This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 190.85 187.77 2395.30 270.98 6593.57 594.06 1077.24 4893.10 195.72 682.99 197.44 289.07 696.63 294.88 7
DVP-MVS89.60 290.35 287.33 4295.27 571.25 5993.49 792.73 5877.33 4692.12 895.78 480.98 797.40 489.08 496.41 893.33 75
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 489.98 388.01 1294.80 972.69 3091.59 3994.10 875.90 8492.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 389.91 488.30 794.28 2773.46 1692.90 1494.11 680.27 1291.35 1194.16 3978.35 1096.77 2089.59 194.22 6094.67 16
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5593.83 293.96 1475.70 8891.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
SMA-MVScopyleft89.08 689.23 688.61 394.25 2873.73 892.40 2093.63 2074.77 10592.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5380.26 1387.78 2694.27 3475.89 1696.81 1987.45 1696.44 793.05 86
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 6093.00 4280.90 988.06 2494.06 4476.43 1396.84 1788.48 1195.99 1594.34 27
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7572.96 2493.73 393.67 1980.19 1488.10 2394.80 1473.76 3697.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1088.74 1087.64 3592.78 6471.95 5092.40 2094.74 275.71 8689.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 7369.03 10589.57 8693.39 3077.53 4389.79 1494.12 4178.98 996.58 3385.66 2495.72 2594.58 19
SD-MVS88.06 1388.50 1286.71 5492.60 7172.71 2891.81 3793.19 3577.87 3490.32 1394.00 4674.83 2493.78 13987.63 1494.27 5993.65 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6571.89 5391.43 4394.70 374.47 11188.86 1894.61 1975.23 2195.84 5486.62 2395.92 1794.78 13
9.1488.26 1492.84 6391.52 4294.75 173.93 12488.57 2094.67 1775.57 2095.79 5586.77 2095.76 24
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4472.13 4791.41 4492.35 7374.62 10988.90 1793.85 4975.75 1796.00 5087.80 1294.63 4995.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4273.05 2190.86 5393.59 2176.27 7888.14 2295.09 1371.06 5696.67 2587.67 1396.37 1094.09 36
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4892.83 5481.50 685.79 4193.47 5673.02 4297.00 1484.90 3094.94 4094.10 35
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3972.35 4290.47 6389.69 16174.31 11489.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1776.81 6285.24 4794.32 3371.76 5196.93 1585.53 2695.79 2194.32 28
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2893.49 2474.75 10688.33 2194.43 3073.27 3997.02 1384.18 4594.84 4493.82 52
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4572.04 4989.80 8093.50 2375.17 9986.34 3695.29 1070.86 5796.00 5088.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2673.88 592.71 1992.65 6377.57 3983.84 7594.40 3272.24 4796.28 3885.65 2595.30 3693.62 65
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2972.39 4091.86 3692.83 5473.01 14288.58 1994.52 2173.36 3796.49 3484.26 4295.01 3892.70 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3276.78 6484.91 5294.44 2870.78 5896.61 2984.53 3794.89 4293.66 58
ETH3 D test640087.50 2487.44 2587.70 3293.71 4171.75 5490.62 5894.05 1370.80 17387.59 2993.51 5377.57 1196.63 2883.31 5095.77 2294.72 15
zzz-MVS87.53 2387.41 2687.90 1994.18 3274.25 390.23 7092.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 8272.45 3990.02 7494.37 471.76 15687.28 3094.27 3475.18 2296.08 4685.16 2795.77 2293.80 55
GST-MVS87.42 2787.26 2887.89 2294.12 3472.97 2392.39 2293.43 2876.89 6084.68 5893.99 4770.67 6196.82 1884.18 4595.01 3893.90 47
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7893.82 1673.07 14084.86 5792.89 6876.22 1496.33 3684.89 3295.13 3794.40 24
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3476.78 6484.66 6194.52 2168.81 7996.65 2684.53 3794.90 4194.00 42
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3776.73 6784.45 6494.52 2169.09 7696.70 2384.37 4094.83 4694.03 39
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3275.23 9684.91 5294.44 2870.78 5896.61 2983.75 4994.89 4293.66 58
MTAPA87.23 3287.00 3387.90 1994.18 3274.25 386.58 17892.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3872.16 4692.19 2993.33 3176.07 8183.81 7693.95 4869.77 7096.01 4985.15 2894.66 4894.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3486.92 3587.68 3494.20 3173.86 693.98 192.82 5776.62 6983.68 7794.46 2567.93 8395.95 5284.20 4494.39 5593.23 78
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4479.14 2183.67 7894.17 3867.45 8896.60 3183.06 5594.50 5294.07 37
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8672.32 4490.31 6893.94 1577.12 5482.82 8994.23 3772.13 4997.09 1184.83 3395.37 3193.65 63
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior386.73 3886.86 3886.33 6092.61 6969.59 9688.85 10592.97 4775.41 9284.91 5293.54 5174.28 3195.48 6683.31 5095.86 1893.91 45
SR-MVS86.73 3886.67 3986.91 4994.11 3572.11 4892.37 2492.56 6674.50 11086.84 3394.65 1867.31 9095.77 5684.80 3492.85 6992.84 94
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4772.37 4191.26 4593.04 3876.62 6984.22 6993.36 5871.44 5496.76 2180.82 7895.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-286.63 4286.53 4186.95 4889.33 12671.24 6288.43 11992.05 8682.50 186.88 3290.09 12374.45 2695.61 5984.38 3990.63 9294.01 41
Regformer-186.41 4686.33 4286.64 5589.33 12670.93 7088.43 11991.39 11582.14 386.65 3490.09 12374.39 2995.01 9183.97 4790.63 9293.97 43
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 8076.87 6182.81 9094.25 3666.44 9796.24 3982.88 6094.28 5893.38 72
PGM-MVS86.68 4086.27 4487.90 1994.22 3073.38 1790.22 7193.04 3875.53 9083.86 7494.42 3167.87 8596.64 2782.70 6594.57 5193.66 58
test117286.20 4986.22 4586.12 6793.95 3769.89 9191.79 3892.28 7575.07 10086.40 3594.58 2065.00 11595.56 6184.34 4192.60 7292.90 92
train_agg86.43 4486.20 4687.13 4693.26 5172.96 2488.75 10991.89 9668.69 22085.00 5093.10 6274.43 2795.41 7284.97 2995.71 2693.02 88
CSCG86.41 4686.19 4787.07 4792.91 6072.48 3690.81 5493.56 2273.95 12283.16 8391.07 10375.94 1595.19 8279.94 8694.38 5693.55 68
PHI-MVS86.43 4486.17 4887.24 4390.88 9270.96 6792.27 2794.07 972.45 14585.22 4891.90 8169.47 7296.42 3583.28 5395.94 1694.35 26
CANet86.45 4386.10 4987.51 3790.09 10670.94 6989.70 8492.59 6581.78 481.32 10591.43 9470.34 6297.23 984.26 4293.36 6594.37 25
agg_prior186.22 4886.09 5086.62 5692.85 6171.94 5188.59 11691.78 10268.96 21584.41 6593.18 6174.94 2394.93 9284.75 3595.33 3493.01 89
APD-MVS_3200maxsize85.97 5085.88 5186.22 6492.69 6769.53 9891.93 3392.99 4473.54 13285.94 3794.51 2465.80 10795.61 5983.04 5792.51 7493.53 70
canonicalmvs85.91 5185.87 5286.04 6989.84 11269.44 10390.45 6693.00 4276.70 6888.01 2591.23 9773.28 3893.91 13481.50 7288.80 11394.77 14
MSLP-MVS++85.43 5985.76 5384.45 10491.93 7870.24 8290.71 5692.86 5277.46 4584.22 6992.81 7267.16 9292.94 18080.36 8294.35 5790.16 178
CS-MVS85.32 6285.66 5484.30 11288.28 16965.31 18191.18 4993.48 2678.06 3383.14 8490.53 11569.93 6795.45 6882.96 5893.40 6492.15 118
SR-MVS-dyc-post85.77 5385.61 5586.23 6393.06 5770.63 7791.88 3492.27 7673.53 13385.69 4294.45 2665.00 11595.56 6182.75 6191.87 7792.50 103
RE-MVS-def85.48 5693.06 5770.63 7791.88 3492.27 7673.53 13385.69 4294.45 2663.87 12282.75 6191.87 7792.50 103
Regformer-485.68 5685.45 5786.35 5988.95 14369.67 9588.29 12991.29 11781.73 585.36 4590.01 12672.62 4495.35 7983.28 5387.57 12594.03 39
ACMMPcopyleft85.89 5285.39 5887.38 4193.59 4672.63 3292.74 1793.18 3676.78 6480.73 11493.82 5064.33 11896.29 3782.67 6690.69 9193.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.85.71 5585.33 5986.84 5091.34 8472.50 3589.07 9887.28 22576.41 7185.80 4090.22 12174.15 3495.37 7881.82 7091.88 7692.65 100
alignmvs85.48 5785.32 6085.96 7189.51 11969.47 10089.74 8292.47 6776.17 7987.73 2891.46 9370.32 6393.78 13981.51 7188.95 11094.63 18
DELS-MVS85.41 6085.30 6185.77 7288.49 16167.93 13485.52 21093.44 2778.70 2883.63 8089.03 15374.57 2595.71 5880.26 8494.04 6193.66 58
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 5485.29 6287.17 4593.49 4871.08 6388.58 11792.42 7168.32 22584.61 6293.48 5472.32 4696.15 4579.00 8895.43 3094.28 30
casdiffmvs85.11 6685.14 6385.01 8687.20 20265.77 17287.75 14592.83 5477.84 3584.36 6892.38 7472.15 4893.93 13381.27 7490.48 9495.33 1
Regformer-385.23 6385.07 6485.70 7388.95 14369.01 10788.29 12989.91 15580.95 885.01 4990.01 12672.45 4594.19 12082.50 6787.57 12593.90 47
baseline84.93 6884.98 6584.80 9687.30 20065.39 17987.30 15692.88 5177.62 3784.04 7392.26 7571.81 5093.96 12781.31 7390.30 9695.03 4
UA-Net85.08 6784.96 6685.45 7592.07 7668.07 13289.78 8190.86 13082.48 284.60 6393.20 6069.35 7395.22 8171.39 15890.88 9093.07 85
abl_685.23 6384.95 6786.07 6892.23 7470.48 8190.80 5592.08 8573.51 13585.26 4694.16 3962.75 13995.92 5382.46 6891.30 8691.81 127
HPM-MVS_fast85.35 6184.95 6786.57 5893.69 4370.58 8092.15 3191.62 10673.89 12582.67 9294.09 4262.60 14095.54 6480.93 7692.93 6793.57 67
MVS_111021_HR85.14 6584.75 6986.32 6291.65 8172.70 2985.98 19390.33 14376.11 8082.08 9591.61 8871.36 5594.17 12281.02 7592.58 7392.08 120
ETV-MVS84.90 7084.67 7085.59 7489.39 12468.66 12188.74 11192.64 6479.97 1784.10 7185.71 24069.32 7495.38 7580.82 7891.37 8492.72 95
3Dnovator+77.84 485.48 5784.47 7188.51 491.08 8773.49 1593.18 993.78 1880.79 1076.66 17893.37 5760.40 18396.75 2277.20 10893.73 6395.29 2
DPM-MVS84.93 6884.29 7286.84 5090.20 10473.04 2287.12 16093.04 3869.80 19382.85 8891.22 9873.06 4196.02 4876.72 11594.63 4991.46 137
EI-MVSNet-Vis-set84.19 7183.81 7385.31 7788.18 17167.85 13587.66 14789.73 16080.05 1682.95 8589.59 13770.74 6094.82 10080.66 8184.72 16193.28 77
nrg03083.88 7283.53 7484.96 8886.77 21069.28 10490.46 6592.67 6074.79 10482.95 8591.33 9672.70 4393.09 17480.79 8079.28 22792.50 103
MG-MVS83.41 8083.45 7583.28 14592.74 6662.28 23788.17 13489.50 16575.22 9781.49 10492.74 7366.75 9395.11 8572.85 14891.58 8192.45 106
EI-MVSNet-UG-set83.81 7383.38 7685.09 8487.87 18067.53 14187.44 15389.66 16279.74 1882.23 9489.41 14670.24 6494.74 10379.95 8583.92 16992.99 90
CPTT-MVS83.73 7483.33 7784.92 9193.28 5070.86 7292.09 3290.38 13968.75 21979.57 12292.83 7060.60 17993.04 17880.92 7791.56 8290.86 154
HQP_MVS83.64 7683.14 7885.14 8290.08 10768.71 11791.25 4692.44 6879.12 2378.92 13091.00 10760.42 18195.38 7578.71 9186.32 14691.33 139
Effi-MVS+83.62 7783.08 7985.24 8088.38 16667.45 14288.89 10389.15 17875.50 9182.27 9388.28 17269.61 7194.45 11077.81 10287.84 12393.84 51
MVS_Test83.15 8483.06 8083.41 14286.86 20663.21 22386.11 19192.00 9074.31 11482.87 8789.44 14570.03 6593.21 16477.39 10788.50 11993.81 53
EPP-MVSNet83.40 8183.02 8184.57 10090.13 10564.47 19692.32 2690.73 13174.45 11379.35 12591.10 10169.05 7895.12 8472.78 14987.22 13394.13 34
OPM-MVS83.50 7882.95 8285.14 8288.79 15170.95 6889.13 9791.52 10977.55 4280.96 11291.75 8360.71 17594.50 10979.67 8786.51 14489.97 194
EPNet83.72 7582.92 8386.14 6684.22 24569.48 9991.05 5185.27 25081.30 776.83 17391.65 8566.09 10295.56 6176.00 12093.85 6293.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 8482.81 8484.18 11689.94 11063.30 22191.59 3988.46 20279.04 2579.49 12392.16 7665.10 11294.28 11367.71 18991.86 7994.95 5
EIA-MVS83.31 8382.80 8584.82 9489.59 11565.59 17488.21 13292.68 5974.66 10878.96 12886.42 22869.06 7795.26 8075.54 12590.09 10093.62 65
Vis-MVSNetpermissive83.46 7982.80 8585.43 7690.25 10368.74 11590.30 6990.13 14976.33 7780.87 11392.89 6861.00 17294.20 11972.45 15290.97 8893.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 10082.42 8781.04 21288.80 15058.34 27588.26 13193.49 2476.93 5978.47 14091.04 10469.92 6892.34 19769.87 17384.97 15892.44 107
VNet82.21 9782.41 8881.62 19490.82 9360.93 25184.47 22989.78 15776.36 7684.07 7291.88 8264.71 11790.26 24870.68 16388.89 11193.66 58
PAPM_NR83.02 8882.41 8884.82 9492.47 7266.37 16087.93 14291.80 10073.82 12677.32 16390.66 11267.90 8494.90 9670.37 16689.48 10793.19 82
VDD-MVS83.01 8982.36 9084.96 8891.02 8966.40 15988.91 10288.11 20577.57 3984.39 6793.29 5952.19 23893.91 13477.05 11088.70 11594.57 21
3Dnovator76.31 583.38 8282.31 9186.59 5787.94 17972.94 2790.64 5792.14 8477.21 5075.47 20392.83 7058.56 19094.72 10473.24 14592.71 7192.13 119
hse-mvs383.15 8482.19 9286.02 7090.56 9770.85 7388.15 13689.16 17776.02 8284.67 5991.39 9561.54 15895.50 6582.71 6375.48 27091.72 129
MVS_111021_LR82.61 9482.11 9384.11 11788.82 14871.58 5685.15 21386.16 24274.69 10780.47 11791.04 10462.29 14790.55 24680.33 8390.08 10190.20 177
DP-MVS Recon83.11 8782.09 9486.15 6594.44 1970.92 7188.79 10792.20 8170.53 18079.17 12691.03 10664.12 12096.03 4768.39 18690.14 9991.50 134
test_part182.78 9182.08 9584.89 9290.66 9566.97 15390.96 5292.93 5077.19 5180.53 11690.04 12563.44 12595.39 7476.04 11976.90 24792.31 110
MVSFormer82.85 9082.05 9685.24 8087.35 19570.21 8390.50 6190.38 13968.55 22281.32 10589.47 14061.68 15593.46 15778.98 8990.26 9792.05 121
FC-MVSNet-test81.52 11282.02 9780.03 22988.42 16555.97 31187.95 14093.42 2977.10 5577.38 16190.98 10969.96 6691.79 21568.46 18584.50 16392.33 108
HQP-MVS82.61 9482.02 9784.37 10789.33 12666.98 15189.17 9292.19 8276.41 7177.23 16690.23 12060.17 18495.11 8577.47 10585.99 15291.03 148
OMC-MVS82.69 9281.97 9984.85 9388.75 15367.42 14387.98 13890.87 12974.92 10379.72 12191.65 8562.19 15093.96 12775.26 12786.42 14593.16 83
diffmvs82.10 9881.88 10082.76 17583.00 27163.78 20983.68 24589.76 15872.94 14382.02 9689.85 12965.96 10690.79 24282.38 6987.30 13293.71 57
PVSNet_Blended_VisFu82.62 9381.83 10184.96 8890.80 9469.76 9388.74 11191.70 10569.39 20078.96 12888.46 16765.47 10994.87 9974.42 13088.57 11690.24 176
CLD-MVS82.31 9681.65 10284.29 11388.47 16267.73 13885.81 20192.35 7375.78 8578.33 14386.58 22364.01 12194.35 11176.05 11887.48 13090.79 155
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10381.54 10382.92 16488.46 16363.46 21787.13 15992.37 7280.19 1478.38 14189.14 14871.66 5393.05 17670.05 16976.46 25592.25 113
PS-MVSNAJss82.07 10081.31 10484.34 11086.51 21367.27 14789.27 9091.51 11071.75 15779.37 12490.22 12163.15 13394.27 11477.69 10382.36 19291.49 135
LPG-MVS_test82.08 9981.27 10584.50 10289.23 13468.76 11390.22 7191.94 9475.37 9476.64 17991.51 9054.29 22194.91 9478.44 9583.78 17089.83 199
LFMVS81.82 10581.23 10683.57 13791.89 7963.43 21989.84 7781.85 29677.04 5783.21 8193.10 6252.26 23793.43 15971.98 15389.95 10393.85 49
API-MVS81.99 10281.23 10684.26 11490.94 9070.18 8891.10 5089.32 16971.51 16378.66 13588.28 17265.26 11095.10 8864.74 21791.23 8787.51 258
UniMVSNet (Re)81.60 11181.11 10883.09 15588.38 16664.41 19887.60 14893.02 4178.42 3178.56 13788.16 17669.78 6993.26 16369.58 17676.49 25491.60 130
xiu_mvs_v2_base81.69 10881.05 10983.60 13589.15 13768.03 13384.46 23190.02 15170.67 17781.30 10886.53 22663.17 13294.19 12075.60 12488.54 11788.57 238
PS-MVSNAJ81.69 10881.02 11083.70 13489.51 11968.21 13084.28 23790.09 15070.79 17481.26 10985.62 24463.15 13394.29 11275.62 12388.87 11288.59 237
GeoE81.71 10781.01 11183.80 13389.51 11964.45 19788.97 10088.73 19771.27 16678.63 13689.76 13166.32 9993.20 16669.89 17286.02 15193.74 56
hse-mvs281.72 10680.94 11284.07 12088.72 15467.68 13985.87 19787.26 22676.02 8284.67 5988.22 17561.54 15893.48 15582.71 6373.44 29791.06 146
PAPR81.66 11080.89 11383.99 12890.27 10264.00 20486.76 17491.77 10468.84 21877.13 17189.50 13867.63 8694.88 9867.55 19188.52 11893.09 84
MAR-MVS81.84 10480.70 11485.27 7991.32 8571.53 5789.82 7890.92 12769.77 19478.50 13886.21 23262.36 14694.52 10865.36 21192.05 7589.77 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 11280.67 11584.05 12290.44 10064.13 20389.73 8385.91 24571.11 16883.18 8293.48 5450.54 26193.49 15473.40 14288.25 12194.54 22
ACMP74.13 681.51 11480.57 11684.36 10889.42 12268.69 12089.97 7691.50 11374.46 11275.04 22190.41 11753.82 22694.54 10677.56 10482.91 18489.86 198
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 13480.55 11780.76 21788.07 17560.80 25486.86 16891.58 10875.67 8980.24 11889.45 14463.34 12790.25 24970.51 16579.22 22891.23 142
DU-MVS81.12 11980.52 11882.90 16587.80 18363.46 21787.02 16391.87 9879.01 2678.38 14189.07 15165.02 11393.05 17670.05 16976.46 25592.20 115
test_yl81.17 11780.47 11983.24 14889.13 13863.62 21086.21 18889.95 15372.43 14881.78 10189.61 13557.50 19993.58 14870.75 16186.90 13792.52 101
DCV-MVSNet81.17 11780.47 11983.24 14889.13 13863.62 21086.21 18889.95 15372.43 14881.78 10189.61 13557.50 19993.58 14870.75 16186.90 13792.52 101
PVSNet_Blended80.98 12080.34 12182.90 16588.85 14565.40 17784.43 23392.00 9067.62 22878.11 14885.05 25766.02 10494.27 11471.52 15589.50 10689.01 221
TranMVSNet+NR-MVSNet80.84 12380.31 12282.42 18087.85 18162.33 23587.74 14691.33 11680.55 1177.99 15189.86 12865.23 11192.62 18667.05 19975.24 28092.30 111
jason81.39 11580.29 12384.70 9886.63 21269.90 9085.95 19486.77 23363.24 27681.07 11189.47 14061.08 17192.15 20478.33 9890.07 10292.05 121
jason: jason.
lupinMVS81.39 11580.27 12484.76 9787.35 19570.21 8385.55 20686.41 23762.85 28381.32 10588.61 16261.68 15592.24 20178.41 9790.26 9791.83 125
PVSNet_BlendedMVS80.60 13480.02 12582.36 18288.85 14565.40 17786.16 19092.00 9069.34 20278.11 14886.09 23566.02 10494.27 11471.52 15582.06 19487.39 260
EI-MVSNet80.52 13779.98 12682.12 18384.28 24363.19 22586.41 18288.95 18874.18 11978.69 13387.54 19166.62 9492.43 19272.57 15180.57 21190.74 158
Fast-Effi-MVS+80.81 12679.92 12783.47 13888.85 14564.51 19385.53 20889.39 16770.79 17478.49 13985.06 25667.54 8793.58 14867.03 20086.58 14292.32 109
CANet_DTU80.61 13379.87 12882.83 16785.60 22463.17 22687.36 15488.65 19876.37 7575.88 19788.44 16853.51 22893.07 17573.30 14389.74 10592.25 113
ACMM73.20 880.78 13179.84 12983.58 13689.31 13168.37 12589.99 7591.60 10770.28 18477.25 16489.66 13353.37 22993.53 15374.24 13382.85 18588.85 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
112180.84 12379.77 13084.05 12293.11 5570.78 7484.66 22385.42 24957.37 32681.76 10392.02 7863.41 12694.12 12367.28 19492.93 6787.26 265
XVG-OURS-SEG-HR80.81 12679.76 13183.96 13085.60 22468.78 11283.54 25190.50 13670.66 17876.71 17791.66 8460.69 17691.26 22976.94 11281.58 19991.83 125
xiu_mvs_v1_base_debu80.80 12879.72 13284.03 12587.35 19570.19 8585.56 20388.77 19269.06 21181.83 9788.16 17650.91 25592.85 18278.29 9987.56 12789.06 216
xiu_mvs_v1_base80.80 12879.72 13284.03 12587.35 19570.19 8585.56 20388.77 19269.06 21181.83 9788.16 17650.91 25592.85 18278.29 9987.56 12789.06 216
xiu_mvs_v1_base_debi80.80 12879.72 13284.03 12587.35 19570.19 8585.56 20388.77 19269.06 21181.83 9788.16 17650.91 25592.85 18278.29 9987.56 12789.06 216
UGNet80.83 12579.59 13584.54 10188.04 17668.09 13189.42 8788.16 20476.95 5876.22 18889.46 14249.30 27593.94 13068.48 18490.31 9591.60 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 13279.51 13684.20 11594.09 3667.27 14789.64 8591.11 12458.75 31774.08 23190.72 11158.10 19295.04 9069.70 17489.42 10890.30 174
QAPM80.88 12179.50 13785.03 8588.01 17868.97 10991.59 3992.00 9066.63 24075.15 21792.16 7657.70 19695.45 6863.52 22188.76 11490.66 160
AdaColmapbinary80.58 13679.42 13884.06 12193.09 5668.91 11089.36 8888.97 18769.27 20375.70 20089.69 13257.20 20495.77 5663.06 22788.41 12087.50 259
mvs-test180.88 12179.40 13985.29 7885.13 23369.75 9489.28 8988.10 20674.99 10176.44 18486.72 21257.27 20294.26 11873.53 13883.18 18191.87 124
NR-MVSNet80.23 14279.38 14082.78 17387.80 18363.34 22086.31 18591.09 12579.01 2672.17 24989.07 15167.20 9192.81 18566.08 20675.65 26692.20 115
IterMVS-LS80.06 14579.38 14082.11 18485.89 21963.20 22486.79 17189.34 16874.19 11875.45 20686.72 21266.62 9492.39 19472.58 15076.86 24990.75 157
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_djsdf80.30 14179.32 14283.27 14683.98 25065.37 18090.50 6190.38 13968.55 22276.19 18988.70 15856.44 20893.46 15778.98 8980.14 21790.97 151
v2v48280.23 14279.29 14383.05 15883.62 25564.14 20287.04 16289.97 15273.61 12978.18 14787.22 20061.10 17093.82 13776.11 11776.78 25291.18 143
XVG-OURS80.41 13879.23 14483.97 12985.64 22369.02 10683.03 25990.39 13871.09 16977.63 15791.49 9254.62 22091.35 22775.71 12183.47 17791.54 132
WR-MVS79.49 15579.22 14580.27 22688.79 15158.35 27485.06 21588.61 20078.56 2977.65 15688.34 17063.81 12490.66 24564.98 21577.22 24391.80 128
mvs_anonymous79.42 15879.11 14680.34 22484.45 24257.97 28182.59 26187.62 21867.40 23176.17 19288.56 16568.47 8089.59 25970.65 16486.05 15093.47 71
v114480.03 14679.03 14783.01 16083.78 25364.51 19387.11 16190.57 13571.96 15578.08 15086.20 23361.41 16293.94 13074.93 12877.23 24290.60 163
v879.97 14879.02 14882.80 17084.09 24764.50 19587.96 13990.29 14674.13 12175.24 21586.81 20962.88 13893.89 13674.39 13175.40 27490.00 190
ab-mvs79.51 15478.97 14981.14 20988.46 16360.91 25283.84 24389.24 17470.36 18279.03 12788.87 15663.23 13190.21 25065.12 21382.57 19092.28 112
Anonymous2024052980.19 14478.89 15084.10 11890.60 9664.75 19088.95 10190.90 12865.97 24880.59 11591.17 10049.97 26693.73 14569.16 18082.70 18993.81 53
PCF-MVS73.52 780.38 13978.84 15185.01 8687.71 18768.99 10883.65 24691.46 11463.00 28077.77 15590.28 11866.10 10195.09 8961.40 24388.22 12290.94 152
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v1079.74 15178.67 15282.97 16384.06 24864.95 18787.88 14490.62 13373.11 13975.11 21886.56 22461.46 16194.05 12673.68 13675.55 26889.90 196
VPNet78.69 17678.66 15378.76 25088.31 16855.72 31384.45 23286.63 23576.79 6378.26 14490.55 11459.30 18689.70 25866.63 20177.05 24590.88 153
BH-untuned79.47 15678.60 15482.05 18689.19 13665.91 16886.07 19288.52 20172.18 15175.42 20787.69 18661.15 16993.54 15260.38 25086.83 13986.70 279
Effi-MVS+-dtu80.03 14678.57 15584.42 10585.13 23368.74 11588.77 10888.10 20674.99 10174.97 22283.49 27657.27 20293.36 16073.53 13880.88 20591.18 143
WR-MVS_H78.51 18078.49 15678.56 25388.02 17756.38 30688.43 11992.67 6077.14 5373.89 23287.55 19066.25 10089.24 26558.92 26373.55 29590.06 188
Vis-MVSNet (Re-imp)78.36 18478.45 15778.07 26188.64 15751.78 33386.70 17579.63 31774.14 12075.11 21890.83 11061.29 16689.75 25658.10 27291.60 8092.69 98
BH-RMVSNet79.61 15278.44 15883.14 15389.38 12565.93 16784.95 21887.15 22873.56 13178.19 14689.79 13056.67 20793.36 16059.53 25786.74 14090.13 180
v119279.59 15378.43 15983.07 15783.55 25764.52 19286.93 16690.58 13470.83 17277.78 15485.90 23659.15 18793.94 13073.96 13577.19 24490.76 156
RRT_MVS79.88 14978.38 16084.38 10685.42 22770.60 7988.71 11388.75 19672.30 15078.83 13289.14 14844.44 30592.18 20378.50 9479.33 22690.35 172
v14419279.47 15678.37 16182.78 17383.35 25963.96 20586.96 16490.36 14269.99 18877.50 15885.67 24260.66 17793.77 14174.27 13276.58 25390.62 161
CP-MVSNet78.22 18678.34 16277.84 26387.83 18254.54 31887.94 14191.17 12277.65 3673.48 23488.49 16662.24 14988.43 27862.19 23474.07 28890.55 165
Baseline_NR-MVSNet78.15 19078.33 16377.61 26885.79 22056.21 30986.78 17285.76 24673.60 13077.93 15287.57 18965.02 11388.99 26967.14 19875.33 27687.63 254
OpenMVScopyleft72.83 1079.77 15078.33 16384.09 11985.17 23069.91 8990.57 5990.97 12666.70 23672.17 24991.91 8054.70 21893.96 12761.81 24090.95 8988.41 242
UniMVSNet_ETH3D79.10 16778.24 16581.70 19386.85 20760.24 26187.28 15788.79 19174.25 11776.84 17290.53 11549.48 27291.56 22167.98 18782.15 19393.29 76
V4279.38 16178.24 16582.83 16781.10 30665.50 17685.55 20689.82 15671.57 16278.21 14586.12 23460.66 17793.18 16975.64 12275.46 27289.81 201
PS-CasMVS78.01 19578.09 16777.77 26587.71 18754.39 32088.02 13791.22 11977.50 4473.26 23688.64 16160.73 17488.41 27961.88 23873.88 29290.53 166
v192192079.22 16378.03 16882.80 17083.30 26163.94 20686.80 17090.33 14369.91 19177.48 15985.53 24558.44 19193.75 14373.60 13776.85 25090.71 159
jajsoiax79.29 16277.96 16983.27 14684.68 23966.57 15889.25 9190.16 14869.20 20775.46 20589.49 13945.75 29993.13 17276.84 11380.80 20790.11 182
TAPA-MVS73.13 979.15 16577.94 17082.79 17289.59 11562.99 23088.16 13591.51 11065.77 24977.14 17091.09 10260.91 17393.21 16450.26 31287.05 13592.17 117
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 15977.91 17183.90 13288.10 17463.84 20788.37 12684.05 26671.45 16476.78 17589.12 15049.93 26994.89 9770.18 16883.18 18192.96 91
cl_fuxian78.75 17477.91 17181.26 20582.89 27561.56 24684.09 24189.13 18069.97 18975.56 20184.29 26466.36 9892.09 20673.47 14175.48 27090.12 181
MVSTER79.01 16977.88 17382.38 18183.07 26864.80 18984.08 24288.95 18869.01 21478.69 13387.17 20354.70 21892.43 19274.69 12980.57 21189.89 197
X-MVStestdata80.37 14077.83 17488.00 1394.42 2073.33 1892.78 1592.99 4479.14 2183.67 7812.47 36267.45 8896.60 3183.06 5594.50 5294.07 37
v14878.72 17577.80 17581.47 19882.73 27861.96 24186.30 18688.08 20873.26 13876.18 19085.47 24762.46 14492.36 19671.92 15473.82 29390.09 184
v124078.99 17077.78 17682.64 17683.21 26363.54 21486.62 17790.30 14569.74 19777.33 16285.68 24157.04 20593.76 14273.13 14676.92 24690.62 161
mvs_tets79.13 16677.77 17783.22 15084.70 23866.37 16089.17 9290.19 14769.38 20175.40 20889.46 14244.17 30793.15 17076.78 11480.70 20990.14 179
miper_ehance_all_eth78.59 17977.76 17881.08 21182.66 28061.56 24683.65 24689.15 17868.87 21775.55 20283.79 27266.49 9692.03 20773.25 14476.39 25789.64 205
thisisatest053079.40 15977.76 17884.31 11187.69 18965.10 18687.36 15484.26 26470.04 18777.42 16088.26 17449.94 26794.79 10270.20 16784.70 16293.03 87
CDS-MVSNet79.07 16877.70 18083.17 15287.60 19068.23 12984.40 23586.20 24167.49 23076.36 18586.54 22561.54 15890.79 24261.86 23987.33 13190.49 167
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 17177.69 18182.81 16990.54 9864.29 20090.11 7391.51 11065.01 25976.16 19388.13 18150.56 26093.03 17969.68 17577.56 24091.11 145
PEN-MVS77.73 20077.69 18177.84 26387.07 20553.91 32387.91 14391.18 12177.56 4173.14 23888.82 15761.23 16789.17 26659.95 25372.37 30390.43 169
AUN-MVS79.21 16477.60 18384.05 12288.71 15567.61 14085.84 19987.26 22669.08 21077.23 16688.14 18053.20 23193.47 15675.50 12673.45 29691.06 146
v7n78.97 17177.58 18483.14 15383.45 25865.51 17588.32 12791.21 12073.69 12872.41 24686.32 23157.93 19393.81 13869.18 17975.65 26690.11 182
TAMVS78.89 17377.51 18583.03 15987.80 18367.79 13784.72 22285.05 25367.63 22776.75 17687.70 18562.25 14890.82 24158.53 26887.13 13490.49 167
RRT_test8_iter0578.38 18377.40 18681.34 20386.00 21858.86 27086.55 18091.26 11872.13 15475.91 19587.42 19444.97 30293.73 14577.02 11175.30 27791.45 138
GBi-Net78.40 18177.40 18681.40 20087.60 19063.01 22788.39 12389.28 17071.63 15975.34 21087.28 19654.80 21491.11 23262.72 22879.57 22090.09 184
test178.40 18177.40 18681.40 20087.60 19063.01 22788.39 12389.28 17071.63 15975.34 21087.28 19654.80 21491.11 23262.72 22879.57 22090.09 184
BH-w/o78.21 18777.33 18980.84 21588.81 14965.13 18584.87 21987.85 21569.75 19574.52 22784.74 26061.34 16493.11 17358.24 27185.84 15484.27 309
FMVSNet278.20 18877.21 19081.20 20787.60 19062.89 23187.47 15289.02 18371.63 15975.29 21487.28 19654.80 21491.10 23562.38 23279.38 22489.61 206
anonymousdsp78.60 17877.15 19182.98 16280.51 31267.08 14987.24 15889.53 16465.66 25175.16 21687.19 20252.52 23292.25 20077.17 10979.34 22589.61 206
HY-MVS69.67 1277.95 19677.15 19180.36 22387.57 19460.21 26283.37 25387.78 21666.11 24475.37 20987.06 20763.27 12990.48 24761.38 24482.43 19190.40 171
cl-mvsnet278.07 19277.01 19381.23 20682.37 28761.83 24383.55 25087.98 21068.96 21575.06 22083.87 26861.40 16391.88 21473.53 13876.39 25789.98 193
Anonymous20240521178.25 18577.01 19381.99 18891.03 8860.67 25584.77 22183.90 26870.65 17980.00 11991.20 9941.08 32491.43 22565.21 21285.26 15693.85 49
MVS78.19 18976.99 19581.78 19185.66 22266.99 15084.66 22390.47 13755.08 33672.02 25185.27 25063.83 12394.11 12566.10 20589.80 10484.24 310
LCM-MVSNet-Re77.05 21276.94 19677.36 27187.20 20251.60 33480.06 28580.46 30975.20 9867.69 29086.72 21262.48 14388.98 27063.44 22389.25 10991.51 133
miper_enhance_ethall77.87 19976.86 19780.92 21481.65 29461.38 24882.68 26088.98 18565.52 25375.47 20382.30 29065.76 10892.00 20972.95 14776.39 25789.39 210
FMVSNet377.88 19876.85 19880.97 21386.84 20862.36 23486.52 18188.77 19271.13 16775.34 21086.66 21954.07 22491.10 23562.72 22879.57 22089.45 209
DTE-MVSNet76.99 21376.80 19977.54 27086.24 21553.06 33087.52 15090.66 13277.08 5672.50 24488.67 16060.48 18089.52 26057.33 27970.74 31490.05 189
CNLPA78.08 19176.79 20081.97 18990.40 10171.07 6487.59 14984.55 25866.03 24772.38 24789.64 13457.56 19886.04 29759.61 25683.35 17888.79 232
cl-mvsnet____77.72 20176.76 20180.58 21982.49 28460.48 25883.09 25687.87 21369.22 20574.38 22985.22 25262.10 15191.53 22271.09 15975.41 27389.73 204
cl-mvsnet177.72 20176.76 20180.58 21982.48 28560.48 25883.09 25687.86 21469.22 20574.38 22985.24 25162.10 15191.53 22271.09 15975.40 27489.74 203
baseline176.98 21476.75 20377.66 26688.13 17255.66 31485.12 21481.89 29473.04 14176.79 17488.90 15462.43 14587.78 28663.30 22571.18 31289.55 208
eth_miper_zixun_eth77.92 19776.69 20481.61 19683.00 27161.98 24083.15 25589.20 17669.52 19974.86 22484.35 26361.76 15492.56 18971.50 15772.89 30190.28 175
pm-mvs177.25 21076.68 20578.93 24884.22 24558.62 27386.41 18288.36 20371.37 16573.31 23588.01 18261.22 16889.15 26764.24 21973.01 30089.03 220
ET-MVSNet_ETH3D78.63 17776.63 20684.64 9986.73 21169.47 10085.01 21684.61 25769.54 19866.51 30686.59 22150.16 26491.75 21676.26 11684.24 16792.69 98
Fast-Effi-MVS+-dtu78.02 19476.49 20782.62 17783.16 26766.96 15486.94 16587.45 22372.45 14571.49 25684.17 26554.79 21791.58 22067.61 19080.31 21489.30 212
1112_ss77.40 20876.43 20880.32 22589.11 14260.41 26083.65 24687.72 21762.13 29173.05 23986.72 21262.58 14289.97 25362.11 23780.80 20790.59 164
PAPM77.68 20376.40 20981.51 19787.29 20161.85 24283.78 24489.59 16364.74 26171.23 25788.70 15862.59 14193.66 14752.66 29987.03 13689.01 221
PLCcopyleft70.83 1178.05 19376.37 21083.08 15691.88 8067.80 13688.19 13389.46 16664.33 26769.87 27588.38 16953.66 22793.58 14858.86 26482.73 18787.86 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 20676.18 21181.20 20788.24 17063.24 22284.61 22786.40 23867.55 22977.81 15386.48 22754.10 22393.15 17057.75 27582.72 18887.20 266
FMVSNet177.44 20676.12 21281.40 20086.81 20963.01 22788.39 12389.28 17070.49 18174.39 22887.28 19649.06 27891.11 23260.91 24778.52 23090.09 184
CHOSEN 1792x268877.63 20475.69 21383.44 13989.98 10968.58 12378.70 30087.50 22156.38 33175.80 19986.84 20858.67 18991.40 22661.58 24285.75 15590.34 173
WTY-MVS75.65 23375.68 21475.57 28786.40 21456.82 29777.92 30882.40 29065.10 25676.18 19087.72 18463.13 13680.90 32560.31 25181.96 19589.00 223
XXY-MVS75.41 23775.56 21574.96 29383.59 25657.82 28580.59 28183.87 26966.54 24174.93 22388.31 17163.24 13080.09 32862.16 23576.85 25086.97 273
thres100view90076.50 22075.55 21679.33 24289.52 11856.99 29585.83 20083.23 28073.94 12376.32 18687.12 20451.89 24691.95 21048.33 32083.75 17289.07 214
bset_n11_16_dypcd77.12 21175.47 21782.06 18581.12 30565.99 16581.37 27583.20 28269.94 19076.09 19483.38 27847.75 28392.26 19978.51 9377.91 23687.95 246
thres600view776.50 22075.44 21879.68 23689.40 12357.16 29285.53 20883.23 28073.79 12776.26 18787.09 20551.89 24691.89 21348.05 32583.72 17590.00 190
Test_1112_low_res76.40 22475.44 21879.27 24389.28 13258.09 27781.69 27087.07 22959.53 31072.48 24586.67 21861.30 16589.33 26360.81 24980.15 21690.41 170
HyFIR lowres test77.53 20575.40 22083.94 13189.59 11566.62 15680.36 28288.64 19956.29 33276.45 18185.17 25357.64 19793.28 16261.34 24583.10 18391.91 123
thisisatest051577.33 20975.38 22183.18 15185.27 22963.80 20882.11 26683.27 27965.06 25775.91 19583.84 27049.54 27194.27 11467.24 19686.19 14891.48 136
tfpn200view976.42 22375.37 22279.55 24189.13 13857.65 28785.17 21183.60 27173.41 13676.45 18186.39 22952.12 23991.95 21048.33 32083.75 17289.07 214
thres40076.50 22075.37 22279.86 23289.13 13857.65 28785.17 21183.60 27173.41 13676.45 18186.39 22952.12 23991.95 21048.33 32083.75 17290.00 190
131476.53 21975.30 22480.21 22783.93 25162.32 23684.66 22388.81 19060.23 30370.16 26984.07 26755.30 21290.73 24467.37 19383.21 18087.59 257
GA-MVS76.87 21675.17 22581.97 18982.75 27762.58 23281.44 27486.35 24072.16 15374.74 22582.89 28246.20 29492.02 20868.85 18381.09 20391.30 141
EPNet_dtu75.46 23574.86 22677.23 27582.57 28254.60 31786.89 16783.09 28471.64 15866.25 30885.86 23855.99 20988.04 28354.92 29086.55 14389.05 219
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 21574.82 22783.37 14390.45 9967.36 14689.15 9686.94 23161.87 29369.52 27890.61 11351.71 24994.53 10746.38 33286.71 14188.21 244
cascas76.72 21874.64 22882.99 16185.78 22165.88 16982.33 26489.21 17560.85 29972.74 24181.02 30147.28 28693.75 14367.48 19285.02 15789.34 211
DP-MVS76.78 21774.57 22983.42 14093.29 4969.46 10288.55 11883.70 27063.98 27370.20 26688.89 15554.01 22594.80 10146.66 32981.88 19786.01 291
TransMVSNet (Re)75.39 23874.56 23077.86 26285.50 22657.10 29486.78 17286.09 24472.17 15271.53 25587.34 19563.01 13789.31 26456.84 28361.83 33687.17 267
LTVRE_ROB69.57 1376.25 22674.54 23181.41 19988.60 15864.38 19979.24 29389.12 18170.76 17669.79 27787.86 18349.09 27793.20 16656.21 28780.16 21586.65 280
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 23474.47 23278.82 24987.78 18657.85 28483.07 25883.51 27472.44 14775.84 19884.42 26252.08 24191.75 21647.41 32783.64 17686.86 275
MVP-Stereo76.12 22774.46 23381.13 21085.37 22869.79 9284.42 23487.95 21165.03 25867.46 29285.33 24953.28 23091.73 21858.01 27383.27 17981.85 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP76.38 22574.33 23482.50 17989.28 13266.95 15588.41 12289.03 18264.05 27166.83 30088.61 16246.78 28992.89 18157.48 27678.55 22987.67 253
XVG-ACMP-BASELINE76.11 22874.27 23581.62 19483.20 26464.67 19183.60 24989.75 15969.75 19571.85 25287.09 20532.78 34692.11 20569.99 17180.43 21388.09 245
ACMH+68.96 1476.01 22974.01 23682.03 18788.60 15865.31 18188.86 10487.55 21970.25 18567.75 28987.47 19341.27 32293.19 16858.37 26975.94 26387.60 255
ACMH67.68 1675.89 23073.93 23781.77 19288.71 15566.61 15788.62 11589.01 18469.81 19266.78 30186.70 21741.95 32191.51 22455.64 28878.14 23587.17 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 23973.90 23879.27 24382.65 28158.27 27680.80 27682.73 28861.57 29475.33 21383.13 28055.52 21091.07 23864.98 21578.34 23488.45 240
IterMVS-SCA-FT75.43 23673.87 23980.11 22882.69 27964.85 18881.57 27283.47 27669.16 20870.49 26384.15 26651.95 24488.15 28169.23 17872.14 30687.34 262
baseline275.70 23273.83 24081.30 20483.26 26261.79 24482.57 26280.65 30566.81 23366.88 29883.42 27757.86 19592.19 20263.47 22279.57 22089.91 195
sss73.60 25173.64 24173.51 30482.80 27655.01 31676.12 31481.69 29762.47 28874.68 22685.85 23957.32 20178.11 33560.86 24880.93 20487.39 260
pmmvs674.69 24173.39 24278.61 25281.38 30057.48 29086.64 17687.95 21164.99 26070.18 26786.61 22050.43 26289.52 26062.12 23670.18 31688.83 230
IB-MVS68.01 1575.85 23173.36 24383.31 14484.76 23766.03 16383.38 25285.06 25270.21 18669.40 27981.05 30045.76 29894.66 10565.10 21475.49 26989.25 213
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 24073.21 24479.64 23879.81 31962.56 23380.34 28387.35 22464.37 26668.86 28282.66 28646.37 29190.10 25267.91 18881.24 20286.25 284
tfpnnormal74.39 24273.16 24578.08 26086.10 21758.05 27884.65 22687.53 22070.32 18371.22 25885.63 24354.97 21389.86 25443.03 34175.02 28186.32 283
miper_lstm_enhance74.11 24673.11 24677.13 27680.11 31559.62 26572.23 33086.92 23266.76 23570.40 26482.92 28156.93 20682.92 31869.06 18172.63 30288.87 228
IterMVS74.29 24372.94 24778.35 25781.53 29763.49 21681.58 27182.49 28968.06 22669.99 27283.69 27451.66 25085.54 30065.85 20871.64 30986.01 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch73.83 24972.67 24877.30 27383.87 25266.02 16481.82 26784.66 25661.37 29768.61 28582.82 28447.29 28588.21 28059.27 25884.32 16677.68 343
CVMVSNet72.99 26072.58 24974.25 30084.28 24350.85 33986.41 18283.45 27744.56 34773.23 23787.54 19149.38 27385.70 29965.90 20778.44 23286.19 286
test-LLR72.94 26172.43 25074.48 29781.35 30158.04 27978.38 30177.46 32666.66 23769.95 27379.00 31948.06 28179.24 32966.13 20384.83 15986.15 287
OurMVSNet-221017-074.26 24472.42 25179.80 23483.76 25459.59 26685.92 19686.64 23466.39 24266.96 29787.58 18839.46 32891.60 21965.76 20969.27 31888.22 243
SCA74.22 24572.33 25279.91 23184.05 24962.17 23879.96 28779.29 31966.30 24372.38 24780.13 31051.95 24488.60 27659.25 25977.67 23988.96 225
tpmrst72.39 26472.13 25373.18 30880.54 31149.91 34279.91 28879.08 32063.11 27871.69 25479.95 31255.32 21182.77 31965.66 21073.89 29186.87 274
pmmvs474.03 24871.91 25480.39 22281.96 29168.32 12681.45 27382.14 29259.32 31169.87 27585.13 25452.40 23588.13 28260.21 25274.74 28484.73 306
DWT-MVSNet_test73.70 25071.86 25579.21 24582.91 27458.94 26982.34 26382.17 29165.21 25471.05 26078.31 32444.21 30690.17 25163.29 22677.28 24188.53 239
EG-PatchMatch MVS74.04 24771.82 25680.71 21884.92 23667.42 14385.86 19888.08 20866.04 24664.22 32083.85 26935.10 34292.56 18957.44 27780.83 20682.16 328
tpm72.37 26671.71 25774.35 29982.19 28952.00 33179.22 29477.29 32864.56 26372.95 24083.68 27551.35 25183.26 31758.33 27075.80 26487.81 251
CL-MVSNet_2432*160072.37 26671.46 25875.09 29279.49 32553.53 32580.76 27885.01 25469.12 20970.51 26282.05 29457.92 19484.13 31052.27 30066.00 32987.60 255
tpm273.26 25671.46 25878.63 25183.34 26056.71 30080.65 28080.40 31056.63 33073.55 23382.02 29551.80 24891.24 23056.35 28678.42 23387.95 246
RPSCF73.23 25771.46 25878.54 25482.50 28359.85 26382.18 26582.84 28758.96 31471.15 25989.41 14645.48 30184.77 30758.82 26571.83 30891.02 150
PatchmatchNetpermissive73.12 25871.33 26178.49 25683.18 26560.85 25379.63 28978.57 32164.13 26871.73 25379.81 31551.20 25385.97 29857.40 27876.36 26088.66 235
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 25371.27 26279.67 23781.32 30365.19 18375.92 31680.30 31159.92 30672.73 24281.19 29852.50 23386.69 29259.84 25477.71 23787.11 271
SixPastTwentyTwo73.37 25371.26 26379.70 23585.08 23557.89 28385.57 20283.56 27371.03 17065.66 31085.88 23742.10 31992.57 18859.11 26163.34 33588.65 236
MSDG73.36 25570.99 26480.49 22184.51 24165.80 17080.71 27986.13 24365.70 25065.46 31183.74 27344.60 30390.91 24051.13 30576.89 24884.74 305
PatchMatch-RL72.38 26570.90 26576.80 27988.60 15867.38 14579.53 29076.17 33262.75 28569.36 28082.00 29645.51 30084.89 30653.62 29580.58 21078.12 342
MVS_030472.48 26370.89 26677.24 27482.20 28859.68 26484.11 24083.49 27567.10 23266.87 29980.59 30635.00 34387.40 28859.07 26279.58 21984.63 307
PVSNet64.34 1872.08 26870.87 26775.69 28586.21 21656.44 30474.37 32680.73 30462.06 29270.17 26882.23 29242.86 31383.31 31654.77 29184.45 16587.32 263
RPMNet73.51 25270.49 26882.58 17881.32 30365.19 18375.92 31692.27 7657.60 32472.73 24276.45 33552.30 23695.43 7148.14 32477.71 23787.11 271
test_040272.79 26270.44 26979.84 23388.13 17265.99 16585.93 19584.29 26265.57 25267.40 29485.49 24646.92 28892.61 18735.88 35074.38 28780.94 334
COLMAP_ROBcopyleft66.92 1773.01 25970.41 27080.81 21687.13 20465.63 17388.30 12884.19 26562.96 28163.80 32487.69 18638.04 33492.56 18946.66 32974.91 28284.24 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 27070.39 27174.48 29781.35 30158.04 27978.38 30177.46 32660.32 30269.95 27379.00 31936.08 34079.24 32966.13 20384.83 15986.15 287
pmmvs571.55 26970.20 27275.61 28677.83 33156.39 30581.74 26980.89 30157.76 32267.46 29284.49 26149.26 27685.32 30357.08 28175.29 27885.11 302
MDTV_nov1_ep1369.97 27383.18 26553.48 32677.10 31280.18 31460.45 30069.33 28180.44 30748.89 27986.90 29151.60 30378.51 231
MIMVSNet70.69 27569.30 27474.88 29484.52 24056.35 30775.87 31879.42 31864.59 26267.76 28882.41 28841.10 32381.54 32346.64 33181.34 20086.75 278
tpmvs71.09 27269.29 27576.49 28082.04 29056.04 31078.92 29881.37 30064.05 27167.18 29678.28 32549.74 27089.77 25549.67 31572.37 30383.67 315
Patchmtry70.74 27469.16 27675.49 28980.72 30854.07 32274.94 32580.30 31158.34 31870.01 27081.19 29852.50 23386.54 29353.37 29671.09 31385.87 294
TESTMET0.1,169.89 28469.00 27772.55 30979.27 32856.85 29678.38 30174.71 33857.64 32368.09 28777.19 33237.75 33576.70 34063.92 22084.09 16884.10 313
PMMVS69.34 28668.67 27871.35 31675.67 33962.03 23975.17 32073.46 34050.00 34568.68 28379.05 31752.07 24278.13 33461.16 24682.77 18673.90 346
K. test v371.19 27168.51 27979.21 24583.04 27057.78 28684.35 23676.91 33072.90 14462.99 32782.86 28339.27 32991.09 23761.65 24152.66 34888.75 233
USDC70.33 27968.37 28076.21 28280.60 31056.23 30879.19 29586.49 23660.89 29861.29 33185.47 24731.78 34989.47 26253.37 29676.21 26182.94 325
tpm cat170.57 27668.31 28177.35 27282.41 28657.95 28278.08 30580.22 31352.04 34268.54 28677.66 33052.00 24387.84 28551.77 30172.07 30786.25 284
OpenMVS_ROBcopyleft64.09 1970.56 27768.19 28277.65 26780.26 31359.41 26885.01 21682.96 28658.76 31665.43 31282.33 28937.63 33691.23 23145.34 33776.03 26282.32 326
EPMVS69.02 28868.16 28371.59 31279.61 32349.80 34477.40 31066.93 35262.82 28470.01 27079.05 31745.79 29777.86 33756.58 28475.26 27987.13 270
CMPMVSbinary51.72 2170.19 28168.16 28376.28 28173.15 35157.55 28979.47 29183.92 26748.02 34656.48 34584.81 25843.13 31186.42 29562.67 23181.81 19884.89 303
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 27368.09 28579.58 23985.15 23163.62 21084.58 22879.83 31562.31 28960.32 33486.73 21032.02 34788.96 27250.28 31071.57 31086.15 287
gg-mvs-nofinetune69.95 28367.96 28675.94 28383.07 26854.51 31977.23 31170.29 34563.11 27870.32 26562.33 34843.62 30988.69 27553.88 29487.76 12484.62 308
FMVSNet569.50 28567.96 28674.15 30182.97 27355.35 31580.01 28682.12 29362.56 28763.02 32581.53 29736.92 33781.92 32148.42 31974.06 28985.17 301
PatchT68.46 29467.85 28870.29 32080.70 30943.93 35272.47 32974.88 33560.15 30470.55 26176.57 33449.94 26781.59 32250.58 30674.83 28385.34 297
pmmvs-eth3d70.50 27867.83 28978.52 25577.37 33466.18 16281.82 26781.51 29858.90 31563.90 32380.42 30842.69 31486.28 29658.56 26765.30 33183.11 321
Anonymous2023120668.60 29167.80 29071.02 31880.23 31450.75 34078.30 30480.47 30856.79 32966.11 30982.63 28746.35 29278.95 33143.62 34075.70 26583.36 318
Patchmatch-RL test70.24 28067.78 29177.61 26877.43 33359.57 26771.16 33270.33 34462.94 28268.65 28472.77 34250.62 25985.49 30169.58 17666.58 32787.77 252
test0.0.03 168.00 29567.69 29268.90 32577.55 33247.43 34675.70 31972.95 34266.66 23766.56 30282.29 29148.06 28175.87 34444.97 33874.51 28683.41 317
EU-MVSNet68.53 29367.61 29371.31 31778.51 33047.01 34884.47 22984.27 26342.27 34866.44 30784.79 25940.44 32683.76 31258.76 26668.54 32383.17 319
DIV-MVS_2432*160068.81 28967.59 29472.46 31074.29 34545.45 34977.93 30787.00 23063.12 27763.99 32278.99 32142.32 31684.77 30756.55 28564.09 33487.16 269
ppachtmachnet_test70.04 28267.34 29578.14 25979.80 32061.13 24979.19 29580.59 30659.16 31365.27 31379.29 31646.75 29087.29 28949.33 31666.72 32586.00 293
Anonymous2024052168.80 29067.22 29673.55 30374.33 34454.11 32183.18 25485.61 24758.15 31961.68 33080.94 30330.71 35081.27 32457.00 28273.34 29985.28 298
our_test_369.14 28767.00 29775.57 28779.80 32058.80 27177.96 30677.81 32459.55 30962.90 32878.25 32647.43 28483.97 31151.71 30267.58 32483.93 314
test20.0367.45 29766.95 29868.94 32475.48 34144.84 35177.50 30977.67 32566.66 23763.01 32683.80 27147.02 28778.40 33342.53 34368.86 32283.58 316
MIMVSNet168.58 29266.78 29973.98 30280.07 31651.82 33280.77 27784.37 25964.40 26559.75 33782.16 29336.47 33883.63 31442.73 34270.33 31586.48 282
testgi66.67 30266.53 30067.08 33075.62 34041.69 35575.93 31576.50 33166.11 24465.20 31686.59 22135.72 34174.71 34843.71 33973.38 29884.84 304
UnsupCasMVSNet_eth67.33 29865.99 30171.37 31473.48 34851.47 33675.16 32185.19 25165.20 25560.78 33380.93 30542.35 31577.20 33957.12 28053.69 34785.44 296
dp66.80 30065.43 30270.90 31979.74 32248.82 34575.12 32374.77 33659.61 30864.08 32177.23 33142.89 31280.72 32648.86 31866.58 32783.16 320
TinyColmap67.30 29964.81 30374.76 29681.92 29256.68 30180.29 28481.49 29960.33 30156.27 34683.22 27924.77 35387.66 28745.52 33569.47 31779.95 338
CHOSEN 280x42066.51 30364.71 30471.90 31181.45 29863.52 21557.98 35368.95 35153.57 33862.59 32976.70 33346.22 29375.29 34755.25 28979.68 21876.88 345
TDRefinement67.49 29664.34 30576.92 27773.47 34961.07 25084.86 22082.98 28559.77 30758.30 34085.13 25426.06 35287.89 28447.92 32660.59 34081.81 330
PM-MVS66.41 30464.14 30673.20 30773.92 34656.45 30378.97 29764.96 35663.88 27564.72 31780.24 30919.84 35783.44 31566.24 20264.52 33379.71 339
KD-MVS_2432*160066.22 30663.89 30773.21 30575.47 34253.42 32770.76 33584.35 26064.10 26966.52 30478.52 32234.55 34484.98 30450.40 30850.33 35181.23 332
miper_refine_blended66.22 30663.89 30773.21 30575.47 34253.42 32770.76 33584.35 26064.10 26966.52 30478.52 32234.55 34484.98 30450.40 30850.33 35181.23 332
MDA-MVSNet-bldmvs66.68 30163.66 30975.75 28479.28 32760.56 25773.92 32778.35 32264.43 26450.13 35179.87 31444.02 30883.67 31346.10 33356.86 34383.03 323
ADS-MVSNet266.20 30863.33 31074.82 29579.92 31758.75 27267.55 34575.19 33453.37 33965.25 31475.86 33642.32 31680.53 32741.57 34468.91 32085.18 299
Patchmatch-test64.82 31163.24 31169.57 32279.42 32649.82 34363.49 35169.05 35051.98 34359.95 33680.13 31050.91 25570.98 35340.66 34673.57 29487.90 249
MDA-MVSNet_test_wron65.03 30962.92 31271.37 31475.93 33756.73 29869.09 34374.73 33757.28 32754.03 34877.89 32745.88 29574.39 35049.89 31461.55 33782.99 324
YYNet165.03 30962.91 31371.38 31375.85 33856.60 30269.12 34274.66 33957.28 32754.12 34777.87 32845.85 29674.48 34949.95 31361.52 33883.05 322
ADS-MVSNet64.36 31262.88 31468.78 32779.92 31747.17 34767.55 34571.18 34353.37 33965.25 31475.86 33642.32 31673.99 35141.57 34468.91 32085.18 299
JIA-IIPM66.32 30562.82 31576.82 27877.09 33561.72 24565.34 34875.38 33358.04 32164.51 31862.32 34942.05 32086.51 29451.45 30469.22 31982.21 327
LF4IMVS64.02 31362.19 31669.50 32370.90 35353.29 32976.13 31377.18 32952.65 34158.59 33880.98 30223.55 35476.52 34153.06 29866.66 32678.68 341
new-patchmatchnet61.73 31561.73 31761.70 33372.74 35224.50 36569.16 34178.03 32361.40 29556.72 34475.53 33838.42 33276.48 34245.95 33457.67 34284.13 312
UnsupCasMVSNet_bld63.70 31461.53 31870.21 32173.69 34751.39 33772.82 32881.89 29455.63 33457.81 34171.80 34438.67 33178.61 33249.26 31752.21 34980.63 335
PVSNet_057.27 2061.67 31659.27 31968.85 32679.61 32357.44 29168.01 34473.44 34155.93 33358.54 33970.41 34544.58 30477.55 33847.01 32835.91 35471.55 348
MVS-HIRNet59.14 31757.67 32063.57 33281.65 29443.50 35371.73 33165.06 35539.59 35251.43 35057.73 35238.34 33382.58 32039.53 34773.95 29064.62 351
DSMNet-mixed57.77 31956.90 32160.38 33467.70 35535.61 35869.18 34053.97 36032.30 35757.49 34279.88 31340.39 32768.57 35538.78 34872.37 30376.97 344
pmmvs357.79 31854.26 32268.37 32864.02 35756.72 29975.12 32365.17 35440.20 35052.93 34969.86 34620.36 35675.48 34645.45 33655.25 34672.90 347
N_pmnet52.79 32253.26 32351.40 33978.99 3297.68 36869.52 3383.89 36851.63 34457.01 34374.98 33940.83 32565.96 35637.78 34964.67 33280.56 337
FPMVS53.68 32151.64 32459.81 33565.08 35651.03 33869.48 33969.58 34841.46 34940.67 35372.32 34316.46 36070.00 35424.24 35665.42 33058.40 353
new_pmnet50.91 32350.29 32552.78 33868.58 35434.94 36063.71 35056.63 35939.73 35144.95 35265.47 34721.93 35558.48 35734.98 35156.62 34464.92 350
LCM-MVSNet54.25 32049.68 32667.97 32953.73 36045.28 35066.85 34780.78 30335.96 35439.45 35462.23 3508.70 36678.06 33648.24 32351.20 35080.57 336
ANet_high50.57 32446.10 32763.99 33148.67 36339.13 35670.99 33480.85 30261.39 29631.18 35657.70 35317.02 35973.65 35231.22 35215.89 36179.18 340
Gipumacopyleft45.18 32541.86 32855.16 33777.03 33651.52 33532.50 35980.52 30732.46 35627.12 35735.02 3589.52 36575.50 34522.31 35760.21 34138.45 356
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 32640.28 32955.82 33640.82 36542.54 35465.12 34963.99 35734.43 35524.48 35857.12 3543.92 36876.17 34317.10 35955.52 34548.75 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 32738.86 33046.69 34053.84 35916.45 36648.61 35649.92 36137.49 35331.67 35560.97 3518.14 36756.42 35828.42 35330.72 35667.19 349
E-PMN31.77 32830.64 33135.15 34352.87 36127.67 36257.09 35447.86 36224.64 35816.40 36333.05 35911.23 36354.90 35914.46 36118.15 35922.87 358
EMVS30.81 33029.65 33234.27 34450.96 36225.95 36456.58 35546.80 36324.01 35915.53 36430.68 36012.47 36254.43 36012.81 36217.05 36022.43 359
test_method31.52 32929.28 33338.23 34227.03 3676.50 36920.94 36162.21 3584.05 36322.35 36152.50 35513.33 36147.58 36127.04 35534.04 35560.62 352
cdsmvs_eth3d_5k19.96 33226.61 3340.00 3500.00 3710.00 3720.00 36289.26 1730.00 3670.00 36888.61 16261.62 1570.00 3680.00 3660.00 3660.00 364
MVEpermissive26.22 2330.37 33125.89 33543.81 34144.55 36435.46 35928.87 36039.07 36418.20 36018.58 36240.18 3572.68 36947.37 36217.07 36023.78 35848.60 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 33321.40 33610.23 3474.82 36810.11 36734.70 35830.74 3661.48 36423.91 36026.07 36128.42 35113.41 36527.12 35415.35 3627.17 360
wuyk23d16.82 33415.94 33719.46 34658.74 35831.45 36139.22 3573.74 3696.84 3626.04 3652.70 3651.27 37024.29 36410.54 36314.40 3632.63 361
ab-mvs-re7.23 3359.64 3380.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36886.72 2120.00 3730.00 3680.00 3660.00 3660.00 364
test1236.12 3368.11 3390.14 3480.06 3700.09 37071.05 3330.03 3710.04 3660.25 3671.30 3670.05 3710.03 3670.21 3650.01 3650.29 362
testmvs6.04 3378.02 3400.10 3490.08 3690.03 37169.74 3370.04 3700.05 3650.31 3661.68 3660.02 3720.04 3660.24 3640.02 3640.25 363
pcd_1.5k_mvsjas5.26 3387.02 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36863.15 1330.00 3680.00 3660.00 3660.00 364
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS94.38 2572.22 4592.67 6070.98 17187.75 2794.07 4374.01 3596.70 2384.66 3694.84 44
IU-MVS95.30 271.25 5992.95 4966.81 23392.39 588.94 896.63 294.85 10
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4582.45 396.87 1683.77 4896.48 694.88 7
test_241102_TWO94.06 1077.24 4892.78 495.72 681.26 697.44 289.07 696.58 494.26 31
test_241102_ONE95.30 270.98 6594.06 1077.17 5293.10 195.39 982.99 197.27 7
save fliter93.80 3972.35 4290.47 6391.17 12274.31 114
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
test_0728_SECOND87.71 3195.34 171.43 5893.49 794.23 597.49 189.08 496.41 894.21 32
test072695.27 571.25 5993.60 494.11 677.33 4692.81 395.79 380.98 7
GSMVS88.96 225
test_part295.06 772.65 3191.80 10
sam_mvs151.32 25288.96 225
sam_mvs50.01 265
ambc75.24 29173.16 35050.51 34163.05 35287.47 22264.28 31977.81 32917.80 35889.73 25757.88 27460.64 33985.49 295
MTGPAbinary92.02 87
test_post178.90 2995.43 36448.81 28085.44 30259.25 259
test_post5.46 36350.36 26384.24 309
patchmatchnet-post74.00 34051.12 25488.60 276
GG-mvs-BLEND75.38 29081.59 29655.80 31279.32 29269.63 34767.19 29573.67 34143.24 31088.90 27450.41 30784.50 16381.45 331
MTMP92.18 3032.83 365
gm-plane-assit81.40 29953.83 32462.72 28680.94 30392.39 19463.40 224
test9_res84.90 3095.70 2792.87 93
TEST993.26 5172.96 2488.75 10991.89 9668.44 22485.00 5093.10 6274.36 3095.41 72
test_893.13 5372.57 3488.68 11491.84 9968.69 22084.87 5693.10 6274.43 2795.16 83
agg_prior282.91 5995.45 2992.70 96
agg_prior92.85 6171.94 5191.78 10284.41 6594.93 92
TestCases79.58 23985.15 23163.62 21079.83 31562.31 28960.32 33486.73 21032.02 34788.96 27250.28 31071.57 31086.15 287
test_prior472.60 3389.01 99
test_prior288.85 10575.41 9284.91 5293.54 5174.28 3183.31 5095.86 18
test_prior86.33 6092.61 6969.59 9692.97 4795.48 6693.91 45
旧先验286.56 17958.10 32087.04 3188.98 27074.07 134
新几何286.29 187
新几何183.42 14093.13 5370.71 7585.48 24857.43 32581.80 10091.98 7963.28 12892.27 19864.60 21892.99 6687.27 264
旧先验191.96 7765.79 17186.37 23993.08 6669.31 7592.74 7088.74 234
无先验87.48 15188.98 18560.00 30594.12 12367.28 19488.97 224
原ACMM286.86 168
原ACMM184.35 10993.01 5968.79 11192.44 6863.96 27481.09 11091.57 8966.06 10395.45 6867.19 19794.82 4788.81 231
test22291.50 8368.26 12884.16 23883.20 28254.63 33779.74 12091.63 8758.97 18891.42 8386.77 277
testdata291.01 23962.37 233
segment_acmp73.08 40
testdata79.97 23090.90 9164.21 20184.71 25559.27 31285.40 4492.91 6762.02 15389.08 26868.95 18291.37 8486.63 281
testdata184.14 23975.71 86
test1286.80 5292.63 6870.70 7691.79 10182.71 9171.67 5296.16 4494.50 5293.54 69
plane_prior790.08 10768.51 124
plane_prior689.84 11268.70 11960.42 181
plane_prior592.44 6895.38 7578.71 9186.32 14691.33 139
plane_prior491.00 107
plane_prior368.60 12278.44 3078.92 130
plane_prior291.25 4679.12 23
plane_prior189.90 111
plane_prior68.71 11790.38 6777.62 3786.16 149
n20.00 372
nn0.00 372
door-mid69.98 346
lessismore_v078.97 24781.01 30757.15 29365.99 35361.16 33282.82 28439.12 33091.34 22859.67 25546.92 35388.43 241
LGP-MVS_train84.50 10289.23 13468.76 11391.94 9475.37 9476.64 17991.51 9054.29 22194.91 9478.44 9583.78 17089.83 199
test1192.23 79
door69.44 349
HQP5-MVS66.98 151
HQP-NCC89.33 12689.17 9276.41 7177.23 166
ACMP_Plane89.33 12689.17 9276.41 7177.23 166
BP-MVS77.47 105
HQP4-MVS77.24 16595.11 8591.03 148
HQP3-MVS92.19 8285.99 152
HQP2-MVS60.17 184
NP-MVS89.62 11468.32 12690.24 119
MDTV_nov1_ep13_2view37.79 35775.16 32155.10 33566.53 30349.34 27453.98 29387.94 248
ACMMP++_ref81.95 196
ACMMP++81.25 201
Test By Simon64.33 118
ITE_SJBPF78.22 25881.77 29360.57 25683.30 27869.25 20467.54 29187.20 20136.33 33987.28 29054.34 29274.62 28586.80 276
DeepMVS_CXcopyleft27.40 34540.17 36626.90 36324.59 36717.44 36123.95 35948.61 3569.77 36426.48 36318.06 35824.47 35728.83 357