This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3489.70 1679.85 591.48 188.19 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVScopyleft80.16 780.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1889.76 1578.70 1388.32 3186.79 61
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 21
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 11
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 16
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 35
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss78.35 1978.46 1778.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3391.51 1152.47 7786.78 6780.66 489.64 1987.80 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
ACMMP_NAP78.77 1478.78 1378.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7588.39 3079.34 890.52 1386.78 62
MVS_030478.73 1578.75 1478.66 3080.82 10057.62 8385.31 3081.31 11270.51 274.17 5891.24 1454.99 4589.56 1782.29 288.13 3488.80 7
MM79.99 260.01 4686.19 1783.93 5173.19 177.08 3091.21 1557.23 3190.73 1083.35 188.12 3589.22 5
SteuartSystems-ACMMP79.48 1079.31 1079.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5390.06 1378.42 1989.02 2387.69 33
Skip Steuart: Steuart Systems R&D Blog.
MTAPA76.90 3376.42 3478.35 3586.08 3763.57 274.92 20880.97 12365.13 1575.77 3590.88 1748.63 12286.66 7077.23 2488.17 3384.81 140
SF-MVS78.82 1279.22 1177.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2587.09 6077.08 2690.18 1587.87 26
HPM-MVS++copyleft79.88 880.14 879.10 2188.17 164.80 186.59 1283.70 6165.37 1378.78 2290.64 1958.63 2487.24 5179.00 1290.37 1485.26 127
MP-MVScopyleft78.35 1978.26 2078.64 3186.54 2563.47 486.02 2083.55 6563.89 3773.60 6590.60 2054.85 4886.72 6877.20 2588.06 3785.74 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
region2R77.67 2677.18 2879.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 6890.58 2149.90 10788.21 3473.78 5087.03 4586.29 83
ACMMPR77.71 2477.23 2779.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6690.56 2249.80 10988.24 3374.02 4887.03 4586.32 80
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS78.01 2377.65 2479.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6190.50 2453.20 6888.35 3174.02 4887.05 4486.13 87
CP-MVS77.12 3176.68 3178.43 3386.05 3863.18 587.55 1083.45 6862.44 6472.68 8590.50 2448.18 12787.34 5073.59 5285.71 5884.76 143
ZNCC-MVS78.82 1278.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4090.47 2653.96 5788.68 2776.48 2889.63 2087.16 51
9.1478.75 1483.10 6984.15 4388.26 159.90 10678.57 2390.36 2757.51 3086.86 6477.39 2389.52 21
SR-MVS76.13 4175.70 4277.40 4885.87 4061.20 2985.52 2782.19 9159.99 10575.10 3990.35 2847.66 13486.52 7571.64 6482.99 7884.47 149
PGM-MVS76.77 3476.06 3778.88 2786.14 3562.73 982.55 6783.74 6061.71 7672.45 9190.34 2948.48 12588.13 3572.32 5886.85 5085.78 99
APD-MVScopyleft78.02 2278.04 2277.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4188.32 3273.48 5387.03 4584.83 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS76.54 3575.93 3978.34 3686.47 2663.50 385.74 2582.28 9062.90 5271.77 9590.26 3146.61 15386.55 7471.71 6385.66 5984.97 136
DeepC-MVS69.38 278.56 1778.14 2179.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6390.25 3257.68 2789.96 1474.62 4389.03 2287.89 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize74.96 4874.39 5476.67 5482.20 7858.24 7783.67 5183.29 7558.41 13173.71 6490.14 3345.62 15985.99 8769.64 7282.85 8485.78 99
SR-MVS-dyc-post74.57 5573.90 5876.58 5683.49 6559.87 4984.29 3781.36 10758.07 13773.14 7490.07 3444.74 17385.84 9168.20 7981.76 9484.03 159
RE-MVS-def73.71 6283.49 6559.87 4984.29 3781.36 10758.07 13773.14 7490.07 3443.06 18868.20 7981.76 9484.03 159
ZD-MVS86.64 2160.38 4382.70 8657.95 14278.10 2490.06 3656.12 3888.84 2674.05 4787.00 48
CNVR-MVS79.84 979.97 979.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2089.13 2278.67 1489.73 1687.03 53
GST-MVS78.14 2177.85 2378.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5790.03 3852.56 7488.53 2974.79 4288.34 2986.63 68
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 20
XVS77.17 3076.56 3379.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9290.01 4047.95 12988.01 3871.55 6586.74 5286.37 74
HPM-MVScopyleft77.28 2876.85 2978.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7789.97 4150.90 10287.48 4975.30 3686.85 5087.33 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 16
PC_three_145255.09 19784.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 11
HPM-MVS_fast74.30 5973.46 6476.80 5284.45 6059.04 6683.65 5281.05 12060.15 10270.43 10589.84 4341.09 21385.59 9667.61 8882.90 8285.77 102
TSAR-MVS + MP.78.44 1878.28 1978.90 2684.96 5261.41 2684.03 4583.82 5959.34 11779.37 1989.76 4559.84 1687.62 4776.69 2786.74 5287.68 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft76.02 4275.33 4578.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 11989.74 4645.43 16687.16 5572.01 6082.87 8385.14 129
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net73.13 6772.93 6773.76 11783.58 6451.66 18778.75 11877.66 18467.75 472.61 8789.42 4749.82 10883.29 14353.61 19983.14 7586.32 80
VDDNet71.81 8871.33 8773.26 14082.80 7547.60 24578.74 11975.27 21959.59 11472.94 8089.40 4841.51 20783.91 13258.75 16282.99 7888.26 14
SD-MVS77.70 2577.62 2577.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4685.58 9776.12 3184.94 6286.33 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5189.38 4955.30 4289.18 2174.19 4687.34 4386.38 72
3Dnovator+66.72 475.84 4474.57 5279.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 15789.24 5142.03 19789.38 1964.07 11686.50 5589.69 2
test_prior281.75 8060.37 9675.01 4189.06 5256.22 3772.19 5988.96 24
VDD-MVS72.50 7672.09 7573.75 11981.58 8549.69 21777.76 14377.63 18563.21 4773.21 7189.02 5342.14 19683.32 14261.72 14082.50 8788.25 15
CDPH-MVS76.31 3775.67 4378.22 3785.35 4859.14 6281.31 8784.02 4856.32 16974.05 5988.98 5453.34 6787.92 4169.23 7688.42 2887.59 38
DeepC-MVS_fast68.24 377.25 2976.63 3279.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 7888.88 5553.72 6289.06 2368.27 7888.04 3887.42 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TEST985.58 4361.59 2481.62 8281.26 11555.65 18674.93 4388.81 5653.70 6384.68 118
train_agg76.27 3876.15 3676.64 5585.58 4361.59 2481.62 8281.26 11555.86 17774.93 4388.81 5653.70 6384.68 11875.24 3888.33 3083.65 180
test_885.40 4660.96 3481.54 8581.18 11855.86 17774.81 4788.80 5853.70 6384.45 122
LFMVS71.78 8971.59 7972.32 15883.40 6746.38 25479.75 10771.08 26564.18 3272.80 8388.64 5942.58 19283.72 13557.41 16884.49 6686.86 58
casdiffmvs_mvgpermissive76.14 4076.30 3575.66 7176.46 21051.83 18679.67 10985.08 3165.02 1975.84 3488.58 6059.42 2185.08 10872.75 5683.93 7290.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n72.17 8371.50 8174.16 10767.96 32955.58 12378.06 13574.67 23254.19 21774.54 5288.23 6150.35 10680.24 21378.07 2177.46 14986.65 67
MCST-MVS77.48 2777.45 2677.54 4586.67 2058.36 7683.22 5586.93 556.91 15774.91 4588.19 6259.15 2287.68 4673.67 5187.45 4286.57 69
MG-MVS73.96 6173.89 5974.16 10785.65 4249.69 21781.59 8481.29 11461.45 7871.05 10188.11 6351.77 8987.73 4561.05 14683.09 7685.05 133
Vis-MVSNetpermissive72.18 8271.37 8674.61 9481.29 9255.41 12680.90 9078.28 17560.73 8869.23 13088.09 6444.36 17882.65 16257.68 16581.75 9685.77 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS72.78 7272.08 7674.87 8684.88 5761.41 2684.15 4377.86 18055.27 19267.51 16388.08 6541.93 19981.85 17669.04 7780.01 11181.35 227
test250665.33 22064.61 21367.50 24279.46 12634.19 35874.43 21851.92 36458.72 12466.75 17788.05 6625.99 34680.92 19851.94 21284.25 6887.39 44
ECVR-MVScopyleft67.72 17967.51 16068.35 23579.46 12636.29 34874.79 21166.93 29658.72 12467.19 16788.05 6636.10 25981.38 18552.07 21084.25 6887.39 44
test_fmvsmconf0.1_n72.81 7172.33 7374.24 10669.89 31255.81 11578.22 12975.40 21754.17 21875.00 4288.03 6853.82 6080.23 21478.08 2078.34 13986.69 64
test111167.21 18667.14 17767.42 24479.24 13234.76 35373.89 22965.65 30358.71 12666.96 17287.95 6936.09 26080.53 20552.03 21183.79 7386.97 54
casdiffmvspermissive74.80 5074.89 5074.53 9875.59 22250.37 20478.17 13185.06 3362.80 5874.40 5487.86 7057.88 2683.61 13869.46 7582.79 8589.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
旧先验183.04 7053.15 15967.52 29087.85 7144.08 17980.76 10078.03 273
test_fmvsmconf_n73.01 6972.59 7074.27 10571.28 29255.88 11478.21 13075.56 21454.31 21674.86 4687.80 7254.72 4980.23 21478.07 2178.48 13686.70 63
baseline74.61 5474.70 5174.34 10275.70 21849.99 21277.54 14884.63 4062.73 5973.98 6087.79 7357.67 2883.82 13469.49 7382.74 8689.20 6
OPM-MVS74.73 5274.25 5576.19 6180.81 10159.01 6782.60 6683.64 6263.74 3972.52 8887.49 7447.18 14485.88 9069.47 7480.78 9983.66 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
testdata64.66 27781.52 8652.93 16265.29 30646.09 30973.88 6287.46 7538.08 24066.26 32553.31 20278.48 13674.78 308
IS-MVSNet71.57 9371.00 9473.27 13978.86 14145.63 26580.22 9778.69 15964.14 3566.46 18287.36 7649.30 11385.60 9550.26 22683.71 7488.59 9
LPG-MVS_test72.74 7371.74 7875.76 6780.22 11057.51 8682.55 6783.40 7061.32 7966.67 17987.33 7739.15 22886.59 7167.70 8677.30 15383.19 191
LGP-MVS_train75.76 6780.22 11057.51 8683.40 7061.32 7966.67 17987.33 7739.15 22886.59 7167.70 8677.30 15383.19 191
CS-MVS76.25 3975.98 3877.06 5080.15 11555.63 12084.51 3583.90 5463.24 4573.30 6887.27 7955.06 4486.30 8371.78 6284.58 6489.25 4
EC-MVSNet75.84 4475.87 4175.74 6978.86 14152.65 16883.73 5086.08 1763.47 4272.77 8487.25 8053.13 6987.93 4071.97 6185.57 6086.66 66
EPNet73.09 6872.16 7475.90 6575.95 21656.28 10483.05 5672.39 25666.53 1065.27 20687.00 8150.40 10485.47 10262.48 13386.32 5685.94 92
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_l_conf0.5_n70.99 10270.82 9671.48 17571.45 28554.40 13877.18 15970.46 27148.67 27975.17 3886.86 8253.77 6176.86 26476.33 3077.51 14883.17 194
MSLP-MVS++73.77 6373.47 6374.66 9183.02 7159.29 5882.30 7481.88 9559.34 11771.59 9886.83 8345.94 15783.65 13765.09 11085.22 6181.06 234
dcpmvs_274.55 5675.23 4772.48 15382.34 7753.34 15577.87 13881.46 10357.80 14675.49 3686.81 8462.22 1377.75 25171.09 6782.02 9186.34 76
DPM-MVS75.47 4775.00 4876.88 5181.38 9159.16 5979.94 10285.71 2256.59 16572.46 8986.76 8556.89 3287.86 4366.36 9788.91 2583.64 181
Anonymous2024052969.91 12469.02 12772.56 15180.19 11347.65 24377.56 14780.99 12255.45 19069.88 11786.76 8539.24 22782.18 17254.04 19477.10 15787.85 27
nrg03072.96 7073.01 6672.84 14675.41 22550.24 20580.02 10082.89 8458.36 13374.44 5386.73 8758.90 2380.83 20065.84 10374.46 17687.44 42
FIs70.82 10671.43 8368.98 22778.33 15738.14 32576.96 16483.59 6461.02 8367.33 16586.73 8755.07 4381.64 17954.61 19279.22 12387.14 52
alignmvs73.86 6273.99 5773.45 13378.20 16050.50 20378.57 12382.43 8859.40 11576.57 3186.71 8956.42 3681.23 19065.84 10381.79 9388.62 8
新几何170.76 19585.66 4161.13 3066.43 29944.68 32070.29 10786.64 9041.29 20975.23 27949.72 23081.75 9675.93 292
VNet69.68 13270.19 10868.16 23779.73 12141.63 30270.53 27577.38 19060.37 9670.69 10386.63 9151.08 9877.09 26153.61 19981.69 9885.75 104
原ACMM174.69 8985.39 4759.40 5483.42 6951.47 24570.27 10886.61 9248.61 12386.51 7653.85 19787.96 3978.16 268
3Dnovator64.47 572.49 7771.39 8575.79 6677.70 17558.99 6880.66 9483.15 7962.24 6665.46 20286.59 9342.38 19585.52 9859.59 15884.72 6382.85 200
PHI-MVS75.87 4375.36 4477.41 4680.62 10655.91 11384.28 3985.78 2056.08 17573.41 6786.58 9450.94 10188.54 2870.79 6889.71 1787.79 31
canonicalmvs74.67 5374.98 4973.71 12178.94 14050.56 20280.23 9683.87 5760.30 10077.15 2986.56 9559.65 1782.00 17466.01 10182.12 8988.58 10
fmvsm_s_conf0.1_n_a69.32 14568.44 14271.96 16170.91 29653.78 14578.12 13362.30 32749.35 27173.20 7286.55 9651.99 8576.79 26674.83 4168.68 26985.32 123
fmvsm_l_conf0.5_n_a70.50 11270.27 10671.18 18771.30 29154.09 14076.89 16769.87 27447.90 29174.37 5586.49 9753.07 7176.69 26875.41 3577.11 15682.76 201
FC-MVSNet-test69.80 12870.58 10167.46 24377.61 18334.73 35476.05 18483.19 7860.84 8565.88 19586.46 9854.52 5280.76 20352.52 20678.12 14086.91 56
OMC-MVS71.40 9770.60 9973.78 11576.60 20653.15 15979.74 10879.78 13758.37 13268.75 13486.45 9945.43 16680.60 20462.58 13177.73 14487.58 39
Anonymous20240521166.84 19865.99 19769.40 22180.19 11342.21 29571.11 26971.31 26458.80 12367.90 15086.39 10029.83 31879.65 21949.60 23378.78 13186.33 78
CANet76.46 3675.93 3978.06 3981.29 9257.53 8582.35 6983.31 7467.78 370.09 10986.34 10154.92 4788.90 2572.68 5784.55 6587.76 32
QAPM70.05 12068.81 13173.78 11576.54 20853.43 15383.23 5483.48 6652.89 23065.90 19386.29 10241.55 20686.49 7751.01 22078.40 13881.42 221
fmvsm_s_conf0.1_n69.41 14368.60 13671.83 16571.07 29452.88 16577.85 14062.44 32549.58 26972.97 7986.22 10351.68 9176.48 27275.53 3470.10 24186.14 86
fmvsm_s_conf0.5_n_a69.54 13768.74 13371.93 16272.47 27153.82 14478.25 12762.26 32849.78 26773.12 7686.21 10452.66 7376.79 26675.02 3968.88 26485.18 128
ACMP63.53 672.30 8071.20 9075.59 7580.28 10857.54 8482.74 6382.84 8560.58 9065.24 21086.18 10539.25 22686.03 8666.95 9576.79 16183.22 189
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvsmvis_n_192070.84 10470.38 10472.22 16071.16 29355.39 12775.86 18872.21 25849.03 27573.28 7086.17 10651.83 8877.29 25875.80 3278.05 14183.98 162
test22283.14 6858.68 7372.57 24763.45 31741.78 34167.56 16286.12 10737.13 25278.73 13374.98 304
HQP_MVS74.31 5873.73 6176.06 6281.41 8956.31 10284.22 4084.01 4964.52 2569.27 12786.10 10845.26 17087.21 5368.16 8180.58 10384.65 144
plane_prior486.10 108
UniMVSNet_ETH3D67.60 18167.07 17869.18 22677.39 18942.29 29374.18 22175.59 21360.37 9666.77 17686.06 11037.64 24278.93 23952.16 20973.49 19186.32 80
CS-MVS-test75.62 4675.31 4676.56 5780.63 10555.13 13083.88 4885.22 2862.05 7171.49 9986.03 11153.83 5986.36 8167.74 8586.91 4988.19 18
XVG-OURS-SEG-HR68.81 15367.47 16372.82 14874.40 24556.87 9970.59 27479.04 15054.77 20666.99 17186.01 11239.57 22278.21 24462.54 13273.33 19583.37 185
MVS_111021_HR74.02 6073.46 6475.69 7083.01 7260.63 4077.29 15678.40 17361.18 8270.58 10485.97 11354.18 5584.00 13167.52 8982.98 8082.45 207
mvsmamba71.15 9869.54 11775.99 6377.61 18353.46 15281.95 7875.11 22557.73 14766.95 17385.96 11437.14 25187.56 4867.94 8375.49 17286.97 54
h-mvs3372.71 7471.49 8276.40 5881.99 8159.58 5276.92 16676.74 20060.40 9374.81 4785.95 11545.54 16285.76 9370.41 7070.61 23083.86 168
fmvsm_s_conf0.5_n69.58 13568.84 13071.79 16772.31 27552.90 16477.90 13762.43 32649.97 26572.85 8285.90 11652.21 8176.49 27175.75 3370.26 23885.97 91
PAPM_NR72.63 7571.80 7775.13 8381.72 8453.42 15479.91 10483.28 7659.14 11966.31 18685.90 11651.86 8786.06 8457.45 16780.62 10185.91 94
EPP-MVSNet72.16 8571.31 8874.71 8878.68 14749.70 21582.10 7681.65 9960.40 9365.94 19185.84 11851.74 9086.37 8055.93 17679.55 11888.07 23
VPNet67.52 18268.11 14765.74 26879.18 13436.80 34072.17 25372.83 25362.04 7267.79 15885.83 11948.88 12176.60 27051.30 21872.97 20283.81 169
114514_t70.83 10569.56 11674.64 9386.21 3154.63 13682.34 7081.81 9748.22 28563.01 23985.83 11940.92 21487.10 5957.91 16479.79 11282.18 210
XVG-OURS68.76 15667.37 16672.90 14574.32 24757.22 8970.09 28178.81 15555.24 19367.79 15885.81 12136.54 25878.28 24362.04 13775.74 16983.19 191
PS-MVSNAJss72.24 8171.21 8975.31 7878.50 15055.93 11281.63 8182.12 9256.24 17270.02 11385.68 12247.05 14684.34 12465.27 10974.41 17885.67 106
test_fmvsm_n_192071.73 9171.14 9173.50 13072.52 26956.53 10175.60 19176.16 20448.11 28777.22 2885.56 12353.10 7077.43 25574.86 4077.14 15586.55 70
DP-MVS Recon72.15 8670.73 9876.40 5886.57 2457.99 7981.15 8982.96 8157.03 15466.78 17585.56 12344.50 17688.11 3651.77 21580.23 11083.10 195
OpenMVScopyleft61.03 968.85 15267.56 15672.70 15074.26 24853.99 14281.21 8881.34 11152.70 23162.75 24285.55 12538.86 23184.14 12648.41 24283.01 7779.97 250
NP-MVS80.98 9956.05 11085.54 126
HQP-MVS73.45 6472.80 6875.40 7680.66 10254.94 13182.31 7183.90 5462.10 6867.85 15285.54 12645.46 16486.93 6267.04 9380.35 10784.32 151
TranMVSNet+NR-MVSNet70.36 11570.10 11171.17 18878.64 14842.97 28976.53 17381.16 11966.95 668.53 13885.42 12851.61 9283.07 14752.32 20769.70 25287.46 41
PCF-MVS61.88 870.95 10369.49 11975.35 7777.63 17855.71 11776.04 18581.81 9750.30 26169.66 12085.40 12952.51 7584.89 11451.82 21480.24 10985.45 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
RRT_MVS69.42 14267.49 16275.21 8278.01 16852.56 17282.23 7578.15 17655.84 17965.65 19885.07 13030.86 30986.83 6561.56 14470.00 24386.24 85
Vis-MVSNet (Re-imp)63.69 23663.88 21963.14 28874.75 23531.04 37171.16 26763.64 31656.32 16959.80 27484.99 13144.51 17575.46 27839.12 31180.62 10182.92 197
TAPA-MVS59.36 1066.60 20365.20 20970.81 19476.63 20548.75 22976.52 17480.04 13650.64 25865.24 21084.93 13239.15 22878.54 24036.77 32376.88 16085.14 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG76.92 3276.75 3077.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3784.83 13360.76 1586.56 7367.86 8487.87 4186.06 89
VPA-MVSNet69.02 15069.47 12067.69 24177.42 18841.00 30774.04 22279.68 13960.06 10369.26 12984.81 13451.06 9977.58 25354.44 19374.43 17784.48 148
MVS_Test72.45 7872.46 7272.42 15774.88 23048.50 23376.28 17883.14 8059.40 11572.46 8984.68 13555.66 4081.12 19165.98 10279.66 11587.63 36
MVS_111021_LR69.50 13968.78 13271.65 17278.38 15459.33 5674.82 21070.11 27358.08 13667.83 15684.68 13541.96 19876.34 27565.62 10677.54 14679.30 260
tt080567.77 17867.24 17469.34 22274.87 23140.08 30977.36 15281.37 10655.31 19166.33 18584.65 13737.35 24682.55 16555.65 18272.28 21485.39 121
LS3D64.71 22762.50 23871.34 18379.72 12255.71 11779.82 10574.72 23148.50 28256.62 30284.62 13833.59 28582.34 17029.65 36475.23 17475.97 291
PAPR71.72 9270.82 9674.41 10181.20 9651.17 18979.55 11283.33 7355.81 18166.93 17484.61 13950.95 10086.06 8455.79 17979.20 12486.00 90
UniMVSNet_NR-MVSNet71.11 9971.00 9471.44 17779.20 13344.13 27776.02 18682.60 8766.48 1168.20 14284.60 14056.82 3382.82 15854.62 19070.43 23287.36 48
DU-MVS70.01 12169.53 11871.44 17778.05 16644.13 27775.01 20581.51 10264.37 2868.20 14284.52 14149.12 11982.82 15854.62 19070.43 23287.37 46
NR-MVSNet69.54 13768.85 12971.59 17478.05 16643.81 28174.20 22080.86 12565.18 1462.76 24184.52 14152.35 8083.59 13950.96 22270.78 22787.37 46
TSAR-MVS + GP.74.90 4974.15 5677.17 4982.00 8058.77 7281.80 7978.57 16258.58 12874.32 5684.51 14355.94 3987.22 5267.11 9284.48 6785.52 112
UGNet68.81 15367.39 16573.06 14278.33 15754.47 13779.77 10675.40 21760.45 9263.22 23684.40 14432.71 29780.91 19951.71 21680.56 10583.81 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMM61.98 770.80 10769.73 11474.02 10980.59 10758.59 7482.68 6482.02 9455.46 18967.18 16884.39 14538.51 23383.17 14660.65 14876.10 16680.30 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-RMVSNet68.81 15367.42 16472.97 14380.11 11652.53 17374.26 21976.29 20358.48 13068.38 14084.20 14642.59 19183.83 13346.53 25575.91 16782.56 202
patch_mono-269.85 12571.09 9266.16 25979.11 13754.80 13571.97 25674.31 23753.50 22570.90 10284.17 14757.63 2963.31 33366.17 9882.02 9180.38 244
AdaColmapbinary69.99 12268.66 13573.97 11184.94 5457.83 8082.63 6578.71 15856.28 17164.34 22484.14 14841.57 20487.06 6146.45 25678.88 12877.02 283
jajsoiax68.25 16766.45 18373.66 12375.62 22055.49 12580.82 9178.51 16552.33 23564.33 22584.11 14928.28 33081.81 17863.48 12570.62 22983.67 177
mvs_tets68.18 16966.36 18973.63 12675.61 22155.35 12880.77 9278.56 16352.48 23464.27 22784.10 15027.45 33681.84 17763.45 12670.56 23183.69 176
PEN-MVS66.60 20366.45 18367.04 24877.11 19636.56 34277.03 16380.42 13162.95 5062.51 24984.03 15146.69 15279.07 23344.22 27463.08 31385.51 113
Anonymous2023121169.28 14668.47 14071.73 16980.28 10847.18 24979.98 10182.37 8954.61 20967.24 16684.01 15239.43 22382.41 16955.45 18472.83 20385.62 110
PAPM67.92 17566.69 18071.63 17378.09 16449.02 22577.09 16181.24 11751.04 25360.91 26383.98 15347.71 13384.99 10940.81 30279.32 12280.90 236
diffmvspermissive70.69 10870.43 10271.46 17669.45 31748.95 22772.93 24078.46 16857.27 15171.69 9683.97 15451.48 9377.92 24870.70 6977.95 14387.53 40
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE71.01 10170.15 10973.60 12879.57 12452.17 17978.93 11778.12 17758.02 13967.76 16083.87 15552.36 7982.72 16056.90 17075.79 16885.92 93
test_yl69.69 13069.13 12471.36 18178.37 15545.74 26174.71 21280.20 13457.91 14470.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
DCV-MVSNet69.69 13069.13 12471.36 18178.37 15545.74 26174.71 21280.20 13457.91 14470.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
DTE-MVSNet65.58 21565.34 20666.31 25576.06 21534.79 35176.43 17579.38 14662.55 6161.66 25883.83 15645.60 16079.15 23141.64 30160.88 32885.00 134
PS-CasMVS66.42 20766.32 19166.70 25277.60 18536.30 34776.94 16579.61 14162.36 6562.43 25183.66 15945.69 15878.37 24145.35 27163.26 31185.42 119
WR-MVS68.47 16368.47 14068.44 23480.20 11239.84 31173.75 23276.07 20764.68 2268.11 14783.63 16050.39 10579.14 23249.78 22769.66 25386.34 76
iter_conf_final69.82 12668.02 14975.23 8179.38 12852.91 16380.11 9973.96 24354.99 20368.04 14983.59 16129.05 32387.16 5565.41 10877.62 14585.63 109
iter_conf0569.40 14467.62 15574.73 8777.84 17251.13 19079.28 11473.71 24654.62 20868.17 14483.59 16128.68 32887.16 5565.74 10576.95 15885.91 94
UniMVSNet (Re)70.63 10970.20 10771.89 16378.55 14945.29 26875.94 18782.92 8263.68 4068.16 14583.59 16153.89 5883.49 14153.97 19571.12 22586.89 57
CNLPA65.43 21764.02 21769.68 21578.73 14658.07 7877.82 14270.71 26951.49 24461.57 26083.58 16438.23 23870.82 29943.90 28070.10 24180.16 247
ab-mvs66.65 20266.42 18667.37 24576.17 21341.73 29970.41 27876.14 20653.99 21965.98 19083.51 16549.48 11176.24 27648.60 24073.46 19384.14 157
test_djsdf69.45 14167.74 15174.58 9674.57 24154.92 13382.79 6178.48 16651.26 24965.41 20383.49 16638.37 23583.24 14466.06 9969.25 25985.56 111
CP-MVSNet66.49 20666.41 18766.72 25077.67 17736.33 34576.83 17079.52 14362.45 6362.54 24783.47 16746.32 15478.37 24145.47 26963.43 31085.45 116
MVSFormer71.50 9570.38 10474.88 8578.76 14457.15 9482.79 6178.48 16651.26 24969.49 12283.22 16843.99 18183.24 14466.06 9979.37 11984.23 154
jason69.65 13368.39 14473.43 13578.27 15956.88 9877.12 16073.71 24646.53 30569.34 12683.22 16843.37 18579.18 22764.77 11279.20 12484.23 154
jason: jason.
pm-mvs165.24 22164.97 21166.04 26372.38 27239.40 31672.62 24575.63 21255.53 18862.35 25383.18 17047.45 13976.47 27349.06 23766.54 28482.24 209
Baseline_NR-MVSNet67.05 19367.56 15665.50 27075.65 21937.70 33175.42 19574.65 23359.90 10668.14 14683.15 17149.12 11977.20 25952.23 20869.78 24981.60 219
bld_raw_dy_0_6464.87 22563.22 22969.83 21474.79 23453.32 15778.15 13262.02 33151.20 25160.17 26783.12 17224.15 35574.20 28663.08 12772.33 21181.96 214
baseline163.81 23563.87 22063.62 28376.29 21136.36 34371.78 25967.29 29356.05 17664.23 22882.95 17347.11 14574.41 28347.30 24961.85 32280.10 249
DELS-MVS74.76 5174.46 5375.65 7277.84 17252.25 17875.59 19284.17 4663.76 3873.15 7382.79 17459.58 1986.80 6667.24 9186.04 5787.89 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GBi-Net67.21 18666.55 18169.19 22377.63 17843.33 28477.31 15377.83 18156.62 16265.04 21582.70 17541.85 20080.33 21047.18 25072.76 20483.92 164
test167.21 18666.55 18169.19 22377.63 17843.33 28477.31 15377.83 18156.62 16265.04 21582.70 17541.85 20080.33 21047.18 25072.76 20483.92 164
FMVSNet166.70 20165.87 19869.19 22377.49 18743.33 28477.31 15377.83 18156.45 16764.60 22382.70 17538.08 24080.33 21046.08 25972.31 21383.92 164
TransMVSNet (Re)64.72 22664.33 21565.87 26775.22 22738.56 32274.66 21475.08 22958.90 12261.79 25782.63 17851.18 9678.07 24643.63 28355.87 34980.99 235
Effi-MVS+73.31 6672.54 7175.62 7377.87 17153.64 14779.62 11179.61 14161.63 7772.02 9482.61 17956.44 3585.97 8863.99 11979.07 12787.25 50
mvs_anonymous68.03 17167.51 16069.59 21772.08 27744.57 27571.99 25575.23 22151.67 23967.06 17082.57 18054.68 5077.94 24756.56 17275.71 17086.26 84
SDMVSNet68.03 17168.10 14867.84 23977.13 19448.72 23165.32 31279.10 14958.02 13965.08 21382.55 18147.83 13173.40 28763.92 12073.92 18281.41 222
sd_testset64.46 23164.45 21464.51 27977.13 19442.25 29462.67 32572.11 25958.02 13965.08 21382.55 18141.22 21269.88 30647.32 24873.92 18281.41 222
ACMH+57.40 1166.12 20964.06 21672.30 15977.79 17452.83 16680.39 9578.03 17857.30 15057.47 29782.55 18127.68 33484.17 12545.54 26669.78 24979.90 251
tttt051767.83 17765.66 20274.33 10376.69 20350.82 19677.86 13973.99 24254.54 21264.64 22282.53 18435.06 26885.50 10055.71 18069.91 24686.67 65
WR-MVS_H67.02 19466.92 17967.33 24777.95 17037.75 32977.57 14682.11 9362.03 7362.65 24482.48 18550.57 10379.46 22242.91 29064.01 30384.79 141
LTVRE_ROB55.42 1663.15 24461.23 25368.92 22876.57 20747.80 24059.92 34176.39 20254.35 21558.67 28782.46 18629.44 32181.49 18342.12 29571.14 22477.46 276
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DP-MVS65.68 21363.66 22371.75 16884.93 5556.87 9980.74 9373.16 25153.06 22759.09 28382.35 18736.79 25785.94 8932.82 34569.96 24572.45 327
API-MVS72.17 8371.41 8474.45 10081.95 8257.22 8984.03 4580.38 13259.89 10968.40 13982.33 18849.64 11087.83 4451.87 21384.16 7178.30 266
pmmvs663.69 23662.82 23566.27 25770.63 29939.27 31773.13 23875.47 21652.69 23259.75 27682.30 18939.71 22177.03 26247.40 24764.35 30282.53 204
RPSCF55.80 29854.22 30760.53 30265.13 34742.91 29064.30 31857.62 34636.84 36058.05 29482.28 19028.01 33156.24 36537.14 32158.61 33882.44 208
cdsmvs_eth3d_5k17.50 36323.34 3620.00 3840.00 4060.00 4080.00 39578.63 1610.00 4020.00 40382.18 19149.25 1150.00 4010.00 4020.00 3990.00 399
lupinMVS69.57 13668.28 14573.44 13478.76 14457.15 9476.57 17273.29 25046.19 30869.49 12282.18 19143.99 18179.23 22664.66 11379.37 11983.93 163
FMVSNet266.93 19666.31 19268.79 23077.63 17842.98 28876.11 18177.47 18756.62 16265.22 21282.17 19341.85 20080.18 21647.05 25372.72 20783.20 190
PVSNet_Blended_VisFu71.45 9670.39 10374.65 9282.01 7958.82 7179.93 10380.35 13355.09 19765.82 19782.16 19449.17 11682.64 16360.34 15078.62 13582.50 206
FA-MVS(test-final)69.82 12668.48 13873.84 11378.44 15350.04 21075.58 19478.99 15258.16 13567.59 16182.14 19542.66 19085.63 9456.60 17176.19 16585.84 97
v2v48270.50 11269.45 12173.66 12372.62 26650.03 21177.58 14580.51 13059.90 10669.52 12182.14 19547.53 13784.88 11665.07 11170.17 23986.09 88
v870.33 11669.28 12373.49 13173.15 25650.22 20678.62 12280.78 12660.79 8666.45 18382.11 19749.35 11284.98 11163.58 12468.71 26785.28 125
CANet_DTU68.18 16967.71 15469.59 21774.83 23246.24 25678.66 12176.85 19759.60 11163.45 23582.09 19835.25 26677.41 25659.88 15578.76 13285.14 129
hse-mvs271.04 10069.86 11274.60 9579.58 12357.12 9673.96 22475.25 22060.40 9374.81 4781.95 19945.54 16282.90 15170.41 7066.83 28283.77 173
PLCcopyleft56.13 1465.09 22363.21 23070.72 19781.04 9854.87 13478.57 12377.47 18748.51 28155.71 30981.89 20033.71 28279.71 21841.66 29970.37 23477.58 275
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AUN-MVS68.45 16466.41 18774.57 9779.53 12557.08 9773.93 22775.23 22154.44 21466.69 17881.85 20137.10 25382.89 15262.07 13666.84 28183.75 174
v1070.21 11869.02 12773.81 11473.51 25350.92 19478.74 11981.39 10560.05 10466.39 18481.83 20247.58 13685.41 10562.80 13068.86 26685.09 132
thisisatest053067.92 17565.78 20074.33 10376.29 21151.03 19176.89 16774.25 23953.67 22365.59 20081.76 20335.15 26785.50 10055.94 17572.47 20886.47 71
TAMVS66.78 20065.27 20871.33 18479.16 13653.67 14673.84 23169.59 27852.32 23665.28 20581.72 20444.49 17777.40 25742.32 29478.66 13482.92 197
v7n69.01 15167.36 16773.98 11072.51 27052.65 16878.54 12581.30 11360.26 10162.67 24381.62 20543.61 18384.49 12157.01 16968.70 26884.79 141
BH-untuned68.27 16667.29 16971.21 18579.74 12053.22 15876.06 18377.46 18957.19 15266.10 18881.61 20645.37 16883.50 14045.42 27076.68 16376.91 287
F-COLMAP63.05 24560.87 25869.58 21976.99 20053.63 14878.12 13376.16 20447.97 29052.41 33981.61 20627.87 33278.11 24540.07 30566.66 28377.00 284
IterMVS-LS69.22 14968.48 13871.43 17974.44 24449.40 22176.23 17977.55 18659.60 11165.85 19681.59 20851.28 9581.58 18259.87 15669.90 24783.30 186
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
COLMAP_ROBcopyleft52.97 1761.27 26358.81 26668.64 23174.63 23952.51 17478.42 12673.30 24949.92 26650.96 34481.51 20923.06 35779.40 22331.63 35365.85 28874.01 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
xiu_mvs_v1_base_debu68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
xiu_mvs_v1_base68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
xiu_mvs_v1_base_debi68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
v114470.42 11469.31 12273.76 11773.22 25450.64 19977.83 14181.43 10458.58 12869.40 12581.16 21347.53 13785.29 10764.01 11870.64 22885.34 122
FMVSNet366.32 20865.61 20368.46 23376.48 20942.34 29274.98 20777.15 19455.83 18065.04 21581.16 21339.91 21780.14 21747.18 25072.76 20482.90 199
XVG-ACMP-BASELINE64.36 23262.23 24170.74 19672.35 27352.45 17670.80 27378.45 16953.84 22159.87 27281.10 21516.24 37179.32 22555.64 18371.76 21880.47 241
CLD-MVS73.33 6572.68 6975.29 8078.82 14353.33 15678.23 12884.79 3961.30 8170.41 10681.04 21652.41 7887.12 5864.61 11582.49 8885.41 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thres100view90063.28 24162.41 23965.89 26677.31 19138.66 32172.65 24369.11 28457.07 15362.45 25081.03 21737.01 25579.17 22831.84 34973.25 19779.83 253
ACMH55.70 1565.20 22263.57 22470.07 20778.07 16552.01 18479.48 11379.69 13855.75 18356.59 30380.98 21827.12 33880.94 19642.90 29171.58 22177.25 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view763.30 24062.27 24066.41 25477.18 19338.87 31972.35 25069.11 28456.98 15562.37 25280.96 21937.01 25579.00 23731.43 35673.05 20181.36 225
OurMVSNet-221017-061.37 26258.63 26969.61 21672.05 27848.06 23873.93 22772.51 25547.23 30154.74 32180.92 22021.49 36481.24 18948.57 24156.22 34879.53 257
HY-MVS56.14 1364.55 23063.89 21866.55 25374.73 23641.02 30469.96 28274.43 23449.29 27261.66 25880.92 22047.43 14076.68 26944.91 27371.69 21981.94 215
XXY-MVS60.68 26461.67 24657.70 32070.43 30238.45 32364.19 31966.47 29848.05 28963.22 23680.86 22249.28 11460.47 34245.25 27267.28 27974.19 314
v119269.97 12368.68 13473.85 11273.19 25550.94 19277.68 14481.36 10757.51 14968.95 13380.85 22345.28 16985.33 10662.97 12970.37 23485.27 126
anonymousdsp67.00 19564.82 21273.57 12970.09 30856.13 10776.35 17677.35 19148.43 28364.99 21880.84 22433.01 29080.34 20964.66 11367.64 27684.23 154
test_040263.25 24261.01 25569.96 20880.00 11754.37 13976.86 16972.02 26054.58 21158.71 28680.79 22535.00 26984.36 12326.41 37564.71 29771.15 345
v14419269.71 12968.51 13773.33 13873.10 25750.13 20877.54 14880.64 12756.65 15968.57 13780.55 22646.87 15184.96 11362.98 12869.66 25384.89 138
v124069.24 14867.91 15073.25 14173.02 26049.82 21377.21 15880.54 12956.43 16868.34 14180.51 22743.33 18684.99 10962.03 13869.77 25184.95 137
v192192069.47 14068.17 14673.36 13773.06 25850.10 20977.39 15180.56 12856.58 16668.59 13580.37 22844.72 17484.98 11162.47 13469.82 24885.00 134
MVSTER67.16 19165.58 20471.88 16470.37 30449.70 21570.25 28078.45 16951.52 24369.16 13180.37 22838.45 23482.50 16660.19 15171.46 22283.44 184
ITE_SJBPF62.09 29566.16 34244.55 27664.32 31247.36 29855.31 31480.34 23019.27 36662.68 33636.29 33162.39 31879.04 261
TR-MVS66.59 20565.07 21071.17 18879.18 13449.63 21973.48 23475.20 22352.95 22867.90 15080.33 23139.81 22083.68 13643.20 28773.56 19080.20 246
V4268.65 15767.35 16872.56 15168.93 32350.18 20772.90 24179.47 14456.92 15669.45 12480.26 23246.29 15582.99 14864.07 11667.82 27484.53 146
CDS-MVSNet66.80 19965.37 20571.10 19078.98 13953.13 16173.27 23771.07 26652.15 23764.72 22080.23 23343.56 18477.10 26045.48 26878.88 12883.05 196
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ET-MVSNet_ETH3D67.96 17465.72 20174.68 9076.67 20455.62 12275.11 20274.74 23052.91 22960.03 26980.12 23433.68 28382.64 16361.86 13976.34 16485.78 99
v14868.24 16867.19 17671.40 18070.43 30247.77 24275.76 19077.03 19558.91 12167.36 16480.10 23548.60 12481.89 17560.01 15366.52 28584.53 146
tfpnnormal62.47 24861.63 24764.99 27674.81 23339.01 31871.22 26573.72 24555.22 19460.21 26680.09 23641.26 21176.98 26330.02 36268.09 27278.97 263
Test_1112_low_res62.32 25061.77 24564.00 28279.08 13839.53 31568.17 29170.17 27243.25 33459.03 28479.90 23744.08 17971.24 29843.79 28268.42 27081.25 228
tfpn200view963.18 24362.18 24266.21 25876.85 20139.62 31371.96 25769.44 28056.63 16062.61 24579.83 23837.18 24879.17 22831.84 34973.25 19779.83 253
thres40063.31 23962.18 24266.72 25076.85 20139.62 31371.96 25769.44 28056.63 16062.61 24579.83 23837.18 24879.17 22831.84 34973.25 19781.36 225
AllTest57.08 28654.65 29964.39 28071.44 28649.03 22369.92 28367.30 29145.97 31147.16 35879.77 24017.47 36767.56 31733.65 34059.16 33676.57 288
TestCases64.39 28071.44 28649.03 22367.30 29145.97 31147.16 35879.77 24017.47 36767.56 31733.65 34059.16 33676.57 288
PVSNet_BlendedMVS68.56 16267.72 15271.07 19177.03 19850.57 20074.50 21681.52 10053.66 22464.22 22979.72 24249.13 11782.87 15455.82 17773.92 18279.77 255
xiu_mvs_v2_base70.52 11069.75 11372.84 14681.21 9555.63 12075.11 20278.92 15354.92 20469.96 11679.68 24347.00 15082.09 17361.60 14279.37 11980.81 238
DIV-MVS_self_test67.18 18966.26 19469.94 20970.20 30545.74 26173.29 23676.83 19855.10 19565.27 20679.58 24447.38 14280.53 20559.43 16069.22 26083.54 182
cl____67.18 18966.26 19469.94 20970.20 30545.74 26173.30 23576.83 19855.10 19565.27 20679.57 24547.39 14180.53 20559.41 16169.22 26083.53 183
Fast-Effi-MVS+70.28 11769.12 12673.73 12078.50 15051.50 18875.01 20579.46 14556.16 17468.59 13579.55 24653.97 5684.05 12753.34 20177.53 14785.65 108
LCM-MVSNet-Re61.88 25661.35 25063.46 28474.58 24031.48 37061.42 33258.14 34358.71 12653.02 33879.55 24643.07 18776.80 26545.69 26377.96 14282.11 213
ETV-MVS74.46 5773.84 6076.33 6079.27 13155.24 12979.22 11585.00 3664.97 2172.65 8679.46 24853.65 6687.87 4267.45 9082.91 8185.89 96
EIA-MVS71.78 8970.60 9975.30 7979.85 11953.54 15077.27 15783.26 7757.92 14366.49 18179.39 24952.07 8486.69 6960.05 15279.14 12685.66 107
EPNet_dtu61.90 25561.97 24461.68 29672.89 26239.78 31275.85 18965.62 30455.09 19754.56 32479.36 25037.59 24367.02 32039.80 30876.95 15878.25 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-Vis-set72.42 7971.59 7974.91 8478.47 15254.02 14177.05 16279.33 14765.03 1871.68 9779.35 25152.75 7284.89 11466.46 9674.23 17985.83 98
SixPastTwentyTwo61.65 25858.80 26770.20 20575.80 21747.22 24875.59 19269.68 27654.61 20954.11 32879.26 25227.07 33982.96 14943.27 28549.79 36680.41 243
testgi51.90 31852.37 31550.51 35260.39 37023.55 39258.42 34558.15 34249.03 27551.83 34179.21 25322.39 35855.59 36729.24 36662.64 31572.40 331
WTY-MVS59.75 27060.39 25957.85 31872.32 27437.83 32861.05 33764.18 31345.95 31361.91 25579.11 25447.01 14960.88 34142.50 29369.49 25574.83 306
FE-MVS65.91 21163.33 22873.63 12677.36 19051.95 18572.62 24575.81 20953.70 22265.31 20478.96 25528.81 32786.39 7943.93 27973.48 19282.55 203
EI-MVSNet-UG-set71.92 8771.06 9374.52 9977.98 16953.56 14976.62 17179.16 14864.40 2771.18 10078.95 25652.19 8284.66 12065.47 10773.57 18985.32 123
MAR-MVS71.51 9470.15 10975.60 7481.84 8359.39 5581.38 8682.90 8354.90 20568.08 14878.70 25747.73 13285.51 9951.68 21784.17 7081.88 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ70.51 11169.70 11572.93 14481.52 8655.79 11674.92 20879.00 15155.04 20269.88 11778.66 25847.05 14682.19 17161.61 14179.58 11680.83 237
MVP-Stereo65.41 21863.80 22170.22 20377.62 18255.53 12476.30 17778.53 16450.59 25956.47 30678.65 25939.84 21982.68 16144.10 27872.12 21672.44 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CHOSEN 1792x268865.08 22462.84 23471.82 16681.49 8856.26 10566.32 30174.20 24040.53 35063.16 23878.65 25941.30 20877.80 25045.80 26274.09 18081.40 224
eth_miper_zixun_eth67.63 18066.28 19371.67 17171.60 28348.33 23573.68 23377.88 17955.80 18265.91 19278.62 26147.35 14382.88 15359.45 15966.25 28683.81 169
MVS67.37 18466.33 19070.51 20175.46 22450.94 19273.95 22581.85 9641.57 34562.54 24778.57 26247.98 12885.47 10252.97 20482.05 9075.14 300
c3_l68.33 16567.56 15670.62 19870.87 29746.21 25774.47 21778.80 15656.22 17366.19 18778.53 26351.88 8681.40 18462.08 13569.04 26284.25 153
BH-w/o66.85 19765.83 19969.90 21279.29 12952.46 17574.66 21476.65 20154.51 21364.85 21978.12 26445.59 16182.95 15043.26 28675.54 17174.27 313
TDRefinement53.44 31350.72 32261.60 29764.31 35146.96 25070.89 27265.27 30741.78 34144.61 36777.98 26511.52 38166.36 32428.57 36851.59 36071.49 340
HyFIR lowres test65.67 21463.01 23273.67 12279.97 11855.65 11969.07 28975.52 21542.68 33963.53 23477.95 26640.43 21581.64 17946.01 26071.91 21783.73 175
IterMVS-SCA-FT62.49 24761.52 24865.40 27271.99 27950.80 19771.15 26869.63 27745.71 31460.61 26477.93 26737.45 24465.99 32655.67 18163.50 30979.42 258
cl2267.47 18366.45 18370.54 20069.85 31346.49 25373.85 23077.35 19155.07 20065.51 20177.92 26847.64 13581.10 19261.58 14369.32 25684.01 161
pmmvs461.48 26159.39 26267.76 24071.57 28453.86 14371.42 26165.34 30544.20 32559.46 27877.92 26835.90 26174.71 28143.87 28164.87 29674.71 309
1112_ss64.00 23463.36 22765.93 26579.28 13042.58 29171.35 26272.36 25746.41 30660.55 26577.89 27046.27 15673.28 28846.18 25869.97 24481.92 216
ab-mvs-re6.49 3668.65 3690.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 40377.89 2700.00 4060.00 4010.00 4020.00 3990.00 399
testing356.54 28955.92 29158.41 31277.52 18627.93 37969.72 28456.36 35254.75 20758.63 28977.80 27220.88 36571.75 29625.31 37762.25 31975.53 297
miper_ehance_all_eth68.03 17167.24 17470.40 20270.54 30046.21 25773.98 22378.68 16055.07 20066.05 18977.80 27252.16 8381.31 18761.53 14569.32 25683.67 177
CMPMVSbinary42.80 2157.81 28255.97 29063.32 28560.98 36747.38 24764.66 31769.50 27932.06 36646.83 36077.80 27229.50 32071.36 29748.68 23973.75 18571.21 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_Blended68.59 15867.72 15271.19 18677.03 19850.57 20072.51 24881.52 10051.91 23864.22 22977.77 27549.13 11782.87 15455.82 17779.58 11680.14 248
USDC56.35 29354.24 30662.69 29164.74 34840.31 30865.05 31573.83 24443.93 32947.58 35677.71 27615.36 37375.05 28038.19 31661.81 32372.70 323
test20.0353.87 30954.02 30853.41 34261.47 36328.11 37861.30 33359.21 33951.34 24852.09 34077.43 27733.29 28858.55 35329.76 36360.27 33373.58 318
EG-PatchMatch MVS64.71 22762.87 23370.22 20377.68 17653.48 15177.99 13678.82 15453.37 22656.03 30877.41 27824.75 35384.04 12846.37 25773.42 19473.14 319
Effi-MVS+-dtu69.64 13467.53 15975.95 6476.10 21462.29 1580.20 9876.06 20859.83 11065.26 20977.09 27941.56 20584.02 13060.60 14971.09 22681.53 220
thres20062.20 25261.16 25465.34 27375.38 22639.99 31069.60 28569.29 28255.64 18761.87 25676.99 28037.07 25478.96 23831.28 35773.28 19677.06 282
tpm57.34 28458.16 27354.86 33271.80 28234.77 35267.47 29756.04 35648.20 28660.10 26876.92 28137.17 25053.41 37340.76 30365.01 29476.40 290
IterMVS62.79 24661.27 25167.35 24669.37 31852.04 18371.17 26668.24 28952.63 23359.82 27376.91 28237.32 24772.36 29152.80 20563.19 31277.66 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+-dtu67.37 18465.33 20773.48 13272.94 26157.78 8277.47 15076.88 19657.60 14861.97 25476.85 28339.31 22480.49 20854.72 18970.28 23782.17 212
GA-MVS65.53 21663.70 22271.02 19270.87 29748.10 23770.48 27674.40 23556.69 15864.70 22176.77 28433.66 28481.10 19255.42 18570.32 23683.87 167
CL-MVSNet_self_test61.53 25960.94 25663.30 28668.95 32236.93 33967.60 29572.80 25455.67 18559.95 27176.63 28545.01 17272.22 29439.74 30962.09 32180.74 239
pmmvs556.47 29155.68 29358.86 30961.41 36436.71 34166.37 30062.75 32240.38 35153.70 33176.62 28634.56 27267.05 31940.02 30765.27 29272.83 322
CostFormer64.04 23362.51 23768.61 23271.88 28045.77 26071.30 26470.60 27047.55 29564.31 22676.61 28741.63 20379.62 22149.74 22969.00 26380.42 242
131464.61 22963.21 23068.80 22971.87 28147.46 24673.95 22578.39 17442.88 33859.97 27076.60 28838.11 23979.39 22454.84 18872.32 21279.55 256
EI-MVSNet69.27 14768.44 14271.73 16974.47 24249.39 22275.20 20078.45 16959.60 11169.16 13176.51 28951.29 9482.50 16659.86 15771.45 22383.30 186
CVMVSNet59.63 27159.14 26461.08 30174.47 24238.84 32075.20 20068.74 28631.15 36758.24 29276.51 28932.39 30368.58 31149.77 22865.84 28975.81 293
thisisatest051565.83 21263.50 22572.82 14873.75 25149.50 22071.32 26373.12 25249.39 27063.82 23176.50 29134.95 27084.84 11753.20 20375.49 17284.13 158
K. test v360.47 26657.11 27870.56 19973.74 25248.22 23675.10 20462.55 32358.27 13453.62 33476.31 29227.81 33381.59 18147.42 24639.18 37981.88 217
MSDG61.81 25759.23 26369.55 22072.64 26552.63 17070.45 27775.81 20951.38 24653.70 33176.11 29329.52 31981.08 19437.70 31765.79 29074.93 305
MIMVSNet155.17 30354.31 30557.77 31970.03 30932.01 36865.68 30564.81 30849.19 27346.75 36176.00 29425.53 34964.04 33128.65 36762.13 32077.26 280
OpenMVS_ROBcopyleft52.78 1860.03 26758.14 27465.69 26970.47 30144.82 27075.33 19670.86 26845.04 31756.06 30776.00 29426.89 34179.65 21935.36 33567.29 27872.60 324
MIMVSNet57.35 28357.07 27958.22 31474.21 24937.18 33462.46 32660.88 33648.88 27755.29 31575.99 29631.68 30662.04 33831.87 34872.35 21075.43 299
miper_enhance_ethall67.11 19266.09 19670.17 20669.21 32045.98 25972.85 24278.41 17251.38 24665.65 19875.98 29751.17 9781.25 18860.82 14769.32 25683.29 188
TinyColmap54.14 30651.72 31761.40 29966.84 33641.97 29666.52 29968.51 28744.81 31842.69 37275.77 29811.66 37972.94 28931.96 34756.77 34669.27 358
Anonymous2023120655.10 30455.30 29654.48 33469.81 31433.94 36062.91 32462.13 33041.08 34755.18 31675.65 29932.75 29656.59 36330.32 36167.86 27372.91 320
lessismore_v069.91 21171.42 28847.80 24050.90 36950.39 35075.56 30027.43 33781.33 18645.91 26134.10 38580.59 240
baseline263.42 23861.26 25269.89 21372.55 26847.62 24471.54 26068.38 28850.11 26254.82 32075.55 30143.06 18880.96 19548.13 24367.16 28081.11 232
miper_lstm_enhance62.03 25460.88 25765.49 27166.71 33746.25 25556.29 35775.70 21150.68 25661.27 26175.48 30240.21 21668.03 31556.31 17465.25 29382.18 210
tpm262.07 25360.10 26167.99 23872.79 26343.86 28071.05 27166.85 29743.14 33662.77 24075.39 30338.32 23680.80 20141.69 29868.88 26479.32 259
sss56.17 29556.57 28554.96 33166.93 33536.32 34657.94 34961.69 33241.67 34358.64 28875.32 30438.72 23256.25 36442.04 29666.19 28772.31 332
D2MVS62.30 25160.29 26068.34 23666.46 34048.42 23465.70 30473.42 24847.71 29358.16 29375.02 30530.51 31177.71 25253.96 19671.68 22078.90 264
CR-MVSNet59.91 26857.90 27665.96 26469.96 31052.07 18165.31 31363.15 32042.48 34059.36 27974.84 30635.83 26270.75 30045.50 26764.65 29875.06 301
Patchmtry57.16 28556.47 28659.23 30569.17 32134.58 35562.98 32363.15 32044.53 32156.83 30174.84 30635.83 26268.71 31040.03 30660.91 32774.39 312
FMVSNet555.86 29754.93 29758.66 31171.05 29536.35 34464.18 32062.48 32446.76 30450.66 34974.73 30825.80 34764.04 33133.11 34365.57 29175.59 296
cascas65.98 21063.42 22673.64 12577.26 19252.58 17172.26 25277.21 19348.56 28061.21 26274.60 30932.57 30285.82 9250.38 22576.75 16282.52 205
MS-PatchMatch62.42 24961.46 24965.31 27475.21 22852.10 18072.05 25474.05 24146.41 30657.42 29974.36 31034.35 27677.57 25445.62 26573.67 18666.26 362
test0.0.03 153.32 31453.59 31152.50 34662.81 35829.45 37459.51 34254.11 36050.08 26354.40 32674.31 31132.62 29955.92 36630.50 36063.95 30572.15 334
pmmvs-eth3d58.81 27456.31 28866.30 25667.61 33152.42 17772.30 25164.76 30943.55 33154.94 31974.19 31228.95 32472.60 29043.31 28457.21 34373.88 317
EU-MVSNet55.61 29954.41 30359.19 30765.41 34633.42 36272.44 24971.91 26128.81 36951.27 34273.87 31324.76 35269.08 30943.04 28858.20 33975.06 301
IB-MVS56.42 1265.40 21962.73 23673.40 13674.89 22952.78 16773.09 23975.13 22455.69 18458.48 29173.73 31432.86 29286.32 8250.63 22370.11 24081.10 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet50.76 1958.40 27657.39 27761.42 29875.53 22344.04 27961.43 33163.45 31747.04 30356.91 30073.61 31527.00 34064.76 32939.12 31172.40 20975.47 298
Anonymous2024052155.30 30054.41 30357.96 31760.92 36941.73 29971.09 27071.06 26741.18 34648.65 35473.31 31616.93 36959.25 34942.54 29264.01 30372.90 321
gm-plane-assit71.40 28941.72 30148.85 27873.31 31682.48 16848.90 238
PM-MVS52.33 31750.19 32558.75 31062.10 36145.14 26965.75 30340.38 38743.60 33053.52 33572.65 3189.16 38765.87 32750.41 22454.18 35465.24 364
MDTV_nov1_ep1357.00 28072.73 26438.26 32465.02 31664.73 31044.74 31955.46 31172.48 31932.61 30170.47 30137.47 31867.75 275
UnsupCasMVSNet_eth53.16 31652.47 31455.23 33059.45 37133.39 36359.43 34369.13 28345.98 31050.35 35172.32 32029.30 32258.26 35542.02 29744.30 37274.05 315
Syy-MVS56.00 29656.23 28955.32 32974.69 23726.44 38565.52 30757.49 34750.97 25456.52 30472.18 32139.89 21868.09 31324.20 37864.59 30071.44 341
myMVS_eth3d54.86 30554.61 30055.61 32874.69 23727.31 38265.52 30757.49 34750.97 25456.52 30472.18 32121.87 36368.09 31327.70 37064.59 30071.44 341
SCA60.49 26558.38 27166.80 24974.14 25048.06 23863.35 32263.23 31949.13 27459.33 28272.10 32337.45 24474.27 28444.17 27562.57 31678.05 270
Patchmatch-test49.08 32948.28 33151.50 35064.40 35030.85 37245.68 37848.46 37435.60 36246.10 36472.10 32334.47 27546.37 38327.08 37360.65 33177.27 279
PatchmatchNetpermissive59.84 26958.24 27264.65 27873.05 25946.70 25269.42 28762.18 32947.55 29558.88 28571.96 32534.49 27469.16 30842.99 28963.60 30778.07 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_n_192058.86 27359.06 26558.25 31363.76 35243.14 28767.49 29666.36 30040.22 35265.89 19471.95 32631.04 30759.75 34759.94 15464.90 29571.85 336
test_cas_vis1_n_192056.91 28756.71 28457.51 32159.13 37245.40 26763.58 32161.29 33436.24 36167.14 16971.85 32729.89 31756.69 36157.65 16663.58 30870.46 349
tpmrst58.24 27758.70 26856.84 32266.97 33434.32 35669.57 28661.14 33547.17 30258.58 29071.60 32841.28 21060.41 34349.20 23562.84 31475.78 294
dmvs_re56.77 28856.83 28356.61 32369.23 31941.02 30458.37 34664.18 31350.59 25957.45 29871.42 32935.54 26458.94 35137.23 32067.45 27769.87 354
ambc65.13 27563.72 35437.07 33747.66 37578.78 15754.37 32771.42 32911.24 38280.94 19645.64 26453.85 35677.38 277
EPMVS53.96 30753.69 31054.79 33366.12 34331.96 36962.34 32849.05 37144.42 32455.54 31071.33 33130.22 31456.70 36041.65 30062.54 31775.71 295
PatchMatch-RL56.25 29454.55 30161.32 30077.06 19756.07 10965.57 30654.10 36144.13 32753.49 33771.27 33225.20 35066.78 32136.52 32963.66 30661.12 366
tpmvs58.47 27556.95 28163.03 29070.20 30541.21 30367.90 29467.23 29449.62 26854.73 32270.84 33334.14 27776.24 27636.64 32761.29 32671.64 337
ppachtmachnet_test58.06 28055.38 29566.10 26269.51 31548.99 22668.01 29366.13 30144.50 32254.05 32970.74 33432.09 30572.34 29236.68 32656.71 34776.99 286
tpm cat159.25 27256.95 28166.15 26072.19 27646.96 25068.09 29265.76 30240.03 35457.81 29570.56 33538.32 23674.51 28238.26 31561.50 32577.00 284
KD-MVS_2432*160053.45 31151.50 31959.30 30362.82 35637.14 33555.33 35871.79 26247.34 29955.09 31770.52 33621.91 36170.45 30235.72 33342.97 37470.31 350
miper_refine_blended53.45 31151.50 31959.30 30362.82 35637.14 33555.33 35871.79 26247.34 29955.09 31770.52 33621.91 36170.45 30235.72 33342.97 37470.31 350
MDA-MVSNet-bldmvs53.87 30950.81 32163.05 28966.25 34148.58 23256.93 35563.82 31548.09 28841.22 37370.48 33830.34 31368.00 31634.24 33845.92 37172.57 325
LF4IMVS42.95 33942.26 34145.04 35848.30 38532.50 36654.80 36048.49 37328.03 37240.51 37570.16 3399.24 38643.89 38631.63 35349.18 36858.72 370
RPMNet61.53 25958.42 27070.86 19369.96 31052.07 18165.31 31381.36 10743.20 33559.36 27970.15 34035.37 26585.47 10236.42 33064.65 29875.06 301
KD-MVS_self_test55.22 30253.89 30959.21 30657.80 37527.47 38157.75 35174.32 23647.38 29750.90 34570.00 34128.45 32970.30 30440.44 30457.92 34079.87 252
test-LLR58.15 27958.13 27558.22 31468.57 32444.80 27165.46 30957.92 34450.08 26355.44 31269.82 34232.62 29957.44 35749.66 23173.62 18772.41 329
test-mter56.42 29255.82 29258.22 31468.57 32444.80 27165.46 30957.92 34439.94 35555.44 31269.82 34221.92 36057.44 35749.66 23173.62 18772.41 329
test_fmvs1_n51.37 32150.35 32454.42 33652.85 37837.71 33061.16 33651.93 36328.15 37163.81 23269.73 34413.72 37453.95 37151.16 21960.65 33171.59 338
test_fmvs248.69 33047.49 33552.29 34848.63 38433.06 36557.76 35048.05 37525.71 37759.76 27569.60 34511.57 38052.23 37749.45 23456.86 34471.58 339
our_test_356.49 29054.42 30262.68 29269.51 31545.48 26666.08 30261.49 33344.11 32850.73 34869.60 34533.05 28968.15 31238.38 31456.86 34474.40 311
test_fmvs151.32 32350.48 32353.81 33853.57 37737.51 33260.63 34051.16 36628.02 37363.62 23369.23 34716.41 37053.93 37251.01 22060.70 33069.99 353
PatchT53.17 31553.44 31252.33 34768.29 32825.34 38958.21 34754.41 35944.46 32354.56 32469.05 34833.32 28760.94 34036.93 32261.76 32470.73 348
new-patchmatchnet47.56 33347.73 33347.06 35558.81 3739.37 40148.78 37259.21 33943.28 33344.22 36868.66 34925.67 34857.20 35931.57 35549.35 36774.62 310
dp51.89 31951.60 31852.77 34568.44 32732.45 36762.36 32754.57 35844.16 32649.31 35367.91 35028.87 32656.61 36233.89 33954.89 35169.24 359
MDA-MVSNet_test_wron50.71 32548.95 32756.00 32761.17 36541.84 29751.90 36756.45 35040.96 34844.79 36667.84 35130.04 31655.07 37036.71 32550.69 36371.11 346
YYNet150.73 32448.96 32656.03 32661.10 36641.78 29851.94 36656.44 35140.94 34944.84 36567.80 35230.08 31555.08 36936.77 32350.71 36271.22 343
EGC-MVSNET42.47 34038.48 34854.46 33574.33 24648.73 23070.33 27951.10 3670.03 3990.18 40067.78 35313.28 37666.49 32318.91 38450.36 36448.15 381
dmvs_testset50.16 32651.90 31644.94 36066.49 33911.78 39861.01 33851.50 36551.17 25250.30 35267.44 35439.28 22560.29 34422.38 38057.49 34262.76 365
TESTMET0.1,155.28 30154.90 29856.42 32466.56 33843.67 28265.46 30956.27 35439.18 35753.83 33067.44 35424.21 35455.46 36848.04 24473.11 20070.13 352
DSMNet-mixed39.30 34838.72 34741.03 36651.22 38119.66 39545.53 37931.35 39415.83 39139.80 37867.42 35622.19 35945.13 38422.43 37952.69 35858.31 371
WB-MVS43.26 33843.41 33942.83 36463.32 35510.32 40058.17 34845.20 38045.42 31540.44 37667.26 35734.01 28058.98 35011.96 39224.88 38759.20 368
test_vis1_n49.89 32848.69 33053.50 34153.97 37637.38 33361.53 33047.33 37728.54 37059.62 27767.10 35813.52 37552.27 37649.07 23657.52 34170.84 347
PMMVS53.96 30753.26 31356.04 32562.60 35950.92 19461.17 33556.09 35532.81 36553.51 33666.84 35934.04 27859.93 34644.14 27768.18 27157.27 374
SSC-MVS41.96 34241.99 34241.90 36562.46 3609.28 40257.41 35344.32 38343.38 33238.30 38066.45 36032.67 29858.42 35410.98 39321.91 39057.99 372
N_pmnet39.35 34740.28 34536.54 37163.76 3521.62 40649.37 3710.76 40534.62 36443.61 37066.38 36126.25 34442.57 38726.02 37651.77 35965.44 363
ADS-MVSNet251.33 32248.76 32959.07 30866.02 34444.60 27450.90 36859.76 33836.90 35850.74 34666.18 36226.38 34263.11 33427.17 37154.76 35269.50 356
ADS-MVSNet48.48 33147.77 33250.63 35166.02 34429.92 37350.90 36850.87 37036.90 35850.74 34666.18 36226.38 34252.47 37527.17 37154.76 35269.50 356
GG-mvs-BLEND62.34 29371.36 29037.04 33869.20 28857.33 34954.73 32265.48 36430.37 31277.82 24934.82 33674.93 17572.17 333
test_fmvs344.30 33742.55 34049.55 35342.83 38827.15 38453.03 36444.93 38122.03 38453.69 33364.94 3654.21 39449.63 37947.47 24549.82 36571.88 335
patchmatchnet-post64.03 36634.50 27374.27 284
FPMVS42.18 34141.11 34445.39 35758.03 37441.01 30649.50 37053.81 36230.07 36833.71 38264.03 36611.69 37852.08 37814.01 38855.11 35043.09 385
UnsupCasMVSNet_bld50.07 32748.87 32853.66 33960.97 36833.67 36157.62 35264.56 31139.47 35647.38 35764.02 36827.47 33559.32 34834.69 33743.68 37367.98 361
CHOSEN 280x42047.83 33246.36 33652.24 34967.37 33349.78 21438.91 38643.11 38535.00 36343.27 37163.30 36928.95 32449.19 38036.53 32860.80 32957.76 373
Patchmatch-RL test58.16 27855.49 29466.15 26067.92 33048.89 22860.66 33951.07 36847.86 29259.36 27962.71 37034.02 27972.27 29356.41 17359.40 33577.30 278
mvsany_test139.38 34638.16 34943.02 36349.05 38234.28 35744.16 38225.94 39822.74 38246.57 36262.21 37123.85 35641.16 39033.01 34435.91 38253.63 377
pmmvs344.92 33641.95 34353.86 33752.58 38043.55 28362.11 32946.90 37926.05 37640.63 37460.19 37211.08 38457.91 35631.83 35246.15 37060.11 367
PVSNet_043.31 2047.46 33445.64 33752.92 34467.60 33244.65 27354.06 36254.64 35741.59 34446.15 36358.75 37330.99 30858.66 35232.18 34624.81 38855.46 376
APD_test137.39 34934.94 35244.72 36148.88 38333.19 36452.95 36544.00 38419.49 38527.28 38658.59 3743.18 39852.84 37418.92 38341.17 37748.14 382
mvsany_test332.62 35330.57 35738.77 36936.16 39724.20 39138.10 38720.63 40019.14 38640.36 37757.43 3755.06 39136.63 39329.59 36528.66 38655.49 375
gg-mvs-nofinetune57.86 28156.43 28762.18 29472.62 26635.35 35066.57 29856.33 35350.65 25757.64 29657.10 37630.65 31076.36 27437.38 31978.88 12874.82 307
test_f31.86 35531.05 35634.28 37232.33 40021.86 39332.34 38830.46 39516.02 39039.78 37955.45 3774.80 39232.36 39530.61 35937.66 38148.64 379
new_pmnet34.13 35234.29 35333.64 37352.63 37918.23 39744.43 38133.90 39322.81 38130.89 38453.18 37810.48 38535.72 39420.77 38239.51 37846.98 384
ANet_high41.38 34337.47 35053.11 34339.73 39424.45 39056.94 35469.69 27547.65 29426.04 38752.32 37912.44 37762.38 33721.80 38110.61 39672.49 326
JIA-IIPM51.56 32047.68 33463.21 28764.61 34950.73 19847.71 37458.77 34142.90 33748.46 35551.72 38024.97 35170.24 30536.06 33253.89 35568.64 360
PMVScopyleft28.69 2236.22 35033.29 35445.02 35936.82 39635.98 34954.68 36148.74 37226.31 37521.02 39051.61 3812.88 39960.10 3459.99 39647.58 36938.99 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis1_rt41.35 34439.45 34647.03 35646.65 38737.86 32747.76 37338.65 38823.10 38044.21 36951.22 38211.20 38344.08 38539.27 31053.02 35759.14 369
LCM-MVSNet40.30 34535.88 35153.57 34042.24 38929.15 37545.21 38060.53 33722.23 38328.02 38550.98 3833.72 39661.78 33931.22 35838.76 38069.78 355
MVS-HIRNet45.52 33544.48 33848.65 35468.49 32634.05 35959.41 34444.50 38227.03 37437.96 38150.47 38426.16 34564.10 33026.74 37459.52 33447.82 383
testf131.46 35628.89 35939.16 36741.99 39128.78 37646.45 37637.56 38914.28 39221.10 38848.96 3851.48 40247.11 38113.63 38934.56 38341.60 386
APD_test231.46 35628.89 35939.16 36741.99 39128.78 37646.45 37637.56 38914.28 39221.10 38848.96 3851.48 40247.11 38113.63 38934.56 38341.60 386
PMMVS227.40 35825.91 36131.87 37539.46 3956.57 40331.17 38928.52 39623.96 37820.45 39148.94 3874.20 39537.94 39116.51 38519.97 39151.09 378
test_vis3_rt32.09 35430.20 35837.76 37035.36 39827.48 38040.60 38528.29 39716.69 38932.52 38340.53 3881.96 40037.40 39233.64 34242.21 37648.39 380
test_method19.68 36218.10 36524.41 37813.68 4023.11 40512.06 39442.37 3862.00 39711.97 39536.38 3895.77 39029.35 39715.06 38623.65 38940.76 388
MVEpermissive17.77 2321.41 36117.77 36632.34 37434.34 39925.44 38816.11 39224.11 39911.19 39413.22 39431.92 3901.58 40130.95 39610.47 39417.03 39240.62 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft12.03 38017.97 40110.91 39910.60 4037.46 39511.07 39628.36 3913.28 39711.29 3998.01 3989.74 39813.89 394
Gipumacopyleft34.77 35131.91 35543.33 36262.05 36237.87 32620.39 39167.03 29523.23 37918.41 39225.84 3924.24 39362.73 33514.71 38751.32 36129.38 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN23.77 35922.73 36326.90 37642.02 39020.67 39442.66 38335.70 39117.43 38710.28 39725.05 3936.42 38942.39 38810.28 39514.71 39317.63 392
EMVS22.97 36021.84 36426.36 37740.20 39319.53 39641.95 38434.64 39217.09 3889.73 39822.83 3947.29 38842.22 3899.18 39713.66 39417.32 393
tmp_tt9.43 36511.14 3684.30 3812.38 4034.40 40413.62 39316.08 4020.39 39815.89 39313.06 39515.80 3725.54 40012.63 39110.46 3972.95 395
X-MVStestdata70.21 11867.28 17079.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 926.49 39647.95 12988.01 3871.55 6586.74 5286.37 74
test_post168.67 2903.64 39732.39 30369.49 30744.17 275
test_post3.55 39833.90 28166.52 322
wuyk23d13.32 36412.52 36715.71 37947.54 38626.27 38631.06 3901.98 4044.93 3965.18 3991.94 3990.45 40418.54 3986.81 39912.83 3952.33 396
testmvs4.52 3686.03 3710.01 3830.01 4040.00 40853.86 3630.00 4060.01 4000.04 4010.27 4000.00 4060.00 4010.04 4000.00 3990.03 398
test1234.73 3676.30 3700.02 3820.01 4040.01 40756.36 3560.00 4060.01 4000.04 4010.21 4010.01 4050.00 4010.03 4010.00 3990.04 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
pcd_1.5k_mvsjas3.92 3695.23 3720.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 40247.05 1460.00 4010.00 4020.00 3990.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
WAC-MVS27.31 38227.77 369
FOURS186.12 3660.82 3788.18 183.61 6360.87 8481.50 16
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
eth-test20.00 406
eth-test0.00 406
IU-MVS87.77 459.15 6085.53 2553.93 22084.64 379.07 1190.87 588.37 13
save fliter86.17 3361.30 2883.98 4779.66 14059.00 120
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 37
GSMVS78.05 270
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27178.05 270
sam_mvs33.43 286
MTGPAbinary80.97 123
MTMP86.03 1917.08 401
test9_res75.28 3788.31 3283.81 169
agg_prior273.09 5587.93 4084.33 150
agg_prior85.04 5059.96 4781.04 12174.68 5084.04 128
test_prior462.51 1482.08 77
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7886.38 72
旧先验276.08 18245.32 31676.55 3265.56 32858.75 162
新几何276.12 180
无先验79.66 11074.30 23848.40 28480.78 20253.62 19879.03 262
原ACMM279.02 116
testdata272.18 29546.95 254
segment_acmp54.23 54
testdata172.65 24360.50 91
test1277.76 4384.52 5858.41 7583.36 7272.93 8154.61 5188.05 3788.12 3586.81 60
plane_prior781.41 8955.96 111
plane_prior681.20 9656.24 10645.26 170
plane_prior584.01 4987.21 5368.16 8180.58 10384.65 144
plane_prior356.09 10863.92 3669.27 127
plane_prior284.22 4064.52 25
plane_prior181.27 94
plane_prior56.31 10283.58 5363.19 4880.48 106
n20.00 406
nn0.00 406
door-mid47.19 378
test1183.47 67
door47.60 376
HQP5-MVS54.94 131
HQP-NCC80.66 10282.31 7162.10 6867.85 152
ACMP_Plane80.66 10282.31 7162.10 6867.85 152
BP-MVS67.04 93
HQP4-MVS67.85 15286.93 6284.32 151
HQP3-MVS83.90 5480.35 107
HQP2-MVS45.46 164
MDTV_nov1_ep13_2view25.89 38761.22 33440.10 35351.10 34332.97 29138.49 31378.61 265
ACMMP++_ref74.07 181
ACMMP++72.16 215
Test By Simon48.33 126