xxxxxxxxxxxxxcwj | | | 84.33 15 | 83.20 27 | 85.64 3 | 94.57 1 | 94.55 4 | 91.01 1 | 79.94 1 | 89.15 12 | 79.85 7 | 92.37 3 | 44.71 145 | 79.75 8 | 83.52 26 | 82.72 32 | 88.75 19 | 95.37 24 |
|
SF-MVS | | | 87.30 6 | 88.71 6 | 85.64 3 | 94.57 1 | 94.55 4 | 91.01 1 | 79.94 1 | 89.15 12 | 79.85 7 | 92.37 3 | 83.29 10 | 79.75 8 | 83.52 26 | 82.72 32 | 88.75 19 | 95.37 24 |
|
MCST-MVS | | | 85.75 9 | 86.99 13 | 84.31 7 | 94.07 3 | 92.80 8 | 88.15 9 | 79.10 3 | 85.66 24 | 70.72 31 | 76.50 33 | 80.45 21 | 82.17 4 | 88.35 2 | 87.49 3 | 91.63 2 | 97.65 4 |
|
HPM-MVS++ |  | | 85.64 10 | 88.43 7 | 82.39 13 | 92.65 4 | 90.24 27 | 85.83 17 | 74.21 12 | 90.68 9 | 75.63 19 | 86.77 14 | 84.15 8 | 78.68 16 | 86.33 8 | 85.26 9 | 87.32 54 | 95.60 18 |
|
CNVR-MVS | | | 85.96 8 | 87.58 11 | 84.06 9 | 92.58 5 | 92.40 11 | 87.62 11 | 77.77 5 | 88.44 15 | 75.93 18 | 79.49 26 | 81.97 17 | 81.65 5 | 87.04 6 | 86.58 4 | 88.79 17 | 97.18 7 |
|
DVP-MVS++. | | | 87.98 3 | 89.76 5 | 85.89 2 | 92.57 6 | 94.57 3 | 88.34 6 | 76.61 8 | 92.40 6 | 83.40 3 | 89.26 11 | 85.57 5 | 86.04 2 | 86.24 11 | 84.89 15 | 88.39 31 | 95.42 21 |
|
SED-MVS | | | 88.94 1 | 90.98 1 | 86.56 1 | 92.53 7 | 95.09 1 | 88.55 5 | 76.83 7 | 94.16 1 | 86.57 1 | 90.85 6 | 87.07 1 | 86.18 1 | 86.36 7 | 85.08 12 | 88.67 21 | 98.21 3 |
|
NCCC | | | 84.16 17 | 85.46 21 | 82.64 12 | 92.34 8 | 90.57 24 | 86.57 14 | 76.51 9 | 86.85 21 | 72.91 24 | 77.20 32 | 78.69 27 | 79.09 15 | 84.64 20 | 84.88 16 | 88.44 29 | 95.41 22 |
|
DPE-MVS |  | | 87.60 5 | 90.44 4 | 84.29 8 | 92.09 9 | 93.44 6 | 88.69 4 | 75.11 10 | 93.06 5 | 80.80 6 | 94.23 2 | 86.70 3 | 81.44 6 | 84.84 18 | 83.52 27 | 87.64 46 | 97.28 5 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 88.07 2 | 90.73 2 | 84.97 5 | 91.98 10 | 95.01 2 | 87.86 10 | 76.88 6 | 93.90 2 | 85.15 2 | 90.11 8 | 86.90 2 | 79.46 12 | 86.26 10 | 84.67 18 | 88.50 28 | 98.25 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CSCG | | | 82.90 21 | 84.52 23 | 81.02 19 | 91.85 11 | 93.43 7 | 87.14 12 | 74.01 15 | 81.96 34 | 76.14 16 | 70.84 39 | 82.49 13 | 69.71 64 | 82.32 41 | 85.18 11 | 87.26 57 | 95.40 23 |
|
SMA-MVS |  | | 85.24 12 | 88.27 9 | 81.72 16 | 91.74 12 | 90.71 21 | 86.71 13 | 73.16 20 | 90.56 10 | 74.33 20 | 83.07 19 | 85.88 4 | 77.16 20 | 86.28 9 | 85.58 6 | 87.23 58 | 95.77 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPM-MVS | | | 85.41 11 | 86.72 16 | 83.89 11 | 91.66 13 | 91.92 15 | 90.49 3 | 78.09 4 | 86.90 19 | 73.95 21 | 74.52 35 | 82.01 16 | 79.29 13 | 90.24 1 | 90.65 1 | 89.86 6 | 90.78 74 |
|
QAPM | | | 77.50 46 | 77.43 52 | 77.59 37 | 91.52 14 | 92.00 14 | 81.41 41 | 70.63 28 | 66.22 76 | 58.05 72 | 54.70 82 | 71.79 45 | 74.49 34 | 82.46 37 | 82.04 37 | 89.46 10 | 92.79 55 |
|
APDe-MVS | | | 86.37 7 | 88.41 8 | 84.00 10 | 91.43 15 | 91.83 16 | 88.34 6 | 74.67 11 | 91.19 7 | 81.76 5 | 91.13 5 | 81.94 18 | 80.07 7 | 83.38 28 | 82.58 35 | 87.69 44 | 96.78 10 |
|
3Dnovator | | 70.49 5 | 78.42 40 | 76.77 59 | 80.35 21 | 91.43 15 | 90.27 26 | 81.84 37 | 70.79 27 | 72.10 60 | 71.95 25 | 50.02 100 | 67.86 58 | 77.47 19 | 82.89 32 | 84.24 20 | 88.61 24 | 89.99 83 |
|
DeepC-MVS_fast | | 75.41 2 | 81.69 25 | 82.10 34 | 81.20 18 | 91.04 17 | 87.81 52 | 83.42 28 | 74.04 14 | 83.77 28 | 71.09 29 | 66.88 47 | 72.44 39 | 79.48 11 | 85.08 15 | 84.97 14 | 88.12 39 | 93.78 43 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SteuartSystems-ACMMP | | | 82.51 22 | 85.35 22 | 79.20 27 | 90.25 18 | 89.39 34 | 84.79 22 | 70.95 26 | 82.86 30 | 68.32 39 | 86.44 15 | 77.19 28 | 73.07 43 | 83.63 25 | 83.64 24 | 87.82 40 | 94.34 34 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 82.48 23 | 84.12 24 | 80.56 20 | 90.15 19 | 87.55 54 | 84.28 24 | 69.67 35 | 85.22 25 | 77.95 14 | 84.69 17 | 75.94 31 | 75.04 28 | 81.85 49 | 81.17 52 | 86.30 76 | 92.40 57 |
|
DeepPCF-MVS | | 76.94 1 | 83.08 20 | 87.77 10 | 77.60 36 | 90.11 20 | 90.96 20 | 78.48 55 | 72.63 23 | 93.10 4 | 65.84 43 | 80.67 24 | 81.55 19 | 74.80 31 | 85.94 13 | 85.39 8 | 83.75 141 | 96.77 11 |
|
OpenMVS |  | 67.62 8 | 74.92 60 | 73.91 72 | 76.09 45 | 90.10 21 | 90.38 25 | 78.01 59 | 66.35 55 | 66.09 78 | 62.80 50 | 46.33 123 | 64.55 69 | 71.77 52 | 79.92 65 | 80.88 59 | 87.52 50 | 89.20 92 |
|
MAR-MVS | | | 77.19 49 | 78.37 49 | 75.81 47 | 89.87 22 | 90.58 23 | 79.33 54 | 65.56 61 | 77.62 50 | 58.33 71 | 59.24 73 | 67.98 56 | 74.83 30 | 82.37 40 | 83.12 29 | 86.95 64 | 87.67 108 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
TSAR-MVS + ACMM | | | 81.59 27 | 85.84 20 | 76.63 40 | 89.82 23 | 86.53 64 | 86.32 16 | 66.72 53 | 85.96 23 | 65.43 44 | 88.98 12 | 82.29 14 | 67.57 81 | 82.06 47 | 81.33 49 | 83.93 139 | 93.75 44 |
|
train_agg | | | 83.35 19 | 86.93 15 | 79.17 28 | 89.70 24 | 88.41 42 | 85.60 20 | 72.89 22 | 86.31 22 | 66.58 42 | 90.48 7 | 82.24 15 | 73.06 44 | 83.10 31 | 82.64 34 | 87.21 62 | 95.30 26 |
|
abl_6 | | | | | 79.06 30 | 89.68 25 | 92.14 13 | 77.70 63 | 69.68 34 | 86.87 20 | 71.88 26 | 74.29 36 | 80.06 23 | 76.56 23 | | | 88.84 16 | 95.82 13 |
|
APD-MVS |  | | 84.83 13 | 87.00 12 | 82.30 14 | 89.61 26 | 89.21 35 | 86.51 15 | 73.64 17 | 90.98 8 | 77.99 13 | 89.89 9 | 80.04 24 | 79.18 14 | 82.00 48 | 81.37 48 | 86.88 66 | 95.49 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 83.54 18 | 86.37 18 | 80.25 22 | 89.57 27 | 90.10 29 | 85.27 21 | 71.66 24 | 87.38 16 | 73.08 23 | 84.23 18 | 80.16 22 | 75.31 26 | 84.85 17 | 83.64 24 | 86.57 71 | 94.21 39 |
|
MSP-MVS | | | 87.87 4 | 90.57 3 | 84.73 6 | 89.38 28 | 91.60 18 | 88.24 8 | 74.15 13 | 93.55 3 | 82.28 4 | 94.99 1 | 83.21 11 | 85.96 3 | 87.67 4 | 84.67 18 | 88.32 32 | 98.29 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
AdaColmap |  | | 76.23 54 | 73.55 74 | 79.35 26 | 89.38 28 | 85.00 77 | 79.99 51 | 73.04 21 | 76.60 53 | 71.17 28 | 55.18 81 | 57.99 101 | 77.87 17 | 76.82 90 | 76.82 91 | 84.67 126 | 86.45 116 |
|
3Dnovator+ | | 70.16 6 | 77.87 43 | 77.29 54 | 78.55 31 | 89.25 30 | 88.32 44 | 80.09 49 | 67.95 45 | 74.89 58 | 71.83 27 | 52.05 94 | 70.68 49 | 76.27 25 | 82.27 42 | 82.04 37 | 85.92 87 | 90.77 75 |
|
CDPH-MVS | | | 79.39 37 | 82.13 33 | 76.19 44 | 89.22 31 | 88.34 43 | 84.20 25 | 71.00 25 | 79.67 44 | 56.97 77 | 77.77 29 | 72.24 43 | 68.50 76 | 81.33 53 | 82.74 30 | 87.23 58 | 92.84 53 |
|
SD-MVS | | | 84.31 16 | 86.96 14 | 81.22 17 | 88.98 32 | 88.68 39 | 85.65 18 | 73.85 16 | 89.09 14 | 79.63 9 | 87.34 13 | 84.84 6 | 73.71 38 | 82.66 35 | 81.60 45 | 85.48 104 | 94.51 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MP-MVS |  | | 80.94 28 | 83.49 26 | 77.96 33 | 88.48 33 | 88.16 46 | 82.82 33 | 69.34 37 | 80.79 40 | 69.67 35 | 82.35 21 | 77.13 29 | 71.60 54 | 80.97 59 | 80.96 57 | 85.87 90 | 94.06 40 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMPR | | | 80.62 30 | 82.98 29 | 77.87 35 | 88.41 34 | 87.05 59 | 83.02 30 | 69.18 38 | 83.91 27 | 68.35 38 | 82.89 20 | 73.64 36 | 72.16 49 | 80.78 60 | 81.13 54 | 86.10 83 | 91.43 64 |
|
MSLP-MVS++ | | | 78.57 39 | 77.33 53 | 80.02 23 | 88.39 35 | 84.79 78 | 84.62 23 | 66.17 57 | 75.96 54 | 78.40 11 | 61.59 63 | 71.47 46 | 73.54 41 | 78.43 77 | 78.88 73 | 88.97 14 | 90.18 82 |
|
PGM-MVS | | | 79.42 36 | 81.84 35 | 76.60 41 | 88.38 36 | 86.69 61 | 82.97 32 | 65.75 59 | 80.39 41 | 64.94 45 | 81.95 23 | 72.11 44 | 71.41 55 | 80.45 61 | 80.55 63 | 86.18 80 | 90.76 76 |
|
EPNet | | | 79.28 38 | 82.25 31 | 75.83 46 | 88.31 37 | 90.14 28 | 79.43 53 | 68.07 44 | 81.76 36 | 61.26 60 | 77.26 31 | 70.08 51 | 70.06 62 | 82.43 39 | 82.00 39 | 87.82 40 | 92.09 59 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 79.49 32 | 79.84 42 | 79.08 29 | 88.26 38 | 92.49 9 | 84.12 26 | 70.63 28 | 65.27 83 | 69.60 37 | 61.29 65 | 66.50 62 | 72.75 45 | 88.07 3 | 88.03 2 | 89.13 12 | 97.22 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
zzz-MVS | | | 81.65 26 | 83.10 28 | 79.97 24 | 88.14 39 | 87.62 53 | 83.96 27 | 69.90 32 | 86.92 18 | 77.67 15 | 72.47 37 | 78.74 26 | 74.13 35 | 81.59 52 | 81.15 53 | 86.01 86 | 93.19 50 |
|
TSAR-MVS + MP. | | | 84.39 14 | 86.58 17 | 81.83 15 | 88.09 40 | 86.47 65 | 85.63 19 | 73.62 18 | 90.13 11 | 79.24 10 | 89.67 10 | 82.99 12 | 77.72 18 | 81.22 54 | 80.92 58 | 86.68 70 | 94.66 30 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
X-MVS | | | 78.16 42 | 80.55 39 | 75.38 49 | 87.99 41 | 86.27 67 | 81.05 45 | 68.98 39 | 78.33 46 | 61.07 62 | 75.25 34 | 72.27 40 | 67.52 82 | 80.03 64 | 80.52 64 | 85.66 101 | 91.20 68 |
|
DeepC-MVS | | 74.46 3 | 80.30 31 | 81.05 37 | 79.42 25 | 87.42 42 | 88.50 41 | 83.23 29 | 73.27 19 | 82.78 31 | 71.01 30 | 62.86 60 | 69.93 52 | 74.80 31 | 84.30 21 | 84.20 21 | 86.79 69 | 94.77 28 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
mPP-MVS | | | | | | 86.96 43 | | | | | | | 70.61 50 | | | | | |
|
CP-MVS | | | 79.44 33 | 81.51 36 | 77.02 39 | 86.95 44 | 85.96 71 | 82.00 35 | 68.44 43 | 81.82 35 | 67.39 40 | 77.43 30 | 73.68 35 | 71.62 53 | 79.56 68 | 79.58 67 | 85.73 94 | 92.51 56 |
|
MVS_111021_HR | | | 77.42 47 | 78.40 48 | 76.28 42 | 86.95 44 | 90.68 22 | 77.41 67 | 70.56 31 | 66.21 77 | 62.48 53 | 66.17 50 | 63.98 70 | 72.08 50 | 82.87 33 | 83.15 28 | 88.24 35 | 95.71 16 |
|
CANet | | | 80.90 29 | 82.93 30 | 78.53 32 | 86.83 46 | 92.26 12 | 81.19 43 | 66.95 50 | 81.60 37 | 69.90 34 | 66.93 46 | 74.80 33 | 76.79 21 | 84.68 19 | 84.77 17 | 89.50 9 | 95.50 19 |
|
CHOSEN 1792x2688 | | | 72.55 72 | 71.98 81 | 73.22 61 | 86.57 47 | 92.41 10 | 75.63 74 | 66.77 52 | 62.08 89 | 52.32 91 | 30.27 191 | 50.74 132 | 66.14 85 | 86.22 12 | 85.41 7 | 91.90 1 | 96.75 12 |
|
SR-MVS | | | | | | 86.33 48 | | | 67.54 47 | | | | 80.78 20 | | | | | |
|
PHI-MVS | | | 79.43 34 | 84.06 25 | 74.04 57 | 86.15 49 | 91.57 19 | 80.85 47 | 68.90 41 | 82.22 33 | 51.81 94 | 78.10 28 | 74.28 34 | 70.39 61 | 84.01 24 | 84.00 22 | 86.14 82 | 94.24 37 |
|
ACMMP |  | | 77.61 45 | 79.59 43 | 75.30 50 | 85.87 50 | 85.58 72 | 81.42 40 | 67.38 49 | 79.38 45 | 62.61 51 | 78.53 27 | 65.79 64 | 68.80 75 | 78.56 76 | 78.50 78 | 85.75 91 | 90.80 73 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HQP-MVS | | | 78.26 41 | 80.91 38 | 75.17 51 | 85.67 51 | 84.33 84 | 83.01 31 | 69.38 36 | 79.88 43 | 55.83 78 | 79.85 25 | 64.90 67 | 70.81 57 | 82.46 37 | 81.78 41 | 86.30 76 | 93.18 51 |
|
OPM-MVS | | | 72.74 71 | 70.93 90 | 74.85 54 | 85.30 52 | 84.34 83 | 82.82 33 | 69.79 33 | 49.96 136 | 55.39 83 | 54.09 89 | 60.14 89 | 70.04 63 | 80.38 63 | 79.43 68 | 85.74 93 | 88.20 104 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MS-PatchMatch | | | 70.34 86 | 69.00 100 | 71.91 70 | 85.20 53 | 85.35 73 | 77.84 62 | 61.77 93 | 58.01 104 | 55.40 82 | 41.26 142 | 58.34 98 | 61.69 109 | 81.70 51 | 78.29 79 | 89.56 8 | 80.02 159 |
|
MVS_0304 | | | 79.43 34 | 82.20 32 | 76.20 43 | 84.22 54 | 91.79 17 | 81.82 38 | 63.81 71 | 76.83 52 | 61.71 57 | 66.37 49 | 75.52 32 | 76.38 24 | 85.54 14 | 85.03 13 | 89.28 11 | 94.32 36 |
|
PCF-MVS | | 70.85 4 | 75.73 56 | 76.55 62 | 74.78 55 | 83.67 55 | 88.04 50 | 81.47 39 | 70.62 30 | 69.24 72 | 57.52 75 | 60.59 69 | 69.18 54 | 70.65 59 | 77.11 87 | 77.65 85 | 84.75 124 | 94.01 41 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ACMM | | 66.70 10 | 70.42 82 | 68.49 104 | 72.67 65 | 82.85 56 | 77.76 142 | 77.70 63 | 64.76 66 | 64.61 84 | 60.74 66 | 49.29 101 | 53.97 121 | 65.86 86 | 74.97 106 | 75.57 107 | 84.13 138 | 83.29 141 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | | | | 82.43 57 | 86.27 67 | 75.70 72 | | | 61.07 62 | | 72.27 40 | | | | 85.67 98 | |
|
X-MVStestdata | | | | | | 82.43 57 | 86.27 67 | 75.70 72 | | | 61.07 62 | | 72.27 40 | | | | 85.67 98 | |
|
PVSNet_BlendedMVS | | | 76.84 51 | 78.47 46 | 74.95 52 | 82.37 59 | 89.90 31 | 75.45 78 | 65.45 62 | 74.99 56 | 70.66 32 | 63.07 58 | 58.27 99 | 67.60 79 | 84.24 22 | 81.70 43 | 88.18 36 | 97.10 8 |
|
PVSNet_Blended | | | 76.84 51 | 78.47 46 | 74.95 52 | 82.37 59 | 89.90 31 | 75.45 78 | 65.45 62 | 74.99 56 | 70.66 32 | 63.07 58 | 58.27 99 | 67.60 79 | 84.24 22 | 81.70 43 | 88.18 36 | 97.10 8 |
|
CLD-MVS | | | 77.36 48 | 77.29 54 | 77.45 38 | 82.21 61 | 88.11 47 | 81.92 36 | 68.96 40 | 77.97 48 | 69.62 36 | 62.08 61 | 59.44 92 | 73.57 40 | 81.75 50 | 81.27 50 | 88.41 30 | 90.39 79 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
LGP-MVS_train | | | 72.02 75 | 73.18 77 | 70.67 76 | 82.13 62 | 80.26 119 | 79.58 52 | 63.04 78 | 70.09 66 | 51.98 92 | 65.06 51 | 55.62 112 | 62.49 105 | 75.97 98 | 76.32 98 | 84.80 123 | 88.93 95 |
|
MSDG | | | 65.57 114 | 61.57 151 | 70.24 79 | 82.02 63 | 76.47 151 | 74.46 91 | 68.73 42 | 56.52 109 | 50.33 102 | 38.47 155 | 41.10 155 | 62.42 106 | 72.12 141 | 72.94 142 | 83.47 144 | 73.37 181 |
|
IB-MVS | | 64.48 11 | 69.02 90 | 68.97 101 | 69.09 89 | 81.75 64 | 89.01 37 | 64.50 149 | 64.91 65 | 56.65 108 | 62.59 52 | 47.89 107 | 45.23 143 | 51.99 153 | 69.18 168 | 81.88 40 | 88.77 18 | 92.93 52 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
canonicalmvs | | | 77.65 44 | 79.59 43 | 75.39 48 | 81.52 65 | 89.83 33 | 81.32 42 | 60.74 104 | 80.05 42 | 66.72 41 | 68.43 43 | 65.09 65 | 74.72 33 | 78.87 73 | 82.73 31 | 87.32 54 | 92.16 58 |
|
CPTT-MVS | | | 75.43 57 | 77.13 56 | 73.44 59 | 81.43 66 | 82.55 97 | 80.96 46 | 64.35 67 | 77.95 49 | 61.39 59 | 69.20 42 | 70.94 48 | 69.38 71 | 73.89 120 | 73.32 135 | 83.14 151 | 92.06 60 |
|
EPNet_dtu | | | 66.17 110 | 70.13 95 | 61.54 141 | 81.04 67 | 77.39 146 | 68.87 127 | 62.50 86 | 69.78 67 | 33.51 177 | 63.77 56 | 56.22 107 | 37.65 190 | 72.20 139 | 72.18 150 | 85.69 97 | 79.38 161 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMP | | 68.86 7 | 72.15 74 | 72.25 79 | 72.03 68 | 80.96 68 | 80.87 113 | 77.93 60 | 64.13 69 | 69.29 70 | 60.79 65 | 64.04 55 | 53.54 124 | 63.91 95 | 73.74 123 | 75.27 110 | 84.45 131 | 88.98 94 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
HyFIR lowres test | | | 68.39 95 | 68.28 106 | 68.52 93 | 80.85 69 | 88.11 47 | 71.08 112 | 58.09 116 | 54.87 123 | 47.80 112 | 27.55 197 | 55.80 110 | 64.97 89 | 79.11 71 | 79.14 71 | 88.31 33 | 93.35 47 |
|
LS3D | | | 64.54 123 | 62.14 147 | 67.34 102 | 80.85 69 | 75.79 157 | 69.99 118 | 65.87 58 | 60.77 93 | 44.35 124 | 42.43 136 | 45.95 142 | 65.01 88 | 69.88 163 | 68.69 173 | 77.97 190 | 71.43 188 |
|
CNLPA | | | 71.37 80 | 70.27 94 | 72.66 66 | 80.79 71 | 81.33 107 | 71.07 113 | 65.75 59 | 82.36 32 | 64.80 46 | 42.46 135 | 56.49 106 | 72.70 46 | 73.00 131 | 70.52 166 | 80.84 175 | 85.76 124 |
|
TSAR-MVS + GP. | | | 82.27 24 | 85.98 19 | 77.94 34 | 80.72 72 | 88.25 45 | 81.12 44 | 67.71 46 | 87.10 17 | 73.31 22 | 85.23 16 | 83.68 9 | 76.64 22 | 80.43 62 | 81.47 47 | 88.15 38 | 95.66 17 |
|
baseline1 | | | 71.47 77 | 72.02 80 | 70.82 74 | 80.56 73 | 84.51 80 | 76.61 71 | 66.93 51 | 56.22 112 | 48.66 107 | 55.40 80 | 60.43 86 | 62.55 104 | 83.35 29 | 80.99 55 | 89.60 7 | 83.28 142 |
|
PLC |  | 64.00 12 | 68.54 93 | 66.66 115 | 70.74 75 | 80.28 74 | 74.88 163 | 72.64 96 | 63.70 73 | 69.26 71 | 55.71 79 | 47.24 114 | 55.31 114 | 70.42 60 | 72.05 143 | 70.67 164 | 81.66 169 | 77.19 167 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
OMC-MVS | | | 74.03 63 | 75.82 65 | 71.95 69 | 79.56 75 | 80.98 111 | 75.35 80 | 63.21 76 | 84.48 26 | 61.83 56 | 61.54 64 | 66.89 59 | 69.41 70 | 76.60 91 | 74.07 125 | 82.34 162 | 86.15 119 |
|
CostFormer | | | 72.18 73 | 73.90 73 | 70.18 80 | 79.47 76 | 86.19 70 | 76.94 70 | 48.62 179 | 66.07 79 | 60.40 67 | 54.14 88 | 65.82 63 | 67.98 77 | 75.84 99 | 76.41 96 | 87.67 45 | 92.83 54 |
|
MVS_111021_LR | | | 74.26 62 | 75.95 64 | 72.27 67 | 79.43 77 | 85.04 76 | 72.71 95 | 65.27 64 | 70.92 64 | 63.58 49 | 69.32 41 | 60.31 88 | 69.43 69 | 77.01 88 | 77.15 88 | 83.22 148 | 91.93 62 |
|
MVS_Test | | | 75.22 58 | 76.69 60 | 73.51 58 | 79.30 78 | 88.82 38 | 80.06 50 | 58.74 111 | 69.77 68 | 57.50 76 | 59.78 72 | 61.35 81 | 75.31 26 | 82.07 46 | 83.60 26 | 90.13 5 | 91.41 66 |
|
casdiffmvs | | | 75.20 59 | 75.69 66 | 74.63 56 | 79.26 79 | 89.07 36 | 78.47 56 | 63.59 74 | 67.05 74 | 63.79 48 | 55.72 79 | 60.32 87 | 73.58 39 | 82.16 43 | 81.78 41 | 89.08 13 | 93.72 45 |
|
PVSNet_Blended_VisFu | | | 71.76 76 | 73.54 75 | 69.69 82 | 79.01 80 | 87.16 58 | 72.05 97 | 61.80 92 | 56.46 110 | 59.66 68 | 53.88 90 | 62.48 73 | 59.08 128 | 81.17 55 | 78.90 72 | 86.53 73 | 94.74 29 |
|
ACMH | | 59.42 14 | 61.59 148 | 59.22 167 | 64.36 118 | 78.92 81 | 78.26 136 | 67.65 133 | 67.48 48 | 39.81 178 | 30.98 184 | 38.25 157 | 34.59 187 | 61.37 113 | 70.55 157 | 73.47 131 | 79.74 182 | 79.59 160 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DROMVSNet | | | 76.05 55 | 78.87 45 | 72.77 64 | 78.87 82 | 86.63 62 | 77.50 65 | 57.04 132 | 75.34 55 | 61.68 58 | 64.20 54 | 69.56 53 | 73.96 36 | 82.12 44 | 80.65 61 | 87.57 48 | 93.57 46 |
|
FC-MVSNet-train | | | 68.83 92 | 68.29 105 | 69.47 84 | 78.35 83 | 79.94 120 | 64.72 148 | 66.38 54 | 54.96 120 | 54.51 86 | 56.75 76 | 47.91 138 | 66.91 83 | 75.57 103 | 75.75 103 | 85.92 87 | 87.12 110 |
|
ETV-MVS | | | 76.25 53 | 80.22 40 | 71.63 71 | 78.23 84 | 87.95 51 | 72.75 94 | 60.27 108 | 77.50 51 | 57.73 73 | 71.53 38 | 66.60 61 | 73.16 42 | 80.99 58 | 81.23 51 | 87.63 47 | 95.73 15 |
|
EIA-MVS | | | 73.48 67 | 76.05 63 | 70.47 78 | 78.12 85 | 87.21 57 | 71.78 100 | 60.63 105 | 69.66 69 | 55.56 81 | 64.86 52 | 60.69 84 | 69.53 67 | 77.35 86 | 78.59 75 | 87.22 60 | 94.01 41 |
|
Effi-MVS+ | | | 70.42 82 | 71.23 87 | 69.47 84 | 78.04 86 | 85.24 74 | 75.57 76 | 58.88 110 | 59.56 98 | 48.47 108 | 52.73 93 | 54.94 115 | 69.69 65 | 78.34 79 | 77.06 89 | 86.18 80 | 90.73 77 |
|
Anonymous202405211 | | | | 66.35 119 | | 78.00 87 | 84.41 82 | 74.85 82 | 63.18 77 | 51.00 132 | | 31.37 188 | 53.73 123 | 69.67 66 | 76.28 93 | 76.84 90 | 83.21 150 | 90.85 72 |
|
thres100view900 | | | 67.14 107 | 66.09 121 | 68.38 95 | 77.70 88 | 83.84 88 | 74.52 88 | 66.33 56 | 49.16 140 | 43.40 129 | 43.24 127 | 41.34 151 | 62.59 103 | 79.31 69 | 75.92 102 | 85.73 94 | 89.81 84 |
|
tfpn200view9 | | | 65.90 112 | 64.96 125 | 67.00 103 | 77.70 88 | 81.58 103 | 71.71 103 | 62.94 82 | 49.16 140 | 43.40 129 | 43.24 127 | 41.34 151 | 61.42 111 | 76.24 94 | 74.63 117 | 84.84 119 | 88.52 101 |
|
DCV-MVSNet | | | 69.13 89 | 69.07 99 | 69.21 86 | 77.65 90 | 77.52 144 | 74.68 83 | 57.85 121 | 54.92 121 | 55.34 84 | 55.74 78 | 55.56 113 | 66.35 84 | 75.05 105 | 76.56 94 | 83.35 145 | 88.13 105 |
|
Anonymous20231211 | | | 68.44 94 | 66.37 118 | 70.86 73 | 77.58 91 | 83.49 89 | 75.15 81 | 61.89 90 | 52.54 129 | 58.50 70 | 28.89 193 | 56.78 105 | 69.29 72 | 74.96 108 | 76.61 92 | 82.73 154 | 91.36 67 |
|
UA-Net | | | 64.62 120 | 68.23 107 | 60.42 146 | 77.53 92 | 81.38 106 | 60.08 173 | 57.47 127 | 47.01 147 | 44.75 122 | 60.68 67 | 71.32 47 | 41.84 184 | 73.27 126 | 72.25 149 | 80.83 176 | 71.68 186 |
|
thres200 | | | 65.58 113 | 64.74 127 | 66.56 104 | 77.52 93 | 81.61 101 | 73.44 93 | 62.95 80 | 46.23 152 | 42.45 136 | 42.76 129 | 41.18 153 | 58.12 132 | 76.24 94 | 75.59 106 | 84.89 117 | 89.58 87 |
|
test_part1 | | | 66.32 108 | 63.35 134 | 69.77 81 | 77.40 94 | 78.35 135 | 77.85 61 | 56.25 140 | 44.52 159 | 62.15 54 | 33.05 182 | 53.91 122 | 62.38 107 | 72.19 140 | 74.65 115 | 82.59 157 | 86.81 112 |
|
ACMH+ | | 60.36 13 | 61.16 149 | 58.38 169 | 64.42 117 | 77.37 95 | 74.35 168 | 68.45 128 | 62.81 84 | 45.86 154 | 38.48 153 | 35.71 173 | 37.35 171 | 59.81 121 | 67.24 173 | 69.80 170 | 79.58 183 | 78.32 165 |
|
TAPA-MVS | | 67.10 9 | 71.45 78 | 73.47 76 | 69.10 88 | 77.04 96 | 80.78 114 | 73.81 92 | 62.10 87 | 80.80 39 | 51.28 95 | 60.91 66 | 63.80 72 | 67.98 77 | 74.59 110 | 72.42 147 | 82.37 161 | 80.97 156 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS_MVSNet | | | 67.29 105 | 71.98 81 | 61.82 139 | 76.92 97 | 84.32 85 | 65.90 147 | 58.22 114 | 55.75 116 | 39.22 149 | 54.51 85 | 62.47 74 | 45.99 174 | 78.83 74 | 78.52 77 | 84.70 125 | 89.47 89 |
|
CANet_DTU | | | 72.84 70 | 76.63 61 | 68.43 94 | 76.81 98 | 86.62 63 | 75.54 77 | 54.71 160 | 72.06 61 | 43.54 127 | 67.11 45 | 58.46 96 | 72.40 47 | 81.13 57 | 80.82 60 | 87.57 48 | 90.21 81 |
|
tpm cat1 | | | 67.47 103 | 67.05 113 | 67.98 96 | 76.63 99 | 81.51 105 | 74.49 90 | 47.65 184 | 61.18 91 | 61.12 61 | 42.51 134 | 53.02 127 | 64.74 92 | 70.11 162 | 71.50 153 | 83.22 148 | 89.49 88 |
|
GeoE | | | 68.96 91 | 69.32 97 | 68.54 92 | 76.61 100 | 83.12 92 | 71.78 100 | 56.87 136 | 60.21 96 | 54.86 85 | 45.95 124 | 54.79 117 | 64.27 93 | 74.59 110 | 75.54 108 | 86.84 68 | 91.01 71 |
|
DI_MVS_plusplus_trai | | | 73.94 65 | 74.85 69 | 72.88 63 | 76.57 101 | 86.80 60 | 80.41 48 | 61.47 95 | 62.35 88 | 59.44 69 | 47.91 106 | 68.12 55 | 72.24 48 | 82.84 34 | 81.50 46 | 87.15 63 | 94.42 33 |
|
thres400 | | | 65.18 118 | 64.44 129 | 66.04 105 | 76.40 102 | 82.63 95 | 71.52 105 | 64.27 68 | 44.93 158 | 40.69 144 | 41.86 139 | 40.79 157 | 58.12 132 | 77.67 81 | 74.64 116 | 85.26 107 | 88.56 100 |
|
tpmrst | | | 67.15 106 | 68.12 108 | 66.03 106 | 76.21 103 | 80.98 111 | 71.27 107 | 45.05 190 | 60.69 94 | 50.63 100 | 46.95 119 | 54.15 120 | 65.30 87 | 71.80 145 | 71.77 151 | 87.72 43 | 90.48 78 |
|
gg-mvs-nofinetune | | | 62.34 137 | 66.19 120 | 57.86 162 | 76.15 104 | 88.61 40 | 71.18 110 | 41.24 207 | 25.74 210 | 13.16 212 | 22.91 204 | 63.97 71 | 54.52 148 | 85.06 16 | 85.25 10 | 90.92 3 | 91.78 63 |
|
baseline | | | 72.89 69 | 74.46 71 | 71.07 72 | 75.99 105 | 87.50 55 | 74.57 84 | 60.49 106 | 70.72 65 | 57.60 74 | 60.63 68 | 60.97 83 | 70.79 58 | 75.27 104 | 76.33 97 | 86.94 65 | 89.79 86 |
|
EPMVS | | | 66.21 109 | 67.49 111 | 64.73 113 | 75.81 106 | 84.20 86 | 68.94 126 | 44.37 194 | 61.55 90 | 48.07 111 | 49.21 103 | 54.87 116 | 62.88 101 | 71.82 144 | 71.40 157 | 88.28 34 | 79.37 162 |
|
baseline2 | | | 71.22 81 | 73.01 78 | 69.13 87 | 75.76 107 | 86.34 66 | 71.23 108 | 62.78 85 | 62.62 86 | 52.85 90 | 57.32 75 | 54.31 118 | 63.27 100 | 79.74 66 | 79.31 69 | 88.89 15 | 91.43 64 |
|
EPP-MVSNet | | | 67.58 101 | 71.10 88 | 63.48 125 | 75.71 108 | 83.35 90 | 66.85 140 | 57.83 122 | 53.02 128 | 41.15 141 | 55.82 77 | 67.89 57 | 56.01 143 | 74.40 113 | 72.92 143 | 83.33 146 | 90.30 80 |
|
diffmvs | | | 74.32 61 | 75.42 67 | 73.04 62 | 75.60 109 | 87.27 56 | 78.20 57 | 62.96 79 | 68.66 73 | 61.89 55 | 59.79 71 | 59.84 90 | 71.80 51 | 78.30 80 | 79.87 65 | 87.80 42 | 94.23 38 |
|
CS-MVS-test | | | 73.97 64 | 76.86 57 | 70.60 77 | 75.53 110 | 83.16 91 | 77.50 65 | 57.04 132 | 71.34 62 | 53.25 89 | 63.44 57 | 64.85 68 | 73.96 36 | 82.12 44 | 78.80 74 | 86.30 76 | 94.34 34 |
|
thres600view7 | | | 63.77 128 | 63.14 136 | 64.51 115 | 75.49 111 | 81.61 101 | 69.59 122 | 62.95 80 | 43.96 162 | 38.90 151 | 41.09 143 | 40.24 162 | 55.25 146 | 76.24 94 | 71.54 152 | 84.89 117 | 87.30 109 |
|
dps | | | 64.08 125 | 63.22 135 | 65.08 110 | 75.27 112 | 79.65 123 | 66.68 142 | 46.63 188 | 56.94 106 | 55.67 80 | 43.96 126 | 43.63 148 | 64.00 94 | 69.50 167 | 69.82 168 | 82.25 163 | 79.02 163 |
|
MVSTER | | | 76.92 50 | 79.92 41 | 73.42 60 | 74.98 113 | 82.97 93 | 78.15 58 | 63.41 75 | 78.02 47 | 64.41 47 | 67.54 44 | 72.80 38 | 71.05 56 | 83.29 30 | 83.73 23 | 88.53 27 | 91.12 69 |
|
TSAR-MVS + COLMAP | | | 73.09 68 | 76.86 57 | 68.71 90 | 74.97 114 | 82.49 98 | 74.51 89 | 61.83 91 | 83.16 29 | 49.31 106 | 82.22 22 | 51.62 129 | 68.94 74 | 78.76 75 | 75.52 109 | 82.67 156 | 84.23 134 |
|
CS-MVS | | | 73.80 66 | 77.47 51 | 69.53 83 | 74.86 115 | 85.07 75 | 69.93 120 | 56.91 135 | 72.12 59 | 54.28 87 | 64.82 53 | 66.85 60 | 74.88 29 | 79.25 70 | 79.64 66 | 86.30 76 | 94.52 31 |
|
tpm | | | 64.85 119 | 66.02 122 | 63.48 125 | 74.52 116 | 78.38 134 | 70.98 114 | 44.99 192 | 51.61 131 | 43.28 131 | 47.66 109 | 53.18 125 | 60.57 115 | 70.58 156 | 71.30 160 | 86.54 72 | 89.45 90 |
|
SCA | | | 63.90 127 | 66.67 114 | 60.66 144 | 73.75 117 | 71.78 178 | 59.87 174 | 43.66 195 | 61.13 92 | 45.03 120 | 51.64 95 | 59.45 91 | 57.92 134 | 70.96 151 | 70.80 162 | 83.71 142 | 80.92 157 |
|
Vis-MVSNet (Re-imp) | | | 62.25 140 | 68.74 102 | 54.68 177 | 73.70 118 | 78.74 130 | 56.51 182 | 57.49 126 | 55.22 118 | 26.86 190 | 54.56 84 | 61.35 81 | 31.06 192 | 73.10 128 | 74.90 112 | 82.49 159 | 83.31 140 |
|
Fast-Effi-MVS+ | | | 67.59 100 | 67.56 110 | 67.62 99 | 73.67 119 | 81.14 110 | 71.12 111 | 54.79 159 | 58.88 100 | 50.61 101 | 46.70 121 | 47.05 139 | 69.12 73 | 76.06 97 | 76.44 95 | 86.43 74 | 86.65 114 |
|
IterMVS-LS | | | 66.08 111 | 66.56 117 | 65.51 107 | 73.67 119 | 74.88 163 | 70.89 115 | 53.55 166 | 50.42 134 | 48.32 110 | 50.59 98 | 55.66 111 | 61.83 108 | 73.93 119 | 74.42 121 | 84.82 122 | 86.01 121 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchmatchNet |  | | 65.43 116 | 67.71 109 | 62.78 131 | 73.49 121 | 82.83 94 | 66.42 145 | 45.40 189 | 60.40 95 | 45.27 118 | 49.22 102 | 57.60 103 | 60.01 120 | 70.61 154 | 71.38 158 | 86.08 84 | 81.91 153 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
COLMAP_ROB |  | 51.17 15 | 55.13 175 | 52.90 188 | 57.73 164 | 73.47 122 | 67.21 191 | 62.13 165 | 55.82 144 | 47.83 144 | 34.39 173 | 31.60 187 | 34.24 188 | 44.90 178 | 63.88 187 | 62.52 195 | 75.67 195 | 63.02 204 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Effi-MVS+-dtu | | | 64.58 121 | 64.08 130 | 65.16 109 | 73.04 123 | 75.17 162 | 70.68 117 | 56.23 141 | 54.12 126 | 44.71 123 | 47.42 110 | 51.10 130 | 63.82 96 | 68.08 171 | 66.32 182 | 82.47 160 | 86.38 117 |
|
thisisatest0530 | | | 68.38 96 | 70.98 89 | 65.35 108 | 72.61 124 | 84.42 81 | 68.21 130 | 57.98 117 | 59.77 97 | 50.80 99 | 54.63 83 | 58.48 95 | 57.92 134 | 76.99 89 | 77.47 86 | 84.60 127 | 85.07 127 |
|
EG-PatchMatch MVS | | | 58.73 165 | 58.03 172 | 59.55 151 | 72.32 125 | 80.49 116 | 63.44 160 | 55.55 149 | 32.49 199 | 38.31 154 | 28.87 194 | 37.22 172 | 42.84 182 | 74.30 117 | 75.70 104 | 84.84 119 | 77.14 168 |
|
TransMVSNet (Re) | | | 57.83 168 | 56.90 175 | 58.91 157 | 72.26 126 | 74.69 166 | 63.57 159 | 61.42 96 | 32.30 200 | 32.65 178 | 33.97 180 | 35.96 181 | 39.17 188 | 73.84 122 | 72.84 144 | 84.37 132 | 74.69 174 |
|
CMPMVS |  | 43.63 17 | 57.67 171 | 55.43 179 | 60.28 147 | 72.01 127 | 79.00 128 | 62.77 164 | 53.23 168 | 41.77 169 | 45.42 117 | 30.74 190 | 39.03 164 | 53.01 151 | 64.81 182 | 64.65 188 | 75.26 197 | 68.03 195 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
NR-MVSNet | | | 61.08 151 | 62.09 148 | 59.90 148 | 71.96 128 | 75.87 155 | 63.60 158 | 61.96 88 | 49.31 138 | 27.95 187 | 42.76 129 | 33.85 191 | 48.82 163 | 74.35 115 | 74.05 126 | 85.13 109 | 84.45 131 |
|
tttt0517 | | | 67.99 99 | 70.61 91 | 64.94 111 | 71.94 129 | 83.96 87 | 67.62 134 | 57.98 117 | 59.30 99 | 49.90 104 | 54.50 86 | 57.98 102 | 57.92 134 | 76.48 92 | 77.47 86 | 84.24 134 | 84.58 130 |
|
PMMVS | | | 70.37 85 | 75.06 68 | 64.90 112 | 71.46 130 | 81.88 99 | 64.10 151 | 55.64 147 | 71.31 63 | 46.69 113 | 70.69 40 | 58.56 93 | 69.53 67 | 79.03 72 | 75.63 105 | 81.96 166 | 88.32 103 |
|
test-LLR | | | 68.23 97 | 71.61 85 | 64.28 119 | 71.37 131 | 81.32 108 | 63.98 154 | 61.03 98 | 58.62 101 | 42.96 132 | 52.74 91 | 61.65 79 | 57.74 137 | 75.64 101 | 78.09 83 | 88.61 24 | 93.21 48 |
|
test0.0.03 1 | | | 57.35 172 | 59.89 164 | 54.38 180 | 71.37 131 | 73.45 171 | 52.71 188 | 61.03 98 | 46.11 153 | 26.33 191 | 41.73 140 | 44.08 146 | 29.72 194 | 71.43 149 | 70.90 161 | 85.10 110 | 71.56 187 |
|
tfpnnormal | | | 58.97 162 | 56.48 177 | 61.89 138 | 71.27 133 | 76.21 154 | 66.65 143 | 61.76 94 | 32.90 198 | 36.41 164 | 27.83 196 | 29.14 204 | 50.64 160 | 73.06 129 | 73.05 141 | 84.58 129 | 83.15 145 |
|
Fast-Effi-MVS+-dtu | | | 63.05 133 | 64.72 128 | 61.11 142 | 71.21 134 | 76.81 150 | 70.72 116 | 43.13 199 | 52.51 130 | 35.34 170 | 46.55 122 | 46.36 140 | 61.40 112 | 71.57 148 | 71.44 155 | 84.84 119 | 87.79 107 |
|
MDTV_nov1_ep13 | | | 65.21 117 | 67.28 112 | 62.79 130 | 70.91 135 | 81.72 100 | 69.28 125 | 49.50 178 | 58.08 103 | 43.94 126 | 50.50 99 | 56.02 108 | 58.86 129 | 70.72 153 | 73.37 133 | 84.24 134 | 80.52 158 |
|
FMVSNet3 | | | 70.41 84 | 71.89 83 | 68.68 91 | 70.89 136 | 79.42 126 | 75.63 74 | 60.97 100 | 65.32 80 | 51.06 96 | 47.37 111 | 62.05 75 | 64.90 90 | 82.49 36 | 82.27 36 | 88.64 23 | 84.34 133 |
|
Vis-MVSNet |  | | 65.53 115 | 69.83 96 | 60.52 145 | 70.80 137 | 84.59 79 | 66.37 146 | 55.47 151 | 48.40 143 | 40.62 145 | 57.67 74 | 58.43 97 | 45.37 177 | 77.49 82 | 76.24 99 | 84.47 130 | 85.99 122 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CDS-MVSNet | | | 64.22 124 | 65.89 123 | 62.28 137 | 70.05 138 | 80.59 115 | 69.91 121 | 57.98 117 | 43.53 163 | 46.58 114 | 48.22 105 | 50.76 131 | 46.45 171 | 75.68 100 | 76.08 100 | 82.70 155 | 86.34 118 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
UGNet | | | 67.57 102 | 71.69 84 | 62.76 132 | 69.88 139 | 82.58 96 | 66.43 144 | 58.64 112 | 54.71 124 | 51.87 93 | 61.74 62 | 62.01 78 | 45.46 176 | 74.78 109 | 74.99 111 | 84.24 134 | 91.02 70 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
GA-MVS | | | 64.55 122 | 65.76 124 | 63.12 127 | 69.68 140 | 81.56 104 | 69.59 122 | 58.16 115 | 45.23 157 | 35.58 169 | 47.01 118 | 41.82 150 | 59.41 124 | 79.62 67 | 78.54 76 | 86.32 75 | 86.56 115 |
|
GBi-Net | | | 69.21 87 | 70.40 92 | 67.81 97 | 69.49 141 | 78.65 131 | 74.54 85 | 60.97 100 | 65.32 80 | 51.06 96 | 47.37 111 | 62.05 75 | 63.43 97 | 77.49 82 | 78.22 80 | 87.37 51 | 83.73 136 |
|
test1 | | | 69.21 87 | 70.40 92 | 67.81 97 | 69.49 141 | 78.65 131 | 74.54 85 | 60.97 100 | 65.32 80 | 51.06 96 | 47.37 111 | 62.05 75 | 63.43 97 | 77.49 82 | 78.22 80 | 87.37 51 | 83.73 136 |
|
FMVSNet2 | | | 68.06 98 | 68.57 103 | 67.45 101 | 69.49 141 | 78.65 131 | 74.54 85 | 60.23 109 | 56.29 111 | 49.64 105 | 42.13 138 | 57.08 104 | 63.43 97 | 81.15 56 | 80.99 55 | 87.37 51 | 83.73 136 |
|
UniMVSNet_NR-MVSNet | | | 62.30 139 | 63.51 133 | 60.89 143 | 69.48 144 | 77.83 140 | 64.07 152 | 63.94 70 | 50.03 135 | 31.17 182 | 44.82 125 | 41.12 154 | 51.37 156 | 71.02 150 | 74.81 114 | 85.30 106 | 84.95 128 |
|
gm-plane-assit | | | 54.99 177 | 57.99 173 | 51.49 186 | 69.27 145 | 54.42 210 | 32.32 213 | 42.59 200 | 21.18 214 | 13.71 210 | 23.61 201 | 43.84 147 | 60.21 119 | 87.09 5 | 86.55 5 | 90.81 4 | 89.28 91 |
|
PatchMatch-RL | | | 62.22 143 | 60.69 157 | 64.01 120 | 68.74 146 | 75.75 158 | 59.27 175 | 60.35 107 | 56.09 113 | 53.80 88 | 47.06 117 | 36.45 176 | 64.80 91 | 68.22 170 | 67.22 177 | 77.10 192 | 74.02 176 |
|
CR-MVSNet | | | 62.31 138 | 64.75 126 | 59.47 152 | 68.63 147 | 71.29 181 | 67.53 135 | 43.18 197 | 55.83 114 | 41.40 138 | 41.04 144 | 55.85 109 | 57.29 140 | 72.76 134 | 73.27 137 | 78.77 187 | 83.23 143 |
|
TranMVSNet+NR-MVSNet | | | 60.38 155 | 61.30 153 | 59.30 154 | 68.34 148 | 75.57 161 | 63.38 161 | 63.78 72 | 46.74 149 | 27.73 188 | 42.56 133 | 36.84 174 | 47.66 166 | 70.36 159 | 74.59 118 | 84.91 116 | 82.46 148 |
|
v8 | | | 63.44 131 | 62.58 143 | 64.43 116 | 68.28 149 | 78.07 137 | 71.82 99 | 54.85 157 | 46.70 150 | 45.20 119 | 39.40 152 | 40.91 156 | 60.54 116 | 72.85 133 | 74.39 122 | 85.92 87 | 85.76 124 |
|
v2v482 | | | 63.68 129 | 62.85 141 | 64.65 114 | 68.01 150 | 80.46 117 | 71.90 98 | 57.60 124 | 44.26 160 | 42.82 134 | 39.80 151 | 38.62 167 | 61.56 110 | 73.06 129 | 74.86 113 | 86.03 85 | 88.90 97 |
|
pm-mvs1 | | | 59.21 161 | 59.58 166 | 58.77 158 | 67.97 151 | 77.07 149 | 64.12 150 | 57.20 129 | 34.73 195 | 36.86 160 | 35.34 175 | 40.54 161 | 43.34 181 | 74.32 116 | 73.30 136 | 83.13 152 | 81.77 154 |
|
v10 | | | 63.00 134 | 62.22 146 | 63.90 123 | 67.88 152 | 77.78 141 | 71.59 104 | 54.34 161 | 45.37 156 | 42.76 135 | 38.53 154 | 38.93 165 | 61.05 114 | 74.39 114 | 74.52 120 | 85.75 91 | 86.04 120 |
|
v1144 | | | 63.00 134 | 62.39 145 | 63.70 124 | 67.72 153 | 80.27 118 | 71.23 108 | 56.40 137 | 42.51 165 | 40.81 143 | 38.12 159 | 37.73 168 | 60.42 118 | 74.46 112 | 74.55 119 | 85.64 102 | 89.12 93 |
|
UniMVSNet (Re) | | | 60.62 153 | 62.93 140 | 57.92 161 | 67.64 154 | 77.90 139 | 61.75 167 | 61.24 97 | 49.83 137 | 29.80 186 | 42.57 132 | 40.62 160 | 43.36 180 | 70.49 158 | 73.27 137 | 83.76 140 | 85.81 123 |
|
RPMNet | | | 58.63 166 | 62.80 142 | 53.76 182 | 67.59 155 | 71.29 181 | 54.60 185 | 38.13 209 | 55.83 114 | 35.70 168 | 41.58 141 | 53.04 126 | 47.89 165 | 66.10 175 | 67.38 175 | 78.65 189 | 84.40 132 |
|
v148 | | | 62.00 145 | 61.19 154 | 62.96 128 | 67.46 156 | 79.49 125 | 67.87 131 | 57.66 123 | 42.30 166 | 45.02 121 | 38.20 158 | 38.89 166 | 54.77 147 | 69.83 164 | 72.60 146 | 84.96 113 | 87.01 111 |
|
IterMVS | | | 61.87 146 | 63.55 132 | 59.90 148 | 67.29 157 | 72.20 175 | 67.34 138 | 48.56 180 | 47.48 146 | 37.86 158 | 47.07 116 | 48.27 135 | 54.08 149 | 72.12 141 | 73.71 128 | 84.30 133 | 83.99 135 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1192 | | | 62.25 140 | 61.64 150 | 62.96 128 | 66.88 158 | 79.72 122 | 69.96 119 | 55.77 145 | 41.58 170 | 39.42 147 | 37.05 164 | 35.96 181 | 60.50 117 | 74.30 117 | 74.09 124 | 85.24 108 | 88.76 98 |
|
DU-MVS | | | 60.87 152 | 61.82 149 | 59.76 150 | 66.69 159 | 75.87 155 | 64.07 152 | 61.96 88 | 49.31 138 | 31.17 182 | 42.76 129 | 36.95 173 | 51.37 156 | 69.67 165 | 73.20 140 | 83.30 147 | 84.95 128 |
|
Baseline_NR-MVSNet | | | 59.47 159 | 60.28 160 | 58.54 159 | 66.69 159 | 73.90 169 | 61.63 168 | 62.90 83 | 49.15 142 | 26.87 189 | 35.18 177 | 37.62 169 | 48.20 164 | 69.67 165 | 73.61 129 | 84.92 114 | 82.82 146 |
|
IterMVS-SCA-FT | | | 60.21 156 | 62.97 138 | 57.00 169 | 66.64 161 | 71.84 176 | 67.53 135 | 46.93 187 | 47.56 145 | 36.77 163 | 46.85 120 | 48.21 136 | 52.51 152 | 70.36 159 | 72.40 148 | 71.63 205 | 83.53 139 |
|
v144192 | | | 62.05 144 | 61.46 152 | 62.73 134 | 66.59 162 | 79.87 121 | 69.30 124 | 55.88 143 | 41.50 172 | 39.41 148 | 37.23 162 | 36.45 176 | 59.62 122 | 72.69 136 | 73.51 130 | 85.61 103 | 88.93 95 |
|
v1921920 | | | 61.66 147 | 61.10 155 | 62.31 136 | 66.32 163 | 79.57 124 | 68.41 129 | 55.49 150 | 41.03 173 | 38.69 152 | 36.64 170 | 35.27 184 | 59.60 123 | 73.23 127 | 73.41 132 | 85.37 105 | 88.51 102 |
|
TESTMET0.1,1 | | | 67.38 104 | 71.61 85 | 62.45 135 | 66.05 164 | 81.32 108 | 63.98 154 | 55.36 152 | 58.62 101 | 42.96 132 | 52.74 91 | 61.65 79 | 57.74 137 | 75.64 101 | 78.09 83 | 88.61 24 | 93.21 48 |
|
pmmvs4 | | | 63.14 132 | 62.46 144 | 63.94 122 | 66.03 165 | 76.40 152 | 66.82 141 | 57.60 124 | 56.74 107 | 50.26 103 | 40.81 146 | 37.51 170 | 59.26 126 | 71.75 146 | 71.48 154 | 83.68 143 | 82.53 147 |
|
PatchT | | | 60.46 154 | 63.85 131 | 56.51 171 | 65.95 166 | 75.68 159 | 47.34 196 | 41.39 204 | 53.89 127 | 41.40 138 | 37.84 160 | 50.30 133 | 57.29 140 | 72.76 134 | 73.27 137 | 85.67 98 | 83.23 143 |
|
v1240 | | | 61.09 150 | 60.55 159 | 61.72 140 | 65.92 167 | 79.28 127 | 67.16 139 | 54.91 156 | 39.79 179 | 38.10 155 | 36.08 172 | 34.64 186 | 59.15 127 | 72.86 132 | 73.36 134 | 85.10 110 | 87.84 106 |
|
ADS-MVSNet | | | 58.40 167 | 59.16 168 | 57.52 165 | 65.80 168 | 74.57 167 | 60.26 171 | 40.17 208 | 50.51 133 | 38.01 156 | 40.11 150 | 44.72 144 | 59.36 125 | 64.91 180 | 66.55 180 | 81.53 170 | 72.72 184 |
|
FMVSNet1 | | | 63.48 130 | 63.07 137 | 63.97 121 | 65.31 169 | 76.37 153 | 71.77 102 | 57.90 120 | 43.32 164 | 45.66 116 | 35.06 178 | 49.43 134 | 58.57 130 | 77.49 82 | 78.22 80 | 84.59 128 | 81.60 155 |
|
testgi | | | 48.51 197 | 50.53 195 | 46.16 198 | 64.78 170 | 67.15 192 | 41.54 206 | 54.81 158 | 29.12 205 | 17.03 202 | 32.07 186 | 31.98 194 | 20.15 208 | 65.26 179 | 67.00 179 | 78.67 188 | 61.10 208 |
|
LTVRE_ROB | | 47.26 16 | 49.41 195 | 49.91 198 | 48.82 190 | 64.76 171 | 69.79 184 | 49.05 192 | 47.12 186 | 20.36 216 | 16.52 204 | 36.65 169 | 26.96 207 | 50.76 159 | 60.47 191 | 63.16 193 | 64.73 208 | 72.00 185 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
Anonymous20231206 | | | 52.23 187 | 52.80 189 | 51.56 185 | 64.70 172 | 69.41 185 | 51.01 190 | 58.60 113 | 36.63 187 | 22.44 197 | 21.80 206 | 31.42 198 | 30.52 193 | 66.79 174 | 67.83 174 | 82.10 165 | 75.73 170 |
|
thisisatest0515 | | | 59.37 160 | 60.68 158 | 57.84 163 | 64.39 173 | 75.65 160 | 58.56 178 | 53.86 164 | 41.55 171 | 42.12 137 | 40.40 148 | 39.59 163 | 47.09 169 | 71.69 147 | 73.79 127 | 81.02 174 | 82.08 152 |
|
USDC | | | 59.69 158 | 60.03 163 | 59.28 155 | 64.04 174 | 71.84 176 | 63.15 163 | 55.36 152 | 54.90 122 | 35.02 171 | 48.34 104 | 29.79 203 | 58.16 131 | 70.60 155 | 71.33 159 | 79.99 180 | 73.42 180 |
|
WR-MVS | | | 51.02 189 | 54.56 181 | 46.90 196 | 63.84 175 | 69.23 186 | 44.78 203 | 56.38 138 | 38.19 183 | 14.19 208 | 37.38 161 | 36.82 175 | 22.39 204 | 60.14 192 | 66.20 184 | 79.81 181 | 73.95 178 |
|
our_test_3 | | | | | | 63.32 176 | 71.07 183 | 55.90 183 | | | | | | | | | | |
|
test20.03 | | | 47.23 200 | 48.69 200 | 45.53 200 | 63.28 177 | 64.39 198 | 41.01 207 | 56.93 134 | 29.16 204 | 15.21 207 | 23.90 200 | 30.76 201 | 17.51 211 | 64.63 183 | 65.26 185 | 79.21 186 | 62.71 205 |
|
UniMVSNet_ETH3D | | | 57.83 168 | 56.46 178 | 59.43 153 | 63.24 178 | 73.22 172 | 67.70 132 | 55.58 148 | 36.17 190 | 36.84 161 | 32.64 183 | 35.14 185 | 51.50 155 | 65.81 176 | 69.81 169 | 81.73 168 | 82.44 150 |
|
pmmvs6 | | | 54.20 182 | 53.54 184 | 54.97 175 | 63.22 179 | 72.98 173 | 60.17 172 | 52.32 173 | 26.77 209 | 34.30 174 | 23.29 203 | 36.23 178 | 40.33 187 | 68.77 169 | 68.76 172 | 79.47 185 | 78.00 166 |
|
v7n | | | 57.04 173 | 56.64 176 | 57.52 165 | 62.85 180 | 74.75 165 | 61.76 166 | 51.80 174 | 35.58 194 | 36.02 167 | 32.33 185 | 33.61 192 | 50.16 161 | 67.73 172 | 70.34 167 | 82.51 158 | 82.12 151 |
|
pmmvs5 | | | 59.72 157 | 60.24 161 | 59.11 156 | 62.77 181 | 77.33 147 | 63.17 162 | 54.00 163 | 40.21 177 | 37.23 159 | 40.41 147 | 35.99 180 | 51.75 154 | 72.55 138 | 72.74 145 | 85.72 96 | 82.45 149 |
|
CVMVSNet | | | 54.92 179 | 58.16 170 | 51.13 187 | 62.61 182 | 68.44 188 | 55.45 184 | 52.38 172 | 42.28 167 | 21.45 198 | 47.10 115 | 46.10 141 | 37.96 189 | 64.42 185 | 63.81 189 | 76.92 193 | 75.01 173 |
|
TAMVS | | | 58.86 163 | 60.91 156 | 56.47 172 | 62.38 183 | 77.57 143 | 58.97 177 | 52.98 169 | 38.76 182 | 36.17 165 | 42.26 137 | 47.94 137 | 46.45 171 | 70.23 161 | 70.79 163 | 81.86 167 | 78.82 164 |
|
pmnet_mix02 | | | 53.92 183 | 53.30 185 | 54.65 179 | 61.89 184 | 71.33 180 | 54.54 186 | 54.17 162 | 40.38 175 | 34.65 172 | 34.76 179 | 30.68 202 | 40.44 186 | 60.97 190 | 63.71 190 | 82.19 164 | 71.24 189 |
|
DTE-MVSNet | | | 49.82 193 | 51.92 193 | 47.37 195 | 61.75 185 | 64.38 199 | 45.89 202 | 57.33 128 | 36.11 191 | 12.79 213 | 36.87 166 | 31.93 196 | 25.73 201 | 58.01 194 | 65.22 186 | 80.75 177 | 70.93 191 |
|
PEN-MVS | | | 51.04 188 | 52.94 187 | 48.82 190 | 61.45 186 | 66.00 194 | 48.68 193 | 57.20 129 | 36.87 185 | 15.36 206 | 36.98 165 | 32.72 193 | 28.77 198 | 57.63 196 | 66.37 181 | 81.44 171 | 74.00 177 |
|
V42 | | | 62.86 136 | 62.97 138 | 62.74 133 | 60.84 187 | 78.99 129 | 71.46 106 | 57.13 131 | 46.85 148 | 44.28 125 | 38.87 153 | 40.73 159 | 57.63 139 | 72.60 137 | 74.14 123 | 85.09 112 | 88.63 99 |
|
MDTV_nov1_ep13_2view | | | 54.47 181 | 54.61 180 | 54.30 181 | 60.50 188 | 73.82 170 | 57.92 179 | 43.38 196 | 39.43 181 | 32.51 179 | 33.23 181 | 34.05 189 | 47.26 168 | 62.36 188 | 66.21 183 | 84.24 134 | 73.19 182 |
|
MVS-HIRNet | | | 53.86 184 | 53.02 186 | 54.85 176 | 60.30 189 | 72.36 174 | 44.63 204 | 42.20 202 | 39.45 180 | 43.47 128 | 21.66 207 | 34.00 190 | 55.47 144 | 65.42 178 | 67.16 178 | 83.02 153 | 71.08 190 |
|
CHOSEN 280x420 | | | 62.23 142 | 66.57 116 | 57.17 168 | 59.88 190 | 68.92 187 | 61.20 170 | 42.28 201 | 54.17 125 | 39.57 146 | 47.78 108 | 64.97 66 | 62.68 102 | 73.85 121 | 69.52 171 | 77.43 191 | 86.75 113 |
|
TinyColmap | | | 52.66 186 | 50.09 197 | 55.65 173 | 59.72 191 | 64.02 201 | 57.15 181 | 52.96 170 | 40.28 176 | 32.51 179 | 32.42 184 | 20.97 214 | 56.65 142 | 63.95 186 | 65.15 187 | 74.91 198 | 63.87 202 |
|
FC-MVSNet-test | | | 47.24 199 | 54.37 182 | 38.93 205 | 59.49 192 | 58.25 208 | 34.48 212 | 53.36 167 | 45.66 155 | 6.66 218 | 50.62 97 | 42.02 149 | 16.62 212 | 58.39 193 | 61.21 197 | 62.99 209 | 64.40 201 |
|
test-mter | | | 64.06 126 | 69.24 98 | 58.01 160 | 59.07 193 | 77.40 145 | 59.13 176 | 48.11 182 | 55.64 117 | 39.18 150 | 51.56 96 | 58.54 94 | 55.38 145 | 73.52 125 | 76.00 101 | 87.22 60 | 92.05 61 |
|
WR-MVS_H | | | 49.62 194 | 52.63 190 | 46.11 199 | 58.80 194 | 67.58 190 | 46.14 201 | 54.94 154 | 36.51 188 | 13.63 211 | 36.75 168 | 35.67 183 | 22.10 205 | 56.43 200 | 62.76 194 | 81.06 173 | 72.73 183 |
|
CP-MVSNet | | | 50.57 190 | 52.60 191 | 48.21 193 | 58.77 195 | 65.82 195 | 48.17 194 | 56.29 139 | 37.41 184 | 16.59 203 | 37.14 163 | 31.95 195 | 29.21 195 | 56.60 199 | 63.71 190 | 80.22 178 | 75.56 171 |
|
PS-CasMVS | | | 50.17 191 | 52.02 192 | 48.02 194 | 58.60 196 | 65.54 196 | 48.04 195 | 56.19 142 | 36.42 189 | 16.42 205 | 35.68 174 | 31.33 199 | 28.85 197 | 56.42 201 | 63.54 192 | 80.01 179 | 75.18 172 |
|
SixPastTwentyTwo | | | 49.11 196 | 49.22 199 | 48.99 189 | 58.54 197 | 64.14 200 | 47.18 197 | 47.75 183 | 31.15 202 | 24.42 193 | 41.01 145 | 26.55 208 | 44.04 179 | 54.76 204 | 58.70 201 | 71.99 204 | 68.21 193 |
|
TDRefinement | | | 52.70 185 | 51.02 194 | 54.66 178 | 57.41 198 | 65.06 197 | 61.47 169 | 54.94 154 | 44.03 161 | 33.93 175 | 30.13 192 | 27.57 206 | 46.17 173 | 61.86 189 | 62.48 196 | 74.01 201 | 66.06 198 |
|
pmmvs-eth3d | | | 55.20 174 | 53.95 183 | 56.65 170 | 57.34 199 | 67.77 189 | 57.54 180 | 53.74 165 | 40.93 174 | 41.09 142 | 31.19 189 | 29.10 205 | 49.07 162 | 65.54 177 | 67.28 176 | 81.14 172 | 75.81 169 |
|
FPMVS | | | 39.11 206 | 36.39 208 | 42.28 201 | 55.97 200 | 45.94 213 | 46.23 200 | 41.57 203 | 35.73 193 | 22.61 195 | 23.46 202 | 19.82 216 | 28.32 199 | 43.57 208 | 40.67 210 | 58.96 211 | 45.54 211 |
|
MIMVSNet | | | 57.78 170 | 59.71 165 | 55.53 174 | 54.79 201 | 77.10 148 | 63.89 156 | 45.02 191 | 46.59 151 | 36.79 162 | 28.36 195 | 40.77 158 | 45.84 175 | 74.97 106 | 76.58 93 | 86.87 67 | 73.60 179 |
|
N_pmnet | | | 47.67 198 | 47.00 202 | 48.45 192 | 54.72 202 | 62.78 202 | 46.95 198 | 51.25 175 | 36.01 192 | 26.09 192 | 26.59 199 | 25.93 211 | 35.50 191 | 55.67 203 | 59.01 199 | 76.22 194 | 63.04 203 |
|
anonymousdsp | | | 54.99 177 | 57.24 174 | 52.36 183 | 53.82 203 | 71.75 179 | 51.49 189 | 48.14 181 | 33.74 196 | 33.66 176 | 38.34 156 | 36.13 179 | 47.54 167 | 64.53 184 | 70.60 165 | 79.53 184 | 85.59 126 |
|
new-patchmatchnet | | | 42.21 203 | 42.97 204 | 41.33 203 | 53.05 204 | 59.89 205 | 39.38 208 | 49.61 177 | 28.26 207 | 12.10 214 | 22.17 205 | 21.54 213 | 19.22 209 | 50.96 206 | 56.04 204 | 74.61 200 | 61.92 206 |
|
FMVSNet5 | | | 58.86 163 | 60.24 161 | 57.25 167 | 52.66 205 | 66.25 193 | 63.77 157 | 52.86 171 | 57.85 105 | 37.92 157 | 36.12 171 | 52.22 128 | 51.37 156 | 70.88 152 | 71.43 156 | 84.92 114 | 66.91 197 |
|
ET-MVSNet_ETH3D | | | 71.38 79 | 74.70 70 | 67.51 100 | 51.61 206 | 88.06 49 | 77.29 68 | 60.95 103 | 63.61 85 | 48.36 109 | 66.60 48 | 60.67 85 | 79.55 10 | 73.56 124 | 80.58 62 | 87.30 56 | 89.80 85 |
|
ambc | | | | 42.30 205 | | 50.36 207 | 49.51 212 | 35.47 211 | | 32.04 201 | 23.53 194 | 17.36 210 | 8.95 221 | 29.06 196 | 64.88 181 | 56.26 203 | 61.29 210 | 67.12 196 |
|
EU-MVSNet | | | 44.84 201 | 47.85 201 | 41.32 204 | 49.26 208 | 56.59 209 | 43.07 205 | 47.64 185 | 33.03 197 | 13.82 209 | 36.78 167 | 30.99 200 | 24.37 202 | 53.80 205 | 55.57 205 | 69.78 206 | 68.21 193 |
|
RPSCF | | | 55.07 176 | 58.06 171 | 51.57 184 | 48.87 209 | 58.95 206 | 53.68 187 | 41.26 206 | 62.42 87 | 45.88 115 | 54.38 87 | 54.26 119 | 53.75 150 | 57.15 197 | 53.53 207 | 66.01 207 | 65.75 199 |
|
PMVS |  | 27.44 18 | 32.08 208 | 29.07 211 | 35.60 207 | 48.33 210 | 24.79 216 | 26.97 215 | 41.34 205 | 20.45 215 | 22.50 196 | 17.11 212 | 18.64 217 | 20.44 207 | 41.99 210 | 38.06 211 | 54.02 213 | 42.44 212 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PM-MVS | | | 50.11 192 | 50.38 196 | 49.80 188 | 47.23 211 | 62.08 204 | 50.91 191 | 44.84 193 | 41.90 168 | 36.10 166 | 35.22 176 | 26.05 210 | 46.83 170 | 57.64 195 | 55.42 206 | 72.90 202 | 74.32 175 |
|
pmmvs3 | | | 41.86 204 | 42.29 206 | 41.36 202 | 39.80 212 | 52.66 211 | 38.93 210 | 35.85 213 | 23.40 213 | 20.22 200 | 19.30 208 | 20.84 215 | 40.56 185 | 55.98 202 | 58.79 200 | 72.80 203 | 65.03 200 |
|
MDA-MVSNet-bldmvs | | | 44.15 202 | 42.27 207 | 46.34 197 | 38.34 213 | 62.31 203 | 46.28 199 | 55.74 146 | 29.83 203 | 20.98 199 | 27.11 198 | 16.45 219 | 41.98 183 | 41.11 211 | 57.47 202 | 74.72 199 | 61.65 207 |
|
MIMVSNet1 | | | 40.84 205 | 43.46 203 | 37.79 206 | 32.14 214 | 58.92 207 | 39.24 209 | 50.83 176 | 27.00 208 | 11.29 215 | 16.76 213 | 26.53 209 | 17.75 210 | 57.14 198 | 61.12 198 | 75.46 196 | 56.78 209 |
|
Gipuma |  | | 24.91 210 | 24.61 212 | 25.26 210 | 31.47 215 | 21.59 217 | 18.06 217 | 37.53 210 | 25.43 211 | 10.03 216 | 4.18 219 | 4.25 223 | 14.85 213 | 43.20 209 | 47.03 208 | 39.62 215 | 26.55 216 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 15.08 212 | 11.65 215 | 19.08 212 | 28.73 216 | 12.31 221 | 6.95 222 | 36.87 212 | 10.71 219 | 3.63 221 | 5.13 216 | 2.22 226 | 13.81 215 | 11.34 217 | 18.50 216 | 24.49 218 | 21.32 217 |
|
EMVS | | | 14.40 213 | 10.71 216 | 18.70 213 | 28.15 217 | 12.09 222 | 7.06 221 | 36.89 211 | 11.00 218 | 3.56 222 | 4.95 217 | 2.27 225 | 13.91 214 | 10.13 218 | 16.06 217 | 22.63 219 | 18.51 218 |
|
new_pmnet | | | 33.19 207 | 35.52 209 | 30.47 208 | 27.55 218 | 45.31 214 | 29.29 214 | 30.92 214 | 29.00 206 | 9.88 217 | 18.77 209 | 17.64 218 | 26.77 200 | 44.07 207 | 45.98 209 | 58.41 212 | 47.87 210 |
|
PMMVS2 | | | 20.45 211 | 22.31 213 | 18.27 214 | 20.52 219 | 26.73 215 | 14.85 219 | 28.43 216 | 13.69 217 | 0.79 223 | 10.35 215 | 9.10 220 | 3.83 218 | 27.64 214 | 32.87 212 | 41.17 214 | 35.81 213 |
|
tmp_tt | | | | | 16.09 215 | 13.07 220 | 8.12 223 | 13.61 220 | 2.08 219 | 55.09 119 | 30.10 185 | 40.26 149 | 22.83 212 | 5.35 217 | 29.91 213 | 25.25 215 | 32.33 217 | |
|
MVE |  | 15.98 19 | 14.37 214 | 16.36 214 | 12.04 216 | 7.72 221 | 20.24 219 | 5.90 223 | 29.05 215 | 8.28 220 | 3.92 220 | 4.72 218 | 2.42 224 | 9.57 216 | 18.89 216 | 31.46 213 | 16.07 221 | 28.53 215 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 28.15 209 | 34.48 210 | 20.76 211 | 6.76 222 | 21.18 218 | 21.03 216 | 18.41 217 | 36.77 186 | 17.52 201 | 15.67 214 | 31.63 197 | 24.05 203 | 41.03 212 | 26.69 214 | 36.82 216 | 68.38 192 |
|
GG-mvs-BLEND | | | 54.54 180 | 77.58 50 | 27.67 209 | 0.03 223 | 90.09 30 | 77.20 69 | 0.02 220 | 66.83 75 | 0.05 224 | 59.90 70 | 73.33 37 | 0.04 219 | 78.40 78 | 79.30 70 | 88.65 22 | 95.20 27 |
|
uanet_test | | | 0.00 217 | 0.00 219 | 0.00 219 | 0.00 224 | 0.00 226 | 0.00 227 | 0.00 222 | 0.00 223 | 0.00 225 | 0.00 222 | 0.00 228 | 0.00 222 | 0.00 221 | 0.00 220 | 0.00 223 | 0.00 221 |
|
sosnet-low-res | | | 0.00 217 | 0.00 219 | 0.00 219 | 0.00 224 | 0.00 226 | 0.00 227 | 0.00 222 | 0.00 223 | 0.00 225 | 0.00 222 | 0.00 228 | 0.00 222 | 0.00 221 | 0.00 220 | 0.00 223 | 0.00 221 |
|
sosnet | | | 0.00 217 | 0.00 219 | 0.00 219 | 0.00 224 | 0.00 226 | 0.00 227 | 0.00 222 | 0.00 223 | 0.00 225 | 0.00 222 | 0.00 228 | 0.00 222 | 0.00 221 | 0.00 220 | 0.00 223 | 0.00 221 |
|
testmvs | | | 0.05 215 | 0.08 217 | 0.01 217 | 0.00 224 | 0.01 224 | 0.03 225 | 0.01 221 | 0.05 221 | 0.00 225 | 0.14 221 | 0.01 227 | 0.03 221 | 0.05 219 | 0.05 218 | 0.01 222 | 0.24 220 |
|
test123 | | | 0.05 215 | 0.08 217 | 0.01 217 | 0.00 224 | 0.01 224 | 0.01 226 | 0.00 222 | 0.05 221 | 0.00 225 | 0.16 220 | 0.00 228 | 0.04 219 | 0.02 220 | 0.05 218 | 0.00 223 | 0.26 219 |
|
RE-MVS-def | | | | | | | | | | | 31.47 181 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 84.47 7 | | | | | |
|
MTAPA | | | | | | | | | | | 78.32 12 | | 79.42 25 | | | | | |
|
MTMP | | | | | | | | | | | 76.04 17 | | 76.65 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.17 224 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 81.60 37 | | | | | | | | |
|
Patchmtry | | | | | | | 78.06 138 | 67.53 135 | 43.18 197 | | 41.40 138 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 19.81 220 | 17.01 218 | 10.02 218 | 23.61 212 | 5.85 219 | 17.21 211 | 8.03 222 | 21.13 206 | 22.60 215 | | 21.42 220 | 30.01 214 |
|