This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
fmvsm_s_conf0.1_n_a98.08 6598.04 6598.21 12397.66 25195.39 18598.89 11099.17 2697.24 5499.76 899.67 191.13 15899.88 5999.39 1399.41 11299.35 119
fmvsm_s_conf0.1_n98.18 6498.21 5498.11 13598.54 16595.24 19598.87 11899.24 1797.50 3599.70 1399.67 191.33 15399.89 5099.47 1299.54 9599.21 146
fmvsm_s_conf0.5_n98.42 4798.51 2198.13 13199.30 7195.25 19498.85 12599.39 797.94 1799.74 999.62 392.59 11699.91 4299.65 699.52 9899.25 140
reproduce_model98.94 798.81 1099.34 2599.52 3998.26 4998.94 9898.84 7998.06 1399.35 3299.61 496.39 2799.94 998.77 2899.82 1499.83 12
fmvsm_s_conf0.5_n_a98.38 5098.42 2898.27 11699.09 10995.41 18498.86 12199.37 897.69 2499.78 699.61 492.38 11999.91 4299.58 1099.43 11099.49 99
test_fmvsmconf_n98.92 1098.87 699.04 5898.88 13097.25 9798.82 13399.34 1098.75 299.80 599.61 495.16 7399.95 799.70 599.80 2499.93 1
reproduce-ours98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8198.06 1399.29 3699.58 796.40 2599.94 998.68 3099.81 1599.81 17
our_new_method98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8198.06 1399.29 3699.58 796.40 2599.94 998.68 3099.81 1599.81 17
test_fmvsmconf0.01_n97.86 7497.54 8498.83 7295.48 36896.83 11398.95 9598.60 14698.58 598.93 6299.55 988.57 21699.91 4299.54 1199.61 7899.77 29
test_fmvsmvis_n_192098.44 4498.51 2198.23 12298.33 18696.15 14898.97 8999.15 2898.55 798.45 9699.55 994.26 9699.97 199.65 699.66 6798.57 221
test_fmvsmconf0.1_n98.58 2698.44 2798.99 6097.73 24597.15 10298.84 12998.97 4298.75 299.43 2799.54 1193.29 10799.93 2899.64 899.79 3099.89 4
UA-Net97.96 6997.62 7798.98 6298.86 13397.47 8498.89 11099.08 3296.67 8898.72 7999.54 1193.15 10999.81 8494.87 20498.83 14599.65 72
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5097.38 4399.41 2899.54 1196.66 1899.84 7098.86 2599.85 699.87 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-298.36 5398.87 696.82 22599.53 3690.68 33298.64 17899.29 1497.88 1899.19 4499.52 1496.80 1599.97 199.11 1899.86 299.82 16
SMA-MVScopyleft98.58 2698.25 4899.56 899.51 4099.04 1598.95 9598.80 9693.67 24299.37 3199.52 1496.52 2299.89 5098.06 6799.81 1599.76 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsm_n_192098.87 1399.01 398.45 10299.42 5896.43 13498.96 9499.36 998.63 499.86 299.51 1695.91 4399.97 199.72 499.75 4798.94 186
mvsany_test197.69 8597.70 7597.66 17398.24 19494.18 24897.53 31297.53 30795.52 13799.66 1599.51 1694.30 9499.56 15098.38 5398.62 15499.23 142
test072699.72 1299.25 299.06 6798.88 6297.62 2799.56 2099.50 1897.42 9
DeepC-MVS95.98 397.88 7397.58 7998.77 7499.25 8496.93 10898.83 13198.75 10996.96 7196.89 18099.50 1890.46 17199.87 6197.84 8299.76 4299.52 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_298.08 6598.59 1796.56 24999.57 3390.34 34199.15 5198.38 20296.82 7799.29 3699.49 2095.78 4799.57 14798.94 2399.86 299.77 29
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7998.87 6997.65 2599.73 1099.48 2197.53 799.94 998.43 5099.81 1599.70 56
test_241102_TWO98.87 6997.65 2599.53 2399.48 2197.34 1199.94 998.43 5099.80 2499.83 12
MM98.51 3698.24 5099.33 2999.12 10598.14 5998.93 10197.02 35098.96 199.17 4599.47 2391.97 13799.94 999.85 399.69 6199.91 2
DVP-MVS++99.08 398.89 599.64 399.17 9799.23 799.69 198.88 6297.32 4699.53 2399.47 2397.81 399.94 998.47 4699.72 5799.74 39
test_one_060199.66 2699.25 298.86 7597.55 3299.20 4299.47 2397.57 6
ACMMP_NAP98.61 2198.30 4599.55 999.62 3098.95 1798.82 13398.81 8995.80 12399.16 4899.47 2395.37 6099.92 3497.89 7899.75 4799.79 21
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8998.58 15597.62 2799.45 2599.46 2797.42 999.94 998.47 4699.81 1599.69 59
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 4699.45 2599.46 2797.88 199.94 998.47 4699.86 299.85 9
DPE-MVScopyleft98.92 1098.67 1599.65 299.58 3299.20 998.42 21498.91 5697.58 3099.54 2299.46 2797.10 1299.94 997.64 9799.84 1199.83 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5499.43 5797.48 8298.88 11599.30 1398.47 999.85 499.43 3096.71 1799.96 499.86 199.80 2499.89 4
fmvsm_l_conf0.5_n99.07 499.05 299.14 5099.41 5997.54 8098.89 11099.31 1298.49 899.86 299.42 3196.45 2499.96 499.86 199.74 5199.90 3
MP-MVS-pluss98.31 5997.92 6999.49 1299.72 1298.88 1898.43 21298.78 10394.10 20797.69 14699.42 3195.25 6899.92 3498.09 6699.80 2499.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP98.90 1298.75 1399.36 2399.22 9298.43 3399.10 6398.87 6997.38 4399.35 3299.40 3397.78 599.87 6197.77 8599.85 699.78 23
Skip Steuart: Steuart Systems R&D Blog.
test_241102_ONE99.71 1999.24 598.87 6997.62 2799.73 1099.39 3497.53 799.74 114
SF-MVS98.59 2498.32 4499.41 1799.54 3598.71 2299.04 7398.81 8995.12 15999.32 3599.39 3496.22 3099.84 7097.72 8899.73 5499.67 68
MTAPA98.58 2698.29 4699.46 1499.76 298.64 2598.90 10698.74 11197.27 5398.02 12099.39 3494.81 8399.96 497.91 7699.79 3099.77 29
VDDNet95.36 20894.53 22797.86 14998.10 21195.13 20198.85 12597.75 28790.46 34798.36 10199.39 3473.27 39199.64 13497.98 7196.58 22298.81 195
SD-MVS98.64 1998.68 1498.53 9499.33 6298.36 4398.90 10698.85 7897.28 4999.72 1299.39 3496.63 2097.60 36498.17 6299.85 699.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS96.37 297.93 7298.48 2696.30 27499.00 11789.54 35597.43 31898.87 6998.16 1199.26 4099.38 3996.12 3599.64 13498.30 5799.77 3699.72 48
test_vis1_n_192096.71 14196.84 12196.31 27399.11 10789.74 34999.05 6998.58 15598.08 1299.87 199.37 4078.48 35599.93 2899.29 1499.69 6199.27 135
EI-MVSNet-UG-set98.41 4898.34 3998.61 8699.45 5596.32 14198.28 22998.68 12797.17 5998.74 7699.37 4095.25 6899.79 10198.57 3599.54 9599.73 44
APD-MVS_3200maxsize98.53 3598.33 4399.15 4999.50 4297.92 6799.15 5198.81 8996.24 10599.20 4299.37 4095.30 6499.80 9197.73 8799.67 6499.72 48
LS3D97.16 12296.66 13498.68 8198.53 16697.19 10098.93 10198.90 5792.83 28095.99 21699.37 4092.12 13099.87 6193.67 24899.57 8698.97 182
EI-MVSNet-Vis-set98.47 4198.39 3098.69 8099.46 5296.49 13198.30 22698.69 12497.21 5698.84 6899.36 4495.41 5799.78 10498.62 3399.65 7099.80 20
ACMMPcopyleft98.23 6197.95 6899.09 5599.74 797.62 7699.03 7699.41 695.98 11497.60 15599.36 4494.45 9199.93 2897.14 11998.85 14499.70 56
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_cas_vis1_n_192097.38 11097.36 9697.45 18298.95 12593.25 28499.00 8398.53 16697.70 2399.77 799.35 4684.71 29799.85 6698.57 3599.66 6799.26 138
SR-MVS-dyc-post98.54 3498.35 3599.13 5199.49 4697.86 6899.11 6098.80 9696.49 9499.17 4599.35 4695.34 6299.82 7997.72 8899.65 7099.71 52
RE-MVS-def98.34 3999.49 4697.86 6899.11 6098.80 9696.49 9499.17 4599.35 4695.29 6597.72 8899.65 7099.71 52
DP-MVS96.59 14595.93 16098.57 8899.34 6096.19 14798.70 16798.39 19889.45 36694.52 24799.35 4691.85 13899.85 6692.89 27298.88 14099.68 64
VDD-MVS95.82 18195.23 19397.61 17698.84 13693.98 25298.68 17097.40 32295.02 16797.95 12699.34 5074.37 38899.78 10498.64 3296.80 21599.08 170
SR-MVS98.57 3098.35 3599.24 3999.53 3698.18 5499.09 6498.82 8496.58 9199.10 5099.32 5195.39 5899.82 7997.70 9399.63 7599.72 48
PGM-MVS98.49 3898.23 5299.27 3799.72 1298.08 6198.99 8699.49 595.43 14199.03 5199.32 5195.56 5299.94 996.80 14399.77 3699.78 23
TSAR-MVS + MP.98.78 1498.62 1699.24 3999.69 2498.28 4899.14 5498.66 13596.84 7599.56 2099.31 5396.34 2899.70 12298.32 5699.73 5499.73 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-OURS96.55 14896.41 14296.99 21198.75 14193.76 25897.50 31598.52 16995.67 13196.83 18199.30 5488.95 21099.53 16095.88 17196.26 23997.69 253
9.1498.06 6399.47 5098.71 16398.82 8494.36 20199.16 4899.29 5596.05 3799.81 8497.00 12399.71 59
MSLP-MVS++98.56 3298.57 1898.55 9099.26 8396.80 11498.71 16399.05 3697.28 4998.84 6899.28 5696.47 2399.40 18198.52 4499.70 6099.47 103
DeepC-MVS_fast96.70 198.55 3398.34 3999.18 4599.25 8498.04 6298.50 20398.78 10397.72 2098.92 6499.28 5695.27 6699.82 7997.55 10599.77 3699.69 59
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test111195.94 17395.78 16496.41 26698.99 12090.12 34399.04 7392.45 41196.99 7098.03 11899.27 5881.40 32999.48 17396.87 13799.04 13099.63 76
test_fmvs1_n95.90 17695.99 15895.63 30298.67 15288.32 37899.26 2798.22 23096.40 9999.67 1499.26 5973.91 38999.70 12299.02 2199.50 10098.87 190
test250694.44 27293.91 26996.04 28399.02 11488.99 36699.06 6779.47 42596.96 7198.36 10199.26 5977.21 36799.52 16396.78 14499.04 13099.59 82
ECVR-MVScopyleft95.95 17195.71 17096.65 23599.02 11490.86 32799.03 7691.80 41296.96 7198.10 11199.26 5981.31 33099.51 16496.90 13199.04 13099.59 82
MVS_030498.23 6197.91 7099.21 4298.06 21597.96 6698.58 18795.51 38798.58 598.87 6699.26 5992.99 11199.95 799.62 999.67 6499.73 44
RPSCF94.87 24095.40 18093.26 36498.89 12982.06 40298.33 21998.06 26990.30 35296.56 19499.26 5987.09 25099.49 16893.82 24396.32 23198.24 235
APD-MVScopyleft98.35 5598.00 6799.42 1699.51 4098.72 2198.80 14298.82 8494.52 19599.23 4199.25 6495.54 5499.80 9196.52 15099.77 3699.74 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft98.33 5898.01 6699.28 3599.75 398.18 5499.22 3698.79 10196.13 11097.92 13199.23 6594.54 8699.94 996.74 14699.78 3499.73 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3698.26 4799.25 3899.75 398.04 6299.28 2498.81 8996.24 10598.35 10399.23 6595.46 5599.94 997.42 11299.81 1599.77 29
MG-MVS97.81 7897.60 7898.44 10499.12 10595.97 15797.75 29698.78 10396.89 7498.46 9399.22 6793.90 10299.68 12894.81 20899.52 9899.67 68
casdiffmvspermissive97.63 9197.41 9398.28 11598.33 18696.14 14998.82 13398.32 21296.38 10197.95 12699.21 6891.23 15799.23 19998.12 6498.37 16999.48 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive97.42 10797.11 10898.34 11298.66 15396.23 14499.22 3699.00 3996.63 9098.04 11799.21 6888.05 23299.35 18696.01 16899.21 12499.45 109
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs196.42 15296.67 13395.66 30198.82 13788.53 37498.80 14298.20 23396.39 10099.64 1799.20 7080.35 34399.67 12999.04 2099.57 8698.78 199
XVS98.70 1798.49 2499.34 2599.70 2298.35 4499.29 2298.88 6297.40 4098.46 9399.20 7095.90 4599.89 5097.85 8099.74 5199.78 23
LFMVS95.86 17894.98 20698.47 10098.87 13296.32 14198.84 12996.02 37993.40 25498.62 8699.20 7074.99 38399.63 13797.72 8897.20 20499.46 107
HPM-MVS_fast98.38 5098.13 5899.12 5399.75 397.86 6899.44 998.82 8494.46 19898.94 5899.20 7095.16 7399.74 11497.58 10199.85 699.77 29
casdiffmvs_mvgpermissive97.72 8297.48 8998.44 10498.42 17196.59 12698.92 10398.44 18896.20 10797.76 13799.20 7091.66 14399.23 19998.27 6198.41 16899.49 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMPR98.59 2498.36 3399.29 3299.74 798.15 5799.23 3298.95 4696.10 11298.93 6299.19 7595.70 4999.94 997.62 9899.79 3099.78 23
test_vis1_n95.47 19795.13 19796.49 25797.77 24090.41 33999.27 2698.11 25496.58 9199.66 1599.18 7667.00 40299.62 14199.21 1699.40 11599.44 110
HFP-MVS98.63 2098.40 2999.32 3199.72 1298.29 4799.23 3298.96 4596.10 11298.94 5899.17 7796.06 3699.92 3497.62 9899.78 3499.75 37
region2R98.61 2198.38 3199.29 3299.74 798.16 5699.23 3298.93 5096.15 10998.94 5899.17 7795.91 4399.94 997.55 10599.79 3099.78 23
baseline97.64 8997.44 9298.25 12098.35 17896.20 14599.00 8398.32 21296.33 10498.03 11899.17 7791.35 15299.16 20698.10 6598.29 17599.39 115
PC_three_145295.08 16499.60 1999.16 8097.86 298.47 29397.52 10899.72 5799.74 39
OPU-MVS99.37 2299.24 9099.05 1499.02 7999.16 8097.81 399.37 18597.24 11799.73 5499.70 56
CNVR-MVS98.78 1498.56 1999.45 1599.32 6598.87 1998.47 20698.81 8997.72 2098.76 7599.16 8097.05 1399.78 10498.06 6799.66 6799.69 59
3Dnovator94.51 597.46 10196.93 11799.07 5697.78 23997.64 7499.35 1599.06 3497.02 6893.75 29099.16 8089.25 19799.92 3497.22 11899.75 4799.64 74
SPE-MVS-test98.49 3898.50 2398.46 10199.20 9597.05 10499.64 498.50 17797.45 3998.88 6599.14 8495.25 6899.15 20998.83 2699.56 9299.20 147
CP-MVS98.57 3098.36 3399.19 4399.66 2697.86 6899.34 1698.87 6995.96 11598.60 8899.13 8596.05 3799.94 997.77 8599.86 299.77 29
3Dnovator+94.38 697.43 10696.78 12599.38 1897.83 23698.52 2899.37 1298.71 11997.09 6692.99 31899.13 8589.36 19499.89 5096.97 12599.57 8699.71 52
EPNet97.28 11496.87 12098.51 9594.98 37796.14 14998.90 10697.02 35098.28 1095.99 21699.11 8791.36 15199.89 5096.98 12499.19 12699.50 94
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.93 13296.27 14798.92 6799.50 4297.63 7598.85 12598.90 5784.80 39497.77 13699.11 8792.84 11299.66 13194.85 20599.77 3699.47 103
BP-MVS197.82 7797.51 8698.76 7598.25 19397.39 8799.15 5197.68 28996.69 8698.47 9299.10 8990.29 17599.51 16498.60 3499.35 11999.37 117
ZNCC-MVS98.49 3898.20 5599.35 2499.73 1198.39 3499.19 4498.86 7595.77 12598.31 10699.10 8995.46 5599.93 2897.57 10499.81 1599.74 39
CS-MVS98.44 4498.49 2498.31 11499.08 11096.73 11899.67 398.47 18397.17 5998.94 5899.10 8995.73 4899.13 21298.71 2999.49 10299.09 166
testdata98.26 11999.20 9595.36 18798.68 12791.89 31198.60 8899.10 8994.44 9299.82 7994.27 22899.44 10999.58 86
PHI-MVS98.34 5698.06 6399.18 4599.15 10398.12 6099.04 7399.09 3193.32 25798.83 7099.10 8996.54 2199.83 7297.70 9399.76 4299.59 82
OMC-MVS97.55 9997.34 9798.20 12599.33 6295.92 16498.28 22998.59 15095.52 13797.97 12599.10 8993.28 10899.49 16895.09 19998.88 14099.19 151
COLMAP_ROBcopyleft93.27 1295.33 21194.87 21296.71 23099.29 7693.24 28598.58 18798.11 25489.92 35793.57 29499.10 8986.37 26599.79 10190.78 32098.10 17997.09 269
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
旧先验199.29 7697.48 8298.70 12399.09 9695.56 5299.47 10599.61 78
XVG-OURS-SEG-HR96.51 14996.34 14497.02 21098.77 14093.76 25897.79 29498.50 17795.45 14096.94 17599.09 9687.87 23799.55 15796.76 14595.83 25197.74 250
CPTT-MVS97.72 8297.32 9898.92 6799.64 2897.10 10399.12 5898.81 8992.34 29798.09 11299.08 9893.01 11099.92 3496.06 16599.77 3699.75 37
EPP-MVSNet97.46 10197.28 9997.99 14398.64 15795.38 18699.33 2098.31 21493.61 24697.19 16499.07 9994.05 9999.23 19996.89 13298.43 16799.37 117
GST-MVS98.43 4698.12 5999.34 2599.72 1298.38 3599.09 6498.82 8495.71 12998.73 7899.06 10095.27 6699.93 2897.07 12299.63 7599.72 48
GDP-MVS97.64 8997.28 9998.71 7998.30 19197.33 8999.05 6998.52 16996.34 10298.80 7199.05 10189.74 18499.51 16496.86 14098.86 14399.28 134
OpenMVScopyleft93.04 1395.83 18095.00 20498.32 11397.18 29297.32 9099.21 3998.97 4289.96 35691.14 35299.05 10186.64 25899.92 3493.38 25499.47 10597.73 251
EI-MVSNet95.96 17095.83 16396.36 26997.93 23093.70 26498.12 25198.27 22393.70 23795.07 23399.02 10392.23 12698.54 28694.68 21093.46 28396.84 294
CVMVSNet95.43 20196.04 15593.57 35897.93 23083.62 39698.12 25198.59 15095.68 13096.56 19499.02 10387.51 24397.51 36993.56 25297.44 20099.60 80
TSAR-MVS + GP.98.38 5098.24 5098.81 7399.22 9297.25 9798.11 25398.29 22297.19 5898.99 5699.02 10396.22 3099.67 12998.52 4498.56 15899.51 92
QAPM96.29 15895.40 18098.96 6597.85 23597.60 7799.23 3298.93 5089.76 36093.11 31599.02 10389.11 20299.93 2891.99 29599.62 7799.34 121
MVS_111021_LR98.34 5698.23 5298.67 8299.27 8196.90 11097.95 27099.58 397.14 6298.44 9899.01 10795.03 7999.62 14197.91 7699.75 4799.50 94
MVS_111021_HR98.47 4198.34 3998.88 7199.22 9297.32 9097.91 27599.58 397.20 5798.33 10499.00 10895.99 4099.64 13498.05 6999.76 4299.69 59
IS-MVSNet97.22 11796.88 11998.25 12098.85 13596.36 13999.19 4497.97 27495.39 14397.23 16398.99 10991.11 16098.93 24594.60 21598.59 15699.47 103
ZD-MVS99.46 5298.70 2398.79 10193.21 26298.67 8098.97 11095.70 4999.83 7296.07 16299.58 85
Anonymous2024052995.10 22494.22 24497.75 16199.01 11694.26 24598.87 11898.83 8185.79 39096.64 18998.97 11078.73 35299.85 6696.27 15794.89 25799.12 162
原ACMM198.65 8499.32 6596.62 12198.67 13293.27 26197.81 13598.97 11095.18 7299.83 7293.84 24299.46 10899.50 94
HPM-MVScopyleft98.36 5398.10 6299.13 5199.74 797.82 7299.53 698.80 9694.63 18898.61 8798.97 11095.13 7599.77 10997.65 9699.83 1399.79 21
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS98.40 4998.20 5598.99 6099.00 11797.66 7397.75 29698.89 5997.71 2298.33 10498.97 11094.97 8099.88 5998.42 5299.76 4299.42 114
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet98.05 6797.76 7398.90 7098.73 14297.27 9298.35 21798.78 10397.37 4597.72 14398.96 11591.53 14999.92 3498.79 2799.65 7099.51 92
test22299.23 9197.17 10197.40 31998.66 13588.68 37498.05 11598.96 11594.14 9899.53 9799.61 78
新几何199.16 4899.34 6098.01 6498.69 12490.06 35598.13 10998.95 11794.60 8599.89 5091.97 29799.47 10599.59 82
DP-MVS Recon97.86 7497.46 9099.06 5799.53 3698.35 4498.33 21998.89 5992.62 28698.05 11598.94 11895.34 6299.65 13296.04 16699.42 11199.19 151
CANet_DTU96.96 13196.55 13798.21 12398.17 20796.07 15197.98 26898.21 23197.24 5497.13 16698.93 11986.88 25599.91 4295.00 20299.37 11898.66 212
NCCC98.61 2198.35 3599.38 1899.28 8098.61 2698.45 20798.76 10797.82 1998.45 9698.93 11996.65 1999.83 7297.38 11499.41 11299.71 52
CSCG97.85 7697.74 7498.20 12599.67 2595.16 19899.22 3699.32 1193.04 27197.02 17398.92 12195.36 6199.91 4297.43 11199.64 7499.52 89
CHOSEN 1792x268897.12 12596.80 12298.08 13799.30 7194.56 23298.05 26099.71 193.57 24797.09 16798.91 12288.17 22699.89 5096.87 13799.56 9299.81 17
MVSMamba_PlusPlus98.31 5998.19 5798.67 8298.96 12497.36 8899.24 3098.57 15794.81 18098.99 5698.90 12395.22 7199.59 14499.15 1799.84 1199.07 174
mamv497.13 12498.11 6094.17 35398.97 12383.70 39598.66 17598.71 11994.63 18897.83 13498.90 12396.25 2999.55 15799.27 1599.76 4299.27 135
diffmvspermissive97.58 9697.40 9498.13 13198.32 18995.81 17098.06 25998.37 20496.20 10798.74 7698.89 12591.31 15599.25 19698.16 6398.52 16099.34 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu97.70 8497.46 9098.44 10499.27 8195.91 16598.63 18199.16 2794.48 19797.67 14798.88 12692.80 11399.91 4297.11 12099.12 12899.50 94
GeoE96.58 14796.07 15398.10 13698.35 17895.89 16799.34 1698.12 25193.12 26896.09 21298.87 12789.71 18598.97 23592.95 26898.08 18099.43 112
Vis-MVSNet (Re-imp)96.87 13596.55 13797.83 15198.73 14295.46 18299.20 4298.30 22094.96 17196.60 19398.87 12790.05 17898.59 28393.67 24898.60 15599.46 107
CDPH-MVS97.94 7197.49 8799.28 3599.47 5098.44 3197.91 27598.67 13292.57 28998.77 7498.85 12995.93 4299.72 11695.56 18499.69 6199.68 64
VNet97.79 7997.40 9498.96 6598.88 13097.55 7898.63 18198.93 5096.74 8299.02 5298.84 13090.33 17499.83 7298.53 3896.66 21999.50 94
EC-MVSNet98.21 6398.11 6098.49 9898.34 18397.26 9699.61 598.43 19296.78 7898.87 6698.84 13093.72 10399.01 23398.91 2499.50 10099.19 151
HPM-MVS++copyleft98.58 2698.25 4899.55 999.50 4299.08 1198.72 16298.66 13597.51 3498.15 10798.83 13295.70 4999.92 3497.53 10799.67 6499.66 71
MVSFormer97.57 9797.49 8797.84 15098.07 21295.76 17199.47 798.40 19694.98 16998.79 7298.83 13292.34 12098.41 30696.91 12899.59 8299.34 121
jason97.32 11397.08 11098.06 13997.45 27195.59 17497.87 28397.91 28094.79 18198.55 9098.83 13291.12 15999.23 19997.58 10199.60 8099.34 121
jason: jason.
Anonymous20240521195.28 21494.49 22997.67 17099.00 11793.75 26098.70 16797.04 34790.66 34396.49 20098.80 13578.13 35999.83 7296.21 16195.36 25699.44 110
MCST-MVS98.65 1898.37 3299.48 1399.60 3198.87 1998.41 21598.68 12797.04 6798.52 9198.80 13596.78 1699.83 7297.93 7499.61 7899.74 39
MSP-MVS98.74 1698.55 2099.29 3299.75 398.23 5099.26 2798.88 6297.52 3399.41 2898.78 13796.00 3999.79 10197.79 8499.59 8299.85 9
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
OPM-MVS95.69 18895.33 18896.76 22896.16 34594.63 22598.43 21298.39 19896.64 8995.02 23598.78 13785.15 28799.05 22495.21 19894.20 26396.60 320
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
balanced_conf0398.45 4398.35 3598.74 7698.65 15697.55 7899.19 4498.60 14696.72 8599.35 3298.77 13995.06 7899.55 15798.95 2299.87 199.12 162
AllTest95.24 21694.65 22296.99 21199.25 8493.21 28698.59 18598.18 23891.36 32593.52 29698.77 13984.67 29899.72 11689.70 33897.87 18698.02 243
TestCases96.99 21199.25 8493.21 28698.18 23891.36 32593.52 29698.77 13984.67 29899.72 11689.70 33897.87 18698.02 243
LPG-MVS_test95.62 19195.34 18696.47 26097.46 26893.54 26798.99 8698.54 16494.67 18694.36 25898.77 13985.39 28099.11 21695.71 17994.15 26696.76 300
LGP-MVS_train96.47 26097.46 26893.54 26798.54 16494.67 18694.36 25898.77 13985.39 28099.11 21695.71 17994.15 26696.76 300
SDMVSNet96.85 13696.42 14198.14 12899.30 7196.38 13799.21 3999.23 2095.92 11695.96 21898.76 14485.88 27399.44 17897.93 7495.59 25298.60 216
sd_testset96.17 16395.76 16597.42 18599.30 7194.34 24198.82 13399.08 3295.92 11695.96 21898.76 14482.83 32399.32 19095.56 18495.59 25298.60 216
MSDG95.93 17495.30 19197.83 15198.90 12895.36 18796.83 36798.37 20491.32 32994.43 25498.73 14690.27 17699.60 14390.05 33198.82 14698.52 222
h-mvs3396.17 16395.62 17697.81 15499.03 11394.45 23498.64 17898.75 10997.48 3698.67 8098.72 14789.76 18299.86 6597.95 7281.59 39199.11 164
RRT-MVS97.03 12896.78 12597.77 15997.90 23294.34 24199.12 5898.35 20795.87 12098.06 11498.70 14886.45 26399.63 13798.04 7098.54 15999.35 119
test_prior297.80 29296.12 11197.89 13398.69 14995.96 4196.89 13299.60 80
TEST999.31 6798.50 2997.92 27398.73 11492.63 28597.74 14098.68 15096.20 3299.80 91
train_agg97.97 6897.52 8599.33 2999.31 6798.50 2997.92 27398.73 11492.98 27397.74 14098.68 15096.20 3299.80 9196.59 14799.57 8699.68 64
AdaColmapbinary97.15 12396.70 13098.48 9999.16 10196.69 12098.01 26498.89 5994.44 19996.83 18198.68 15090.69 16899.76 11094.36 22399.29 12398.98 181
test_899.29 7698.44 3197.89 28198.72 11692.98 27397.70 14598.66 15396.20 3299.80 91
tttt051796.07 16695.51 17897.78 15698.41 17394.84 21599.28 2494.33 40094.26 20497.64 15298.64 15484.05 31299.47 17595.34 19097.60 19799.03 176
cdsmvs_eth3d_5k23.98 39031.98 3920.00 4080.00 4310.00 4330.00 41998.59 1500.00 4260.00 42798.61 15590.60 1690.00 4270.00 4260.00 4250.00 423
lupinMVS97.44 10597.22 10498.12 13498.07 21295.76 17197.68 30197.76 28694.50 19698.79 7298.61 15592.34 12099.30 19297.58 10199.59 8299.31 127
BH-RMVSNet95.92 17595.32 18997.69 16798.32 18994.64 22498.19 24197.45 31894.56 19196.03 21498.61 15585.02 28899.12 21490.68 32299.06 12999.30 130
TAMVS97.02 12996.79 12497.70 16698.06 21595.31 19298.52 19798.31 21493.95 21897.05 17298.61 15593.49 10598.52 28895.33 19197.81 18899.29 132
TAPA-MVS93.98 795.35 20994.56 22697.74 16299.13 10494.83 21798.33 21998.64 14086.62 38296.29 20798.61 15594.00 10199.29 19380.00 39799.41 11299.09 166
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UniMVSNet_ETH3D94.24 28493.33 30296.97 21497.19 29193.38 27798.74 15498.57 15791.21 33693.81 28698.58 16072.85 39298.77 26895.05 20193.93 27498.77 202
DPM-MVS97.55 9996.99 11499.23 4199.04 11298.55 2797.17 34298.35 20794.85 17997.93 13098.58 16095.07 7799.71 12192.60 27699.34 12099.43 112
F-COLMAP97.09 12796.80 12297.97 14499.45 5594.95 21198.55 19598.62 14593.02 27296.17 21198.58 16094.01 10099.81 8493.95 23898.90 13899.14 160
mvsmamba97.25 11696.99 11498.02 14198.34 18395.54 17999.18 4897.47 31395.04 16598.15 10798.57 16389.46 19199.31 19197.68 9599.01 13399.22 144
WTY-MVS97.37 11296.92 11898.72 7898.86 13396.89 11298.31 22498.71 11995.26 15297.67 14798.56 16492.21 12799.78 10495.89 17096.85 21499.48 101
CNLPA97.45 10497.03 11298.73 7799.05 11197.44 8698.07 25898.53 16695.32 14996.80 18598.53 16593.32 10699.72 11694.31 22799.31 12299.02 177
ACMP93.49 1095.34 21094.98 20696.43 26597.67 24993.48 27198.73 15898.44 18894.94 17592.53 33198.53 16584.50 30399.14 21195.48 18894.00 27196.66 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH92.88 1694.55 26093.95 26696.34 27197.63 25393.26 28298.81 14198.49 18293.43 25389.74 36598.53 16581.91 32699.08 22293.69 24593.30 28996.70 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-094.21 28594.00 26294.85 33095.60 36289.22 36198.89 11097.43 32095.29 15092.18 34098.52 16882.86 32298.59 28393.46 25391.76 30696.74 302
CDS-MVSNet96.99 13096.69 13197.90 14898.05 21795.98 15298.20 23898.33 21193.67 24296.95 17498.49 16993.54 10498.42 29995.24 19797.74 19299.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss97.39 10996.98 11698.61 8698.60 16196.61 12398.22 23598.93 5093.97 21798.01 12398.48 17091.98 13599.85 6696.45 15298.15 17799.39 115
ACMH+92.99 1494.30 27993.77 28195.88 29397.81 23892.04 30698.71 16398.37 20493.99 21690.60 35898.47 17180.86 33899.05 22492.75 27492.40 30096.55 328
ACMM93.85 995.69 18895.38 18496.61 24297.61 25493.84 25698.91 10598.44 18895.25 15394.28 26298.47 17186.04 27299.12 21495.50 18793.95 27396.87 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
1112_ss96.63 14396.00 15798.50 9698.56 16296.37 13898.18 24698.10 25792.92 27694.84 23898.43 17392.14 12999.58 14694.35 22496.51 22599.56 88
ab-mvs-re8.20 39310.94 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42798.43 1730.00 4310.00 4270.00 4260.00 4250.00 423
test_yl97.22 11796.78 12598.54 9298.73 14296.60 12498.45 20798.31 21494.70 18298.02 12098.42 17590.80 16599.70 12296.81 14196.79 21699.34 121
DCV-MVSNet97.22 11796.78 12598.54 9298.73 14296.60 12498.45 20798.31 21494.70 18298.02 12098.42 17590.80 16599.70 12296.81 14196.79 21699.34 121
xiu_mvs_v1_base_debu97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
xiu_mvs_v1_base97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
xiu_mvs_v1_base_debi97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
mvs_tets95.41 20495.00 20496.65 23595.58 36394.42 23699.00 8398.55 16295.73 12893.21 30998.38 18083.45 32198.63 27897.09 12194.00 27196.91 284
FC-MVSNet-test96.42 15296.05 15497.53 18096.95 30497.27 9299.36 1399.23 2095.83 12293.93 27998.37 18192.00 13498.32 31696.02 16792.72 29797.00 273
jajsoiax95.45 20095.03 20396.73 22995.42 37294.63 22599.14 5498.52 16995.74 12693.22 30898.36 18283.87 31798.65 27796.95 12794.04 26996.91 284
nrg03096.28 16095.72 16797.96 14696.90 30998.15 5799.39 1098.31 21495.47 13994.42 25598.35 18392.09 13298.69 27297.50 10989.05 34597.04 271
FIs96.51 14996.12 15297.67 17097.13 29597.54 8099.36 1399.22 2395.89 11894.03 27698.35 18391.98 13598.44 29796.40 15492.76 29697.01 272
ITE_SJBPF95.44 31097.42 27391.32 31897.50 31095.09 16393.59 29298.35 18381.70 32798.88 25489.71 33793.39 28796.12 356
LTVRE_ROB92.95 1594.60 25593.90 27096.68 23497.41 27694.42 23698.52 19798.59 15091.69 31791.21 35198.35 18384.87 29199.04 22791.06 31593.44 28696.60 320
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-MVSNAJss96.43 15196.26 14896.92 22095.84 35795.08 20399.16 5098.50 17795.87 12093.84 28598.34 18794.51 8798.61 28096.88 13493.45 28597.06 270
EPNet_dtu95.21 21894.95 20895.99 28596.17 34390.45 33798.16 24797.27 33296.77 7993.14 31498.33 18890.34 17398.42 29985.57 37498.81 14799.09 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PCF-MVS93.45 1194.68 24993.43 30098.42 10898.62 15996.77 11695.48 39198.20 23384.63 39593.34 30598.32 18988.55 21999.81 8484.80 38398.96 13698.68 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053096.01 16895.36 18597.97 14498.38 17595.52 18098.88 11594.19 40294.04 20997.64 15298.31 19083.82 31999.46 17695.29 19497.70 19498.93 187
PLCcopyleft95.07 497.20 12096.78 12598.44 10499.29 7696.31 14398.14 24898.76 10792.41 29596.39 20598.31 19094.92 8299.78 10494.06 23698.77 14899.23 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP_MVS96.14 16595.90 16196.85 22397.42 27394.60 23098.80 14298.56 16097.28 4995.34 22798.28 19287.09 25099.03 22896.07 16294.27 26096.92 279
plane_prior498.28 192
API-MVS97.41 10897.25 10197.91 14798.70 14796.80 11498.82 13398.69 12494.53 19398.11 11098.28 19294.50 9099.57 14794.12 23399.49 10297.37 264
test_fmvs293.43 30993.58 29292.95 36896.97 30383.91 39499.19 4497.24 33495.74 12695.20 23298.27 19569.65 39598.72 27196.26 15893.73 27796.24 352
mvs_anonymous96.70 14296.53 13997.18 19898.19 20293.78 25798.31 22498.19 23594.01 21494.47 24998.27 19592.08 13398.46 29497.39 11397.91 18499.31 127
XXY-MVS95.20 21994.45 23497.46 18196.75 31896.56 12898.86 12198.65 13993.30 25993.27 30798.27 19584.85 29298.87 25594.82 20791.26 31496.96 275
SixPastTwentyTwo93.34 31292.86 31194.75 33495.67 36089.41 35998.75 15196.67 36993.89 22190.15 36398.25 19880.87 33798.27 32590.90 31990.64 32196.57 324
VPNet94.99 23194.19 24697.40 18897.16 29396.57 12798.71 16398.97 4295.67 13194.84 23898.24 19980.36 34298.67 27696.46 15187.32 36596.96 275
PVSNet_Blended97.38 11097.12 10798.14 12899.25 8495.35 18997.28 33299.26 1593.13 26797.94 12898.21 20092.74 11499.81 8496.88 13499.40 11599.27 135
HyFIR lowres test96.90 13496.49 14098.14 12899.33 6295.56 17697.38 32199.65 292.34 29797.61 15498.20 20189.29 19699.10 22096.97 12597.60 19799.77 29
baseline195.84 17995.12 19998.01 14298.49 16995.98 15298.73 15897.03 34895.37 14696.22 20898.19 20289.96 18099.16 20694.60 21587.48 36198.90 189
ab-mvs96.42 15295.71 17098.55 9098.63 15896.75 11797.88 28298.74 11193.84 22496.54 19898.18 20385.34 28399.75 11295.93 16996.35 22999.15 158
xiu_mvs_v2_base97.66 8897.70 7597.56 17998.61 16095.46 18297.44 31698.46 18497.15 6198.65 8598.15 20494.33 9399.80 9197.84 8298.66 15397.41 260
USDC93.33 31392.71 31495.21 31696.83 31390.83 32996.91 35797.50 31093.84 22490.72 35698.14 20577.69 36298.82 26389.51 34293.21 29195.97 360
EU-MVSNet93.66 30594.14 25192.25 37495.96 35383.38 39898.52 19798.12 25194.69 18492.61 32898.13 20687.36 24896.39 39091.82 29990.00 32996.98 274
CHOSEN 280x42097.18 12197.18 10697.20 19598.81 13893.27 28195.78 38799.15 2895.25 15396.79 18698.11 20792.29 12299.07 22398.56 3799.85 699.25 140
MVSTER96.06 16795.72 16797.08 20798.23 19695.93 16398.73 15898.27 22394.86 17795.07 23398.09 20888.21 22598.54 28696.59 14793.46 28396.79 297
MVS_Test97.28 11497.00 11398.13 13198.33 18695.97 15798.74 15498.07 26494.27 20398.44 9898.07 20992.48 11799.26 19596.43 15398.19 17699.16 157
PAPM_NR97.46 10197.11 10898.50 9699.50 4296.41 13698.63 18198.60 14695.18 15697.06 17198.06 21094.26 9699.57 14793.80 24498.87 14299.52 89
PatchMatch-RL96.59 14596.03 15698.27 11699.31 6796.51 13097.91 27599.06 3493.72 23496.92 17898.06 21088.50 22199.65 13291.77 30199.00 13598.66 212
tt080594.54 26193.85 27596.63 23997.98 22593.06 29398.77 15097.84 28393.67 24293.80 28798.04 21276.88 37498.96 23994.79 20992.86 29497.86 247
Effi-MVS+97.12 12596.69 13198.39 11098.19 20296.72 11997.37 32398.43 19293.71 23597.65 15198.02 21392.20 12899.25 19696.87 13797.79 18999.19 151
MVS94.67 25293.54 29598.08 13796.88 31096.56 12898.19 24198.50 17778.05 40692.69 32698.02 21391.07 16299.63 13790.09 32898.36 17198.04 242
BH-untuned95.95 17195.72 16796.65 23598.55 16492.26 30098.23 23497.79 28593.73 23294.62 24498.01 21588.97 20999.00 23493.04 26598.51 16198.68 208
CLD-MVS95.62 19195.34 18696.46 26397.52 26593.75 26097.27 33398.46 18495.53 13694.42 25598.00 21686.21 26798.97 23596.25 16094.37 25896.66 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs295.71 18595.30 19196.93 21798.50 16793.53 26998.36 21698.10 25797.48 3698.67 8097.99 21789.76 18299.02 23197.95 7280.91 39698.22 237
HY-MVS93.96 896.82 13896.23 15098.57 8898.46 17097.00 10598.14 24898.21 23193.95 21896.72 18797.99 21791.58 14499.76 11094.51 21996.54 22498.95 185
AUN-MVS94.53 26393.73 28596.92 22098.50 16793.52 27098.34 21898.10 25793.83 22695.94 22097.98 21985.59 27899.03 22894.35 22480.94 39598.22 237
MAR-MVS96.91 13396.40 14398.45 10298.69 15096.90 11098.66 17598.68 12792.40 29697.07 17097.96 22091.54 14899.75 11293.68 24698.92 13798.69 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-CasMVS94.67 25293.99 26496.71 23096.68 32295.26 19399.13 5799.03 3793.68 24092.33 33797.95 22185.35 28298.10 33493.59 25088.16 35696.79 297
TranMVSNet+NR-MVSNet95.14 22294.48 23097.11 20596.45 33396.36 13999.03 7699.03 3795.04 16593.58 29397.93 22288.27 22498.03 34094.13 23286.90 37196.95 277
ttmdpeth92.61 32791.96 33094.55 34194.10 38890.60 33598.52 19797.29 32992.67 28490.18 36197.92 22379.75 34797.79 35791.09 31286.15 37795.26 371
testgi93.06 32292.45 32294.88 32996.43 33489.90 34598.75 15197.54 30695.60 13391.63 34997.91 22474.46 38797.02 37686.10 37093.67 27897.72 252
APD_test188.22 36288.01 36188.86 38195.98 35174.66 41397.21 33696.44 37583.96 39786.66 38797.90 22560.95 40997.84 35682.73 38990.23 32694.09 392
CP-MVSNet94.94 23894.30 24096.83 22496.72 32095.56 17699.11 6098.95 4693.89 22192.42 33697.90 22587.19 24998.12 33394.32 22688.21 35496.82 296
XVG-ACMP-BASELINE94.54 26194.14 25195.75 29896.55 32791.65 31398.11 25398.44 18894.96 17194.22 26697.90 22579.18 35199.11 21694.05 23793.85 27596.48 342
PS-MVSNAJ97.73 8197.77 7297.62 17598.68 15195.58 17597.34 32798.51 17297.29 4898.66 8497.88 22894.51 8799.90 4897.87 7999.17 12797.39 262
TransMVSNet (Re)92.67 32691.51 33396.15 27896.58 32694.65 22398.90 10696.73 36590.86 34189.46 36997.86 22985.62 27798.09 33686.45 36881.12 39395.71 365
test_djsdf96.00 16995.69 17396.93 21795.72 35995.49 18199.47 798.40 19694.98 16994.58 24597.86 22989.16 20098.41 30696.91 12894.12 26896.88 288
TinyColmap92.31 33191.53 33294.65 33896.92 30689.75 34896.92 35596.68 36890.45 34889.62 36697.85 23176.06 37998.81 26486.74 36692.51 29995.41 369
pm-mvs193.94 30393.06 30796.59 24596.49 33195.16 19898.95 9598.03 27192.32 29991.08 35397.84 23284.54 30298.41 30692.16 28886.13 37896.19 355
UGNet96.78 13996.30 14698.19 12798.24 19495.89 16798.88 11598.93 5097.39 4296.81 18497.84 23282.60 32499.90 4896.53 14999.49 10298.79 196
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TDRefinement91.06 34389.68 34895.21 31685.35 41891.49 31698.51 20297.07 34491.47 32188.83 37597.84 23277.31 36699.09 22192.79 27377.98 40595.04 379
PEN-MVS94.42 27393.73 28596.49 25796.28 33994.84 21599.17 4999.00 3993.51 24892.23 33997.83 23586.10 26997.90 35092.55 28186.92 37096.74 302
131496.25 16295.73 16697.79 15597.13 29595.55 17898.19 24198.59 15093.47 25192.03 34397.82 23691.33 15399.49 16894.62 21498.44 16598.32 234
DTE-MVSNet93.98 30293.26 30596.14 27996.06 34894.39 23899.20 4298.86 7593.06 27091.78 34597.81 23785.87 27497.58 36690.53 32386.17 37596.46 344
PAPM94.95 23694.00 26297.78 15697.04 29995.65 17396.03 38398.25 22891.23 33494.19 26897.80 23891.27 15698.86 25782.61 39197.61 19698.84 193
PVSNet91.96 1896.35 15696.15 15196.96 21599.17 9792.05 30596.08 38098.68 12793.69 23897.75 13997.80 23888.86 21199.69 12794.26 22999.01 13399.15 158
CMPMVSbinary66.06 2189.70 35389.67 34989.78 37993.19 39576.56 40597.00 35198.35 20780.97 40381.57 40197.75 24074.75 38498.61 28089.85 33493.63 28094.17 390
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NP-MVS97.28 28294.51 23397.73 241
HQP-MVS95.72 18495.40 18096.69 23397.20 28894.25 24698.05 26098.46 18496.43 9694.45 25097.73 24186.75 25698.96 23995.30 19294.18 26496.86 293
UniMVSNet_NR-MVSNet95.71 18595.15 19697.40 18896.84 31296.97 10698.74 15499.24 1795.16 15793.88 28297.72 24391.68 14198.31 31895.81 17387.25 36696.92 279
FE-MVS95.62 19194.90 21097.78 15698.37 17794.92 21297.17 34297.38 32490.95 34097.73 14297.70 24485.32 28599.63 13791.18 30998.33 17298.79 196
FA-MVS(test-final)96.41 15595.94 15997.82 15398.21 19895.20 19797.80 29297.58 29793.21 26297.36 16097.70 24489.47 19099.56 15094.12 23397.99 18198.71 206
DU-MVS95.42 20294.76 21597.40 18896.53 32896.97 10698.66 17598.99 4195.43 14193.88 28297.69 24688.57 21698.31 31895.81 17387.25 36696.92 279
WR-MVS95.15 22194.46 23297.22 19496.67 32396.45 13298.21 23698.81 8994.15 20593.16 31197.69 24687.51 24398.30 32095.29 19488.62 35196.90 286
NR-MVSNet94.98 23394.16 24997.44 18396.53 32897.22 9998.74 15498.95 4694.96 17189.25 37097.69 24689.32 19598.18 32894.59 21787.40 36396.92 279
Fast-Effi-MVS+-dtu95.87 17795.85 16295.91 29097.74 24491.74 31198.69 16998.15 24795.56 13594.92 23697.68 24988.98 20898.79 26693.19 26097.78 19097.20 268
reproduce_monomvs94.77 24594.67 22195.08 32298.40 17489.48 35698.80 14298.64 14097.57 3193.21 30997.65 25080.57 34198.83 26197.72 8889.47 33996.93 278
alignmvs97.56 9897.07 11199.01 5998.66 15398.37 4298.83 13198.06 26996.74 8298.00 12497.65 25090.80 16599.48 17398.37 5496.56 22399.19 151
LF4IMVS93.14 32092.79 31394.20 35195.88 35588.67 37197.66 30397.07 34493.81 22791.71 34697.65 25077.96 36198.81 26491.47 30691.92 30595.12 375
lessismore_v094.45 34894.93 37988.44 37691.03 41586.77 38697.64 25376.23 37798.42 29990.31 32685.64 37996.51 337
TR-MVS94.94 23894.20 24597.17 19997.75 24194.14 24997.59 30997.02 35092.28 30195.75 22297.64 25383.88 31698.96 23989.77 33596.15 24498.40 228
ET-MVSNet_ETH3D94.13 29292.98 30997.58 17798.22 19796.20 14597.31 33095.37 38994.53 19379.56 40697.63 25586.51 25997.53 36896.91 12890.74 32099.02 177
Baseline_NR-MVSNet94.35 27693.81 27795.96 28896.20 34194.05 25198.61 18496.67 36991.44 32393.85 28497.60 25688.57 21698.14 33194.39 22286.93 36995.68 366
pmmvs494.69 24793.99 26496.81 22695.74 35895.94 16097.40 31997.67 29190.42 34993.37 30497.59 25789.08 20398.20 32792.97 26791.67 30896.30 351
K. test v392.55 32891.91 33194.48 34595.64 36189.24 36099.07 6694.88 39494.04 20986.78 38597.59 25777.64 36597.64 36392.08 29089.43 34096.57 324
Anonymous2023121194.10 29693.26 30596.61 24299.11 10794.28 24399.01 8198.88 6286.43 38492.81 32197.57 25981.66 32898.68 27594.83 20689.02 34796.88 288
PAPR96.84 13796.24 14998.65 8498.72 14696.92 10997.36 32598.57 15793.33 25696.67 18897.57 25994.30 9499.56 15091.05 31798.59 15699.47 103
pmmvs691.77 33490.63 33995.17 31894.69 38491.24 32098.67 17397.92 27986.14 38689.62 36697.56 26175.79 38098.34 31390.75 32184.56 38095.94 361
EIA-MVS97.75 8097.58 7998.27 11698.38 17596.44 13399.01 8198.60 14695.88 11997.26 16297.53 26294.97 8099.33 18997.38 11499.20 12599.05 175
MS-PatchMatch93.84 30493.63 29094.46 34796.18 34289.45 35797.76 29598.27 22392.23 30292.13 34197.49 26379.50 34898.69 27289.75 33699.38 11795.25 372
IterMVS-SCA-FT94.11 29593.87 27394.85 33097.98 22590.56 33697.18 34098.11 25493.75 22992.58 32997.48 26483.97 31497.41 37192.48 28591.30 31296.58 322
anonymousdsp95.42 20294.91 20996.94 21695.10 37695.90 16699.14 5498.41 19493.75 22993.16 31197.46 26587.50 24598.41 30695.63 18394.03 27096.50 339
PVSNet_BlendedMVS96.73 14096.60 13597.12 20499.25 8495.35 18998.26 23299.26 1594.28 20297.94 12897.46 26592.74 11499.81 8496.88 13493.32 28896.20 354
PMMVS96.60 14496.33 14597.41 18697.90 23293.93 25397.35 32698.41 19492.84 27997.76 13797.45 26791.10 16199.20 20396.26 15897.91 18499.11 164
ETV-MVS97.96 6997.81 7198.40 10998.42 17197.27 9298.73 15898.55 16296.84 7598.38 10097.44 26895.39 5899.35 18697.62 9898.89 13998.58 220
thisisatest051595.61 19494.89 21197.76 16098.15 20895.15 20096.77 36894.41 39892.95 27597.18 16597.43 26984.78 29499.45 17794.63 21297.73 19398.68 208
baseline295.11 22394.52 22896.87 22296.65 32493.56 26698.27 23194.10 40493.45 25292.02 34497.43 26987.45 24799.19 20493.88 24197.41 20297.87 246
MGCFI-Net97.62 9297.19 10598.92 6798.66 15398.20 5299.32 2198.38 20296.69 8697.58 15697.42 27192.10 13199.50 16798.28 5896.25 24099.08 170
sasdasda97.67 8697.23 10298.98 6298.70 14798.38 3599.34 1698.39 19896.76 8097.67 14797.40 27292.26 12399.49 16898.28 5896.28 23799.08 170
canonicalmvs97.67 8697.23 10298.98 6298.70 14798.38 3599.34 1698.39 19896.76 8097.67 14797.40 27292.26 12399.49 16898.28 5896.28 23799.08 170
MonoMVSNet95.51 19595.45 17995.68 29995.54 36490.87 32698.92 10397.37 32595.79 12495.53 22497.38 27489.58 18797.68 36196.40 15492.59 29898.49 224
tfpnnormal93.66 30592.70 31596.55 25396.94 30595.94 16098.97 8999.19 2491.04 33891.38 35097.34 27584.94 29098.61 28085.45 37689.02 34795.11 376
IterMVS94.09 29793.85 27594.80 33397.99 22390.35 34097.18 34098.12 25193.68 24092.46 33597.34 27584.05 31297.41 37192.51 28391.33 31196.62 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVStest189.53 35787.99 36294.14 35594.39 38590.42 33898.25 23396.84 36482.81 39881.18 40397.33 27777.09 37196.94 37885.27 37878.79 40195.06 378
VPA-MVSNet95.75 18395.11 20097.69 16797.24 28497.27 9298.94 9899.23 2095.13 15895.51 22597.32 27885.73 27598.91 24897.33 11689.55 33696.89 287
IterMVS-LS95.46 19895.21 19496.22 27798.12 20993.72 26398.32 22398.13 25093.71 23594.26 26397.31 27992.24 12598.10 33494.63 21290.12 32796.84 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Test_1112_low_res96.34 15795.66 17598.36 11198.56 16295.94 16097.71 29998.07 26492.10 30694.79 24297.29 28091.75 14099.56 15094.17 23196.50 22699.58 86
ppachtmachnet_test93.22 31692.63 31694.97 32595.45 37090.84 32896.88 36397.88 28190.60 34492.08 34297.26 28188.08 23097.86 35585.12 37990.33 32396.22 353
pmmvs593.65 30792.97 31095.68 29995.49 36792.37 29898.20 23897.28 33189.66 36292.58 32997.26 28182.14 32598.09 33693.18 26190.95 31996.58 322
MDTV_nov1_ep1395.40 18097.48 26688.34 37796.85 36597.29 32993.74 23197.48 15997.26 28189.18 19999.05 22491.92 29897.43 201
dmvs_re94.48 26994.18 24895.37 31297.68 24890.11 34498.54 19697.08 34294.56 19194.42 25597.24 28484.25 30697.76 35991.02 31892.83 29598.24 235
Fast-Effi-MVS+96.28 16095.70 17298.03 14098.29 19295.97 15798.58 18798.25 22891.74 31495.29 23197.23 28591.03 16399.15 20992.90 27097.96 18398.97 182
BH-w/o95.38 20595.08 20196.26 27698.34 18391.79 30897.70 30097.43 32092.87 27894.24 26597.22 28688.66 21498.84 25891.55 30597.70 19498.16 240
eth_miper_zixun_eth94.68 24994.41 23795.47 30897.64 25291.71 31296.73 37198.07 26492.71 28393.64 29197.21 28790.54 17098.17 32993.38 25489.76 33196.54 329
v192192094.20 28693.47 29896.40 26895.98 35194.08 25098.52 19798.15 24791.33 32894.25 26497.20 28886.41 26498.42 29990.04 33289.39 34196.69 314
v2v48294.69 24794.03 25896.65 23596.17 34394.79 22098.67 17398.08 26292.72 28294.00 27797.16 28987.69 24298.45 29592.91 26988.87 34996.72 305
v7n94.19 28793.43 30096.47 26095.90 35494.38 23999.26 2798.34 21091.99 30892.76 32397.13 29088.31 22398.52 28889.48 34387.70 35996.52 334
DIV-MVS_self_test94.52 26494.03 25895.99 28597.57 26193.38 27797.05 34897.94 27791.74 31492.81 32197.10 29189.12 20198.07 33892.60 27690.30 32496.53 331
SCA95.46 19895.13 19796.46 26397.67 24991.29 31997.33 32897.60 29694.68 18596.92 17897.10 29183.97 31498.89 25292.59 27898.32 17499.20 147
Patchmatch-test94.42 27393.68 28996.63 23997.60 25591.76 30994.83 39897.49 31289.45 36694.14 27097.10 29188.99 20598.83 26185.37 37798.13 17899.29 132
FMVSNet394.97 23594.26 24297.11 20598.18 20496.62 12198.56 19498.26 22793.67 24294.09 27297.10 29184.25 30698.01 34192.08 29092.14 30196.70 309
MVP-Stereo94.28 28393.92 26795.35 31394.95 37892.60 29797.97 26997.65 29291.61 31990.68 35797.09 29586.32 26698.42 29989.70 33899.34 12095.02 380
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FMVSNet294.47 27093.61 29197.04 20998.21 19896.43 13498.79 14898.27 22392.46 29093.50 29997.09 29581.16 33298.00 34391.09 31291.93 30496.70 309
cl____94.51 26594.01 26196.02 28497.58 25793.40 27697.05 34897.96 27691.73 31692.76 32397.08 29789.06 20498.13 33292.61 27590.29 32596.52 334
UWE-MVS94.30 27993.89 27295.53 30597.83 23688.95 36797.52 31493.25 40694.44 19996.63 19097.07 29878.70 35399.28 19491.99 29597.56 19998.36 231
GBi-Net94.49 26793.80 27896.56 24998.21 19895.00 20598.82 13398.18 23892.46 29094.09 27297.07 29881.16 33297.95 34692.08 29092.14 30196.72 305
test194.49 26793.80 27896.56 24998.21 19895.00 20598.82 13398.18 23892.46 29094.09 27297.07 29881.16 33297.95 34692.08 29092.14 30196.72 305
FMVSNet193.19 31892.07 32696.56 24997.54 26295.00 20598.82 13398.18 23890.38 35092.27 33897.07 29873.68 39097.95 34689.36 34591.30 31296.72 305
mvs5depth91.23 34090.17 34494.41 34992.09 40089.79 34795.26 39296.50 37390.73 34291.69 34797.06 30276.12 37898.62 27988.02 35984.11 38394.82 382
v119294.32 27893.58 29296.53 25496.10 34694.45 23498.50 20398.17 24491.54 32094.19 26897.06 30286.95 25498.43 29890.14 32789.57 33496.70 309
V4294.78 24494.14 25196.70 23296.33 33895.22 19698.97 8998.09 26192.32 29994.31 26197.06 30288.39 22298.55 28592.90 27088.87 34996.34 348
c3_l94.79 24394.43 23695.89 29297.75 24193.12 29097.16 34498.03 27192.23 30293.46 30197.05 30591.39 15098.01 34193.58 25189.21 34396.53 331
testing393.19 31892.48 32195.30 31598.07 21292.27 29998.64 17897.17 33893.94 22093.98 27897.04 30667.97 39996.01 39488.40 35497.14 20597.63 255
GA-MVS94.81 24294.03 25897.14 20197.15 29493.86 25596.76 36997.58 29794.00 21594.76 24397.04 30680.91 33698.48 29091.79 30096.25 24099.09 166
UniMVSNet (Re)95.78 18295.19 19597.58 17796.99 30297.47 8498.79 14899.18 2595.60 13393.92 28097.04 30691.68 14198.48 29095.80 17587.66 36096.79 297
v14419294.39 27593.70 28796.48 25996.06 34894.35 24098.58 18798.16 24691.45 32294.33 26097.02 30987.50 24598.45 29591.08 31489.11 34496.63 317
v114494.59 25793.92 26796.60 24496.21 34094.78 22198.59 18598.14 24991.86 31394.21 26797.02 30987.97 23398.41 30691.72 30289.57 33496.61 319
v124094.06 30093.29 30496.34 27196.03 35093.90 25498.44 21098.17 24491.18 33794.13 27197.01 31186.05 27098.42 29989.13 34889.50 33896.70 309
v1094.29 28193.55 29496.51 25696.39 33594.80 21998.99 8698.19 23591.35 32793.02 31796.99 31288.09 22998.41 30690.50 32488.41 35396.33 350
test_040291.32 33790.27 34394.48 34596.60 32591.12 32198.50 20397.22 33586.10 38788.30 37796.98 31377.65 36497.99 34478.13 40392.94 29394.34 386
miper_lstm_enhance94.33 27794.07 25595.11 32097.75 24190.97 32397.22 33598.03 27191.67 31892.76 32396.97 31490.03 17997.78 35892.51 28389.64 33396.56 326
v894.47 27093.77 28196.57 24896.36 33694.83 21799.05 6998.19 23591.92 31093.16 31196.97 31488.82 21398.48 29091.69 30387.79 35896.39 346
miper_ehance_all_eth95.01 22894.69 22095.97 28797.70 24793.31 28097.02 35098.07 26492.23 30293.51 29896.96 31691.85 13898.15 33093.68 24691.16 31596.44 345
PatchmatchNetpermissive95.71 18595.52 17796.29 27597.58 25790.72 33196.84 36697.52 30894.06 20897.08 16896.96 31689.24 19898.90 25192.03 29498.37 16999.26 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14894.29 28193.76 28395.91 29096.10 34692.93 29498.58 18797.97 27492.59 28893.47 30096.95 31888.53 22098.32 31692.56 28087.06 36896.49 340
gm-plane-assit95.88 35587.47 38589.74 36196.94 31999.19 20493.32 257
tpmrst95.63 19095.69 17395.44 31097.54 26288.54 37396.97 35297.56 30093.50 24997.52 15896.93 32089.49 18899.16 20695.25 19696.42 22898.64 214
thres600view795.49 19694.77 21497.67 17098.98 12195.02 20498.85 12596.90 35795.38 14496.63 19096.90 32184.29 30499.59 14488.65 35396.33 23098.40 228
our_test_393.65 30793.30 30394.69 33595.45 37089.68 35296.91 35797.65 29291.97 30991.66 34896.88 32289.67 18697.93 34988.02 35991.49 31096.48 342
thres100view90095.38 20594.70 21997.41 18698.98 12194.92 21298.87 11896.90 35795.38 14496.61 19296.88 32284.29 30499.56 15088.11 35696.29 23497.76 248
cl2294.68 24994.19 24696.13 28098.11 21093.60 26596.94 35498.31 21492.43 29493.32 30696.87 32486.51 25998.28 32494.10 23591.16 31596.51 337
LCM-MVSNet-Re95.22 21795.32 18994.91 32698.18 20487.85 38498.75 15195.66 38695.11 16088.96 37196.85 32590.26 17797.65 36295.65 18298.44 16599.22 144
WR-MVS_H95.05 22794.46 23296.81 22696.86 31195.82 16999.24 3099.24 1793.87 22392.53 33196.84 32690.37 17298.24 32693.24 25887.93 35796.38 347
WBMVS94.56 25994.04 25696.10 28298.03 21993.08 29297.82 29198.18 23894.02 21193.77 28996.82 32781.28 33198.34 31395.47 18991.00 31896.88 288
EPMVS94.99 23194.48 23096.52 25597.22 28691.75 31097.23 33491.66 41394.11 20697.28 16196.81 32885.70 27698.84 25893.04 26597.28 20398.97 182
tpm294.19 28793.76 28395.46 30997.23 28589.04 36497.31 33096.85 36387.08 38196.21 20996.79 32983.75 32098.74 26992.43 28696.23 24298.59 218
WB-MVSnew94.19 28794.04 25694.66 33796.82 31492.14 30197.86 28595.96 38293.50 24995.64 22396.77 33088.06 23197.99 34484.87 38096.86 21393.85 397
D2MVS95.18 22095.08 20195.48 30797.10 29792.07 30498.30 22699.13 3094.02 21192.90 31996.73 33189.48 18998.73 27094.48 22093.60 28295.65 367
CostFormer94.95 23694.73 21795.60 30497.28 28289.06 36397.53 31296.89 35989.66 36296.82 18396.72 33286.05 27098.95 24495.53 18696.13 24598.79 196
test20.0390.89 34590.38 34292.43 37093.48 39488.14 38198.33 21997.56 30093.40 25487.96 37896.71 33380.69 34094.13 40579.15 40086.17 37595.01 381
Effi-MVS+-dtu96.29 15896.56 13695.51 30697.89 23490.22 34298.80 14298.10 25796.57 9396.45 20396.66 33490.81 16498.91 24895.72 17897.99 18197.40 261
test0.0.03 194.08 29893.51 29695.80 29595.53 36692.89 29597.38 32195.97 38195.11 16092.51 33396.66 33487.71 23996.94 37887.03 36593.67 27897.57 258
miper_enhance_ethall95.10 22494.75 21696.12 28197.53 26493.73 26296.61 37498.08 26292.20 30593.89 28196.65 33692.44 11898.30 32094.21 23091.16 31596.34 348
ADS-MVSNet294.58 25894.40 23895.11 32098.00 22188.74 37096.04 38197.30 32890.15 35396.47 20196.64 33787.89 23597.56 36790.08 32997.06 20799.02 177
ADS-MVSNet95.00 22994.45 23496.63 23998.00 22191.91 30796.04 38197.74 28890.15 35396.47 20196.64 33787.89 23598.96 23990.08 32997.06 20799.02 177
dp94.15 29193.90 27094.90 32797.31 28186.82 38996.97 35297.19 33791.22 33596.02 21596.61 33985.51 27999.02 23190.00 33394.30 25998.85 191
tfpn200view995.32 21294.62 22397.43 18498.94 12694.98 20898.68 17096.93 35595.33 14796.55 19696.53 34084.23 30899.56 15088.11 35696.29 23497.76 248
thres40095.38 20594.62 22397.65 17498.94 12694.98 20898.68 17096.93 35595.33 14796.55 19696.53 34084.23 30899.56 15088.11 35696.29 23498.40 228
EG-PatchMatch MVS91.13 34290.12 34594.17 35394.73 38389.00 36598.13 25097.81 28489.22 37085.32 39596.46 34267.71 40098.42 29987.89 36293.82 27695.08 377
TESTMET0.1,194.18 29093.69 28895.63 30296.92 30689.12 36296.91 35794.78 39593.17 26494.88 23796.45 34378.52 35498.92 24693.09 26298.50 16298.85 191
tpmvs94.60 25594.36 23995.33 31497.46 26888.60 37296.88 36397.68 28991.29 33193.80 28796.42 34488.58 21599.24 19891.06 31596.04 24698.17 239
Anonymous2023120691.66 33591.10 33593.33 36294.02 39287.35 38698.58 18797.26 33390.48 34690.16 36296.31 34583.83 31896.53 38879.36 39989.90 33096.12 356
tpm94.13 29293.80 27895.12 31996.50 33087.91 38397.44 31695.89 38592.62 28696.37 20696.30 34684.13 31198.30 32093.24 25891.66 30999.14 160
CR-MVSNet94.76 24694.15 25096.59 24597.00 30093.43 27294.96 39497.56 30092.46 29096.93 17696.24 34788.15 22797.88 35487.38 36396.65 22098.46 226
Patchmtry93.22 31692.35 32395.84 29496.77 31593.09 29194.66 40197.56 30087.37 38092.90 31996.24 34788.15 22797.90 35087.37 36490.10 32896.53 331
tmp_tt68.90 38466.97 38674.68 40150.78 42859.95 42587.13 41383.47 42238.80 42162.21 41796.23 34964.70 40476.91 42388.91 35030.49 42187.19 411
cascas94.63 25493.86 27496.93 21796.91 30894.27 24496.00 38498.51 17285.55 39194.54 24696.23 34984.20 31098.87 25595.80 17596.98 21297.66 254
thres20095.25 21594.57 22597.28 19298.81 13894.92 21298.20 23897.11 34095.24 15596.54 19896.22 35184.58 30199.53 16087.93 36196.50 22697.39 262
UnsupCasMVSNet_eth90.99 34489.92 34794.19 35294.08 38989.83 34697.13 34698.67 13293.69 23885.83 39196.19 35275.15 38296.74 38289.14 34779.41 40096.00 359
testing1195.00 22994.28 24197.16 20097.96 22793.36 27998.09 25697.06 34694.94 17595.33 23096.15 35376.89 37399.40 18195.77 17796.30 23398.72 203
MDA-MVSNet-bldmvs89.97 35288.35 35894.83 33295.21 37491.34 31797.64 30597.51 30988.36 37671.17 41496.13 35479.22 35096.63 38783.65 38786.27 37496.52 334
dongtai82.47 37281.88 37584.22 38995.19 37576.03 40694.59 40374.14 42782.63 39987.19 38396.09 35564.10 40587.85 41758.91 41584.11 38388.78 409
MIMVSNet93.26 31592.21 32596.41 26697.73 24593.13 28895.65 38897.03 34891.27 33394.04 27596.06 35675.33 38197.19 37486.56 36796.23 24298.92 188
testing9194.98 23394.25 24397.20 19597.94 22893.41 27498.00 26697.58 29794.99 16895.45 22696.04 35777.20 36899.42 18094.97 20396.02 24798.78 199
tpm cat193.36 31092.80 31295.07 32397.58 25787.97 38296.76 36997.86 28282.17 40293.53 29596.04 35786.13 26899.13 21289.24 34695.87 25098.10 241
N_pmnet87.12 36787.77 36585.17 38795.46 36961.92 42397.37 32370.66 42885.83 38988.73 37696.04 35785.33 28497.76 35980.02 39690.48 32295.84 362
testing9994.83 24194.08 25497.07 20897.94 22893.13 28898.10 25597.17 33894.86 17795.34 22796.00 36076.31 37699.40 18195.08 20095.90 24898.68 208
dmvs_testset87.64 36488.93 35683.79 39095.25 37363.36 42297.20 33791.17 41493.07 26985.64 39395.98 36185.30 28691.52 41269.42 41187.33 36496.49 340
MIMVSNet189.67 35488.28 35993.82 35692.81 39891.08 32298.01 26497.45 31887.95 37787.90 37995.87 36267.63 40194.56 40478.73 40288.18 35595.83 363
testing22294.12 29493.03 30897.37 19198.02 22094.66 22297.94 27296.65 37194.63 18895.78 22195.76 36371.49 39398.92 24691.17 31095.88 24998.52 222
EGC-MVSNET75.22 38269.54 38592.28 37394.81 38189.58 35497.64 30596.50 3731.82 4255.57 42695.74 36468.21 39796.26 39173.80 40891.71 30790.99 403
YYNet190.70 34789.39 35094.62 34094.79 38290.65 33397.20 33797.46 31487.54 37972.54 41295.74 36486.51 25996.66 38686.00 37186.76 37396.54 329
DSMNet-mixed92.52 33092.58 31992.33 37294.15 38782.65 40098.30 22694.26 40189.08 37192.65 32795.73 36685.01 28995.76 39686.24 36997.76 19198.59 218
IB-MVS91.98 1793.27 31491.97 32897.19 19797.47 26793.41 27497.09 34795.99 38093.32 25792.47 33495.73 36678.06 36099.53 16094.59 21782.98 38698.62 215
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR95.10 22494.87 21295.80 29596.77 31589.70 35096.91 35795.21 39095.11 16094.83 24095.72 36887.71 23998.97 23593.06 26398.50 16298.72 203
test-mter94.08 29893.51 29695.80 29596.77 31589.70 35096.91 35795.21 39092.89 27794.83 24095.72 36877.69 36298.97 23593.06 26398.50 16298.72 203
MDA-MVSNet_test_wron90.71 34689.38 35194.68 33694.83 38090.78 33097.19 33997.46 31487.60 37872.41 41395.72 36886.51 25996.71 38585.92 37286.80 37296.56 326
UBG95.32 21294.72 21897.13 20298.05 21793.26 28297.87 28397.20 33694.96 17196.18 21095.66 37180.97 33599.35 18694.47 22197.08 20698.78 199
FMVSNet591.81 33390.92 33694.49 34497.21 28792.09 30398.00 26697.55 30589.31 36990.86 35595.61 37274.48 38695.32 40085.57 37489.70 33296.07 358
test_method79.03 37478.17 37681.63 39686.06 41754.40 42882.75 41696.89 35939.54 42080.98 40495.57 37358.37 41094.73 40384.74 38478.61 40295.75 364
ETVMVS94.50 26693.44 29997.68 16998.18 20495.35 18998.19 24197.11 34093.73 23296.40 20495.39 37474.53 38598.84 25891.10 31196.31 23298.84 193
Syy-MVS92.55 32892.61 31792.38 37197.39 27783.41 39797.91 27597.46 31493.16 26593.42 30295.37 37584.75 29596.12 39277.00 40596.99 20997.60 256
myMVS_eth3d92.73 32592.01 32794.89 32897.39 27790.94 32497.91 27597.46 31493.16 26593.42 30295.37 37568.09 39896.12 39288.34 35596.99 20997.60 256
PVSNet_088.72 1991.28 33990.03 34695.00 32497.99 22387.29 38794.84 39798.50 17792.06 30789.86 36495.19 37779.81 34699.39 18492.27 28769.79 41398.33 233
DeepMVS_CXcopyleft86.78 38497.09 29872.30 41495.17 39375.92 40884.34 39795.19 37770.58 39495.35 39879.98 39889.04 34692.68 402
patchmatchnet-post95.10 37989.42 19398.89 252
Anonymous2024052191.18 34190.44 34193.42 35993.70 39388.47 37598.94 9897.56 30088.46 37589.56 36895.08 38077.15 37096.97 37783.92 38689.55 33694.82 382
Patchmatch-RL test91.49 33690.85 33793.41 36091.37 40384.40 39292.81 40895.93 38491.87 31287.25 38194.87 38188.99 20596.53 38892.54 28282.00 38899.30 130
OpenMVS_ROBcopyleft86.42 2089.00 35987.43 36793.69 35793.08 39689.42 35897.91 27596.89 35978.58 40585.86 39094.69 38269.48 39698.29 32377.13 40493.29 29093.36 399
WB-MVS84.86 37085.33 37183.46 39189.48 40969.56 41798.19 24196.42 37689.55 36481.79 40094.67 38384.80 29390.12 41352.44 41780.64 39790.69 404
SSC-MVS84.27 37184.71 37482.96 39589.19 41168.83 41898.08 25796.30 37889.04 37281.37 40294.47 38484.60 30089.89 41449.80 41979.52 39990.15 405
mmtdpeth93.12 32192.61 31794.63 33997.60 25589.68 35299.21 3997.32 32794.02 21197.72 14394.42 38577.01 37299.44 17899.05 1977.18 40794.78 385
CL-MVSNet_self_test90.11 35089.14 35393.02 36791.86 40288.23 38096.51 37798.07 26490.49 34590.49 35994.41 38684.75 29595.34 39980.79 39574.95 41095.50 368
FPMVS77.62 38177.14 38179.05 39979.25 42260.97 42495.79 38695.94 38365.96 41367.93 41594.40 38737.73 41988.88 41668.83 41288.46 35287.29 410
KD-MVS_2432*160089.61 35587.96 36394.54 34294.06 39091.59 31495.59 38997.63 29489.87 35888.95 37294.38 38878.28 35796.82 38084.83 38168.05 41495.21 373
miper_refine_blended89.61 35587.96 36394.54 34294.06 39091.59 31495.59 38997.63 29489.87 35888.95 37294.38 38878.28 35796.82 38084.83 38168.05 41495.21 373
GG-mvs-BLEND96.59 24596.34 33794.98 20896.51 37788.58 41993.10 31694.34 39080.34 34498.05 33989.53 34196.99 20996.74 302
KD-MVS_self_test90.38 34889.38 35193.40 36192.85 39788.94 36897.95 27097.94 27790.35 35190.25 36093.96 39179.82 34595.94 39584.62 38576.69 40895.33 370
mvsany_test388.80 36088.04 36091.09 37889.78 40881.57 40397.83 29095.49 38893.81 22787.53 38093.95 39256.14 41197.43 37094.68 21083.13 38594.26 387
new_pmnet90.06 35189.00 35593.22 36594.18 38688.32 37896.42 37996.89 35986.19 38585.67 39293.62 39377.18 36997.10 37581.61 39389.29 34294.23 388
test_vis1_rt91.29 33890.65 33893.19 36697.45 27186.25 39098.57 19390.90 41693.30 25986.94 38493.59 39462.07 40899.11 21697.48 11095.58 25494.22 389
PM-MVS87.77 36386.55 36991.40 37791.03 40683.36 39996.92 35595.18 39291.28 33286.48 38993.42 39553.27 41296.74 38289.43 34481.97 38994.11 391
testf179.02 37577.70 37782.99 39388.10 41366.90 41994.67 39993.11 40771.08 41174.02 40993.41 39634.15 42193.25 40772.25 40978.50 40388.82 407
APD_test279.02 37577.70 37782.99 39388.10 41366.90 41994.67 39993.11 40771.08 41174.02 40993.41 39634.15 42193.25 40772.25 40978.50 40388.82 407
kuosan78.45 37877.69 37980.72 39792.73 39975.32 41094.63 40274.51 42675.96 40780.87 40593.19 39863.23 40779.99 42142.56 42181.56 39286.85 413
pmmvs-eth3d90.36 34989.05 35494.32 35091.10 40592.12 30297.63 30896.95 35488.86 37384.91 39693.13 39978.32 35696.74 38288.70 35181.81 39094.09 392
test_fmvs387.17 36587.06 36887.50 38391.21 40475.66 40899.05 6996.61 37292.79 28188.85 37492.78 40043.72 41593.49 40693.95 23884.56 38093.34 400
new-patchmatchnet88.50 36187.45 36691.67 37690.31 40785.89 39197.16 34497.33 32689.47 36583.63 39892.77 40176.38 37595.06 40282.70 39077.29 40694.06 394
pmmvs386.67 36884.86 37392.11 37588.16 41287.19 38896.63 37394.75 39679.88 40487.22 38292.75 40266.56 40395.20 40181.24 39476.56 40993.96 395
ambc89.49 38086.66 41575.78 40792.66 40996.72 36686.55 38892.50 40346.01 41397.90 35090.32 32582.09 38794.80 384
PatchT93.06 32291.97 32896.35 27096.69 32192.67 29694.48 40497.08 34286.62 38297.08 16892.23 40487.94 23497.90 35078.89 40196.69 21898.49 224
RPMNet92.81 32491.34 33497.24 19397.00 30093.43 27294.96 39498.80 9682.27 40196.93 17692.12 40586.98 25399.82 7976.32 40696.65 22098.46 226
test_f86.07 36985.39 37088.10 38289.28 41075.57 40997.73 29896.33 37789.41 36885.35 39491.56 40643.31 41795.53 39791.32 30884.23 38293.21 401
UnsupCasMVSNet_bld87.17 36585.12 37293.31 36391.94 40188.77 36994.92 39698.30 22084.30 39682.30 39990.04 40763.96 40697.25 37385.85 37374.47 41293.93 396
LCM-MVSNet78.70 37776.24 38386.08 38577.26 42471.99 41594.34 40596.72 36661.62 41576.53 40789.33 40833.91 42392.78 41081.85 39274.60 41193.46 398
PMMVS277.95 38075.44 38485.46 38682.54 41974.95 41194.23 40693.08 40972.80 41074.68 40887.38 40936.36 42091.56 41173.95 40763.94 41689.87 406
JIA-IIPM93.35 31192.49 32095.92 28996.48 33290.65 33395.01 39396.96 35385.93 38896.08 21387.33 41087.70 24198.78 26791.35 30795.58 25498.34 232
PMVScopyleft61.03 2365.95 38563.57 38973.09 40257.90 42751.22 42985.05 41593.93 40554.45 41644.32 42283.57 41113.22 42689.15 41558.68 41681.00 39478.91 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet89.46 35888.40 35792.64 36997.58 25782.15 40194.16 40793.05 41075.73 40990.90 35482.52 41279.42 34998.33 31583.53 38898.68 14997.43 259
gg-mvs-nofinetune92.21 33290.58 34097.13 20296.75 31895.09 20295.85 38589.40 41885.43 39294.50 24881.98 41380.80 33998.40 31292.16 28898.33 17297.88 245
test_vis3_rt79.22 37377.40 38084.67 38886.44 41674.85 41297.66 30381.43 42384.98 39367.12 41681.91 41428.09 42597.60 36488.96 34980.04 39881.55 414
Gipumacopyleft78.40 37976.75 38283.38 39295.54 36480.43 40479.42 41797.40 32264.67 41473.46 41180.82 41545.65 41493.14 40966.32 41387.43 36276.56 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 38365.37 38780.22 39865.99 42671.96 41690.91 41290.09 41782.62 40049.93 42178.39 41629.36 42481.75 41862.49 41438.52 42086.95 412
E-PMN64.94 38664.25 38867.02 40382.28 42059.36 42691.83 41185.63 42052.69 41760.22 41877.28 41741.06 41880.12 42046.15 42041.14 41861.57 419
EMVS64.07 38763.26 39066.53 40481.73 42158.81 42791.85 41084.75 42151.93 41959.09 41975.13 41843.32 41679.09 42242.03 42239.47 41961.69 418
MVEpermissive62.14 2263.28 38859.38 39174.99 40074.33 42565.47 42185.55 41480.50 42452.02 41851.10 42075.00 41910.91 42980.50 41951.60 41853.40 41778.99 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
X-MVStestdata94.06 30092.30 32499.34 2599.70 2298.35 4499.29 2298.88 6297.40 4098.46 9343.50 42095.90 4599.89 5097.85 8099.74 5199.78 23
testmvs21.48 39124.95 39411.09 40714.89 4296.47 43296.56 3759.87 4307.55 42317.93 42339.02 4219.43 4305.90 42616.56 42512.72 42320.91 421
test12320.95 39223.72 39512.64 40613.54 4308.19 43196.55 3766.13 4317.48 42416.74 42437.98 42212.97 4276.05 42516.69 4245.43 42423.68 420
test_post31.83 42388.83 21298.91 248
test_post196.68 37230.43 42487.85 23898.69 27292.59 278
wuyk23d30.17 38930.18 39330.16 40578.61 42343.29 43066.79 41814.21 42917.31 42214.82 42511.93 42511.55 42841.43 42437.08 42319.30 4225.76 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.88 39410.50 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42694.51 870.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS90.94 32488.66 352
FOURS199.82 198.66 2499.69 198.95 4697.46 3899.39 30
MSC_two_6792asdad99.62 699.17 9799.08 1198.63 14399.94 998.53 3899.80 2499.86 7
No_MVS99.62 699.17 9799.08 1198.63 14399.94 998.53 3899.80 2499.86 7
eth-test20.00 431
eth-test0.00 431
IU-MVS99.71 1999.23 798.64 14095.28 15199.63 1898.35 5599.81 1599.83 12
save fliter99.46 5298.38 3598.21 23698.71 11997.95 16
test_0728_SECOND99.71 199.72 1299.35 198.97 8998.88 6299.94 998.47 4699.81 1599.84 11
GSMVS99.20 147
test_part299.63 2999.18 1099.27 39
sam_mvs189.45 19299.20 147
sam_mvs88.99 205
MTGPAbinary98.74 111
MTMP98.89 11094.14 403
test9_res96.39 15699.57 8699.69 59
agg_prior295.87 17299.57 8699.68 64
agg_prior99.30 7198.38 3598.72 11697.57 15799.81 84
test_prior498.01 6497.86 285
test_prior99.19 4399.31 6798.22 5198.84 7999.70 12299.65 72
旧先验297.57 31191.30 33098.67 8099.80 9195.70 181
新几何297.64 305
无先验97.58 31098.72 11691.38 32499.87 6193.36 25699.60 80
原ACMM297.67 302
testdata299.89 5091.65 304
segment_acmp96.85 14
testdata197.32 32996.34 102
test1299.18 4599.16 10198.19 5398.53 16698.07 11395.13 7599.72 11699.56 9299.63 76
plane_prior797.42 27394.63 225
plane_prior697.35 28094.61 22887.09 250
plane_prior598.56 16099.03 22896.07 16294.27 26096.92 279
plane_prior394.61 22897.02 6895.34 227
plane_prior298.80 14297.28 49
plane_prior197.37 279
plane_prior94.60 23098.44 21096.74 8294.22 262
n20.00 432
nn0.00 432
door-mid94.37 399
test1198.66 135
door94.64 397
HQP5-MVS94.25 246
HQP-NCC97.20 28898.05 26096.43 9694.45 250
ACMP_Plane97.20 28898.05 26096.43 9694.45 250
BP-MVS95.30 192
HQP4-MVS94.45 25098.96 23996.87 291
HQP3-MVS98.46 18494.18 264
HQP2-MVS86.75 256
MDTV_nov1_ep13_2view84.26 39396.89 36290.97 33997.90 13289.89 18193.91 24099.18 156
ACMMP++_ref92.97 292
ACMMP++93.61 281
Test By Simon94.64 84