This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 795.09 188.55 576.83 794.16 186.57 190.85 687.07 186.18 186.36 785.08 1288.67 2198.21 3
DVP-MVScopyleft88.07 290.73 284.97 591.98 1095.01 287.86 1076.88 693.90 285.15 290.11 886.90 279.46 1286.26 1084.67 1888.50 2898.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++87.98 389.76 585.89 292.57 694.57 388.34 676.61 892.40 683.40 389.26 1185.57 586.04 286.24 1184.89 1588.39 3195.42 21
MSP-MVS87.87 490.57 384.73 689.38 2891.60 1888.24 874.15 1393.55 382.28 494.99 183.21 1185.96 387.67 484.67 1888.32 3298.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft87.60 590.44 484.29 892.09 993.44 688.69 475.11 1093.06 580.80 694.23 286.70 381.44 684.84 1883.52 2787.64 4897.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1079.75 883.52 2682.72 3288.75 1995.37 24
APDe-MVS86.37 788.41 884.00 1091.43 1591.83 1688.34 674.67 1191.19 781.76 591.13 581.94 1880.07 783.38 2882.58 3587.69 4696.78 10
CNVR-MVS85.96 887.58 1184.06 992.58 592.40 1187.62 1177.77 588.44 1575.93 1879.49 2681.97 1781.65 587.04 686.58 488.79 1797.18 7
MCST-MVS85.75 986.99 1384.31 794.07 392.80 888.15 979.10 385.66 2470.72 3176.50 3380.45 2182.17 488.35 287.49 391.63 297.65 4
HPM-MVS++copyleft85.64 1088.43 782.39 1392.65 490.24 2785.83 1774.21 1290.68 975.63 1986.77 1484.15 878.68 1686.33 885.26 987.32 5795.60 18
DPM-MVS85.41 1186.72 1683.89 1191.66 1391.92 1590.49 378.09 486.90 1973.95 2174.52 3582.01 1679.29 1390.24 190.65 189.86 690.78 74
SMA-MVScopyleft85.24 1288.27 981.72 1691.74 1290.71 2186.71 1373.16 2090.56 1074.33 2083.07 1985.88 477.16 2086.28 985.58 687.23 6195.77 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft84.83 1387.00 1282.30 1489.61 2689.21 3586.51 1573.64 1790.98 877.99 1389.89 980.04 2479.18 1482.00 4881.37 4886.88 6995.49 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.84.39 1486.58 1781.83 1588.09 4086.47 6685.63 1973.62 1890.13 1179.24 1089.67 1082.99 1277.72 1881.22 5480.92 5886.68 7394.66 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj84.33 1583.20 2785.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 344.71 14879.75 883.52 2682.72 3288.75 1995.37 24
SD-MVS84.31 1686.96 1481.22 1788.98 3288.68 3985.65 1873.85 1689.09 1479.63 987.34 1384.84 673.71 3882.66 3581.60 4585.48 10794.51 32
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC84.16 1785.46 2182.64 1292.34 890.57 2486.57 1476.51 986.85 2172.91 2477.20 3278.69 2779.09 1584.64 2084.88 1688.44 2995.41 22
ACMMP_NAP83.54 1886.37 1880.25 2289.57 2790.10 2985.27 2171.66 2487.38 1673.08 2384.23 1880.16 2275.31 2684.85 1783.64 2486.57 7494.21 39
train_agg83.35 1986.93 1579.17 2889.70 2488.41 4285.60 2072.89 2286.31 2266.58 4290.48 782.24 1573.06 4483.10 3182.64 3487.21 6595.30 26
DeepPCF-MVS76.94 183.08 2087.77 1077.60 3690.11 2090.96 2078.48 5572.63 2393.10 465.84 4380.67 2481.55 1974.80 3185.94 1385.39 883.75 14496.77 11
CSCG82.90 2184.52 2381.02 1991.85 1193.43 787.14 1274.01 1581.96 3476.14 1670.84 3982.49 1369.71 6482.32 4185.18 1187.26 6095.40 23
SteuartSystems-ACMMP82.51 2285.35 2279.20 2790.25 1889.39 3484.79 2270.95 2682.86 3068.32 3986.44 1577.19 2873.07 4383.63 2583.64 2487.82 4294.34 34
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS82.48 2384.12 2480.56 2090.15 1987.55 5484.28 2469.67 3585.22 2577.95 1484.69 1775.94 3175.04 2881.85 4981.17 5286.30 7992.40 57
TSAR-MVS + GP.82.27 2485.98 1977.94 3480.72 7288.25 4581.12 4467.71 4687.10 1773.31 2285.23 1683.68 976.64 2280.43 6281.47 4788.15 3895.66 17
DeepC-MVS_fast75.41 281.69 2582.10 3481.20 1891.04 1787.81 5283.42 2874.04 1483.77 2871.09 2966.88 4772.44 3979.48 1185.08 1584.97 1488.12 3993.78 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS81.65 2683.10 2879.97 2488.14 3987.62 5383.96 2769.90 3286.92 1877.67 1572.47 3778.74 2674.13 3581.59 5281.15 5386.01 8993.19 50
TSAR-MVS + ACMM81.59 2785.84 2076.63 4089.82 2386.53 6586.32 1666.72 5385.96 2365.43 4488.98 1282.29 1467.57 8182.06 4781.33 4983.93 14293.75 44
MP-MVScopyleft80.94 2883.49 2677.96 3388.48 3388.16 4682.82 3369.34 3780.79 4069.67 3582.35 2177.13 2971.60 5480.97 5980.96 5785.87 9394.06 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet80.90 2982.93 3078.53 3286.83 4692.26 1281.19 4366.95 5081.60 3769.90 3466.93 4674.80 3376.79 2184.68 1984.77 1789.50 995.50 19
ACMMPR80.62 3082.98 2977.87 3588.41 3487.05 5983.02 3069.18 3883.91 2768.35 3882.89 2073.64 3672.16 4980.78 6081.13 5486.10 8691.43 64
DeepC-MVS74.46 380.30 3181.05 3779.42 2587.42 4288.50 4183.23 2973.27 1982.78 3171.01 3062.86 6069.93 5274.80 3184.30 2184.20 2186.79 7294.77 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS79.49 3279.84 4279.08 2988.26 3892.49 984.12 2670.63 2865.27 8369.60 3761.29 6566.50 6272.75 4588.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CP-MVS79.44 3381.51 3677.02 3986.95 4485.96 7482.00 3568.44 4381.82 3567.39 4077.43 3073.68 3571.62 5379.56 7179.58 7085.73 9792.51 56
MVS_030479.43 3482.20 3276.20 4384.22 5491.79 1781.82 3863.81 7176.83 5261.71 5766.37 4975.52 3276.38 2485.54 1485.03 1389.28 1194.32 36
PHI-MVS79.43 3484.06 2574.04 5786.15 4991.57 1980.85 4768.90 4182.22 3351.81 9478.10 2874.28 3470.39 6184.01 2484.00 2286.14 8594.24 37
PGM-MVS79.42 3681.84 3576.60 4188.38 3686.69 6182.97 3265.75 5980.39 4164.94 4581.95 2372.11 4471.41 5580.45 6180.55 6386.18 8390.76 76
CDPH-MVS79.39 3782.13 3376.19 4489.22 3188.34 4384.20 2571.00 2579.67 4456.97 7777.77 2972.24 4368.50 7681.33 5382.74 3087.23 6192.84 53
EPNet79.28 3882.25 3175.83 4688.31 3790.14 2879.43 5368.07 4481.76 3661.26 6077.26 3170.08 5170.06 6282.43 3982.00 3987.82 4292.09 59
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++78.57 3977.33 5380.02 2388.39 3584.79 8184.62 2366.17 5775.96 5478.40 1161.59 6371.47 4673.54 4178.43 8078.88 7688.97 1490.18 82
3Dnovator70.49 578.42 4076.77 5980.35 2191.43 1590.27 2681.84 3770.79 2772.10 6071.95 2550.02 10167.86 5877.47 1982.89 3284.24 2088.61 2489.99 83
HQP-MVS78.26 4180.91 3875.17 5185.67 5184.33 8783.01 3169.38 3679.88 4355.83 7879.85 2564.90 6770.81 5782.46 3781.78 4186.30 7993.18 51
X-MVS78.16 4280.55 3975.38 4987.99 4186.27 7081.05 4568.98 3978.33 4661.07 6275.25 3472.27 4067.52 8280.03 6480.52 6485.66 10491.20 68
3Dnovator+70.16 677.87 4377.29 5478.55 3189.25 3088.32 4480.09 4967.95 4574.89 5871.83 2752.05 9470.68 4976.27 2582.27 4282.04 3785.92 9090.77 75
canonicalmvs77.65 4479.59 4375.39 4881.52 6589.83 3381.32 4260.74 10780.05 4266.72 4168.43 4365.09 6574.72 3378.87 7682.73 3187.32 5792.16 58
ACMMPcopyleft77.61 4579.59 4375.30 5085.87 5085.58 7581.42 4067.38 4979.38 4562.61 5178.53 2765.79 6468.80 7578.56 7978.50 8185.75 9490.80 73
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
QAPM77.50 4677.43 5277.59 3791.52 1492.00 1481.41 4170.63 2866.22 7658.05 7254.70 8271.79 4574.49 3482.46 3782.04 3789.46 1092.79 55
MVS_111021_HR77.42 4778.40 4876.28 4286.95 4490.68 2277.41 6770.56 3166.21 7762.48 5366.17 5063.98 7072.08 5082.87 3383.15 2888.24 3595.71 16
CLD-MVS77.36 4877.29 5477.45 3882.21 6188.11 4781.92 3668.96 4077.97 4869.62 3662.08 6159.44 9273.57 4081.75 5081.27 5088.41 3090.39 79
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MAR-MVS77.19 4978.37 4975.81 4789.87 2290.58 2379.33 5465.56 6177.62 5058.33 7159.24 7367.98 5674.83 3082.37 4083.12 2986.95 6787.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER76.92 5079.92 4173.42 6074.98 11682.97 9678.15 5863.41 7578.02 4764.41 4767.54 4472.80 3871.05 5683.29 3083.73 2388.53 2791.12 69
PVSNet_BlendedMVS76.84 5178.47 4674.95 5282.37 5989.90 3175.45 7865.45 6274.99 5670.66 3263.07 5858.27 9967.60 7984.24 2281.70 4388.18 3697.10 8
PVSNet_Blended76.84 5178.47 4674.95 5282.37 5989.90 3175.45 7865.45 6274.99 5670.66 3263.07 5858.27 9967.60 7984.24 2281.70 4388.18 3697.10 8
ETV-MVS76.25 5380.22 4071.63 7178.23 8687.95 5172.75 9460.27 11177.50 5157.73 7371.53 3866.60 6173.16 4280.99 5881.23 5187.63 4995.73 15
AdaColmapbinary76.23 5473.55 7479.35 2689.38 2885.00 8079.99 5173.04 2176.60 5371.17 2855.18 8157.99 10177.87 1776.82 9376.82 9484.67 12986.45 116
DROMVSNet76.05 5578.87 4572.77 6478.87 8286.63 6277.50 6557.04 13575.34 5561.68 5864.20 5469.56 5373.96 3682.12 4480.65 6187.57 5093.57 46
PCF-MVS70.85 475.73 5676.55 6274.78 5583.67 5588.04 5081.47 3970.62 3069.24 7257.52 7560.59 6969.18 5470.65 5977.11 9077.65 8884.75 12794.01 41
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CPTT-MVS75.43 5777.13 5673.44 5981.43 6682.55 10080.96 4664.35 6777.95 4961.39 5969.20 4270.94 4869.38 7173.89 12373.32 13883.14 15492.06 60
MVS_Test75.22 5876.69 6073.51 5879.30 7888.82 3880.06 5058.74 11469.77 6857.50 7659.78 7261.35 8175.31 2682.07 4683.60 2690.13 591.41 66
casdiffmvs75.20 5975.69 6674.63 5679.26 7989.07 3678.47 5663.59 7467.05 7463.79 4855.72 7960.32 8773.58 3982.16 4381.78 4189.08 1393.72 45
OpenMVScopyleft67.62 874.92 6073.91 7276.09 4590.10 2190.38 2578.01 5966.35 5566.09 7862.80 5046.33 12464.55 6971.77 5279.92 6680.88 5987.52 5289.20 92
diffmvs74.32 6175.42 6773.04 6275.60 11287.27 5678.20 5762.96 8068.66 7361.89 5559.79 7159.84 9071.80 5178.30 8379.87 6687.80 4494.23 38
MVS_111021_LR74.26 6275.95 6472.27 6779.43 7785.04 7972.71 9565.27 6470.92 6463.58 4969.32 4160.31 8869.43 6977.01 9177.15 9183.22 15191.93 62
OMC-MVS74.03 6375.82 6571.95 6979.56 7580.98 11475.35 8063.21 7684.48 2661.83 5661.54 6466.89 5969.41 7076.60 9474.07 12882.34 16586.15 120
CS-MVS-test73.97 6476.86 5770.60 7775.53 11383.16 9477.50 6557.04 13571.34 6253.25 8963.44 5764.85 6873.96 3682.12 4478.80 7786.30 7994.34 34
DI_MVS_plusplus_trai73.94 6574.85 6972.88 6376.57 10486.80 6080.41 4861.47 9862.35 8859.44 6947.91 10768.12 5572.24 4882.84 3481.50 4687.15 6694.42 33
CS-MVS73.80 6677.47 5169.53 8374.86 11885.07 7869.93 12256.91 13872.12 5954.28 8764.82 5366.85 6074.88 2979.25 7379.64 6986.30 7994.52 31
EIA-MVS73.48 6776.05 6370.47 7878.12 8787.21 5771.78 10260.63 10869.66 6955.56 8164.86 5260.69 8469.53 6777.35 8978.59 7887.22 6394.01 41
TSAR-MVS + COLMAP73.09 6876.86 5768.71 9074.97 11782.49 10174.51 8961.83 9483.16 2949.31 10682.22 2251.62 13068.94 7478.76 7875.52 11282.67 15984.23 137
baseline72.89 6974.46 7171.07 7275.99 10887.50 5574.57 8460.49 10970.72 6557.60 7460.63 6860.97 8370.79 5875.27 10776.33 10086.94 6889.79 86
CANet_DTU72.84 7076.63 6168.43 9476.81 10186.62 6475.54 7754.71 16372.06 6143.54 12967.11 4558.46 9672.40 4781.13 5780.82 6087.57 5090.21 81
OPM-MVS72.74 7170.93 9074.85 5485.30 5284.34 8682.82 3369.79 3349.96 13955.39 8354.09 8960.14 8970.04 6380.38 6379.43 7185.74 9688.20 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CHOSEN 1792x268872.55 7271.98 8173.22 6186.57 4792.41 1075.63 7466.77 5262.08 8952.32 9130.27 19450.74 13366.14 8586.22 1285.41 791.90 196.75 12
CostFormer72.18 7373.90 7370.18 8079.47 7686.19 7376.94 7048.62 18266.07 7960.40 6754.14 8865.82 6367.98 7775.84 10276.41 9987.67 4792.83 54
ACMP68.86 772.15 7472.25 7972.03 6880.96 6880.87 11677.93 6064.13 6969.29 7060.79 6564.04 5553.54 12563.91 9573.74 12675.27 11384.45 13488.98 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train72.02 7573.18 7770.67 7682.13 6280.26 12279.58 5263.04 7870.09 6651.98 9265.06 5155.62 11262.49 10575.97 10176.32 10184.80 12688.93 95
PVSNet_Blended_VisFu71.76 7673.54 7569.69 8279.01 8087.16 5872.05 9961.80 9556.46 11259.66 6853.88 9062.48 7359.08 12881.17 5578.90 7586.53 7694.74 29
baseline171.47 7772.02 8070.82 7480.56 7384.51 8376.61 7166.93 5156.22 11448.66 10755.40 8060.43 8662.55 10483.35 2980.99 5589.60 783.28 145
TAPA-MVS67.10 971.45 7873.47 7669.10 8877.04 9980.78 11773.81 9262.10 9080.80 3951.28 9560.91 6663.80 7267.98 7774.59 11372.42 15082.37 16480.97 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ET-MVSNet_ETH3D71.38 7974.70 7067.51 10051.61 20988.06 4977.29 6860.95 10663.61 8548.36 10966.60 4860.67 8579.55 1073.56 12780.58 6287.30 5989.80 85
CNLPA71.37 8070.27 9572.66 6680.79 7181.33 11071.07 11565.75 5982.36 3264.80 4642.46 13656.49 10672.70 4673.00 13470.52 16980.84 17885.76 126
baseline271.22 8173.01 7869.13 8775.76 11086.34 6971.23 11062.78 8662.62 8652.85 9057.32 7554.31 11963.27 10079.74 6979.31 7288.89 1591.43 64
Effi-MVS+70.42 8271.23 8769.47 8478.04 8885.24 7775.57 7658.88 11359.56 9848.47 10852.73 9354.94 11569.69 6578.34 8277.06 9286.18 8390.73 77
ACMM66.70 1070.42 8268.49 10572.67 6582.85 5677.76 14577.70 6364.76 6664.61 8460.74 6649.29 10253.97 12265.86 8674.97 10975.57 11084.13 14183.29 144
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet370.41 8471.89 8368.68 9170.89 13979.42 12975.63 7460.97 10365.32 8051.06 9647.37 11262.05 7564.90 9082.49 3682.27 3688.64 2384.34 136
PMMVS70.37 8575.06 6864.90 11571.46 13381.88 10264.10 15455.64 15071.31 6346.69 11370.69 4058.56 9369.53 6779.03 7575.63 10881.96 16988.32 103
MS-PatchMatch70.34 8669.00 10171.91 7085.20 5385.35 7677.84 6261.77 9658.01 10655.40 8241.26 14358.34 9861.69 10981.70 5178.29 8289.56 880.02 162
test250669.26 8770.79 9167.48 10178.64 8386.40 6772.22 9762.75 8758.05 10445.24 11950.76 9754.93 11658.05 13479.82 6779.70 6787.96 4085.90 124
GBi-Net69.21 8870.40 9367.81 9769.49 14478.65 13474.54 8560.97 10365.32 8051.06 9647.37 11262.05 7563.43 9777.49 8578.22 8387.37 5483.73 139
test169.21 8870.40 9367.81 9769.49 14478.65 13474.54 8560.97 10365.32 8051.06 9647.37 11262.05 7563.43 9777.49 8578.22 8387.37 5483.73 139
DCV-MVSNet69.13 9069.07 10069.21 8677.65 9277.52 14774.68 8357.85 12454.92 12455.34 8455.74 7855.56 11366.35 8475.05 10876.56 9783.35 14888.13 105
IB-MVS64.48 1169.02 9168.97 10269.09 8981.75 6489.01 3764.50 15264.91 6556.65 11062.59 5247.89 10845.23 14651.99 15669.18 17181.88 4088.77 1892.93 52
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GeoE68.96 9269.32 9868.54 9276.61 10383.12 9571.78 10256.87 13960.21 9654.86 8545.95 12554.79 11864.27 9374.59 11375.54 11186.84 7191.01 71
FC-MVSNet-train68.83 9368.29 10769.47 8478.35 8579.94 12364.72 15166.38 5454.96 12354.51 8656.75 7647.91 14066.91 8375.57 10675.75 10685.92 9087.12 110
PLCcopyleft64.00 1268.54 9466.66 11870.74 7580.28 7474.88 16672.64 9663.70 7369.26 7155.71 7947.24 11555.31 11470.42 6072.05 14670.67 16781.66 17277.19 170
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023121168.44 9566.37 12170.86 7377.58 9383.49 9275.15 8161.89 9352.54 13258.50 7028.89 19656.78 10569.29 7274.96 11176.61 9582.73 15791.36 67
HyFIR lowres test68.39 9668.28 10868.52 9380.85 6988.11 4771.08 11458.09 11954.87 12647.80 11227.55 20055.80 11064.97 8979.11 7479.14 7488.31 3393.35 47
thisisatest053068.38 9770.98 8965.35 11172.61 12784.42 8468.21 13357.98 12059.77 9750.80 9954.63 8358.48 9557.92 13676.99 9277.47 8984.60 13085.07 130
test-LLR68.23 9871.61 8564.28 12271.37 13481.32 11163.98 15761.03 10158.62 10142.96 13452.74 9161.65 7957.74 13975.64 10478.09 8688.61 2493.21 48
FMVSNet268.06 9968.57 10467.45 10269.49 14478.65 13474.54 8560.23 11256.29 11349.64 10542.13 13957.08 10463.43 9781.15 5680.99 5587.37 5483.73 139
tttt051767.99 10070.61 9264.94 11471.94 13283.96 9067.62 13757.98 12059.30 9949.90 10454.50 8657.98 10257.92 13676.48 9577.47 8984.24 13784.58 133
ECVR-MVScopyleft67.93 10168.49 10567.28 10478.64 8386.40 6772.22 9762.75 8758.05 10444.06 12740.92 14748.20 13858.05 13479.82 6779.70 6787.96 4086.32 119
Fast-Effi-MVS+67.59 10267.56 11367.62 9973.67 12281.14 11371.12 11354.79 16258.88 10050.61 10146.70 12247.05 14269.12 7376.06 10076.44 9886.43 7786.65 114
EPP-MVSNet67.58 10371.10 8863.48 12875.71 11183.35 9366.85 14357.83 12553.02 13141.15 14355.82 7767.89 5756.01 14574.40 11672.92 14683.33 14990.30 80
UGNet67.57 10471.69 8462.76 13569.88 14282.58 9966.43 14758.64 11554.71 12751.87 9361.74 6262.01 7845.46 17974.78 11274.99 11484.24 13791.02 70
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm cat167.47 10567.05 11667.98 9676.63 10281.51 10874.49 9047.65 18761.18 9161.12 6142.51 13553.02 12864.74 9270.11 16571.50 15683.22 15189.49 88
TESTMET0.1,167.38 10671.61 8562.45 13866.05 16781.32 11163.98 15755.36 15558.62 10142.96 13452.74 9161.65 7957.74 13975.64 10478.09 8688.61 2493.21 48
IS_MVSNet67.29 10771.98 8161.82 14276.92 10084.32 8865.90 15058.22 11755.75 11839.22 15254.51 8562.47 7445.99 17778.83 7778.52 8084.70 12889.47 89
tpmrst67.15 10868.12 11066.03 10876.21 10680.98 11471.27 10945.05 19360.69 9450.63 10046.95 12054.15 12165.30 8771.80 14871.77 15487.72 4590.48 78
thres100view90067.14 10966.09 12468.38 9577.70 9083.84 9174.52 8866.33 5649.16 14343.40 13143.24 12841.34 15462.59 10379.31 7275.92 10585.73 9789.81 84
test111166.72 11067.80 11165.45 11077.42 9686.63 6269.69 12462.98 7955.29 12039.47 14940.12 15247.11 14155.70 14679.96 6580.00 6587.47 5385.49 129
test_part166.32 11163.35 13769.77 8177.40 9778.35 13877.85 6156.25 14344.52 16262.15 5433.05 18553.91 12362.38 10772.19 14374.65 11882.59 16086.81 112
EPMVS66.21 11267.49 11464.73 11675.81 10984.20 8968.94 12944.37 19761.55 9048.07 11149.21 10454.87 11762.88 10171.82 14771.40 16088.28 3479.37 165
EPNet_dtu66.17 11370.13 9661.54 14481.04 6777.39 14968.87 13062.50 8969.78 6733.51 18063.77 5656.22 10737.65 19372.20 14272.18 15385.69 10079.38 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-LS66.08 11466.56 12065.51 10973.67 12274.88 16670.89 11753.55 16950.42 13748.32 11050.59 9955.66 11161.83 10873.93 12274.42 12484.82 12586.01 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view965.90 11564.96 12867.00 10577.70 9081.58 10671.71 10562.94 8349.16 14343.40 13143.24 12841.34 15461.42 11176.24 9774.63 12084.84 12288.52 101
thres20065.58 11664.74 13066.56 10677.52 9581.61 10473.44 9362.95 8146.23 15542.45 13842.76 13041.18 15658.12 13276.24 9775.59 10984.89 12089.58 87
MSDG65.57 11761.57 15470.24 7982.02 6376.47 15474.46 9168.73 4256.52 11150.33 10238.47 15841.10 15862.42 10672.12 14472.94 14583.47 14773.37 184
Vis-MVSNetpermissive65.53 11869.83 9760.52 14870.80 14084.59 8266.37 14955.47 15448.40 14640.62 14757.67 7458.43 9745.37 18077.49 8576.24 10284.47 13385.99 123
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PatchmatchNetpermissive65.43 11967.71 11262.78 13473.49 12482.83 9766.42 14845.40 19260.40 9545.27 11849.22 10357.60 10360.01 12070.61 15771.38 16186.08 8781.91 156
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1365.21 12067.28 11562.79 13370.91 13881.72 10369.28 12849.50 18158.08 10343.94 12850.50 10056.02 10858.86 12970.72 15673.37 13684.24 13780.52 161
thres40065.18 12164.44 13266.04 10776.40 10582.63 9871.52 10764.27 6844.93 16140.69 14641.86 14040.79 16058.12 13277.67 8474.64 11985.26 11088.56 100
tpm64.85 12266.02 12563.48 12874.52 11978.38 13770.98 11644.99 19551.61 13443.28 13347.66 11053.18 12660.57 11570.58 15971.30 16386.54 7589.45 90
UA-Net64.62 12368.23 10960.42 14977.53 9481.38 10960.08 17657.47 13047.01 15044.75 12360.68 6771.32 4741.84 18773.27 12972.25 15280.83 17971.68 189
Effi-MVS+-dtu64.58 12464.08 13365.16 11273.04 12675.17 16570.68 11956.23 14454.12 12944.71 12447.42 11151.10 13163.82 9668.08 17466.32 18582.47 16386.38 117
GA-MVS64.55 12565.76 12763.12 13069.68 14381.56 10769.59 12558.16 11845.23 16035.58 17247.01 11941.82 15359.41 12479.62 7078.54 7986.32 7886.56 115
LS3D64.54 12662.14 15067.34 10380.85 6975.79 16069.99 12065.87 5860.77 9344.35 12542.43 13745.95 14565.01 8869.88 16668.69 17677.97 19371.43 191
CDS-MVSNet64.22 12765.89 12662.28 14070.05 14180.59 11869.91 12357.98 12043.53 16646.58 11448.22 10650.76 13246.45 17475.68 10376.08 10382.70 15886.34 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
dps64.08 12863.22 13865.08 11375.27 11579.65 12666.68 14546.63 19156.94 10855.67 8043.96 12743.63 15164.00 9469.50 17069.82 17182.25 16679.02 166
test-mter64.06 12969.24 9958.01 16359.07 19677.40 14859.13 17948.11 18555.64 11939.18 15351.56 9658.54 9455.38 14873.52 12876.00 10487.22 6392.05 61
SCA63.90 13066.67 11760.66 14773.75 12071.78 18159.87 17743.66 19861.13 9245.03 12151.64 9559.45 9157.92 13670.96 15470.80 16583.71 14580.92 160
thres600view763.77 13163.14 13964.51 11875.49 11481.61 10469.59 12562.95 8143.96 16538.90 15441.09 14440.24 16555.25 14976.24 9771.54 15584.89 12087.30 109
v2v48263.68 13262.85 14464.65 11768.01 15380.46 12071.90 10057.60 12744.26 16342.82 13639.80 15438.62 17061.56 11073.06 13274.86 11686.03 8888.90 97
FMVSNet163.48 13363.07 14063.97 12465.31 17276.37 15671.77 10457.90 12343.32 16745.66 11635.06 18149.43 13558.57 13077.49 8578.22 8384.59 13181.60 158
v863.44 13462.58 14664.43 11968.28 15278.07 14071.82 10154.85 16046.70 15345.20 12039.40 15540.91 15960.54 11672.85 13674.39 12585.92 9085.76 126
pmmvs463.14 13562.46 14763.94 12566.03 16876.40 15566.82 14457.60 12756.74 10950.26 10340.81 14837.51 17359.26 12671.75 14971.48 15783.68 14682.53 150
Fast-Effi-MVS+-dtu63.05 13664.72 13161.11 14571.21 13776.81 15370.72 11843.13 20252.51 13335.34 17346.55 12346.36 14361.40 11271.57 15171.44 15884.84 12287.79 107
v114463.00 13762.39 14863.70 12767.72 15680.27 12171.23 11056.40 14042.51 16840.81 14538.12 16237.73 17160.42 11874.46 11574.55 12285.64 10589.12 93
v1063.00 13762.22 14963.90 12667.88 15577.78 14471.59 10654.34 16445.37 15942.76 13738.53 15738.93 16861.05 11474.39 11774.52 12385.75 9486.04 121
V4262.86 13962.97 14162.74 13660.84 19078.99 13271.46 10857.13 13446.85 15144.28 12638.87 15640.73 16257.63 14172.60 14074.14 12685.09 11588.63 99
gg-mvs-nofinetune62.34 14066.19 12357.86 16576.15 10788.61 4071.18 11241.24 21025.74 21313.16 21522.91 20763.97 7154.52 15185.06 1685.25 1090.92 391.78 63
CR-MVSNet62.31 14164.75 12959.47 15568.63 15071.29 18467.53 13843.18 20055.83 11641.40 14041.04 14555.85 10957.29 14272.76 13773.27 14078.77 19083.23 146
UniMVSNet_NR-MVSNet62.30 14263.51 13660.89 14669.48 14777.83 14364.07 15563.94 7050.03 13831.17 18544.82 12641.12 15751.37 15971.02 15374.81 11785.30 10984.95 131
v119262.25 14361.64 15362.96 13166.88 16179.72 12569.96 12155.77 14841.58 17339.42 15037.05 16735.96 18460.50 11774.30 12074.09 12785.24 11188.76 98
Vis-MVSNet (Re-imp)62.25 14368.74 10354.68 18073.70 12178.74 13356.51 18557.49 12955.22 12126.86 19354.56 8461.35 8131.06 19573.10 13174.90 11582.49 16283.31 143
CHOSEN 280x42062.23 14566.57 11957.17 17159.88 19368.92 19061.20 17342.28 20454.17 12839.57 14847.78 10964.97 6662.68 10273.85 12469.52 17477.43 19486.75 113
PatchMatch-RL62.22 14660.69 16064.01 12368.74 14975.75 16159.27 17860.35 11056.09 11553.80 8847.06 11836.45 17964.80 9168.22 17367.22 18077.10 19574.02 179
v14419262.05 14761.46 15562.73 13766.59 16579.87 12469.30 12755.88 14641.50 17539.41 15137.23 16536.45 17959.62 12272.69 13973.51 13385.61 10688.93 95
v14862.00 14861.19 15762.96 13167.46 15979.49 12867.87 13457.66 12642.30 16945.02 12238.20 16138.89 16954.77 15069.83 16772.60 14984.96 11687.01 111
IterMVS61.87 14963.55 13559.90 15167.29 16072.20 17867.34 14148.56 18347.48 14937.86 16147.07 11748.27 13654.08 15272.12 14473.71 13184.30 13683.99 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192061.66 15061.10 15862.31 13966.32 16679.57 12768.41 13255.49 15341.03 17638.69 15536.64 17335.27 18759.60 12373.23 13073.41 13585.37 10888.51 102
ACMH59.42 1461.59 15159.22 17064.36 12178.92 8178.26 13967.65 13667.48 4839.81 18130.98 18738.25 16034.59 19061.37 11370.55 16073.47 13479.74 18579.59 163
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+60.36 1361.16 15258.38 17264.42 12077.37 9874.35 17168.45 13162.81 8545.86 15738.48 15635.71 17637.35 17459.81 12167.24 17669.80 17379.58 18678.32 168
v124061.09 15360.55 16261.72 14365.92 17079.28 13067.16 14254.91 15939.79 18238.10 15836.08 17534.64 18959.15 12772.86 13573.36 13785.10 11387.84 106
NR-MVSNet61.08 15462.09 15159.90 15171.96 13175.87 15863.60 16161.96 9149.31 14127.95 19042.76 13033.85 19448.82 16674.35 11874.05 12985.13 11284.45 134
DU-MVS60.87 15561.82 15259.76 15366.69 16275.87 15864.07 15561.96 9149.31 14131.17 18542.76 13036.95 17651.37 15969.67 16873.20 14383.30 15084.95 131
UniMVSNet (Re)60.62 15662.93 14357.92 16467.64 15777.90 14261.75 17061.24 10049.83 14029.80 18942.57 13340.62 16343.36 18370.49 16173.27 14083.76 14385.81 125
PatchT60.46 15763.85 13456.51 17465.95 16975.68 16247.34 19941.39 20753.89 13041.40 14037.84 16350.30 13457.29 14272.76 13773.27 14085.67 10183.23 146
TranMVSNet+NR-MVSNet60.38 15861.30 15659.30 15768.34 15175.57 16463.38 16463.78 7246.74 15227.73 19142.56 13436.84 17747.66 16970.36 16274.59 12184.91 11982.46 151
IterMVS-SCA-FT60.21 15962.97 14157.00 17266.64 16471.84 17967.53 13846.93 19047.56 14836.77 16646.85 12148.21 13752.51 15570.36 16272.40 15171.63 20883.53 142
pmmvs559.72 16060.24 16459.11 15962.77 18477.33 15063.17 16554.00 16640.21 18037.23 16240.41 14935.99 18351.75 15772.55 14172.74 14885.72 9982.45 152
USDC59.69 16160.03 16659.28 15864.04 17771.84 17963.15 16655.36 15554.90 12535.02 17448.34 10529.79 20658.16 13170.60 15871.33 16279.99 18373.42 183
Baseline_NR-MVSNet59.47 16260.28 16358.54 16266.69 16273.90 17261.63 17162.90 8449.15 14526.87 19235.18 18037.62 17248.20 16769.67 16873.61 13284.92 11782.82 149
thisisatest051559.37 16360.68 16157.84 16664.39 17675.65 16358.56 18153.86 16741.55 17442.12 13940.40 15039.59 16647.09 17271.69 15073.79 13081.02 17782.08 155
pm-mvs159.21 16459.58 16958.77 16167.97 15477.07 15264.12 15357.20 13234.73 19836.86 16335.34 17840.54 16443.34 18474.32 11973.30 13983.13 15581.77 157
tfpnnormal58.97 16556.48 18061.89 14171.27 13676.21 15766.65 14661.76 9732.90 20136.41 16727.83 19929.14 20750.64 16373.06 13273.05 14484.58 13283.15 148
FMVSNet558.86 16660.24 16457.25 17052.66 20866.25 19663.77 16052.86 17457.85 10737.92 16036.12 17452.22 12951.37 15970.88 15571.43 15984.92 11766.91 200
TAMVS58.86 16660.91 15956.47 17562.38 18677.57 14658.97 18052.98 17238.76 18536.17 16842.26 13847.94 13946.45 17470.23 16470.79 16681.86 17078.82 167
EG-PatchMatch MVS58.73 16858.03 17559.55 15472.32 12880.49 11963.44 16355.55 15232.49 20238.31 15728.87 19737.22 17542.84 18574.30 12075.70 10784.84 12277.14 171
RPMNet58.63 16962.80 14553.76 18567.59 15871.29 18454.60 18838.13 21255.83 11635.70 17141.58 14253.04 12747.89 16866.10 17867.38 17878.65 19284.40 135
ADS-MVSNet58.40 17059.16 17157.52 16865.80 17174.57 17060.26 17440.17 21150.51 13638.01 15940.11 15344.72 14759.36 12564.91 18366.55 18381.53 17372.72 187
UniMVSNet_ETH3D57.83 17156.46 18159.43 15663.24 18173.22 17567.70 13555.58 15136.17 19336.84 16432.64 18635.14 18851.50 15865.81 17969.81 17281.73 17182.44 153
TransMVSNet (Re)57.83 17156.90 17858.91 16072.26 12974.69 16963.57 16261.42 9932.30 20332.65 18133.97 18335.96 18439.17 19173.84 12572.84 14784.37 13574.69 177
MIMVSNet57.78 17359.71 16855.53 17754.79 20477.10 15163.89 15945.02 19446.59 15436.79 16528.36 19840.77 16145.84 17874.97 10976.58 9686.87 7073.60 182
CMPMVSbinary43.63 1757.67 17455.43 18260.28 15072.01 13079.00 13162.77 16753.23 17141.77 17245.42 11730.74 19339.03 16753.01 15464.81 18564.65 19175.26 20068.03 198
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 157.35 17559.89 16754.38 18371.37 13473.45 17452.71 19161.03 10146.11 15626.33 19441.73 14144.08 14929.72 19771.43 15270.90 16485.10 11371.56 190
v7n57.04 17656.64 17957.52 16862.85 18374.75 16861.76 16951.80 17735.58 19736.02 17032.33 18833.61 19550.16 16467.73 17570.34 17082.51 16182.12 154
pmmvs-eth3d55.20 17753.95 18656.65 17357.34 20267.77 19257.54 18353.74 16840.93 17741.09 14431.19 19229.10 20849.07 16565.54 18067.28 17981.14 17575.81 172
COLMAP_ROBcopyleft51.17 1555.13 17852.90 19157.73 16773.47 12567.21 19462.13 16855.82 14747.83 14734.39 17631.60 19034.24 19144.90 18163.88 19062.52 19875.67 19863.02 207
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF55.07 17958.06 17451.57 18748.87 21258.95 20953.68 19041.26 20962.42 8745.88 11554.38 8754.26 12053.75 15357.15 20053.53 21066.01 21065.75 202
gm-plane-assit54.99 18057.99 17651.49 18969.27 14854.42 21332.32 21642.59 20321.18 21713.71 21323.61 20443.84 15060.21 11987.09 586.55 590.81 489.28 91
anonymousdsp54.99 18057.24 17752.36 18653.82 20671.75 18251.49 19248.14 18433.74 19933.66 17938.34 15936.13 18247.54 17064.53 18770.60 16879.53 18785.59 128
CVMVSNet54.92 18258.16 17351.13 19062.61 18568.44 19155.45 18752.38 17542.28 17021.45 20147.10 11646.10 14437.96 19264.42 18863.81 19276.92 19675.01 176
GG-mvs-BLEND54.54 18377.58 5027.67 2120.03 22690.09 3077.20 690.02 22366.83 750.05 22759.90 7073.33 370.04 22278.40 8179.30 7388.65 2295.20 27
MDTV_nov1_ep13_2view54.47 18454.61 18354.30 18460.50 19173.82 17357.92 18243.38 19939.43 18432.51 18233.23 18434.05 19247.26 17162.36 19166.21 18684.24 13773.19 185
pmmvs654.20 18553.54 18754.97 17863.22 18272.98 17660.17 17552.32 17626.77 21234.30 17723.29 20636.23 18140.33 19068.77 17268.76 17579.47 18878.00 169
pmnet_mix0253.92 18653.30 18854.65 18261.89 18771.33 18354.54 18954.17 16540.38 17834.65 17534.76 18230.68 20540.44 18960.97 19363.71 19382.19 16771.24 192
MVS-HIRNet53.86 18753.02 18954.85 17960.30 19272.36 17744.63 20742.20 20539.45 18343.47 13021.66 21034.00 19355.47 14765.42 18167.16 18183.02 15671.08 193
TDRefinement52.70 18851.02 19754.66 18157.41 20165.06 20061.47 17254.94 15744.03 16433.93 17830.13 19527.57 20946.17 17661.86 19262.48 19974.01 20466.06 201
TinyColmap52.66 18950.09 20055.65 17659.72 19464.02 20457.15 18452.96 17340.28 17932.51 18232.42 18720.97 21756.65 14463.95 18965.15 19074.91 20163.87 205
Anonymous2023120652.23 19052.80 19251.56 18864.70 17569.41 18851.01 19358.60 11636.63 19022.44 20021.80 20931.42 20130.52 19666.79 17767.83 17782.10 16875.73 173
PEN-MVS51.04 19152.94 19048.82 19361.45 18966.00 19748.68 19657.20 13236.87 18815.36 20936.98 16832.72 19628.77 20157.63 19966.37 18481.44 17474.00 180
WR-MVS51.02 19254.56 18446.90 19963.84 17869.23 18944.78 20656.38 14138.19 18614.19 21137.38 16436.82 17822.39 20760.14 19566.20 18779.81 18473.95 181
CP-MVSNet50.57 19352.60 19448.21 19658.77 19865.82 19848.17 19756.29 14237.41 18716.59 20637.14 16631.95 19829.21 19856.60 20263.71 19380.22 18175.56 174
PS-CasMVS50.17 19452.02 19548.02 19758.60 19965.54 19948.04 19856.19 14536.42 19216.42 20835.68 17731.33 20228.85 20056.42 20463.54 19580.01 18275.18 175
PM-MVS50.11 19550.38 19949.80 19147.23 21462.08 20750.91 19444.84 19641.90 17136.10 16935.22 17926.05 21346.83 17357.64 19855.42 20972.90 20574.32 178
DTE-MVSNet49.82 19651.92 19647.37 19861.75 18864.38 20245.89 20557.33 13136.11 19412.79 21636.87 16931.93 19925.73 20458.01 19765.22 18980.75 18070.93 194
WR-MVS_H49.62 19752.63 19346.11 20258.80 19767.58 19346.14 20454.94 15736.51 19113.63 21436.75 17135.67 18622.10 20856.43 20362.76 19781.06 17672.73 186
LTVRE_ROB47.26 1649.41 19849.91 20148.82 19364.76 17469.79 18749.05 19547.12 18920.36 21916.52 20736.65 17226.96 21050.76 16260.47 19463.16 19664.73 21172.00 188
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo49.11 19949.22 20248.99 19258.54 20064.14 20347.18 20047.75 18631.15 20524.42 19641.01 14626.55 21144.04 18254.76 20758.70 20471.99 20768.21 196
testgi48.51 20050.53 19846.16 20164.78 17367.15 19541.54 20954.81 16129.12 20817.03 20532.07 18931.98 19720.15 21165.26 18267.00 18278.67 19161.10 211
N_pmnet47.67 20147.00 20548.45 19554.72 20562.78 20546.95 20151.25 17836.01 19526.09 19526.59 20225.93 21435.50 19455.67 20659.01 20276.22 19763.04 206
FC-MVSNet-test47.24 20254.37 18538.93 20859.49 19558.25 21134.48 21553.36 17045.66 1586.66 22150.62 9842.02 15216.62 21558.39 19661.21 20062.99 21264.40 204
test20.0347.23 20348.69 20345.53 20363.28 18064.39 20141.01 21056.93 13729.16 20715.21 21023.90 20330.76 20417.51 21464.63 18665.26 18879.21 18962.71 208
EU-MVSNet44.84 20447.85 20441.32 20749.26 21156.59 21243.07 20847.64 18833.03 20013.82 21236.78 17030.99 20324.37 20553.80 20855.57 20869.78 20968.21 196
MDA-MVSNet-bldmvs44.15 20542.27 21046.34 20038.34 21662.31 20646.28 20255.74 14929.83 20620.98 20227.11 20116.45 22241.98 18641.11 21457.47 20574.72 20261.65 210
new-patchmatchnet42.21 20642.97 20741.33 20653.05 20759.89 20839.38 21149.61 18028.26 21012.10 21722.17 20821.54 21619.22 21250.96 20956.04 20774.61 20361.92 209
pmmvs341.86 20742.29 20941.36 20539.80 21552.66 21438.93 21335.85 21623.40 21620.22 20319.30 21120.84 21840.56 18855.98 20558.79 20372.80 20665.03 203
MIMVSNet140.84 20843.46 20637.79 20932.14 21758.92 21039.24 21250.83 17927.00 21111.29 21816.76 21626.53 21217.75 21357.14 20161.12 20175.46 19956.78 212
FPMVS39.11 20936.39 21142.28 20455.97 20345.94 21646.23 20341.57 20635.73 19622.61 19823.46 20519.82 21928.32 20243.57 21140.67 21358.96 21445.54 214
new_pmnet33.19 21035.52 21230.47 21127.55 22145.31 21729.29 21730.92 21729.00 2099.88 22018.77 21217.64 22126.77 20344.07 21045.98 21258.41 21547.87 213
PMVScopyleft27.44 1832.08 21129.07 21435.60 21048.33 21324.79 21926.97 21841.34 20820.45 21822.50 19917.11 21518.64 22020.44 21041.99 21338.06 21454.02 21642.44 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method28.15 21234.48 21320.76 2146.76 22521.18 22121.03 21918.41 22036.77 18917.52 20415.67 21731.63 20024.05 20641.03 21526.69 21736.82 21968.38 195
Gipumacopyleft24.91 21324.61 21525.26 21331.47 21821.59 22018.06 22037.53 21325.43 21410.03 2194.18 2224.25 22614.85 21643.20 21247.03 21139.62 21826.55 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS220.45 21422.31 21618.27 21720.52 22226.73 21814.85 22228.43 21913.69 2200.79 22610.35 2189.10 2233.83 22127.64 21732.87 21541.17 21735.81 216
E-PMN15.08 21511.65 21819.08 21528.73 21912.31 2246.95 22536.87 21510.71 2223.63 2245.13 2192.22 22913.81 21811.34 22018.50 21924.49 22121.32 220
EMVS14.40 21610.71 21918.70 21628.15 22012.09 2257.06 22436.89 21411.00 2213.56 2254.95 2202.27 22813.91 21710.13 22116.06 22022.63 22218.51 221
MVEpermissive15.98 1914.37 21716.36 21712.04 2197.72 22420.24 2225.90 22629.05 2188.28 2233.92 2234.72 2212.42 2279.57 21918.89 21931.46 21616.07 22428.53 218
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.05 2180.08 2200.01 2200.00 2270.01 2270.03 2280.01 2240.05 2240.00 2280.14 2240.01 2300.03 2240.05 2220.05 2210.01 2250.24 223
test1230.05 2180.08 2200.01 2200.00 2270.01 2270.01 2290.00 2250.05 2240.00 2280.16 2230.00 2310.04 2220.02 2230.05 2210.00 2260.26 222
uanet_test0.00 2200.00 2220.00 2220.00 2270.00 2290.00 2300.00 2250.00 2260.00 2280.00 2250.00 2310.00 2250.00 2240.00 2230.00 2260.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2270.00 2290.00 2300.00 2250.00 2260.00 2280.00 2250.00 2310.00 2250.00 2240.00 2230.00 2260.00 224
sosnet0.00 2200.00 2220.00 2220.00 2270.00 2290.00 2300.00 2250.00 2260.00 2280.00 2250.00 2310.00 2250.00 2240.00 2230.00 2260.00 224
RE-MVS-def31.47 184
9.1484.47 7
SR-MVS86.33 4867.54 4780.78 20
Anonymous20240521166.35 12278.00 8984.41 8574.85 8263.18 7751.00 13531.37 19153.73 12469.67 6676.28 9676.84 9383.21 15390.85 72
our_test_363.32 17971.07 18655.90 186
ambc42.30 20850.36 21049.51 21535.47 21432.04 20423.53 19717.36 2138.95 22429.06 19964.88 18456.26 20661.29 21367.12 199
MTAPA78.32 1279.42 25
MTMP76.04 1776.65 30
Patchmatch-RL test2.17 227
tmp_tt16.09 21813.07 2238.12 22613.61 2232.08 22255.09 12230.10 18840.26 15122.83 2155.35 22029.91 21625.25 21832.33 220
XVS82.43 5786.27 7075.70 7261.07 6272.27 4085.67 101
X-MVStestdata82.43 5786.27 7075.70 7261.07 6272.27 4085.67 101
abl_679.06 3089.68 2592.14 1377.70 6369.68 3486.87 2071.88 2674.29 3680.06 2376.56 2388.84 1695.82 13
mPP-MVS86.96 4370.61 50
NP-MVS81.60 37
Patchmtry78.06 14167.53 13843.18 20041.40 140
DeepMVS_CXcopyleft19.81 22317.01 22110.02 22123.61 2155.85 22217.21 2148.03 22521.13 20922.60 21821.42 22330.01 217