| LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 3 | 98.67 1 | 85.39 34 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 16 | 85.07 54 | 99.27 1 | 99.54 1 |
|
| mamv4 | | | 95.37 2 | 94.51 2 | 97.96 1 | 96.31 10 | 98.41 1 | 91.05 45 | 97.23 2 | 95.32 2 | 99.01 2 | 97.26 5 | 80.16 130 | 98.99 1 | 95.15 1 | 99.14 2 | 96.47 30 |
|
| TDRefinement | | | 93.52 3 | 93.39 4 | 93.88 2 | 95.94 15 | 90.26 4 | 95.70 4 | 96.46 3 | 90.58 9 | 92.86 48 | 96.29 17 | 88.16 33 | 94.17 94 | 86.07 45 | 98.48 18 | 97.22 17 |
|
| LTVRE_ROB | | 86.10 1 | 93.04 4 | 93.44 3 | 91.82 21 | 93.73 61 | 85.72 31 | 96.79 1 | 95.51 10 | 88.86 13 | 95.63 9 | 96.99 9 | 84.81 69 | 93.16 134 | 91.10 2 | 97.53 69 | 96.58 28 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| HPM-MVS_fast | | | 92.50 5 | 92.54 6 | 92.37 6 | 95.93 16 | 85.81 30 | 92.99 12 | 94.23 25 | 85.21 38 | 92.51 56 | 95.13 44 | 90.65 9 | 95.34 54 | 88.06 9 | 98.15 34 | 95.95 41 |
|
| SR-MVS-dyc-post | | | 92.41 6 | 92.41 7 | 92.39 5 | 94.13 52 | 88.95 6 | 92.87 13 | 94.16 30 | 88.75 15 | 93.79 30 | 94.43 68 | 88.83 24 | 95.51 45 | 87.16 29 | 97.60 63 | 92.73 155 |
|
| SR-MVS | | | 92.23 7 | 92.34 8 | 91.91 16 | 94.89 38 | 87.85 9 | 92.51 23 | 93.87 49 | 88.20 20 | 93.24 40 | 94.02 90 | 90.15 16 | 95.67 36 | 86.82 33 | 97.34 73 | 92.19 187 |
|
| HPM-MVS |  | | 92.13 8 | 92.20 10 | 91.91 16 | 95.58 26 | 84.67 43 | 93.51 8 | 94.85 16 | 82.88 62 | 91.77 68 | 93.94 98 | 90.55 12 | 95.73 34 | 88.50 7 | 98.23 28 | 95.33 54 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| APD-MVS_3200maxsize | | | 92.05 9 | 92.24 9 | 91.48 22 | 93.02 77 | 85.17 36 | 92.47 25 | 95.05 15 | 87.65 25 | 93.21 41 | 94.39 73 | 90.09 17 | 95.08 65 | 86.67 35 | 97.60 63 | 94.18 94 |
|
| COLMAP_ROB |  | 83.01 3 | 91.97 10 | 91.95 11 | 92.04 11 | 93.68 62 | 86.15 21 | 93.37 10 | 95.10 14 | 90.28 10 | 92.11 61 | 95.03 46 | 89.75 20 | 94.93 69 | 79.95 111 | 98.27 26 | 95.04 64 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| ACMMP |  | | 91.91 11 | 91.87 16 | 92.03 12 | 95.53 27 | 85.91 25 | 93.35 11 | 94.16 30 | 82.52 65 | 92.39 59 | 94.14 85 | 89.15 23 | 95.62 37 | 87.35 24 | 98.24 27 | 94.56 76 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| mPP-MVS | | | 91.69 12 | 91.47 23 | 92.37 6 | 96.04 13 | 88.48 8 | 92.72 17 | 92.60 99 | 83.09 59 | 91.54 70 | 94.25 79 | 87.67 41 | 95.51 45 | 87.21 28 | 98.11 35 | 93.12 143 |
|
| CP-MVS | | | 91.67 13 | 91.58 20 | 91.96 13 | 95.29 31 | 87.62 10 | 93.38 9 | 93.36 63 | 83.16 58 | 91.06 80 | 94.00 91 | 88.26 30 | 95.71 35 | 87.28 27 | 98.39 21 | 92.55 166 |
|
| XVS | | | 91.54 14 | 91.36 25 | 92.08 9 | 95.64 24 | 86.25 19 | 92.64 18 | 93.33 65 | 85.07 39 | 89.99 98 | 94.03 89 | 86.57 52 | 95.80 26 | 87.35 24 | 97.62 61 | 94.20 91 |
|
| MTAPA | | | 91.52 15 | 91.60 19 | 91.29 27 | 96.59 4 | 86.29 18 | 92.02 30 | 91.81 124 | 84.07 47 | 92.00 64 | 94.40 72 | 86.63 51 | 95.28 57 | 88.59 6 | 98.31 24 | 92.30 180 |
|
| UA-Net | | | 91.49 16 | 91.53 21 | 91.39 24 | 94.98 35 | 82.95 55 | 93.52 7 | 92.79 92 | 88.22 19 | 88.53 129 | 97.64 2 | 83.45 83 | 94.55 82 | 86.02 48 | 98.60 13 | 96.67 25 |
|
| ACMMPR | | | 91.49 16 | 91.35 27 | 91.92 15 | 95.74 20 | 85.88 27 | 92.58 21 | 93.25 71 | 81.99 68 | 91.40 72 | 94.17 84 | 87.51 42 | 95.87 20 | 87.74 13 | 97.76 54 | 93.99 101 |
|
| LPG-MVS_test | | | 91.47 18 | 91.68 17 | 90.82 34 | 94.75 41 | 81.69 60 | 90.00 61 | 94.27 22 | 82.35 66 | 93.67 35 | 94.82 52 | 91.18 4 | 95.52 43 | 85.36 52 | 98.73 7 | 95.23 59 |
|
| region2R | | | 91.44 19 | 91.30 31 | 91.87 18 | 95.75 19 | 85.90 26 | 92.63 20 | 93.30 69 | 81.91 70 | 90.88 86 | 94.21 80 | 87.75 39 | 95.87 20 | 87.60 18 | 97.71 57 | 93.83 110 |
|
| HFP-MVS | | | 91.30 20 | 91.39 24 | 91.02 30 | 95.43 29 | 84.66 44 | 92.58 21 | 93.29 70 | 81.99 68 | 91.47 71 | 93.96 95 | 88.35 29 | 95.56 40 | 87.74 13 | 97.74 56 | 92.85 152 |
|
| ZNCC-MVS | | | 91.26 21 | 91.34 28 | 91.01 31 | 95.73 21 | 83.05 53 | 92.18 28 | 94.22 27 | 80.14 90 | 91.29 76 | 93.97 92 | 87.93 38 | 95.87 20 | 88.65 5 | 97.96 45 | 94.12 98 |
|
| APDe-MVS |  | | 91.22 22 | 91.92 12 | 89.14 63 | 92.97 79 | 78.04 90 | 92.84 15 | 94.14 34 | 83.33 56 | 93.90 26 | 95.73 29 | 88.77 25 | 96.41 3 | 87.60 18 | 97.98 42 | 92.98 149 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| PGM-MVS | | | 91.20 23 | 90.95 40 | 91.93 14 | 95.67 23 | 85.85 28 | 90.00 61 | 93.90 46 | 80.32 87 | 91.74 69 | 94.41 71 | 88.17 32 | 95.98 13 | 86.37 38 | 97.99 40 | 93.96 103 |
|
| SteuartSystems-ACMMP | | | 91.16 24 | 91.36 25 | 90.55 38 | 93.91 57 | 80.97 67 | 91.49 37 | 93.48 61 | 82.82 63 | 92.60 55 | 93.97 92 | 88.19 31 | 96.29 6 | 87.61 17 | 98.20 31 | 94.39 87 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MP-MVS |  | | 91.14 25 | 90.91 41 | 91.83 19 | 96.18 11 | 86.88 14 | 92.20 27 | 93.03 84 | 82.59 64 | 88.52 130 | 94.37 74 | 86.74 50 | 95.41 52 | 86.32 39 | 98.21 29 | 93.19 139 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| GST-MVS | | | 90.96 26 | 91.01 37 | 90.82 34 | 95.45 28 | 82.73 56 | 91.75 35 | 93.74 52 | 80.98 81 | 91.38 73 | 93.80 102 | 87.20 46 | 95.80 26 | 87.10 31 | 97.69 58 | 93.93 104 |
|
| MP-MVS-pluss | | | 90.81 27 | 91.08 34 | 89.99 47 | 95.97 14 | 79.88 72 | 88.13 101 | 94.51 19 | 75.79 142 | 92.94 45 | 94.96 47 | 88.36 28 | 95.01 67 | 90.70 3 | 98.40 20 | 95.09 63 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ACMH+ | | 77.89 11 | 90.73 28 | 91.50 22 | 88.44 75 | 93.00 78 | 76.26 116 | 89.65 74 | 95.55 9 | 87.72 24 | 93.89 28 | 94.94 48 | 91.62 3 | 93.44 125 | 78.35 128 | 98.76 4 | 95.61 48 |
|
| ACMMP_NAP | | | 90.65 29 | 91.07 36 | 89.42 58 | 95.93 16 | 79.54 77 | 89.95 65 | 93.68 56 | 77.65 121 | 91.97 65 | 94.89 49 | 88.38 27 | 95.45 50 | 89.27 4 | 97.87 50 | 93.27 135 |
|
| ACMM | | 79.39 9 | 90.65 29 | 90.99 38 | 89.63 54 | 95.03 34 | 83.53 48 | 89.62 75 | 93.35 64 | 79.20 102 | 93.83 29 | 93.60 110 | 90.81 7 | 92.96 140 | 85.02 56 | 98.45 19 | 92.41 173 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| LS3D | | | 90.60 31 | 90.34 48 | 91.38 25 | 89.03 183 | 84.23 46 | 93.58 6 | 94.68 18 | 90.65 8 | 90.33 92 | 93.95 97 | 84.50 71 | 95.37 53 | 80.87 101 | 95.50 140 | 94.53 79 |
|
| ACMP | | 79.16 10 | 90.54 32 | 90.60 46 | 90.35 42 | 94.36 44 | 80.98 66 | 89.16 85 | 94.05 39 | 79.03 105 | 92.87 47 | 93.74 106 | 90.60 11 | 95.21 60 | 82.87 79 | 98.76 4 | 94.87 67 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| DPE-MVS |  | | 90.53 33 | 91.08 34 | 88.88 66 | 93.38 68 | 78.65 84 | 89.15 86 | 94.05 39 | 84.68 43 | 93.90 26 | 94.11 87 | 88.13 34 | 96.30 5 | 84.51 63 | 97.81 52 | 91.70 203 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SED-MVS | | | 90.46 34 | 91.64 18 | 86.93 96 | 94.18 47 | 72.65 141 | 90.47 54 | 93.69 54 | 83.77 50 | 94.11 24 | 94.27 75 | 90.28 14 | 95.84 24 | 86.03 46 | 97.92 46 | 92.29 181 |
|
| SMA-MVS |  | | 90.31 35 | 90.48 47 | 89.83 51 | 95.31 30 | 79.52 78 | 90.98 46 | 93.24 72 | 75.37 149 | 92.84 49 | 95.28 40 | 85.58 64 | 96.09 8 | 87.92 11 | 97.76 54 | 93.88 107 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| SF-MVS | | | 90.27 36 | 90.80 43 | 88.68 73 | 92.86 83 | 77.09 105 | 91.19 43 | 95.74 7 | 81.38 76 | 92.28 60 | 93.80 102 | 86.89 49 | 94.64 77 | 85.52 51 | 97.51 70 | 94.30 90 |
|
| v7n | | | 90.13 37 | 90.96 39 | 87.65 88 | 91.95 110 | 71.06 169 | 89.99 63 | 93.05 81 | 86.53 29 | 94.29 20 | 96.27 18 | 82.69 90 | 94.08 97 | 86.25 42 | 97.63 60 | 97.82 8 |
|
| PMVS |  | 80.48 6 | 90.08 38 | 90.66 45 | 88.34 78 | 96.71 3 | 92.97 2 | 90.31 58 | 89.57 187 | 88.51 18 | 90.11 94 | 95.12 45 | 90.98 6 | 88.92 250 | 77.55 142 | 97.07 80 | 83.13 342 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| DVP-MVS++ | | | 90.07 39 | 91.09 33 | 87.00 94 | 91.55 127 | 72.64 143 | 96.19 2 | 94.10 37 | 85.33 36 | 93.49 37 | 94.64 60 | 81.12 119 | 95.88 18 | 87.41 22 | 95.94 124 | 92.48 169 |
|
| DVP-MVS |  | | 90.06 40 | 91.32 29 | 86.29 108 | 94.16 50 | 72.56 147 | 90.54 51 | 91.01 145 | 83.61 53 | 93.75 32 | 94.65 57 | 89.76 18 | 95.78 31 | 86.42 36 | 97.97 43 | 90.55 234 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| PS-CasMVS | | | 90.06 40 | 91.92 12 | 84.47 146 | 96.56 6 | 58.83 306 | 89.04 87 | 92.74 94 | 91.40 6 | 96.12 5 | 96.06 25 | 87.23 45 | 95.57 39 | 79.42 119 | 98.74 6 | 99.00 2 |
|
| PEN-MVS | | | 90.03 42 | 91.88 15 | 84.48 145 | 96.57 5 | 58.88 303 | 88.95 88 | 93.19 73 | 91.62 5 | 96.01 7 | 96.16 23 | 87.02 47 | 95.60 38 | 78.69 125 | 98.72 9 | 98.97 3 |
|
| OurMVSNet-221017-0 | | | 90.01 43 | 89.74 54 | 90.83 33 | 93.16 75 | 80.37 69 | 91.91 33 | 93.11 77 | 81.10 79 | 95.32 11 | 97.24 6 | 72.94 210 | 94.85 71 | 85.07 54 | 97.78 53 | 97.26 15 |
|
| DTE-MVSNet | | | 89.98 44 | 91.91 14 | 84.21 156 | 96.51 7 | 57.84 313 | 88.93 89 | 92.84 91 | 91.92 4 | 96.16 4 | 96.23 19 | 86.95 48 | 95.99 12 | 79.05 122 | 98.57 15 | 98.80 6 |
|
| XVG-ACMP-BASELINE | | | 89.98 44 | 89.84 52 | 90.41 40 | 94.91 37 | 84.50 45 | 89.49 80 | 93.98 41 | 79.68 94 | 92.09 62 | 93.89 100 | 83.80 78 | 93.10 137 | 82.67 83 | 98.04 36 | 93.64 122 |
|
| 3Dnovator+ | | 83.92 2 | 89.97 46 | 89.66 55 | 90.92 32 | 91.27 136 | 81.66 63 | 91.25 41 | 94.13 35 | 88.89 12 | 88.83 123 | 94.26 78 | 77.55 152 | 95.86 23 | 84.88 57 | 95.87 128 | 95.24 58 |
|
| WR-MVS_H | | | 89.91 47 | 91.31 30 | 85.71 123 | 96.32 9 | 62.39 257 | 89.54 78 | 93.31 68 | 90.21 11 | 95.57 10 | 95.66 31 | 81.42 116 | 95.90 17 | 80.94 100 | 98.80 3 | 98.84 5 |
|
| OPM-MVS | | | 89.80 48 | 89.97 50 | 89.27 60 | 94.76 40 | 79.86 73 | 86.76 124 | 92.78 93 | 78.78 108 | 92.51 56 | 93.64 109 | 88.13 34 | 93.84 106 | 84.83 60 | 97.55 66 | 94.10 99 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| mvs_tets | | | 89.78 49 | 89.27 61 | 91.30 26 | 93.51 64 | 84.79 41 | 89.89 67 | 90.63 155 | 70.00 221 | 94.55 17 | 96.67 12 | 87.94 37 | 93.59 117 | 84.27 65 | 95.97 120 | 95.52 49 |
|
| anonymousdsp | | | 89.73 50 | 88.88 68 | 92.27 8 | 89.82 169 | 86.67 15 | 90.51 53 | 90.20 172 | 69.87 222 | 95.06 12 | 96.14 24 | 84.28 74 | 93.07 138 | 87.68 15 | 96.34 103 | 97.09 19 |
|
| test_djsdf | | | 89.62 51 | 89.01 65 | 91.45 23 | 92.36 94 | 82.98 54 | 91.98 31 | 90.08 175 | 71.54 202 | 94.28 22 | 96.54 14 | 81.57 114 | 94.27 86 | 86.26 40 | 96.49 97 | 97.09 19 |
|
| XVG-OURS-SEG-HR | | | 89.59 52 | 89.37 59 | 90.28 43 | 94.47 43 | 85.95 24 | 86.84 120 | 93.91 45 | 80.07 91 | 86.75 168 | 93.26 114 | 93.64 2 | 90.93 196 | 84.60 62 | 90.75 265 | 93.97 102 |
|
| APD-MVS |  | | 89.54 53 | 89.63 56 | 89.26 61 | 92.57 88 | 81.34 65 | 90.19 60 | 93.08 80 | 80.87 83 | 91.13 78 | 93.19 115 | 86.22 59 | 95.97 14 | 82.23 89 | 97.18 78 | 90.45 236 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| jajsoiax | | | 89.41 54 | 88.81 71 | 91.19 29 | 93.38 68 | 84.72 42 | 89.70 70 | 90.29 169 | 69.27 225 | 94.39 18 | 96.38 16 | 86.02 62 | 93.52 121 | 83.96 67 | 95.92 126 | 95.34 53 |
|
| CPTT-MVS | | | 89.39 55 | 88.98 67 | 90.63 37 | 95.09 33 | 86.95 13 | 92.09 29 | 92.30 107 | 79.74 93 | 87.50 153 | 92.38 145 | 81.42 116 | 93.28 130 | 83.07 75 | 97.24 76 | 91.67 204 |
|
| ACMH | | 76.49 14 | 89.34 56 | 91.14 32 | 83.96 161 | 92.50 91 | 70.36 175 | 89.55 76 | 93.84 50 | 81.89 71 | 94.70 14 | 95.44 36 | 90.69 8 | 88.31 260 | 83.33 71 | 98.30 25 | 93.20 138 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| testf1 | | | 89.30 57 | 89.12 62 | 89.84 49 | 88.67 194 | 85.64 32 | 90.61 49 | 93.17 74 | 86.02 32 | 93.12 42 | 95.30 38 | 84.94 66 | 89.44 242 | 74.12 180 | 96.10 115 | 94.45 82 |
|
| APD_test2 | | | 89.30 57 | 89.12 62 | 89.84 49 | 88.67 194 | 85.64 32 | 90.61 49 | 93.17 74 | 86.02 32 | 93.12 42 | 95.30 38 | 84.94 66 | 89.44 242 | 74.12 180 | 96.10 115 | 94.45 82 |
|
| CP-MVSNet | | | 89.27 59 | 90.91 41 | 84.37 147 | 96.34 8 | 58.61 309 | 88.66 96 | 92.06 113 | 90.78 7 | 95.67 8 | 95.17 43 | 81.80 112 | 95.54 42 | 79.00 123 | 98.69 10 | 98.95 4 |
|
| XVG-OURS | | | 89.18 60 | 88.83 70 | 90.23 44 | 94.28 45 | 86.11 23 | 85.91 136 | 93.60 59 | 80.16 89 | 89.13 120 | 93.44 112 | 83.82 77 | 90.98 194 | 83.86 69 | 95.30 148 | 93.60 124 |
|
| DeepC-MVS | | 82.31 4 | 89.15 61 | 89.08 64 | 89.37 59 | 93.64 63 | 79.07 80 | 88.54 97 | 94.20 28 | 73.53 168 | 89.71 105 | 94.82 52 | 85.09 65 | 95.77 33 | 84.17 66 | 98.03 38 | 93.26 136 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| UniMVSNet_ETH3D | | | 89.12 62 | 90.72 44 | 84.31 153 | 97.00 2 | 64.33 232 | 89.67 73 | 88.38 201 | 88.84 14 | 94.29 20 | 97.57 3 | 90.48 13 | 91.26 185 | 72.57 204 | 97.65 59 | 97.34 14 |
|
| MSP-MVS | | | 89.08 63 | 88.16 76 | 91.83 19 | 95.76 18 | 86.14 22 | 92.75 16 | 93.90 46 | 78.43 113 | 89.16 118 | 92.25 152 | 72.03 225 | 96.36 4 | 88.21 8 | 90.93 259 | 92.98 149 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| SD-MVS | | | 88.96 64 | 89.88 51 | 86.22 111 | 91.63 121 | 77.07 106 | 89.82 68 | 93.77 51 | 78.90 106 | 92.88 46 | 92.29 150 | 86.11 60 | 90.22 218 | 86.24 43 | 97.24 76 | 91.36 211 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HPM-MVS++ |  | | 88.93 65 | 88.45 74 | 90.38 41 | 94.92 36 | 85.85 28 | 89.70 70 | 91.27 138 | 78.20 115 | 86.69 171 | 92.28 151 | 80.36 128 | 95.06 66 | 86.17 44 | 96.49 97 | 90.22 240 |
|
| test_0402 | | | 88.65 66 | 89.58 58 | 85.88 119 | 92.55 89 | 72.22 155 | 84.01 171 | 89.44 189 | 88.63 17 | 94.38 19 | 95.77 28 | 86.38 58 | 93.59 117 | 79.84 112 | 95.21 150 | 91.82 199 |
|
| DP-MVS | | | 88.60 67 | 89.01 65 | 87.36 90 | 91.30 134 | 77.50 98 | 87.55 108 | 92.97 87 | 87.95 23 | 89.62 109 | 92.87 130 | 84.56 70 | 93.89 103 | 77.65 140 | 96.62 92 | 90.70 228 |
|
| iter_conf05 | | | 88.59 68 | 90.04 49 | 84.23 155 | 92.03 107 | 60.51 285 | 91.36 40 | 95.81 6 | 88.07 21 | 94.56 16 | 96.17 21 | 72.24 219 | 95.79 29 | 84.85 58 | 95.27 149 | 96.38 31 |
|
| APD_test1 | | | 88.40 69 | 87.91 78 | 89.88 48 | 89.50 173 | 86.65 17 | 89.98 64 | 91.91 119 | 84.26 45 | 90.87 87 | 93.92 99 | 82.18 103 | 89.29 246 | 73.75 187 | 94.81 169 | 93.70 118 |
|
| Anonymous20231211 | | | 88.40 69 | 89.62 57 | 84.73 139 | 90.46 155 | 65.27 222 | 88.86 90 | 93.02 85 | 87.15 26 | 93.05 44 | 97.10 7 | 82.28 102 | 92.02 166 | 76.70 152 | 97.99 40 | 96.88 23 |
|
| PS-MVSNAJss | | | 88.31 71 | 87.90 79 | 89.56 56 | 93.31 70 | 77.96 93 | 87.94 104 | 91.97 116 | 70.73 212 | 94.19 23 | 96.67 12 | 76.94 162 | 94.57 80 | 83.07 75 | 96.28 105 | 96.15 33 |
|
| OMC-MVS | | | 88.19 72 | 87.52 83 | 90.19 45 | 91.94 112 | 81.68 62 | 87.49 111 | 93.17 74 | 76.02 136 | 88.64 127 | 91.22 179 | 84.24 75 | 93.37 128 | 77.97 138 | 97.03 81 | 95.52 49 |
|
| CS-MVS | | | 88.14 73 | 87.67 82 | 89.54 57 | 89.56 171 | 79.18 79 | 90.47 54 | 94.77 17 | 79.37 100 | 84.32 220 | 89.33 230 | 83.87 76 | 94.53 83 | 82.45 85 | 94.89 165 | 94.90 65 |
|
| TSAR-MVS + MP. | | | 88.14 73 | 87.82 80 | 89.09 64 | 95.72 22 | 76.74 109 | 92.49 24 | 91.19 141 | 67.85 245 | 86.63 172 | 94.84 51 | 79.58 135 | 95.96 15 | 87.62 16 | 94.50 177 | 94.56 76 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| tt0805 | | | 88.09 75 | 89.79 53 | 82.98 191 | 93.26 72 | 63.94 236 | 91.10 44 | 89.64 184 | 85.07 39 | 90.91 84 | 91.09 184 | 89.16 22 | 91.87 171 | 82.03 90 | 95.87 128 | 93.13 141 |
|
| EC-MVSNet | | | 88.01 76 | 88.32 75 | 87.09 92 | 89.28 178 | 72.03 157 | 90.31 58 | 96.31 4 | 80.88 82 | 85.12 201 | 89.67 226 | 84.47 72 | 95.46 49 | 82.56 84 | 96.26 108 | 93.77 116 |
|
| RPSCF | | | 88.00 77 | 86.93 95 | 91.22 28 | 90.08 162 | 89.30 5 | 89.68 72 | 91.11 142 | 79.26 101 | 89.68 106 | 94.81 55 | 82.44 94 | 87.74 264 | 76.54 154 | 88.74 290 | 96.61 27 |
|
| AllTest | | | 87.97 78 | 87.40 87 | 89.68 52 | 91.59 122 | 83.40 49 | 89.50 79 | 95.44 11 | 79.47 96 | 88.00 145 | 93.03 122 | 82.66 91 | 91.47 178 | 70.81 213 | 96.14 112 | 94.16 95 |
|
| TranMVSNet+NR-MVSNet | | | 87.86 79 | 88.76 72 | 85.18 131 | 94.02 55 | 64.13 233 | 84.38 165 | 91.29 137 | 84.88 42 | 92.06 63 | 93.84 101 | 86.45 55 | 93.73 108 | 73.22 195 | 98.66 11 | 97.69 9 |
|
| nrg030 | | | 87.85 80 | 88.49 73 | 85.91 117 | 90.07 164 | 69.73 179 | 87.86 105 | 94.20 28 | 74.04 160 | 92.70 54 | 94.66 56 | 85.88 63 | 91.50 177 | 79.72 114 | 97.32 74 | 96.50 29 |
|
| CNVR-MVS | | | 87.81 81 | 87.68 81 | 88.21 80 | 92.87 81 | 77.30 104 | 85.25 148 | 91.23 139 | 77.31 126 | 87.07 162 | 91.47 173 | 82.94 88 | 94.71 74 | 84.67 61 | 96.27 107 | 92.62 162 |
|
| HQP_MVS | | | 87.75 82 | 87.43 86 | 88.70 72 | 93.45 65 | 76.42 113 | 89.45 81 | 93.61 57 | 79.44 98 | 86.55 173 | 92.95 127 | 74.84 183 | 95.22 58 | 80.78 103 | 95.83 130 | 94.46 80 |
|
| MM | | | 87.64 83 | 87.15 88 | 89.09 64 | 89.51 172 | 76.39 115 | 88.68 95 | 86.76 229 | 84.54 44 | 83.58 236 | 93.78 104 | 73.36 206 | 96.48 2 | 87.98 10 | 96.21 109 | 94.41 86 |
|
| MVSMamba_PlusPlus | | | 87.53 84 | 88.86 69 | 83.54 177 | 92.03 107 | 62.26 261 | 91.49 37 | 92.62 97 | 88.07 21 | 88.07 141 | 96.17 21 | 72.24 219 | 95.79 29 | 84.85 58 | 94.16 188 | 92.58 163 |
|
| NCCC | | | 87.36 85 | 86.87 96 | 88.83 67 | 92.32 97 | 78.84 83 | 86.58 128 | 91.09 143 | 78.77 109 | 84.85 209 | 90.89 193 | 80.85 122 | 95.29 55 | 81.14 98 | 95.32 145 | 92.34 178 |
|
| DeepPCF-MVS | | 81.24 5 | 87.28 86 | 86.21 106 | 90.49 39 | 91.48 131 | 84.90 39 | 83.41 189 | 92.38 104 | 70.25 218 | 89.35 117 | 90.68 202 | 82.85 89 | 94.57 80 | 79.55 116 | 95.95 123 | 92.00 194 |
|
| SixPastTwentyTwo | | | 87.20 87 | 87.45 85 | 86.45 105 | 92.52 90 | 69.19 188 | 87.84 106 | 88.05 208 | 81.66 73 | 94.64 15 | 96.53 15 | 65.94 256 | 94.75 73 | 83.02 77 | 96.83 86 | 95.41 51 |
|
| CS-MVS-test | | | 87.00 88 | 86.43 102 | 88.71 71 | 89.46 174 | 77.46 99 | 89.42 83 | 95.73 8 | 77.87 119 | 81.64 271 | 87.25 266 | 82.43 95 | 94.53 83 | 77.65 140 | 96.46 99 | 94.14 97 |
|
| UniMVSNet (Re) | | | 86.87 89 | 86.98 94 | 86.55 103 | 93.11 76 | 68.48 192 | 83.80 180 | 92.87 89 | 80.37 85 | 89.61 111 | 91.81 164 | 77.72 149 | 94.18 92 | 75.00 172 | 98.53 16 | 96.99 22 |
|
| Vis-MVSNet |  | | 86.86 90 | 86.58 99 | 87.72 86 | 92.09 104 | 77.43 101 | 87.35 112 | 92.09 112 | 78.87 107 | 84.27 225 | 94.05 88 | 78.35 143 | 93.65 110 | 80.54 107 | 91.58 247 | 92.08 191 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| UniMVSNet_NR-MVSNet | | | 86.84 91 | 87.06 91 | 86.17 114 | 92.86 83 | 67.02 206 | 82.55 215 | 91.56 127 | 83.08 60 | 90.92 82 | 91.82 163 | 78.25 144 | 93.99 99 | 74.16 178 | 98.35 22 | 97.49 13 |
|
| DU-MVS | | | 86.80 92 | 86.99 93 | 86.21 112 | 93.24 73 | 67.02 206 | 83.16 198 | 92.21 108 | 81.73 72 | 90.92 82 | 91.97 157 | 77.20 156 | 93.99 99 | 74.16 178 | 98.35 22 | 97.61 10 |
|
| casdiffmvs_mvg |  | | 86.72 93 | 87.51 84 | 84.36 149 | 87.09 235 | 65.22 223 | 84.16 167 | 94.23 25 | 77.89 118 | 91.28 77 | 93.66 108 | 84.35 73 | 92.71 146 | 80.07 108 | 94.87 168 | 95.16 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvsmconf0.01_n | | | 86.68 94 | 86.52 100 | 87.18 91 | 85.94 262 | 78.30 86 | 86.93 118 | 92.20 109 | 65.94 257 | 89.16 118 | 93.16 117 | 83.10 86 | 89.89 231 | 87.81 12 | 94.43 180 | 93.35 131 |
|
| IS-MVSNet | | | 86.66 95 | 86.82 98 | 86.17 114 | 92.05 106 | 66.87 209 | 91.21 42 | 88.64 198 | 86.30 31 | 89.60 112 | 92.59 138 | 69.22 239 | 94.91 70 | 73.89 184 | 97.89 49 | 96.72 24 |
|
| v10 | | | 86.54 96 | 87.10 90 | 84.84 135 | 88.16 208 | 63.28 243 | 86.64 127 | 92.20 109 | 75.42 148 | 92.81 51 | 94.50 64 | 74.05 194 | 94.06 98 | 83.88 68 | 96.28 105 | 97.17 18 |
|
| pmmvs6 | | | 86.52 97 | 88.06 77 | 81.90 212 | 92.22 100 | 62.28 260 | 84.66 158 | 89.15 192 | 83.54 55 | 89.85 102 | 97.32 4 | 88.08 36 | 86.80 279 | 70.43 221 | 97.30 75 | 96.62 26 |
|
| PHI-MVS | | | 86.38 98 | 85.81 115 | 88.08 81 | 88.44 202 | 77.34 102 | 89.35 84 | 93.05 81 | 73.15 181 | 84.76 210 | 87.70 256 | 78.87 139 | 94.18 92 | 80.67 105 | 96.29 104 | 92.73 155 |
|
| CSCG | | | 86.26 99 | 86.47 101 | 85.60 125 | 90.87 147 | 74.26 127 | 87.98 103 | 91.85 120 | 80.35 86 | 89.54 115 | 88.01 248 | 79.09 137 | 92.13 162 | 75.51 165 | 95.06 157 | 90.41 237 |
|
| DeepC-MVS_fast | | 80.27 8 | 86.23 100 | 85.65 119 | 87.96 84 | 91.30 134 | 76.92 107 | 87.19 113 | 91.99 115 | 70.56 213 | 84.96 205 | 90.69 201 | 80.01 132 | 95.14 63 | 78.37 127 | 95.78 134 | 91.82 199 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| v8 | | | 86.22 101 | 86.83 97 | 84.36 149 | 87.82 214 | 62.35 259 | 86.42 131 | 91.33 136 | 76.78 130 | 92.73 53 | 94.48 66 | 73.41 203 | 93.72 109 | 83.10 74 | 95.41 141 | 97.01 21 |
|
| Anonymous20240529 | | | 86.20 102 | 87.13 89 | 83.42 180 | 90.19 160 | 64.55 230 | 84.55 160 | 90.71 152 | 85.85 34 | 89.94 101 | 95.24 42 | 82.13 104 | 90.40 214 | 69.19 233 | 96.40 102 | 95.31 55 |
|
| test_fmvsmconf0.1_n | | | 86.18 103 | 85.88 113 | 87.08 93 | 85.26 271 | 78.25 87 | 85.82 139 | 91.82 122 | 65.33 271 | 88.55 128 | 92.35 149 | 82.62 93 | 89.80 233 | 86.87 32 | 94.32 183 | 93.18 140 |
|
| CDPH-MVS | | | 86.17 104 | 85.54 120 | 88.05 83 | 92.25 98 | 75.45 121 | 83.85 177 | 92.01 114 | 65.91 259 | 86.19 182 | 91.75 167 | 83.77 79 | 94.98 68 | 77.43 145 | 96.71 90 | 93.73 117 |
|
| NR-MVSNet | | | 86.00 105 | 86.22 105 | 85.34 129 | 93.24 73 | 64.56 229 | 82.21 227 | 90.46 159 | 80.99 80 | 88.42 133 | 91.97 157 | 77.56 151 | 93.85 104 | 72.46 205 | 98.65 12 | 97.61 10 |
|
| train_agg | | | 85.98 106 | 85.28 126 | 88.07 82 | 92.34 95 | 79.70 75 | 83.94 173 | 90.32 164 | 65.79 260 | 84.49 214 | 90.97 188 | 81.93 108 | 93.63 112 | 81.21 97 | 96.54 95 | 90.88 222 |
|
| FC-MVSNet-test | | | 85.93 107 | 87.05 92 | 82.58 202 | 92.25 98 | 56.44 324 | 85.75 140 | 93.09 79 | 77.33 125 | 91.94 66 | 94.65 57 | 74.78 185 | 93.41 127 | 75.11 171 | 98.58 14 | 97.88 7 |
|
| test_fmvsmconf_n | | | 85.88 108 | 85.51 121 | 86.99 95 | 84.77 278 | 78.21 88 | 85.40 147 | 91.39 134 | 65.32 272 | 87.72 149 | 91.81 164 | 82.33 98 | 89.78 234 | 86.68 34 | 94.20 186 | 92.99 148 |
|
| Effi-MVS+-dtu | | | 85.82 109 | 83.38 159 | 93.14 4 | 87.13 231 | 91.15 3 | 87.70 107 | 88.42 200 | 74.57 156 | 83.56 237 | 85.65 289 | 78.49 142 | 94.21 90 | 72.04 207 | 92.88 220 | 94.05 100 |
|
| TAPA-MVS | | 77.73 12 | 85.71 110 | 84.83 132 | 88.37 77 | 88.78 192 | 79.72 74 | 87.15 115 | 93.50 60 | 69.17 226 | 85.80 191 | 89.56 227 | 80.76 123 | 92.13 162 | 73.21 200 | 95.51 139 | 93.25 137 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| sasdasda | | | 85.50 111 | 86.14 107 | 83.58 173 | 87.97 210 | 67.13 203 | 87.55 108 | 94.32 20 | 73.44 171 | 88.47 131 | 87.54 259 | 86.45 55 | 91.06 192 | 75.76 163 | 93.76 198 | 92.54 167 |
|
| canonicalmvs | | | 85.50 111 | 86.14 107 | 83.58 173 | 87.97 210 | 67.13 203 | 87.55 108 | 94.32 20 | 73.44 171 | 88.47 131 | 87.54 259 | 86.45 55 | 91.06 192 | 75.76 163 | 93.76 198 | 92.54 167 |
|
| EPP-MVSNet | | | 85.47 113 | 85.04 129 | 86.77 100 | 91.52 130 | 69.37 183 | 91.63 36 | 87.98 210 | 81.51 75 | 87.05 163 | 91.83 162 | 66.18 255 | 95.29 55 | 70.75 216 | 96.89 83 | 95.64 46 |
|
| GeoE | | | 85.45 114 | 85.81 115 | 84.37 147 | 90.08 162 | 67.07 205 | 85.86 138 | 91.39 134 | 72.33 195 | 87.59 151 | 90.25 214 | 84.85 68 | 92.37 156 | 78.00 136 | 91.94 240 | 93.66 119 |
|
| MVS_0304 | | | 85.37 115 | 84.58 139 | 87.75 85 | 85.28 270 | 73.36 132 | 86.54 130 | 85.71 243 | 77.56 124 | 81.78 269 | 92.47 143 | 70.29 233 | 96.02 11 | 85.59 50 | 95.96 121 | 93.87 108 |
|
| FIs | | | 85.35 116 | 86.27 104 | 82.60 201 | 91.86 114 | 57.31 317 | 85.10 152 | 93.05 81 | 75.83 141 | 91.02 81 | 93.97 92 | 73.57 199 | 92.91 144 | 73.97 183 | 98.02 39 | 97.58 12 |
|
| test_fmvsmvis_n_1920 | | | 85.22 117 | 85.36 125 | 84.81 136 | 85.80 264 | 76.13 119 | 85.15 151 | 92.32 106 | 61.40 301 | 91.33 74 | 90.85 196 | 83.76 80 | 86.16 292 | 84.31 64 | 93.28 210 | 92.15 189 |
|
| casdiffmvs |  | | 85.21 118 | 85.85 114 | 83.31 183 | 86.17 257 | 62.77 250 | 83.03 200 | 93.93 44 | 74.69 155 | 88.21 138 | 92.68 137 | 82.29 101 | 91.89 170 | 77.87 139 | 93.75 201 | 95.27 57 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline | | | 85.20 119 | 85.93 111 | 83.02 189 | 86.30 252 | 62.37 258 | 84.55 160 | 93.96 42 | 74.48 157 | 87.12 157 | 92.03 156 | 82.30 100 | 91.94 167 | 78.39 126 | 94.21 185 | 94.74 73 |
|
| K. test v3 | | | 85.14 120 | 84.73 133 | 86.37 106 | 91.13 141 | 69.63 181 | 85.45 145 | 76.68 321 | 84.06 48 | 92.44 58 | 96.99 9 | 62.03 276 | 94.65 76 | 80.58 106 | 93.24 211 | 94.83 72 |
|
| EI-MVSNet-Vis-set | | | 85.12 121 | 84.53 141 | 86.88 97 | 84.01 291 | 72.76 140 | 83.91 176 | 85.18 252 | 80.44 84 | 88.75 124 | 85.49 291 | 80.08 131 | 91.92 168 | 82.02 91 | 90.85 263 | 95.97 39 |
|
| MGCFI-Net | | | 85.04 122 | 85.95 110 | 82.31 208 | 87.52 223 | 63.59 239 | 86.23 134 | 93.96 42 | 73.46 169 | 88.07 141 | 87.83 254 | 86.46 54 | 90.87 201 | 76.17 158 | 93.89 196 | 92.47 171 |
|
| EI-MVSNet-UG-set | | | 85.04 122 | 84.44 143 | 86.85 98 | 83.87 295 | 72.52 149 | 83.82 178 | 85.15 253 | 80.27 88 | 88.75 124 | 85.45 293 | 79.95 133 | 91.90 169 | 81.92 94 | 90.80 264 | 96.13 34 |
|
| X-MVStestdata | | | 85.04 122 | 82.70 172 | 92.08 9 | 95.64 24 | 86.25 19 | 92.64 18 | 93.33 65 | 85.07 39 | 89.99 98 | 16.05 409 | 86.57 52 | 95.80 26 | 87.35 24 | 97.62 61 | 94.20 91 |
|
| MSLP-MVS++ | | | 85.00 125 | 86.03 109 | 81.90 212 | 91.84 117 | 71.56 166 | 86.75 125 | 93.02 85 | 75.95 139 | 87.12 157 | 89.39 228 | 77.98 145 | 89.40 245 | 77.46 143 | 94.78 170 | 84.75 315 |
|
| F-COLMAP | | | 84.97 126 | 83.42 158 | 89.63 54 | 92.39 93 | 83.40 49 | 88.83 91 | 91.92 118 | 73.19 180 | 80.18 293 | 89.15 234 | 77.04 160 | 93.28 130 | 65.82 265 | 92.28 231 | 92.21 186 |
|
| balanced_conf03 | | | 84.80 127 | 85.40 123 | 83.00 190 | 88.95 186 | 61.44 269 | 90.42 57 | 92.37 105 | 71.48 204 | 88.72 126 | 93.13 118 | 70.16 235 | 95.15 62 | 79.26 121 | 94.11 190 | 92.41 173 |
|
| 3Dnovator | | 80.37 7 | 84.80 127 | 84.71 136 | 85.06 133 | 86.36 250 | 74.71 124 | 88.77 93 | 90.00 177 | 75.65 144 | 84.96 205 | 93.17 116 | 74.06 193 | 91.19 187 | 78.28 130 | 91.09 253 | 89.29 258 |
|
| IterMVS-LS | | | 84.73 129 | 84.98 130 | 83.96 161 | 87.35 226 | 63.66 237 | 83.25 194 | 89.88 179 | 76.06 134 | 89.62 109 | 92.37 148 | 73.40 205 | 92.52 151 | 78.16 133 | 94.77 172 | 95.69 44 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MVS_111021_HR | | | 84.63 130 | 84.34 147 | 85.49 128 | 90.18 161 | 75.86 120 | 79.23 268 | 87.13 220 | 73.35 173 | 85.56 195 | 89.34 229 | 83.60 82 | 90.50 212 | 76.64 153 | 94.05 193 | 90.09 245 |
|
| HQP-MVS | | | 84.61 131 | 84.06 150 | 86.27 109 | 91.19 137 | 70.66 171 | 84.77 153 | 92.68 95 | 73.30 176 | 80.55 285 | 90.17 218 | 72.10 221 | 94.61 78 | 77.30 147 | 94.47 178 | 93.56 127 |
|
| v1192 | | | 84.57 132 | 84.69 137 | 84.21 156 | 87.75 216 | 62.88 247 | 83.02 201 | 91.43 131 | 69.08 228 | 89.98 100 | 90.89 193 | 72.70 214 | 93.62 115 | 82.41 86 | 94.97 162 | 96.13 34 |
|
| FMVSNet1 | | | 84.55 133 | 85.45 122 | 81.85 214 | 90.27 159 | 61.05 276 | 86.83 121 | 88.27 205 | 78.57 112 | 89.66 108 | 95.64 32 | 75.43 176 | 90.68 207 | 69.09 234 | 95.33 144 | 93.82 111 |
|
| v1144 | | | 84.54 134 | 84.72 135 | 84.00 159 | 87.67 219 | 62.55 254 | 82.97 203 | 90.93 148 | 70.32 217 | 89.80 103 | 90.99 187 | 73.50 200 | 93.48 123 | 81.69 96 | 94.65 175 | 95.97 39 |
|
| Gipuma |  | | 84.44 135 | 86.33 103 | 78.78 258 | 84.20 289 | 73.57 131 | 89.55 76 | 90.44 160 | 84.24 46 | 84.38 217 | 94.89 49 | 76.35 173 | 80.40 339 | 76.14 159 | 96.80 88 | 82.36 351 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MCST-MVS | | | 84.36 136 | 83.93 154 | 85.63 124 | 91.59 122 | 71.58 164 | 83.52 186 | 92.13 111 | 61.82 294 | 83.96 230 | 89.75 225 | 79.93 134 | 93.46 124 | 78.33 129 | 94.34 182 | 91.87 198 |
|
| VDDNet | | | 84.35 137 | 85.39 124 | 81.25 223 | 95.13 32 | 59.32 296 | 85.42 146 | 81.11 292 | 86.41 30 | 87.41 154 | 96.21 20 | 73.61 198 | 90.61 210 | 66.33 258 | 96.85 84 | 93.81 114 |
|
| ETV-MVS | | | 84.31 138 | 83.91 155 | 85.52 126 | 88.58 198 | 70.40 174 | 84.50 164 | 93.37 62 | 78.76 110 | 84.07 228 | 78.72 365 | 80.39 127 | 95.13 64 | 73.82 186 | 92.98 218 | 91.04 217 |
|
| v1240 | | | 84.30 139 | 84.51 142 | 83.65 170 | 87.65 220 | 61.26 273 | 82.85 207 | 91.54 128 | 67.94 243 | 90.68 89 | 90.65 205 | 71.71 227 | 93.64 111 | 82.84 80 | 94.78 170 | 96.07 36 |
|
| MVS_111021_LR | | | 84.28 140 | 83.76 156 | 85.83 121 | 89.23 180 | 83.07 52 | 80.99 243 | 83.56 273 | 72.71 188 | 86.07 185 | 89.07 235 | 81.75 113 | 86.19 291 | 77.11 149 | 93.36 206 | 88.24 271 |
|
| h-mvs33 | | | 84.25 141 | 82.76 171 | 88.72 70 | 91.82 119 | 82.60 57 | 84.00 172 | 84.98 259 | 71.27 205 | 86.70 169 | 90.55 207 | 63.04 273 | 93.92 102 | 78.26 131 | 94.20 186 | 89.63 250 |
|
| v144192 | | | 84.24 142 | 84.41 144 | 83.71 169 | 87.59 222 | 61.57 268 | 82.95 204 | 91.03 144 | 67.82 246 | 89.80 103 | 90.49 208 | 73.28 207 | 93.51 122 | 81.88 95 | 94.89 165 | 96.04 38 |
|
| dcpmvs_2 | | | 84.23 143 | 85.14 127 | 81.50 220 | 88.61 197 | 61.98 266 | 82.90 206 | 93.11 77 | 68.66 234 | 92.77 52 | 92.39 144 | 78.50 141 | 87.63 266 | 76.99 151 | 92.30 228 | 94.90 65 |
|
| v1921920 | | | 84.23 143 | 84.37 146 | 83.79 165 | 87.64 221 | 61.71 267 | 82.91 205 | 91.20 140 | 67.94 243 | 90.06 95 | 90.34 211 | 72.04 224 | 93.59 117 | 82.32 87 | 94.91 163 | 96.07 36 |
|
| VDD-MVS | | | 84.23 143 | 84.58 139 | 83.20 186 | 91.17 140 | 65.16 225 | 83.25 194 | 84.97 260 | 79.79 92 | 87.18 156 | 94.27 75 | 74.77 186 | 90.89 199 | 69.24 230 | 96.54 95 | 93.55 129 |
|
| v2v482 | | | 84.09 146 | 84.24 148 | 83.62 171 | 87.13 231 | 61.40 270 | 82.71 210 | 89.71 182 | 72.19 198 | 89.55 113 | 91.41 174 | 70.70 232 | 93.20 132 | 81.02 99 | 93.76 198 | 96.25 32 |
|
| EG-PatchMatch MVS | | | 84.08 147 | 84.11 149 | 83.98 160 | 92.22 100 | 72.61 146 | 82.20 229 | 87.02 225 | 72.63 189 | 88.86 121 | 91.02 186 | 78.52 140 | 91.11 190 | 73.41 192 | 91.09 253 | 88.21 272 |
|
| DP-MVS Recon | | | 84.05 148 | 83.22 161 | 86.52 104 | 91.73 120 | 75.27 122 | 83.23 196 | 92.40 102 | 72.04 199 | 82.04 260 | 88.33 244 | 77.91 147 | 93.95 101 | 66.17 259 | 95.12 155 | 90.34 239 |
|
| TransMVSNet (Re) | | | 84.02 149 | 85.74 117 | 78.85 257 | 91.00 144 | 55.20 334 | 82.29 223 | 87.26 216 | 79.65 95 | 88.38 135 | 95.52 35 | 83.00 87 | 86.88 277 | 67.97 248 | 96.60 93 | 94.45 82 |
|
| Baseline_NR-MVSNet | | | 84.00 150 | 85.90 112 | 78.29 269 | 91.47 132 | 53.44 343 | 82.29 223 | 87.00 228 | 79.06 104 | 89.55 113 | 95.72 30 | 77.20 156 | 86.14 293 | 72.30 206 | 98.51 17 | 95.28 56 |
|
| TSAR-MVS + GP. | | | 83.95 151 | 82.69 173 | 87.72 86 | 89.27 179 | 81.45 64 | 83.72 182 | 81.58 291 | 74.73 154 | 85.66 192 | 86.06 284 | 72.56 216 | 92.69 148 | 75.44 167 | 95.21 150 | 89.01 266 |
|
| alignmvs | | | 83.94 152 | 83.98 153 | 83.80 164 | 87.80 215 | 67.88 199 | 84.54 162 | 91.42 133 | 73.27 179 | 88.41 134 | 87.96 249 | 72.33 217 | 90.83 202 | 76.02 161 | 94.11 190 | 92.69 159 |
|
| Effi-MVS+ | | | 83.90 153 | 84.01 151 | 83.57 175 | 87.22 229 | 65.61 221 | 86.55 129 | 92.40 102 | 78.64 111 | 81.34 276 | 84.18 312 | 83.65 81 | 92.93 142 | 74.22 177 | 87.87 303 | 92.17 188 |
|
| bld_raw_conf03 | | | 83.86 154 | 83.99 152 | 83.45 178 | 88.77 193 | 62.26 261 | 91.49 37 | 92.62 97 | 65.43 266 | 88.07 141 | 92.18 155 | 68.44 244 | 95.51 45 | 74.78 174 | 94.16 188 | 92.58 163 |
|
| CANet | | | 83.79 155 | 82.85 170 | 86.63 101 | 86.17 257 | 72.21 156 | 83.76 181 | 91.43 131 | 77.24 127 | 74.39 342 | 87.45 262 | 75.36 177 | 95.42 51 | 77.03 150 | 92.83 221 | 92.25 185 |
|
| pm-mvs1 | | | 83.69 156 | 84.95 131 | 79.91 244 | 90.04 166 | 59.66 293 | 82.43 219 | 87.44 213 | 75.52 146 | 87.85 147 | 95.26 41 | 81.25 118 | 85.65 302 | 68.74 240 | 96.04 117 | 94.42 85 |
|
| AdaColmap |  | | 83.66 157 | 83.69 157 | 83.57 175 | 90.05 165 | 72.26 154 | 86.29 133 | 90.00 177 | 78.19 116 | 81.65 270 | 87.16 268 | 83.40 84 | 94.24 89 | 61.69 299 | 94.76 173 | 84.21 324 |
|
| MIMVSNet1 | | | 83.63 158 | 84.59 138 | 80.74 232 | 94.06 54 | 62.77 250 | 82.72 209 | 84.53 266 | 77.57 123 | 90.34 91 | 95.92 27 | 76.88 168 | 85.83 300 | 61.88 297 | 97.42 71 | 93.62 123 |
|
| test_fmvsm_n_1920 | | | 83.60 159 | 82.89 169 | 85.74 122 | 85.22 272 | 77.74 96 | 84.12 169 | 90.48 158 | 59.87 320 | 86.45 181 | 91.12 183 | 75.65 174 | 85.89 298 | 82.28 88 | 90.87 261 | 93.58 125 |
|
| WR-MVS | | | 83.56 160 | 84.40 145 | 81.06 228 | 93.43 67 | 54.88 335 | 78.67 276 | 85.02 257 | 81.24 77 | 90.74 88 | 91.56 171 | 72.85 211 | 91.08 191 | 68.00 247 | 98.04 36 | 97.23 16 |
|
| CNLPA | | | 83.55 161 | 83.10 166 | 84.90 134 | 89.34 177 | 83.87 47 | 84.54 162 | 88.77 195 | 79.09 103 | 83.54 238 | 88.66 241 | 74.87 182 | 81.73 330 | 66.84 253 | 92.29 230 | 89.11 260 |
|
| LCM-MVSNet-Re | | | 83.48 162 | 85.06 128 | 78.75 259 | 85.94 262 | 55.75 329 | 80.05 252 | 94.27 22 | 76.47 131 | 96.09 6 | 94.54 63 | 83.31 85 | 89.75 237 | 59.95 309 | 94.89 165 | 90.75 225 |
|
| hse-mvs2 | | | 83.47 163 | 81.81 186 | 88.47 74 | 91.03 143 | 82.27 58 | 82.61 211 | 83.69 271 | 71.27 205 | 86.70 169 | 86.05 285 | 63.04 273 | 92.41 154 | 78.26 131 | 93.62 205 | 90.71 227 |
|
| V42 | | | 83.47 163 | 83.37 160 | 83.75 167 | 83.16 308 | 63.33 242 | 81.31 237 | 90.23 171 | 69.51 224 | 90.91 84 | 90.81 198 | 74.16 192 | 92.29 160 | 80.06 109 | 90.22 272 | 95.62 47 |
|
| VPA-MVSNet | | | 83.47 163 | 84.73 133 | 79.69 248 | 90.29 158 | 57.52 316 | 81.30 239 | 88.69 197 | 76.29 132 | 87.58 152 | 94.44 67 | 80.60 126 | 87.20 271 | 66.60 256 | 96.82 87 | 94.34 88 |
|
| PAPM_NR | | | 83.23 166 | 83.19 163 | 83.33 182 | 90.90 146 | 65.98 217 | 88.19 100 | 90.78 151 | 78.13 117 | 80.87 281 | 87.92 252 | 73.49 202 | 92.42 153 | 70.07 223 | 88.40 292 | 91.60 206 |
|
| CLD-MVS | | | 83.18 167 | 82.64 174 | 84.79 137 | 89.05 182 | 67.82 200 | 77.93 284 | 92.52 100 | 68.33 236 | 85.07 202 | 81.54 341 | 82.06 105 | 92.96 140 | 69.35 229 | 97.91 48 | 93.57 126 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| ANet_high | | | 83.17 168 | 85.68 118 | 75.65 303 | 81.24 325 | 45.26 386 | 79.94 254 | 92.91 88 | 83.83 49 | 91.33 74 | 96.88 11 | 80.25 129 | 85.92 295 | 68.89 237 | 95.89 127 | 95.76 43 |
|
| FA-MVS(test-final) | | | 83.13 169 | 83.02 167 | 83.43 179 | 86.16 259 | 66.08 216 | 88.00 102 | 88.36 202 | 75.55 145 | 85.02 203 | 92.75 135 | 65.12 260 | 92.50 152 | 74.94 173 | 91.30 251 | 91.72 201 |
|
| 114514_t | | | 83.10 170 | 82.54 177 | 84.77 138 | 92.90 80 | 69.10 190 | 86.65 126 | 90.62 156 | 54.66 349 | 81.46 273 | 90.81 198 | 76.98 161 | 94.38 85 | 72.62 203 | 96.18 110 | 90.82 224 |
|
| UGNet | | | 82.78 171 | 81.64 188 | 86.21 112 | 86.20 256 | 76.24 117 | 86.86 119 | 85.68 244 | 77.07 128 | 73.76 346 | 92.82 131 | 69.64 236 | 91.82 173 | 69.04 236 | 93.69 202 | 90.56 233 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| LF4IMVS | | | 82.75 172 | 81.93 184 | 85.19 130 | 82.08 314 | 80.15 71 | 85.53 143 | 88.76 196 | 68.01 240 | 85.58 194 | 87.75 255 | 71.80 226 | 86.85 278 | 74.02 182 | 93.87 197 | 88.58 269 |
|
| EI-MVSNet | | | 82.61 173 | 82.42 179 | 83.20 186 | 83.25 305 | 63.66 237 | 83.50 187 | 85.07 254 | 76.06 134 | 86.55 173 | 85.10 299 | 73.41 203 | 90.25 215 | 78.15 135 | 90.67 267 | 95.68 45 |
|
| QAPM | | | 82.59 174 | 82.59 176 | 82.58 202 | 86.44 245 | 66.69 210 | 89.94 66 | 90.36 163 | 67.97 242 | 84.94 207 | 92.58 140 | 72.71 213 | 92.18 161 | 70.63 219 | 87.73 305 | 88.85 267 |
|
| fmvsm_s_conf0.1_n_a | | | 82.58 175 | 81.93 184 | 84.50 144 | 87.68 218 | 73.35 133 | 86.14 135 | 77.70 310 | 61.64 299 | 85.02 203 | 91.62 169 | 77.75 148 | 86.24 288 | 82.79 81 | 87.07 312 | 93.91 106 |
|
| Fast-Effi-MVS+-dtu | | | 82.54 176 | 81.41 196 | 85.90 118 | 85.60 265 | 76.53 112 | 83.07 199 | 89.62 186 | 73.02 183 | 79.11 303 | 83.51 317 | 80.74 124 | 90.24 217 | 68.76 239 | 89.29 281 | 90.94 220 |
|
| MVS_Test | | | 82.47 177 | 83.22 161 | 80.22 241 | 82.62 313 | 57.75 315 | 82.54 216 | 91.96 117 | 71.16 209 | 82.89 248 | 92.52 142 | 77.41 153 | 90.50 212 | 80.04 110 | 87.84 304 | 92.40 175 |
|
| v148 | | | 82.31 178 | 82.48 178 | 81.81 217 | 85.59 266 | 59.66 293 | 81.47 236 | 86.02 239 | 72.85 184 | 88.05 144 | 90.65 205 | 70.73 231 | 90.91 198 | 75.15 170 | 91.79 241 | 94.87 67 |
|
| API-MVS | | | 82.28 179 | 82.61 175 | 81.30 222 | 86.29 253 | 69.79 177 | 88.71 94 | 87.67 212 | 78.42 114 | 82.15 259 | 84.15 313 | 77.98 145 | 91.59 176 | 65.39 268 | 92.75 222 | 82.51 350 |
|
| MVSFormer | | | 82.23 180 | 81.57 193 | 84.19 158 | 85.54 267 | 69.26 185 | 91.98 31 | 90.08 175 | 71.54 202 | 76.23 323 | 85.07 302 | 58.69 298 | 94.27 86 | 86.26 40 | 88.77 288 | 89.03 264 |
|
| fmvsm_s_conf0.5_n_a | | | 82.21 181 | 81.51 195 | 84.32 152 | 86.56 243 | 73.35 133 | 85.46 144 | 77.30 314 | 61.81 295 | 84.51 213 | 90.88 195 | 77.36 154 | 86.21 290 | 82.72 82 | 86.97 317 | 93.38 130 |
|
| EIA-MVS | | | 82.19 182 | 81.23 201 | 85.10 132 | 87.95 212 | 69.17 189 | 83.22 197 | 93.33 65 | 70.42 214 | 78.58 306 | 79.77 357 | 77.29 155 | 94.20 91 | 71.51 209 | 88.96 286 | 91.93 197 |
|
| fmvsm_s_conf0.1_n | | | 82.17 183 | 81.59 191 | 83.94 163 | 86.87 241 | 71.57 165 | 85.19 150 | 77.42 313 | 62.27 293 | 84.47 216 | 91.33 176 | 76.43 170 | 85.91 296 | 83.14 72 | 87.14 310 | 94.33 89 |
|
| PCF-MVS | | 74.62 15 | 82.15 184 | 80.92 205 | 85.84 120 | 89.43 175 | 72.30 153 | 80.53 247 | 91.82 122 | 57.36 336 | 87.81 148 | 89.92 222 | 77.67 150 | 93.63 112 | 58.69 314 | 95.08 156 | 91.58 207 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PLC |  | 73.85 16 | 82.09 185 | 80.31 212 | 87.45 89 | 90.86 148 | 80.29 70 | 85.88 137 | 90.65 154 | 68.17 239 | 76.32 322 | 86.33 279 | 73.12 209 | 92.61 150 | 61.40 302 | 90.02 275 | 89.44 253 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| fmvsm_l_conf0.5_n | | | 82.06 186 | 81.54 194 | 83.60 172 | 83.94 292 | 73.90 129 | 83.35 191 | 86.10 236 | 58.97 322 | 83.80 232 | 90.36 210 | 74.23 191 | 86.94 276 | 82.90 78 | 90.22 272 | 89.94 247 |
|
| GBi-Net | | | 82.02 187 | 82.07 181 | 81.85 214 | 86.38 247 | 61.05 276 | 86.83 121 | 88.27 205 | 72.43 190 | 86.00 186 | 95.64 32 | 63.78 267 | 90.68 207 | 65.95 261 | 93.34 207 | 93.82 111 |
|
| test1 | | | 82.02 187 | 82.07 181 | 81.85 214 | 86.38 247 | 61.05 276 | 86.83 121 | 88.27 205 | 72.43 190 | 86.00 186 | 95.64 32 | 63.78 267 | 90.68 207 | 65.95 261 | 93.34 207 | 93.82 111 |
|
| OpenMVS |  | 76.72 13 | 81.98 189 | 82.00 183 | 81.93 211 | 84.42 284 | 68.22 194 | 88.50 98 | 89.48 188 | 66.92 252 | 81.80 267 | 91.86 159 | 72.59 215 | 90.16 220 | 71.19 212 | 91.25 252 | 87.40 287 |
|
| KD-MVS_self_test | | | 81.93 190 | 83.14 165 | 78.30 268 | 84.75 279 | 52.75 347 | 80.37 249 | 89.42 190 | 70.24 219 | 90.26 93 | 93.39 113 | 74.55 190 | 86.77 280 | 68.61 242 | 96.64 91 | 95.38 52 |
|
| fmvsm_s_conf0.5_n | | | 81.91 191 | 81.30 198 | 83.75 167 | 86.02 261 | 71.56 166 | 84.73 156 | 77.11 317 | 62.44 290 | 84.00 229 | 90.68 202 | 76.42 171 | 85.89 298 | 83.14 72 | 87.11 311 | 93.81 114 |
|
| SDMVSNet | | | 81.90 192 | 83.17 164 | 78.10 272 | 88.81 190 | 62.45 256 | 76.08 314 | 86.05 238 | 73.67 165 | 83.41 239 | 93.04 120 | 82.35 97 | 80.65 337 | 70.06 224 | 95.03 158 | 91.21 213 |
|
| tfpnnormal | | | 81.79 193 | 82.95 168 | 78.31 267 | 88.93 187 | 55.40 330 | 80.83 246 | 82.85 279 | 76.81 129 | 85.90 190 | 94.14 85 | 74.58 189 | 86.51 284 | 66.82 254 | 95.68 138 | 93.01 147 |
|
| c3_l | | | 81.64 194 | 81.59 191 | 81.79 218 | 80.86 331 | 59.15 300 | 78.61 277 | 90.18 173 | 68.36 235 | 87.20 155 | 87.11 270 | 69.39 237 | 91.62 175 | 78.16 133 | 94.43 180 | 94.60 75 |
|
| PVSNet_Blended_VisFu | | | 81.55 195 | 80.49 210 | 84.70 141 | 91.58 125 | 73.24 137 | 84.21 166 | 91.67 126 | 62.86 284 | 80.94 279 | 87.16 268 | 67.27 249 | 92.87 145 | 69.82 226 | 88.94 287 | 87.99 278 |
|
| fmvsm_l_conf0.5_n_a | | | 81.46 196 | 80.87 206 | 83.25 184 | 83.73 297 | 73.21 138 | 83.00 202 | 85.59 246 | 58.22 328 | 82.96 247 | 90.09 220 | 72.30 218 | 86.65 282 | 81.97 93 | 89.95 276 | 89.88 248 |
|
| DELS-MVS | | | 81.44 197 | 81.25 199 | 82.03 210 | 84.27 288 | 62.87 248 | 76.47 308 | 92.49 101 | 70.97 210 | 81.64 271 | 83.83 314 | 75.03 180 | 92.70 147 | 74.29 176 | 92.22 234 | 90.51 235 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| FMVSNet2 | | | 81.31 198 | 81.61 190 | 80.41 238 | 86.38 247 | 58.75 307 | 83.93 175 | 86.58 231 | 72.43 190 | 87.65 150 | 92.98 124 | 63.78 267 | 90.22 218 | 66.86 251 | 93.92 195 | 92.27 183 |
|
| TinyColmap | | | 81.25 199 | 82.34 180 | 77.99 275 | 85.33 269 | 60.68 283 | 82.32 222 | 88.33 203 | 71.26 207 | 86.97 164 | 92.22 154 | 77.10 159 | 86.98 275 | 62.37 291 | 95.17 152 | 86.31 298 |
|
| AUN-MVS | | | 81.18 200 | 78.78 233 | 88.39 76 | 90.93 145 | 82.14 59 | 82.51 217 | 83.67 272 | 64.69 276 | 80.29 289 | 85.91 288 | 51.07 336 | 92.38 155 | 76.29 157 | 93.63 204 | 90.65 231 |
|
| tttt0517 | | | 81.07 201 | 79.58 224 | 85.52 126 | 88.99 185 | 66.45 213 | 87.03 117 | 75.51 329 | 73.76 164 | 88.32 137 | 90.20 215 | 37.96 390 | 94.16 96 | 79.36 120 | 95.13 153 | 95.93 42 |
|
| Fast-Effi-MVS+ | | | 81.04 202 | 80.57 207 | 82.46 206 | 87.50 224 | 63.22 244 | 78.37 280 | 89.63 185 | 68.01 240 | 81.87 263 | 82.08 335 | 82.31 99 | 92.65 149 | 67.10 250 | 88.30 298 | 91.51 209 |
|
| BH-untuned | | | 80.96 203 | 80.99 203 | 80.84 231 | 88.55 199 | 68.23 193 | 80.33 250 | 88.46 199 | 72.79 187 | 86.55 173 | 86.76 274 | 74.72 187 | 91.77 174 | 61.79 298 | 88.99 285 | 82.52 349 |
|
| eth_miper_zixun_eth | | | 80.84 204 | 80.22 216 | 82.71 199 | 81.41 323 | 60.98 279 | 77.81 286 | 90.14 174 | 67.31 250 | 86.95 165 | 87.24 267 | 64.26 263 | 92.31 158 | 75.23 169 | 91.61 245 | 94.85 71 |
|
| xiu_mvs_v1_base_debu | | | 80.84 204 | 80.14 218 | 82.93 194 | 88.31 203 | 71.73 160 | 79.53 259 | 87.17 217 | 65.43 266 | 79.59 295 | 82.73 329 | 76.94 162 | 90.14 223 | 73.22 195 | 88.33 294 | 86.90 292 |
|
| xiu_mvs_v1_base | | | 80.84 204 | 80.14 218 | 82.93 194 | 88.31 203 | 71.73 160 | 79.53 259 | 87.17 217 | 65.43 266 | 79.59 295 | 82.73 329 | 76.94 162 | 90.14 223 | 73.22 195 | 88.33 294 | 86.90 292 |
|
| xiu_mvs_v1_base_debi | | | 80.84 204 | 80.14 218 | 82.93 194 | 88.31 203 | 71.73 160 | 79.53 259 | 87.17 217 | 65.43 266 | 79.59 295 | 82.73 329 | 76.94 162 | 90.14 223 | 73.22 195 | 88.33 294 | 86.90 292 |
|
| IterMVS-SCA-FT | | | 80.64 208 | 79.41 225 | 84.34 151 | 83.93 293 | 69.66 180 | 76.28 310 | 81.09 293 | 72.43 190 | 86.47 179 | 90.19 216 | 60.46 283 | 93.15 135 | 77.45 144 | 86.39 323 | 90.22 240 |
|
| BH-RMVSNet | | | 80.53 209 | 80.22 216 | 81.49 221 | 87.19 230 | 66.21 215 | 77.79 287 | 86.23 234 | 74.21 159 | 83.69 233 | 88.50 242 | 73.25 208 | 90.75 204 | 63.18 288 | 87.90 302 | 87.52 285 |
|
| Anonymous202405211 | | | 80.51 210 | 81.19 202 | 78.49 264 | 88.48 200 | 57.26 318 | 76.63 304 | 82.49 282 | 81.21 78 | 84.30 223 | 92.24 153 | 67.99 246 | 86.24 288 | 62.22 292 | 95.13 153 | 91.98 196 |
|
| DIV-MVS_self_test | | | 80.43 211 | 80.23 214 | 81.02 229 | 79.99 339 | 59.25 297 | 77.07 297 | 87.02 225 | 67.38 247 | 86.19 182 | 89.22 231 | 63.09 271 | 90.16 220 | 76.32 155 | 95.80 132 | 93.66 119 |
|
| cl____ | | | 80.42 212 | 80.23 214 | 81.02 229 | 79.99 339 | 59.25 297 | 77.07 297 | 87.02 225 | 67.37 248 | 86.18 184 | 89.21 232 | 63.08 272 | 90.16 220 | 76.31 156 | 95.80 132 | 93.65 121 |
|
| diffmvs |  | | 80.40 213 | 80.48 211 | 80.17 242 | 79.02 351 | 60.04 288 | 77.54 291 | 90.28 170 | 66.65 255 | 82.40 254 | 87.33 265 | 73.50 200 | 87.35 269 | 77.98 137 | 89.62 279 | 93.13 141 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EPNet | | | 80.37 214 | 78.41 240 | 86.23 110 | 76.75 365 | 73.28 135 | 87.18 114 | 77.45 312 | 76.24 133 | 68.14 374 | 88.93 237 | 65.41 259 | 93.85 104 | 69.47 228 | 96.12 114 | 91.55 208 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| miper_ehance_all_eth | | | 80.34 215 | 80.04 221 | 81.24 225 | 79.82 341 | 58.95 302 | 77.66 288 | 89.66 183 | 65.75 263 | 85.99 189 | 85.11 298 | 68.29 245 | 91.42 182 | 76.03 160 | 92.03 236 | 93.33 132 |
|
| MG-MVS | | | 80.32 216 | 80.94 204 | 78.47 265 | 88.18 206 | 52.62 350 | 82.29 223 | 85.01 258 | 72.01 200 | 79.24 302 | 92.54 141 | 69.36 238 | 93.36 129 | 70.65 218 | 89.19 284 | 89.45 252 |
|
| mvsmamba | | | 80.30 217 | 78.87 230 | 84.58 143 | 88.12 209 | 67.55 201 | 92.35 26 | 84.88 261 | 63.15 282 | 85.33 198 | 90.91 192 | 50.71 338 | 95.20 61 | 66.36 257 | 87.98 301 | 90.99 218 |
|
| VPNet | | | 80.25 218 | 81.68 187 | 75.94 301 | 92.46 92 | 47.98 373 | 76.70 302 | 81.67 289 | 73.45 170 | 84.87 208 | 92.82 131 | 74.66 188 | 86.51 284 | 61.66 300 | 96.85 84 | 93.33 132 |
|
| MAR-MVS | | | 80.24 219 | 78.74 235 | 84.73 139 | 86.87 241 | 78.18 89 | 85.75 140 | 87.81 211 | 65.67 265 | 77.84 311 | 78.50 366 | 73.79 197 | 90.53 211 | 61.59 301 | 90.87 261 | 85.49 308 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PM-MVS | | | 80.20 220 | 79.00 229 | 83.78 166 | 88.17 207 | 86.66 16 | 81.31 237 | 66.81 381 | 69.64 223 | 88.33 136 | 90.19 216 | 64.58 261 | 83.63 321 | 71.99 208 | 90.03 274 | 81.06 368 |
|
| Anonymous20240521 | | | 80.18 221 | 81.25 199 | 76.95 288 | 83.15 309 | 60.84 281 | 82.46 218 | 85.99 240 | 68.76 232 | 86.78 166 | 93.73 107 | 59.13 295 | 77.44 351 | 73.71 188 | 97.55 66 | 92.56 165 |
|
| LFMVS | | | 80.15 222 | 80.56 208 | 78.89 256 | 89.19 181 | 55.93 326 | 85.22 149 | 73.78 341 | 82.96 61 | 84.28 224 | 92.72 136 | 57.38 307 | 90.07 227 | 63.80 282 | 95.75 135 | 90.68 229 |
|
| DPM-MVS | | | 80.10 223 | 79.18 228 | 82.88 197 | 90.71 151 | 69.74 178 | 78.87 273 | 90.84 149 | 60.29 316 | 75.64 332 | 85.92 287 | 67.28 248 | 93.11 136 | 71.24 211 | 91.79 241 | 85.77 304 |
|
| MSDG | | | 80.06 224 | 79.99 223 | 80.25 240 | 83.91 294 | 68.04 198 | 77.51 292 | 89.19 191 | 77.65 121 | 81.94 261 | 83.45 319 | 76.37 172 | 86.31 287 | 63.31 287 | 86.59 320 | 86.41 296 |
|
| FE-MVS | | | 79.98 225 | 78.86 231 | 83.36 181 | 86.47 244 | 66.45 213 | 89.73 69 | 84.74 265 | 72.80 186 | 84.22 227 | 91.38 175 | 44.95 371 | 93.60 116 | 63.93 281 | 91.50 248 | 90.04 246 |
|
| sd_testset | | | 79.95 226 | 81.39 197 | 75.64 304 | 88.81 190 | 58.07 311 | 76.16 313 | 82.81 280 | 73.67 165 | 83.41 239 | 93.04 120 | 80.96 121 | 77.65 350 | 58.62 315 | 95.03 158 | 91.21 213 |
|
| ab-mvs | | | 79.67 227 | 80.56 208 | 76.99 287 | 88.48 200 | 56.93 320 | 84.70 157 | 86.06 237 | 68.95 230 | 80.78 282 | 93.08 119 | 75.30 178 | 84.62 310 | 56.78 324 | 90.90 260 | 89.43 254 |
|
| VNet | | | 79.31 228 | 80.27 213 | 76.44 295 | 87.92 213 | 53.95 339 | 75.58 320 | 84.35 267 | 74.39 158 | 82.23 257 | 90.72 200 | 72.84 212 | 84.39 313 | 60.38 308 | 93.98 194 | 90.97 219 |
|
| thisisatest0530 | | | 79.07 229 | 77.33 249 | 84.26 154 | 87.13 231 | 64.58 228 | 83.66 184 | 75.95 324 | 68.86 231 | 85.22 200 | 87.36 264 | 38.10 388 | 93.57 120 | 75.47 166 | 94.28 184 | 94.62 74 |
|
| cl22 | | | 78.97 230 | 78.21 242 | 81.24 225 | 77.74 355 | 59.01 301 | 77.46 294 | 87.13 220 | 65.79 260 | 84.32 220 | 85.10 299 | 58.96 297 | 90.88 200 | 75.36 168 | 92.03 236 | 93.84 109 |
|
| patch_mono-2 | | | 78.89 231 | 79.39 226 | 77.41 284 | 84.78 277 | 68.11 196 | 75.60 318 | 83.11 276 | 60.96 309 | 79.36 299 | 89.89 223 | 75.18 179 | 72.97 362 | 73.32 194 | 92.30 228 | 91.15 215 |
|
| RPMNet | | | 78.88 232 | 78.28 241 | 80.68 235 | 79.58 342 | 62.64 252 | 82.58 213 | 94.16 30 | 74.80 153 | 75.72 330 | 92.59 138 | 48.69 345 | 95.56 40 | 73.48 191 | 82.91 358 | 83.85 329 |
|
| PAPR | | | 78.84 233 | 78.10 243 | 81.07 227 | 85.17 273 | 60.22 287 | 82.21 227 | 90.57 157 | 62.51 286 | 75.32 336 | 84.61 307 | 74.99 181 | 92.30 159 | 59.48 312 | 88.04 300 | 90.68 229 |
|
| PVSNet_BlendedMVS | | | 78.80 234 | 77.84 244 | 81.65 219 | 84.43 282 | 63.41 240 | 79.49 262 | 90.44 160 | 61.70 298 | 75.43 333 | 87.07 271 | 69.11 240 | 91.44 180 | 60.68 306 | 92.24 232 | 90.11 244 |
|
| FMVSNet3 | | | 78.80 234 | 78.55 237 | 79.57 250 | 82.89 312 | 56.89 322 | 81.76 231 | 85.77 242 | 69.04 229 | 86.00 186 | 90.44 209 | 51.75 334 | 90.09 226 | 65.95 261 | 93.34 207 | 91.72 201 |
|
| test_yl | | | 78.71 236 | 78.51 238 | 79.32 253 | 84.32 286 | 58.84 304 | 78.38 278 | 85.33 249 | 75.99 137 | 82.49 252 | 86.57 275 | 58.01 301 | 90.02 229 | 62.74 289 | 92.73 223 | 89.10 261 |
|
| DCV-MVSNet | | | 78.71 236 | 78.51 238 | 79.32 253 | 84.32 286 | 58.84 304 | 78.38 278 | 85.33 249 | 75.99 137 | 82.49 252 | 86.57 275 | 58.01 301 | 90.02 229 | 62.74 289 | 92.73 223 | 89.10 261 |
|
| test1111 | | | 78.53 238 | 78.85 232 | 77.56 281 | 92.22 100 | 47.49 375 | 82.61 211 | 69.24 370 | 72.43 190 | 85.28 199 | 94.20 81 | 51.91 332 | 90.07 227 | 65.36 269 | 96.45 100 | 95.11 62 |
|
| ECVR-MVS |  | | 78.44 239 | 78.63 236 | 77.88 277 | 91.85 115 | 48.95 369 | 83.68 183 | 69.91 367 | 72.30 196 | 84.26 226 | 94.20 81 | 51.89 333 | 89.82 232 | 63.58 283 | 96.02 118 | 94.87 67 |
|
| pmmvs-eth3d | | | 78.42 240 | 77.04 251 | 82.57 204 | 87.44 225 | 74.41 126 | 80.86 245 | 79.67 301 | 55.68 343 | 84.69 211 | 90.31 213 | 60.91 281 | 85.42 303 | 62.20 293 | 91.59 246 | 87.88 281 |
|
| mvs_anonymous | | | 78.13 241 | 78.76 234 | 76.23 300 | 79.24 348 | 50.31 366 | 78.69 275 | 84.82 263 | 61.60 300 | 83.09 246 | 92.82 131 | 73.89 196 | 87.01 272 | 68.33 246 | 86.41 322 | 91.37 210 |
|
| TAMVS | | | 78.08 242 | 76.36 257 | 83.23 185 | 90.62 152 | 72.87 139 | 79.08 269 | 80.01 300 | 61.72 297 | 81.35 275 | 86.92 273 | 63.96 266 | 88.78 254 | 50.61 362 | 93.01 217 | 88.04 277 |
|
| miper_enhance_ethall | | | 77.83 243 | 76.93 252 | 80.51 236 | 76.15 371 | 58.01 312 | 75.47 322 | 88.82 194 | 58.05 330 | 83.59 235 | 80.69 345 | 64.41 262 | 91.20 186 | 73.16 201 | 92.03 236 | 92.33 179 |
|
| Vis-MVSNet (Re-imp) | | | 77.82 244 | 77.79 245 | 77.92 276 | 88.82 189 | 51.29 360 | 83.28 192 | 71.97 355 | 74.04 160 | 82.23 257 | 89.78 224 | 57.38 307 | 89.41 244 | 57.22 323 | 95.41 141 | 93.05 145 |
|
| CANet_DTU | | | 77.81 245 | 77.05 250 | 80.09 243 | 81.37 324 | 59.90 291 | 83.26 193 | 88.29 204 | 69.16 227 | 67.83 377 | 83.72 315 | 60.93 280 | 89.47 239 | 69.22 232 | 89.70 278 | 90.88 222 |
|
| OpenMVS_ROB |  | 70.19 17 | 77.77 246 | 77.46 246 | 78.71 260 | 84.39 285 | 61.15 274 | 81.18 241 | 82.52 281 | 62.45 289 | 83.34 241 | 87.37 263 | 66.20 254 | 88.66 256 | 64.69 276 | 85.02 339 | 86.32 297 |
|
| SSC-MVS | | | 77.55 247 | 81.64 188 | 65.29 367 | 90.46 155 | 20.33 413 | 73.56 338 | 68.28 372 | 85.44 35 | 88.18 140 | 94.64 60 | 70.93 230 | 81.33 332 | 71.25 210 | 92.03 236 | 94.20 91 |
|
| MDA-MVSNet-bldmvs | | | 77.47 248 | 76.90 253 | 79.16 255 | 79.03 350 | 64.59 227 | 66.58 377 | 75.67 327 | 73.15 181 | 88.86 121 | 88.99 236 | 66.94 250 | 81.23 333 | 64.71 275 | 88.22 299 | 91.64 205 |
|
| jason | | | 77.42 249 | 75.75 263 | 82.43 207 | 87.10 234 | 69.27 184 | 77.99 283 | 81.94 287 | 51.47 367 | 77.84 311 | 85.07 302 | 60.32 285 | 89.00 248 | 70.74 217 | 89.27 283 | 89.03 264 |
| jason: jason. |
| CDS-MVSNet | | | 77.32 250 | 75.40 266 | 83.06 188 | 89.00 184 | 72.48 150 | 77.90 285 | 82.17 285 | 60.81 310 | 78.94 304 | 83.49 318 | 59.30 293 | 88.76 255 | 54.64 342 | 92.37 227 | 87.93 280 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| xiu_mvs_v2_base | | | 77.19 251 | 76.75 254 | 78.52 263 | 87.01 237 | 61.30 272 | 75.55 321 | 87.12 223 | 61.24 306 | 74.45 341 | 78.79 364 | 77.20 156 | 90.93 196 | 64.62 278 | 84.80 346 | 83.32 338 |
|
| MVSTER | | | 77.09 252 | 75.70 264 | 81.25 223 | 75.27 379 | 61.08 275 | 77.49 293 | 85.07 254 | 60.78 311 | 86.55 173 | 88.68 240 | 43.14 380 | 90.25 215 | 73.69 189 | 90.67 267 | 92.42 172 |
|
| PS-MVSNAJ | | | 77.04 253 | 76.53 256 | 78.56 262 | 87.09 235 | 61.40 270 | 75.26 323 | 87.13 220 | 61.25 305 | 74.38 343 | 77.22 377 | 76.94 162 | 90.94 195 | 64.63 277 | 84.83 345 | 83.35 337 |
|
| IterMVS | | | 76.91 254 | 76.34 258 | 78.64 261 | 80.91 329 | 64.03 234 | 76.30 309 | 79.03 304 | 64.88 275 | 83.11 244 | 89.16 233 | 59.90 289 | 84.46 311 | 68.61 242 | 85.15 337 | 87.42 286 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| D2MVS | | | 76.84 255 | 75.67 265 | 80.34 239 | 80.48 337 | 62.16 265 | 73.50 339 | 84.80 264 | 57.61 334 | 82.24 256 | 87.54 259 | 51.31 335 | 87.65 265 | 70.40 222 | 93.19 213 | 91.23 212 |
|
| CL-MVSNet_self_test | | | 76.81 256 | 77.38 248 | 75.12 307 | 86.90 239 | 51.34 358 | 73.20 342 | 80.63 297 | 68.30 237 | 81.80 267 | 88.40 243 | 66.92 251 | 80.90 334 | 55.35 336 | 94.90 164 | 93.12 143 |
|
| TR-MVS | | | 76.77 257 | 75.79 262 | 79.72 247 | 86.10 260 | 65.79 219 | 77.14 295 | 83.02 277 | 65.20 273 | 81.40 274 | 82.10 333 | 66.30 253 | 90.73 206 | 55.57 333 | 85.27 333 | 82.65 344 |
|
| USDC | | | 76.63 258 | 76.73 255 | 76.34 297 | 83.46 299 | 57.20 319 | 80.02 253 | 88.04 209 | 52.14 363 | 83.65 234 | 91.25 178 | 63.24 270 | 86.65 282 | 54.66 341 | 94.11 190 | 85.17 310 |
|
| BH-w/o | | | 76.57 259 | 76.07 261 | 78.10 272 | 86.88 240 | 65.92 218 | 77.63 289 | 86.33 232 | 65.69 264 | 80.89 280 | 79.95 354 | 68.97 242 | 90.74 205 | 53.01 352 | 85.25 334 | 77.62 379 |
|
| Patchmtry | | | 76.56 260 | 77.46 246 | 73.83 313 | 79.37 347 | 46.60 379 | 82.41 220 | 76.90 318 | 73.81 163 | 85.56 195 | 92.38 145 | 48.07 348 | 83.98 318 | 63.36 286 | 95.31 147 | 90.92 221 |
|
| PVSNet_Blended | | | 76.49 261 | 75.40 266 | 79.76 246 | 84.43 282 | 63.41 240 | 75.14 324 | 90.44 160 | 57.36 336 | 75.43 333 | 78.30 367 | 69.11 240 | 91.44 180 | 60.68 306 | 87.70 306 | 84.42 320 |
|
| miper_lstm_enhance | | | 76.45 262 | 76.10 260 | 77.51 282 | 76.72 366 | 60.97 280 | 64.69 381 | 85.04 256 | 63.98 279 | 83.20 243 | 88.22 245 | 56.67 311 | 78.79 348 | 73.22 195 | 93.12 214 | 92.78 154 |
|
| lupinMVS | | | 76.37 263 | 74.46 275 | 82.09 209 | 85.54 267 | 69.26 185 | 76.79 300 | 80.77 296 | 50.68 374 | 76.23 323 | 82.82 327 | 58.69 298 | 88.94 249 | 69.85 225 | 88.77 288 | 88.07 274 |
|
| cascas | | | 76.29 264 | 74.81 271 | 80.72 234 | 84.47 281 | 62.94 246 | 73.89 336 | 87.34 214 | 55.94 342 | 75.16 338 | 76.53 382 | 63.97 265 | 91.16 188 | 65.00 272 | 90.97 258 | 88.06 276 |
|
| WB-MVS | | | 76.06 265 | 80.01 222 | 64.19 370 | 89.96 168 | 20.58 412 | 72.18 347 | 68.19 373 | 83.21 57 | 86.46 180 | 93.49 111 | 70.19 234 | 78.97 346 | 65.96 260 | 90.46 271 | 93.02 146 |
|
| thres600view7 | | | 75.97 266 | 75.35 268 | 77.85 279 | 87.01 237 | 51.84 356 | 80.45 248 | 73.26 346 | 75.20 150 | 83.10 245 | 86.31 281 | 45.54 362 | 89.05 247 | 55.03 339 | 92.24 232 | 92.66 160 |
|
| GA-MVS | | | 75.83 267 | 74.61 272 | 79.48 252 | 81.87 316 | 59.25 297 | 73.42 340 | 82.88 278 | 68.68 233 | 79.75 294 | 81.80 338 | 50.62 339 | 89.46 240 | 66.85 252 | 85.64 330 | 89.72 249 |
|
| MVP-Stereo | | | 75.81 268 | 73.51 284 | 82.71 199 | 89.35 176 | 73.62 130 | 80.06 251 | 85.20 251 | 60.30 315 | 73.96 344 | 87.94 250 | 57.89 305 | 89.45 241 | 52.02 356 | 74.87 390 | 85.06 312 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| test_fmvs3 | | | 75.72 269 | 75.20 269 | 77.27 285 | 75.01 382 | 69.47 182 | 78.93 270 | 84.88 261 | 46.67 381 | 87.08 161 | 87.84 253 | 50.44 341 | 71.62 367 | 77.42 146 | 88.53 291 | 90.72 226 |
|
| thres100view900 | | | 75.45 270 | 75.05 270 | 76.66 294 | 87.27 227 | 51.88 355 | 81.07 242 | 73.26 346 | 75.68 143 | 83.25 242 | 86.37 278 | 45.54 362 | 88.80 251 | 51.98 357 | 90.99 255 | 89.31 256 |
|
| ET-MVSNet_ETH3D | | | 75.28 271 | 72.77 292 | 82.81 198 | 83.03 311 | 68.11 196 | 77.09 296 | 76.51 322 | 60.67 313 | 77.60 316 | 80.52 349 | 38.04 389 | 91.15 189 | 70.78 215 | 90.68 266 | 89.17 259 |
|
| thres400 | | | 75.14 272 | 74.23 277 | 77.86 278 | 86.24 254 | 52.12 352 | 79.24 266 | 73.87 339 | 73.34 174 | 81.82 265 | 84.60 308 | 46.02 356 | 88.80 251 | 51.98 357 | 90.99 255 | 92.66 160 |
|
| wuyk23d | | | 75.13 273 | 79.30 227 | 62.63 373 | 75.56 375 | 75.18 123 | 80.89 244 | 73.10 348 | 75.06 152 | 94.76 13 | 95.32 37 | 87.73 40 | 52.85 404 | 34.16 403 | 97.11 79 | 59.85 400 |
|
| EU-MVSNet | | | 75.12 274 | 74.43 276 | 77.18 286 | 83.11 310 | 59.48 295 | 85.71 142 | 82.43 283 | 39.76 401 | 85.64 193 | 88.76 238 | 44.71 373 | 87.88 263 | 73.86 185 | 85.88 329 | 84.16 325 |
|
| HyFIR lowres test | | | 75.12 274 | 72.66 294 | 82.50 205 | 91.44 133 | 65.19 224 | 72.47 345 | 87.31 215 | 46.79 380 | 80.29 289 | 84.30 310 | 52.70 329 | 92.10 165 | 51.88 361 | 86.73 318 | 90.22 240 |
|
| CMPMVS |  | 59.41 20 | 75.12 274 | 73.57 282 | 79.77 245 | 75.84 374 | 67.22 202 | 81.21 240 | 82.18 284 | 50.78 372 | 76.50 319 | 87.66 257 | 55.20 321 | 82.99 324 | 62.17 295 | 90.64 270 | 89.09 263 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| pmmvs4 | | | 74.92 277 | 72.98 290 | 80.73 233 | 84.95 274 | 71.71 163 | 76.23 311 | 77.59 311 | 52.83 357 | 77.73 315 | 86.38 277 | 56.35 314 | 84.97 307 | 57.72 322 | 87.05 313 | 85.51 307 |
|
| tfpn200view9 | | | 74.86 278 | 74.23 277 | 76.74 293 | 86.24 254 | 52.12 352 | 79.24 266 | 73.87 339 | 73.34 174 | 81.82 265 | 84.60 308 | 46.02 356 | 88.80 251 | 51.98 357 | 90.99 255 | 89.31 256 |
|
| 1112_ss | | | 74.82 279 | 73.74 280 | 78.04 274 | 89.57 170 | 60.04 288 | 76.49 307 | 87.09 224 | 54.31 350 | 73.66 347 | 79.80 355 | 60.25 286 | 86.76 281 | 58.37 316 | 84.15 350 | 87.32 288 |
|
| EGC-MVSNET | | | 74.79 280 | 69.99 320 | 89.19 62 | 94.89 38 | 87.00 12 | 91.89 34 | 86.28 233 | 1.09 410 | 2.23 412 | 95.98 26 | 81.87 111 | 89.48 238 | 79.76 113 | 95.96 121 | 91.10 216 |
|
| ppachtmachnet_test | | | 74.73 281 | 74.00 279 | 76.90 290 | 80.71 334 | 56.89 322 | 71.53 353 | 78.42 306 | 58.24 327 | 79.32 301 | 82.92 326 | 57.91 304 | 84.26 315 | 65.60 267 | 91.36 250 | 89.56 251 |
|
| Patchmatch-RL test | | | 74.48 282 | 73.68 281 | 76.89 291 | 84.83 276 | 66.54 211 | 72.29 346 | 69.16 371 | 57.70 332 | 86.76 167 | 86.33 279 | 45.79 361 | 82.59 325 | 69.63 227 | 90.65 269 | 81.54 359 |
|
| PatchMatch-RL | | | 74.48 282 | 73.22 287 | 78.27 270 | 87.70 217 | 85.26 35 | 75.92 316 | 70.09 365 | 64.34 277 | 76.09 326 | 81.25 343 | 65.87 257 | 78.07 349 | 53.86 344 | 83.82 352 | 71.48 388 |
|
| XXY-MVS | | | 74.44 284 | 76.19 259 | 69.21 345 | 84.61 280 | 52.43 351 | 71.70 350 | 77.18 316 | 60.73 312 | 80.60 283 | 90.96 190 | 75.44 175 | 69.35 373 | 56.13 329 | 88.33 294 | 85.86 303 |
|
| test2506 | | | 74.12 285 | 73.39 285 | 76.28 298 | 91.85 115 | 44.20 389 | 84.06 170 | 48.20 408 | 72.30 196 | 81.90 262 | 94.20 81 | 27.22 409 | 89.77 235 | 64.81 274 | 96.02 118 | 94.87 67 |
|
| CR-MVSNet | | | 74.00 286 | 73.04 289 | 76.85 292 | 79.58 342 | 62.64 252 | 82.58 213 | 76.90 318 | 50.50 375 | 75.72 330 | 92.38 145 | 48.07 348 | 84.07 317 | 68.72 241 | 82.91 358 | 83.85 329 |
|
| Test_1112_low_res | | | 73.90 287 | 73.08 288 | 76.35 296 | 90.35 157 | 55.95 325 | 73.40 341 | 86.17 235 | 50.70 373 | 73.14 348 | 85.94 286 | 58.31 300 | 85.90 297 | 56.51 326 | 83.22 355 | 87.20 289 |
|
| test20.03 | | | 73.75 288 | 74.59 274 | 71.22 333 | 81.11 327 | 51.12 362 | 70.15 363 | 72.10 354 | 70.42 214 | 80.28 291 | 91.50 172 | 64.21 264 | 74.72 361 | 46.96 380 | 94.58 176 | 87.82 283 |
|
| test_fmvs2 | | | 73.57 289 | 72.80 291 | 75.90 302 | 72.74 394 | 68.84 191 | 77.07 297 | 84.32 268 | 45.14 387 | 82.89 248 | 84.22 311 | 48.37 346 | 70.36 370 | 73.40 193 | 87.03 314 | 88.52 270 |
|
| SCA | | | 73.32 290 | 72.57 296 | 75.58 305 | 81.62 320 | 55.86 327 | 78.89 272 | 71.37 360 | 61.73 296 | 74.93 339 | 83.42 320 | 60.46 283 | 87.01 272 | 58.11 320 | 82.63 363 | 83.88 326 |
|
| baseline1 | | | 73.26 291 | 73.54 283 | 72.43 327 | 84.92 275 | 47.79 374 | 79.89 255 | 74.00 337 | 65.93 258 | 78.81 305 | 86.28 282 | 56.36 313 | 81.63 331 | 56.63 325 | 79.04 379 | 87.87 282 |
|
| 1314 | | | 73.22 292 | 72.56 297 | 75.20 306 | 80.41 338 | 57.84 313 | 81.64 234 | 85.36 248 | 51.68 366 | 73.10 349 | 76.65 381 | 61.45 278 | 85.19 305 | 63.54 284 | 79.21 377 | 82.59 345 |
|
| MVS | | | 73.21 293 | 72.59 295 | 75.06 308 | 80.97 328 | 60.81 282 | 81.64 234 | 85.92 241 | 46.03 385 | 71.68 356 | 77.54 372 | 68.47 243 | 89.77 235 | 55.70 332 | 85.39 331 | 74.60 385 |
|
| HY-MVS | | 64.64 18 | 73.03 294 | 72.47 298 | 74.71 309 | 83.36 303 | 54.19 337 | 82.14 230 | 81.96 286 | 56.76 341 | 69.57 369 | 86.21 283 | 60.03 287 | 84.83 309 | 49.58 368 | 82.65 361 | 85.11 311 |
|
| thisisatest0515 | | | 73.00 295 | 70.52 312 | 80.46 237 | 81.45 322 | 59.90 291 | 73.16 343 | 74.31 336 | 57.86 331 | 76.08 327 | 77.78 370 | 37.60 391 | 92.12 164 | 65.00 272 | 91.45 249 | 89.35 255 |
|
| EPNet_dtu | | | 72.87 296 | 71.33 308 | 77.49 283 | 77.72 356 | 60.55 284 | 82.35 221 | 75.79 325 | 66.49 256 | 58.39 403 | 81.06 344 | 53.68 325 | 85.98 294 | 53.55 347 | 92.97 219 | 85.95 301 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CVMVSNet | | | 72.62 297 | 71.41 307 | 76.28 298 | 83.25 305 | 60.34 286 | 83.50 187 | 79.02 305 | 37.77 405 | 76.33 321 | 85.10 299 | 49.60 344 | 87.41 268 | 70.54 220 | 77.54 385 | 81.08 366 |
|
| CHOSEN 1792x2688 | | | 72.45 298 | 70.56 311 | 78.13 271 | 90.02 167 | 63.08 245 | 68.72 368 | 83.16 275 | 42.99 395 | 75.92 328 | 85.46 292 | 57.22 309 | 85.18 306 | 49.87 366 | 81.67 365 | 86.14 299 |
|
| testgi | | | 72.36 299 | 74.61 272 | 65.59 364 | 80.56 336 | 42.82 394 | 68.29 369 | 73.35 345 | 66.87 253 | 81.84 264 | 89.93 221 | 72.08 223 | 66.92 386 | 46.05 383 | 92.54 225 | 87.01 291 |
|
| thres200 | | | 72.34 300 | 71.55 306 | 74.70 310 | 83.48 298 | 51.60 357 | 75.02 325 | 73.71 342 | 70.14 220 | 78.56 307 | 80.57 348 | 46.20 354 | 88.20 261 | 46.99 379 | 89.29 281 | 84.32 321 |
|
| FPMVS | | | 72.29 301 | 72.00 300 | 73.14 318 | 88.63 196 | 85.00 37 | 74.65 329 | 67.39 375 | 71.94 201 | 77.80 313 | 87.66 257 | 50.48 340 | 75.83 357 | 49.95 364 | 79.51 373 | 58.58 402 |
|
| FMVSNet5 | | | 72.10 302 | 71.69 302 | 73.32 316 | 81.57 321 | 53.02 346 | 76.77 301 | 78.37 307 | 63.31 280 | 76.37 320 | 91.85 160 | 36.68 392 | 78.98 345 | 47.87 376 | 92.45 226 | 87.95 279 |
|
| our_test_3 | | | 71.85 303 | 71.59 303 | 72.62 324 | 80.71 334 | 53.78 340 | 69.72 365 | 71.71 359 | 58.80 324 | 78.03 308 | 80.51 350 | 56.61 312 | 78.84 347 | 62.20 293 | 86.04 328 | 85.23 309 |
|
| PAPM | | | 71.77 304 | 70.06 318 | 76.92 289 | 86.39 246 | 53.97 338 | 76.62 305 | 86.62 230 | 53.44 354 | 63.97 393 | 84.73 306 | 57.79 306 | 92.34 157 | 39.65 394 | 81.33 369 | 84.45 319 |
|
| IB-MVS | | 62.13 19 | 71.64 305 | 68.97 329 | 79.66 249 | 80.80 333 | 62.26 261 | 73.94 335 | 76.90 318 | 63.27 281 | 68.63 373 | 76.79 379 | 33.83 396 | 91.84 172 | 59.28 313 | 87.26 308 | 84.88 313 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| UnsupCasMVSNet_eth | | | 71.63 306 | 72.30 299 | 69.62 342 | 76.47 368 | 52.70 349 | 70.03 364 | 80.97 294 | 59.18 321 | 79.36 299 | 88.21 246 | 60.50 282 | 69.12 374 | 58.33 318 | 77.62 384 | 87.04 290 |
|
| testing3 | | | 71.53 307 | 70.79 309 | 73.77 314 | 88.89 188 | 41.86 396 | 76.60 306 | 59.12 398 | 72.83 185 | 80.97 277 | 82.08 335 | 19.80 414 | 87.33 270 | 65.12 271 | 91.68 244 | 92.13 190 |
|
| test_vis3_rt | | | 71.42 308 | 70.67 310 | 73.64 315 | 69.66 401 | 70.46 173 | 66.97 376 | 89.73 180 | 42.68 397 | 88.20 139 | 83.04 322 | 43.77 375 | 60.07 398 | 65.35 270 | 86.66 319 | 90.39 238 |
|
| Anonymous20231206 | | | 71.38 309 | 71.88 301 | 69.88 340 | 86.31 251 | 54.37 336 | 70.39 361 | 74.62 332 | 52.57 359 | 76.73 318 | 88.76 238 | 59.94 288 | 72.06 364 | 44.35 387 | 93.23 212 | 83.23 340 |
|
| test_vis1_n_1920 | | | 71.30 310 | 71.58 305 | 70.47 336 | 77.58 358 | 59.99 290 | 74.25 330 | 84.22 269 | 51.06 369 | 74.85 340 | 79.10 361 | 55.10 322 | 68.83 376 | 68.86 238 | 79.20 378 | 82.58 346 |
|
| MIMVSNet | | | 71.09 311 | 71.59 303 | 69.57 343 | 87.23 228 | 50.07 367 | 78.91 271 | 71.83 356 | 60.20 318 | 71.26 357 | 91.76 166 | 55.08 323 | 76.09 355 | 41.06 392 | 87.02 315 | 82.54 348 |
|
| test_fmvs1_n | | | 70.94 312 | 70.41 315 | 72.53 326 | 73.92 384 | 66.93 208 | 75.99 315 | 84.21 270 | 43.31 394 | 79.40 298 | 79.39 359 | 43.47 376 | 68.55 378 | 69.05 235 | 84.91 342 | 82.10 353 |
|
| MS-PatchMatch | | | 70.93 313 | 70.22 316 | 73.06 319 | 81.85 317 | 62.50 255 | 73.82 337 | 77.90 308 | 52.44 360 | 75.92 328 | 81.27 342 | 55.67 318 | 81.75 329 | 55.37 335 | 77.70 383 | 74.94 384 |
|
| pmmvs5 | | | 70.73 314 | 70.07 317 | 72.72 322 | 77.03 363 | 52.73 348 | 74.14 331 | 75.65 328 | 50.36 376 | 72.17 354 | 85.37 296 | 55.42 320 | 80.67 336 | 52.86 353 | 87.59 307 | 84.77 314 |
|
| PatchT | | | 70.52 315 | 72.76 293 | 63.79 372 | 79.38 346 | 33.53 406 | 77.63 289 | 65.37 384 | 73.61 167 | 71.77 355 | 92.79 134 | 44.38 374 | 75.65 358 | 64.53 279 | 85.37 332 | 82.18 352 |
|
| test_vis1_n | | | 70.29 316 | 69.99 320 | 71.20 334 | 75.97 373 | 66.50 212 | 76.69 303 | 80.81 295 | 44.22 390 | 75.43 333 | 77.23 376 | 50.00 342 | 68.59 377 | 66.71 255 | 82.85 360 | 78.52 378 |
|
| N_pmnet | | | 70.20 317 | 68.80 331 | 74.38 311 | 80.91 329 | 84.81 40 | 59.12 393 | 76.45 323 | 55.06 346 | 75.31 337 | 82.36 332 | 55.74 317 | 54.82 403 | 47.02 378 | 87.24 309 | 83.52 333 |
|
| tpmvs | | | 70.16 318 | 69.56 323 | 71.96 329 | 74.71 383 | 48.13 371 | 79.63 257 | 75.45 330 | 65.02 274 | 70.26 365 | 81.88 337 | 45.34 367 | 85.68 301 | 58.34 317 | 75.39 389 | 82.08 354 |
|
| new-patchmatchnet | | | 70.10 319 | 73.37 286 | 60.29 380 | 81.23 326 | 16.95 415 | 59.54 391 | 74.62 332 | 62.93 283 | 80.97 277 | 87.93 251 | 62.83 275 | 71.90 365 | 55.24 337 | 95.01 161 | 92.00 194 |
|
| YYNet1 | | | 70.06 320 | 70.44 313 | 68.90 347 | 73.76 386 | 53.42 344 | 58.99 394 | 67.20 377 | 58.42 326 | 87.10 159 | 85.39 295 | 59.82 290 | 67.32 383 | 59.79 310 | 83.50 354 | 85.96 300 |
|
| MDA-MVSNet_test_wron | | | 70.05 321 | 70.44 313 | 68.88 348 | 73.84 385 | 53.47 342 | 58.93 395 | 67.28 376 | 58.43 325 | 87.09 160 | 85.40 294 | 59.80 291 | 67.25 384 | 59.66 311 | 83.54 353 | 85.92 302 |
|
| CostFormer | | | 69.98 322 | 68.68 332 | 73.87 312 | 77.14 361 | 50.72 364 | 79.26 265 | 74.51 334 | 51.94 365 | 70.97 360 | 84.75 305 | 45.16 370 | 87.49 267 | 55.16 338 | 79.23 376 | 83.40 336 |
|
| testing91 | | | 69.94 323 | 68.99 328 | 72.80 321 | 83.81 296 | 45.89 382 | 71.57 352 | 73.64 344 | 68.24 238 | 70.77 363 | 77.82 369 | 34.37 395 | 84.44 312 | 53.64 346 | 87.00 316 | 88.07 274 |
|
| baseline2 | | | 69.77 324 | 66.89 340 | 78.41 266 | 79.51 344 | 58.09 310 | 76.23 311 | 69.57 368 | 57.50 335 | 64.82 391 | 77.45 374 | 46.02 356 | 88.44 257 | 53.08 349 | 77.83 381 | 88.70 268 |
|
| PatchmatchNet |  | | 69.71 325 | 68.83 330 | 72.33 328 | 77.66 357 | 53.60 341 | 79.29 264 | 69.99 366 | 57.66 333 | 72.53 352 | 82.93 325 | 46.45 353 | 80.08 341 | 60.91 305 | 72.09 393 | 83.31 339 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_fmvs1 | | | 69.57 326 | 69.05 326 | 71.14 335 | 69.15 402 | 65.77 220 | 73.98 334 | 83.32 274 | 42.83 396 | 77.77 314 | 78.27 368 | 43.39 379 | 68.50 379 | 68.39 245 | 84.38 349 | 79.15 376 |
|
| JIA-IIPM | | | 69.41 327 | 66.64 344 | 77.70 280 | 73.19 389 | 71.24 168 | 75.67 317 | 65.56 383 | 70.42 214 | 65.18 387 | 92.97 126 | 33.64 397 | 83.06 322 | 53.52 348 | 69.61 399 | 78.79 377 |
|
| Syy-MVS | | | 69.40 328 | 70.03 319 | 67.49 357 | 81.72 318 | 38.94 399 | 71.00 355 | 61.99 389 | 61.38 302 | 70.81 361 | 72.36 392 | 61.37 279 | 79.30 343 | 64.50 280 | 85.18 335 | 84.22 322 |
|
| testing99 | | | 69.27 329 | 68.15 335 | 72.63 323 | 83.29 304 | 45.45 384 | 71.15 354 | 71.08 361 | 67.34 249 | 70.43 364 | 77.77 371 | 32.24 398 | 84.35 314 | 53.72 345 | 86.33 324 | 88.10 273 |
|
| UnsupCasMVSNet_bld | | | 69.21 330 | 69.68 322 | 67.82 355 | 79.42 345 | 51.15 361 | 67.82 373 | 75.79 325 | 54.15 351 | 77.47 317 | 85.36 297 | 59.26 294 | 70.64 369 | 48.46 373 | 79.35 375 | 81.66 357 |
|
| test_cas_vis1_n_1920 | | | 69.20 331 | 69.12 324 | 69.43 344 | 73.68 387 | 62.82 249 | 70.38 362 | 77.21 315 | 46.18 384 | 80.46 288 | 78.95 363 | 52.03 331 | 65.53 391 | 65.77 266 | 77.45 386 | 79.95 374 |
|
| gg-mvs-nofinetune | | | 68.96 332 | 69.11 325 | 68.52 353 | 76.12 372 | 45.32 385 | 83.59 185 | 55.88 403 | 86.68 27 | 64.62 392 | 97.01 8 | 30.36 401 | 83.97 319 | 44.78 386 | 82.94 357 | 76.26 381 |
|
| WB-MVSnew | | | 68.72 333 | 69.01 327 | 67.85 354 | 83.22 307 | 43.98 390 | 74.93 326 | 65.98 382 | 55.09 345 | 73.83 345 | 79.11 360 | 65.63 258 | 71.89 366 | 38.21 399 | 85.04 338 | 87.69 284 |
|
| tpm2 | | | 68.45 334 | 66.83 341 | 73.30 317 | 78.93 352 | 48.50 370 | 79.76 256 | 71.76 357 | 47.50 379 | 69.92 367 | 83.60 316 | 42.07 382 | 88.40 258 | 48.44 374 | 79.51 373 | 83.01 343 |
|
| tpm | | | 67.95 335 | 68.08 336 | 67.55 356 | 78.74 353 | 43.53 392 | 75.60 318 | 67.10 380 | 54.92 347 | 72.23 353 | 88.10 247 | 42.87 381 | 75.97 356 | 52.21 355 | 80.95 372 | 83.15 341 |
|
| WTY-MVS | | | 67.91 336 | 68.35 333 | 66.58 361 | 80.82 332 | 48.12 372 | 65.96 378 | 72.60 349 | 53.67 353 | 71.20 358 | 81.68 340 | 58.97 296 | 69.06 375 | 48.57 372 | 81.67 365 | 82.55 347 |
|
| testing11 | | | 67.38 337 | 65.93 345 | 71.73 331 | 83.37 302 | 46.60 379 | 70.95 357 | 69.40 369 | 62.47 288 | 66.14 380 | 76.66 380 | 31.22 399 | 84.10 316 | 49.10 370 | 84.10 351 | 84.49 317 |
|
| test-LLR | | | 67.21 338 | 66.74 342 | 68.63 351 | 76.45 369 | 55.21 332 | 67.89 370 | 67.14 378 | 62.43 291 | 65.08 388 | 72.39 390 | 43.41 377 | 69.37 371 | 61.00 303 | 84.89 343 | 81.31 361 |
|
| testing222 | | | 66.93 339 | 65.30 351 | 71.81 330 | 83.38 301 | 45.83 383 | 72.06 348 | 67.50 374 | 64.12 278 | 69.68 368 | 76.37 383 | 27.34 408 | 83.00 323 | 38.88 395 | 88.38 293 | 86.62 295 |
|
| sss | | | 66.92 340 | 67.26 338 | 65.90 363 | 77.23 360 | 51.10 363 | 64.79 380 | 71.72 358 | 52.12 364 | 70.13 366 | 80.18 352 | 57.96 303 | 65.36 392 | 50.21 363 | 81.01 371 | 81.25 363 |
|
| KD-MVS_2432*1600 | | | 66.87 341 | 65.81 347 | 70.04 338 | 67.50 403 | 47.49 375 | 62.56 385 | 79.16 302 | 61.21 307 | 77.98 309 | 80.61 346 | 25.29 411 | 82.48 326 | 53.02 350 | 84.92 340 | 80.16 372 |
|
| miper_refine_blended | | | 66.87 341 | 65.81 347 | 70.04 338 | 67.50 403 | 47.49 375 | 62.56 385 | 79.16 302 | 61.21 307 | 77.98 309 | 80.61 346 | 25.29 411 | 82.48 326 | 53.02 350 | 84.92 340 | 80.16 372 |
|
| dmvs_re | | | 66.81 343 | 66.98 339 | 66.28 362 | 76.87 364 | 58.68 308 | 71.66 351 | 72.24 352 | 60.29 316 | 69.52 370 | 73.53 389 | 52.38 330 | 64.40 394 | 44.90 385 | 81.44 368 | 75.76 382 |
|
| tpm cat1 | | | 66.76 344 | 65.21 352 | 71.42 332 | 77.09 362 | 50.62 365 | 78.01 282 | 73.68 343 | 44.89 388 | 68.64 372 | 79.00 362 | 45.51 364 | 82.42 328 | 49.91 365 | 70.15 396 | 81.23 365 |
|
| UWE-MVS | | | 66.43 345 | 65.56 350 | 69.05 346 | 84.15 290 | 40.98 397 | 73.06 344 | 64.71 385 | 54.84 348 | 76.18 325 | 79.62 358 | 29.21 403 | 80.50 338 | 38.54 398 | 89.75 277 | 85.66 305 |
|
| PVSNet | | 58.17 21 | 66.41 346 | 65.63 349 | 68.75 349 | 81.96 315 | 49.88 368 | 62.19 387 | 72.51 351 | 51.03 370 | 68.04 375 | 75.34 387 | 50.84 337 | 74.77 359 | 45.82 384 | 82.96 356 | 81.60 358 |
|
| tpmrst | | | 66.28 347 | 66.69 343 | 65.05 368 | 72.82 393 | 39.33 398 | 78.20 281 | 70.69 364 | 53.16 356 | 67.88 376 | 80.36 351 | 48.18 347 | 74.75 360 | 58.13 319 | 70.79 395 | 81.08 366 |
|
| Patchmatch-test | | | 65.91 348 | 67.38 337 | 61.48 378 | 75.51 376 | 43.21 393 | 68.84 367 | 63.79 387 | 62.48 287 | 72.80 351 | 83.42 320 | 44.89 372 | 59.52 400 | 48.27 375 | 86.45 321 | 81.70 356 |
|
| ADS-MVSNet2 | | | 65.87 349 | 63.64 357 | 72.55 325 | 73.16 390 | 56.92 321 | 67.10 374 | 74.81 331 | 49.74 377 | 66.04 382 | 82.97 323 | 46.71 351 | 77.26 352 | 42.29 389 | 69.96 397 | 83.46 334 |
|
| test_vis1_rt | | | 65.64 350 | 64.09 354 | 70.31 337 | 66.09 407 | 70.20 176 | 61.16 388 | 81.60 290 | 38.65 402 | 72.87 350 | 69.66 395 | 52.84 327 | 60.04 399 | 56.16 328 | 77.77 382 | 80.68 370 |
|
| mvsany_test3 | | | 65.48 351 | 62.97 359 | 73.03 320 | 69.99 400 | 76.17 118 | 64.83 379 | 43.71 410 | 43.68 392 | 80.25 292 | 87.05 272 | 52.83 328 | 63.09 397 | 51.92 360 | 72.44 392 | 79.84 375 |
|
| test-mter | | | 65.00 352 | 63.79 356 | 68.63 351 | 76.45 369 | 55.21 332 | 67.89 370 | 67.14 378 | 50.98 371 | 65.08 388 | 72.39 390 | 28.27 406 | 69.37 371 | 61.00 303 | 84.89 343 | 81.31 361 |
|
| ETVMVS | | | 64.67 353 | 63.34 358 | 68.64 350 | 83.44 300 | 41.89 395 | 69.56 366 | 61.70 394 | 61.33 304 | 68.74 371 | 75.76 385 | 28.76 404 | 79.35 342 | 34.65 402 | 86.16 327 | 84.67 316 |
|
| myMVS_eth3d | | | 64.66 354 | 63.89 355 | 66.97 359 | 81.72 318 | 37.39 402 | 71.00 355 | 61.99 389 | 61.38 302 | 70.81 361 | 72.36 392 | 20.96 413 | 79.30 343 | 49.59 367 | 85.18 335 | 84.22 322 |
|
| test0.0.03 1 | | | 64.66 354 | 64.36 353 | 65.57 365 | 75.03 381 | 46.89 378 | 64.69 381 | 61.58 395 | 62.43 291 | 71.18 359 | 77.54 372 | 43.41 377 | 68.47 380 | 40.75 393 | 82.65 361 | 81.35 360 |
|
| test_f | | | 64.31 356 | 65.85 346 | 59.67 381 | 66.54 406 | 62.24 264 | 57.76 397 | 70.96 362 | 40.13 399 | 84.36 218 | 82.09 334 | 46.93 350 | 51.67 405 | 61.99 296 | 81.89 364 | 65.12 396 |
|
| pmmvs3 | | | 62.47 357 | 60.02 370 | 69.80 341 | 71.58 397 | 64.00 235 | 70.52 360 | 58.44 401 | 39.77 400 | 66.05 381 | 75.84 384 | 27.10 410 | 72.28 363 | 46.15 382 | 84.77 347 | 73.11 386 |
|
| EPMVS | | | 62.47 357 | 62.63 361 | 62.01 374 | 70.63 399 | 38.74 400 | 74.76 327 | 52.86 405 | 53.91 352 | 67.71 378 | 80.01 353 | 39.40 386 | 66.60 387 | 55.54 334 | 68.81 401 | 80.68 370 |
|
| ADS-MVSNet | | | 61.90 359 | 62.19 363 | 61.03 379 | 73.16 390 | 36.42 404 | 67.10 374 | 61.75 392 | 49.74 377 | 66.04 382 | 82.97 323 | 46.71 351 | 63.21 395 | 42.29 389 | 69.96 397 | 83.46 334 |
|
| PMMVS | | | 61.65 360 | 60.38 367 | 65.47 366 | 65.40 410 | 69.26 185 | 63.97 383 | 61.73 393 | 36.80 406 | 60.11 398 | 68.43 397 | 59.42 292 | 66.35 388 | 48.97 371 | 78.57 380 | 60.81 399 |
|
| E-PMN | | | 61.59 361 | 61.62 364 | 61.49 377 | 66.81 405 | 55.40 330 | 53.77 400 | 60.34 397 | 66.80 254 | 58.90 401 | 65.50 400 | 40.48 385 | 66.12 389 | 55.72 331 | 86.25 325 | 62.95 398 |
|
| TESTMET0.1,1 | | | 61.29 362 | 60.32 368 | 64.19 370 | 72.06 395 | 51.30 359 | 67.89 370 | 62.09 388 | 45.27 386 | 60.65 397 | 69.01 396 | 27.93 407 | 64.74 393 | 56.31 327 | 81.65 367 | 76.53 380 |
|
| MVS-HIRNet | | | 61.16 363 | 62.92 360 | 55.87 384 | 79.09 349 | 35.34 405 | 71.83 349 | 57.98 402 | 46.56 382 | 59.05 400 | 91.14 182 | 49.95 343 | 76.43 354 | 38.74 396 | 71.92 394 | 55.84 403 |
|
| EMVS | | | 61.10 364 | 60.81 366 | 61.99 375 | 65.96 408 | 55.86 327 | 53.10 401 | 58.97 400 | 67.06 251 | 56.89 405 | 63.33 401 | 40.98 383 | 67.03 385 | 54.79 340 | 86.18 326 | 63.08 397 |
|
| DSMNet-mixed | | | 60.98 365 | 61.61 365 | 59.09 383 | 72.88 392 | 45.05 387 | 74.70 328 | 46.61 409 | 26.20 407 | 65.34 386 | 90.32 212 | 55.46 319 | 63.12 396 | 41.72 391 | 81.30 370 | 69.09 392 |
|
| dp | | | 60.70 366 | 60.29 369 | 61.92 376 | 72.04 396 | 38.67 401 | 70.83 358 | 64.08 386 | 51.28 368 | 60.75 396 | 77.28 375 | 36.59 393 | 71.58 368 | 47.41 377 | 62.34 403 | 75.52 383 |
|
| dmvs_testset | | | 60.59 367 | 62.54 362 | 54.72 386 | 77.26 359 | 27.74 409 | 74.05 333 | 61.00 396 | 60.48 314 | 65.62 385 | 67.03 399 | 55.93 316 | 68.23 381 | 32.07 406 | 69.46 400 | 68.17 393 |
|
| CHOSEN 280x420 | | | 59.08 368 | 56.52 373 | 66.76 360 | 76.51 367 | 64.39 231 | 49.62 402 | 59.00 399 | 43.86 391 | 55.66 406 | 68.41 398 | 35.55 394 | 68.21 382 | 43.25 388 | 76.78 388 | 67.69 394 |
|
| mvsany_test1 | | | 58.48 369 | 56.47 374 | 64.50 369 | 65.90 409 | 68.21 195 | 56.95 398 | 42.11 411 | 38.30 403 | 65.69 384 | 77.19 378 | 56.96 310 | 59.35 401 | 46.16 381 | 58.96 404 | 65.93 395 |
|
| PVSNet_0 | | 51.08 22 | 56.10 370 | 54.97 375 | 59.48 382 | 75.12 380 | 53.28 345 | 55.16 399 | 61.89 391 | 44.30 389 | 59.16 399 | 62.48 402 | 54.22 324 | 65.91 390 | 35.40 401 | 47.01 405 | 59.25 401 |
|
| new_pmnet | | | 55.69 371 | 57.66 372 | 49.76 387 | 75.47 377 | 30.59 407 | 59.56 390 | 51.45 406 | 43.62 393 | 62.49 394 | 75.48 386 | 40.96 384 | 49.15 407 | 37.39 400 | 72.52 391 | 69.55 391 |
|
| PMMVS2 | | | 55.64 372 | 59.27 371 | 44.74 388 | 64.30 411 | 12.32 416 | 40.60 403 | 49.79 407 | 53.19 355 | 65.06 390 | 84.81 304 | 53.60 326 | 49.76 406 | 32.68 405 | 89.41 280 | 72.15 387 |
|
| MVE |  | 40.22 23 | 51.82 373 | 50.47 376 | 55.87 384 | 62.66 412 | 51.91 354 | 31.61 405 | 39.28 412 | 40.65 398 | 50.76 407 | 74.98 388 | 56.24 315 | 44.67 408 | 33.94 404 | 64.11 402 | 71.04 390 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| dongtai | | | 41.90 374 | 42.65 377 | 39.67 389 | 70.86 398 | 21.11 411 | 61.01 389 | 21.42 416 | 57.36 336 | 57.97 404 | 50.06 405 | 16.40 415 | 58.73 402 | 21.03 409 | 27.69 409 | 39.17 405 |
|
| kuosan | | | 30.83 375 | 32.17 378 | 26.83 391 | 53.36 413 | 19.02 414 | 57.90 396 | 20.44 417 | 38.29 404 | 38.01 408 | 37.82 407 | 15.18 416 | 33.45 410 | 7.74 411 | 20.76 410 | 28.03 406 |
|
| test_method | | | 30.46 376 | 29.60 379 | 33.06 390 | 17.99 415 | 3.84 418 | 13.62 406 | 73.92 338 | 2.79 409 | 18.29 411 | 53.41 404 | 28.53 405 | 43.25 409 | 22.56 407 | 35.27 407 | 52.11 404 |
|
| cdsmvs_eth3d_5k | | | 20.81 377 | 27.75 380 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 85.44 247 | 0.00 414 | 0.00 415 | 82.82 327 | 81.46 115 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| tmp_tt | | | 20.25 378 | 24.50 381 | 7.49 393 | 4.47 416 | 8.70 417 | 34.17 404 | 25.16 414 | 1.00 411 | 32.43 410 | 18.49 408 | 39.37 387 | 9.21 412 | 21.64 408 | 43.75 406 | 4.57 408 |
|
| ab-mvs-re | | | 6.65 379 | 8.87 382 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 79.80 355 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 6.41 380 | 8.55 383 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 76.94 162 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| test123 | | | 6.27 381 | 8.08 384 | 0.84 394 | 1.11 418 | 0.57 419 | 62.90 384 | 0.82 418 | 0.54 412 | 1.07 414 | 2.75 413 | 1.26 417 | 0.30 413 | 1.04 412 | 1.26 412 | 1.66 409 |
|
| testmvs | | | 5.91 382 | 7.65 385 | 0.72 395 | 1.20 417 | 0.37 420 | 59.14 392 | 0.67 419 | 0.49 413 | 1.11 413 | 2.76 412 | 0.94 418 | 0.24 414 | 1.02 413 | 1.47 411 | 1.55 410 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| WAC-MVS | | | | | | | 37.39 402 | | | | | | | | 52.61 354 | | |
|
| FOURS1 | | | | | | 96.08 12 | 87.41 11 | 96.19 2 | 95.83 5 | 92.95 3 | 96.57 3 | | | | | | |
|
| MSC_two_6792asdad | | | | | 88.81 68 | 91.55 127 | 77.99 91 | | 91.01 145 | | | | | 96.05 9 | 87.45 20 | 98.17 32 | 92.40 175 |
|
| PC_three_1452 | | | | | | | | | | 58.96 323 | 90.06 95 | 91.33 176 | 80.66 125 | 93.03 139 | 75.78 162 | 95.94 124 | 92.48 169 |
|
| No_MVS | | | | | 88.81 68 | 91.55 127 | 77.99 91 | | 91.01 145 | | | | | 96.05 9 | 87.45 20 | 98.17 32 | 92.40 175 |
|
| test_one_0601 | | | | | | 93.85 59 | 73.27 136 | | 94.11 36 | 86.57 28 | 93.47 39 | 94.64 60 | 88.42 26 | | | | |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 92.22 100 | 80.48 68 | | 91.85 120 | 71.22 208 | 90.38 90 | 92.98 124 | 86.06 61 | 96.11 7 | 81.99 92 | 96.75 89 | |
|
| RE-MVS-def | | | | 92.61 5 | | 94.13 52 | 88.95 6 | 92.87 13 | 94.16 30 | 88.75 15 | 93.79 30 | 94.43 68 | 90.64 10 | | 87.16 29 | 97.60 63 | 92.73 155 |
|
| IU-MVS | | | | | | 94.18 47 | 72.64 143 | | 90.82 150 | 56.98 339 | 89.67 107 | | | | 85.78 49 | 97.92 46 | 93.28 134 |
|
| OPU-MVS | | | | | 88.27 79 | 91.89 113 | 77.83 94 | 90.47 54 | | | | 91.22 179 | 81.12 119 | 94.68 75 | 74.48 175 | 95.35 143 | 92.29 181 |
|
| test_241102_TWO | | | | | | | | | 93.71 53 | 83.77 50 | 93.49 37 | 94.27 75 | 89.27 21 | 95.84 24 | 86.03 46 | 97.82 51 | 92.04 192 |
|
| test_241102_ONE | | | | | | 94.18 47 | 72.65 141 | | 93.69 54 | 83.62 52 | 94.11 24 | 93.78 104 | 90.28 14 | 95.50 48 | | | |
|
| 9.14 | | | | 89.29 60 | | 91.84 117 | | 88.80 92 | 95.32 13 | 75.14 151 | 91.07 79 | 92.89 129 | 87.27 44 | 93.78 107 | 83.69 70 | 97.55 66 | |
|
| save fliter | | | | | | 93.75 60 | 77.44 100 | 86.31 132 | 89.72 181 | 70.80 211 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 85.33 36 | 93.75 32 | 94.65 57 | 87.44 43 | 95.78 31 | 87.41 22 | 98.21 29 | 92.98 149 |
|
| test_0728_SECOND | | | | | 86.79 99 | 94.25 46 | 72.45 151 | 90.54 51 | 94.10 37 | | | | | 95.88 18 | 86.42 36 | 97.97 43 | 92.02 193 |
|
| test0726 | | | | | | 94.16 50 | 72.56 147 | 90.63 48 | 93.90 46 | 83.61 53 | 93.75 32 | 94.49 65 | 89.76 18 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 83.88 326 |
|
| test_part2 | | | | | | 93.86 58 | 77.77 95 | | | | 92.84 49 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 46.11 355 | | | | 83.88 326 |
|
| sam_mvs | | | | | | | | | | | | | 45.92 360 | | | | |
|
| ambc | | | | | 82.98 191 | 90.55 154 | 64.86 226 | 88.20 99 | 89.15 192 | | 89.40 116 | 93.96 95 | 71.67 228 | 91.38 184 | 78.83 124 | 96.55 94 | 92.71 158 |
|
| MTGPA |  | | | | | | | | 91.81 124 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.85 274 | | | | 3.13 410 | 45.19 369 | 80.13 340 | 58.11 320 | | |
|
| test_post | | | | | | | | | | | | 3.10 411 | 45.43 365 | 77.22 353 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 81.71 339 | 45.93 359 | 87.01 272 | | | |
|
| GG-mvs-BLEND | | | | | 67.16 358 | 73.36 388 | 46.54 381 | 84.15 168 | 55.04 404 | | 58.64 402 | 61.95 403 | 29.93 402 | 83.87 320 | 38.71 397 | 76.92 387 | 71.07 389 |
|
| MTMP | | | | | | | | 90.66 47 | 33.14 413 | | | | | | | | |
|
| gm-plane-assit | | | | | | 75.42 378 | 44.97 388 | | | 52.17 361 | | 72.36 392 | | 87.90 262 | 54.10 343 | | |
|
| test9_res | | | | | | | | | | | | | | | 80.83 102 | 96.45 100 | 90.57 232 |
|
| TEST9 | | | | | | 92.34 95 | 79.70 75 | 83.94 173 | 90.32 164 | 65.41 270 | 84.49 214 | 90.97 188 | 82.03 106 | 93.63 112 | | | |
|
| test_8 | | | | | | 92.09 104 | 78.87 82 | 83.82 178 | 90.31 166 | 65.79 260 | 84.36 218 | 90.96 190 | 81.93 108 | 93.44 125 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 79.68 115 | 96.16 111 | 90.22 240 |
|
| agg_prior | | | | | | 91.58 125 | 77.69 97 | | 90.30 167 | | 84.32 220 | | | 93.18 133 | | | |
|
| TestCases | | | | | 89.68 52 | 91.59 122 | 83.40 49 | | 95.44 11 | 79.47 96 | 88.00 145 | 93.03 122 | 82.66 91 | 91.47 178 | 70.81 213 | 96.14 112 | 94.16 95 |
|
| test_prior4 | | | | | | | 78.97 81 | 84.59 159 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 83.37 190 | | 75.43 147 | 84.58 212 | 91.57 170 | 81.92 110 | | 79.54 117 | 96.97 82 | |
|
| test_prior | | | | | 86.32 107 | 90.59 153 | 71.99 158 | | 92.85 90 | | | | | 94.17 94 | | | 92.80 153 |
|
| 旧先验2 | | | | | | | | 81.73 232 | | 56.88 340 | 86.54 178 | | | 84.90 308 | 72.81 202 | | |
|
| 新几何2 | | | | | | | | 81.72 233 | | | | | | | | | |
|
| 新几何1 | | | | | 82.95 193 | 93.96 56 | 78.56 85 | | 80.24 298 | 55.45 344 | 83.93 231 | 91.08 185 | 71.19 229 | 88.33 259 | 65.84 264 | 93.07 215 | 81.95 355 |
|
| 旧先验1 | | | | | | 91.97 109 | 71.77 159 | | 81.78 288 | | | 91.84 161 | 73.92 195 | | | 93.65 203 | 83.61 332 |
|
| 无先验 | | | | | | | | 82.81 208 | 85.62 245 | 58.09 329 | | | | 91.41 183 | 67.95 249 | | 84.48 318 |
|
| 原ACMM2 | | | | | | | | 82.26 226 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.60 142 | 92.81 86 | 74.01 128 | | 91.50 129 | 62.59 285 | 82.73 251 | 90.67 204 | 76.53 169 | 94.25 88 | 69.24 230 | 95.69 137 | 85.55 306 |
|
| test222 | | | | | | 93.31 70 | 76.54 110 | 79.38 263 | 77.79 309 | 52.59 358 | 82.36 255 | 90.84 197 | 66.83 252 | | | 91.69 243 | 81.25 363 |
|
| testdata2 | | | | | | | | | | | | | | 86.43 286 | 63.52 285 | | |
|
| segment_acmp | | | | | | | | | | | | | 81.94 107 | | | | |
|
| testdata | | | | | 79.54 251 | 92.87 81 | 72.34 152 | | 80.14 299 | 59.91 319 | 85.47 197 | 91.75 167 | 67.96 247 | 85.24 304 | 68.57 244 | 92.18 235 | 81.06 368 |
|
| testdata1 | | | | | | | | 79.62 258 | | 73.95 162 | | | | | | | |
|
| test12 | | | | | 86.57 102 | 90.74 149 | 72.63 145 | | 90.69 153 | | 82.76 250 | | 79.20 136 | 94.80 72 | | 95.32 145 | 92.27 183 |
|
| plane_prior7 | | | | | | 93.45 65 | 77.31 103 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 92.61 87 | 76.54 110 | | | | | | 74.84 183 | | | | |
|
| plane_prior5 | | | | | | | | | 93.61 57 | | | | | 95.22 58 | 80.78 103 | 95.83 130 | 94.46 80 |
|
| plane_prior4 | | | | | | | | | | | | 92.95 127 | | | | | |
|
| plane_prior3 | | | | | | | 76.85 108 | | | 77.79 120 | 86.55 173 | | | | | | |
|
| plane_prior2 | | | | | | | | 89.45 81 | | 79.44 98 | | | | | | | |
|
| plane_prior1 | | | | | | 92.83 85 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 76.42 113 | 87.15 115 | | 75.94 140 | | | | | | 95.03 158 | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 74.45 335 | | | | | | | | |
|
| lessismore_v0 | | | | | 85.95 116 | 91.10 142 | 70.99 170 | | 70.91 363 | | 91.79 67 | 94.42 70 | 61.76 277 | 92.93 142 | 79.52 118 | 93.03 216 | 93.93 104 |
|
| LGP-MVS_train | | | | | 90.82 34 | 94.75 41 | 81.69 60 | | 94.27 22 | 82.35 66 | 93.67 35 | 94.82 52 | 91.18 4 | 95.52 43 | 85.36 52 | 98.73 7 | 95.23 59 |
|
| test11 | | | | | | | | | 91.46 130 | | | | | | | | |
|
| door | | | | | | | | | 72.57 350 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 70.66 171 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 91.19 137 | | 84.77 153 | | 73.30 176 | 80.55 285 | | | | | | |
|
| ACMP_Plane | | | | | | 91.19 137 | | 84.77 153 | | 73.30 176 | 80.55 285 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.30 147 | | |
|
| HQP4-MVS | | | | | | | | | | | 80.56 284 | | | 94.61 78 | | | 93.56 127 |
|
| HQP3-MVS | | | | | | | | | 92.68 95 | | | | | | | 94.47 178 | |
|
| HQP2-MVS | | | | | | | | | | | | | 72.10 221 | | | | |
|
| NP-MVS | | | | | | 91.95 110 | 74.55 125 | | | | | 90.17 218 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 27.60 410 | 70.76 359 | | 46.47 383 | 61.27 395 | | 45.20 368 | | 49.18 369 | | 83.75 331 |
|
| MDTV_nov1_ep13 | | | | 68.29 334 | | 78.03 354 | 43.87 391 | 74.12 332 | 72.22 353 | 52.17 361 | 67.02 379 | 85.54 290 | 45.36 366 | 80.85 335 | 55.73 330 | 84.42 348 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 136 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.35 72 | |
|
| Test By Simon | | | | | | | | | | | | | 79.09 137 | | | | |
|
| ITE_SJBPF | | | | | 90.11 46 | 90.72 150 | 84.97 38 | | 90.30 167 | 81.56 74 | 90.02 97 | 91.20 181 | 82.40 96 | 90.81 203 | 73.58 190 | 94.66 174 | 94.56 76 |
|
| DeepMVS_CX |  | | | | 24.13 392 | 32.95 414 | 29.49 408 | | 21.63 415 | 12.07 408 | 37.95 409 | 45.07 406 | 30.84 400 | 19.21 411 | 17.94 410 | 33.06 408 | 23.69 407 |
|