| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 55 | 80.26 11 | 87.78 30 | 94.27 32 | 75.89 19 | 96.81 23 | 87.45 32 | 96.44 9 | 93.05 101 |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 37 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 46 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 37 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 44 | 82.45 3 | 96.87 20 | 83.77 59 | 96.48 8 | 94.88 14 |
|
| MTAPA | | | 87.23 28 | 87.00 29 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 188 | 92.02 90 | 79.45 19 | 85.88 48 | 94.80 17 | 68.07 95 | 96.21 42 | 86.69 36 | 95.34 33 | 93.23 92 |
|
| MP-MVS |  | | 87.71 20 | 87.64 22 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 65 | 77.57 41 | 83.84 86 | 94.40 30 | 72.24 45 | 96.28 40 | 85.65 38 | 95.30 35 | 93.62 77 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CP-MVS | | | 87.11 30 | 86.92 32 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 59 | 76.62 71 | 83.68 88 | 94.46 25 | 67.93 97 | 95.95 54 | 84.20 56 | 94.39 53 | 93.23 92 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 60 | 93.00 43 | 80.90 7 | 88.06 26 | 94.06 42 | 76.43 16 | 96.84 21 | 88.48 24 | 95.99 18 | 94.34 42 |
|
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 109 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 12 | 88.58 21 | 96.91 1 | 94.87 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 92 | 73.65 10 | 92.66 23 | 91.17 122 | 86.57 1 | 87.39 37 | 94.97 16 | 71.70 53 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| NCCC | | | 88.06 15 | 88.01 19 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 52 | 92.83 56 | 81.50 5 | 85.79 50 | 93.47 60 | 73.02 40 | 97.00 18 | 84.90 42 | 94.94 39 | 94.10 50 |
|
| ACMMPR | | | 87.44 23 | 87.23 27 | 88.08 14 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 65 | 84.66 68 | 94.52 21 | 68.81 90 | 96.65 30 | 84.53 50 | 94.90 40 | 94.00 55 |
|
| region2R | | | 87.42 25 | 87.20 28 | 88.09 13 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 37 | 76.73 68 | 84.45 74 | 94.52 21 | 69.09 82 | 96.70 27 | 84.37 52 | 94.83 44 | 94.03 54 |
|
| mPP-MVS | | | 86.67 37 | 86.32 39 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 83 | 76.87 62 | 82.81 102 | 94.25 34 | 66.44 112 | 96.24 41 | 82.88 69 | 94.28 58 | 93.38 86 |
|
| HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 65 | 84.91 61 | 94.44 28 | 70.78 63 | 96.61 32 | 84.53 50 | 94.89 41 | 93.66 70 |
|
| 3Dnovator+ | | 77.84 4 | 85.48 56 | 84.47 74 | 88.51 7 | 91.08 82 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 198 | 93.37 62 | 60.40 195 | 96.75 26 | 77.20 122 | 93.73 65 | 95.29 5 |
|
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 37 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 60 | 94.67 25 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| PGM-MVS | | | 86.68 36 | 86.27 40 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 70 | 93.04 38 | 75.53 93 | 83.86 85 | 94.42 29 | 67.87 99 | 96.64 31 | 82.70 74 | 94.57 49 | 93.66 70 |
|
| ZNCC-MVS | | | 87.94 19 | 87.85 20 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 63 | 85.24 55 | 94.32 31 | 71.76 51 | 96.93 19 | 85.53 39 | 95.79 22 | 94.32 43 |
|
| XVS | | | 87.18 29 | 86.91 33 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 89 | 94.17 36 | 67.45 102 | 96.60 33 | 83.06 64 | 94.50 50 | 94.07 52 |
|
| X-MVStestdata | | | 80.37 150 | 77.83 186 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 46 | 79.14 21 | 83.67 89 | 12.47 408 | 67.45 102 | 96.60 33 | 83.06 64 | 94.50 50 | 94.07 52 |
|
| ACMMP_NAP | | | 88.05 17 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 55 | 93.59 23 | 76.27 81 | 88.14 24 | 95.09 15 | 71.06 60 | 96.67 29 | 87.67 29 | 96.37 14 | 94.09 51 |
|
| DPM-MVS | | | 84.93 67 | 84.29 75 | 86.84 47 | 90.20 102 | 73.04 23 | 87.12 170 | 93.04 38 | 69.80 210 | 82.85 100 | 91.22 113 | 73.06 39 | 96.02 48 | 76.72 129 | 94.63 47 | 91.46 154 |
|
| GST-MVS | | | 87.42 25 | 87.26 25 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 61 | 84.68 65 | 93.99 48 | 70.67 65 | 96.82 22 | 84.18 57 | 95.01 37 | 93.90 60 |
|
| TEST9 | | | | | | 93.26 50 | 72.96 25 | 88.75 115 | 91.89 99 | 68.44 243 | 85.00 59 | 93.10 67 | 74.36 28 | 95.41 70 | | | |
|
| train_agg | | | 86.43 39 | 86.20 41 | 87.13 44 | 93.26 50 | 72.96 25 | 88.75 115 | 91.89 99 | 68.69 238 | 85.00 59 | 93.10 67 | 74.43 26 | 95.41 70 | 84.97 41 | 95.71 25 | 93.02 103 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 69 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 25 | 94.80 17 | 73.76 33 | 97.11 15 | 87.51 31 | 95.82 21 | 94.90 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| 3Dnovator | | 76.31 5 | 83.38 90 | 82.31 100 | 86.59 52 | 87.94 189 | 72.94 28 | 90.64 58 | 92.14 88 | 77.21 52 | 75.47 223 | 92.83 76 | 58.56 202 | 94.72 103 | 73.24 162 | 92.71 72 | 92.13 135 |
|
| SD-MVS | | | 88.06 15 | 88.50 14 | 86.71 51 | 92.60 66 | 72.71 29 | 91.81 42 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 46 | 74.83 23 | 93.78 138 | 87.63 30 | 94.27 59 | 93.65 74 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| MVS_111021_HR | | | 85.14 62 | 84.75 67 | 86.32 55 | 91.65 76 | 72.70 30 | 85.98 203 | 90.33 147 | 76.11 83 | 82.08 107 | 91.61 101 | 71.36 59 | 94.17 121 | 81.02 87 | 92.58 73 | 92.08 136 |
|
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 87 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 10 | 87.44 33 | 96.34 15 | 93.95 57 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| ACMMP |  | | 85.89 49 | 85.39 57 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 36 | 76.78 65 | 80.73 126 | 93.82 53 | 64.33 132 | 96.29 39 | 82.67 75 | 90.69 98 | 93.23 92 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| test_prior4 | | | | | | | 72.60 34 | 89.01 106 | | | | | | | | | |
|
| test_8 | | | | | | 93.13 52 | 72.57 35 | 88.68 120 | 91.84 103 | 68.69 238 | 84.87 63 | 93.10 67 | 74.43 26 | 95.16 80 | | | |
|
| TSAR-MVS + GP. | | | 85.71 52 | 85.33 59 | 86.84 47 | 91.34 78 | 72.50 36 | 89.07 105 | 87.28 233 | 76.41 74 | 85.80 49 | 90.22 140 | 74.15 31 | 95.37 75 | 81.82 79 | 91.88 82 | 92.65 114 |
|
| CSCG | | | 86.41 41 | 86.19 42 | 87.07 45 | 92.91 58 | 72.48 37 | 90.81 56 | 93.56 24 | 73.95 125 | 83.16 95 | 91.07 119 | 75.94 18 | 95.19 79 | 79.94 99 | 94.38 56 | 93.55 81 |
|
| MCST-MVS | | | 87.37 27 | 87.25 26 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 76 | 93.82 16 | 73.07 149 | 84.86 64 | 92.89 74 | 76.22 17 | 96.33 38 | 84.89 44 | 95.13 36 | 94.40 39 |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 115 | 91.30 15 | | | | | | |
|
| APD-MVS |  | | 87.44 23 | 87.52 23 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 41 | 92.83 56 | 73.01 151 | 88.58 21 | 94.52 21 | 73.36 34 | 96.49 36 | 84.26 53 | 95.01 37 | 92.70 110 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 79.65 3 | 86.91 33 | 86.62 36 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 48 | 93.04 38 | 76.62 71 | 84.22 78 | 93.36 63 | 71.44 57 | 96.76 25 | 80.82 90 | 95.33 34 | 94.16 48 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 63 | 91.17 122 | 74.31 118 | | | | | | | |
|
| DeepC-MVS | | 79.81 2 | 87.08 32 | 86.88 34 | 87.69 33 | 91.16 80 | 72.32 43 | 90.31 68 | 93.94 14 | 77.12 55 | 82.82 101 | 94.23 35 | 72.13 47 | 97.09 16 | 84.83 45 | 95.37 32 | 93.65 74 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 62 | 70.98 184 | 87.75 32 | 94.07 41 | 74.01 32 | 96.70 27 | 84.66 48 | 94.84 43 | |
|
| HPM-MVS |  | | 87.11 30 | 86.98 30 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 34 | 93.33 31 | 76.07 84 | 83.81 87 | 93.95 51 | 69.77 75 | 96.01 49 | 85.15 40 | 94.66 46 | 94.32 43 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| TSAR-MVS + MP. | | | 88.02 18 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 47 | 92.35 77 | 74.62 113 | 88.90 20 | 93.85 52 | 75.75 20 | 96.00 50 | 87.80 28 | 94.63 47 | 95.04 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SR-MVS | | | 86.73 34 | 86.67 35 | 86.91 46 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 70 | 74.50 114 | 86.84 44 | 94.65 20 | 67.31 104 | 95.77 56 | 84.80 46 | 92.85 70 | 92.84 108 |
|
| MVS_0304 | | | 88.08 14 | 88.08 17 | 88.08 14 | 89.67 117 | 72.04 48 | 92.26 33 | 89.26 179 | 84.19 2 | 85.01 57 | 95.18 13 | 69.93 72 | 97.20 14 | 91.63 2 | 95.60 29 | 94.99 9 |
|
| MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 78 | 93.50 25 | 75.17 102 | 86.34 46 | 95.29 12 | 70.86 62 | 96.00 50 | 88.78 19 | 96.04 16 | 94.58 29 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 61 | 71.95 50 | 92.40 24 | 94.74 2 | 75.71 89 | 89.16 19 | 95.10 14 | 75.65 21 | 96.19 43 | 87.07 34 | 96.01 17 | 94.79 21 |
|
| agg_prior | | | | | | 92.85 59 | 71.94 51 | | 91.78 106 | | 84.41 75 | | | 94.93 91 | | | |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 91 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 34 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MVS_111021_LR | | | 82.61 102 | 82.11 102 | 84.11 121 | 88.82 153 | 71.58 53 | 85.15 223 | 86.16 252 | 74.69 110 | 80.47 128 | 91.04 120 | 62.29 158 | 90.55 259 | 80.33 96 | 90.08 108 | 90.20 198 |
|
| MAR-MVS | | | 81.84 113 | 80.70 124 | 85.27 78 | 91.32 79 | 71.53 54 | 89.82 76 | 90.92 128 | 69.77 212 | 78.50 155 | 86.21 248 | 62.36 157 | 94.52 108 | 65.36 233 | 92.05 81 | 89.77 223 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| test_one_0601 | | | | | | 95.07 7 | 71.46 55 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 56 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 47 |
|
| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 57 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 10 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 57 | | 92.95 52 | 66.81 256 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 19 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 57 | 93.49 9 | 92.73 60 | 77.33 48 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 8 | 89.08 12 | 96.41 12 | 93.33 89 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 95.27 5 | 71.25 57 | 93.60 6 | 94.11 6 | 77.33 48 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| CDPH-MVS | | | 85.76 51 | 85.29 62 | 87.17 43 | 93.49 47 | 71.08 61 | 88.58 123 | 92.42 75 | 68.32 245 | 84.61 70 | 93.48 58 | 72.32 44 | 96.15 45 | 79.00 101 | 95.43 31 | 94.28 45 |
|
| CNLPA | | | 78.08 202 | 76.79 213 | 81.97 198 | 90.40 99 | 71.07 62 | 87.59 157 | 84.55 270 | 66.03 272 | 72.38 277 | 89.64 151 | 57.56 211 | 86.04 314 | 59.61 282 | 83.35 204 | 88.79 255 |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 63 | 93.57 7 | 94.06 10 | 77.24 50 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 6 | 89.07 14 | 96.63 4 | 94.88 14 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 63 | | 94.06 10 | 77.17 53 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 11 | | | |
|
| PHI-MVS | | | 86.43 39 | 86.17 43 | 87.24 41 | 90.88 88 | 70.96 65 | 92.27 32 | 94.07 9 | 72.45 155 | 85.22 56 | 91.90 92 | 69.47 77 | 96.42 37 | 83.28 63 | 95.94 19 | 94.35 41 |
|
| OPM-MVS | | | 83.50 86 | 82.95 91 | 85.14 81 | 88.79 156 | 70.95 66 | 89.13 104 | 91.52 112 | 77.55 44 | 80.96 124 | 91.75 95 | 60.71 186 | 94.50 109 | 79.67 100 | 86.51 155 | 89.97 215 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| CANet | | | 86.45 38 | 86.10 45 | 87.51 37 | 90.09 104 | 70.94 67 | 89.70 82 | 92.59 69 | 81.78 4 | 81.32 117 | 91.43 107 | 70.34 67 | 97.23 13 | 84.26 53 | 93.36 67 | 94.37 40 |
|
| DP-MVS Recon | | | 83.11 96 | 82.09 103 | 86.15 58 | 94.44 19 | 70.92 68 | 88.79 113 | 92.20 84 | 70.53 194 | 79.17 142 | 91.03 122 | 64.12 134 | 96.03 46 | 68.39 209 | 90.14 106 | 91.50 150 |
|
| CPTT-MVS | | | 83.73 79 | 83.33 85 | 84.92 91 | 93.28 49 | 70.86 69 | 92.09 37 | 90.38 143 | 68.75 237 | 79.57 137 | 92.83 76 | 60.60 191 | 93.04 181 | 80.92 89 | 91.56 88 | 90.86 171 |
|
| h-mvs33 | | | 83.15 93 | 82.19 101 | 86.02 62 | 90.56 95 | 70.85 70 | 88.15 141 | 89.16 184 | 76.02 85 | 84.67 66 | 91.39 108 | 61.54 169 | 95.50 64 | 82.71 72 | 75.48 301 | 91.72 144 |
|
| 新几何1 | | | | | 83.42 150 | 93.13 52 | 70.71 71 | | 85.48 261 | 57.43 357 | 81.80 112 | 91.98 90 | 63.28 140 | 92.27 204 | 64.60 240 | 92.99 68 | 87.27 286 |
|
| test12 | | | | | 86.80 49 | 92.63 64 | 70.70 72 | | 91.79 105 | | 82.71 103 | | 71.67 54 | 96.16 44 | | 94.50 50 | 93.54 82 |
|
| SR-MVS-dyc-post | | | 85.77 50 | 85.61 53 | 86.23 56 | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 79 | 73.53 138 | 85.69 51 | 94.45 26 | 65.00 130 | 95.56 61 | 82.75 70 | 91.87 83 | 92.50 119 |
|
| RE-MVS-def | | | | 85.48 55 | | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 79 | 73.53 138 | 85.69 51 | 94.45 26 | 63.87 136 | | 82.75 70 | 91.87 83 | 92.50 119 |
|
| HPM-MVS_fast | | | 85.35 60 | 84.95 66 | 86.57 53 | 93.69 42 | 70.58 75 | 92.15 36 | 91.62 109 | 73.89 128 | 82.67 104 | 94.09 40 | 62.60 151 | 95.54 63 | 80.93 88 | 92.93 69 | 93.57 79 |
|
| MSLP-MVS++ | | | 85.43 58 | 85.76 51 | 84.45 106 | 91.93 72 | 70.24 76 | 90.71 57 | 92.86 54 | 77.46 47 | 84.22 78 | 92.81 78 | 67.16 106 | 92.94 183 | 80.36 95 | 94.35 57 | 90.16 199 |
|
| MVSFormer | | | 82.85 99 | 82.05 104 | 85.24 79 | 87.35 209 | 70.21 77 | 90.50 61 | 90.38 143 | 68.55 240 | 81.32 117 | 89.47 157 | 61.68 166 | 93.46 155 | 78.98 102 | 90.26 104 | 92.05 137 |
|
| lupinMVS | | | 81.39 125 | 80.27 134 | 84.76 97 | 87.35 209 | 70.21 77 | 85.55 216 | 86.41 247 | 62.85 310 | 81.32 117 | 88.61 179 | 61.68 166 | 92.24 206 | 78.41 110 | 90.26 104 | 91.83 141 |
|
| xiu_mvs_v1_base_debu | | | 80.80 137 | 79.72 143 | 84.03 134 | 87.35 209 | 70.19 79 | 85.56 213 | 88.77 199 | 69.06 230 | 81.83 109 | 88.16 193 | 50.91 272 | 92.85 185 | 78.29 112 | 87.56 138 | 89.06 239 |
|
| xiu_mvs_v1_base | | | 80.80 137 | 79.72 143 | 84.03 134 | 87.35 209 | 70.19 79 | 85.56 213 | 88.77 199 | 69.06 230 | 81.83 109 | 88.16 193 | 50.91 272 | 92.85 185 | 78.29 112 | 87.56 138 | 89.06 239 |
|
| xiu_mvs_v1_base_debi | | | 80.80 137 | 79.72 143 | 84.03 134 | 87.35 209 | 70.19 79 | 85.56 213 | 88.77 199 | 69.06 230 | 81.83 109 | 88.16 193 | 50.91 272 | 92.85 185 | 78.29 112 | 87.56 138 | 89.06 239 |
|
| API-MVS | | | 81.99 111 | 81.23 114 | 84.26 118 | 90.94 86 | 70.18 82 | 91.10 53 | 89.32 175 | 71.51 172 | 78.66 151 | 88.28 189 | 65.26 125 | 95.10 87 | 64.74 239 | 91.23 92 | 87.51 280 |
|
| test_fmvsm_n_1920 | | | 85.29 61 | 85.34 58 | 85.13 83 | 86.12 235 | 69.93 83 | 88.65 121 | 90.78 133 | 69.97 206 | 88.27 23 | 93.98 49 | 71.39 58 | 91.54 231 | 88.49 23 | 90.45 101 | 93.91 58 |
|
| OpenMVS |  | 72.83 10 | 79.77 159 | 78.33 174 | 84.09 125 | 85.17 250 | 69.91 84 | 90.57 59 | 90.97 127 | 66.70 259 | 72.17 279 | 91.91 91 | 54.70 231 | 93.96 125 | 61.81 266 | 90.95 95 | 88.41 265 |
|
| jason | | | 81.39 125 | 80.29 133 | 84.70 98 | 86.63 229 | 69.90 85 | 85.95 204 | 86.77 243 | 63.24 303 | 81.07 123 | 89.47 157 | 61.08 182 | 92.15 208 | 78.33 111 | 90.07 109 | 92.05 137 |
| jason: jason. |
| MVP-Stereo | | | 76.12 242 | 74.46 250 | 81.13 219 | 85.37 248 | 69.79 86 | 84.42 244 | 87.95 218 | 65.03 282 | 67.46 325 | 85.33 267 | 53.28 246 | 91.73 224 | 58.01 299 | 83.27 205 | 81.85 362 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| PVSNet_Blended_VisFu | | | 82.62 101 | 81.83 109 | 84.96 88 | 90.80 91 | 69.76 87 | 88.74 117 | 91.70 108 | 69.39 218 | 78.96 144 | 88.46 184 | 65.47 124 | 94.87 98 | 74.42 148 | 88.57 129 | 90.24 197 |
|
| test_prior | | | | | 86.33 54 | 92.61 65 | 69.59 88 | | 92.97 51 | | | | | 95.48 65 | | | 93.91 58 |
|
| APD-MVS_3200maxsize | | | 85.97 45 | 85.88 48 | 86.22 57 | 92.69 63 | 69.53 89 | 91.93 38 | 92.99 46 | 73.54 137 | 85.94 47 | 94.51 24 | 65.80 122 | 95.61 60 | 83.04 66 | 92.51 74 | 93.53 83 |
|
| test_fmvsmconf_n | | | 85.92 46 | 86.04 47 | 85.57 72 | 85.03 256 | 69.51 90 | 89.62 86 | 90.58 137 | 73.42 140 | 87.75 32 | 94.02 44 | 72.85 41 | 93.24 163 | 90.37 3 | 90.75 97 | 93.96 56 |
|
| EPNet | | | 83.72 80 | 82.92 92 | 86.14 59 | 84.22 270 | 69.48 91 | 91.05 54 | 85.27 262 | 81.30 6 | 76.83 193 | 91.65 98 | 66.09 117 | 95.56 61 | 76.00 135 | 93.85 62 | 93.38 86 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| ET-MVSNet_ETH3D | | | 78.63 189 | 76.63 219 | 84.64 99 | 86.73 226 | 69.47 92 | 85.01 226 | 84.61 269 | 69.54 216 | 66.51 340 | 86.59 237 | 50.16 281 | 91.75 222 | 76.26 131 | 84.24 186 | 92.69 112 |
|
| alignmvs | | | 85.48 56 | 85.32 60 | 85.96 63 | 89.51 123 | 69.47 92 | 89.74 80 | 92.47 71 | 76.17 82 | 87.73 34 | 91.46 106 | 70.32 68 | 93.78 138 | 81.51 80 | 88.95 121 | 94.63 28 |
|
| DP-MVS | | | 76.78 231 | 74.57 246 | 83.42 150 | 93.29 48 | 69.46 94 | 88.55 124 | 83.70 282 | 63.98 298 | 70.20 295 | 88.89 171 | 54.01 239 | 94.80 100 | 46.66 362 | 81.88 223 | 86.01 313 |
|
| sasdasda | | | 85.91 47 | 85.87 49 | 86.04 60 | 89.84 114 | 69.44 95 | 90.45 65 | 93.00 43 | 76.70 69 | 88.01 28 | 91.23 111 | 73.28 36 | 93.91 132 | 81.50 81 | 88.80 124 | 94.77 22 |
|
| canonicalmvs | | | 85.91 47 | 85.87 49 | 86.04 60 | 89.84 114 | 69.44 95 | 90.45 65 | 93.00 43 | 76.70 69 | 88.01 28 | 91.23 111 | 73.28 36 | 93.91 132 | 81.50 81 | 88.80 124 | 94.77 22 |
|
| test_fmvsmconf0.1_n | | | 85.61 54 | 85.65 52 | 85.50 73 | 82.99 301 | 69.39 97 | 89.65 83 | 90.29 150 | 73.31 143 | 87.77 31 | 94.15 38 | 71.72 52 | 93.23 164 | 90.31 4 | 90.67 99 | 93.89 61 |
|
| test_fmvsmvis_n_1920 | | | 84.02 75 | 83.87 77 | 84.49 105 | 84.12 272 | 69.37 98 | 88.15 141 | 87.96 217 | 70.01 204 | 83.95 84 | 93.23 65 | 68.80 91 | 91.51 234 | 88.61 20 | 89.96 110 | 92.57 115 |
|
| nrg030 | | | 83.88 76 | 83.53 80 | 84.96 88 | 86.77 225 | 69.28 99 | 90.46 64 | 92.67 62 | 74.79 108 | 82.95 96 | 91.33 110 | 72.70 43 | 93.09 177 | 80.79 92 | 79.28 254 | 92.50 119 |
|
| test_fmvsmconf0.01_n | | | 84.73 71 | 84.52 72 | 85.34 76 | 80.25 341 | 69.03 100 | 89.47 88 | 89.65 167 | 73.24 147 | 86.98 42 | 94.27 32 | 66.62 108 | 93.23 164 | 90.26 5 | 89.95 111 | 93.78 67 |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 50 | 92.24 68 | 69.03 100 | 89.57 87 | 93.39 30 | 77.53 45 | 89.79 18 | 94.12 39 | 78.98 12 | 96.58 35 | 85.66 37 | 95.72 24 | 94.58 29 |
|
| XVG-OURS | | | 80.41 147 | 79.23 155 | 83.97 138 | 85.64 242 | 69.02 102 | 83.03 272 | 90.39 142 | 71.09 181 | 77.63 176 | 91.49 105 | 54.62 233 | 91.35 240 | 75.71 137 | 83.47 202 | 91.54 148 |
|
| PCF-MVS | | 73.52 7 | 80.38 148 | 78.84 163 | 85.01 86 | 87.71 199 | 68.99 103 | 83.65 256 | 91.46 117 | 63.00 307 | 77.77 174 | 90.28 137 | 66.10 116 | 95.09 88 | 61.40 269 | 88.22 135 | 90.94 169 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| QAPM | | | 80.88 132 | 79.50 148 | 85.03 85 | 88.01 188 | 68.97 104 | 91.59 43 | 92.00 92 | 66.63 265 | 75.15 241 | 92.16 88 | 57.70 209 | 95.45 66 | 63.52 245 | 88.76 126 | 90.66 179 |
|
| AdaColmap |  | | 80.58 145 | 79.42 149 | 84.06 129 | 93.09 54 | 68.91 105 | 89.36 95 | 88.97 194 | 69.27 221 | 75.70 219 | 89.69 149 | 57.20 216 | 95.77 56 | 63.06 250 | 88.41 133 | 87.50 281 |
|
| fmvsm_l_conf0.5_n | | | 84.47 72 | 84.54 70 | 84.27 117 | 85.42 246 | 68.81 106 | 88.49 125 | 87.26 234 | 68.08 247 | 88.03 27 | 93.49 57 | 72.04 48 | 91.77 221 | 88.90 17 | 89.14 120 | 92.24 130 |
|
| 原ACMM1 | | | | | 84.35 110 | 93.01 57 | 68.79 107 | | 92.44 72 | 63.96 299 | 81.09 122 | 91.57 102 | 66.06 118 | 95.45 66 | 67.19 219 | 94.82 45 | 88.81 254 |
|
| XVG-OURS-SEG-HR | | | 80.81 135 | 79.76 142 | 83.96 139 | 85.60 243 | 68.78 108 | 83.54 261 | 90.50 140 | 70.66 192 | 76.71 197 | 91.66 97 | 60.69 187 | 91.26 242 | 76.94 125 | 81.58 225 | 91.83 141 |
|
| LPG-MVS_test | | | 82.08 107 | 81.27 113 | 84.50 103 | 89.23 139 | 68.76 109 | 90.22 70 | 91.94 96 | 75.37 96 | 76.64 199 | 91.51 103 | 54.29 235 | 94.91 92 | 78.44 108 | 83.78 190 | 89.83 220 |
|
| LGP-MVS_train | | | | | 84.50 103 | 89.23 139 | 68.76 109 | | 91.94 96 | 75.37 96 | 76.64 199 | 91.51 103 | 54.29 235 | 94.91 92 | 78.44 108 | 83.78 190 | 89.83 220 |
|
| Effi-MVS+-dtu | | | 80.03 156 | 78.57 167 | 84.42 107 | 85.13 254 | 68.74 111 | 88.77 114 | 88.10 213 | 74.99 104 | 74.97 246 | 83.49 304 | 57.27 215 | 93.36 159 | 73.53 156 | 80.88 232 | 91.18 159 |
|
| Vis-MVSNet |  | | 83.46 87 | 82.80 94 | 85.43 75 | 90.25 101 | 68.74 111 | 90.30 69 | 90.13 154 | 76.33 80 | 80.87 125 | 92.89 74 | 61.00 183 | 94.20 119 | 72.45 171 | 90.97 94 | 93.35 88 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| HQP_MVS | | | 83.64 82 | 83.14 86 | 85.14 81 | 90.08 105 | 68.71 113 | 91.25 50 | 92.44 72 | 79.12 23 | 78.92 146 | 91.00 124 | 60.42 193 | 95.38 72 | 78.71 105 | 86.32 157 | 91.33 155 |
|
| plane_prior | | | | | | | 68.71 113 | 90.38 67 | | 77.62 39 | | | | | | 86.16 161 | |
|
| plane_prior6 | | | | | | 89.84 114 | 68.70 115 | | | | | | 60.42 193 | | | | |
|
| ACMP | | 74.13 6 | 81.51 124 | 80.57 126 | 84.36 109 | 89.42 127 | 68.69 116 | 89.97 74 | 91.50 116 | 74.46 116 | 75.04 245 | 90.41 135 | 53.82 240 | 94.54 106 | 77.56 118 | 82.91 209 | 89.86 219 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| ETV-MVS | | | 84.90 69 | 84.67 69 | 85.59 71 | 89.39 130 | 68.66 117 | 88.74 117 | 92.64 66 | 79.97 15 | 84.10 81 | 85.71 257 | 69.32 80 | 95.38 72 | 80.82 90 | 91.37 90 | 92.72 109 |
|
| plane_prior3 | | | | | | | 68.60 118 | | | 78.44 31 | 78.92 146 | | | | | | |
|
| CHOSEN 1792x2688 | | | 77.63 217 | 75.69 228 | 83.44 149 | 89.98 111 | 68.58 119 | 78.70 328 | 87.50 229 | 56.38 362 | 75.80 218 | 86.84 225 | 58.67 201 | 91.40 239 | 61.58 268 | 85.75 169 | 90.34 192 |
|
| plane_prior7 | | | | | | 90.08 105 | 68.51 120 | | | | | | | | | | |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 74 | 84.16 76 | 84.06 129 | 85.38 247 | 68.40 121 | 88.34 133 | 86.85 242 | 67.48 254 | 87.48 36 | 93.40 61 | 70.89 61 | 91.61 225 | 88.38 25 | 89.22 119 | 92.16 134 |
|
| ACMM | | 73.20 8 | 80.78 140 | 79.84 141 | 83.58 146 | 89.31 135 | 68.37 122 | 89.99 73 | 91.60 110 | 70.28 199 | 77.25 183 | 89.66 150 | 53.37 245 | 93.53 151 | 74.24 151 | 82.85 210 | 88.85 252 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pmmvs4 | | | 74.03 267 | 71.91 274 | 80.39 234 | 81.96 318 | 68.32 123 | 81.45 288 | 82.14 307 | 59.32 340 | 69.87 304 | 85.13 273 | 52.40 251 | 88.13 298 | 60.21 278 | 74.74 316 | 84.73 333 |
|
| NP-MVS | | | | | | 89.62 118 | 68.32 123 | | | | | 90.24 138 | | | | | |
|
| test222 | | | | | | 91.50 77 | 68.26 125 | 84.16 249 | 83.20 293 | 54.63 368 | 79.74 134 | 91.63 100 | 58.97 200 | | | 91.42 89 | 86.77 299 |
|
| CDS-MVSNet | | | 79.07 179 | 77.70 193 | 83.17 162 | 87.60 203 | 68.23 126 | 84.40 245 | 86.20 251 | 67.49 253 | 76.36 206 | 86.54 241 | 61.54 169 | 90.79 255 | 61.86 265 | 87.33 142 | 90.49 187 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| PS-MVSNAJ | | | 81.69 117 | 81.02 119 | 83.70 143 | 89.51 123 | 68.21 127 | 84.28 247 | 90.09 155 | 70.79 186 | 81.26 121 | 85.62 262 | 63.15 145 | 94.29 113 | 75.62 139 | 88.87 123 | 88.59 261 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 83 | 83.41 82 | 84.28 115 | 86.14 234 | 68.12 128 | 89.43 90 | 82.87 300 | 70.27 200 | 87.27 39 | 93.80 54 | 69.09 82 | 91.58 227 | 88.21 26 | 83.65 197 | 93.14 98 |
|
| UGNet | | | 80.83 134 | 79.59 146 | 84.54 102 | 88.04 186 | 68.09 129 | 89.42 92 | 88.16 211 | 76.95 59 | 76.22 209 | 89.46 159 | 49.30 293 | 93.94 128 | 68.48 207 | 90.31 102 | 91.60 145 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| fmvsm_s_conf0.1_n_a | | | 83.32 91 | 82.99 90 | 84.28 115 | 83.79 279 | 68.07 130 | 89.34 96 | 82.85 301 | 69.80 210 | 87.36 38 | 94.06 42 | 68.34 94 | 91.56 229 | 87.95 27 | 83.46 203 | 93.21 95 |
|
| UA-Net | | | 85.08 64 | 84.96 65 | 85.45 74 | 92.07 70 | 68.07 130 | 89.78 79 | 90.86 132 | 82.48 3 | 84.60 71 | 93.20 66 | 69.35 79 | 95.22 78 | 71.39 177 | 90.88 96 | 93.07 100 |
|
| xiu_mvs_v2_base | | | 81.69 117 | 81.05 118 | 83.60 145 | 89.15 142 | 68.03 132 | 84.46 241 | 90.02 156 | 70.67 189 | 81.30 120 | 86.53 242 | 63.17 144 | 94.19 120 | 75.60 140 | 88.54 130 | 88.57 262 |
|
| DELS-MVS | | | 85.41 59 | 85.30 61 | 85.77 67 | 88.49 167 | 67.93 133 | 85.52 220 | 93.44 27 | 78.70 29 | 83.63 91 | 89.03 169 | 74.57 24 | 95.71 59 | 80.26 97 | 94.04 61 | 93.66 70 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| EI-MVSNet-Vis-set | | | 84.19 73 | 83.81 78 | 85.31 77 | 88.18 178 | 67.85 134 | 87.66 155 | 89.73 165 | 80.05 14 | 82.95 96 | 89.59 154 | 70.74 64 | 94.82 99 | 80.66 94 | 84.72 176 | 93.28 91 |
|
| PLC |  | 70.83 11 | 78.05 204 | 76.37 224 | 83.08 166 | 91.88 74 | 67.80 135 | 88.19 138 | 89.46 171 | 64.33 291 | 69.87 304 | 88.38 186 | 53.66 241 | 93.58 146 | 58.86 290 | 82.73 212 | 87.86 272 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| TAMVS | | | 78.89 184 | 77.51 198 | 83.03 169 | 87.80 194 | 67.79 136 | 84.72 232 | 85.05 265 | 67.63 250 | 76.75 196 | 87.70 202 | 62.25 159 | 90.82 254 | 58.53 294 | 87.13 145 | 90.49 187 |
|
| CLD-MVS | | | 82.31 104 | 81.65 110 | 84.29 114 | 88.47 168 | 67.73 137 | 85.81 211 | 92.35 77 | 75.78 88 | 78.33 160 | 86.58 239 | 64.01 135 | 94.35 112 | 76.05 134 | 87.48 141 | 90.79 172 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| hse-mvs2 | | | 81.72 115 | 80.94 121 | 84.07 127 | 88.72 160 | 67.68 138 | 85.87 207 | 87.26 234 | 76.02 85 | 84.67 66 | 88.22 192 | 61.54 169 | 93.48 153 | 82.71 72 | 73.44 329 | 91.06 163 |
|
| MVSMamba_pp | | | 84.98 66 | 84.70 68 | 85.80 66 | 89.43 126 | 67.63 139 | 88.44 126 | 92.64 66 | 72.17 161 | 84.54 73 | 90.39 136 | 68.88 88 | 95.28 76 | 81.45 83 | 94.39 53 | 94.49 33 |
|
| AUN-MVS | | | 79.21 175 | 77.60 196 | 84.05 132 | 88.71 161 | 67.61 140 | 85.84 209 | 87.26 234 | 69.08 229 | 77.23 185 | 88.14 197 | 53.20 247 | 93.47 154 | 75.50 142 | 73.45 328 | 91.06 163 |
|
| CS-MVS | | | 86.69 35 | 86.95 31 | 85.90 64 | 90.76 93 | 67.57 141 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 72 | 92.27 86 | 71.47 56 | 95.02 90 | 84.24 55 | 93.46 66 | 95.13 6 |
|
| EI-MVSNet-UG-set | | | 83.81 77 | 83.38 83 | 85.09 84 | 87.87 191 | 67.53 142 | 87.44 161 | 89.66 166 | 79.74 16 | 82.23 106 | 89.41 163 | 70.24 69 | 94.74 102 | 79.95 98 | 83.92 189 | 92.99 105 |
|
| Effi-MVS+ | | | 83.62 84 | 83.08 87 | 85.24 79 | 88.38 173 | 67.45 143 | 88.89 110 | 89.15 185 | 75.50 94 | 82.27 105 | 88.28 189 | 69.61 76 | 94.45 111 | 77.81 115 | 87.84 136 | 93.84 64 |
|
| EG-PatchMatch MVS | | | 74.04 265 | 71.82 275 | 80.71 229 | 84.92 257 | 67.42 144 | 85.86 208 | 88.08 214 | 66.04 271 | 64.22 354 | 83.85 295 | 35.10 372 | 92.56 192 | 57.44 303 | 80.83 233 | 82.16 361 |
|
| OMC-MVS | | | 82.69 100 | 81.97 107 | 84.85 93 | 88.75 158 | 67.42 144 | 87.98 144 | 90.87 131 | 74.92 105 | 79.72 135 | 91.65 98 | 62.19 161 | 93.96 125 | 75.26 143 | 86.42 156 | 93.16 97 |
|
| PatchMatch-RL | | | 72.38 283 | 70.90 287 | 76.80 296 | 88.60 164 | 67.38 146 | 79.53 315 | 76.17 360 | 62.75 313 | 69.36 309 | 82.00 327 | 45.51 324 | 84.89 326 | 53.62 324 | 80.58 237 | 78.12 375 |
|
| LS3D | | | 76.95 228 | 74.82 244 | 83.37 153 | 90.45 97 | 67.36 147 | 89.15 103 | 86.94 240 | 61.87 322 | 69.52 307 | 90.61 131 | 51.71 266 | 94.53 107 | 46.38 365 | 86.71 152 | 88.21 267 |
|
| fmvsm_s_conf0.5_n | | | 83.80 78 | 83.71 79 | 84.07 127 | 86.69 227 | 67.31 148 | 89.46 89 | 83.07 295 | 71.09 181 | 86.96 43 | 93.70 55 | 69.02 87 | 91.47 236 | 88.79 18 | 84.62 178 | 93.44 85 |
|
| fmvsm_s_conf0.1_n | | | 83.56 85 | 83.38 83 | 84.10 122 | 84.86 258 | 67.28 149 | 89.40 94 | 83.01 296 | 70.67 189 | 87.08 40 | 93.96 50 | 68.38 93 | 91.45 237 | 88.56 22 | 84.50 179 | 93.56 80 |
|
| PS-MVSNAJss | | | 82.07 108 | 81.31 112 | 84.34 111 | 86.51 230 | 67.27 150 | 89.27 97 | 91.51 113 | 71.75 165 | 79.37 139 | 90.22 140 | 63.15 145 | 94.27 115 | 77.69 116 | 82.36 217 | 91.49 151 |
|
| 114514_t | | | 80.68 141 | 79.51 147 | 84.20 119 | 94.09 38 | 67.27 150 | 89.64 84 | 91.11 125 | 58.75 347 | 74.08 257 | 90.72 129 | 58.10 205 | 95.04 89 | 69.70 194 | 89.42 117 | 90.30 195 |
|
| casdiffmvs_mvg |  | | 85.99 44 | 86.09 46 | 85.70 69 | 87.65 202 | 67.22 152 | 88.69 119 | 93.04 38 | 79.64 18 | 85.33 54 | 92.54 83 | 73.30 35 | 94.50 109 | 83.49 60 | 91.14 93 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CS-MVS-test | | | 86.29 42 | 86.48 37 | 85.71 68 | 91.02 84 | 67.21 153 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 92 | 91.20 114 | 70.65 66 | 95.15 81 | 81.96 78 | 94.89 41 | 94.77 22 |
|
| iter_conf05_11 | | | 84.86 70 | 84.52 72 | 85.87 65 | 90.86 89 | 67.18 154 | 89.63 85 | 92.15 87 | 71.48 173 | 84.64 69 | 90.81 128 | 68.82 89 | 96.00 50 | 78.50 107 | 93.84 63 | 94.43 35 |
|
| anonymousdsp | | | 78.60 190 | 77.15 204 | 82.98 172 | 80.51 339 | 67.08 155 | 87.24 167 | 89.53 169 | 65.66 276 | 75.16 240 | 87.19 219 | 52.52 248 | 92.25 205 | 77.17 123 | 79.34 253 | 89.61 227 |
|
| MVS | | | 78.19 200 | 76.99 208 | 81.78 200 | 85.66 241 | 66.99 156 | 84.66 233 | 90.47 141 | 55.08 367 | 72.02 281 | 85.27 268 | 63.83 137 | 94.11 123 | 66.10 227 | 89.80 113 | 84.24 337 |
|
| HQP5-MVS | | | | | | | 66.98 157 | | | | | | | | | | |
|
| HQP-MVS | | | 82.61 102 | 82.02 105 | 84.37 108 | 89.33 132 | 66.98 157 | 89.17 99 | 92.19 85 | 76.41 74 | 77.23 185 | 90.23 139 | 60.17 196 | 95.11 84 | 77.47 119 | 85.99 165 | 91.03 165 |
|
| Fast-Effi-MVS+-dtu | | | 78.02 205 | 76.49 220 | 82.62 187 | 83.16 295 | 66.96 159 | 86.94 175 | 87.45 231 | 72.45 155 | 71.49 286 | 84.17 291 | 54.79 230 | 91.58 227 | 67.61 213 | 80.31 241 | 89.30 235 |
|
| F-COLMAP | | | 76.38 240 | 74.33 251 | 82.50 189 | 89.28 137 | 66.95 160 | 88.41 128 | 89.03 189 | 64.05 296 | 66.83 332 | 88.61 179 | 46.78 310 | 92.89 184 | 57.48 302 | 78.55 258 | 87.67 275 |
|
| mvsmamba | | | 81.69 117 | 80.74 123 | 84.56 101 | 87.45 208 | 66.72 161 | 91.26 48 | 85.89 256 | 74.66 111 | 78.23 162 | 90.56 132 | 54.33 234 | 94.91 92 | 80.73 93 | 83.54 201 | 92.04 139 |
|
| HyFIR lowres test | | | 77.53 218 | 75.40 236 | 83.94 140 | 89.59 119 | 66.62 162 | 80.36 306 | 88.64 206 | 56.29 363 | 76.45 203 | 85.17 272 | 57.64 210 | 93.28 161 | 61.34 271 | 83.10 208 | 91.91 140 |
|
| ACMH | | 67.68 16 | 75.89 246 | 73.93 255 | 81.77 201 | 88.71 161 | 66.61 163 | 88.62 122 | 89.01 191 | 69.81 209 | 66.78 333 | 86.70 233 | 41.95 347 | 91.51 234 | 55.64 316 | 78.14 265 | 87.17 288 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| jajsoiax | | | 79.29 173 | 77.96 181 | 83.27 156 | 84.68 261 | 66.57 164 | 89.25 98 | 90.16 153 | 69.20 226 | 75.46 225 | 89.49 156 | 45.75 323 | 93.13 175 | 76.84 126 | 80.80 234 | 90.11 203 |
|
| iter_conf05 | | | 85.49 55 | 85.43 56 | 85.67 70 | 91.09 81 | 66.55 165 | 87.18 168 | 92.08 89 | 72.89 154 | 82.90 98 | 91.71 96 | 71.85 49 | 96.03 46 | 84.77 47 | 94.39 53 | 94.42 36 |
|
| bld_raw_dy_0_64 | | | 82.00 110 | 81.23 114 | 84.34 111 | 88.75 158 | 66.52 166 | 81.95 280 | 91.90 98 | 63.91 300 | 75.26 237 | 90.15 142 | 69.37 78 | 95.74 58 | 77.66 117 | 92.08 80 | 90.76 174 |
|
| VDD-MVS | | | 83.01 98 | 82.36 99 | 84.96 88 | 91.02 84 | 66.40 167 | 88.91 109 | 88.11 212 | 77.57 41 | 84.39 76 | 93.29 64 | 52.19 254 | 93.91 132 | 77.05 124 | 88.70 128 | 94.57 31 |
|
| mvs_tets | | | 79.13 177 | 77.77 190 | 83.22 160 | 84.70 260 | 66.37 168 | 89.17 99 | 90.19 152 | 69.38 219 | 75.40 228 | 89.46 159 | 44.17 332 | 93.15 173 | 76.78 128 | 80.70 236 | 90.14 200 |
|
| PAPM_NR | | | 83.02 97 | 82.41 97 | 84.82 94 | 92.47 67 | 66.37 168 | 87.93 148 | 91.80 104 | 73.82 129 | 77.32 182 | 90.66 130 | 67.90 98 | 94.90 95 | 70.37 186 | 89.48 116 | 93.19 96 |
|
| EC-MVSNet | | | 86.01 43 | 86.38 38 | 84.91 92 | 89.31 135 | 66.27 170 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 80 | 91.88 93 | 69.04 86 | 95.43 68 | 83.93 58 | 93.77 64 | 93.01 104 |
|
| pmmvs-eth3d | | | 70.50 302 | 67.83 315 | 78.52 272 | 77.37 364 | 66.18 171 | 81.82 281 | 81.51 314 | 58.90 345 | 63.90 357 | 80.42 339 | 42.69 340 | 86.28 312 | 58.56 293 | 65.30 366 | 83.11 351 |
|
| IB-MVS | | 68.01 15 | 75.85 247 | 73.36 262 | 83.31 154 | 84.76 259 | 66.03 172 | 83.38 262 | 85.06 264 | 70.21 202 | 69.40 308 | 81.05 331 | 45.76 322 | 94.66 105 | 65.10 236 | 75.49 300 | 89.25 236 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MS-PatchMatch | | | 73.83 268 | 72.67 267 | 77.30 291 | 83.87 278 | 66.02 173 | 81.82 281 | 84.66 268 | 61.37 326 | 68.61 316 | 82.82 315 | 47.29 305 | 88.21 296 | 59.27 284 | 84.32 185 | 77.68 376 |
|
| FE-MVS | | | 77.78 211 | 75.68 229 | 84.08 126 | 88.09 184 | 66.00 174 | 83.13 267 | 87.79 223 | 68.42 244 | 78.01 169 | 85.23 270 | 45.50 325 | 95.12 82 | 59.11 287 | 85.83 168 | 91.11 161 |
|
| test_0402 | | | 72.79 281 | 70.44 292 | 79.84 246 | 88.13 181 | 65.99 175 | 85.93 205 | 84.29 274 | 65.57 277 | 67.40 327 | 85.49 264 | 46.92 309 | 92.61 190 | 35.88 388 | 74.38 319 | 80.94 367 |
|
| BH-RMVSNet | | | 79.61 161 | 78.44 170 | 83.14 163 | 89.38 131 | 65.93 176 | 84.95 228 | 87.15 237 | 73.56 136 | 78.19 164 | 89.79 147 | 56.67 219 | 93.36 159 | 59.53 283 | 86.74 151 | 90.13 201 |
|
| BH-untuned | | | 79.47 166 | 78.60 166 | 82.05 195 | 89.19 141 | 65.91 177 | 86.07 202 | 88.52 208 | 72.18 160 | 75.42 227 | 87.69 203 | 61.15 180 | 93.54 150 | 60.38 276 | 86.83 150 | 86.70 301 |
|
| cascas | | | 76.72 232 | 74.64 245 | 82.99 171 | 85.78 240 | 65.88 178 | 82.33 276 | 89.21 182 | 60.85 328 | 72.74 270 | 81.02 332 | 47.28 306 | 93.75 142 | 67.48 215 | 85.02 172 | 89.34 234 |
|
| patch_mono-2 | | | 83.65 81 | 84.54 70 | 80.99 222 | 90.06 109 | 65.83 179 | 84.21 248 | 88.74 203 | 71.60 170 | 85.01 57 | 92.44 84 | 74.51 25 | 83.50 335 | 82.15 77 | 92.15 78 | 93.64 76 |
|
| MSDG | | | 73.36 274 | 70.99 286 | 80.49 233 | 84.51 266 | 65.80 180 | 80.71 300 | 86.13 253 | 65.70 275 | 65.46 345 | 83.74 299 | 44.60 328 | 90.91 253 | 51.13 337 | 76.89 277 | 84.74 332 |
|
| 旧先验1 | | | | | | 91.96 71 | 65.79 181 | | 86.37 249 | | | 93.08 71 | 69.31 81 | | | 92.74 71 | 88.74 258 |
|
| casdiffmvs |  | | 85.11 63 | 85.14 63 | 85.01 86 | 87.20 217 | 65.77 182 | 87.75 153 | 92.83 56 | 77.84 37 | 84.36 77 | 92.38 85 | 72.15 46 | 93.93 131 | 81.27 86 | 90.48 100 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| mamv4 | | | 76.81 230 | 78.23 178 | 72.54 334 | 86.12 235 | 65.75 183 | 78.76 327 | 82.07 309 | 64.12 293 | 72.97 268 | 91.02 123 | 67.97 96 | 68.08 396 | 83.04 66 | 78.02 266 | 83.80 344 |
|
| COLMAP_ROB |  | 66.92 17 | 73.01 278 | 70.41 293 | 80.81 227 | 87.13 219 | 65.63 184 | 88.30 135 | 84.19 277 | 62.96 308 | 63.80 358 | 87.69 203 | 38.04 364 | 92.56 192 | 46.66 362 | 74.91 314 | 84.24 337 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| EIA-MVS | | | 83.31 92 | 82.80 94 | 84.82 94 | 89.59 119 | 65.59 185 | 88.21 137 | 92.68 61 | 74.66 111 | 78.96 144 | 86.42 244 | 69.06 84 | 95.26 77 | 75.54 141 | 90.09 107 | 93.62 77 |
|
| v7n | | | 78.97 182 | 77.58 197 | 83.14 163 | 83.45 286 | 65.51 186 | 88.32 134 | 91.21 120 | 73.69 132 | 72.41 276 | 86.32 247 | 57.93 206 | 93.81 137 | 69.18 199 | 75.65 297 | 90.11 203 |
|
| V42 | | | 79.38 172 | 78.24 176 | 82.83 177 | 81.10 333 | 65.50 187 | 85.55 216 | 89.82 161 | 71.57 171 | 78.21 163 | 86.12 251 | 60.66 188 | 93.18 172 | 75.64 138 | 75.46 303 | 89.81 222 |
|
| PVSNet_BlendedMVS | | | 80.60 143 | 80.02 136 | 82.36 192 | 88.85 150 | 65.40 188 | 86.16 200 | 92.00 92 | 69.34 220 | 78.11 166 | 86.09 252 | 66.02 119 | 94.27 115 | 71.52 174 | 82.06 220 | 87.39 282 |
|
| PVSNet_Blended | | | 80.98 130 | 80.34 131 | 82.90 175 | 88.85 150 | 65.40 188 | 84.43 243 | 92.00 92 | 67.62 251 | 78.11 166 | 85.05 276 | 66.02 119 | 94.27 115 | 71.52 174 | 89.50 115 | 89.01 244 |
|
| baseline | | | 84.93 67 | 84.98 64 | 84.80 96 | 87.30 215 | 65.39 190 | 87.30 165 | 92.88 53 | 77.62 39 | 84.04 83 | 92.26 87 | 71.81 50 | 93.96 125 | 81.31 84 | 90.30 103 | 95.03 8 |
|
| test_djsdf | | | 80.30 151 | 79.32 152 | 83.27 156 | 83.98 276 | 65.37 191 | 90.50 61 | 90.38 143 | 68.55 240 | 76.19 210 | 88.70 175 | 56.44 220 | 93.46 155 | 78.98 102 | 80.14 244 | 90.97 168 |
|
| ACMH+ | | 68.96 14 | 76.01 245 | 74.01 253 | 82.03 196 | 88.60 164 | 65.31 192 | 88.86 111 | 87.55 227 | 70.25 201 | 67.75 321 | 87.47 211 | 41.27 348 | 93.19 171 | 58.37 295 | 75.94 294 | 87.60 277 |
|
| CR-MVSNet | | | 73.37 272 | 71.27 283 | 79.67 251 | 81.32 331 | 65.19 193 | 75.92 347 | 80.30 329 | 59.92 335 | 72.73 271 | 81.19 329 | 52.50 249 | 86.69 308 | 59.84 280 | 77.71 268 | 87.11 292 |
|
| RPMNet | | | 73.51 271 | 70.49 291 | 82.58 188 | 81.32 331 | 65.19 193 | 75.92 347 | 92.27 79 | 57.60 355 | 72.73 271 | 76.45 368 | 52.30 252 | 95.43 68 | 48.14 357 | 77.71 268 | 87.11 292 |
|
| BH-w/o | | | 78.21 198 | 77.33 202 | 80.84 226 | 88.81 154 | 65.13 195 | 84.87 229 | 87.85 222 | 69.75 213 | 74.52 253 | 84.74 280 | 61.34 175 | 93.11 176 | 58.24 297 | 85.84 167 | 84.27 336 |
|
| thisisatest0530 | | | 79.40 170 | 77.76 191 | 84.31 113 | 87.69 201 | 65.10 196 | 87.36 162 | 84.26 276 | 70.04 203 | 77.42 179 | 88.26 191 | 49.94 284 | 94.79 101 | 70.20 187 | 84.70 177 | 93.03 102 |
|
| FA-MVS(test-final) | | | 80.96 131 | 79.91 139 | 84.10 122 | 88.30 176 | 65.01 197 | 84.55 238 | 90.01 157 | 73.25 146 | 79.61 136 | 87.57 206 | 58.35 204 | 94.72 103 | 71.29 178 | 86.25 159 | 92.56 116 |
|
| v10 | | | 79.74 160 | 78.67 164 | 82.97 173 | 84.06 274 | 64.95 198 | 87.88 151 | 90.62 136 | 73.11 148 | 75.11 242 | 86.56 240 | 61.46 172 | 94.05 124 | 73.68 154 | 75.55 299 | 89.90 217 |
|
| SDMVSNet | | | 80.38 148 | 80.18 135 | 80.99 222 | 89.03 148 | 64.94 199 | 80.45 305 | 89.40 172 | 75.19 100 | 76.61 201 | 89.98 143 | 60.61 190 | 87.69 303 | 76.83 127 | 83.55 199 | 90.33 193 |
|
| dcpmvs_2 | | | 85.63 53 | 86.15 44 | 84.06 129 | 91.71 75 | 64.94 199 | 86.47 191 | 91.87 101 | 73.63 133 | 86.60 45 | 93.02 72 | 76.57 15 | 91.87 219 | 83.36 61 | 92.15 78 | 95.35 3 |
|
| IterMVS-SCA-FT | | | 75.43 253 | 73.87 257 | 80.11 241 | 82.69 307 | 64.85 201 | 81.57 286 | 83.47 287 | 69.16 227 | 70.49 292 | 84.15 292 | 51.95 261 | 88.15 297 | 69.23 198 | 72.14 338 | 87.34 284 |
|
| MVSTER | | | 79.01 180 | 77.88 185 | 82.38 191 | 83.07 296 | 64.80 202 | 84.08 252 | 88.95 195 | 69.01 233 | 78.69 149 | 87.17 220 | 54.70 231 | 92.43 196 | 74.69 145 | 80.57 238 | 89.89 218 |
|
| Anonymous20240529 | | | 80.19 154 | 78.89 162 | 84.10 122 | 90.60 94 | 64.75 203 | 88.95 108 | 90.90 129 | 65.97 273 | 80.59 127 | 91.17 116 | 49.97 283 | 93.73 144 | 69.16 200 | 82.70 214 | 93.81 65 |
|
| XVG-ACMP-BASELINE | | | 76.11 243 | 74.27 252 | 81.62 203 | 83.20 292 | 64.67 204 | 83.60 259 | 89.75 164 | 69.75 213 | 71.85 282 | 87.09 222 | 32.78 375 | 92.11 209 | 69.99 191 | 80.43 240 | 88.09 268 |
|
| v1192 | | | 79.59 163 | 78.43 171 | 83.07 167 | 83.55 284 | 64.52 205 | 86.93 176 | 90.58 137 | 70.83 185 | 77.78 173 | 85.90 253 | 59.15 199 | 93.94 128 | 73.96 153 | 77.19 274 | 90.76 174 |
|
| Fast-Effi-MVS+ | | | 80.81 135 | 79.92 138 | 83.47 148 | 88.85 150 | 64.51 206 | 85.53 218 | 89.39 173 | 70.79 186 | 78.49 156 | 85.06 275 | 67.54 101 | 93.58 146 | 67.03 222 | 86.58 153 | 92.32 125 |
|
| v1144 | | | 80.03 156 | 79.03 159 | 83.01 170 | 83.78 280 | 64.51 206 | 87.11 171 | 90.57 139 | 71.96 164 | 78.08 168 | 86.20 249 | 61.41 173 | 93.94 128 | 74.93 144 | 77.23 272 | 90.60 182 |
|
| v8 | | | 79.97 158 | 79.02 160 | 82.80 180 | 84.09 273 | 64.50 208 | 87.96 145 | 90.29 150 | 74.13 124 | 75.24 238 | 86.81 226 | 62.88 150 | 93.89 135 | 74.39 149 | 75.40 306 | 90.00 211 |
|
| EPP-MVSNet | | | 83.40 89 | 83.02 89 | 84.57 100 | 90.13 103 | 64.47 209 | 92.32 30 | 90.73 134 | 74.45 117 | 79.35 140 | 91.10 117 | 69.05 85 | 95.12 82 | 72.78 166 | 87.22 144 | 94.13 49 |
|
| GeoE | | | 81.71 116 | 81.01 120 | 83.80 142 | 89.51 123 | 64.45 210 | 88.97 107 | 88.73 204 | 71.27 177 | 78.63 152 | 89.76 148 | 66.32 114 | 93.20 169 | 69.89 192 | 86.02 164 | 93.74 68 |
|
| UniMVSNet (Re) | | | 81.60 121 | 81.11 117 | 83.09 165 | 88.38 173 | 64.41 211 | 87.60 156 | 93.02 42 | 78.42 32 | 78.56 154 | 88.16 193 | 69.78 74 | 93.26 162 | 69.58 196 | 76.49 283 | 91.60 145 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 241 | 74.54 248 | 81.41 209 | 88.60 164 | 64.38 212 | 79.24 319 | 89.12 188 | 70.76 188 | 69.79 306 | 87.86 200 | 49.09 296 | 93.20 169 | 56.21 315 | 80.16 242 | 86.65 302 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| Anonymous20231211 | | | 78.97 182 | 77.69 194 | 82.81 179 | 90.54 96 | 64.29 213 | 90.11 72 | 91.51 113 | 65.01 283 | 76.16 214 | 88.13 198 | 50.56 277 | 93.03 182 | 69.68 195 | 77.56 271 | 91.11 161 |
|
| testdata | | | | | 79.97 243 | 90.90 87 | 64.21 214 | | 84.71 267 | 59.27 341 | 85.40 53 | 92.91 73 | 62.02 164 | 89.08 283 | 68.95 202 | 91.37 90 | 86.63 303 |
|
| v2v482 | | | 80.23 152 | 79.29 153 | 83.05 168 | 83.62 282 | 64.14 215 | 87.04 172 | 89.97 158 | 73.61 134 | 78.18 165 | 87.22 217 | 61.10 181 | 93.82 136 | 76.11 132 | 76.78 281 | 91.18 159 |
|
| VDDNet | | | 81.52 122 | 80.67 125 | 84.05 132 | 90.44 98 | 64.13 216 | 89.73 81 | 85.91 255 | 71.11 180 | 83.18 94 | 93.48 58 | 50.54 278 | 93.49 152 | 73.40 159 | 88.25 134 | 94.54 32 |
|
| PAPR | | | 81.66 120 | 80.89 122 | 83.99 137 | 90.27 100 | 64.00 217 | 86.76 184 | 91.77 107 | 68.84 236 | 77.13 191 | 89.50 155 | 67.63 100 | 94.88 97 | 67.55 214 | 88.52 131 | 93.09 99 |
|
| v144192 | | | 79.47 166 | 78.37 172 | 82.78 183 | 83.35 287 | 63.96 218 | 86.96 174 | 90.36 146 | 69.99 205 | 77.50 177 | 85.67 260 | 60.66 188 | 93.77 140 | 74.27 150 | 76.58 282 | 90.62 180 |
|
| v1921920 | | | 79.22 174 | 78.03 180 | 82.80 180 | 83.30 289 | 63.94 219 | 86.80 180 | 90.33 147 | 69.91 208 | 77.48 178 | 85.53 263 | 58.44 203 | 93.75 142 | 73.60 155 | 76.85 279 | 90.71 178 |
|
| tttt0517 | | | 79.40 170 | 77.91 183 | 83.90 141 | 88.10 183 | 63.84 220 | 88.37 132 | 84.05 278 | 71.45 174 | 76.78 195 | 89.12 166 | 49.93 286 | 94.89 96 | 70.18 188 | 83.18 207 | 92.96 106 |
|
| thisisatest0515 | | | 77.33 222 | 75.38 237 | 83.18 161 | 85.27 249 | 63.80 221 | 82.11 279 | 83.27 290 | 65.06 281 | 75.91 215 | 83.84 296 | 49.54 288 | 94.27 115 | 67.24 218 | 86.19 160 | 91.48 152 |
|
| diffmvs |  | | 82.10 106 | 81.88 108 | 82.76 185 | 83.00 299 | 63.78 222 | 83.68 255 | 89.76 163 | 72.94 152 | 82.02 108 | 89.85 146 | 65.96 121 | 90.79 255 | 82.38 76 | 87.30 143 | 93.71 69 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_yl | | | 81.17 127 | 80.47 129 | 83.24 158 | 89.13 143 | 63.62 223 | 86.21 198 | 89.95 159 | 72.43 158 | 81.78 113 | 89.61 152 | 57.50 212 | 93.58 146 | 70.75 181 | 86.90 148 | 92.52 117 |
|
| DCV-MVSNet | | | 81.17 127 | 80.47 129 | 83.24 158 | 89.13 143 | 63.62 223 | 86.21 198 | 89.95 159 | 72.43 158 | 81.78 113 | 89.61 152 | 57.50 212 | 93.58 146 | 70.75 181 | 86.90 148 | 92.52 117 |
|
| AllTest | | | 70.96 295 | 68.09 310 | 79.58 253 | 85.15 252 | 63.62 223 | 84.58 237 | 79.83 333 | 62.31 317 | 60.32 369 | 86.73 227 | 32.02 376 | 88.96 287 | 50.28 342 | 71.57 342 | 86.15 309 |
|
| TestCases | | | | | 79.58 253 | 85.15 252 | 63.62 223 | | 79.83 333 | 62.31 317 | 60.32 369 | 86.73 227 | 32.02 376 | 88.96 287 | 50.28 342 | 71.57 342 | 86.15 309 |
|
| v1240 | | | 78.99 181 | 77.78 189 | 82.64 186 | 83.21 291 | 63.54 227 | 86.62 187 | 90.30 149 | 69.74 215 | 77.33 181 | 85.68 259 | 57.04 217 | 93.76 141 | 73.13 163 | 76.92 276 | 90.62 180 |
|
| CHOSEN 280x420 | | | 66.51 332 | 64.71 333 | 71.90 337 | 81.45 326 | 63.52 228 | 57.98 398 | 68.95 384 | 53.57 370 | 62.59 363 | 76.70 366 | 46.22 316 | 75.29 382 | 55.25 317 | 79.68 247 | 76.88 378 |
|
| IterMVS | | | 74.29 261 | 72.94 266 | 78.35 274 | 81.53 325 | 63.49 229 | 81.58 285 | 82.49 304 | 68.06 248 | 69.99 301 | 83.69 301 | 51.66 267 | 85.54 319 | 65.85 230 | 71.64 341 | 86.01 313 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| UniMVSNet_NR-MVSNet | | | 81.88 112 | 81.54 111 | 82.92 174 | 88.46 169 | 63.46 230 | 87.13 169 | 92.37 76 | 80.19 12 | 78.38 158 | 89.14 165 | 71.66 55 | 93.05 179 | 70.05 189 | 76.46 284 | 92.25 128 |
|
| DU-MVS | | | 81.12 129 | 80.52 128 | 82.90 175 | 87.80 194 | 63.46 230 | 87.02 173 | 91.87 101 | 79.01 26 | 78.38 158 | 89.07 167 | 65.02 128 | 93.05 179 | 70.05 189 | 76.46 284 | 92.20 131 |
|
| LFMVS | | | 81.82 114 | 81.23 114 | 83.57 147 | 91.89 73 | 63.43 232 | 89.84 75 | 81.85 312 | 77.04 58 | 83.21 93 | 93.10 67 | 52.26 253 | 93.43 157 | 71.98 172 | 89.95 111 | 93.85 62 |
|
| NR-MVSNet | | | 80.23 152 | 79.38 150 | 82.78 183 | 87.80 194 | 63.34 233 | 86.31 195 | 91.09 126 | 79.01 26 | 72.17 279 | 89.07 167 | 67.20 105 | 92.81 188 | 66.08 228 | 75.65 297 | 92.20 131 |
|
| IS-MVSNet | | | 83.15 93 | 82.81 93 | 84.18 120 | 89.94 112 | 63.30 234 | 91.59 43 | 88.46 209 | 79.04 25 | 79.49 138 | 92.16 88 | 65.10 127 | 94.28 114 | 67.71 212 | 91.86 85 | 94.95 10 |
|
| TR-MVS | | | 77.44 219 | 76.18 225 | 81.20 216 | 88.24 177 | 63.24 235 | 84.61 236 | 86.40 248 | 67.55 252 | 77.81 172 | 86.48 243 | 54.10 237 | 93.15 173 | 57.75 301 | 82.72 213 | 87.20 287 |
|
| MVS_Test | | | 83.15 93 | 83.06 88 | 83.41 152 | 86.86 221 | 63.21 236 | 86.11 201 | 92.00 92 | 74.31 118 | 82.87 99 | 89.44 162 | 70.03 70 | 93.21 166 | 77.39 121 | 88.50 132 | 93.81 65 |
|
| IterMVS-LS | | | 80.06 155 | 79.38 150 | 82.11 194 | 85.89 238 | 63.20 237 | 86.79 181 | 89.34 174 | 74.19 121 | 75.45 226 | 86.72 229 | 66.62 108 | 92.39 198 | 72.58 168 | 76.86 278 | 90.75 176 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| EI-MVSNet | | | 80.52 146 | 79.98 137 | 82.12 193 | 84.28 268 | 63.19 238 | 86.41 192 | 88.95 195 | 74.18 122 | 78.69 149 | 87.54 209 | 66.62 108 | 92.43 196 | 72.57 169 | 80.57 238 | 90.74 177 |
|
| CANet_DTU | | | 80.61 142 | 79.87 140 | 82.83 177 | 85.60 243 | 63.17 239 | 87.36 162 | 88.65 205 | 76.37 78 | 75.88 216 | 88.44 185 | 53.51 243 | 93.07 178 | 73.30 160 | 89.74 114 | 92.25 128 |
|
| MGCFI-Net | | | 85.06 65 | 85.51 54 | 83.70 143 | 89.42 127 | 63.01 240 | 89.43 90 | 92.62 68 | 76.43 73 | 87.53 35 | 91.34 109 | 72.82 42 | 93.42 158 | 81.28 85 | 88.74 127 | 94.66 27 |
|
| GBi-Net | | | 78.40 193 | 77.40 199 | 81.40 210 | 87.60 203 | 63.01 240 | 88.39 129 | 89.28 176 | 71.63 167 | 75.34 230 | 87.28 213 | 54.80 227 | 91.11 245 | 62.72 252 | 79.57 248 | 90.09 205 |
|
| test1 | | | 78.40 193 | 77.40 199 | 81.40 210 | 87.60 203 | 63.01 240 | 88.39 129 | 89.28 176 | 71.63 167 | 75.34 230 | 87.28 213 | 54.80 227 | 91.11 245 | 62.72 252 | 79.57 248 | 90.09 205 |
|
| FMVSNet1 | | | 77.44 219 | 76.12 226 | 81.40 210 | 86.81 224 | 63.01 240 | 88.39 129 | 89.28 176 | 70.49 195 | 74.39 254 | 87.28 213 | 49.06 297 | 91.11 245 | 60.91 273 | 78.52 259 | 90.09 205 |
|
| TAPA-MVS | | 73.13 9 | 79.15 176 | 77.94 182 | 82.79 182 | 89.59 119 | 62.99 244 | 88.16 140 | 91.51 113 | 65.77 274 | 77.14 190 | 91.09 118 | 60.91 184 | 93.21 166 | 50.26 344 | 87.05 146 | 92.17 133 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| FMVSNet2 | | | 78.20 199 | 77.21 203 | 81.20 216 | 87.60 203 | 62.89 245 | 87.47 160 | 89.02 190 | 71.63 167 | 75.29 236 | 87.28 213 | 54.80 227 | 91.10 248 | 62.38 257 | 79.38 252 | 89.61 227 |
|
| GA-MVS | | | 76.87 229 | 75.17 241 | 81.97 198 | 82.75 305 | 62.58 246 | 81.44 289 | 86.35 250 | 72.16 163 | 74.74 249 | 82.89 313 | 46.20 317 | 92.02 212 | 68.85 204 | 81.09 230 | 91.30 157 |
|
| D2MVS | | | 74.82 258 | 73.21 263 | 79.64 252 | 79.81 348 | 62.56 247 | 80.34 307 | 87.35 232 | 64.37 290 | 68.86 313 | 82.66 317 | 46.37 313 | 90.10 264 | 67.91 211 | 81.24 228 | 86.25 306 |
|
| FMVSNet3 | | | 77.88 209 | 76.85 211 | 80.97 224 | 86.84 223 | 62.36 248 | 86.52 190 | 88.77 199 | 71.13 179 | 75.34 230 | 86.66 235 | 54.07 238 | 91.10 248 | 62.72 252 | 79.57 248 | 89.45 231 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 133 | 80.31 132 | 82.42 190 | 87.85 192 | 62.33 249 | 87.74 154 | 91.33 118 | 80.55 9 | 77.99 170 | 89.86 145 | 65.23 126 | 92.62 189 | 67.05 221 | 75.24 311 | 92.30 126 |
|
| 1314 | | | 76.53 234 | 75.30 240 | 80.21 239 | 83.93 277 | 62.32 250 | 84.66 233 | 88.81 197 | 60.23 332 | 70.16 298 | 84.07 293 | 55.30 224 | 90.73 257 | 67.37 216 | 83.21 206 | 87.59 279 |
|
| MG-MVS | | | 83.41 88 | 83.45 81 | 83.28 155 | 92.74 62 | 62.28 251 | 88.17 139 | 89.50 170 | 75.22 98 | 81.49 116 | 92.74 82 | 66.75 107 | 95.11 84 | 72.85 165 | 91.58 87 | 92.45 122 |
|
| SCA | | | 74.22 263 | 72.33 272 | 79.91 244 | 84.05 275 | 62.17 252 | 79.96 312 | 79.29 339 | 66.30 268 | 72.38 277 | 80.13 341 | 51.95 261 | 88.60 292 | 59.25 285 | 77.67 270 | 88.96 248 |
|
| PMMVS | | | 69.34 311 | 68.67 303 | 71.35 343 | 75.67 370 | 62.03 253 | 75.17 353 | 73.46 370 | 50.00 380 | 68.68 314 | 79.05 350 | 52.07 259 | 78.13 360 | 61.16 272 | 82.77 211 | 73.90 382 |
|
| eth_miper_zixun_eth | | | 77.92 208 | 76.69 217 | 81.61 205 | 83.00 299 | 61.98 254 | 83.15 266 | 89.20 183 | 69.52 217 | 74.86 248 | 84.35 286 | 61.76 165 | 92.56 192 | 71.50 176 | 72.89 333 | 90.28 196 |
|
| v148 | | | 78.72 187 | 77.80 188 | 81.47 207 | 82.73 306 | 61.96 255 | 86.30 196 | 88.08 214 | 73.26 145 | 76.18 211 | 85.47 265 | 62.46 155 | 92.36 200 | 71.92 173 | 73.82 325 | 90.09 205 |
|
| PAPM | | | 77.68 216 | 76.40 223 | 81.51 206 | 87.29 216 | 61.85 256 | 83.78 254 | 89.59 168 | 64.74 285 | 71.23 287 | 88.70 175 | 62.59 152 | 93.66 145 | 52.66 329 | 87.03 147 | 89.01 244 |
|
| cl22 | | | 78.07 203 | 77.01 206 | 81.23 215 | 82.37 315 | 61.83 257 | 83.55 260 | 87.98 216 | 68.96 234 | 75.06 244 | 83.87 294 | 61.40 174 | 91.88 218 | 73.53 156 | 76.39 286 | 89.98 214 |
|
| baseline2 | | | 75.70 248 | 73.83 258 | 81.30 213 | 83.26 290 | 61.79 258 | 82.57 275 | 80.65 322 | 66.81 256 | 66.88 331 | 83.42 305 | 57.86 208 | 92.19 207 | 63.47 246 | 79.57 248 | 89.91 216 |
|
| JIA-IIPM | | | 66.32 334 | 62.82 345 | 76.82 295 | 77.09 365 | 61.72 259 | 65.34 391 | 75.38 361 | 58.04 352 | 64.51 352 | 62.32 390 | 42.05 346 | 86.51 310 | 51.45 335 | 69.22 352 | 82.21 359 |
|
| miper_ehance_all_eth | | | 78.59 191 | 77.76 191 | 81.08 220 | 82.66 308 | 61.56 260 | 83.65 256 | 89.15 185 | 68.87 235 | 75.55 222 | 83.79 298 | 66.49 111 | 92.03 211 | 73.25 161 | 76.39 286 | 89.64 226 |
|
| c3_l | | | 78.75 185 | 77.91 183 | 81.26 214 | 82.89 303 | 61.56 260 | 84.09 251 | 89.13 187 | 69.97 206 | 75.56 221 | 84.29 287 | 66.36 113 | 92.09 210 | 73.47 158 | 75.48 301 | 90.12 202 |
|
| miper_enhance_ethall | | | 77.87 210 | 76.86 210 | 80.92 225 | 81.65 322 | 61.38 262 | 82.68 273 | 88.98 192 | 65.52 278 | 75.47 223 | 82.30 321 | 65.76 123 | 92.00 213 | 72.95 164 | 76.39 286 | 89.39 232 |
|
| ppachtmachnet_test | | | 70.04 306 | 67.34 323 | 78.14 277 | 79.80 349 | 61.13 263 | 79.19 321 | 80.59 323 | 59.16 342 | 65.27 347 | 79.29 349 | 46.75 311 | 87.29 305 | 49.33 348 | 66.72 359 | 86.00 315 |
|
| TDRefinement | | | 67.49 324 | 64.34 334 | 76.92 294 | 73.47 382 | 61.07 264 | 84.86 230 | 82.98 298 | 59.77 336 | 58.30 376 | 85.13 273 | 26.06 386 | 87.89 300 | 47.92 359 | 60.59 377 | 81.81 363 |
|
| VNet | | | 82.21 105 | 82.41 97 | 81.62 203 | 90.82 90 | 60.93 265 | 84.47 239 | 89.78 162 | 76.36 79 | 84.07 82 | 91.88 93 | 64.71 131 | 90.26 261 | 70.68 183 | 88.89 122 | 93.66 70 |
|
| ab-mvs | | | 79.51 164 | 78.97 161 | 81.14 218 | 88.46 169 | 60.91 266 | 83.84 253 | 89.24 181 | 70.36 196 | 79.03 143 | 88.87 172 | 63.23 143 | 90.21 263 | 65.12 235 | 82.57 215 | 92.28 127 |
|
| PatchmatchNet |  | | 73.12 277 | 71.33 282 | 78.49 273 | 83.18 293 | 60.85 267 | 79.63 314 | 78.57 343 | 64.13 292 | 71.73 283 | 79.81 346 | 51.20 270 | 85.97 315 | 57.40 304 | 76.36 291 | 88.66 259 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| VPA-MVSNet | | | 80.60 143 | 80.55 127 | 80.76 228 | 88.07 185 | 60.80 268 | 86.86 178 | 91.58 111 | 75.67 92 | 80.24 130 | 89.45 161 | 63.34 139 | 90.25 262 | 70.51 185 | 79.22 255 | 91.23 158 |
|
| EGC-MVSNET | | | 52.07 361 | 47.05 365 | 67.14 362 | 83.51 285 | 60.71 269 | 80.50 304 | 67.75 385 | 0.07 411 | 0.43 412 | 75.85 373 | 24.26 390 | 81.54 346 | 28.82 394 | 62.25 371 | 59.16 394 |
|
| Anonymous202405211 | | | 78.25 196 | 77.01 206 | 81.99 197 | 91.03 83 | 60.67 270 | 84.77 231 | 83.90 280 | 70.65 193 | 80.00 133 | 91.20 114 | 41.08 350 | 91.43 238 | 65.21 234 | 85.26 171 | 93.85 62 |
|
| ITE_SJBPF | | | | | 78.22 275 | 81.77 321 | 60.57 271 | | 83.30 289 | 69.25 223 | 67.54 323 | 87.20 218 | 36.33 369 | 87.28 306 | 54.34 321 | 74.62 317 | 86.80 298 |
|
| MDA-MVSNet-bldmvs | | | 66.68 330 | 63.66 339 | 75.75 302 | 79.28 356 | 60.56 272 | 73.92 361 | 78.35 344 | 64.43 288 | 50.13 390 | 79.87 345 | 44.02 333 | 83.67 333 | 46.10 367 | 56.86 380 | 83.03 353 |
|
| cl____ | | | 77.72 213 | 76.76 214 | 80.58 231 | 82.49 312 | 60.48 273 | 83.09 268 | 87.87 220 | 69.22 224 | 74.38 255 | 85.22 271 | 62.10 162 | 91.53 232 | 71.09 179 | 75.41 305 | 89.73 225 |
|
| DIV-MVS_self_test | | | 77.72 213 | 76.76 214 | 80.58 231 | 82.48 313 | 60.48 273 | 83.09 268 | 87.86 221 | 69.22 224 | 74.38 255 | 85.24 269 | 62.10 162 | 91.53 232 | 71.09 179 | 75.40 306 | 89.74 224 |
|
| 1112_ss | | | 77.40 221 | 76.43 222 | 80.32 237 | 89.11 147 | 60.41 275 | 83.65 256 | 87.72 225 | 62.13 320 | 73.05 267 | 86.72 229 | 62.58 153 | 89.97 267 | 62.11 263 | 80.80 234 | 90.59 183 |
|
| tt0805 | | | 78.73 186 | 77.83 186 | 81.43 208 | 85.17 250 | 60.30 276 | 89.41 93 | 90.90 129 | 71.21 178 | 77.17 189 | 88.73 174 | 46.38 312 | 93.21 166 | 72.57 169 | 78.96 256 | 90.79 172 |
|
| UniMVSNet_ETH3D | | | 79.10 178 | 78.24 176 | 81.70 202 | 86.85 222 | 60.24 277 | 87.28 166 | 88.79 198 | 74.25 120 | 76.84 192 | 90.53 134 | 49.48 289 | 91.56 229 | 67.98 210 | 82.15 218 | 93.29 90 |
|
| HY-MVS | | 69.67 12 | 77.95 207 | 77.15 204 | 80.36 235 | 87.57 207 | 60.21 278 | 83.37 263 | 87.78 224 | 66.11 269 | 75.37 229 | 87.06 224 | 63.27 141 | 90.48 260 | 61.38 270 | 82.43 216 | 90.40 191 |
|
| sd_testset | | | 77.70 215 | 77.40 199 | 78.60 268 | 89.03 148 | 60.02 279 | 79.00 323 | 85.83 257 | 75.19 100 | 76.61 201 | 89.98 143 | 54.81 226 | 85.46 321 | 62.63 256 | 83.55 199 | 90.33 193 |
|
| RPSCF | | | 73.23 276 | 71.46 279 | 78.54 270 | 82.50 311 | 59.85 280 | 82.18 278 | 82.84 302 | 58.96 344 | 71.15 289 | 89.41 163 | 45.48 326 | 84.77 327 | 58.82 291 | 71.83 340 | 91.02 167 |
|
| test_cas_vis1_n_1920 | | | 73.76 269 | 73.74 259 | 73.81 323 | 75.90 368 | 59.77 281 | 80.51 303 | 82.40 305 | 58.30 349 | 81.62 115 | 85.69 258 | 44.35 331 | 76.41 372 | 76.29 130 | 78.61 257 | 85.23 324 |
|
| dmvs_re | | | 71.14 293 | 70.58 289 | 72.80 331 | 81.96 318 | 59.68 282 | 75.60 351 | 79.34 338 | 68.55 240 | 69.27 311 | 80.72 337 | 49.42 290 | 76.54 369 | 52.56 330 | 77.79 267 | 82.19 360 |
|
| miper_lstm_enhance | | | 74.11 264 | 73.11 265 | 77.13 293 | 80.11 343 | 59.62 283 | 72.23 365 | 86.92 241 | 66.76 258 | 70.40 293 | 82.92 312 | 56.93 218 | 82.92 339 | 69.06 201 | 72.63 334 | 88.87 251 |
|
| OurMVSNet-221017-0 | | | 74.26 262 | 72.42 271 | 79.80 247 | 83.76 281 | 59.59 284 | 85.92 206 | 86.64 244 | 66.39 267 | 66.96 330 | 87.58 205 | 39.46 356 | 91.60 226 | 65.76 231 | 69.27 351 | 88.22 266 |
|
| Patchmatch-RL test | | | 70.24 304 | 67.78 317 | 77.61 286 | 77.43 363 | 59.57 285 | 71.16 368 | 70.33 377 | 62.94 309 | 68.65 315 | 72.77 380 | 50.62 276 | 85.49 320 | 69.58 196 | 66.58 361 | 87.77 274 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 301 | 68.19 307 | 77.65 285 | 80.26 340 | 59.41 286 | 85.01 226 | 82.96 299 | 58.76 346 | 65.43 346 | 82.33 320 | 37.63 366 | 91.23 244 | 45.34 372 | 76.03 293 | 82.32 358 |
|
| our_test_3 | | | 69.14 312 | 67.00 325 | 75.57 305 | 79.80 349 | 58.80 287 | 77.96 336 | 77.81 346 | 59.55 338 | 62.90 362 | 78.25 359 | 47.43 304 | 83.97 331 | 51.71 333 | 67.58 358 | 83.93 342 |
|
| ADS-MVSNet2 | | | 66.20 337 | 63.33 340 | 74.82 313 | 79.92 345 | 58.75 288 | 67.55 383 | 75.19 362 | 53.37 371 | 65.25 348 | 75.86 371 | 42.32 342 | 80.53 352 | 41.57 379 | 68.91 353 | 85.18 325 |
|
| pm-mvs1 | | | 77.25 224 | 76.68 218 | 78.93 263 | 84.22 270 | 58.62 289 | 86.41 192 | 88.36 210 | 71.37 175 | 73.31 263 | 88.01 199 | 61.22 179 | 89.15 282 | 64.24 243 | 73.01 332 | 89.03 243 |
|
| WR-MVS | | | 79.49 165 | 79.22 156 | 80.27 238 | 88.79 156 | 58.35 290 | 85.06 225 | 88.61 207 | 78.56 30 | 77.65 175 | 88.34 187 | 63.81 138 | 90.66 258 | 64.98 237 | 77.22 273 | 91.80 143 |
|
| FIs | | | 82.07 108 | 82.42 96 | 81.04 221 | 88.80 155 | 58.34 291 | 88.26 136 | 93.49 26 | 76.93 60 | 78.47 157 | 91.04 120 | 69.92 73 | 92.34 202 | 69.87 193 | 84.97 173 | 92.44 123 |
|
| CostFormer | | | 75.24 256 | 73.90 256 | 79.27 257 | 82.65 309 | 58.27 292 | 80.80 295 | 82.73 303 | 61.57 323 | 75.33 234 | 83.13 309 | 55.52 222 | 91.07 251 | 64.98 237 | 78.34 264 | 88.45 263 |
|
| Test_1112_low_res | | | 76.40 239 | 75.44 234 | 79.27 257 | 89.28 137 | 58.09 293 | 81.69 284 | 87.07 238 | 59.53 339 | 72.48 275 | 86.67 234 | 61.30 176 | 89.33 278 | 60.81 275 | 80.15 243 | 90.41 190 |
|
| tfpnnormal | | | 74.39 260 | 73.16 264 | 78.08 278 | 86.10 237 | 58.05 294 | 84.65 235 | 87.53 228 | 70.32 198 | 71.22 288 | 85.63 261 | 54.97 225 | 89.86 268 | 43.03 376 | 75.02 313 | 86.32 305 |
|
| test-LLR | | | 72.94 280 | 72.43 270 | 74.48 316 | 81.35 329 | 58.04 295 | 78.38 331 | 77.46 349 | 66.66 260 | 69.95 302 | 79.00 352 | 48.06 302 | 79.24 355 | 66.13 225 | 84.83 174 | 86.15 309 |
|
| test-mter | | | 71.41 291 | 70.39 294 | 74.48 316 | 81.35 329 | 58.04 295 | 78.38 331 | 77.46 349 | 60.32 331 | 69.95 302 | 79.00 352 | 36.08 370 | 79.24 355 | 66.13 225 | 84.83 174 | 86.15 309 |
|
| mvs_anonymous | | | 79.42 169 | 79.11 158 | 80.34 236 | 84.45 267 | 57.97 297 | 82.59 274 | 87.62 226 | 67.40 255 | 76.17 213 | 88.56 182 | 68.47 92 | 89.59 274 | 70.65 184 | 86.05 163 | 93.47 84 |
|
| tpm cat1 | | | 70.57 300 | 68.31 306 | 77.35 290 | 82.41 314 | 57.95 298 | 78.08 335 | 80.22 331 | 52.04 374 | 68.54 317 | 77.66 363 | 52.00 260 | 87.84 301 | 51.77 332 | 72.07 339 | 86.25 306 |
|
| SixPastTwentyTwo | | | 73.37 272 | 71.26 284 | 79.70 249 | 85.08 255 | 57.89 299 | 85.57 212 | 83.56 285 | 71.03 183 | 65.66 344 | 85.88 254 | 42.10 345 | 92.57 191 | 59.11 287 | 63.34 370 | 88.65 260 |
|
| thres200 | | | 75.55 250 | 74.47 249 | 78.82 264 | 87.78 197 | 57.85 300 | 83.07 270 | 83.51 286 | 72.44 157 | 75.84 217 | 84.42 282 | 52.08 258 | 91.75 222 | 47.41 360 | 83.64 198 | 86.86 297 |
|
| XXY-MVS | | | 75.41 254 | 75.56 232 | 74.96 311 | 83.59 283 | 57.82 301 | 80.59 302 | 83.87 281 | 66.54 266 | 74.93 247 | 88.31 188 | 63.24 142 | 80.09 353 | 62.16 261 | 76.85 279 | 86.97 295 |
|
| K. test v3 | | | 71.19 292 | 68.51 304 | 79.21 259 | 83.04 298 | 57.78 302 | 84.35 246 | 76.91 355 | 72.90 153 | 62.99 361 | 82.86 314 | 39.27 357 | 91.09 250 | 61.65 267 | 52.66 388 | 88.75 257 |
|
| tfpn200view9 | | | 76.42 238 | 75.37 238 | 79.55 255 | 89.13 143 | 57.65 303 | 85.17 221 | 83.60 283 | 73.41 141 | 76.45 203 | 86.39 245 | 52.12 255 | 91.95 214 | 48.33 353 | 83.75 193 | 89.07 237 |
|
| thres400 | | | 76.50 235 | 75.37 238 | 79.86 245 | 89.13 143 | 57.65 303 | 85.17 221 | 83.60 283 | 73.41 141 | 76.45 203 | 86.39 245 | 52.12 255 | 91.95 214 | 48.33 353 | 83.75 193 | 90.00 211 |
|
| CMPMVS |  | 51.72 21 | 70.19 305 | 68.16 308 | 76.28 298 | 73.15 385 | 57.55 305 | 79.47 316 | 83.92 279 | 48.02 382 | 56.48 382 | 84.81 278 | 43.13 337 | 86.42 311 | 62.67 255 | 81.81 224 | 84.89 330 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| pmmvs6 | | | 74.69 259 | 73.39 261 | 78.61 267 | 81.38 328 | 57.48 306 | 86.64 186 | 87.95 218 | 64.99 284 | 70.18 296 | 86.61 236 | 50.43 279 | 89.52 275 | 62.12 262 | 70.18 348 | 88.83 253 |
|
| test_vis1_n_1920 | | | 75.52 251 | 75.78 227 | 74.75 315 | 79.84 347 | 57.44 307 | 83.26 264 | 85.52 260 | 62.83 311 | 79.34 141 | 86.17 250 | 45.10 327 | 79.71 354 | 78.75 104 | 81.21 229 | 87.10 294 |
|
| PVSNet_0 | | 57.27 20 | 61.67 348 | 59.27 351 | 68.85 356 | 79.61 352 | 57.44 307 | 68.01 381 | 73.44 371 | 55.93 364 | 58.54 375 | 70.41 385 | 44.58 329 | 77.55 364 | 47.01 361 | 35.91 397 | 71.55 385 |
|
| thres600view7 | | | 76.50 235 | 75.44 234 | 79.68 250 | 89.40 129 | 57.16 309 | 85.53 218 | 83.23 291 | 73.79 130 | 76.26 208 | 87.09 222 | 51.89 263 | 91.89 217 | 48.05 358 | 83.72 196 | 90.00 211 |
|
| lessismore_v0 | | | | | 78.97 262 | 81.01 334 | 57.15 310 | | 65.99 388 | | 61.16 366 | 82.82 315 | 39.12 358 | 91.34 241 | 59.67 281 | 46.92 394 | 88.43 264 |
|
| TransMVSNet (Re) | | | 75.39 255 | 74.56 247 | 77.86 280 | 85.50 245 | 57.10 311 | 86.78 182 | 86.09 254 | 72.17 161 | 71.53 285 | 87.34 212 | 63.01 149 | 89.31 279 | 56.84 310 | 61.83 372 | 87.17 288 |
|
| thres100view900 | | | 76.50 235 | 75.55 233 | 79.33 256 | 89.52 122 | 56.99 312 | 85.83 210 | 83.23 291 | 73.94 126 | 76.32 207 | 87.12 221 | 51.89 263 | 91.95 214 | 48.33 353 | 83.75 193 | 89.07 237 |
|
| TESTMET0.1,1 | | | 69.89 308 | 69.00 302 | 72.55 333 | 79.27 357 | 56.85 313 | 78.38 331 | 74.71 367 | 57.64 354 | 68.09 319 | 77.19 365 | 37.75 365 | 76.70 368 | 63.92 244 | 84.09 188 | 84.10 340 |
|
| WTY-MVS | | | 75.65 249 | 75.68 229 | 75.57 305 | 86.40 231 | 56.82 314 | 77.92 338 | 82.40 305 | 65.10 280 | 76.18 211 | 87.72 201 | 63.13 148 | 80.90 350 | 60.31 277 | 81.96 221 | 89.00 246 |
|
| MDA-MVSNet_test_wron | | | 65.03 338 | 62.92 342 | 71.37 341 | 75.93 367 | 56.73 315 | 69.09 380 | 74.73 366 | 57.28 358 | 54.03 386 | 77.89 360 | 45.88 319 | 74.39 385 | 49.89 346 | 61.55 373 | 82.99 354 |
|
| pmmvs3 | | | 57.79 351 | 54.26 356 | 68.37 359 | 64.02 399 | 56.72 316 | 75.12 356 | 65.17 390 | 40.20 391 | 52.93 387 | 69.86 386 | 20.36 395 | 75.48 379 | 45.45 371 | 55.25 386 | 72.90 384 |
|
| tpm2 | | | 73.26 275 | 71.46 279 | 78.63 266 | 83.34 288 | 56.71 317 | 80.65 301 | 80.40 328 | 56.63 361 | 73.55 261 | 82.02 326 | 51.80 265 | 91.24 243 | 56.35 314 | 78.42 262 | 87.95 269 |
|
| TinyColmap | | | 67.30 327 | 64.81 332 | 74.76 314 | 81.92 320 | 56.68 318 | 80.29 308 | 81.49 315 | 60.33 330 | 56.27 383 | 83.22 306 | 24.77 389 | 87.66 304 | 45.52 370 | 69.47 350 | 79.95 371 |
|
| YYNet1 | | | 65.03 338 | 62.91 343 | 71.38 340 | 75.85 369 | 56.60 319 | 69.12 379 | 74.66 368 | 57.28 358 | 54.12 385 | 77.87 361 | 45.85 320 | 74.48 384 | 49.95 345 | 61.52 374 | 83.05 352 |
|
| PM-MVS | | | 66.41 333 | 64.14 335 | 73.20 328 | 73.92 377 | 56.45 320 | 78.97 324 | 64.96 392 | 63.88 301 | 64.72 351 | 80.24 340 | 19.84 396 | 83.44 336 | 66.24 224 | 64.52 368 | 79.71 372 |
|
| PVSNet | | 64.34 18 | 72.08 288 | 70.87 288 | 75.69 303 | 86.21 233 | 56.44 321 | 74.37 359 | 80.73 321 | 62.06 321 | 70.17 297 | 82.23 323 | 42.86 339 | 83.31 337 | 54.77 319 | 84.45 183 | 87.32 285 |
|
| pmmvs5 | | | 71.55 290 | 70.20 296 | 75.61 304 | 77.83 361 | 56.39 322 | 81.74 283 | 80.89 318 | 57.76 353 | 67.46 325 | 84.49 281 | 49.26 294 | 85.32 323 | 57.08 307 | 75.29 309 | 85.11 328 |
|
| testing11 | | | 75.14 257 | 74.01 253 | 78.53 271 | 88.16 179 | 56.38 323 | 80.74 299 | 80.42 327 | 70.67 189 | 72.69 273 | 83.72 300 | 43.61 335 | 89.86 268 | 62.29 259 | 83.76 192 | 89.36 233 |
|
| WR-MVS_H | | | 78.51 192 | 78.49 168 | 78.56 269 | 88.02 187 | 56.38 323 | 88.43 127 | 92.67 62 | 77.14 54 | 73.89 258 | 87.55 208 | 66.25 115 | 89.24 280 | 58.92 289 | 73.55 327 | 90.06 209 |
|
| MIMVSNet | | | 70.69 299 | 69.30 298 | 74.88 312 | 84.52 265 | 56.35 325 | 75.87 349 | 79.42 337 | 64.59 286 | 67.76 320 | 82.41 319 | 41.10 349 | 81.54 346 | 46.64 364 | 81.34 226 | 86.75 300 |
|
| USDC | | | 70.33 303 | 68.37 305 | 76.21 299 | 80.60 337 | 56.23 326 | 79.19 321 | 86.49 246 | 60.89 327 | 61.29 365 | 85.47 265 | 31.78 378 | 89.47 277 | 53.37 326 | 76.21 292 | 82.94 355 |
|
| Baseline_NR-MVSNet | | | 78.15 201 | 78.33 174 | 77.61 286 | 85.79 239 | 56.21 327 | 86.78 182 | 85.76 258 | 73.60 135 | 77.93 171 | 87.57 206 | 65.02 128 | 88.99 284 | 67.14 220 | 75.33 308 | 87.63 276 |
|
| tpmvs | | | 71.09 294 | 69.29 299 | 76.49 297 | 82.04 317 | 56.04 328 | 78.92 325 | 81.37 317 | 64.05 296 | 67.18 329 | 78.28 358 | 49.74 287 | 89.77 270 | 49.67 347 | 72.37 335 | 83.67 345 |
|
| FC-MVSNet-test | | | 81.52 122 | 82.02 105 | 80.03 242 | 88.42 172 | 55.97 329 | 87.95 146 | 93.42 29 | 77.10 56 | 77.38 180 | 90.98 126 | 69.96 71 | 91.79 220 | 68.46 208 | 84.50 179 | 92.33 124 |
|
| testing91 | | | 76.54 233 | 75.66 231 | 79.18 260 | 88.43 171 | 55.89 330 | 81.08 292 | 83.00 297 | 73.76 131 | 75.34 230 | 84.29 287 | 46.20 317 | 90.07 265 | 64.33 241 | 84.50 179 | 91.58 147 |
|
| GG-mvs-BLEND | | | | | 75.38 308 | 81.59 324 | 55.80 331 | 79.32 318 | 69.63 380 | | 67.19 328 | 73.67 378 | 43.24 336 | 88.90 289 | 50.41 339 | 84.50 179 | 81.45 364 |
|
| VPNet | | | 78.69 188 | 78.66 165 | 78.76 265 | 88.31 175 | 55.72 332 | 84.45 242 | 86.63 245 | 76.79 64 | 78.26 161 | 90.55 133 | 59.30 198 | 89.70 273 | 66.63 223 | 77.05 275 | 90.88 170 |
|
| baseline1 | | | 76.98 227 | 76.75 216 | 77.66 284 | 88.13 181 | 55.66 333 | 85.12 224 | 81.89 310 | 73.04 150 | 76.79 194 | 88.90 170 | 62.43 156 | 87.78 302 | 63.30 249 | 71.18 344 | 89.55 229 |
|
| test_vis1_rt | | | 60.28 349 | 58.42 352 | 65.84 364 | 67.25 395 | 55.60 334 | 70.44 373 | 60.94 397 | 44.33 387 | 59.00 373 | 66.64 387 | 24.91 388 | 68.67 394 | 62.80 251 | 69.48 349 | 73.25 383 |
|
| testing99 | | | 76.09 244 | 75.12 242 | 79.00 261 | 88.16 179 | 55.50 335 | 80.79 296 | 81.40 316 | 73.30 144 | 75.17 239 | 84.27 289 | 44.48 330 | 90.02 266 | 64.28 242 | 84.22 187 | 91.48 152 |
|
| testing222 | | | 74.04 265 | 72.66 268 | 78.19 276 | 87.89 190 | 55.36 336 | 81.06 293 | 79.20 340 | 71.30 176 | 74.65 251 | 83.57 303 | 39.11 359 | 88.67 291 | 51.43 336 | 85.75 169 | 90.53 185 |
|
| FMVSNet5 | | | 69.50 310 | 67.96 311 | 74.15 320 | 82.97 302 | 55.35 337 | 80.01 311 | 82.12 308 | 62.56 315 | 63.02 359 | 81.53 328 | 36.92 367 | 81.92 344 | 48.42 352 | 74.06 321 | 85.17 327 |
|
| test_fmvs1_n | | | 70.86 297 | 70.24 295 | 72.73 332 | 72.51 389 | 55.28 338 | 81.27 291 | 79.71 335 | 51.49 378 | 78.73 148 | 84.87 277 | 27.54 385 | 77.02 366 | 76.06 133 | 79.97 246 | 85.88 316 |
|
| test_vis1_n | | | 69.85 309 | 69.21 300 | 71.77 338 | 72.66 388 | 55.27 339 | 81.48 287 | 76.21 359 | 52.03 375 | 75.30 235 | 83.20 308 | 28.97 383 | 76.22 374 | 74.60 146 | 78.41 263 | 83.81 343 |
|
| test_fmvs1 | | | 70.93 296 | 70.52 290 | 72.16 336 | 73.71 378 | 55.05 340 | 80.82 294 | 78.77 342 | 51.21 379 | 78.58 153 | 84.41 283 | 31.20 380 | 76.94 367 | 75.88 136 | 80.12 245 | 84.47 335 |
|
| sss | | | 73.60 270 | 73.64 260 | 73.51 325 | 82.80 304 | 55.01 341 | 76.12 345 | 81.69 313 | 62.47 316 | 74.68 250 | 85.85 256 | 57.32 214 | 78.11 361 | 60.86 274 | 80.93 231 | 87.39 282 |
|
| mvsany_test1 | | | 62.30 346 | 61.26 350 | 65.41 365 | 69.52 391 | 54.86 342 | 66.86 385 | 49.78 405 | 46.65 383 | 68.50 318 | 83.21 307 | 49.15 295 | 66.28 397 | 56.93 309 | 60.77 375 | 75.11 381 |
|
| ECVR-MVS |  | | 79.61 161 | 79.26 154 | 80.67 230 | 90.08 105 | 54.69 343 | 87.89 150 | 77.44 351 | 74.88 106 | 80.27 129 | 92.79 79 | 48.96 299 | 92.45 195 | 68.55 206 | 92.50 75 | 94.86 17 |
|
| EPNet_dtu | | | 75.46 252 | 74.86 243 | 77.23 292 | 82.57 310 | 54.60 344 | 86.89 177 | 83.09 294 | 71.64 166 | 66.25 342 | 85.86 255 | 55.99 221 | 88.04 299 | 54.92 318 | 86.55 154 | 89.05 242 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CP-MVSNet | | | 78.22 197 | 78.34 173 | 77.84 281 | 87.83 193 | 54.54 345 | 87.94 147 | 91.17 122 | 77.65 38 | 73.48 262 | 88.49 183 | 62.24 160 | 88.43 294 | 62.19 260 | 74.07 320 | 90.55 184 |
|
| gg-mvs-nofinetune | | | 69.95 307 | 67.96 311 | 75.94 300 | 83.07 296 | 54.51 346 | 77.23 342 | 70.29 378 | 63.11 305 | 70.32 294 | 62.33 389 | 43.62 334 | 88.69 290 | 53.88 323 | 87.76 137 | 84.62 334 |
|
| PS-CasMVS | | | 78.01 206 | 78.09 179 | 77.77 283 | 87.71 199 | 54.39 347 | 88.02 143 | 91.22 119 | 77.50 46 | 73.26 264 | 88.64 178 | 60.73 185 | 88.41 295 | 61.88 264 | 73.88 324 | 90.53 185 |
|
| Anonymous20240521 | | | 68.80 315 | 67.22 324 | 73.55 324 | 74.33 375 | 54.11 348 | 83.18 265 | 85.61 259 | 58.15 350 | 61.68 364 | 80.94 334 | 30.71 381 | 81.27 348 | 57.00 308 | 73.34 331 | 85.28 323 |
|
| Patchmtry | | | 70.74 298 | 69.16 301 | 75.49 307 | 80.72 335 | 54.07 349 | 74.94 358 | 80.30 329 | 58.34 348 | 70.01 299 | 81.19 329 | 52.50 249 | 86.54 309 | 53.37 326 | 71.09 345 | 85.87 317 |
|
| PEN-MVS | | | 77.73 212 | 77.69 194 | 77.84 281 | 87.07 220 | 53.91 350 | 87.91 149 | 91.18 121 | 77.56 43 | 73.14 266 | 88.82 173 | 61.23 178 | 89.17 281 | 59.95 279 | 72.37 335 | 90.43 189 |
|
| gm-plane-assit | | | | | | 81.40 327 | 53.83 351 | | | 62.72 314 | | 80.94 334 | | 92.39 198 | 63.40 248 | | |
|
| CL-MVSNet_self_test | | | 72.37 284 | 71.46 279 | 75.09 310 | 79.49 354 | 53.53 352 | 80.76 298 | 85.01 266 | 69.12 228 | 70.51 291 | 82.05 325 | 57.92 207 | 84.13 330 | 52.27 331 | 66.00 364 | 87.60 277 |
|
| MDTV_nov1_ep13 | | | | 69.97 297 | | 83.18 293 | 53.48 353 | 77.10 343 | 80.18 332 | 60.45 329 | 69.33 310 | 80.44 338 | 48.89 300 | 86.90 307 | 51.60 334 | 78.51 260 | |
|
| KD-MVS_2432*1600 | | | 66.22 335 | 63.89 337 | 73.21 326 | 75.47 373 | 53.42 354 | 70.76 371 | 84.35 272 | 64.10 294 | 66.52 338 | 78.52 356 | 34.55 373 | 84.98 324 | 50.40 340 | 50.33 391 | 81.23 365 |
|
| miper_refine_blended | | | 66.22 335 | 63.89 337 | 73.21 326 | 75.47 373 | 53.42 354 | 70.76 371 | 84.35 272 | 64.10 294 | 66.52 338 | 78.52 356 | 34.55 373 | 84.98 324 | 50.40 340 | 50.33 391 | 81.23 365 |
|
| test1111 | | | 79.43 168 | 79.18 157 | 80.15 240 | 89.99 110 | 53.31 356 | 87.33 164 | 77.05 354 | 75.04 103 | 80.23 131 | 92.77 81 | 48.97 298 | 92.33 203 | 68.87 203 | 92.40 77 | 94.81 20 |
|
| LF4IMVS | | | 64.02 342 | 62.19 346 | 69.50 352 | 70.90 390 | 53.29 357 | 76.13 344 | 77.18 353 | 52.65 373 | 58.59 374 | 80.98 333 | 23.55 392 | 76.52 370 | 53.06 328 | 66.66 360 | 78.68 374 |
|
| DTE-MVSNet | | | 76.99 226 | 76.80 212 | 77.54 288 | 86.24 232 | 53.06 358 | 87.52 158 | 90.66 135 | 77.08 57 | 72.50 274 | 88.67 177 | 60.48 192 | 89.52 275 | 57.33 305 | 70.74 346 | 90.05 210 |
|
| test2506 | | | 77.30 223 | 76.49 220 | 79.74 248 | 90.08 105 | 52.02 359 | 87.86 152 | 63.10 394 | 74.88 106 | 80.16 132 | 92.79 79 | 38.29 363 | 92.35 201 | 68.74 205 | 92.50 75 | 94.86 17 |
|
| tpm | | | 72.37 284 | 71.71 276 | 74.35 318 | 82.19 316 | 52.00 360 | 79.22 320 | 77.29 352 | 64.56 287 | 72.95 269 | 83.68 302 | 51.35 268 | 83.26 338 | 58.33 296 | 75.80 295 | 87.81 273 |
|
| test_fmvs2 | | | 68.35 321 | 67.48 322 | 70.98 347 | 69.50 392 | 51.95 361 | 80.05 310 | 76.38 358 | 49.33 381 | 74.65 251 | 84.38 284 | 23.30 393 | 75.40 381 | 74.51 147 | 75.17 312 | 85.60 319 |
|
| ETVMVS | | | 72.25 286 | 71.05 285 | 75.84 301 | 87.77 198 | 51.91 362 | 79.39 317 | 74.98 363 | 69.26 222 | 73.71 259 | 82.95 311 | 40.82 352 | 86.14 313 | 46.17 366 | 84.43 184 | 89.47 230 |
|
| WB-MVSnew | | | 71.96 289 | 71.65 277 | 72.89 330 | 84.67 264 | 51.88 363 | 82.29 277 | 77.57 348 | 62.31 317 | 73.67 260 | 83.00 310 | 53.49 244 | 81.10 349 | 45.75 369 | 82.13 219 | 85.70 318 |
|
| MIMVSNet1 | | | 68.58 317 | 66.78 327 | 73.98 322 | 80.07 344 | 51.82 364 | 80.77 297 | 84.37 271 | 64.40 289 | 59.75 372 | 82.16 324 | 36.47 368 | 83.63 334 | 42.73 377 | 70.33 347 | 86.48 304 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 195 | 78.45 169 | 78.07 279 | 88.64 163 | 51.78 365 | 86.70 185 | 79.63 336 | 74.14 123 | 75.11 242 | 90.83 127 | 61.29 177 | 89.75 271 | 58.10 298 | 91.60 86 | 92.69 112 |
|
| LCM-MVSNet-Re | | | 77.05 225 | 76.94 209 | 77.36 289 | 87.20 217 | 51.60 366 | 80.06 309 | 80.46 326 | 75.20 99 | 67.69 322 | 86.72 229 | 62.48 154 | 88.98 285 | 63.44 247 | 89.25 118 | 91.51 149 |
|
| Gipuma |  | | 45.18 368 | 41.86 371 | 55.16 380 | 77.03 366 | 51.52 367 | 32.50 404 | 80.52 324 | 32.46 400 | 27.12 403 | 35.02 404 | 9.52 407 | 75.50 378 | 22.31 401 | 60.21 378 | 38.45 403 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| UnsupCasMVSNet_eth | | | 67.33 326 | 65.99 330 | 71.37 341 | 73.48 381 | 51.47 368 | 75.16 354 | 85.19 263 | 65.20 279 | 60.78 367 | 80.93 336 | 42.35 341 | 77.20 365 | 57.12 306 | 53.69 387 | 85.44 321 |
|
| UnsupCasMVSNet_bld | | | 63.70 343 | 61.53 349 | 70.21 350 | 73.69 379 | 51.39 369 | 72.82 363 | 81.89 310 | 55.63 365 | 57.81 378 | 71.80 382 | 38.67 360 | 78.61 358 | 49.26 349 | 52.21 389 | 80.63 368 |
|
| FPMVS | | | 53.68 357 | 51.64 359 | 59.81 372 | 65.08 397 | 51.03 370 | 69.48 376 | 69.58 381 | 41.46 390 | 40.67 396 | 72.32 381 | 16.46 400 | 70.00 393 | 24.24 400 | 65.42 365 | 58.40 396 |
|
| CVMVSNet | | | 72.99 279 | 72.58 269 | 74.25 319 | 84.28 268 | 50.85 371 | 86.41 192 | 83.45 288 | 44.56 386 | 73.23 265 | 87.54 209 | 49.38 291 | 85.70 316 | 65.90 229 | 78.44 261 | 86.19 308 |
|
| Anonymous20231206 | | | 68.60 316 | 67.80 316 | 71.02 346 | 80.23 342 | 50.75 372 | 78.30 334 | 80.47 325 | 56.79 360 | 66.11 343 | 82.63 318 | 46.35 314 | 78.95 357 | 43.62 375 | 75.70 296 | 83.36 348 |
|
| ambc | | | | | 75.24 309 | 73.16 384 | 50.51 373 | 63.05 396 | 87.47 230 | | 64.28 353 | 77.81 362 | 17.80 398 | 89.73 272 | 57.88 300 | 60.64 376 | 85.49 320 |
|
| APD_test1 | | | 53.31 358 | 49.93 363 | 63.42 368 | 65.68 396 | 50.13 374 | 71.59 367 | 66.90 387 | 34.43 398 | 40.58 397 | 71.56 383 | 8.65 409 | 76.27 373 | 34.64 390 | 55.36 385 | 63.86 392 |
|
| tpmrst | | | 72.39 282 | 72.13 273 | 73.18 329 | 80.54 338 | 49.91 375 | 79.91 313 | 79.08 341 | 63.11 305 | 71.69 284 | 79.95 343 | 55.32 223 | 82.77 340 | 65.66 232 | 73.89 323 | 86.87 296 |
|
| Patchmatch-test | | | 64.82 340 | 63.24 341 | 69.57 351 | 79.42 355 | 49.82 376 | 63.49 395 | 69.05 383 | 51.98 376 | 59.95 371 | 80.13 341 | 50.91 272 | 70.98 390 | 40.66 381 | 73.57 326 | 87.90 271 |
|
| EPMVS | | | 69.02 313 | 68.16 308 | 71.59 339 | 79.61 352 | 49.80 377 | 77.40 340 | 66.93 386 | 62.82 312 | 70.01 299 | 79.05 350 | 45.79 321 | 77.86 363 | 56.58 312 | 75.26 310 | 87.13 291 |
|
| dp | | | 66.80 329 | 65.43 331 | 70.90 348 | 79.74 351 | 48.82 378 | 75.12 356 | 74.77 365 | 59.61 337 | 64.08 355 | 77.23 364 | 42.89 338 | 80.72 351 | 48.86 351 | 66.58 361 | 83.16 350 |
|
| UWE-MVS | | | 72.13 287 | 71.49 278 | 74.03 321 | 86.66 228 | 47.70 379 | 81.40 290 | 76.89 356 | 63.60 302 | 75.59 220 | 84.22 290 | 39.94 355 | 85.62 318 | 48.98 350 | 86.13 162 | 88.77 256 |
|
| test0.0.03 1 | | | 68.00 323 | 67.69 318 | 68.90 355 | 77.55 362 | 47.43 380 | 75.70 350 | 72.95 374 | 66.66 260 | 66.56 336 | 82.29 322 | 48.06 302 | 75.87 376 | 44.97 373 | 74.51 318 | 83.41 347 |
|
| ADS-MVSNet | | | 64.36 341 | 62.88 344 | 68.78 357 | 79.92 345 | 47.17 381 | 67.55 383 | 71.18 376 | 53.37 371 | 65.25 348 | 75.86 371 | 42.32 342 | 73.99 386 | 41.57 379 | 68.91 353 | 85.18 325 |
|
| EU-MVSNet | | | 68.53 319 | 67.61 320 | 71.31 344 | 78.51 360 | 47.01 382 | 84.47 239 | 84.27 275 | 42.27 389 | 66.44 341 | 84.79 279 | 40.44 353 | 83.76 332 | 58.76 292 | 68.54 356 | 83.17 349 |
|
| test_fmvs3 | | | 63.36 344 | 61.82 347 | 67.98 360 | 62.51 400 | 46.96 383 | 77.37 341 | 74.03 369 | 45.24 385 | 67.50 324 | 78.79 355 | 12.16 404 | 72.98 389 | 72.77 167 | 66.02 363 | 83.99 341 |
|
| KD-MVS_self_test | | | 68.81 314 | 67.59 321 | 72.46 335 | 74.29 376 | 45.45 384 | 77.93 337 | 87.00 239 | 63.12 304 | 63.99 356 | 78.99 354 | 42.32 342 | 84.77 327 | 56.55 313 | 64.09 369 | 87.16 290 |
|
| testf1 | | | 45.72 365 | 41.96 369 | 57.00 374 | 56.90 402 | 45.32 385 | 66.14 388 | 59.26 399 | 26.19 402 | 30.89 401 | 60.96 393 | 4.14 412 | 70.64 391 | 26.39 398 | 46.73 395 | 55.04 397 |
|
| APD_test2 | | | 45.72 365 | 41.96 369 | 57.00 374 | 56.90 402 | 45.32 385 | 66.14 388 | 59.26 399 | 26.19 402 | 30.89 401 | 60.96 393 | 4.14 412 | 70.64 391 | 26.39 398 | 46.73 395 | 55.04 397 |
|
| LCM-MVSNet | | | 54.25 354 | 49.68 364 | 67.97 361 | 53.73 408 | 45.28 387 | 66.85 386 | 80.78 320 | 35.96 397 | 39.45 398 | 62.23 391 | 8.70 408 | 78.06 362 | 48.24 356 | 51.20 390 | 80.57 369 |
|
| test_vis3_rt | | | 49.26 364 | 47.02 366 | 56.00 376 | 54.30 405 | 45.27 388 | 66.76 387 | 48.08 406 | 36.83 395 | 44.38 394 | 53.20 399 | 7.17 411 | 64.07 399 | 56.77 311 | 55.66 383 | 58.65 395 |
|
| test20.03 | | | 67.45 325 | 66.95 326 | 68.94 354 | 75.48 372 | 44.84 389 | 77.50 339 | 77.67 347 | 66.66 260 | 63.01 360 | 83.80 297 | 47.02 308 | 78.40 359 | 42.53 378 | 68.86 355 | 83.58 346 |
|
| mvsany_test3 | | | 53.99 355 | 51.45 360 | 61.61 370 | 55.51 404 | 44.74 390 | 63.52 394 | 45.41 409 | 43.69 388 | 58.11 377 | 76.45 368 | 17.99 397 | 63.76 400 | 54.77 319 | 47.59 393 | 76.34 379 |
|
| PatchT | | | 68.46 320 | 67.85 313 | 70.29 349 | 80.70 336 | 43.93 391 | 72.47 364 | 74.88 364 | 60.15 333 | 70.55 290 | 76.57 367 | 49.94 284 | 81.59 345 | 50.58 338 | 74.83 315 | 85.34 322 |
|
| MVS-HIRNet | | | 59.14 350 | 57.67 353 | 63.57 367 | 81.65 322 | 43.50 392 | 71.73 366 | 65.06 391 | 39.59 393 | 51.43 388 | 57.73 395 | 38.34 362 | 82.58 341 | 39.53 382 | 73.95 322 | 64.62 391 |
|
| testing3 | | | 68.56 318 | 67.67 319 | 71.22 345 | 87.33 214 | 42.87 393 | 83.06 271 | 71.54 375 | 70.36 196 | 69.08 312 | 84.38 284 | 30.33 382 | 85.69 317 | 37.50 387 | 75.45 304 | 85.09 329 |
|
| WAC-MVS | | | | | | | 42.58 394 | | | | | | | | 39.46 383 | | |
|
| myMVS_eth3d | | | 67.02 328 | 66.29 329 | 69.21 353 | 84.68 261 | 42.58 394 | 78.62 329 | 73.08 372 | 66.65 263 | 66.74 334 | 79.46 347 | 31.53 379 | 82.30 342 | 39.43 384 | 76.38 289 | 82.75 356 |
|
| PMVS |  | 37.38 22 | 44.16 369 | 40.28 373 | 55.82 378 | 40.82 413 | 42.54 396 | 65.12 392 | 63.99 393 | 34.43 398 | 24.48 404 | 57.12 397 | 3.92 414 | 76.17 375 | 17.10 405 | 55.52 384 | 48.75 399 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_f | | | 52.09 360 | 50.82 361 | 55.90 377 | 53.82 407 | 42.31 397 | 59.42 397 | 58.31 401 | 36.45 396 | 56.12 384 | 70.96 384 | 12.18 403 | 57.79 403 | 53.51 325 | 56.57 382 | 67.60 388 |
|
| testgi | | | 66.67 331 | 66.53 328 | 67.08 363 | 75.62 371 | 41.69 398 | 75.93 346 | 76.50 357 | 66.11 269 | 65.20 350 | 86.59 237 | 35.72 371 | 74.71 383 | 43.71 374 | 73.38 330 | 84.84 331 |
|
| Syy-MVS | | | 68.05 322 | 67.85 313 | 68.67 358 | 84.68 261 | 40.97 399 | 78.62 329 | 73.08 372 | 66.65 263 | 66.74 334 | 79.46 347 | 52.11 257 | 82.30 342 | 32.89 391 | 76.38 289 | 82.75 356 |
|
| ANet_high | | | 50.57 363 | 46.10 367 | 63.99 366 | 48.67 411 | 39.13 400 | 70.99 370 | 80.85 319 | 61.39 325 | 31.18 400 | 57.70 396 | 17.02 399 | 73.65 388 | 31.22 393 | 15.89 408 | 79.18 373 |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 401 | 75.16 354 | | 55.10 366 | 66.53 337 | | 49.34 292 | | 53.98 322 | | 87.94 270 |
|
| DSMNet-mixed | | | 57.77 352 | 56.90 354 | 60.38 371 | 67.70 394 | 35.61 402 | 69.18 377 | 53.97 403 | 32.30 401 | 57.49 379 | 79.88 344 | 40.39 354 | 68.57 395 | 38.78 385 | 72.37 335 | 76.97 377 |
|
| MVE |  | 26.22 23 | 30.37 375 | 25.89 379 | 43.81 386 | 44.55 412 | 35.46 403 | 28.87 405 | 39.07 410 | 18.20 406 | 18.58 408 | 40.18 403 | 2.68 415 | 47.37 408 | 17.07 406 | 23.78 405 | 48.60 400 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| new_pmnet | | | 50.91 362 | 50.29 362 | 52.78 382 | 68.58 393 | 34.94 404 | 63.71 393 | 56.63 402 | 39.73 392 | 44.95 393 | 65.47 388 | 21.93 394 | 58.48 402 | 34.98 389 | 56.62 381 | 64.92 390 |
|
| wuyk23d | | | 16.82 378 | 15.94 381 | 19.46 392 | 58.74 401 | 31.45 405 | 39.22 402 | 3.74 417 | 6.84 408 | 6.04 411 | 2.70 411 | 1.27 416 | 24.29 411 | 10.54 411 | 14.40 410 | 2.63 408 |
|
| E-PMN | | | 31.77 372 | 30.64 375 | 35.15 389 | 52.87 409 | 27.67 406 | 57.09 399 | 47.86 407 | 24.64 404 | 16.40 409 | 33.05 405 | 11.23 405 | 54.90 405 | 14.46 408 | 18.15 406 | 22.87 405 |
|
| kuosan | | | 39.70 371 | 40.40 372 | 37.58 388 | 64.52 398 | 26.98 407 | 65.62 390 | 33.02 412 | 46.12 384 | 42.79 395 | 48.99 401 | 24.10 391 | 46.56 409 | 12.16 410 | 26.30 403 | 39.20 402 |
|
| DeepMVS_CX |  | | | | 27.40 391 | 40.17 414 | 26.90 408 | | 24.59 415 | 17.44 407 | 23.95 405 | 48.61 402 | 9.77 406 | 26.48 410 | 18.06 403 | 24.47 404 | 28.83 404 |
|
| dongtai | | | 45.42 367 | 45.38 368 | 45.55 385 | 73.36 383 | 26.85 409 | 67.72 382 | 34.19 411 | 54.15 369 | 49.65 391 | 56.41 398 | 25.43 387 | 62.94 401 | 19.45 402 | 28.09 402 | 46.86 401 |
|
| EMVS | | | 30.81 374 | 29.65 376 | 34.27 390 | 50.96 410 | 25.95 410 | 56.58 400 | 46.80 408 | 24.01 405 | 15.53 410 | 30.68 406 | 12.47 402 | 54.43 406 | 12.81 409 | 17.05 407 | 22.43 406 |
|
| dmvs_testset | | | 62.63 345 | 64.11 336 | 58.19 373 | 78.55 359 | 24.76 411 | 75.28 352 | 65.94 389 | 67.91 249 | 60.34 368 | 76.01 370 | 53.56 242 | 73.94 387 | 31.79 392 | 67.65 357 | 75.88 380 |
|
| new-patchmatchnet | | | 61.73 347 | 61.73 348 | 61.70 369 | 72.74 387 | 24.50 412 | 69.16 378 | 78.03 345 | 61.40 324 | 56.72 381 | 75.53 374 | 38.42 361 | 76.48 371 | 45.95 368 | 57.67 379 | 84.13 339 |
|
| WB-MVS | | | 54.94 353 | 54.72 355 | 55.60 379 | 73.50 380 | 20.90 413 | 74.27 360 | 61.19 396 | 59.16 342 | 50.61 389 | 74.15 376 | 47.19 307 | 75.78 377 | 17.31 404 | 35.07 398 | 70.12 386 |
|
| SSC-MVS | | | 53.88 356 | 53.59 357 | 54.75 381 | 72.87 386 | 19.59 414 | 73.84 362 | 60.53 398 | 57.58 356 | 49.18 392 | 73.45 379 | 46.34 315 | 75.47 380 | 16.20 407 | 32.28 400 | 69.20 387 |
|
| PMMVS2 | | | 40.82 370 | 38.86 374 | 46.69 384 | 53.84 406 | 16.45 415 | 48.61 401 | 49.92 404 | 37.49 394 | 31.67 399 | 60.97 392 | 8.14 410 | 56.42 404 | 28.42 395 | 30.72 401 | 67.19 389 |
|
| tmp_tt | | | 18.61 377 | 21.40 380 | 10.23 393 | 4.82 416 | 10.11 416 | 34.70 403 | 30.74 414 | 1.48 410 | 23.91 406 | 26.07 407 | 28.42 384 | 13.41 412 | 27.12 396 | 15.35 409 | 7.17 407 |
|
| N_pmnet | | | 52.79 359 | 53.26 358 | 51.40 383 | 78.99 358 | 7.68 417 | 69.52 375 | 3.89 416 | 51.63 377 | 57.01 380 | 74.98 375 | 40.83 351 | 65.96 398 | 37.78 386 | 64.67 367 | 80.56 370 |
|
| test_method | | | 31.52 373 | 29.28 377 | 38.23 387 | 27.03 415 | 6.50 418 | 20.94 406 | 62.21 395 | 4.05 409 | 22.35 407 | 52.50 400 | 13.33 401 | 47.58 407 | 27.04 397 | 34.04 399 | 60.62 393 |
|
| test123 | | | 6.12 380 | 8.11 383 | 0.14 394 | 0.06 418 | 0.09 419 | 71.05 369 | 0.03 419 | 0.04 413 | 0.25 414 | 1.30 413 | 0.05 417 | 0.03 414 | 0.21 413 | 0.01 412 | 0.29 409 |
|
| testmvs | | | 6.04 381 | 8.02 384 | 0.10 395 | 0.08 417 | 0.03 420 | 69.74 374 | 0.04 418 | 0.05 412 | 0.31 413 | 1.68 412 | 0.02 418 | 0.04 413 | 0.24 412 | 0.02 411 | 0.25 410 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| cdsmvs_eth3d_5k | | | 19.96 376 | 26.61 378 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 89.26 179 | 0.00 414 | 0.00 415 | 88.61 179 | 61.62 168 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 5.26 382 | 7.02 385 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 63.15 145 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| ab-mvs-re | | | 7.23 379 | 9.64 382 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 86.72 229 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| PC_three_1452 | | | | | | | | | | 68.21 246 | 92.02 12 | 94.00 46 | 82.09 5 | 95.98 53 | 84.58 49 | 96.68 2 | 94.95 10 |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 50 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 6 | 89.07 14 | 96.58 6 | 94.26 46 |
|
| 9.14 | | | | 88.26 15 | | 92.84 60 | | 91.52 46 | 94.75 1 | 73.93 127 | 88.57 22 | 94.67 19 | 75.57 22 | 95.79 55 | 86.77 35 | 95.76 23 | |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 8 | 89.42 9 | 96.57 7 | 94.67 25 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 248 |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 269 | | | | 88.96 248 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 282 | | | | |
|
| MTGPA |  | | | | | | | | 92.02 90 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 326 | | | | 5.43 410 | 48.81 301 | 85.44 322 | 59.25 285 | | |
|
| test_post | | | | | | | | | | | | 5.46 409 | 50.36 280 | 84.24 329 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 377 | 51.12 271 | 88.60 292 | | | |
|
| MTMP | | | | | | | | 92.18 35 | 32.83 413 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 42 | 95.70 26 | 92.87 107 |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 68 | 95.45 30 | 92.70 110 |
|
| test_prior2 | | | | | | | | 88.85 112 | | 75.41 95 | 84.91 61 | 93.54 56 | 74.28 29 | | 83.31 62 | 95.86 20 | |
|
| 旧先验2 | | | | | | | | 86.56 189 | | 58.10 351 | 87.04 41 | | | 88.98 285 | 74.07 152 | | |
|
| 新几何2 | | | | | | | | 86.29 197 | | | | | | | | | |
|
| 无先验 | | | | | | | | 87.48 159 | 88.98 192 | 60.00 334 | | | | 94.12 122 | 67.28 217 | | 88.97 247 |
|
| 原ACMM2 | | | | | | | | 86.86 178 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 91.01 252 | 62.37 258 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 38 | | | | |
|
| testdata1 | | | | | | | | 84.14 250 | | 75.71 89 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 72 | | | | | 95.38 72 | 78.71 105 | 86.32 157 | 91.33 155 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 124 | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 50 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 113 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 379 | | | | | | | | |
|
| test11 | | | | | | | | | 92.23 82 | | | | | | | | |
|
| door | | | | | | | | | 69.44 382 | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 132 | | 89.17 99 | | 76.41 74 | 77.23 185 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 132 | | 89.17 99 | | 76.41 74 | 77.23 185 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 119 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 184 | | | 95.11 84 | | | 91.03 165 |
|
| HQP3-MVS | | | | | | | | | 92.19 85 | | | | | | | 85.99 165 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 196 | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 222 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 227 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 132 | | | | |
|