This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 14099.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2599.98 2
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16499.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 10099.90 4099.89 20
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14899.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
test_fmvs1_n98.41 17298.14 18399.21 16799.82 4297.71 26299.74 4599.49 14399.32 1499.99 299.95 385.32 37699.97 2199.82 1699.84 7899.96 7
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 12099.62 8899.55 7798.94 5499.63 9699.95 395.82 17899.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17799.65 7699.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3299.99 1
test_vis1_n97.92 23397.44 26899.34 14099.53 16398.08 23899.74 4599.49 14399.15 20100.00 199.94 679.51 39399.98 1399.88 1499.76 11199.97 4
OurMVSNet-221017-097.88 23797.77 22898.19 29698.71 34696.53 31799.88 499.00 32097.79 18198.78 27499.94 691.68 31399.35 28997.21 27696.99 29598.69 281
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36599.48 8999.55 13599.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
test250696.81 31696.65 31297.29 34199.74 8092.21 38499.60 9685.06 41399.13 2299.77 5199.93 987.82 36599.85 14899.38 4899.38 15099.80 70
test111198.04 21398.11 18797.83 32199.74 8093.82 36999.58 11095.40 40299.12 2599.65 8999.93 990.73 32999.84 15599.43 4699.38 15099.82 54
ECVR-MVScopyleft98.04 21398.05 19698.00 31099.74 8094.37 36499.59 10294.98 40399.13 2299.66 8399.93 990.67 33099.84 15599.40 4799.38 15099.80 70
SixPastTwentyTwo97.50 28997.33 28598.03 30598.65 35196.23 32899.77 3598.68 36497.14 25097.90 33999.93 990.45 33199.18 32097.00 28996.43 30398.67 293
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14999.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2599.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15799.67 2399.13 2299.98 699.92 1496.60 14899.96 3099.95 899.96 1299.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16499.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21399.37 10099.58 11099.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2399.94 11
RRT_MVS98.70 15298.66 14198.83 22798.90 31898.45 22099.89 299.28 28197.76 18598.94 25099.92 1496.98 13699.25 30599.28 6397.00 29498.80 256
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 11099.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test_vis1_n_192098.63 16098.40 16799.31 14799.86 2097.94 25099.67 6599.62 4199.43 799.99 299.91 2087.29 367100.00 199.92 1299.92 2599.98 2
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13998.94 34099.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13899.82 54
test_fmvs198.88 12698.79 12899.16 17299.69 10697.61 26599.55 13599.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2599.90 17
SD-MVS99.41 4799.52 1199.05 18499.74 8099.68 4899.46 18899.52 10199.11 2699.88 2099.91 2099.43 197.70 38798.72 13299.93 2399.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMH97.28 898.10 20297.99 20298.44 27499.41 20496.96 29999.60 9699.56 6998.09 14698.15 32999.91 2090.87 32899.70 22798.88 10497.45 27698.67 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
patch_mono-299.26 6999.62 598.16 29899.81 4694.59 36199.52 14999.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
VDDNet97.55 28497.02 30399.16 17299.49 18198.12 23799.38 22599.30 27595.35 34599.68 7499.90 2682.62 38899.93 8499.31 5898.13 23899.42 195
QAPM98.67 15698.30 17499.80 4699.20 26099.67 5199.77 3599.72 1194.74 35998.73 27899.90 2695.78 17999.98 1396.96 29399.88 5299.76 87
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 28299.66 5399.84 1399.74 1099.09 3298.92 25399.90 2695.94 17299.98 1398.95 9599.92 2599.79 74
Anonymous2024052998.09 20397.68 23999.34 14099.66 12098.44 22199.40 21699.43 20993.67 36999.22 19799.89 3090.23 33699.93 8499.26 6898.33 22199.66 125
mvsmamba98.92 12398.87 11599.08 17999.07 29499.16 12799.88 499.51 11598.15 13699.40 15399.89 3097.12 12799.33 29299.38 4897.40 28298.73 270
CHOSEN 1792x268899.19 7799.10 7699.45 12599.89 898.52 21199.39 22099.94 198.73 7699.11 21999.89 3095.50 18899.94 6999.50 3699.97 799.89 20
RPSCF98.22 18898.62 14996.99 34799.82 4291.58 38699.72 5099.44 20396.61 29499.66 8399.89 3095.92 17399.82 17597.46 26299.10 17599.57 156
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27499.68 4899.81 2199.51 11599.20 1898.72 27999.89 3095.68 18399.97 2198.86 11299.86 6399.81 61
COLMAP_ROBcopyleft97.56 698.86 13098.75 13199.17 17199.88 1198.53 20799.34 23999.59 5797.55 20998.70 28699.89 3095.83 17799.90 11698.10 19799.90 4099.08 231
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2199.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22799.72 103
sd_testset98.75 14898.57 15699.29 15599.81 4698.26 22999.56 12399.62 4198.78 7399.64 9399.88 3692.02 30499.88 13399.54 3098.26 22799.72 103
dcpmvs_299.23 7599.58 798.16 29899.83 3994.68 35999.76 3899.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
test_djsdf98.67 15698.57 15698.98 19298.70 34798.91 17199.88 499.46 18497.55 20999.22 19799.88 3695.73 18199.28 30099.03 8597.62 25998.75 265
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20899.50 13597.03 26599.04 23599.88 3697.39 11699.92 9598.66 14199.90 4099.87 31
TDRefinement95.42 33894.57 34597.97 31289.83 40696.11 33199.48 17998.75 35396.74 28296.68 36599.88 3688.65 35499.71 22198.37 17882.74 39598.09 362
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14699.81 2199.33 25797.43 22599.60 10799.88 3697.14 12699.84 15599.13 7798.94 18699.69 115
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 30199.53 8299.82 1799.72 1194.56 36298.08 33199.88 3694.73 22199.98 1397.47 26199.76 11199.06 237
lessismore_v097.79 32598.69 34895.44 34694.75 40495.71 37499.87 4488.69 35299.32 29595.89 32494.93 34098.62 315
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13999.64 7999.56 6998.26 12099.45 13599.87 4496.03 16799.81 18099.54 3099.15 16999.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13899.68 6299.66 2898.49 9799.86 2799.87 4494.77 21899.84 15599.19 7299.41 14999.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+97.24 1097.92 23397.78 22698.32 28699.46 19096.68 31299.56 12399.54 8598.41 10497.79 34599.87 4490.18 33799.66 23898.05 20697.18 29198.62 315
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18599.48 15598.05 15699.76 5699.86 4898.82 4399.93 8498.82 12499.91 3299.84 40
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12799.56 12399.50 13598.33 11499.41 14899.86 4895.92 17399.83 16899.45 4599.16 16699.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14599.47 18599.93 297.66 19999.71 6899.86 4897.73 11099.96 3099.47 4399.82 9199.79 74
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4299.20 29698.02 16099.56 11599.86 4896.54 15199.67 23598.09 19899.13 17199.73 97
USDC97.34 30097.20 29597.75 32699.07 29495.20 35098.51 37799.04 31697.99 16198.31 31899.86 4889.02 34599.55 25995.67 33297.36 28598.49 335
APD_test195.87 33296.49 31694.00 36699.53 16384.01 39499.54 14099.32 26795.91 33997.99 33699.85 5385.49 37499.88 13391.96 37698.84 19598.12 361
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22398.91 5899.78 4799.85 5399.36 299.94 6998.84 11799.88 5299.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tmp_tt82.80 36781.52 37086.66 38366.61 41368.44 41292.79 40297.92 38268.96 40180.04 40499.85 5385.77 37196.15 39797.86 21943.89 40695.39 396
AllTest98.87 12798.72 13299.31 14799.86 2098.48 21799.56 12399.61 4897.85 17399.36 16599.85 5395.95 17099.85 14896.66 30999.83 8799.59 150
TestCases99.31 14799.86 2098.48 21799.61 4897.85 17399.36 16599.85 5395.95 17099.85 14896.66 30999.83 8799.59 150
VDD-MVS97.73 26497.35 28098.88 21399.47 18997.12 28199.34 23998.85 34498.19 13199.67 7899.85 5382.98 38699.92 9599.49 4098.32 22599.60 146
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4299.56 6999.02 3899.88 2099.85 5399.18 1099.96 3099.22 7099.92 2599.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepPCF-MVS98.18 398.81 14199.37 3097.12 34599.60 14691.75 38598.61 37099.44 20399.35 1299.83 3499.85 5398.70 6399.81 18099.02 8799.91 3299.81 61
ACMM97.58 598.37 17798.34 17098.48 26499.41 20497.10 28299.56 12399.45 19598.53 9299.04 23599.85 5393.00 27599.71 22198.74 12997.45 27698.64 305
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6799.12 7499.74 6199.18 26699.75 3999.56 12399.57 6498.45 10099.49 13099.85 5397.77 10999.94 6998.33 18299.84 7899.52 167
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23199.51 11598.73 7699.88 2099.84 6398.72 6199.96 3098.16 19599.87 5599.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-OURS98.73 15198.68 13798.88 21399.70 10197.73 25898.92 34299.55 7798.52 9499.45 13599.84 6395.27 19699.91 10598.08 20298.84 19599.00 242
baseline99.15 8599.02 9199.53 10599.66 12099.14 13399.72 5099.48 15598.35 11199.42 14499.84 6396.07 16599.79 18999.51 3599.14 17099.67 122
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 14199.63 9699.84 6398.73 6099.96 3098.55 16399.83 8799.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12399.63 3999.48 399.98 699.83 6798.75 5599.99 499.97 199.96 1299.94 11
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13399.60 9699.45 19599.01 4099.90 1899.83 6798.98 2399.93 8499.59 2599.95 1699.86 33
EI-MVSNet98.67 15698.67 13898.68 24499.35 22297.97 24499.50 16499.38 23196.93 27499.20 20399.83 6797.87 10599.36 28698.38 17697.56 26498.71 273
CVMVSNet98.57 16298.67 13898.30 28899.35 22295.59 33999.50 16499.55 7798.60 8699.39 15799.83 6794.48 23699.45 26598.75 12898.56 21199.85 36
LPG-MVS_test98.22 18898.13 18598.49 26299.33 22897.05 28899.58 11099.55 7797.46 21999.24 19299.83 6792.58 29199.72 21598.09 19897.51 26898.68 286
LGP-MVS_train98.49 26299.33 22897.05 28899.55 7797.46 21999.24 19299.83 6792.58 29199.72 21598.09 19897.51 26898.68 286
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10299.51 11598.62 8499.79 4299.83 6799.28 499.97 2198.48 16799.90 4099.84 40
Skip Steuart: Steuart Systems R&D Blog.
XXY-MVS98.38 17698.09 19199.24 16499.26 24799.32 10499.56 12399.55 7797.45 22298.71 28099.83 6793.23 27099.63 25198.88 10496.32 30698.76 263
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12399.63 3999.47 499.98 699.82 7598.75 5599.99 499.97 199.97 799.94 11
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8399.52 10198.38 10699.76 5699.82 7598.53 7699.95 5998.61 14899.81 9499.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8399.52 10198.38 10699.76 5699.82 7598.75 5598.61 14899.81 9499.77 82
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7598.94 29
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12399.47 17597.45 22299.78 4799.82 7599.18 1099.91 10598.79 12599.89 4999.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
nrg03098.64 15998.42 16599.28 15999.05 30099.69 4799.81 2199.46 18498.04 15799.01 23899.82 7596.69 14699.38 27899.34 5594.59 34598.78 258
FC-MVSNet-test98.75 14898.62 14999.15 17699.08 29399.45 9399.86 1299.60 5498.23 12598.70 28699.82 7596.80 14199.22 31299.07 8396.38 30498.79 257
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13299.61 9599.45 19599.01 4099.89 1999.82 7599.01 1899.92 9599.56 2899.95 1699.85 36
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8399.54 8598.36 11099.79 4299.82 7598.86 3899.95 5998.62 14599.81 9499.78 80
EU-MVSNet97.98 22498.03 19897.81 32498.72 34496.65 31399.66 7099.66 2898.09 14698.35 31699.82 7595.25 19998.01 38097.41 26695.30 33198.78 258
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16499.50 13597.16 24999.77 5199.82 7598.78 4899.94 6997.56 25299.86 6399.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 9599.08 8099.24 16499.46 19098.55 20599.51 15799.46 18498.09 14699.45 13599.82 7598.34 8999.51 26198.70 13498.93 18799.67 122
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23199.46 18499.07 3599.79 4299.82 7598.85 3999.92 9598.68 13999.87 5599.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.13 8999.02 9199.45 12599.57 15298.63 19899.07 30699.34 25098.99 4599.61 10499.82 7597.98 10499.87 13897.00 28999.80 9899.85 36
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11499.80 9899.81 61
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 8999.09 14
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9699.48 15599.08 3399.91 1699.81 8999.20 799.96 3098.91 10199.85 7099.79 74
test_241102_TWO99.48 15599.08 3399.88 2099.81 8998.94 2999.96 3098.91 10199.84 7899.88 26
OPM-MVS98.19 19298.10 18898.45 27198.88 32197.07 28699.28 25799.38 23198.57 8899.22 19799.81 8992.12 30299.66 23898.08 20297.54 26698.61 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 7099.47 17598.79 7099.68 7499.81 8998.43 8399.97 2198.88 10499.90 4099.83 49
FIs98.78 14598.63 14499.23 16699.18 26699.54 7999.83 1699.59 5798.28 11798.79 27399.81 8996.75 14499.37 28299.08 8296.38 30498.78 258
mvs_tets98.40 17598.23 17798.91 20698.67 35098.51 21399.66 7099.53 9698.19 13198.65 29599.81 8992.75 28199.44 27099.31 5897.48 27498.77 261
mvs_anonymous99.03 11198.99 9799.16 17299.38 21398.52 21199.51 15799.38 23197.79 18199.38 15999.81 8997.30 12299.45 26599.35 5198.99 18499.51 173
TSAR-MVS + GP.99.36 5599.36 3299.36 13999.67 11198.61 20199.07 30699.33 25799.00 4399.82 3599.81 8999.06 1699.84 15599.09 8199.42 14899.65 129
EPNet98.86 13098.71 13499.30 15297.20 38598.18 23299.62 8898.91 33599.28 1698.63 29799.81 8995.96 16999.99 499.24 6999.72 11999.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ab-mvs98.86 13098.63 14499.54 9799.64 12899.19 12299.44 19599.54 8597.77 18499.30 17799.81 8994.20 24599.93 8499.17 7598.82 19799.49 177
OMC-MVS99.08 10599.04 8599.20 16899.67 11198.22 23199.28 25799.52 10198.07 15199.66 8399.81 8997.79 10899.78 19497.79 22699.81 9499.60 146
MM99.40 5099.28 5599.74 6199.67 11199.31 10899.52 14998.87 34299.55 199.74 6099.80 10296.47 15399.98 1399.97 199.97 799.94 11
test_fmvs297.25 30497.30 28897.09 34699.43 19793.31 37799.73 4898.87 34298.83 6499.28 18199.80 10284.45 38199.66 23897.88 21697.45 27698.30 352
tt080597.97 22797.77 22898.57 25399.59 14896.61 31599.45 18999.08 31098.21 12898.88 25999.80 10288.66 35399.70 22798.58 15497.72 25399.39 200
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11799.54 8597.82 18099.71 6899.80 10298.95 2799.93 8498.19 19199.84 7899.74 92
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11799.37 23999.10 2799.81 3799.80 10298.94 2999.96 3098.93 9899.86 6399.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 4599.81 3799.80 10299.09 1499.96 3098.85 11499.90 4099.88 26
jajsoiax98.43 16998.28 17598.88 21398.60 35798.43 22299.82 1799.53 9698.19 13198.63 29799.80 10293.22 27299.44 27099.22 7097.50 27098.77 261
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 11099.65 3397.84 17599.71 6899.80 10299.12 1399.97 2198.33 18299.87 5599.83 49
TransMVSNet (Re)97.15 30896.58 31398.86 22199.12 28298.85 17899.49 17598.91 33595.48 34497.16 35999.80 10293.38 26899.11 33194.16 35791.73 37498.62 315
K. test v397.10 31096.79 31098.01 30898.72 34496.33 32499.87 997.05 39297.59 20396.16 37099.80 10288.71 35199.04 33896.69 30796.55 30198.65 303
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 31199.66 2899.14 2199.57 11499.80 10298.46 8199.94 6999.57 2799.84 7899.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.32 5999.32 4099.32 14699.85 2698.29 22799.71 5299.66 2898.11 14399.41 14899.80 10298.37 8899.96 3098.99 9199.96 1299.72 103
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10299.62 4198.21 12899.73 6299.79 11498.68 6499.96 3098.44 17399.77 10899.79 74
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24799.52 10197.18 24799.60 10799.79 11498.79 4799.95 5998.83 12099.91 3299.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs197.68 27397.28 29198.88 21399.06 29798.62 19999.50 16499.45 19596.32 31497.87 34199.79 11492.47 29599.35 28997.54 25493.54 36198.67 293
LFMVS97.90 23697.35 28099.54 9799.52 16799.01 15299.39 22098.24 37697.10 25799.65 8999.79 11484.79 37999.91 10599.28 6398.38 21899.69 115
TinyColmap97.12 30996.89 30897.83 32199.07 29495.52 34398.57 37398.74 35697.58 20597.81 34499.79 11488.16 36099.56 25795.10 34397.21 28998.39 348
ACMP97.20 1198.06 20797.94 21098.45 27199.37 21697.01 29399.44 19599.49 14397.54 21298.45 31199.79 11491.95 30699.72 21597.91 21497.49 27398.62 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE98.85 13798.62 14999.53 10599.61 14199.08 14399.80 2699.51 11597.10 25799.31 17499.78 12095.23 20099.77 19698.21 18999.03 18199.75 88
9.1499.10 7699.72 9199.40 21699.51 11597.53 21399.64 9399.78 12098.84 4199.91 10597.63 24399.82 91
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11499.52 14997.57 38999.51 299.82 3599.78 12098.09 10099.96 3099.97 199.97 799.94 11
pmmvs696.53 32096.09 32597.82 32398.69 34895.47 34499.37 22799.47 17593.46 37397.41 35099.78 12087.06 36899.33 29296.92 29892.70 37198.65 303
MSLP-MVS++99.46 3199.47 1799.44 12999.60 14699.16 12799.41 20899.71 1398.98 4899.45 13599.78 12099.19 999.54 26099.28 6399.84 7899.63 140
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20899.39 22399.01 4099.74 6099.78 12095.56 18699.92 9599.52 3498.18 23499.72 103
114514_t98.93 12298.67 13899.72 6599.85 2699.53 8299.62 8899.59 5792.65 37999.71 6899.78 12098.06 10299.90 11698.84 11799.91 3299.74 92
Vis-MVSNet (Re-imp)98.87 12798.72 13299.31 14799.71 9698.88 17399.80 2699.44 20397.91 16799.36 16599.78 12095.49 18999.43 27497.91 21499.11 17299.62 142
UniMVSNet_ETH3D97.32 30196.81 30998.87 21799.40 20997.46 26899.51 15799.53 9695.86 34098.54 30699.77 12882.44 38999.66 23898.68 13997.52 26799.50 176
anonymousdsp98.44 16898.28 17598.94 19898.50 36298.96 16199.77 3599.50 13597.07 25998.87 26299.77 12894.76 21999.28 30098.66 14197.60 26098.57 330
iter_conf0598.55 16398.44 16398.87 21799.34 22698.60 20299.55 13599.42 21198.21 12899.37 16199.77 12893.55 26699.38 27899.30 6197.48 27498.63 312
CDS-MVSNet99.09 10499.03 8799.25 16299.42 19998.73 19099.45 18999.46 18498.11 14399.46 13499.77 12898.01 10399.37 28298.70 13498.92 18999.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG98.98 11898.80 12599.53 10599.76 6599.19 12298.75 35999.55 7797.25 24199.47 13299.77 12897.82 10799.87 13896.93 29699.90 4099.54 161
CHOSEN 280x42099.12 9599.13 7399.08 17999.66 12097.89 25198.43 38099.71 1398.88 5999.62 10199.76 13396.63 14799.70 22799.46 4499.99 199.66 125
PS-MVSNAJss98.92 12398.92 10798.90 20898.78 33598.53 20799.78 3399.54 8598.07 15199.00 24299.76 13399.01 1899.37 28299.13 7797.23 28898.81 255
MVS_Test99.10 10398.97 10199.48 11999.49 18199.14 13399.67 6599.34 25097.31 23699.58 11199.76 13397.65 11299.82 17598.87 10799.07 17899.46 188
CANet_DTU98.97 12098.87 11599.25 16299.33 22898.42 22499.08 30599.30 27599.16 1999.43 14199.75 13695.27 19699.97 2198.56 16099.95 1699.36 205
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5699.48 15598.12 14199.50 12799.75 13698.78 4899.97 2198.57 15799.89 4999.83 49
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3899.56 6997.72 19099.76 5699.75 13699.13 1299.92 9599.07 8399.92 2599.85 36
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31999.91 397.67 19899.59 11099.75 13695.90 17599.73 21199.53 3299.02 18399.86 33
ITE_SJBPF98.08 30399.29 24096.37 32298.92 33198.34 11298.83 26799.75 13691.09 32599.62 25295.82 32597.40 28298.25 356
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14199.20 799.76 200
Anonymous20240521198.30 18397.98 20499.26 16199.57 15298.16 23399.41 20898.55 36996.03 33799.19 20699.74 14191.87 30799.92 9599.16 7698.29 22699.70 113
tttt051798.42 17098.14 18399.28 15999.66 12098.38 22599.74 4596.85 39397.68 19699.79 4299.74 14191.39 32199.89 12798.83 12099.56 13999.57 156
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16199.74 14198.81 4499.94 6998.79 12599.86 6399.84 40
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 7099.46 18498.09 14699.48 13199.74 14198.29 9199.96 3097.93 21399.87 5599.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34099.85 698.82 6599.65 8999.74 14198.51 7899.80 18698.83 12099.89 4999.64 136
VPNet97.84 24597.44 26899.01 18899.21 25898.94 16799.48 17999.57 6498.38 10699.28 18199.73 14788.89 34899.39 27799.19 7293.27 36498.71 273
MVSTER98.49 16498.32 17299.00 19099.35 22299.02 15099.54 14099.38 23197.41 22899.20 20399.73 14793.86 25999.36 28698.87 10797.56 26498.62 315
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33899.85 698.82 6599.54 12099.73 14798.51 7899.74 20598.91 10199.88 5299.77 82
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 11099.80 897.12 25399.62 10199.73 14798.58 7299.90 11698.61 14899.91 3299.68 119
IterMVS-SCA-FT97.82 25097.75 23398.06 30499.57 15296.36 32399.02 31999.49 14397.18 24798.71 28099.72 15192.72 28499.14 32397.44 26495.86 31898.67 293
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 16199.28 25799.49 14398.46 9999.72 6799.71 15296.50 15299.88 13399.31 5899.11 17299.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR98.69 15498.62 14998.89 21199.71 9697.74 25799.12 29699.54 8598.44 10399.42 14499.71 15294.20 24599.92 9598.54 16498.90 19199.00 242
EPNet_dtu98.03 21597.96 20698.23 29498.27 36795.54 34299.23 27698.75 35399.02 3897.82 34399.71 15296.11 16499.48 26293.04 36899.65 13199.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27199.52 10198.82 6599.39 15799.71 15298.96 2499.85 14898.59 15399.80 9899.77 82
FE-MVS98.48 16598.17 17999.40 13399.54 16298.96 16199.68 6298.81 34995.54 34399.62 10199.70 15693.82 26099.93 8497.35 27099.46 14599.32 211
PC_three_145298.18 13499.84 2999.70 15699.31 398.52 37098.30 18699.80 9899.81 61
OPU-MVS99.64 7899.56 15699.72 4299.60 9699.70 15699.27 599.42 27598.24 18899.80 9899.79 74
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8999.78 4799.70 15698.65 6899.79 18999.65 2399.78 10599.41 197
tfpnnormal97.84 24597.47 26098.98 19299.20 26099.22 12199.64 7999.61 4896.32 31498.27 32299.70 15693.35 26999.44 27095.69 33095.40 32998.27 354
v7n97.87 23997.52 25498.92 20298.76 34098.58 20399.84 1399.46 18496.20 32398.91 25499.70 15694.89 20999.44 27096.03 32193.89 35798.75 265
testdata99.54 9799.75 7398.95 16499.51 11597.07 25999.43 14199.70 15698.87 3799.94 6997.76 23199.64 13299.72 103
IterMVS97.83 24797.77 22898.02 30799.58 15096.27 32699.02 31999.48 15597.22 24598.71 28099.70 15692.75 28199.13 32697.46 26296.00 31298.67 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS97.08 1497.66 27797.06 30299.47 12299.61 14199.09 13998.04 39399.25 28791.24 38498.51 30799.70 15694.55 23399.91 10592.76 37399.85 7099.42 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LTVRE_ROB97.16 1298.02 21797.90 21398.40 27999.23 25396.80 30799.70 5399.60 5497.12 25398.18 32899.70 15691.73 31299.72 21598.39 17597.45 27698.68 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 11099.89 299.58 6198.56 8999.73 6299.69 16698.55 7599.82 17599.69 1999.85 7099.48 178
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 7099.67 2398.15 13699.68 7499.69 16699.06 1699.96 3098.69 13799.87 5599.84 40
旧先验199.74 8099.59 7099.54 8599.69 16698.47 8099.68 12799.73 97
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 7099.67 2398.15 13699.67 7899.69 16698.95 2799.96 3098.69 13799.87 5599.84 40
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10299.49 14397.03 26599.63 9699.69 16697.27 12499.96 3097.82 22499.84 7899.81 61
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10699.73 6299.69 16698.20 9599.70 22799.64 2499.82 9199.54 161
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9699.67 2397.97 16299.63 9699.68 17298.52 7799.95 5998.38 17699.86 6399.81 61
Anonymous2023121197.88 23797.54 25398.90 20899.71 9698.53 20799.48 17999.57 6494.16 36598.81 26999.68 17293.23 27099.42 27598.84 11794.42 34898.76 263
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7699.66 2898.13 14099.66 8399.68 17298.96 2499.96 3098.62 14599.87 5599.84 40
PS-CasMVS97.93 23097.59 24998.95 19798.99 30899.06 14699.68 6299.52 10197.13 25198.31 31899.68 17292.44 29999.05 33798.51 16594.08 35498.75 265
HY-MVS97.30 798.85 13798.64 14399.47 12299.42 19999.08 14399.62 8899.36 24097.39 23099.28 18199.68 17296.44 15699.92 9598.37 17898.22 22999.40 199
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26299.57 6496.40 31299.42 14499.68 17298.75 5599.80 18697.98 21099.72 11999.44 193
ADS-MVSNet298.02 21798.07 19597.87 31799.33 22895.19 35199.23 27699.08 31096.24 32099.10 22299.67 17894.11 24998.93 35796.81 30199.05 17999.48 178
ADS-MVSNet98.20 19198.08 19298.56 25699.33 22896.48 31999.23 27699.15 30296.24 32099.10 22299.67 17894.11 24999.71 22196.81 30199.05 17999.48 178
DTE-MVSNet97.51 28897.19 29698.46 27098.63 35398.13 23699.84 1399.48 15596.68 28697.97 33899.67 17892.92 27798.56 36996.88 30092.60 37298.70 277
Baseline_NR-MVSNet97.76 25797.45 26398.68 24499.09 29098.29 22799.41 20898.85 34495.65 34298.63 29799.67 17894.82 21199.10 33398.07 20592.89 36898.64 305
CMPMVSbinary69.68 2394.13 35094.90 34291.84 37397.24 38480.01 40398.52 37699.48 15589.01 39091.99 39199.67 17885.67 37299.13 32695.44 33697.03 29396.39 391
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
原ACMM199.65 7399.73 8799.33 10399.47 17597.46 21999.12 21799.66 18398.67 6699.91 10597.70 24099.69 12499.71 112
thisisatest053098.35 17898.03 19899.31 14799.63 13198.56 20499.54 14096.75 39597.53 21399.73 6299.65 18491.25 32499.89 12798.62 14599.56 13999.48 178
test22299.75 7399.49 8798.91 34499.49 14396.42 31099.34 17199.65 18498.28 9299.69 12499.72 103
MVSFormer99.17 8199.12 7499.29 15599.51 17098.94 16799.88 499.46 18497.55 20999.80 4099.65 18497.39 11699.28 30099.03 8599.85 7099.65 129
jason99.13 8999.03 8799.45 12599.46 19098.87 17499.12 29699.26 28598.03 15999.79 4299.65 18497.02 13499.85 14899.02 8799.90 4099.65 129
jason: jason.
BH-RMVSNet98.41 17298.08 19299.40 13399.41 20498.83 18299.30 24798.77 35297.70 19498.94 25099.65 18492.91 27999.74 20596.52 31299.55 14199.64 136
sss99.17 8199.05 8399.53 10599.62 13798.97 15799.36 23199.62 4197.83 17699.67 7899.65 18497.37 11999.95 5999.19 7299.19 16599.68 119
h-mvs3397.70 27097.28 29198.97 19499.70 10197.27 27399.36 23199.45 19598.94 5499.66 8399.64 19094.93 20599.99 499.48 4184.36 39299.65 129
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7999.67 2398.08 15099.55 11999.64 19098.91 3499.96 3098.72 13299.90 4099.82 54
新几何199.75 5899.75 7399.59 7099.54 8596.76 28199.29 18099.64 19098.43 8399.94 6996.92 29899.66 12999.72 103
PEN-MVS97.76 25797.44 26898.72 23998.77 33998.54 20699.78 3399.51 11597.06 26198.29 32199.64 19092.63 29098.89 36098.09 19893.16 36598.72 271
CP-MVSNet98.09 20397.78 22699.01 18898.97 31399.24 11999.67 6599.46 18497.25 24198.48 31099.64 19093.79 26199.06 33698.63 14494.10 35398.74 268
LF4IMVS97.52 28697.46 26297.70 32998.98 31195.55 34099.29 25298.82 34798.07 15198.66 28999.64 19089.97 33899.61 25397.01 28896.68 29697.94 373
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2199.54 8597.59 20399.68 7499.63 19698.91 3499.94 6998.58 15499.91 3299.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24799.48 15598.86 6099.21 20099.63 19698.72 6199.90 11698.25 18799.63 13499.80 70
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5699.52 10198.07 15199.53 12299.63 19698.93 3399.97 2198.74 12999.91 3299.83 49
AdaColmapbinary99.01 11698.80 12599.66 6999.56 15699.54 7999.18 28599.70 1598.18 13499.35 16899.63 19696.32 15999.90 11697.48 25999.77 10899.55 159
TAPA-MVS97.07 1597.74 26397.34 28398.94 19899.70 10197.53 26699.25 27399.51 11591.90 38199.30 17799.63 19698.78 4899.64 24688.09 39199.87 5599.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ppachtmachnet_test97.49 29497.45 26397.61 33298.62 35495.24 34998.80 35499.46 18496.11 33298.22 32599.62 20196.45 15598.97 35493.77 35995.97 31698.61 324
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25299.40 22098.79 7099.52 12499.62 20198.91 3499.90 11698.64 14399.75 11399.82 54
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12799.37 22799.56 6998.04 15799.53 12299.62 20196.84 14099.94 6998.85 11498.49 21699.72 103
MDTV_nov1_ep1398.32 17299.11 28494.44 36399.27 26298.74 35697.51 21699.40 15399.62 20194.78 21599.76 20097.59 24698.81 199
CANet99.25 7399.14 7299.59 8799.41 20499.16 12799.35 23699.57 6498.82 6599.51 12699.61 20596.46 15499.95 5999.59 2599.98 499.65 129
HQP_MVS98.27 18698.22 17898.44 27499.29 24096.97 29799.39 22099.47 17598.97 5199.11 21999.61 20592.71 28699.69 23297.78 22797.63 25798.67 293
plane_prior499.61 205
baseline198.31 18197.95 20899.38 13899.50 17998.74 18999.59 10298.93 32898.41 10499.14 21499.60 20894.59 22999.79 18998.48 16793.29 36399.61 144
TranMVSNet+NR-MVSNet97.93 23097.66 24198.76 23798.78 33598.62 19999.65 7699.49 14397.76 18598.49 30999.60 20894.23 24498.97 35498.00 20992.90 36798.70 277
FA-MVS(test-final)98.75 14898.53 16099.41 13199.55 16099.05 14899.80 2699.01 31996.59 29899.58 11199.59 21095.39 19199.90 11697.78 22799.49 14499.28 214
tpmrst98.33 18098.48 16297.90 31699.16 27694.78 35799.31 24599.11 30697.27 23999.45 13599.59 21095.33 19499.84 15598.48 16798.61 20599.09 230
IterMVS-LS98.46 16798.42 16598.58 25299.59 14898.00 24299.37 22799.43 20996.94 27399.07 22799.59 21097.87 10599.03 34098.32 18495.62 32498.71 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11499.42 20699.54 8597.29 23899.41 14899.59 21098.42 8599.93 8498.19 19199.69 12499.73 97
pmmvs498.13 19997.90 21398.81 23198.61 35698.87 17498.99 32799.21 29596.44 30899.06 23299.58 21495.90 17599.11 33197.18 28296.11 31098.46 341
1112_ss98.98 11898.77 12999.59 8799.68 11099.02 15099.25 27399.48 15597.23 24499.13 21599.58 21496.93 13999.90 11698.87 10798.78 20099.84 40
ab-mvs-re8.30 37811.06 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.58 2140.00 4160.00 4120.00 4110.00 4100.00 408
PatchmatchNetpermissive98.31 18198.36 16898.19 29699.16 27695.32 34899.27 26298.92 33197.37 23199.37 16199.58 21494.90 20899.70 22797.43 26599.21 16399.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 19298.16 18098.27 29399.30 23695.55 34099.07 30698.97 32397.57 20699.43 14199.57 21892.72 28499.74 20597.58 24799.20 16499.52 167
Patchmatch-test97.93 23097.65 24298.77 23699.18 26697.07 28699.03 31699.14 30496.16 32798.74 27799.57 21894.56 23199.72 21593.36 36499.11 17299.52 167
PVSNet96.02 1798.85 13798.84 12298.89 21199.73 8797.28 27298.32 38699.60 5497.86 17099.50 12799.57 21896.75 14499.86 14298.56 16099.70 12399.54 161
cdsmvs_eth3d_5k24.64 37732.85 3800.00 3930.00 4160.00 4180.00 40499.51 1150.00 4110.00 41299.56 22196.58 1490.00 4120.00 4110.00 4100.00 408
131498.68 15598.54 15999.11 17898.89 32098.65 19699.27 26299.49 14396.89 27597.99 33699.56 22197.72 11199.83 16897.74 23499.27 16198.84 254
lupinMVS99.13 8999.01 9599.46 12499.51 17098.94 16799.05 31199.16 30197.86 17099.80 4099.56 22197.39 11699.86 14298.94 9699.85 7099.58 154
miper_lstm_enhance98.00 22297.91 21298.28 29299.34 22697.43 26998.88 34699.36 24096.48 30598.80 27199.55 22495.98 16898.91 35897.27 27395.50 32898.51 334
DPM-MVS98.95 12198.71 13499.66 6999.63 13199.55 7798.64 36999.10 30797.93 16599.42 14499.55 22498.67 6699.80 18695.80 32799.68 12799.61 144
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 29099.41 21496.60 29699.60 10799.55 22498.83 4299.90 11697.48 25999.83 8799.78 80
dp97.75 26197.80 22297.59 33399.10 28793.71 37299.32 24298.88 34096.48 30599.08 22699.55 22492.67 28999.82 17596.52 31298.58 20899.24 217
CLD-MVS98.16 19698.10 18898.33 28499.29 24096.82 30698.75 35999.44 20397.83 17699.13 21599.55 22492.92 27799.67 23598.32 18497.69 25498.48 336
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.71 9699.79 3099.61 4896.84 27899.56 11599.54 22998.58 7299.96 3096.93 29699.75 113
cl____98.01 22097.84 22198.55 25899.25 25197.97 24498.71 36399.34 25096.47 30798.59 30399.54 22995.65 18499.21 31797.21 27695.77 31998.46 341
DIV-MVS_self_test98.01 22097.85 22098.48 26499.24 25297.95 24898.71 36399.35 24696.50 30198.60 30299.54 22995.72 18299.03 34097.21 27695.77 31998.46 341
MVS97.28 30296.55 31499.48 11998.78 33598.95 16499.27 26299.39 22383.53 39698.08 33199.54 22996.97 13799.87 13894.23 35599.16 16699.63 140
pmmvs597.52 28697.30 28898.16 29898.57 35996.73 30899.27 26298.90 33796.14 33098.37 31599.53 23391.54 31999.14 32397.51 25695.87 31798.63 312
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19999.51 11598.68 8199.27 18699.53 23398.64 6999.96 3098.44 17399.80 9899.79 74
PatchMatch-RL98.84 14098.62 14999.52 11199.71 9699.28 11299.06 30999.77 997.74 18999.50 12799.53 23395.41 19099.84 15597.17 28399.64 13299.44 193
eth_miper_zixun_eth98.05 21297.96 20698.33 28499.26 24797.38 27098.56 37599.31 27196.65 28998.88 25999.52 23696.58 14999.12 33097.39 26795.53 32798.47 338
test_prior298.96 33498.34 11299.01 23899.52 23698.68 6497.96 21199.74 116
test_040296.64 31896.24 32197.85 31898.85 32896.43 32199.44 19599.26 28593.52 37196.98 36399.52 23688.52 35699.20 31992.58 37597.50 27097.93 374
bld_raw_dy_0_6498.26 18797.88 21899.40 13399.37 21699.09 13999.62 8898.94 32698.53 9299.40 15399.51 23988.93 34799.89 12799.00 8997.64 25699.23 218
test_yl98.86 13098.63 14499.54 9799.49 18199.18 12499.50 16499.07 31398.22 12699.61 10499.51 23995.37 19299.84 15598.60 15198.33 22199.59 150
DCV-MVSNet98.86 13098.63 14499.54 9799.49 18199.18 12499.50 16499.07 31398.22 12699.61 10499.51 23995.37 19299.84 15598.60 15198.33 22199.59 150
v14897.79 25597.55 25098.50 26198.74 34197.72 25999.54 14099.33 25796.26 31998.90 25699.51 23994.68 22599.14 32397.83 22393.15 36698.63 312
DU-MVS98.08 20597.79 22398.96 19598.87 32498.98 15499.41 20899.45 19597.87 16998.71 28099.50 24394.82 21199.22 31298.57 15792.87 36998.68 286
NR-MVSNet97.97 22797.61 24799.02 18798.87 32499.26 11699.47 18599.42 21197.63 20197.08 36199.50 24395.07 20399.13 32697.86 21993.59 36098.68 286
XVG-ACMP-BASELINE97.83 24797.71 23798.20 29599.11 28496.33 32499.41 20899.52 10198.06 15599.05 23499.50 24389.64 34299.73 21197.73 23597.38 28498.53 332
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6599.50 13598.70 7899.77 5199.49 24698.21 9499.95 5998.46 17199.77 10899.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST999.67 11199.65 5799.05 31199.41 21496.22 32298.95 24899.49 24698.77 5199.91 105
train_agg99.02 11298.77 12999.77 5599.67 11199.65 5799.05 31199.41 21496.28 31698.95 24899.49 24698.76 5299.91 10597.63 24399.72 11999.75 88
PVSNet_Blended99.08 10598.97 10199.42 13099.76 6598.79 18698.78 35699.91 396.74 28299.67 7899.49 24697.53 11399.88 13398.98 9299.85 7099.60 146
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28799.44 20398.45 10099.19 20699.49 24698.08 10199.89 12797.73 23599.75 11399.48 178
test_899.67 11199.61 6799.03 31699.41 21496.28 31698.93 25299.48 25198.76 5299.91 105
EPMVS97.82 25097.65 24298.35 28398.88 32195.98 33299.49 17594.71 40597.57 20699.26 19099.48 25192.46 29899.71 22197.87 21899.08 17799.35 206
PLCcopyleft97.94 499.02 11298.85 12099.53 10599.66 12099.01 15299.24 27599.52 10196.85 27799.27 18699.48 25198.25 9399.91 10597.76 23199.62 13599.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
xiu_mvs_v1_base99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
v192192097.80 25497.45 26398.84 22598.80 33198.53 20799.52 14999.34 25096.15 32999.24 19299.47 25493.98 25499.29 29995.40 33895.13 33598.69 281
iter_conf05_1198.35 17897.99 20299.41 13199.37 21699.13 13698.96 33498.23 37798.50 9699.63 9699.46 25888.83 34999.87 13899.00 8999.95 1699.23 218
UniMVSNet_NR-MVSNet98.22 18897.97 20598.96 19598.92 31798.98 15499.48 17999.53 9697.76 18598.71 28099.46 25896.43 15799.22 31298.57 15792.87 36998.69 281
testgi97.65 27897.50 25798.13 30299.36 22196.45 32099.42 20699.48 15597.76 18597.87 34199.45 26091.09 32598.81 36294.53 35098.52 21499.13 225
EIA-MVS99.18 7999.09 7999.45 12599.49 18199.18 12499.67 6599.53 9697.66 19999.40 15399.44 26198.10 9999.81 18098.94 9699.62 13599.35 206
tpm297.44 29697.34 28397.74 32799.15 28094.36 36599.45 18998.94 32693.45 37498.90 25699.44 26191.35 32299.59 25597.31 27198.07 24099.29 213
thisisatest051598.14 19897.79 22399.19 16999.50 17998.50 21498.61 37096.82 39496.95 27199.54 12099.43 26391.66 31699.86 14298.08 20299.51 14399.22 220
WR-MVS98.06 20797.73 23599.06 18298.86 32799.25 11899.19 28399.35 24697.30 23798.66 28999.43 26393.94 25599.21 31798.58 15494.28 35098.71 273
hse-mvs297.50 28997.14 29798.59 24999.49 18197.05 28899.28 25799.22 29298.94 5499.66 8399.42 26594.93 20599.65 24399.48 4183.80 39499.08 231
v897.95 22997.63 24698.93 20098.95 31598.81 18599.80 2699.41 21496.03 33799.10 22299.42 26594.92 20799.30 29896.94 29594.08 35498.66 301
tpmvs97.98 22498.02 20097.84 32099.04 30194.73 35899.31 24599.20 29696.10 33698.76 27699.42 26594.94 20499.81 18096.97 29298.45 21798.97 246
UGNet98.87 12798.69 13699.40 13399.22 25798.72 19199.44 19599.68 2099.24 1799.18 21099.42 26592.74 28399.96 3099.34 5599.94 2299.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS96.88 31496.31 32098.59 24999.48 18897.04 29199.27 26299.22 29297.44 22498.51 30799.41 26991.97 30599.66 23897.71 23883.83 39399.07 236
Effi-MVS+98.81 14198.59 15599.48 11999.46 19099.12 13798.08 39299.50 13597.50 21799.38 15999.41 26996.37 15899.81 18099.11 7998.54 21399.51 173
v1097.85 24297.52 25498.86 22198.99 30898.67 19499.75 4299.41 21495.70 34198.98 24499.41 26994.75 22099.23 30996.01 32394.63 34498.67 293
v14419297.92 23397.60 24898.87 21798.83 33098.65 19699.55 13599.34 25096.20 32399.32 17399.40 27294.36 24099.26 30496.37 31795.03 33798.70 277
NP-MVS99.23 25396.92 30099.40 272
HQP-MVS98.02 21797.90 21398.37 28299.19 26396.83 30498.98 33099.39 22398.24 12298.66 28999.40 27292.47 29599.64 24697.19 28097.58 26298.64 305
MAR-MVS98.86 13098.63 14499.54 9799.37 21699.66 5399.45 18999.54 8596.61 29499.01 23899.40 27297.09 12999.86 14297.68 24299.53 14299.10 226
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS99.04 10999.03 8799.06 18299.40 20999.31 10899.55 13599.56 6998.54 9199.33 17299.39 27698.76 5299.78 19496.98 29199.78 10598.07 363
CR-MVSNet98.17 19597.93 21198.87 21799.18 26698.49 21599.22 28099.33 25796.96 26999.56 11599.38 27794.33 24199.00 34594.83 34898.58 20899.14 223
Patchmtry97.75 26197.40 27598.81 23199.10 28798.87 17499.11 30299.33 25794.83 35798.81 26999.38 27794.33 24199.02 34296.10 31995.57 32598.53 332
BH-untuned98.42 17098.36 16898.59 24999.49 18196.70 30999.27 26299.13 30597.24 24398.80 27199.38 27795.75 18099.74 20597.07 28799.16 16699.33 210
V4298.06 20797.79 22398.86 22198.98 31198.84 17999.69 5699.34 25096.53 30099.30 17799.37 28094.67 22699.32 29597.57 25194.66 34398.42 344
VPA-MVSNet98.29 18497.95 20899.30 15299.16 27699.54 7999.50 16499.58 6198.27 11999.35 16899.37 28092.53 29399.65 24399.35 5194.46 34698.72 271
PVSNet_BlendedMVS98.86 13098.80 12599.03 18699.76 6598.79 18699.28 25799.91 397.42 22799.67 7899.37 28097.53 11399.88 13398.98 9297.29 28698.42 344
D2MVS98.41 17298.50 16198.15 30199.26 24796.62 31499.40 21699.61 4897.71 19198.98 24499.36 28396.04 16699.67 23598.70 13497.41 28198.15 360
MVP-Stereo97.81 25297.75 23397.99 31197.53 37896.60 31698.96 33498.85 34497.22 24597.23 35699.36 28395.28 19599.46 26495.51 33499.78 10597.92 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124097.69 27197.32 28698.79 23498.85 32898.43 22299.48 17999.36 24096.11 33299.27 18699.36 28393.76 26399.24 30894.46 35195.23 33298.70 277
dmvs_re98.08 20598.16 18097.85 31899.55 16094.67 36099.70 5398.92 33198.15 13699.06 23299.35 28693.67 26599.25 30597.77 23097.25 28799.64 136
v114497.98 22497.69 23898.85 22498.87 32498.66 19599.54 14099.35 24696.27 31899.23 19699.35 28694.67 22699.23 30996.73 30495.16 33498.68 286
v2v48298.06 20797.77 22898.92 20298.90 31898.82 18399.57 11799.36 24096.65 28999.19 20699.35 28694.20 24599.25 30597.72 23794.97 33898.69 281
CostFormer97.72 26697.73 23597.71 32899.15 28094.02 36899.54 14099.02 31894.67 36099.04 23599.35 28692.35 30199.77 19698.50 16697.94 24499.34 209
our_test_397.65 27897.68 23997.55 33498.62 35494.97 35598.84 35099.30 27596.83 28098.19 32799.34 29097.01 13599.02 34295.00 34696.01 31198.64 305
c3_l98.12 20198.04 19798.38 28199.30 23697.69 26398.81 35399.33 25796.67 28798.83 26799.34 29097.11 12898.99 34697.58 24795.34 33098.48 336
Fast-Effi-MVS+-dtu98.77 14798.83 12498.60 24899.41 20496.99 29599.52 14999.49 14398.11 14399.24 19299.34 29096.96 13899.79 18997.95 21299.45 14699.02 241
Fast-Effi-MVS+98.70 15298.43 16499.51 11399.51 17099.28 11299.52 14999.47 17596.11 33299.01 23899.34 29096.20 16399.84 15597.88 21698.82 19799.39 200
v119297.81 25297.44 26898.91 20698.88 32198.68 19399.51 15799.34 25096.18 32599.20 20399.34 29094.03 25299.36 28695.32 34095.18 33398.69 281
tpm97.67 27697.55 25098.03 30599.02 30395.01 35499.43 19998.54 37096.44 30899.12 21799.34 29091.83 30999.60 25497.75 23396.46 30299.48 178
PAPM97.59 28297.09 30199.07 18199.06 29798.26 22998.30 38799.10 30794.88 35598.08 33199.34 29096.27 16199.64 24689.87 38498.92 18999.31 212
GBi-Net97.68 27397.48 25898.29 28999.51 17097.26 27599.43 19999.48 15596.49 30299.07 22799.32 29790.26 33398.98 34797.10 28496.65 29798.62 315
test197.68 27397.48 25898.29 28999.51 17097.26 27599.43 19999.48 15596.49 30299.07 22799.32 29790.26 33398.98 34797.10 28496.65 29798.62 315
FMVSNet196.84 31596.36 31998.29 28999.32 23497.26 27599.43 19999.48 15595.11 34998.55 30599.32 29783.95 38398.98 34795.81 32696.26 30798.62 315
MS-PatchMatch97.24 30697.32 28696.99 34798.45 36493.51 37698.82 35299.32 26797.41 22898.13 33099.30 30088.99 34699.56 25795.68 33199.80 9897.90 376
GA-MVS97.85 24297.47 26099.00 19099.38 21397.99 24398.57 37399.15 30297.04 26498.90 25699.30 30089.83 33999.38 27896.70 30698.33 22199.62 142
miper_ehance_all_eth98.18 19498.10 18898.41 27799.23 25397.72 25998.72 36299.31 27196.60 29698.88 25999.29 30297.29 12399.13 32697.60 24595.99 31398.38 349
FMVSNet297.72 26697.36 27898.80 23399.51 17098.84 17999.45 18999.42 21196.49 30298.86 26699.29 30290.26 33398.98 34796.44 31496.56 30098.58 329
TESTMET0.1,197.55 28497.27 29498.40 27998.93 31696.53 31798.67 36597.61 38896.96 26998.64 29699.28 30488.63 35599.45 26597.30 27299.38 15099.21 221
FMVSNet398.03 21597.76 23298.84 22599.39 21298.98 15499.40 21699.38 23196.67 28799.07 22799.28 30492.93 27698.98 34797.10 28496.65 29798.56 331
PAPM_NR99.04 10998.84 12299.66 6999.74 8099.44 9499.39 22099.38 23197.70 19499.28 18199.28 30498.34 8999.85 14896.96 29399.45 14699.69 115
EGC-MVSNET82.80 36777.86 37397.62 33197.91 37196.12 33099.33 24199.28 2818.40 41025.05 41199.27 30784.11 38299.33 29289.20 38698.22 22997.42 384
ETV-MVS99.26 6999.21 6699.40 13399.46 19099.30 11099.56 12399.52 10198.52 9499.44 14099.27 30798.41 8699.86 14299.10 8099.59 13799.04 238
xiu_mvs_v2_base99.26 6999.25 6299.29 15599.53 16398.91 17199.02 31999.45 19598.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16298.98 245
test20.0396.12 32995.96 32896.63 35697.44 37995.45 34599.51 15799.38 23196.55 29996.16 37099.25 31093.76 26396.17 39687.35 39494.22 35198.27 354
PS-MVSNAJ99.32 5999.32 4099.30 15299.57 15298.94 16798.97 33399.46 18498.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12998.97 246
Test_1112_low_res98.89 12598.66 14199.57 9299.69 10698.95 16499.03 31699.47 17596.98 26799.15 21399.23 31296.77 14399.89 12798.83 12098.78 20099.86 33
cl2297.85 24297.64 24598.48 26499.09 29097.87 25298.60 37299.33 25797.11 25698.87 26299.22 31392.38 30099.17 32198.21 18995.99 31398.42 344
EG-PatchMatch MVS95.97 33195.69 33396.81 35497.78 37492.79 38099.16 28798.93 32896.16 32794.08 38399.22 31382.72 38799.47 26395.67 33297.50 27098.17 359
TR-MVS97.76 25797.41 27498.82 22899.06 29797.87 25298.87 34898.56 36896.63 29398.68 28899.22 31392.49 29499.65 24395.40 33897.79 25198.95 250
ET-MVSNet_ETH3D96.49 32195.64 33599.05 18499.53 16398.82 18398.84 35097.51 39097.63 20184.77 39699.21 31692.09 30398.91 35898.98 9292.21 37399.41 197
WR-MVS_H98.13 19997.87 21998.90 20899.02 30398.84 17999.70 5399.59 5797.27 23998.40 31399.19 31795.53 18799.23 30998.34 18193.78 35998.61 324
miper_enhance_ethall98.16 19698.08 19298.41 27798.96 31497.72 25998.45 37999.32 26796.95 27198.97 24699.17 31897.06 13299.22 31297.86 21995.99 31398.29 353
baseline297.87 23997.55 25098.82 22899.18 26698.02 24199.41 20896.58 39996.97 26896.51 36699.17 31893.43 26799.57 25697.71 23899.03 18198.86 252
MIMVSNet195.51 33695.04 34196.92 35297.38 38095.60 33899.52 14999.50 13593.65 37096.97 36499.17 31885.28 37796.56 39588.36 39095.55 32698.60 327
gm-plane-assit98.54 36192.96 37994.65 36199.15 32199.64 24697.56 252
MIMVSNet97.73 26497.45 26398.57 25399.45 19597.50 26799.02 31998.98 32296.11 33299.41 14899.14 32290.28 33298.74 36595.74 32898.93 18799.47 184
LCM-MVSNet-Re97.83 24798.15 18296.87 35399.30 23692.25 38399.59 10298.26 37497.43 22596.20 36999.13 32396.27 16198.73 36698.17 19498.99 18499.64 136
UniMVSNet (Re)98.29 18498.00 20199.13 17799.00 30599.36 10299.49 17599.51 11597.95 16398.97 24699.13 32396.30 16099.38 27898.36 18093.34 36298.66 301
N_pmnet94.95 34495.83 33192.31 37298.47 36379.33 40499.12 29692.81 41093.87 36797.68 34699.13 32393.87 25899.01 34491.38 37996.19 30898.59 328
PAPR98.63 16098.34 17099.51 11399.40 20999.03 14998.80 35499.36 24096.33 31399.00 24299.12 32698.46 8199.84 15595.23 34299.37 15799.66 125
tpm cat197.39 29897.36 27897.50 33699.17 27493.73 37199.43 19999.31 27191.27 38398.71 28099.08 32794.31 24399.77 19696.41 31698.50 21599.00 242
FMVSNet596.43 32396.19 32297.15 34299.11 28495.89 33499.32 24299.52 10194.47 36498.34 31799.07 32887.54 36697.07 39192.61 37495.72 32298.47 338
PMMVS98.80 14498.62 14999.34 14099.27 24598.70 19298.76 35899.31 27197.34 23399.21 20099.07 32897.20 12599.82 17598.56 16098.87 19299.52 167
Anonymous2023120696.22 32596.03 32696.79 35597.31 38394.14 36799.63 8399.08 31096.17 32697.04 36299.06 33093.94 25597.76 38686.96 39595.06 33698.47 338
DeepMVS_CXcopyleft93.34 36999.29 24082.27 39799.22 29285.15 39496.33 36899.05 33190.97 32799.73 21193.57 36297.77 25298.01 367
YYNet195.36 33994.51 34697.92 31497.89 37297.10 28299.10 30499.23 29093.26 37580.77 40199.04 33292.81 28098.02 37994.30 35294.18 35298.64 305
Anonymous2024052196.20 32795.89 33097.13 34497.72 37794.96 35699.79 3299.29 27993.01 37697.20 35899.03 33389.69 34198.36 37391.16 38096.13 30998.07 363
MDA-MVSNet-bldmvs94.96 34393.98 35097.92 31498.24 36897.27 27399.15 29099.33 25793.80 36880.09 40399.03 33388.31 35897.86 38493.49 36394.36 34998.62 315
test_method91.10 35991.36 36190.31 37895.85 39173.72 41194.89 39999.25 28768.39 40295.82 37399.02 33580.50 39298.95 35693.64 36194.89 34298.25 356
UWE-MVS97.58 28397.29 29098.48 26499.09 29096.25 32799.01 32496.61 39897.86 17099.19 20699.01 33688.72 35099.90 11697.38 26898.69 20399.28 214
BH-w/o98.00 22297.89 21798.32 28699.35 22296.20 32999.01 32498.90 33796.42 31098.38 31499.00 33795.26 19899.72 21596.06 32098.61 20599.03 239
Effi-MVS+-dtu98.78 14598.89 11398.47 26999.33 22896.91 30199.57 11799.30 27598.47 9899.41 14898.99 33896.78 14299.74 20598.73 13199.38 15098.74 268
UnsupCasMVSNet_eth96.44 32296.12 32397.40 33898.65 35195.65 33799.36 23199.51 11597.13 25196.04 37298.99 33888.40 35798.17 37696.71 30590.27 38298.40 347
test0.0.03 197.71 26997.42 27398.56 25698.41 36697.82 25598.78 35698.63 36697.34 23398.05 33598.98 34094.45 23898.98 34795.04 34597.15 29298.89 251
MDA-MVSNet_test_wron95.45 33794.60 34498.01 30898.16 36997.21 27899.11 30299.24 28993.49 37280.73 40298.98 34093.02 27498.18 37594.22 35694.45 34798.64 305
FPMVS84.93 36685.65 36782.75 38786.77 40863.39 41398.35 38298.92 33174.11 39983.39 39898.98 34050.85 40692.40 40284.54 40094.97 33892.46 397
testing397.28 30296.76 31198.82 22899.37 21698.07 23999.45 18999.36 24097.56 20897.89 34098.95 34383.70 38498.82 36196.03 32198.56 21199.58 154
WB-MVSnew97.65 27897.65 24297.63 33098.78 33597.62 26499.13 29398.33 37397.36 23299.07 22798.94 34495.64 18599.15 32292.95 36998.68 20496.12 394
SSC-MVS92.73 35693.73 35289.72 38095.02 39981.38 40099.76 3899.23 29094.87 35692.80 38998.93 34594.71 22391.37 40474.49 40493.80 35896.42 390
testf190.42 36190.68 36389.65 38197.78 37473.97 40999.13 29398.81 34989.62 38891.80 39298.93 34562.23 40198.80 36386.61 39791.17 37696.19 392
APD_test290.42 36190.68 36389.65 38197.78 37473.97 40999.13 29398.81 34989.62 38891.80 39298.93 34562.23 40198.80 36386.61 39791.17 37696.19 392
alignmvs98.81 14198.56 15899.58 9099.43 19799.42 9699.51 15798.96 32598.61 8599.35 16898.92 34894.78 21599.77 19699.35 5198.11 23999.54 161
WB-MVS93.10 35494.10 34890.12 37995.51 39781.88 39999.73 4899.27 28495.05 35293.09 38898.91 34994.70 22491.89 40376.62 40294.02 35696.58 389
test-LLR98.06 20797.90 21398.55 25898.79 33297.10 28298.67 36597.75 38597.34 23398.61 30098.85 35094.45 23899.45 26597.25 27499.38 15099.10 226
test-mter97.49 29497.13 29998.55 25898.79 33297.10 28298.67 36597.75 38596.65 28998.61 30098.85 35088.23 35999.45 26597.25 27499.38 15099.10 226
dmvs_testset95.02 34196.12 32391.72 37499.10 28780.43 40299.58 11097.87 38497.47 21895.22 37698.82 35293.99 25395.18 39988.09 39194.91 34199.56 158
MGCFI-Net99.01 11698.85 12099.50 11899.42 19999.26 11699.82 1799.48 15598.60 8699.28 18198.81 35397.04 13399.76 20099.29 6297.87 24899.47 184
sasdasda99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2699.48 15598.63 8299.31 17498.81 35397.09 12999.75 20399.27 6697.90 24599.47 184
canonicalmvs99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2699.48 15598.63 8299.31 17498.81 35397.09 12999.75 20399.27 6697.90 24599.47 184
new_pmnet96.38 32496.03 32697.41 33798.13 37095.16 35399.05 31199.20 29693.94 36697.39 35398.79 35691.61 31899.04 33890.43 38295.77 31998.05 365
cascas97.69 27197.43 27298.48 26498.60 35797.30 27198.18 39199.39 22392.96 37798.41 31298.78 35793.77 26299.27 30398.16 19598.61 20598.86 252
PVSNet_094.43 1996.09 33095.47 33697.94 31399.31 23594.34 36697.81 39499.70 1597.12 25397.46 34998.75 35889.71 34099.79 18997.69 24181.69 39699.68 119
patchmatchnet-post98.70 35994.79 21499.74 205
Patchmatch-RL test95.84 33395.81 33295.95 36295.61 39390.57 38898.24 38898.39 37295.10 35195.20 37798.67 36094.78 21597.77 38596.28 31890.02 38399.51 173
thres100view90097.76 25797.45 26398.69 24399.72 9197.86 25499.59 10298.74 35697.93 16599.26 19098.62 36191.75 31099.83 16893.22 36598.18 23498.37 350
thres600view797.86 24197.51 25698.92 20299.72 9197.95 24899.59 10298.74 35697.94 16499.27 18698.62 36191.75 31099.86 14293.73 36098.19 23398.96 248
DSMNet-mixed97.25 30497.35 28096.95 35097.84 37393.61 37599.57 11796.63 39796.13 33198.87 26298.61 36394.59 22997.70 38795.08 34498.86 19399.55 159
IB-MVS95.67 1896.22 32595.44 33898.57 25399.21 25896.70 30998.65 36897.74 38796.71 28497.27 35598.54 36486.03 37099.92 9598.47 17086.30 39099.10 226
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 27198.55 36098.16 23399.43 19993.68 40797.23 35698.46 36589.30 34499.22 31295.43 33798.22 22997.98 371
tfpn200view997.72 26697.38 27698.72 23999.69 10697.96 24699.50 16498.73 36197.83 17699.17 21198.45 36691.67 31499.83 16893.22 36598.18 23498.37 350
thres40097.77 25697.38 27698.92 20299.69 10697.96 24699.50 16498.73 36197.83 17699.17 21198.45 36691.67 31499.83 16893.22 36598.18 23498.96 248
testing1197.50 28997.10 30098.71 24199.20 26096.91 30199.29 25298.82 34797.89 16898.21 32698.40 36885.63 37399.83 16898.45 17298.04 24199.37 204
KD-MVS_2432*160094.62 34593.72 35397.31 33997.19 38695.82 33598.34 38399.20 29695.00 35397.57 34798.35 36987.95 36298.10 37792.87 37177.00 40098.01 367
miper_refine_blended94.62 34593.72 35397.31 33997.19 38695.82 33598.34 38399.20 29695.00 35397.57 34798.35 36987.95 36298.10 37792.87 37177.00 40098.01 367
thres20097.61 28197.28 29198.62 24799.64 12898.03 24099.26 27198.74 35697.68 19699.09 22598.32 37191.66 31699.81 18092.88 37098.22 22998.03 366
testing9197.44 29697.02 30398.71 24199.18 26696.89 30399.19 28399.04 31697.78 18398.31 31898.29 37285.41 37599.85 14898.01 20897.95 24399.39 200
testing9997.36 29996.94 30698.63 24699.18 26696.70 30999.30 24798.93 32897.71 19198.23 32398.26 37384.92 37899.84 15598.04 20797.85 25099.35 206
OpenMVS_ROBcopyleft92.34 2094.38 34993.70 35596.41 35997.38 38093.17 37899.06 30998.75 35386.58 39394.84 38198.26 37381.53 39199.32 29589.01 38797.87 24896.76 387
testing22297.16 30796.50 31599.16 17299.16 27698.47 21999.27 26298.66 36597.71 19198.23 32398.15 37582.28 39099.84 15597.36 26997.66 25599.18 222
Syy-MVS97.09 31197.14 29796.95 35099.00 30592.73 38199.29 25299.39 22397.06 26197.41 35098.15 37593.92 25798.68 36791.71 37798.34 21999.45 191
myMVS_eth3d96.89 31396.37 31898.43 27699.00 30597.16 27999.29 25299.39 22397.06 26197.41 35098.15 37583.46 38598.68 36795.27 34198.34 21999.45 191
CL-MVSNet_self_test94.49 34793.97 35196.08 36196.16 39093.67 37498.33 38599.38 23195.13 34797.33 35498.15 37592.69 28896.57 39488.67 38879.87 39897.99 370
test_vis1_rt95.81 33495.65 33496.32 36099.67 11191.35 38799.49 17596.74 39698.25 12195.24 37598.10 37974.96 39499.90 11699.53 3298.85 19497.70 379
ETVMVS97.50 28996.90 30799.29 15599.23 25398.78 18899.32 24298.90 33797.52 21598.56 30498.09 38084.72 38099.69 23297.86 21997.88 24799.39 200
pmmvs394.09 35193.25 35796.60 35794.76 40094.49 36298.92 34298.18 38089.66 38796.48 36798.06 38186.28 36997.33 38989.68 38587.20 38997.97 372
mvsany_test393.77 35293.45 35694.74 36595.78 39288.01 39199.64 7998.25 37598.28 11794.31 38297.97 38268.89 39798.51 37197.50 25790.37 38197.71 377
PM-MVS92.96 35592.23 35995.14 36495.61 39389.98 39099.37 22798.21 37894.80 35895.04 38097.69 38365.06 39897.90 38394.30 35289.98 38497.54 383
pmmvs-eth3d95.34 34094.73 34397.15 34295.53 39595.94 33399.35 23699.10 30795.13 34793.55 38597.54 38488.15 36197.91 38294.58 34989.69 38597.61 380
ambc93.06 37192.68 40282.36 39698.47 37898.73 36195.09 37997.41 38555.55 40399.10 33396.42 31591.32 37597.71 377
RPMNet96.72 31795.90 32999.19 16999.18 26698.49 21599.22 28099.52 10188.72 39299.56 11597.38 38694.08 25199.95 5986.87 39698.58 20899.14 223
new-patchmatchnet94.48 34894.08 34995.67 36395.08 39892.41 38299.18 28599.28 28194.55 36393.49 38697.37 38787.86 36497.01 39291.57 37888.36 38697.61 380
KD-MVS_self_test95.00 34294.34 34796.96 34997.07 38895.39 34799.56 12399.44 20395.11 34997.13 36097.32 38891.86 30897.27 39090.35 38381.23 39798.23 358
PatchT97.03 31296.44 31798.79 23498.99 30898.34 22699.16 28799.07 31392.13 38099.52 12497.31 38994.54 23498.98 34788.54 38998.73 20299.03 239
test_fmvs392.10 35791.77 36093.08 37096.19 38986.25 39299.82 1798.62 36796.65 28995.19 37896.90 39055.05 40595.93 39896.63 31190.92 38097.06 386
UnsupCasMVSNet_bld93.53 35392.51 35896.58 35897.38 38093.82 36998.24 38899.48 15591.10 38593.10 38796.66 39174.89 39598.37 37294.03 35887.71 38897.56 382
LCM-MVSNet86.80 36585.22 36991.53 37587.81 40780.96 40198.23 39098.99 32171.05 40090.13 39596.51 39248.45 40896.88 39390.51 38185.30 39196.76 387
test_f91.90 35891.26 36293.84 36795.52 39685.92 39399.69 5698.53 37195.31 34693.87 38496.37 39355.33 40498.27 37495.70 32990.98 37997.32 385
PMMVS286.87 36485.37 36891.35 37690.21 40583.80 39598.89 34597.45 39183.13 39791.67 39495.03 39448.49 40794.70 40085.86 39977.62 39995.54 395
Gipumacopyleft90.99 36090.15 36593.51 36898.73 34290.12 38993.98 40099.45 19579.32 39892.28 39094.91 39569.61 39697.98 38187.42 39395.67 32392.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM97.50 28997.02 30398.93 20098.73 34297.80 25699.30 24798.97 32391.73 38298.91 25494.86 39695.10 20299.71 22197.58 24797.98 24299.28 214
PMVScopyleft70.75 2275.98 37374.97 37479.01 38970.98 41255.18 41493.37 40198.21 37865.08 40661.78 40793.83 39721.74 41492.53 40178.59 40191.12 37889.34 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet95.75 33595.16 34097.51 33599.30 23693.69 37398.88 34695.78 40085.09 39598.78 27492.65 39891.29 32399.37 28294.85 34799.85 7099.46 188
E-PMN80.61 36979.88 37182.81 38690.75 40476.38 40797.69 39595.76 40166.44 40483.52 39792.25 39962.54 40087.16 40668.53 40661.40 40384.89 404
test_vis3_rt87.04 36385.81 36690.73 37793.99 40181.96 39899.76 3890.23 41292.81 37881.35 40091.56 40040.06 40999.07 33594.27 35488.23 38791.15 400
EMVS80.02 37079.22 37282.43 38891.19 40376.40 40697.55 39792.49 41166.36 40583.01 39991.27 40164.63 39985.79 40765.82 40760.65 40485.08 403
gg-mvs-nofinetune96.17 32895.32 33998.73 23898.79 33298.14 23599.38 22594.09 40691.07 38698.07 33491.04 40289.62 34399.35 28996.75 30399.09 17698.68 286
ANet_high77.30 37174.86 37584.62 38575.88 41177.61 40597.63 39693.15 40988.81 39164.27 40689.29 40336.51 41083.93 40875.89 40352.31 40592.33 399
MVEpermissive76.82 2176.91 37274.31 37684.70 38485.38 41076.05 40896.88 39893.17 40867.39 40371.28 40589.01 40421.66 41587.69 40571.74 40572.29 40290.35 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 37543.78 37725.37 39236.04 41516.84 41798.36 38126.56 41420.06 40838.51 40967.32 40529.64 41215.30 41137.59 40939.90 40743.98 406
test12339.01 37642.50 37828.53 39139.17 41420.91 41698.75 35919.17 41619.83 40938.57 40866.67 40633.16 41115.42 41037.50 41029.66 40849.26 405
test_post65.99 40794.65 22899.73 211
test_post199.23 27665.14 40894.18 24899.71 22197.58 247
X-MVStestdata96.55 31995.45 33799.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16164.01 40998.81 4499.94 6998.79 12599.86 6399.84 40
wuyk23d40.18 37441.29 37936.84 39086.18 40949.12 41579.73 40322.81 41527.64 40725.46 41028.45 41021.98 41348.89 40955.80 40823.56 40912.51 407
test_blank0.13 3800.17 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4121.57 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas8.27 37911.03 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 41299.01 180.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS97.16 27995.47 335
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10799.84 7899.89 20
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10799.84 7899.89 20
eth-test20.00 416
eth-test0.00 416
IU-MVS99.84 3299.88 899.32 26798.30 11699.84 2998.86 11299.85 7099.89 20
save fliter99.76 6599.59 7099.14 29299.40 22099.00 43
test_0728_SECOND99.91 299.84 3299.89 499.57 11799.51 11599.96 3098.93 9899.86 6399.88 26
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 21099.52 167
sam_mvs94.72 222
MTGPAbinary99.47 175
MTMP99.54 14098.88 340
test9_res97.49 25899.72 11999.75 88
agg_prior297.21 27699.73 11899.75 88
agg_prior99.67 11199.62 6599.40 22098.87 26299.91 105
test_prior499.56 7598.99 327
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16899.74 92
旧先验298.96 33496.70 28599.47 13299.94 6998.19 191
新几何299.01 324
无先验98.99 32799.51 11596.89 27599.93 8497.53 25599.72 103
原ACMM298.95 338
testdata299.95 5996.67 308
segment_acmp98.96 24
testdata198.85 34998.32 115
test1299.75 5899.64 12899.61 6799.29 27999.21 20098.38 8799.89 12799.74 11699.74 92
plane_prior799.29 24097.03 292
plane_prior699.27 24596.98 29692.71 286
plane_prior599.47 17599.69 23297.78 22797.63 25798.67 293
plane_prior397.00 29498.69 7999.11 219
plane_prior299.39 22098.97 51
plane_prior199.26 247
plane_prior96.97 29799.21 28298.45 10097.60 260
n20.00 417
nn0.00 417
door-mid98.05 381
test1199.35 246
door97.92 382
HQP5-MVS96.83 304
HQP-NCC99.19 26398.98 33098.24 12298.66 289
ACMP_Plane99.19 26398.98 33098.24 12298.66 289
BP-MVS97.19 280
HQP4-MVS98.66 28999.64 24698.64 305
HQP3-MVS99.39 22397.58 262
HQP2-MVS92.47 295
MDTV_nov1_ep13_2view95.18 35299.35 23696.84 27899.58 11195.19 20197.82 22499.46 188
ACMMP++_ref97.19 290
ACMMP++97.43 280
Test By Simon98.75 55