.57 27571.16 34070.33 35362.94 29168.65 29372.77 35150.62 26485.49 31069.58 18266.58 33687.77 261
lupinMVS81.39 11880.27 12784.76 10187.35 20570.21 8885.55 21386.41 24462.85 29281.32 11188.61 17061.68 16092.24 21078.41 10390.26 10691.83 133
EPMVS69.02 29468.16 28971.59 32079.61 33449.80 35577.40 31866.93 36262.82 29370.01 27979.05 32545.79 30477.86 34756.58 29375.26 28887.13 279
PatchMatch-RL72.38 27170.90 27176.80 28788.60 16867.38 15079.53 29876.17 34162.75 29469.36 28982.00 30445.51 30784.89 31553.62 30480.58 21978.12 351
gm-plane-assit81.40 31053.83 33362.72 29580.94 31192.39 20163.40 233
FMVSNet569.50 29167.96 29274.15 30982.97 28455.35 32380.01 29482.12 30062.56 29663.02 33481.53 30536.92 34581.92 33048.42 32874.06 29885.17 310
sss73.60 25773.64 24773.51 31282.80 28755.01 32476.12 32281.69 30462.47 29774.68 23585.85 24757.32 20678.11 34560.86 25780.93 21387.39 269
AllTest70.96 27968.09 29179.58 24785.15 24163.62 21684.58 23579.83 32262.31 29860.32 34386.73 21832.02 35588.96 28150.28 31971.57 31986.15 296
TestCases79.58 24785.15 24163.62 21679.83 32262.31 29860.32 34386.73 21832.02 35588.96 28150.28 31971.57 31986.15 296
1112_ss77.40 21376.43 21480.32 23189.11 15260.41 26883.65 25387.72 22462.13 30073.05 24886.72 22062.58 14789.97 26262.11 24680.80 21690.59 173
PVSNet64.34 1872.08 27470.87 27375.69 29386.21 22656.44 31274.37 33480.73 31162.06 30170.17 27782.23 30042.86 32083.31 32554.77 30084.45 17487.32 272
LS3D76.95 22174.82 23383.37 14790.45 10467.36 15189.15 9986.94 23861.87 30269.52 28790.61 12051.71 25494.53 11346.38 34186.71 15088.21 253
CostFormer75.24 24573.90 24479.27 25182.65 29258.27 28480.80 28382.73 29561.57 30375.33 22283.13 28855.52 21591.07 24764.98 22478.34 24388.45 249
new-patchmatchnet61.73 32161.73 32361.70 34272.74 36324.50 37669.16 34978.03 33061.40 30456.72 35375.53 34738.42 33976.48 35245.95 34357.67 35284.13 321
ANet_high50.57 33146.10 33463.99 34048.67 37439.13 36770.99 34280.85 30961.39 30531.18 36557.70 36217.02 36873.65 36231.22 36115.89 37179.18 349
MS-PatchMatch73.83 25572.67 25477.30 28183.87 26266.02 17081.82 27484.66 26361.37 30668.61 29482.82 29247.29 29288.21 28959.27 26784.32 17577.68 352
USDC70.33 28568.37 28676.21 29080.60 32156.23 31679.19 30386.49 24360.89 30761.29 34085.47 25531.78 35789.47 27153.37 30576.21 27082.94 334
cascas76.72 22474.64 23482.99 16685.78 23165.88 17582.33 27189.21 18260.85 30872.74 25081.02 30947.28 29393.75 14967.48 20185.02 16689.34 220
MDTV_nov1_ep1369.97 27983.18 27653.48 33577.10 32080.18 32160.45 30969.33 29080.44 31548.89 28686.90 30051.60 31278.51 240
TinyColmap67.30 30564.81 30974.76 30481.92 30356.68 30980.29 29281.49 30660.33 31056.27 35583.22 28724.77 36187.66 29645.52 34469.47 32679.95 347
test-mter71.41 27670.39 27774.48 30581.35 31258.04 28778.38 30977.46 33360.32 31169.95 28279.00 32736.08 34879.24 33966.13 21284.83 16886.15 296
131476.53 22575.30 23080.21 23383.93 26162.32 24384.66 23088.81 19760.23 31270.16 27884.07 27555.30 21790.73 25367.37 20283.21 18987.59 266
PatchT68.46 30067.85 29470.29 32880.70 32043.93 36372.47 33774.88 34460.15 31370.55 27076.57 34249.94 27281.59 33150.58 31574.83 29285.34 306
无先验87.48 15788.98 19260.00 31494.12 12967.28 20388.97 233
CR-MVSNet73.37 25971.27 26879.67 24581.32 31465.19 18975.92 32480.30 31859.92 31572.73 25181.19 30652.50 23886.69 30159.84 26377.71 24687.11 280
TDRefinement67.49 30264.34 31176.92 28573.47 36061.07 25784.86 22782.98 29259.77 31658.30 34985.13 26226.06 36087.89 29347.92 33560.59 35081.81 339
dp66.80 30665.43 30870.90 32779.74 33348.82 35675.12 33174.77 34559.61 31764.08 33077.23 33942.89 31980.72 33648.86 32766.58 33683.16 329
our_test_369.14 29367.00 30375.57 29579.80 33158.80 27977.96 31477.81 33159.55 31862.90 33778.25 33447.43 29183.97 32051.71 31167.58 33383.93 323
Test_1112_low_res76.40 23075.44 22479.27 25189.28 14158.09 28581.69 27787.07 23659.53 31972.48 25486.67 22661.30 17089.33 27260.81 25880.15 22590.41 179
pmmvs474.03 25471.91 26080.39 22881.96 30268.32 13181.45 28082.14 29959.32 32069.87 28485.13 26252.40 24088.13 29160.21 26174.74 29384.73 315
testdata79.97 23790.90 9664.21 20784.71 26259.27 32185.40 4892.91 7062.02 15889.08 27768.95 18891.37 9386.63 290
ppachtmachnet_test70.04 28867.34 30178.14 26779.80 33161.13 25679.19 30380.59 31359.16 32265.27 32279.29 32446.75 29787.29 29849.33 32566.72 33486.00 302
RPSCF73.23 26371.46 26478.54 26282.50 29459.85 27182.18 27282.84 29458.96 32371.15 26889.41 15445.48 30884.77 31658.82 27471.83 31791.02 159
pmmvs-eth3d70.50 28467.83 29578.52 26377.37 34566.18 16881.82 27481.51 30558.90 32463.90 33280.42 31642.69 32186.28 30558.56 27665.30 34083.11 330
OpenMVS_ROBcopyleft64.09 1970.56 28368.19 28877.65 27580.26 32459.41 27685.01 22382.96 29358.76 32565.43 32182.33 29737.63 34491.23 24045.34 34676.03 27182.32 335
114514_t80.68 13579.51 13984.20 11994.09 4167.27 15289.64 8891.11 13158.75 32674.08 24090.72 11858.10 19795.04 9669.70 18089.42 11790.30 183
Patchmtry70.74 28069.16 28275.49 29780.72 31954.07 33174.94 33380.30 31858.34 32770.01 27981.19 30652.50 23886.54 30253.37 30571.09 32285.87 303
Anonymous2024052168.80 29667.22 30273.55 31174.33 35554.11 33083.18 26185.61 25458.15 32861.68 33980.94 31130.71 35881.27 33457.00 29173.34 30885.28 307
旧先验286.56 18658.10 32987.04 3588.98 27974.07 140
JIA-IIPM66.32 31162.82 32176.82 28677.09 34661.72 25265.34 35675.38 34258.04 33064.51 32762.32 35842.05 32786.51 30351.45 31369.22 32882.21 336
pmmvs571.55 27570.20 27875.61 29477.83 34256.39 31381.74 27680.89 30857.76 33167.46 30184.49 26949.26 28185.32 31257.08 29075.29 28785.11 311
TESTMET0.1,169.89 29069.00 28372.55 31779.27 33956.85 30478.38 30974.71 34757.64 33268.09 29677.19 34037.75 34376.70 35063.92 22984.09 17784.10 322
RPMNet73.51 25870.49 27482.58 18381.32 31465.19 18975.92 32492.27 8357.60 33372.73 25176.45 34352.30 24195.43 7548.14 33377.71 24687.11 280
新几何183.42 14493.13 5870.71 8085.48 25557.43 33481.80 10591.98 8563.28 13392.27 20764.60 22792.99 7187.27 273
112180.84 12679.77 13384.05 12693.11 6070.78 7984.66 23085.42 25657.37 33581.76 10992.02 8463.41 13194.12 12967.28 20392.93 7287.26 274
YYNet165.03 31562.91 31971.38 32175.85 34956.60 31069.12 35074.66 34857.28 33654.12 35677.87 33645.85 30374.48 35949.95 32261.52 34883.05 331
MDA-MVSNet_test_wron65.03 31562.92 31871.37 32275.93 34856.73 30669.09 35174.73 34657.28 33654.03 35777.89 33545.88 30274.39 36049.89 32361.55 34782.99 333
Anonymous2023120668.60 29767.80 29671.02 32680.23 32550.75 35178.30 31280.47 31556.79 33866.11 31882.63 29546.35 29978.95 34143.62 34975.70 27483.36 327
tpm273.26 26271.46 26478.63 25983.34 27156.71 30880.65 28780.40 31756.63 33973.55 24282.02 30351.80 25391.24 23956.35 29578.42 24287.95 255
CHOSEN 1792x268877.63 20975.69 21983.44 14389.98 11768.58 12878.70 30887.50 22856.38 34075.80 20886.84 21658.67 19491.40 23561.58 25185.75 16490.34 182
HyFIR lowres test77.53 21075.40 22683.94 13589.59 12366.62 16180.36 29088.64 20656.29 34176.45 19085.17 26157.64 20293.28 16861.34 25483.10 19291.91 131
PVSNet_057.27 2061.67 32259.27 32568.85 33479.61 33457.44 29968.01 35273.44 35055.93 34258.54 34870.41 35444.58 31177.55 34847.01 33735.91 36471.55 357
UnsupCasMVSNet_bld63.70 32061.53 32470.21 32973.69 35851.39 34872.82 33681.89 30155.63 34357.81 35071.80 35338.67 33878.61 34249.26 32652.21 35980.63 344
MDTV_nov1_ep13_2view37.79 36875.16 32955.10 34466.53 31249.34 27953.98 30287.94 257
MVS78.19 19476.99 20081.78 19685.66 23266.99 15584.66 23090.47 14455.08 34572.02 26085.27 25863.83 12894.11 13166.10 21489.80 11384.24 319
test22291.50 8868.26 13384.16 24583.20 28954.63 34679.74 12991.63 9458.97 19391.42 9286.77 286
CHOSEN 280x42066.51 30964.71 31071.90 31981.45 30963.52 22157.98 36168.95 36053.57 34762.59 33876.70 34146.22 30075.29 35755.25 29879.68 22776.88 354
ADS-MVSNet266.20 31463.33 31674.82 30379.92 32858.75 28067.55 35375.19 34353.37 34865.25 32375.86 34442.32 32380.53 33741.57 35368.91 32985.18 308
ADS-MVSNet64.36 31862.88 32068.78 33579.92 32847.17 35867.55 35371.18 35253.37 34865.25 32375.86 34442.32 32373.99 36141.57 35368.91 32985.18 308
LF4IMVS64.02 31962.19 32269.50 33170.90 36453.29 33976.13 32177.18 33752.65 35058.59 34780.98 31023.55 36376.52 35153.06 30766.66 33578.68 350
tpm cat170.57 28268.31 28777.35 28082.41 29757.95 29078.08 31380.22 32052.04 35168.54 29577.66 33852.00 24887.84 29451.77 31072.07 31686.25 293
Patchmatch-test64.82 31763.24 31769.57 33079.42 33749.82 35463.49 35969.05 35951.98 35259.95 34580.13 31850.91 26070.98 36340.66 35573.57 30387.90 258
N_pmnet52.79 32853.26 32951.40 34878.99 3407.68 37969.52 3463.89 37951.63 35357.01 35274.98 34840.83 33265.96 36637.78 35864.67 34180.56 346
PMMVS69.34 29268.67 28471.35 32475.67 35062.03 24675.17 32873.46 34950.00 35468.68 29279.05 32552.07 24778.13 34461.16 25582.77 19573.90 355
CMPMVSbinary51.72 2170.19 28768.16 28976.28 28973.15 36257.55 29779.47 29983.92 27448.02 35556.48 35484.81 26643.13 31886.42 30462.67 24081.81 20784.89 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet72.99 26672.58 25574.25 30884.28 25350.85 35086.41 18983.45 28444.56 35673.23 24687.54 19949.38 27885.70 30865.90 21678.44 24186.19 295
EU-MVSNet68.53 29967.61 29971.31 32578.51 34147.01 35984.47 23684.27 27042.27 35766.44 31684.79 26740.44 33383.76 32158.76 27568.54 33283.17 328
FPMVS53.68 32751.64 33059.81 34465.08 36751.03 34969.48 34769.58 35741.46 35840.67 36272.32 35216.46 36970.00 36424.24 36665.42 33958.40 363
pmmvs357.79 32454.26 32868.37 33664.02 36856.72 30775.12 33165.17 36440.20 35952.93 35869.86 35520.36 36575.48 35645.45 34555.25 35672.90 356
new_pmnet50.91 33050.29 33152.78 34768.58 36534.94 37163.71 35856.63 37039.73 36044.95 36165.47 35621.93 36458.48 36734.98 36056.62 35464.92 359
MVS-HIRNet59.14 32357.67 32663.57 34181.65 30543.50 36471.73 33965.06 36539.59 36151.43 35957.73 36138.34 34082.58 32939.53 35673.95 29964.62 360
PMMVS240.82 33438.86 33746.69 34953.84 37016.45 37748.61 36449.92 37237.49 36231.67 36460.97 3608.14 37656.42 36828.42 36330.72 36667.19 358
LCM-MVSNet54.25 32649.68 33267.97 33753.73 37145.28 36166.85 35580.78 31035.96 36339.45 36362.23 3598.70 37578.06 34648.24 33251.20 36080.57 345
PMVScopyleft37.38 2244.16 33340.28 33655.82 34540.82 37642.54 36565.12 35763.99 36734.43 36424.48 36757.12 3633.92 37776.17 35317.10 36955.52 35548.75 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 33241.86 33555.16 34677.03 34751.52 34632.50 36780.52 31432.46 36527.12 36635.02 3679.52 37475.50 35522.31 36760.21 35138.45 366
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DSMNet-mixed57.77 32556.90 32760.38 34367.70 36635.61 36969.18 34853.97 37132.30 36657.49 35179.88 32140.39 33468.57 36538.78 35772.37 31276.97 353
E-PMN31.77 33530.64 33835.15 35252.87 37227.67 37357.09 36247.86 37324.64 36716.40 37233.05 36811.23 37254.90 36914.46 37118.15 36922.87 368
EMVS30.81 33729.65 33934.27 35350.96 37325.95 37556.58 36346.80 37424.01 36815.53 37330.68 36912.47 37154.43 37012.81 37217.05 37022.43 369
MVEpermissive26.22 2330.37 33825.89 34243.81 35044.55 37535.46 37028.87 36839.07 37518.20 36918.58 37140.18 3662.68 37847.37 37217.07 37023.78 36848.60 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft27.40 35440.17 37726.90 37424.59 37817.44 37023.95 36848.61 3659.77 37326.48 37318.06 36824.47 36728.83 367
wuyk23d16.82 34115.94 34419.46 35558.74 36931.45 37239.22 3653.74 3806.84 3716.04 3742.70 3741.27 37924.29 37410.54 37314.40 3732.63 371
test_method31.52 33629.28 34038.23 35127.03 3786.50 38020.94 36962.21 3694.05 37222.35 37052.50 36413.33 37047.58 37127.04 36534.04 36560.62 361
tmp_tt18.61 34021.40 34310.23 3564.82 37910.11 37834.70 36630.74 3771.48 37323.91 36926.07 37028.42 35913.41 37527.12 36415.35 3727.17 370
EGC-MVSNET52.07 32947.05 33367.14 33883.51 26860.71 26280.50 28967.75 3610.07 3740.43 37575.85 34624.26 36281.54 33228.82 36262.25 34559.16 362
testmvs6.04 3448.02 3470.10 3580.08 3800.03 38269.74 3450.04 3810.05 3750.31 3761.68 3750.02 3810.04 3760.24 3740.02 3740.25 373
test1236.12 3438.11 3460.14 3570.06 3810.09 38171.05 3410.03 3820.04 3760.25 3771.30 3760.05 3800.03 3770.21 3750.01 3750.29 372
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k19.96 33926.61 3410.00 3590.00 3820.00 3830.00 37089.26 1800.00 3770.00 37888.61 17061.62 1620.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas5.26 3457.02 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37763.15 1380.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.23 3429.64 3450.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37886.72 2200.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
MSC_two_6792asdad89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 29
No_MVS89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 29
eth-test20.00 382
eth-test0.00 382
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 1983.77 5396.48 894.88 9
test_0728_SECOND87.71 3495.34 171.43 6293.49 994.23 597.49 389.08 796.41 1294.21 39
GSMVS88.96 234
test_part295.06 872.65 3391.80 13
sam_mvs151.32 25788.96 234
sam_mvs50.01 270
ambc75.24 29973.16 36150.51 35263.05 36087.47 22964.28 32877.81 33717.80 36789.73 26657.88 28360.64 34985.49 304
MTGPAbinary92.02 94
test_post178.90 3075.43 37348.81 28785.44 31159.25 268
test_post5.46 37250.36 26884.24 318
patchmatchnet-post74.00 34951.12 25988.60 285
GG-mvs-BLEND75.38 29881.59 30755.80 32079.32 30069.63 35667.19 30473.67 35043.24 31788.90 28350.41 31684.50 17281.45 340
MTMP92.18 3332.83 376
test9_res84.90 3395.70 3192.87 101
agg_prior282.91 6395.45 3392.70 104
agg_prior92.85 6671.94 5491.78 10984.41 6994.93 98
test_prior472.60 3589.01 102
test_prior86.33 6392.61 7469.59 10192.97 5495.48 7193.91 52
新几何286.29 194
旧先验191.96 8265.79 17786.37 24693.08 6969.31 7992.74 7588.74 243
原ACMM286.86 175
testdata291.01 24862.37 242
segment_acmp73.08 43
test1286.80 5592.63 7370.70 8191.79 10882.71 9671.67 5596.16 4794.50 5693.54 76
plane_prior790.08 11268.51 129
plane_prior689.84 12068.70 12460.42 186
plane_prior592.44 7595.38 8078.71 9786.32 15591.33 147
plane_prior491.00 114
plane_prior189.90 119
n20.00 383
nn0.00 383
door-mid69.98 355
lessismore_v078.97 25581.01 31857.15 30165.99 36361.16 34182.82 29239.12 33791.34 23759.67 26446.92 36388.43 250
test1192.23 86
door69.44 358
HQP5-MVS66.98 156
BP-MVS77.47 111
HQP4-MVS77.24 17495.11 9191.03 157
HQP3-MVS92.19 8985.99 161
HQP2-MVS60.17 189
NP-MVS89.62 12268.32 13190.24 125
ACMMP++_ref81.95 205
ACMMP++81.25 210
Test By Simon64.33 123