This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5499.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4597.23 295.32 299.01 297.26 580.16 13098.99 195.15 199.14 296.47 30
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 4896.29 1788.16 3394.17 9486.07 4598.48 1897.22 17
LTVRE_ROB86.10 193.04 493.44 391.82 2193.73 6185.72 3196.79 195.51 1088.86 1395.63 996.99 984.81 6993.16 13491.10 297.53 6996.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3092.99 1294.23 2585.21 3892.51 5695.13 4490.65 995.34 5488.06 998.15 3495.95 41
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5288.95 692.87 1394.16 3088.75 1593.79 3094.43 6888.83 2495.51 4587.16 2997.60 6392.73 155
SR-MVS92.23 792.34 891.91 1694.89 3887.85 992.51 2393.87 4988.20 2093.24 4094.02 9090.15 1695.67 3686.82 3397.34 7392.19 187
HPM-MVScopyleft92.13 892.20 1091.91 1695.58 2684.67 4393.51 894.85 1682.88 6291.77 6893.94 9890.55 1295.73 3488.50 798.23 2895.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 992.24 991.48 2293.02 7785.17 3692.47 2595.05 1587.65 2593.21 4194.39 7390.09 1795.08 6586.67 3597.60 6394.18 94
COLMAP_ROBcopyleft83.01 391.97 1091.95 1192.04 1193.68 6286.15 2193.37 1095.10 1490.28 1092.11 6195.03 4689.75 2094.93 6979.95 11198.27 2695.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1191.87 1692.03 1295.53 2785.91 2593.35 1194.16 3082.52 6592.39 5994.14 8589.15 2395.62 3787.35 2498.24 2794.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1291.47 2392.37 696.04 1388.48 892.72 1792.60 9983.09 5991.54 7094.25 7987.67 4195.51 4587.21 2898.11 3593.12 143
CP-MVS91.67 1391.58 2091.96 1395.29 3187.62 1093.38 993.36 6383.16 5891.06 8094.00 9188.26 3095.71 3587.28 2798.39 2192.55 166
XVS91.54 1491.36 2592.08 995.64 2486.25 1992.64 1893.33 6585.07 3989.99 9894.03 8986.57 5295.80 2687.35 2497.62 6194.20 91
MTAPA91.52 1591.60 1991.29 2796.59 486.29 1892.02 3091.81 12484.07 4792.00 6494.40 7286.63 5195.28 5788.59 698.31 2492.30 180
UA-Net91.49 1691.53 2191.39 2494.98 3582.95 5593.52 792.79 9288.22 1988.53 12997.64 283.45 8394.55 8286.02 4898.60 1396.67 25
ACMMPR91.49 1691.35 2791.92 1595.74 2085.88 2792.58 2193.25 7181.99 6891.40 7294.17 8487.51 4295.87 2087.74 1397.76 5493.99 101
LPG-MVS_test91.47 1891.68 1790.82 3494.75 4181.69 6090.00 6194.27 2282.35 6693.67 3594.82 5291.18 495.52 4385.36 5298.73 795.23 59
region2R91.44 1991.30 3191.87 1895.75 1985.90 2692.63 2093.30 6981.91 7090.88 8694.21 8087.75 3995.87 2087.60 1897.71 5793.83 110
HFP-MVS91.30 2091.39 2491.02 3095.43 2984.66 4492.58 2193.29 7081.99 6891.47 7193.96 9588.35 2995.56 4087.74 1397.74 5692.85 152
ZNCC-MVS91.26 2191.34 2891.01 3195.73 2183.05 5392.18 2894.22 2780.14 9091.29 7693.97 9287.93 3895.87 2088.65 597.96 4594.12 98
APDe-MVScopyleft91.22 2291.92 1289.14 6392.97 7978.04 9092.84 1594.14 3483.33 5693.90 2695.73 2988.77 2596.41 387.60 1897.98 4292.98 149
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS91.20 2390.95 4091.93 1495.67 2385.85 2890.00 6193.90 4680.32 8791.74 6994.41 7188.17 3295.98 1386.37 3897.99 4093.96 103
SteuartSystems-ACMMP91.16 2491.36 2590.55 3893.91 5780.97 6791.49 3793.48 6182.82 6392.60 5593.97 9288.19 3196.29 687.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2590.91 4191.83 1996.18 1186.88 1492.20 2793.03 8482.59 6488.52 13094.37 7486.74 5095.41 5286.32 3998.21 2993.19 139
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2691.01 3790.82 3495.45 2882.73 5691.75 3593.74 5280.98 8191.38 7393.80 10287.20 4695.80 2687.10 3197.69 5893.93 104
MP-MVS-pluss90.81 2791.08 3489.99 4795.97 1479.88 7288.13 10194.51 1975.79 14292.94 4594.96 4788.36 2895.01 6790.70 398.40 2095.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2891.50 2288.44 7593.00 7876.26 11689.65 7495.55 987.72 2493.89 2894.94 4891.62 393.44 12578.35 12898.76 495.61 48
ACMMP_NAP90.65 2991.07 3689.42 5895.93 1679.54 7789.95 6593.68 5677.65 12191.97 6594.89 4988.38 2795.45 5089.27 497.87 5093.27 135
ACMM79.39 990.65 2990.99 3889.63 5495.03 3483.53 4889.62 7593.35 6479.20 10293.83 2993.60 11090.81 792.96 14085.02 5698.45 1992.41 173
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3190.34 4891.38 2589.03 18384.23 4693.58 694.68 1890.65 890.33 9293.95 9784.50 7195.37 5380.87 10195.50 14094.53 79
ACMP79.16 1090.54 3290.60 4690.35 4294.36 4480.98 6689.16 8594.05 3979.03 10592.87 4793.74 10690.60 1195.21 6082.87 7998.76 494.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3391.08 3488.88 6693.38 6878.65 8489.15 8694.05 3984.68 4393.90 2694.11 8788.13 3496.30 584.51 6397.81 5291.70 203
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3491.64 1886.93 9694.18 4772.65 14190.47 5493.69 5483.77 5094.11 2494.27 7590.28 1495.84 2486.03 4697.92 4692.29 181
SMA-MVScopyleft90.31 3590.48 4789.83 5195.31 3079.52 7890.98 4693.24 7275.37 14992.84 4995.28 4085.58 6496.09 887.92 1197.76 5493.88 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3690.80 4388.68 7392.86 8377.09 10591.19 4395.74 781.38 7692.28 6093.80 10286.89 4994.64 7785.52 5197.51 7094.30 90
v7n90.13 3790.96 3987.65 8891.95 11071.06 16989.99 6393.05 8186.53 2994.29 2096.27 1882.69 9094.08 9786.25 4297.63 6097.82 8
PMVScopyleft80.48 690.08 3890.66 4588.34 7896.71 392.97 290.31 5889.57 18788.51 1890.11 9495.12 4590.98 688.92 25077.55 14297.07 8083.13 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 3991.09 3387.00 9491.55 12772.64 14396.19 294.10 3785.33 3693.49 3794.64 6081.12 11995.88 1887.41 2295.94 12492.48 169
DVP-MVScopyleft90.06 4091.32 2986.29 10894.16 5072.56 14790.54 5191.01 14583.61 5393.75 3294.65 5789.76 1895.78 3186.42 3697.97 4390.55 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 4091.92 1284.47 14696.56 658.83 30689.04 8792.74 9491.40 696.12 596.06 2587.23 4595.57 3979.42 11998.74 699.00 2
PEN-MVS90.03 4291.88 1584.48 14596.57 558.88 30388.95 8893.19 7391.62 596.01 796.16 2387.02 4795.60 3878.69 12598.72 998.97 3
OurMVSNet-221017-090.01 4389.74 5490.83 3393.16 7580.37 6991.91 3393.11 7781.10 7995.32 1197.24 672.94 21094.85 7185.07 5497.78 5397.26 15
DTE-MVSNet89.98 4491.91 1484.21 15696.51 757.84 31388.93 8992.84 9191.92 496.16 496.23 1986.95 4895.99 1279.05 12298.57 1598.80 6
XVG-ACMP-BASELINE89.98 4489.84 5290.41 4094.91 3784.50 4589.49 8093.98 4179.68 9492.09 6293.89 10083.80 7893.10 13782.67 8398.04 3693.64 122
3Dnovator+83.92 289.97 4689.66 5590.92 3291.27 13681.66 6391.25 4194.13 3588.89 1288.83 12394.26 7877.55 15295.86 2384.88 5795.87 12895.24 58
WR-MVS_H89.91 4791.31 3085.71 12396.32 962.39 25789.54 7893.31 6890.21 1195.57 1095.66 3181.42 11695.90 1780.94 10098.80 398.84 5
OPM-MVS89.80 4889.97 5089.27 6094.76 4079.86 7386.76 12492.78 9378.78 10892.51 5693.64 10988.13 3493.84 10684.83 6097.55 6694.10 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 4989.27 6191.30 2693.51 6484.79 4189.89 6790.63 15570.00 22194.55 1796.67 1287.94 3793.59 11784.27 6595.97 12095.52 49
anonymousdsp89.73 5088.88 6892.27 889.82 16986.67 1590.51 5390.20 17269.87 22295.06 1296.14 2484.28 7493.07 13887.68 1596.34 10397.09 19
test_djsdf89.62 5189.01 6591.45 2392.36 9482.98 5491.98 3190.08 17571.54 20294.28 2296.54 1481.57 11494.27 8686.26 4096.49 9797.09 19
XVG-OURS-SEG-HR89.59 5289.37 5990.28 4394.47 4385.95 2486.84 12093.91 4580.07 9186.75 16893.26 11493.64 290.93 19684.60 6290.75 26593.97 102
APD-MVScopyleft89.54 5389.63 5689.26 6192.57 8881.34 6590.19 6093.08 8080.87 8391.13 7893.19 11586.22 5995.97 1482.23 8997.18 7890.45 236
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5488.81 7191.19 2993.38 6884.72 4289.70 7090.29 16969.27 22594.39 1896.38 1686.02 6293.52 12183.96 6795.92 12695.34 53
CPTT-MVS89.39 5588.98 6790.63 3795.09 3386.95 1392.09 2992.30 10779.74 9387.50 15392.38 14581.42 11693.28 13083.07 7597.24 7691.67 204
ACMH76.49 1489.34 5691.14 3283.96 16192.50 9170.36 17589.55 7693.84 5081.89 7194.70 1495.44 3690.69 888.31 26083.33 7198.30 2593.20 138
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 5789.12 6289.84 4988.67 19485.64 3290.61 4993.17 7486.02 3293.12 4295.30 3884.94 6689.44 24274.12 18096.10 11594.45 82
APD_test289.30 5789.12 6289.84 4988.67 19485.64 3290.61 4993.17 7486.02 3293.12 4295.30 3884.94 6689.44 24274.12 18096.10 11594.45 82
CP-MVSNet89.27 5990.91 4184.37 14796.34 858.61 30988.66 9692.06 11390.78 795.67 895.17 4381.80 11295.54 4279.00 12398.69 1098.95 4
XVG-OURS89.18 6088.83 7090.23 4494.28 4586.11 2385.91 13693.60 5980.16 8989.13 12093.44 11283.82 7790.98 19483.86 6995.30 14893.60 124
DeepC-MVS82.31 489.15 6189.08 6489.37 5993.64 6379.07 8088.54 9794.20 2873.53 16889.71 10594.82 5285.09 6595.77 3384.17 6698.03 3893.26 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6290.72 4484.31 15397.00 264.33 23289.67 7388.38 20188.84 1494.29 2097.57 390.48 1391.26 18572.57 20497.65 5997.34 14
MSP-MVS89.08 6388.16 7691.83 1995.76 1886.14 2292.75 1693.90 4678.43 11389.16 11892.25 15272.03 22596.36 488.21 890.93 25992.98 149
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6489.88 5186.22 11191.63 12177.07 10689.82 6893.77 5178.90 10692.88 4692.29 15086.11 6090.22 21886.24 4397.24 7691.36 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6588.45 7490.38 4194.92 3685.85 2889.70 7091.27 13878.20 11586.69 17192.28 15180.36 12895.06 6686.17 4496.49 9790.22 240
test_040288.65 6689.58 5885.88 11992.55 8972.22 15584.01 17189.44 18988.63 1794.38 1995.77 2886.38 5893.59 11779.84 11295.21 15091.82 199
DP-MVS88.60 6789.01 6587.36 9091.30 13477.50 9887.55 10892.97 8787.95 2389.62 10992.87 13084.56 7093.89 10377.65 14096.62 9290.70 228
iter_conf0588.59 6890.04 4984.23 15592.03 10760.51 28591.36 4095.81 688.07 2194.56 1696.17 2172.24 21995.79 2984.85 5895.27 14996.38 31
APD_test188.40 6987.91 7889.88 4889.50 17386.65 1789.98 6491.91 11984.26 4590.87 8793.92 9982.18 10389.29 24673.75 18794.81 16993.70 118
Anonymous2023121188.40 6989.62 5784.73 13990.46 15565.27 22288.86 9093.02 8587.15 2693.05 4497.10 782.28 10292.02 16676.70 15297.99 4096.88 23
PS-MVSNAJss88.31 7187.90 7989.56 5693.31 7077.96 9387.94 10491.97 11670.73 21294.19 2396.67 1276.94 16294.57 8083.07 7596.28 10596.15 33
OMC-MVS88.19 7287.52 8390.19 4591.94 11281.68 6287.49 11193.17 7476.02 13688.64 12791.22 17984.24 7593.37 12877.97 13897.03 8195.52 49
CS-MVS88.14 7387.67 8289.54 5789.56 17179.18 7990.47 5494.77 1779.37 10084.32 22089.33 23083.87 7694.53 8382.45 8594.89 16594.90 65
TSAR-MVS + MP.88.14 7387.82 8089.09 6495.72 2276.74 10992.49 2491.19 14167.85 24586.63 17294.84 5179.58 13595.96 1587.62 1694.50 17794.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7589.79 5382.98 19193.26 7263.94 23691.10 4489.64 18485.07 3990.91 8491.09 18489.16 2291.87 17182.03 9095.87 12893.13 141
EC-MVSNet88.01 7688.32 7587.09 9289.28 17872.03 15790.31 5896.31 480.88 8285.12 20189.67 22684.47 7295.46 4982.56 8496.26 10893.77 116
RPSCF88.00 7786.93 9591.22 2890.08 16289.30 589.68 7291.11 14279.26 10189.68 10694.81 5582.44 9487.74 26476.54 15488.74 29096.61 27
AllTest87.97 7887.40 8789.68 5291.59 12283.40 4989.50 7995.44 1179.47 9688.00 14593.03 12282.66 9191.47 17870.81 21396.14 11294.16 95
TranMVSNet+NR-MVSNet87.86 7988.76 7285.18 13194.02 5564.13 23384.38 16591.29 13784.88 4292.06 6393.84 10186.45 5593.73 10873.22 19598.66 1197.69 9
nrg03087.85 8088.49 7385.91 11790.07 16469.73 17987.86 10594.20 2874.04 16092.70 5494.66 5685.88 6391.50 17779.72 11497.32 7496.50 29
CNVR-MVS87.81 8187.68 8188.21 8092.87 8177.30 10485.25 14891.23 13977.31 12687.07 16291.47 17382.94 8894.71 7484.67 6196.27 10792.62 162
HQP_MVS87.75 8287.43 8688.70 7293.45 6576.42 11389.45 8193.61 5779.44 9886.55 17392.95 12774.84 18395.22 5880.78 10395.83 13094.46 80
MM87.64 8387.15 8889.09 6489.51 17276.39 11588.68 9586.76 22984.54 4483.58 23693.78 10473.36 20696.48 287.98 1096.21 10994.41 86
MVSMamba_PlusPlus87.53 8488.86 6983.54 17792.03 10762.26 26191.49 3792.62 9788.07 2188.07 14196.17 2172.24 21995.79 2984.85 5894.16 18892.58 163
NCCC87.36 8586.87 9688.83 6792.32 9778.84 8386.58 12891.09 14378.77 10984.85 20990.89 19380.85 12295.29 5581.14 9895.32 14592.34 178
DeepPCF-MVS81.24 587.28 8686.21 10690.49 3991.48 13184.90 3983.41 18992.38 10470.25 21889.35 11790.68 20282.85 8994.57 8079.55 11695.95 12392.00 194
SixPastTwentyTwo87.20 8787.45 8586.45 10592.52 9069.19 18887.84 10688.05 20881.66 7394.64 1596.53 1565.94 25694.75 7383.02 7796.83 8695.41 51
CS-MVS-test87.00 8886.43 10288.71 7189.46 17477.46 9989.42 8395.73 877.87 11981.64 27187.25 26682.43 9594.53 8377.65 14096.46 9994.14 97
UniMVSNet (Re)86.87 8986.98 9486.55 10393.11 7668.48 19283.80 18092.87 8980.37 8589.61 11191.81 16477.72 14994.18 9275.00 17298.53 1696.99 22
Vis-MVSNetpermissive86.86 9086.58 9987.72 8692.09 10477.43 10187.35 11292.09 11278.87 10784.27 22594.05 8878.35 14393.65 11080.54 10791.58 24792.08 191
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9187.06 9186.17 11492.86 8367.02 20682.55 21591.56 12783.08 6090.92 8291.82 16378.25 14493.99 9974.16 17898.35 2297.49 13
DU-MVS86.80 9286.99 9386.21 11293.24 7367.02 20683.16 19892.21 10881.73 7290.92 8291.97 15777.20 15693.99 9974.16 17898.35 2297.61 10
casdiffmvs_mvgpermissive86.72 9387.51 8484.36 14987.09 23565.22 22384.16 16794.23 2577.89 11891.28 7793.66 10884.35 7392.71 14680.07 10894.87 16895.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n86.68 9486.52 10087.18 9185.94 26278.30 8686.93 11892.20 10965.94 25789.16 11893.16 11783.10 8689.89 23187.81 1294.43 18093.35 131
IS-MVSNet86.66 9586.82 9886.17 11492.05 10666.87 20991.21 4288.64 19886.30 3189.60 11292.59 13869.22 23994.91 7073.89 18497.89 4996.72 24
v1086.54 9687.10 9084.84 13588.16 20863.28 24386.64 12792.20 10975.42 14892.81 5194.50 6474.05 19494.06 9883.88 6896.28 10597.17 18
pmmvs686.52 9788.06 7781.90 21292.22 10062.28 26084.66 15889.15 19283.54 5589.85 10297.32 488.08 3686.80 27970.43 22197.30 7596.62 26
PHI-MVS86.38 9885.81 11588.08 8188.44 20277.34 10289.35 8493.05 8173.15 18184.76 21087.70 25678.87 13994.18 9280.67 10596.29 10492.73 155
CSCG86.26 9986.47 10185.60 12590.87 14774.26 12787.98 10391.85 12080.35 8689.54 11588.01 24879.09 13792.13 16275.51 16595.06 15790.41 237
DeepC-MVS_fast80.27 886.23 10085.65 11987.96 8491.30 13476.92 10787.19 11391.99 11570.56 21384.96 20590.69 20180.01 13295.14 6378.37 12795.78 13491.82 199
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10186.83 9784.36 14987.82 21462.35 25986.42 13191.33 13676.78 13092.73 5394.48 6673.41 20393.72 10983.10 7495.41 14197.01 21
Anonymous2024052986.20 10287.13 8983.42 18090.19 16064.55 23084.55 16090.71 15285.85 3489.94 10195.24 4282.13 10490.40 21469.19 23396.40 10295.31 55
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9385.26 27178.25 8785.82 13991.82 12265.33 27188.55 12892.35 14982.62 9389.80 23386.87 3294.32 18393.18 140
CDPH-MVS86.17 10485.54 12088.05 8392.25 9875.45 12183.85 17792.01 11465.91 25986.19 18291.75 16783.77 7994.98 6877.43 14596.71 9093.73 117
NR-MVSNet86.00 10586.22 10585.34 12993.24 7364.56 22982.21 22790.46 15980.99 8088.42 13391.97 15777.56 15193.85 10472.46 20598.65 1297.61 10
train_agg85.98 10685.28 12688.07 8292.34 9579.70 7583.94 17390.32 16465.79 26084.49 21490.97 18881.93 10893.63 11281.21 9796.54 9590.88 222
FC-MVSNet-test85.93 10787.05 9282.58 20292.25 9856.44 32485.75 14093.09 7977.33 12591.94 6694.65 5774.78 18593.41 12775.11 17198.58 1497.88 7
test_fmvsmconf_n85.88 10885.51 12186.99 9584.77 27878.21 8885.40 14791.39 13465.32 27287.72 14991.81 16482.33 9889.78 23486.68 3494.20 18692.99 148
Effi-MVS+-dtu85.82 10983.38 15993.14 487.13 23191.15 387.70 10788.42 20074.57 15683.56 23785.65 28978.49 14294.21 9072.04 20792.88 22094.05 100
TAPA-MVS77.73 1285.71 11084.83 13288.37 7788.78 19279.72 7487.15 11593.50 6069.17 22685.80 19189.56 22780.76 12392.13 16273.21 20095.51 13993.25 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sasdasda85.50 11186.14 10783.58 17387.97 21067.13 20387.55 10894.32 2073.44 17188.47 13187.54 25986.45 5591.06 19275.76 16393.76 19892.54 167
canonicalmvs85.50 11186.14 10783.58 17387.97 21067.13 20387.55 10894.32 2073.44 17188.47 13187.54 25986.45 5591.06 19275.76 16393.76 19892.54 167
EPP-MVSNet85.47 11385.04 12986.77 10091.52 13069.37 18391.63 3687.98 21081.51 7587.05 16391.83 16266.18 25595.29 5570.75 21696.89 8395.64 46
GeoE85.45 11485.81 11584.37 14790.08 16267.07 20585.86 13891.39 13472.33 19587.59 15190.25 21484.85 6892.37 15678.00 13691.94 24093.66 119
MVS_030485.37 11584.58 13987.75 8585.28 27073.36 13286.54 13085.71 24377.56 12481.78 26992.47 14370.29 23396.02 1185.59 5095.96 12193.87 108
FIs85.35 11686.27 10482.60 20191.86 11457.31 31785.10 15293.05 8175.83 14191.02 8193.97 9273.57 19992.91 14473.97 18398.02 3997.58 12
test_fmvsmvis_n_192085.22 11785.36 12584.81 13685.80 26476.13 11985.15 15192.32 10661.40 30191.33 7490.85 19683.76 8086.16 29284.31 6493.28 21092.15 189
casdiffmvspermissive85.21 11885.85 11483.31 18386.17 25762.77 25083.03 20093.93 4474.69 15588.21 13892.68 13782.29 10191.89 17077.87 13993.75 20195.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 11985.93 11183.02 18986.30 25262.37 25884.55 16093.96 4274.48 15787.12 15792.03 15682.30 10091.94 16778.39 12694.21 18594.74 73
K. test v385.14 12084.73 13386.37 10691.13 14169.63 18185.45 14576.68 32184.06 4892.44 5896.99 962.03 27694.65 7680.58 10693.24 21194.83 72
EI-MVSNet-Vis-set85.12 12184.53 14186.88 9784.01 29172.76 14083.91 17685.18 25280.44 8488.75 12485.49 29180.08 13191.92 16882.02 9190.85 26395.97 39
MGCFI-Net85.04 12285.95 11082.31 20887.52 22363.59 23986.23 13493.96 4273.46 16988.07 14187.83 25486.46 5490.87 20176.17 15893.89 19692.47 171
EI-MVSNet-UG-set85.04 12284.44 14386.85 9883.87 29572.52 14983.82 17885.15 25380.27 8888.75 12485.45 29379.95 13391.90 16981.92 9490.80 26496.13 34
X-MVStestdata85.04 12282.70 17292.08 995.64 2486.25 1992.64 1893.33 6585.07 3989.99 9816.05 40986.57 5295.80 2687.35 2497.62 6194.20 91
MSLP-MVS++85.00 12586.03 10981.90 21291.84 11771.56 16686.75 12593.02 8575.95 13987.12 15789.39 22877.98 14589.40 24577.46 14394.78 17084.75 315
F-COLMAP84.97 12683.42 15889.63 5492.39 9383.40 4988.83 9191.92 11873.19 18080.18 29389.15 23477.04 16093.28 13065.82 26592.28 23192.21 186
balanced_conf0384.80 12785.40 12383.00 19088.95 18661.44 26990.42 5792.37 10571.48 20488.72 12693.13 11870.16 23595.15 6279.26 12194.11 19092.41 173
3Dnovator80.37 784.80 12784.71 13685.06 13386.36 25074.71 12488.77 9390.00 17775.65 14484.96 20593.17 11674.06 19391.19 18778.28 13091.09 25389.29 258
IterMVS-LS84.73 12984.98 13083.96 16187.35 22663.66 23783.25 19489.88 17976.06 13489.62 10992.37 14873.40 20592.52 15178.16 13394.77 17295.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 13084.34 14785.49 12890.18 16175.86 12079.23 26887.13 22073.35 17385.56 19589.34 22983.60 8290.50 21276.64 15394.05 19390.09 245
HQP-MVS84.61 13184.06 15086.27 10991.19 13770.66 17184.77 15392.68 9573.30 17680.55 28590.17 21872.10 22194.61 7877.30 14794.47 17893.56 127
v119284.57 13284.69 13784.21 15687.75 21662.88 24783.02 20191.43 13169.08 22889.98 10090.89 19372.70 21493.62 11582.41 8694.97 16296.13 34
FMVSNet184.55 13385.45 12281.85 21490.27 15961.05 27686.83 12188.27 20578.57 11289.66 10895.64 3275.43 17690.68 20769.09 23495.33 14493.82 111
v114484.54 13484.72 13584.00 15987.67 21962.55 25482.97 20390.93 14870.32 21789.80 10390.99 18773.50 20093.48 12381.69 9694.65 17595.97 39
Gipumacopyleft84.44 13586.33 10378.78 25884.20 28973.57 13189.55 7690.44 16084.24 4684.38 21794.89 4976.35 17380.40 33976.14 15996.80 8882.36 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13683.93 15485.63 12491.59 12271.58 16483.52 18692.13 11161.82 29483.96 23089.75 22579.93 13493.46 12478.33 12994.34 18291.87 198
VDDNet84.35 13785.39 12481.25 22395.13 3259.32 29685.42 14681.11 29286.41 3087.41 15496.21 2073.61 19890.61 21066.33 25896.85 8493.81 114
ETV-MVS84.31 13883.91 15585.52 12688.58 19870.40 17484.50 16493.37 6278.76 11084.07 22878.72 36580.39 12795.13 6473.82 18692.98 21891.04 217
v124084.30 13984.51 14283.65 17087.65 22061.26 27382.85 20791.54 12867.94 24390.68 8990.65 20571.71 22793.64 11182.84 8094.78 17096.07 36
MVS_111021_LR84.28 14083.76 15685.83 12189.23 18083.07 5280.99 24383.56 27372.71 18886.07 18589.07 23581.75 11386.19 29177.11 14993.36 20688.24 271
h-mvs3384.25 14182.76 17188.72 7091.82 11982.60 5784.00 17284.98 25971.27 20586.70 16990.55 20763.04 27393.92 10278.26 13194.20 18689.63 250
v14419284.24 14284.41 14483.71 16987.59 22261.57 26882.95 20491.03 14467.82 24689.80 10390.49 20873.28 20793.51 12281.88 9594.89 16596.04 38
dcpmvs_284.23 14385.14 12781.50 22088.61 19761.98 26682.90 20693.11 7768.66 23492.77 5292.39 14478.50 14187.63 26676.99 15192.30 22894.90 65
v192192084.23 14384.37 14683.79 16587.64 22161.71 26782.91 20591.20 14067.94 24390.06 9590.34 21172.04 22493.59 11782.32 8794.91 16396.07 36
VDD-MVS84.23 14384.58 13983.20 18691.17 14065.16 22583.25 19484.97 26079.79 9287.18 15694.27 7574.77 18690.89 19969.24 23096.54 9593.55 129
v2v48284.09 14684.24 14883.62 17187.13 23161.40 27082.71 21089.71 18272.19 19889.55 11391.41 17470.70 23293.20 13281.02 9993.76 19896.25 32
EG-PatchMatch MVS84.08 14784.11 14983.98 16092.22 10072.61 14682.20 22987.02 22572.63 18988.86 12191.02 18678.52 14091.11 19073.41 19291.09 25388.21 272
DP-MVS Recon84.05 14883.22 16186.52 10491.73 12075.27 12283.23 19692.40 10272.04 19982.04 26088.33 24477.91 14793.95 10166.17 25995.12 15590.34 239
TransMVSNet (Re)84.02 14985.74 11778.85 25791.00 14455.20 33482.29 22387.26 21679.65 9588.38 13595.52 3583.00 8786.88 27767.97 24896.60 9394.45 82
Baseline_NR-MVSNet84.00 15085.90 11278.29 26991.47 13253.44 34382.29 22387.00 22879.06 10489.55 11395.72 3077.20 15686.14 29372.30 20698.51 1795.28 56
TSAR-MVS + GP.83.95 15182.69 17387.72 8689.27 17981.45 6483.72 18281.58 29174.73 15485.66 19286.06 28472.56 21692.69 14875.44 16795.21 15089.01 266
alignmvs83.94 15283.98 15383.80 16487.80 21567.88 19984.54 16291.42 13373.27 17988.41 13487.96 24972.33 21790.83 20276.02 16194.11 19092.69 159
Effi-MVS+83.90 15384.01 15183.57 17587.22 22965.61 22186.55 12992.40 10278.64 11181.34 27684.18 31283.65 8192.93 14274.22 17787.87 30392.17 188
bld_raw_conf0383.86 15483.99 15283.45 17888.77 19362.26 26191.49 3792.62 9765.43 26688.07 14192.18 15568.44 24495.51 4574.78 17494.16 18892.58 163
CANet83.79 15582.85 17086.63 10186.17 25772.21 15683.76 18191.43 13177.24 12774.39 34287.45 26275.36 17795.42 5177.03 15092.83 22192.25 185
pm-mvs183.69 15684.95 13179.91 24490.04 16659.66 29382.43 21987.44 21375.52 14687.85 14795.26 4181.25 11885.65 30268.74 24096.04 11794.42 85
AdaColmapbinary83.66 15783.69 15783.57 17590.05 16572.26 15486.29 13390.00 17778.19 11681.65 27087.16 26883.40 8494.24 8961.69 29994.76 17384.21 324
MIMVSNet183.63 15884.59 13880.74 23294.06 5462.77 25082.72 20984.53 26677.57 12390.34 9195.92 2776.88 16885.83 30061.88 29797.42 7193.62 123
test_fmvsm_n_192083.60 15982.89 16985.74 12285.22 27277.74 9684.12 16990.48 15859.87 32086.45 18191.12 18375.65 17485.89 29882.28 8890.87 26193.58 125
WR-MVS83.56 16084.40 14581.06 22893.43 6754.88 33578.67 27685.02 25781.24 7790.74 8891.56 17172.85 21191.08 19168.00 24798.04 3697.23 16
CNLPA83.55 16183.10 16684.90 13489.34 17783.87 4784.54 16288.77 19579.09 10383.54 23888.66 24174.87 18281.73 33066.84 25392.29 23089.11 260
LCM-MVSNet-Re83.48 16285.06 12878.75 25985.94 26255.75 32980.05 25294.27 2276.47 13196.09 694.54 6383.31 8589.75 23759.95 30994.89 16590.75 225
hse-mvs283.47 16381.81 18688.47 7491.03 14382.27 5882.61 21183.69 27171.27 20586.70 16986.05 28563.04 27392.41 15478.26 13193.62 20590.71 227
V4283.47 16383.37 16083.75 16783.16 30863.33 24281.31 23790.23 17169.51 22490.91 8490.81 19874.16 19292.29 16080.06 10990.22 27295.62 47
VPA-MVSNet83.47 16384.73 13379.69 24890.29 15857.52 31681.30 23988.69 19776.29 13287.58 15294.44 6780.60 12687.20 27166.60 25696.82 8794.34 88
PAPM_NR83.23 16683.19 16383.33 18290.90 14665.98 21788.19 10090.78 15178.13 11780.87 28187.92 25273.49 20292.42 15370.07 22388.40 29291.60 206
CLD-MVS83.18 16782.64 17484.79 13789.05 18267.82 20077.93 28492.52 10068.33 23685.07 20281.54 34182.06 10592.96 14069.35 22997.91 4893.57 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 16885.68 11875.65 30381.24 32545.26 38679.94 25492.91 8883.83 4991.33 7496.88 1180.25 12985.92 29568.89 23795.89 12795.76 43
FA-MVS(test-final)83.13 16983.02 16783.43 17986.16 25966.08 21688.00 10288.36 20275.55 14585.02 20392.75 13565.12 26092.50 15274.94 17391.30 25191.72 201
114514_t83.10 17082.54 17784.77 13892.90 8069.10 19086.65 12690.62 15654.66 34981.46 27390.81 19876.98 16194.38 8572.62 20396.18 11090.82 224
UGNet82.78 17181.64 18886.21 11286.20 25676.24 11786.86 11985.68 24477.07 12873.76 34692.82 13169.64 23691.82 17369.04 23693.69 20290.56 233
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 17281.93 18485.19 13082.08 31480.15 7185.53 14388.76 19668.01 24085.58 19487.75 25571.80 22686.85 27874.02 18293.87 19788.58 269
EI-MVSNet82.61 17382.42 17983.20 18683.25 30563.66 23783.50 18785.07 25476.06 13486.55 17385.10 29973.41 20390.25 21578.15 13590.67 26795.68 45
QAPM82.59 17482.59 17682.58 20286.44 24566.69 21089.94 6690.36 16367.97 24284.94 20792.58 14072.71 21392.18 16170.63 21987.73 30588.85 267
fmvsm_s_conf0.1_n_a82.58 17581.93 18484.50 14487.68 21873.35 13386.14 13577.70 31061.64 29985.02 20391.62 16977.75 14886.24 28882.79 8187.07 31293.91 106
Fast-Effi-MVS+-dtu82.54 17681.41 19685.90 11885.60 26576.53 11283.07 19989.62 18673.02 18379.11 30383.51 31780.74 12490.24 21768.76 23989.29 28190.94 220
MVS_Test82.47 17783.22 16180.22 24182.62 31357.75 31582.54 21691.96 11771.16 20982.89 24892.52 14277.41 15390.50 21280.04 11087.84 30492.40 175
v14882.31 17882.48 17881.81 21785.59 26659.66 29381.47 23686.02 23972.85 18488.05 14490.65 20570.73 23190.91 19875.15 17091.79 24194.87 67
API-MVS82.28 17982.61 17581.30 22286.29 25369.79 17788.71 9487.67 21278.42 11482.15 25984.15 31377.98 14591.59 17665.39 26892.75 22282.51 350
MVSFormer82.23 18081.57 19384.19 15885.54 26769.26 18591.98 3190.08 17571.54 20276.23 32385.07 30258.69 29894.27 8686.26 4088.77 28889.03 264
fmvsm_s_conf0.5_n_a82.21 18181.51 19584.32 15286.56 24373.35 13385.46 14477.30 31461.81 29584.51 21390.88 19577.36 15486.21 29082.72 8286.97 31793.38 130
EIA-MVS82.19 18281.23 20185.10 13287.95 21269.17 18983.22 19793.33 6570.42 21478.58 30679.77 35777.29 15594.20 9171.51 20988.96 28691.93 197
fmvsm_s_conf0.1_n82.17 18381.59 19183.94 16386.87 24171.57 16585.19 15077.42 31362.27 29384.47 21691.33 17676.43 17085.91 29683.14 7287.14 31094.33 89
PCF-MVS74.62 1582.15 18480.92 20585.84 12089.43 17572.30 15380.53 24791.82 12257.36 33687.81 14889.92 22277.67 15093.63 11258.69 31495.08 15691.58 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 18580.31 21287.45 8990.86 14880.29 7085.88 13790.65 15468.17 23976.32 32286.33 27973.12 20992.61 15061.40 30290.02 27589.44 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n82.06 18681.54 19483.60 17283.94 29273.90 12983.35 19186.10 23658.97 32283.80 23290.36 21074.23 19186.94 27682.90 7890.22 27289.94 247
GBi-Net82.02 18782.07 18181.85 21486.38 24761.05 27686.83 12188.27 20572.43 19086.00 18695.64 3263.78 26790.68 20765.95 26193.34 20793.82 111
test182.02 18782.07 18181.85 21486.38 24761.05 27686.83 12188.27 20572.43 19086.00 18695.64 3263.78 26790.68 20765.95 26193.34 20793.82 111
OpenMVScopyleft76.72 1381.98 18982.00 18381.93 21184.42 28468.22 19488.50 9889.48 18866.92 25281.80 26791.86 15972.59 21590.16 22071.19 21291.25 25287.40 287
KD-MVS_self_test81.93 19083.14 16578.30 26884.75 27952.75 34780.37 24989.42 19070.24 21990.26 9393.39 11374.55 19086.77 28068.61 24296.64 9195.38 52
fmvsm_s_conf0.5_n81.91 19181.30 19883.75 16786.02 26171.56 16684.73 15677.11 31762.44 29084.00 22990.68 20276.42 17185.89 29883.14 7287.11 31193.81 114
SDMVSNet81.90 19283.17 16478.10 27288.81 19062.45 25676.08 31486.05 23873.67 16583.41 23993.04 12082.35 9780.65 33770.06 22495.03 15891.21 213
tfpnnormal81.79 19382.95 16878.31 26788.93 18755.40 33080.83 24682.85 27976.81 12985.90 19094.14 8574.58 18986.51 28466.82 25495.68 13893.01 147
c3_l81.64 19481.59 19181.79 21880.86 33159.15 30078.61 27790.18 17368.36 23587.20 15587.11 27069.39 23791.62 17578.16 13394.43 18094.60 75
PVSNet_Blended_VisFu81.55 19580.49 21084.70 14191.58 12573.24 13784.21 16691.67 12662.86 28480.94 27987.16 26867.27 24992.87 14569.82 22688.94 28787.99 278
fmvsm_l_conf0.5_n_a81.46 19680.87 20683.25 18483.73 29773.21 13883.00 20285.59 24658.22 32882.96 24790.09 22072.30 21886.65 28281.97 9389.95 27689.88 248
DELS-MVS81.44 19781.25 19982.03 21084.27 28862.87 24876.47 30892.49 10170.97 21081.64 27183.83 31475.03 18092.70 14774.29 17692.22 23490.51 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 19881.61 19080.41 23886.38 24758.75 30783.93 17586.58 23172.43 19087.65 15092.98 12463.78 26790.22 21866.86 25193.92 19592.27 183
TinyColmap81.25 19982.34 18077.99 27585.33 26960.68 28382.32 22288.33 20371.26 20786.97 16492.22 15477.10 15986.98 27562.37 29195.17 15286.31 298
AUN-MVS81.18 20078.78 23388.39 7690.93 14582.14 5982.51 21783.67 27264.69 27680.29 28985.91 28851.07 33692.38 15576.29 15793.63 20490.65 231
tttt051781.07 20179.58 22485.52 12688.99 18566.45 21387.03 11775.51 32973.76 16488.32 13790.20 21537.96 39094.16 9679.36 12095.13 15395.93 42
Fast-Effi-MVS+81.04 20280.57 20782.46 20687.50 22463.22 24478.37 28089.63 18568.01 24081.87 26382.08 33582.31 9992.65 14967.10 25088.30 29891.51 209
BH-untuned80.96 20380.99 20380.84 23188.55 19968.23 19380.33 25088.46 19972.79 18786.55 17386.76 27474.72 18791.77 17461.79 29888.99 28582.52 349
eth_miper_zixun_eth80.84 20480.22 21682.71 19981.41 32360.98 27977.81 28690.14 17467.31 25086.95 16587.24 26764.26 26392.31 15875.23 16991.61 24594.85 71
xiu_mvs_v1_base_debu80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
xiu_mvs_v1_base80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
xiu_mvs_v1_base_debi80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
IterMVS-SCA-FT80.64 20879.41 22584.34 15183.93 29369.66 18076.28 31081.09 29372.43 19086.47 17990.19 21660.46 28393.15 13577.45 14486.39 32390.22 240
BH-RMVSNet80.53 20980.22 21681.49 22187.19 23066.21 21577.79 28786.23 23474.21 15983.69 23388.50 24273.25 20890.75 20463.18 28887.90 30287.52 285
Anonymous20240521180.51 21081.19 20278.49 26488.48 20057.26 31876.63 30482.49 28281.21 7884.30 22392.24 15367.99 24686.24 28862.22 29295.13 15391.98 196
DIV-MVS_self_test80.43 21180.23 21481.02 22979.99 33959.25 29777.07 29787.02 22567.38 24786.19 18289.22 23163.09 27190.16 22076.32 15595.80 13293.66 119
cl____80.42 21280.23 21481.02 22979.99 33959.25 29777.07 29787.02 22567.37 24886.18 18489.21 23263.08 27290.16 22076.31 15695.80 13293.65 121
diffmvspermissive80.40 21380.48 21180.17 24279.02 35160.04 28877.54 29190.28 17066.65 25582.40 25487.33 26573.50 20087.35 26977.98 13789.62 27993.13 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 21478.41 24086.23 11076.75 36573.28 13587.18 11477.45 31276.24 13368.14 37488.93 23765.41 25993.85 10469.47 22896.12 11491.55 208
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 21580.04 22181.24 22579.82 34158.95 30277.66 28889.66 18365.75 26385.99 18985.11 29868.29 24591.42 18276.03 16092.03 23693.33 132
MG-MVS80.32 21680.94 20478.47 26588.18 20652.62 35082.29 22385.01 25872.01 20079.24 30292.54 14169.36 23893.36 12970.65 21889.19 28489.45 252
mvsmamba80.30 21778.87 23084.58 14388.12 20967.55 20192.35 2684.88 26163.15 28285.33 19890.91 19250.71 33895.20 6166.36 25787.98 30190.99 218
VPNet80.25 21881.68 18775.94 30192.46 9247.98 37376.70 30281.67 28973.45 17084.87 20892.82 13174.66 18886.51 28461.66 30096.85 8493.33 132
MAR-MVS80.24 21978.74 23584.73 13986.87 24178.18 8985.75 14087.81 21165.67 26577.84 31178.50 36673.79 19790.53 21161.59 30190.87 26185.49 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 22079.00 22983.78 16688.17 20786.66 1681.31 23766.81 38169.64 22388.33 13690.19 21664.58 26183.63 32171.99 20890.03 27481.06 368
Anonymous2024052180.18 22181.25 19976.95 28883.15 30960.84 28182.46 21885.99 24068.76 23286.78 16693.73 10759.13 29577.44 35173.71 18897.55 6692.56 165
LFMVS80.15 22280.56 20878.89 25689.19 18155.93 32685.22 14973.78 34182.96 6184.28 22492.72 13657.38 30790.07 22763.80 28295.75 13590.68 229
DPM-MVS80.10 22379.18 22882.88 19790.71 15169.74 17878.87 27390.84 14960.29 31675.64 33285.92 28767.28 24893.11 13671.24 21191.79 24185.77 304
MSDG80.06 22479.99 22380.25 24083.91 29468.04 19877.51 29289.19 19177.65 12181.94 26183.45 31976.37 17286.31 28763.31 28786.59 32086.41 296
FE-MVS79.98 22578.86 23183.36 18186.47 24466.45 21389.73 6984.74 26572.80 18684.22 22791.38 17544.95 37193.60 11663.93 28191.50 24890.04 246
sd_testset79.95 22681.39 19775.64 30488.81 19058.07 31176.16 31382.81 28073.67 16583.41 23993.04 12080.96 12177.65 35058.62 31595.03 15891.21 213
ab-mvs79.67 22780.56 20876.99 28788.48 20056.93 32084.70 15786.06 23768.95 23080.78 28293.08 11975.30 17884.62 31056.78 32490.90 26089.43 254
VNet79.31 22880.27 21376.44 29587.92 21353.95 33975.58 32084.35 26774.39 15882.23 25790.72 20072.84 21284.39 31360.38 30893.98 19490.97 219
thisisatest053079.07 22977.33 24984.26 15487.13 23164.58 22883.66 18475.95 32468.86 23185.22 20087.36 26438.10 38893.57 12075.47 16694.28 18494.62 74
cl2278.97 23078.21 24281.24 22577.74 35559.01 30177.46 29487.13 22065.79 26084.32 22085.10 29958.96 29790.88 20075.36 16892.03 23693.84 109
patch_mono-278.89 23179.39 22677.41 28484.78 27768.11 19675.60 31883.11 27660.96 30979.36 29989.89 22375.18 17972.97 36273.32 19492.30 22891.15 215
RPMNet78.88 23278.28 24180.68 23579.58 34262.64 25282.58 21394.16 3074.80 15375.72 33092.59 13848.69 34595.56 4073.48 19182.91 35883.85 329
PAPR78.84 23378.10 24381.07 22785.17 27360.22 28782.21 22790.57 15762.51 28675.32 33684.61 30774.99 18192.30 15959.48 31288.04 30090.68 229
PVSNet_BlendedMVS78.80 23477.84 24481.65 21984.43 28263.41 24079.49 26290.44 16061.70 29875.43 33387.07 27169.11 24091.44 18060.68 30692.24 23290.11 244
FMVSNet378.80 23478.55 23779.57 25082.89 31256.89 32281.76 23185.77 24269.04 22986.00 18690.44 20951.75 33490.09 22665.95 26193.34 20791.72 201
test_yl78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13782.49 25286.57 27558.01 30190.02 22962.74 28992.73 22389.10 261
DCV-MVSNet78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13782.49 25286.57 27558.01 30190.02 22962.74 28992.73 22389.10 261
test111178.53 23878.85 23277.56 28192.22 10047.49 37582.61 21169.24 37072.43 19085.28 19994.20 8151.91 33290.07 22765.36 26996.45 10095.11 62
ECVR-MVScopyleft78.44 23978.63 23677.88 27791.85 11548.95 36983.68 18369.91 36772.30 19684.26 22694.20 8151.89 33389.82 23263.58 28396.02 11894.87 67
pmmvs-eth3d78.42 24077.04 25182.57 20487.44 22574.41 12680.86 24579.67 30155.68 34384.69 21190.31 21360.91 28185.42 30362.20 29391.59 24687.88 281
mvs_anonymous78.13 24178.76 23476.23 30079.24 34850.31 36678.69 27584.82 26361.60 30083.09 24692.82 13173.89 19687.01 27268.33 24686.41 32291.37 210
TAMVS78.08 24276.36 25783.23 18590.62 15272.87 13979.08 26980.01 30061.72 29781.35 27586.92 27363.96 26688.78 25450.61 36293.01 21788.04 277
miper_enhance_ethall77.83 24376.93 25280.51 23676.15 37158.01 31275.47 32288.82 19458.05 33083.59 23580.69 34564.41 26291.20 18673.16 20192.03 23692.33 179
Vis-MVSNet (Re-imp)77.82 24477.79 24577.92 27688.82 18951.29 36083.28 19271.97 35574.04 16082.23 25789.78 22457.38 30789.41 24457.22 32395.41 14193.05 145
CANet_DTU77.81 24577.05 25080.09 24381.37 32459.90 29183.26 19388.29 20469.16 22767.83 37783.72 31560.93 28089.47 23969.22 23289.70 27890.88 222
OpenMVS_ROBcopyleft70.19 1777.77 24677.46 24678.71 26084.39 28561.15 27481.18 24182.52 28162.45 28983.34 24187.37 26366.20 25488.66 25664.69 27685.02 33986.32 297
SSC-MVS77.55 24781.64 18865.29 36790.46 15520.33 41373.56 33868.28 37285.44 3588.18 14094.64 6070.93 23081.33 33271.25 21092.03 23694.20 91
MDA-MVSNet-bldmvs77.47 24876.90 25379.16 25579.03 35064.59 22766.58 37775.67 32773.15 18188.86 12188.99 23666.94 25081.23 33364.71 27588.22 29991.64 205
jason77.42 24975.75 26382.43 20787.10 23469.27 18477.99 28381.94 28751.47 36777.84 31185.07 30260.32 28589.00 24870.74 21789.27 28389.03 264
jason: jason.
CDS-MVSNet77.32 25075.40 26683.06 18889.00 18472.48 15077.90 28582.17 28560.81 31078.94 30483.49 31859.30 29388.76 25554.64 34292.37 22787.93 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 25176.75 25478.52 26387.01 23761.30 27275.55 32187.12 22361.24 30674.45 34178.79 36477.20 15690.93 19664.62 27884.80 34683.32 338
MVSTER77.09 25275.70 26481.25 22375.27 37961.08 27577.49 29385.07 25460.78 31186.55 17388.68 24043.14 38090.25 21573.69 18990.67 26792.42 172
PS-MVSNAJ77.04 25376.53 25678.56 26287.09 23561.40 27075.26 32387.13 22061.25 30574.38 34377.22 37776.94 16290.94 19564.63 27784.83 34583.35 337
IterMVS76.91 25476.34 25878.64 26180.91 32964.03 23476.30 30979.03 30464.88 27583.11 24489.16 23359.90 28984.46 31168.61 24285.15 33787.42 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 25575.67 26580.34 23980.48 33762.16 26573.50 33984.80 26457.61 33482.24 25687.54 25951.31 33587.65 26570.40 22293.19 21391.23 212
CL-MVSNet_self_test76.81 25677.38 24875.12 30786.90 23951.34 35873.20 34280.63 29768.30 23781.80 26788.40 24366.92 25180.90 33455.35 33694.90 16493.12 143
TR-MVS76.77 25775.79 26279.72 24786.10 26065.79 21977.14 29583.02 27765.20 27381.40 27482.10 33366.30 25390.73 20655.57 33385.27 33382.65 344
USDC76.63 25876.73 25576.34 29783.46 29957.20 31980.02 25388.04 20952.14 36383.65 23491.25 17863.24 27086.65 28254.66 34194.11 19085.17 310
BH-w/o76.57 25976.07 26178.10 27286.88 24065.92 21877.63 28986.33 23265.69 26480.89 28079.95 35468.97 24290.74 20553.01 35285.25 33477.62 379
Patchmtry76.56 26077.46 24673.83 31379.37 34746.60 37982.41 22076.90 31873.81 16385.56 19592.38 14548.07 34883.98 31863.36 28695.31 14790.92 221
PVSNet_Blended76.49 26175.40 26679.76 24684.43 28263.41 24075.14 32490.44 16057.36 33675.43 33378.30 36769.11 24091.44 18060.68 30687.70 30684.42 320
miper_lstm_enhance76.45 26276.10 26077.51 28276.72 36660.97 28064.69 38185.04 25663.98 27983.20 24388.22 24556.67 31178.79 34873.22 19593.12 21492.78 154
lupinMVS76.37 26374.46 27582.09 20985.54 26769.26 18576.79 30080.77 29650.68 37476.23 32382.82 32758.69 29888.94 24969.85 22588.77 28888.07 274
cascas76.29 26474.81 27180.72 23484.47 28162.94 24673.89 33687.34 21455.94 34275.16 33876.53 38263.97 26591.16 18865.00 27290.97 25888.06 276
WB-MVS76.06 26580.01 22264.19 37089.96 16820.58 41272.18 34768.19 37383.21 5786.46 18093.49 11170.19 23478.97 34665.96 26090.46 27193.02 146
thres600view775.97 26675.35 26877.85 27987.01 23751.84 35680.45 24873.26 34675.20 15083.10 24586.31 28145.54 36289.05 24755.03 33992.24 23292.66 160
GA-MVS75.83 26774.61 27279.48 25281.87 31659.25 29773.42 34082.88 27868.68 23379.75 29481.80 33850.62 33989.46 24066.85 25285.64 33089.72 249
MVP-Stereo75.81 26873.51 28482.71 19989.35 17673.62 13080.06 25185.20 25160.30 31573.96 34487.94 25057.89 30589.45 24152.02 35674.87 39085.06 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 26975.20 26977.27 28575.01 38269.47 18278.93 27084.88 26146.67 38187.08 16187.84 25350.44 34171.62 36777.42 14688.53 29190.72 226
thres100view90075.45 27075.05 27076.66 29487.27 22751.88 35581.07 24273.26 34675.68 14383.25 24286.37 27845.54 36288.80 25151.98 35790.99 25589.31 256
ET-MVSNet_ETH3D75.28 27172.77 29282.81 19883.03 31168.11 19677.09 29676.51 32260.67 31377.60 31680.52 34938.04 38991.15 18970.78 21590.68 26689.17 259
thres40075.14 27274.23 27777.86 27886.24 25452.12 35279.24 26673.87 33973.34 17481.82 26584.60 30846.02 35688.80 25151.98 35790.99 25592.66 160
wuyk23d75.13 27379.30 22762.63 37375.56 37575.18 12380.89 24473.10 34875.06 15294.76 1395.32 3787.73 4052.85 40434.16 40397.11 7959.85 400
EU-MVSNet75.12 27474.43 27677.18 28683.11 31059.48 29585.71 14282.43 28339.76 40185.64 19388.76 23844.71 37387.88 26373.86 18585.88 32984.16 325
HyFIR lowres test75.12 27472.66 29482.50 20591.44 13365.19 22472.47 34587.31 21546.79 38080.29 28984.30 31052.70 32992.10 16551.88 36186.73 31890.22 240
CMPMVSbinary59.41 2075.12 27473.57 28279.77 24575.84 37467.22 20281.21 24082.18 28450.78 37276.50 31987.66 25755.20 32182.99 32462.17 29590.64 27089.09 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 27772.98 29080.73 23384.95 27471.71 16376.23 31177.59 31152.83 35777.73 31586.38 27756.35 31484.97 30757.72 32287.05 31385.51 307
tfpn200view974.86 27874.23 27776.74 29386.24 25452.12 35279.24 26673.87 33973.34 17481.82 26584.60 30846.02 35688.80 25151.98 35790.99 25589.31 256
1112_ss74.82 27973.74 28078.04 27489.57 17060.04 28876.49 30787.09 22454.31 35073.66 34779.80 35560.25 28686.76 28158.37 31684.15 35087.32 288
EGC-MVSNET74.79 28069.99 32089.19 6294.89 3887.00 1291.89 3486.28 2331.09 4102.23 41295.98 2681.87 11189.48 23879.76 11395.96 12191.10 216
ppachtmachnet_test74.73 28174.00 27976.90 29080.71 33456.89 32271.53 35378.42 30658.24 32779.32 30182.92 32657.91 30484.26 31565.60 26791.36 25089.56 251
Patchmatch-RL test74.48 28273.68 28176.89 29184.83 27666.54 21172.29 34669.16 37157.70 33286.76 16786.33 27945.79 36182.59 32569.63 22790.65 26981.54 359
PatchMatch-RL74.48 28273.22 28778.27 27087.70 21785.26 3575.92 31670.09 36564.34 27776.09 32681.25 34365.87 25778.07 34953.86 34483.82 35271.48 388
XXY-MVS74.44 28476.19 25969.21 34584.61 28052.43 35171.70 35077.18 31660.73 31280.60 28390.96 19075.44 17569.35 37356.13 32988.33 29485.86 303
test250674.12 28573.39 28576.28 29891.85 11544.20 38984.06 17048.20 40872.30 19681.90 26294.20 8127.22 40989.77 23564.81 27496.02 11894.87 67
CR-MVSNet74.00 28673.04 28976.85 29279.58 34262.64 25282.58 21376.90 31850.50 37575.72 33092.38 14548.07 34884.07 31768.72 24182.91 35883.85 329
Test_1112_low_res73.90 28773.08 28876.35 29690.35 15755.95 32573.40 34186.17 23550.70 37373.14 34885.94 28658.31 30085.90 29756.51 32683.22 35587.20 289
test20.0373.75 28874.59 27471.22 33381.11 32751.12 36270.15 36372.10 35470.42 21480.28 29191.50 17264.21 26474.72 36146.96 38094.58 17687.82 283
test_fmvs273.57 28972.80 29175.90 30272.74 39468.84 19177.07 29784.32 26845.14 38782.89 24884.22 31148.37 34670.36 37073.40 19387.03 31488.52 270
SCA73.32 29072.57 29675.58 30581.62 32055.86 32778.89 27271.37 36061.73 29674.93 33983.42 32060.46 28387.01 27258.11 32082.63 36383.88 326
baseline173.26 29173.54 28372.43 32784.92 27547.79 37479.89 25574.00 33765.93 25878.81 30586.28 28256.36 31381.63 33156.63 32579.04 37987.87 282
131473.22 29272.56 29775.20 30680.41 33857.84 31381.64 23485.36 24851.68 36673.10 34976.65 38161.45 27885.19 30563.54 28479.21 37782.59 345
MVS73.21 29372.59 29575.06 30880.97 32860.81 28281.64 23485.92 24146.03 38571.68 35677.54 37268.47 24389.77 23555.70 33285.39 33174.60 385
HY-MVS64.64 1873.03 29472.47 29874.71 30983.36 30354.19 33782.14 23081.96 28656.76 34169.57 36986.21 28360.03 28784.83 30949.58 36882.65 36185.11 311
thisisatest051573.00 29570.52 31280.46 23781.45 32259.90 29173.16 34374.31 33657.86 33176.08 32777.78 37037.60 39192.12 16465.00 27291.45 24989.35 255
EPNet_dtu72.87 29671.33 30877.49 28377.72 35660.55 28482.35 22175.79 32566.49 25658.39 40381.06 34453.68 32585.98 29453.55 34792.97 21985.95 301
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 29771.41 30776.28 29883.25 30560.34 28683.50 18779.02 30537.77 40576.33 32185.10 29949.60 34487.41 26870.54 22077.54 38581.08 366
CHOSEN 1792x268872.45 29870.56 31178.13 27190.02 16763.08 24568.72 36883.16 27542.99 39575.92 32885.46 29257.22 30985.18 30649.87 36681.67 36586.14 299
testgi72.36 29974.61 27265.59 36480.56 33642.82 39468.29 36973.35 34566.87 25381.84 26489.93 22172.08 22366.92 38646.05 38392.54 22587.01 291
thres20072.34 30071.55 30674.70 31083.48 29851.60 35775.02 32573.71 34270.14 22078.56 30780.57 34846.20 35488.20 26146.99 37989.29 28184.32 321
FPMVS72.29 30172.00 30073.14 31888.63 19685.00 3774.65 32967.39 37571.94 20177.80 31387.66 25750.48 34075.83 35749.95 36479.51 37358.58 402
FMVSNet572.10 30271.69 30273.32 31681.57 32153.02 34676.77 30178.37 30763.31 28076.37 32091.85 16036.68 39278.98 34547.87 37692.45 22687.95 279
our_test_371.85 30371.59 30372.62 32480.71 33453.78 34069.72 36571.71 35958.80 32478.03 30880.51 35056.61 31278.84 34762.20 29386.04 32885.23 309
PAPM71.77 30470.06 31876.92 28986.39 24653.97 33876.62 30586.62 23053.44 35463.97 39384.73 30657.79 30692.34 15739.65 39481.33 36984.45 319
IB-MVS62.13 1971.64 30568.97 32979.66 24980.80 33362.26 26173.94 33576.90 31863.27 28168.63 37376.79 37933.83 39691.84 17259.28 31387.26 30884.88 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 30672.30 29969.62 34276.47 36852.70 34970.03 36480.97 29459.18 32179.36 29988.21 24660.50 28269.12 37458.33 31877.62 38487.04 290
testing371.53 30770.79 30973.77 31488.89 18841.86 39676.60 30659.12 39872.83 18580.97 27782.08 33519.80 41487.33 27065.12 27191.68 24492.13 190
test_vis3_rt71.42 30870.67 31073.64 31569.66 40170.46 17366.97 37689.73 18042.68 39788.20 13983.04 32243.77 37560.07 39865.35 27086.66 31990.39 238
Anonymous2023120671.38 30971.88 30169.88 34086.31 25154.37 33670.39 36174.62 33252.57 35976.73 31888.76 23859.94 28872.06 36444.35 38793.23 21283.23 340
test_vis1_n_192071.30 31071.58 30570.47 33677.58 35859.99 29074.25 33084.22 26951.06 36974.85 34079.10 36155.10 32268.83 37668.86 23879.20 37882.58 346
MIMVSNet71.09 31171.59 30369.57 34387.23 22850.07 36778.91 27171.83 35660.20 31871.26 35791.76 16655.08 32376.09 35541.06 39287.02 31582.54 348
test_fmvs1_n70.94 31270.41 31572.53 32673.92 38466.93 20875.99 31584.21 27043.31 39479.40 29879.39 35943.47 37668.55 37869.05 23584.91 34282.10 353
MS-PatchMatch70.93 31370.22 31673.06 31981.85 31762.50 25573.82 33777.90 30852.44 36075.92 32881.27 34255.67 31881.75 32955.37 33577.70 38374.94 384
pmmvs570.73 31470.07 31772.72 32277.03 36352.73 34874.14 33175.65 32850.36 37672.17 35485.37 29655.42 32080.67 33652.86 35387.59 30784.77 314
PatchT70.52 31572.76 29363.79 37279.38 34633.53 40677.63 28965.37 38473.61 16771.77 35592.79 13444.38 37475.65 35864.53 27985.37 33282.18 352
test_vis1_n70.29 31669.99 32071.20 33475.97 37366.50 21276.69 30380.81 29544.22 39075.43 33377.23 37650.00 34268.59 37766.71 25582.85 36078.52 378
N_pmnet70.20 31768.80 33174.38 31180.91 32984.81 4059.12 39376.45 32355.06 34675.31 33782.36 33255.74 31754.82 40347.02 37887.24 30983.52 333
tpmvs70.16 31869.56 32371.96 32974.71 38348.13 37179.63 25775.45 33065.02 27470.26 36581.88 33745.34 36785.68 30158.34 31775.39 38982.08 354
new-patchmatchnet70.10 31973.37 28660.29 38081.23 32616.95 41559.54 39174.62 33262.93 28380.97 27787.93 25162.83 27571.90 36555.24 33795.01 16192.00 194
YYNet170.06 32070.44 31368.90 34773.76 38653.42 34458.99 39467.20 37758.42 32687.10 15985.39 29559.82 29067.32 38359.79 31083.50 35485.96 300
MDA-MVSNet_test_wron70.05 32170.44 31368.88 34873.84 38553.47 34258.93 39567.28 37658.43 32587.09 16085.40 29459.80 29167.25 38459.66 31183.54 35385.92 302
CostFormer69.98 32268.68 33273.87 31277.14 36150.72 36479.26 26574.51 33451.94 36570.97 36084.75 30545.16 37087.49 26755.16 33879.23 37683.40 336
testing9169.94 32368.99 32872.80 32183.81 29645.89 38271.57 35273.64 34468.24 23870.77 36377.82 36934.37 39584.44 31253.64 34687.00 31688.07 274
baseline269.77 32466.89 34078.41 26679.51 34458.09 31076.23 31169.57 36857.50 33564.82 39177.45 37446.02 35688.44 25753.08 34977.83 38188.70 268
PatchmatchNetpermissive69.71 32568.83 33072.33 32877.66 35753.60 34179.29 26469.99 36657.66 33372.53 35282.93 32546.45 35380.08 34160.91 30572.09 39383.31 339
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 32669.05 32671.14 33569.15 40265.77 22073.98 33483.32 27442.83 39677.77 31478.27 36843.39 37968.50 37968.39 24584.38 34979.15 376
JIA-IIPM69.41 32766.64 34477.70 28073.19 38971.24 16875.67 31765.56 38370.42 21465.18 38792.97 12633.64 39783.06 32253.52 34869.61 39978.79 377
Syy-MVS69.40 32870.03 31967.49 35781.72 31838.94 39971.00 35561.99 38961.38 30270.81 36172.36 39261.37 27979.30 34364.50 28085.18 33584.22 322
testing9969.27 32968.15 33572.63 32383.29 30445.45 38471.15 35471.08 36167.34 24970.43 36477.77 37132.24 39884.35 31453.72 34586.33 32488.10 273
UnsupCasMVSNet_bld69.21 33069.68 32267.82 35579.42 34551.15 36167.82 37375.79 32554.15 35177.47 31785.36 29759.26 29470.64 36948.46 37379.35 37581.66 357
test_cas_vis1_n_192069.20 33169.12 32469.43 34473.68 38762.82 24970.38 36277.21 31546.18 38480.46 28878.95 36352.03 33165.53 39165.77 26677.45 38679.95 374
gg-mvs-nofinetune68.96 33269.11 32568.52 35376.12 37245.32 38583.59 18555.88 40386.68 2764.62 39297.01 830.36 40183.97 31944.78 38682.94 35776.26 381
WB-MVSnew68.72 33369.01 32767.85 35483.22 30743.98 39074.93 32665.98 38255.09 34573.83 34579.11 36065.63 25871.89 36638.21 39985.04 33887.69 284
tpm268.45 33466.83 34173.30 31778.93 35248.50 37079.76 25671.76 35747.50 37969.92 36783.60 31642.07 38288.40 25848.44 37479.51 37383.01 343
tpm67.95 33568.08 33667.55 35678.74 35343.53 39275.60 31867.10 38054.92 34772.23 35388.10 24742.87 38175.97 35652.21 35580.95 37283.15 341
WTY-MVS67.91 33668.35 33366.58 36180.82 33248.12 37265.96 37872.60 34953.67 35371.20 35881.68 34058.97 29669.06 37548.57 37281.67 36582.55 347
testing1167.38 33765.93 34571.73 33183.37 30246.60 37970.95 35769.40 36962.47 28866.14 38076.66 38031.22 39984.10 31649.10 37084.10 35184.49 317
test-LLR67.21 33866.74 34268.63 35176.45 36955.21 33267.89 37067.14 37862.43 29165.08 38872.39 39043.41 37769.37 37161.00 30384.89 34381.31 361
testing22266.93 33965.30 35171.81 33083.38 30145.83 38372.06 34867.50 37464.12 27869.68 36876.37 38327.34 40883.00 32338.88 39588.38 29386.62 295
sss66.92 34067.26 33865.90 36377.23 36051.10 36364.79 38071.72 35852.12 36470.13 36680.18 35257.96 30365.36 39250.21 36381.01 37181.25 363
KD-MVS_2432*160066.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
miper_refine_blended66.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
dmvs_re66.81 34366.98 33966.28 36276.87 36458.68 30871.66 35172.24 35260.29 31669.52 37073.53 38952.38 33064.40 39444.90 38581.44 36875.76 382
tpm cat166.76 34465.21 35271.42 33277.09 36250.62 36578.01 28273.68 34344.89 38868.64 37279.00 36245.51 36482.42 32849.91 36570.15 39681.23 365
UWE-MVS66.43 34565.56 35069.05 34684.15 29040.98 39773.06 34464.71 38554.84 34876.18 32579.62 35829.21 40380.50 33838.54 39889.75 27785.66 305
PVSNet58.17 2166.41 34665.63 34968.75 34981.96 31549.88 36862.19 38772.51 35151.03 37068.04 37575.34 38750.84 33774.77 35945.82 38482.96 35681.60 358
tpmrst66.28 34766.69 34365.05 36872.82 39339.33 39878.20 28170.69 36453.16 35667.88 37680.36 35148.18 34774.75 36058.13 31970.79 39581.08 366
Patchmatch-test65.91 34867.38 33761.48 37875.51 37643.21 39368.84 36763.79 38762.48 28772.80 35183.42 32044.89 37259.52 40048.27 37586.45 32181.70 356
ADS-MVSNet265.87 34963.64 35772.55 32573.16 39056.92 32167.10 37474.81 33149.74 37766.04 38282.97 32346.71 35177.26 35242.29 38969.96 39783.46 334
test_vis1_rt65.64 35064.09 35470.31 33766.09 40770.20 17661.16 38881.60 29038.65 40272.87 35069.66 39552.84 32760.04 39956.16 32877.77 38280.68 370
mvsany_test365.48 35162.97 35973.03 32069.99 40076.17 11864.83 37943.71 41043.68 39280.25 29287.05 27252.83 32863.09 39751.92 36072.44 39279.84 375
test-mter65.00 35263.79 35668.63 35176.45 36955.21 33267.89 37067.14 37850.98 37165.08 38872.39 39028.27 40669.37 37161.00 30384.89 34381.31 361
ETVMVS64.67 35363.34 35868.64 35083.44 30041.89 39569.56 36661.70 39461.33 30468.74 37175.76 38528.76 40479.35 34234.65 40286.16 32784.67 316
myMVS_eth3d64.66 35463.89 35566.97 35981.72 31837.39 40271.00 35561.99 38961.38 30270.81 36172.36 39220.96 41379.30 34349.59 36785.18 33584.22 322
test0.0.03 164.66 35464.36 35365.57 36575.03 38146.89 37864.69 38161.58 39562.43 29171.18 35977.54 37243.41 37768.47 38040.75 39382.65 36181.35 360
test_f64.31 35665.85 34659.67 38166.54 40662.24 26457.76 39770.96 36240.13 39984.36 21882.09 33446.93 35051.67 40561.99 29681.89 36465.12 396
pmmvs362.47 35760.02 37069.80 34171.58 39764.00 23570.52 36058.44 40139.77 40066.05 38175.84 38427.10 41072.28 36346.15 38284.77 34773.11 386
EPMVS62.47 35762.63 36162.01 37470.63 39938.74 40074.76 32752.86 40553.91 35267.71 37880.01 35339.40 38666.60 38755.54 33468.81 40180.68 370
ADS-MVSNet61.90 35962.19 36361.03 37973.16 39036.42 40467.10 37461.75 39249.74 37766.04 38282.97 32346.71 35163.21 39542.29 38969.96 39783.46 334
PMMVS61.65 36060.38 36765.47 36665.40 41069.26 18563.97 38361.73 39336.80 40660.11 39868.43 39759.42 29266.35 38848.97 37178.57 38060.81 399
E-PMN61.59 36161.62 36461.49 37766.81 40555.40 33053.77 40060.34 39766.80 25458.90 40165.50 40040.48 38566.12 38955.72 33186.25 32562.95 398
TESTMET0.1,161.29 36260.32 36864.19 37072.06 39551.30 35967.89 37062.09 38845.27 38660.65 39769.01 39627.93 40764.74 39356.31 32781.65 36776.53 380
MVS-HIRNet61.16 36362.92 36055.87 38479.09 34935.34 40571.83 34957.98 40246.56 38259.05 40091.14 18249.95 34376.43 35438.74 39671.92 39455.84 403
EMVS61.10 36460.81 36661.99 37565.96 40855.86 32753.10 40158.97 40067.06 25156.89 40563.33 40140.98 38367.03 38554.79 34086.18 32663.08 397
DSMNet-mixed60.98 36561.61 36559.09 38372.88 39245.05 38774.70 32846.61 40926.20 40765.34 38690.32 21255.46 31963.12 39641.72 39181.30 37069.09 392
dp60.70 36660.29 36961.92 37672.04 39638.67 40170.83 35864.08 38651.28 36860.75 39677.28 37536.59 39371.58 36847.41 37762.34 40375.52 383
dmvs_testset60.59 36762.54 36254.72 38677.26 35927.74 40974.05 33361.00 39660.48 31465.62 38567.03 39955.93 31668.23 38132.07 40669.46 40068.17 393
CHOSEN 280x42059.08 36856.52 37366.76 36076.51 36764.39 23149.62 40259.00 39943.86 39155.66 40668.41 39835.55 39468.21 38243.25 38876.78 38867.69 394
mvsany_test158.48 36956.47 37464.50 36965.90 40968.21 19556.95 39842.11 41138.30 40365.69 38477.19 37856.96 31059.35 40146.16 38158.96 40465.93 395
PVSNet_051.08 2256.10 37054.97 37559.48 38275.12 38053.28 34555.16 39961.89 39144.30 38959.16 39962.48 40254.22 32465.91 39035.40 40147.01 40559.25 401
new_pmnet55.69 37157.66 37249.76 38775.47 37730.59 40759.56 39051.45 40643.62 39362.49 39475.48 38640.96 38449.15 40737.39 40072.52 39169.55 391
PMMVS255.64 37259.27 37144.74 38864.30 41112.32 41640.60 40349.79 40753.19 35565.06 39084.81 30453.60 32649.76 40632.68 40589.41 28072.15 387
MVEpermissive40.22 2351.82 37350.47 37655.87 38462.66 41251.91 35431.61 40539.28 41240.65 39850.76 40774.98 38856.24 31544.67 40833.94 40464.11 40271.04 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai41.90 37442.65 37739.67 38970.86 39821.11 41161.01 38921.42 41657.36 33657.97 40450.06 40516.40 41558.73 40221.03 40927.69 40939.17 405
kuosan30.83 37532.17 37826.83 39153.36 41319.02 41457.90 39620.44 41738.29 40438.01 40837.82 40715.18 41633.45 4107.74 41120.76 41028.03 406
test_method30.46 37629.60 37933.06 39017.99 4153.84 41813.62 40673.92 3382.79 40918.29 41153.41 40428.53 40543.25 40922.56 40735.27 40752.11 404
cdsmvs_eth3d_5k20.81 37727.75 3800.00 3960.00 4190.00 4210.00 40785.44 2470.00 4140.00 41582.82 32781.46 1150.00 4150.00 4140.00 4130.00 411
tmp_tt20.25 37824.50 3817.49 3934.47 4168.70 41734.17 40425.16 4141.00 41132.43 41018.49 40839.37 3879.21 41221.64 40843.75 4064.57 408
ab-mvs-re6.65 3798.87 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41579.80 3550.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.41 3808.55 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41476.94 1620.00 4150.00 4140.00 4130.00 411
test1236.27 3818.08 3840.84 3941.11 4180.57 41962.90 3840.82 4180.54 4121.07 4142.75 4131.26 4170.30 4131.04 4121.26 4121.66 409
testmvs5.91 3827.65 3850.72 3951.20 4170.37 42059.14 3920.67 4190.49 4131.11 4132.76 4120.94 4180.24 4141.02 4131.47 4111.55 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS37.39 40252.61 354
FOURS196.08 1287.41 1196.19 295.83 592.95 396.57 3
MSC_two_6792asdad88.81 6891.55 12777.99 9191.01 14596.05 987.45 2098.17 3292.40 175
PC_three_145258.96 32390.06 9591.33 17680.66 12593.03 13975.78 16295.94 12492.48 169
No_MVS88.81 6891.55 12777.99 9191.01 14596.05 987.45 2098.17 3292.40 175
test_one_060193.85 5973.27 13694.11 3686.57 2893.47 3994.64 6088.42 26
eth-test20.00 419
eth-test0.00 419
ZD-MVS92.22 10080.48 6891.85 12071.22 20890.38 9092.98 12486.06 6196.11 781.99 9296.75 89
RE-MVS-def92.61 594.13 5288.95 692.87 1394.16 3088.75 1593.79 3094.43 6890.64 1087.16 2997.60 6392.73 155
IU-MVS94.18 4772.64 14390.82 15056.98 33989.67 10785.78 4997.92 4693.28 134
OPU-MVS88.27 7991.89 11377.83 9490.47 5491.22 17981.12 11994.68 7574.48 17595.35 14392.29 181
test_241102_TWO93.71 5383.77 5093.49 3794.27 7589.27 2195.84 2486.03 4697.82 5192.04 192
test_241102_ONE94.18 4772.65 14193.69 5483.62 5294.11 2493.78 10490.28 1495.50 48
9.1489.29 6091.84 11788.80 9295.32 1375.14 15191.07 7992.89 12987.27 4493.78 10783.69 7097.55 66
save fliter93.75 6077.44 10086.31 13289.72 18170.80 211
test_0728_THIRD85.33 3693.75 3294.65 5787.44 4395.78 3187.41 2298.21 2992.98 149
test_0728_SECOND86.79 9994.25 4672.45 15190.54 5194.10 3795.88 1886.42 3697.97 4392.02 193
test072694.16 5072.56 14790.63 4893.90 4683.61 5393.75 3294.49 6589.76 18
GSMVS83.88 326
test_part293.86 5877.77 9592.84 49
sam_mvs146.11 35583.88 326
sam_mvs45.92 360
ambc82.98 19190.55 15464.86 22688.20 9989.15 19289.40 11693.96 9571.67 22891.38 18478.83 12496.55 9492.71 158
MTGPAbinary91.81 124
test_post178.85 2743.13 41045.19 36980.13 34058.11 320
test_post3.10 41145.43 36577.22 353
patchmatchnet-post81.71 33945.93 35987.01 272
GG-mvs-BLEND67.16 35873.36 38846.54 38184.15 16855.04 40458.64 40261.95 40329.93 40283.87 32038.71 39776.92 38771.07 389
MTMP90.66 4733.14 413
gm-plane-assit75.42 37844.97 38852.17 36172.36 39287.90 26254.10 343
test9_res80.83 10296.45 10090.57 232
TEST992.34 9579.70 7583.94 17390.32 16465.41 27084.49 21490.97 18882.03 10693.63 112
test_892.09 10478.87 8283.82 17890.31 16665.79 26084.36 21890.96 19081.93 10893.44 125
agg_prior279.68 11596.16 11190.22 240
agg_prior91.58 12577.69 9790.30 16784.32 22093.18 133
TestCases89.68 5291.59 12283.40 4995.44 1179.47 9688.00 14593.03 12282.66 9191.47 17870.81 21396.14 11294.16 95
test_prior478.97 8184.59 159
test_prior283.37 19075.43 14784.58 21291.57 17081.92 11079.54 11796.97 82
test_prior86.32 10790.59 15371.99 15892.85 9094.17 9492.80 153
旧先验281.73 23256.88 34086.54 17884.90 30872.81 202
新几何281.72 233
新几何182.95 19393.96 5678.56 8580.24 29855.45 34483.93 23191.08 18571.19 22988.33 25965.84 26493.07 21581.95 355
旧先验191.97 10971.77 15981.78 28891.84 16173.92 19593.65 20383.61 332
无先验82.81 20885.62 24558.09 32991.41 18367.95 24984.48 318
原ACMM282.26 226
原ACMM184.60 14292.81 8674.01 12891.50 12962.59 28582.73 25190.67 20476.53 16994.25 8869.24 23095.69 13785.55 306
test22293.31 7076.54 11079.38 26377.79 30952.59 35882.36 25590.84 19766.83 25291.69 24381.25 363
testdata286.43 28663.52 285
segment_acmp81.94 107
testdata79.54 25192.87 8172.34 15280.14 29959.91 31985.47 19791.75 16767.96 24785.24 30468.57 24492.18 23581.06 368
testdata179.62 25873.95 162
test1286.57 10290.74 14972.63 14590.69 15382.76 25079.20 13694.80 7295.32 14592.27 183
plane_prior793.45 6577.31 103
plane_prior692.61 8776.54 11074.84 183
plane_prior593.61 5795.22 5880.78 10395.83 13094.46 80
plane_prior492.95 127
plane_prior376.85 10877.79 12086.55 173
plane_prior289.45 8179.44 98
plane_prior192.83 85
plane_prior76.42 11387.15 11575.94 14095.03 158
n20.00 420
nn0.00 420
door-mid74.45 335
lessismore_v085.95 11691.10 14270.99 17070.91 36391.79 6794.42 7061.76 27792.93 14279.52 11893.03 21693.93 104
LGP-MVS_train90.82 3494.75 4181.69 6094.27 2282.35 6693.67 3594.82 5291.18 495.52 4385.36 5298.73 795.23 59
test1191.46 130
door72.57 350
HQP5-MVS70.66 171
HQP-NCC91.19 13784.77 15373.30 17680.55 285
ACMP_Plane91.19 13784.77 15373.30 17680.55 285
BP-MVS77.30 147
HQP4-MVS80.56 28494.61 7893.56 127
HQP3-MVS92.68 9594.47 178
HQP2-MVS72.10 221
NP-MVS91.95 11074.55 12590.17 218
MDTV_nov1_ep13_2view27.60 41070.76 35946.47 38361.27 39545.20 36849.18 36983.75 331
MDTV_nov1_ep1368.29 33478.03 35443.87 39174.12 33272.22 35352.17 36167.02 37985.54 29045.36 36680.85 33555.73 33084.42 348
ACMMP++_ref95.74 136
ACMMP++97.35 72
Test By Simon79.09 137
ITE_SJBPF90.11 4690.72 15084.97 3890.30 16781.56 7490.02 9791.20 18182.40 9690.81 20373.58 19094.66 17494.56 76
DeepMVS_CXcopyleft24.13 39232.95 41429.49 40821.63 41512.07 40837.95 40945.07 40630.84 40019.21 41117.94 41033.06 40823.69 407