This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
test072698.78 385.93 5297.19 1197.47 1090.27 2997.64 498.13 191.47 8
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3588.48 896.26 4597.28 2985.90 13897.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS95.46 595.64 594.91 1998.26 2886.29 4397.46 697.40 1989.03 6196.20 1698.10 289.39 1699.34 3295.88 399.03 1199.10 4
SED-MVS95.91 296.28 294.80 3098.77 585.99 4997.13 1497.44 1490.31 2697.71 198.07 492.31 499.58 895.66 499.13 398.84 13
test_241102_TWO97.44 1490.31 2697.62 598.07 491.46 1099.58 895.66 499.12 698.98 9
DVP-MVS++95.98 196.36 194.82 2897.78 5186.00 4798.29 197.49 590.75 1797.62 598.06 692.59 299.61 395.64 699.02 1298.86 10
test_one_060198.58 1185.83 5797.44 1491.05 1296.78 1398.06 691.45 11
DVP-MVScopyleft95.67 396.02 394.64 3698.78 385.93 5297.09 1696.73 7690.27 2997.04 1098.05 891.47 899.55 1495.62 899.08 798.45 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 1797.04 1098.05 892.09 699.55 1495.64 699.13 399.13 2
test_241102_ONE98.77 585.99 4997.44 1490.26 3197.71 197.96 1092.31 499.38 29
DPE-MVScopyleft95.57 495.67 495.25 998.36 2587.28 1595.56 8297.51 489.13 5897.14 897.91 1191.64 799.62 194.61 1499.17 298.86 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss94.21 2794.00 3494.85 2398.17 3386.65 2894.82 12397.17 3786.26 13092.83 5997.87 1285.57 4699.56 1094.37 1798.92 1798.34 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS94.97 1194.90 1395.20 1097.84 4787.76 996.65 3497.48 987.76 10195.71 1997.70 1388.28 2399.35 3193.89 2298.78 2598.48 28
ACMMP_NAP94.74 1594.56 1695.28 898.02 4187.70 1095.68 7497.34 2188.28 8295.30 2397.67 1485.90 4399.54 1893.91 2198.95 1598.60 21
MTAPA94.42 2294.22 2695.00 1698.42 2186.95 1894.36 15796.97 4891.07 1193.14 5197.56 1584.30 6299.56 1093.43 2798.75 2898.47 31
APD-MVS_3200maxsize93.78 3893.77 4093.80 5897.92 4384.19 8596.30 4196.87 6086.96 11593.92 3797.47 1683.88 6798.96 7292.71 4197.87 6898.26 52
SteuartSystems-ACMMP95.20 895.32 994.85 2396.99 7286.33 3997.33 797.30 2791.38 1095.39 2197.46 1788.98 1999.40 2894.12 1898.89 1898.82 15
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS-dyc-post93.82 3793.82 3793.82 5697.92 4384.57 7396.28 4396.76 7287.46 10593.75 3897.43 1884.24 6399.01 6192.73 3897.80 7097.88 75
RE-MVS-def93.68 4397.92 4384.57 7396.28 4396.76 7287.46 10593.75 3897.43 1882.94 7492.73 3897.80 7097.88 75
9.1494.47 1797.79 4996.08 5497.44 1486.13 13695.10 2497.40 2088.34 2299.22 4293.25 3198.70 32
SR-MVS94.23 2694.17 3094.43 4498.21 3285.78 5996.40 3996.90 5788.20 8794.33 2997.40 2084.75 5999.03 5693.35 3097.99 6498.48 28
DeepC-MVS88.79 393.31 4992.99 5294.26 4996.07 10285.83 5794.89 11896.99 4689.02 6389.56 11897.37 2282.51 7899.38 2992.20 5298.30 5397.57 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS93.96 3593.72 4194.68 3598.43 2086.22 4495.30 9097.78 187.45 10793.26 4797.33 2384.62 6099.51 2290.75 8598.57 4598.32 44
DeepPCF-MVS89.96 194.20 2994.77 1492.49 10196.52 8780.00 20494.00 18197.08 4290.05 3395.65 2097.29 2489.66 1398.97 7093.95 2098.71 3098.50 25
region2R94.43 2094.27 2594.92 1898.65 886.67 2796.92 2497.23 3288.60 7393.58 4297.27 2585.22 5099.54 1892.21 5198.74 2998.56 23
SD-MVS94.96 1295.33 893.88 5497.25 6986.69 2596.19 4897.11 4190.42 2596.95 1297.27 2589.53 1496.91 23494.38 1698.85 1998.03 68
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPR94.43 2094.28 2394.91 1998.63 986.69 2596.94 2097.32 2588.63 7193.53 4597.26 2785.04 5399.54 1892.35 4898.78 2598.50 25
CP-MVS94.34 2394.21 2794.74 3498.39 2386.64 2997.60 497.24 3088.53 7592.73 6497.23 2885.20 5199.32 3692.15 5498.83 2198.25 53
patch_mono-293.74 3994.32 2092.01 11797.54 5778.37 24293.40 20497.19 3388.02 9194.99 2697.21 2988.35 2198.44 10994.07 1998.09 6199.23 1
HFP-MVS94.52 1694.40 1994.86 2298.61 1086.81 2296.94 2097.34 2188.63 7193.65 4097.21 2986.10 4199.49 2492.35 4898.77 2798.30 45
MP-MVScopyleft94.25 2494.07 3294.77 3298.47 1886.31 4196.71 3196.98 4789.04 6091.98 7997.19 3185.43 4899.56 1092.06 6098.79 2398.44 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft94.24 2594.07 3294.75 3398.06 3986.90 2095.88 6496.94 5385.68 14495.05 2597.18 3287.31 3399.07 5191.90 6798.61 4498.28 48
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS93.99 3493.78 3994.63 3798.50 1685.90 5696.87 2696.91 5688.70 6991.83 8897.17 3383.96 6699.55 1491.44 7298.64 4198.43 36
XVS94.45 1894.32 2094.85 2398.54 1386.60 3196.93 2297.19 3390.66 2292.85 5797.16 3485.02 5499.49 2491.99 6198.56 4698.47 31
HPM-MVS_fast93.40 4893.22 4893.94 5398.36 2584.83 6997.15 1396.80 6885.77 14192.47 7197.13 3582.38 7999.07 5190.51 9098.40 5097.92 74
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 3692.59 298.94 7392.25 5098.99 1498.84 13
CNVR-MVS95.40 795.37 795.50 798.11 3688.51 795.29 9296.96 5092.09 495.32 2297.08 3689.49 1599.33 3595.10 1198.85 1998.66 19
PC_three_145282.47 21197.09 997.07 3892.72 198.04 14692.70 4299.02 1298.86 10
ZNCC-MVS94.47 1794.28 2395.03 1498.52 1586.96 1796.85 2897.32 2588.24 8393.15 5097.04 3986.17 4099.62 192.40 4698.81 2298.52 24
ACMMPcopyleft93.24 5192.88 5494.30 4898.09 3885.33 6596.86 2797.45 1388.33 7990.15 11397.03 4081.44 9399.51 2290.85 8495.74 10198.04 67
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast89.43 294.04 3193.79 3894.80 3097.48 6186.78 2395.65 7896.89 5889.40 5092.81 6096.97 4185.37 4999.24 4190.87 8398.69 3398.38 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.94.85 1394.94 1194.58 3998.25 2986.33 3996.11 5396.62 8588.14 8996.10 1796.96 4289.09 1898.94 7394.48 1598.68 3598.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++93.72 4094.08 3192.65 9397.31 6583.43 10395.79 6897.33 2390.03 3493.58 4296.96 4284.87 5797.76 16192.19 5398.66 3896.76 119
ZD-MVS98.15 3486.62 3097.07 4383.63 18694.19 3196.91 4487.57 3199.26 4091.99 6198.44 49
dcpmvs_293.49 4394.19 2991.38 15197.69 5476.78 27494.25 16096.29 10188.33 7994.46 2796.88 4588.07 2598.64 9193.62 2598.09 6198.73 16
VDDNet89.56 11988.49 13692.76 8695.07 13782.09 14396.30 4193.19 25381.05 24791.88 8496.86 4661.16 30898.33 11888.43 10892.49 16597.84 78
VDD-MVS90.74 8889.92 10093.20 6796.27 9383.02 11795.73 7193.86 23988.42 7892.53 6896.84 4762.09 29798.64 9190.95 8192.62 16297.93 73
GST-MVS94.21 2793.97 3594.90 2198.41 2286.82 2196.54 3697.19 3388.24 8393.26 4796.83 4885.48 4799.59 791.43 7398.40 5098.30 45
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 2989.65 495.92 6396.96 5091.75 794.02 3596.83 4888.12 2499.55 1493.41 2998.94 1698.28 48
旧先验196.79 7681.81 15095.67 14896.81 5086.69 3597.66 7496.97 113
LFMVS90.08 10289.13 11692.95 7996.71 7782.32 14196.08 5489.91 33186.79 12092.15 7696.81 5062.60 29598.34 11687.18 12593.90 13698.19 56
HPM-MVScopyleft94.02 3293.88 3694.43 4498.39 2385.78 5997.25 1097.07 4386.90 11992.62 6796.80 5284.85 5899.17 4592.43 4498.65 4098.33 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MSP-MVS95.42 695.56 694.98 1798.49 1786.52 3396.91 2597.47 1091.73 896.10 1796.69 5389.90 1299.30 3894.70 1298.04 6399.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata90.49 18796.40 8977.89 25495.37 17472.51 33793.63 4196.69 5382.08 8797.65 16983.08 17597.39 7695.94 148
EI-MVSNet-Vis-set93.01 5492.92 5393.29 6395.01 13883.51 10294.48 14295.77 14190.87 1392.52 6996.67 5584.50 6199.00 6591.99 6194.44 13097.36 95
3Dnovator86.66 591.73 7290.82 8394.44 4294.59 16186.37 3897.18 1297.02 4589.20 5584.31 23896.66 5673.74 18699.17 4586.74 13197.96 6597.79 81
test250687.21 20386.28 20090.02 21295.62 11973.64 30496.25 4671.38 37487.89 9790.45 10696.65 5755.29 33398.09 14186.03 14096.94 8298.33 41
test111189.10 13488.64 12890.48 18995.53 12274.97 29296.08 5484.89 35388.13 9090.16 11296.65 5763.29 29198.10 13386.14 13696.90 8498.39 37
ECVR-MVScopyleft89.09 13688.53 13290.77 17895.62 11975.89 28596.16 4984.22 35587.89 9790.20 11096.65 5763.19 29398.10 13385.90 14196.94 8298.33 41
CDPH-MVS92.83 5692.30 6294.44 4297.79 4986.11 4694.06 17596.66 8280.09 25592.77 6196.63 6086.62 3699.04 5587.40 12198.66 3898.17 58
3Dnovator+87.14 492.42 6391.37 7195.55 695.63 11888.73 697.07 1896.77 7190.84 1484.02 24296.62 6175.95 15099.34 3287.77 11597.68 7398.59 22
EI-MVSNet-UG-set92.74 5892.62 5893.12 7094.86 14983.20 11094.40 15095.74 14490.71 2192.05 7796.60 6284.00 6598.99 6791.55 7093.63 14097.17 103
NCCC94.81 1494.69 1595.17 1297.83 4887.46 1495.66 7696.93 5492.34 293.94 3696.58 6387.74 2799.44 2792.83 3798.40 5098.62 20
Vis-MVSNetpermissive91.75 7191.23 7493.29 6395.32 12683.78 9496.14 5195.98 12589.89 3690.45 10696.58 6375.09 16298.31 12184.75 15596.90 8497.78 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n_192089.39 12989.84 10188.04 26892.97 22372.64 31694.71 13196.03 12486.18 13391.94 8396.56 6561.63 30095.74 29393.42 2895.11 11695.74 158
UA-Net92.83 5692.54 5993.68 6096.10 10084.71 7195.66 7696.39 9691.92 593.22 4996.49 6683.16 7198.87 7784.47 15995.47 10797.45 94
MG-MVS91.77 7091.70 6992.00 12097.08 7180.03 20293.60 19895.18 18287.85 9990.89 10296.47 6782.06 8898.36 11385.07 14997.04 8197.62 85
CPTT-MVS91.99 6691.80 6792.55 9898.24 3181.98 14696.76 3096.49 9281.89 22790.24 10996.44 6878.59 12398.61 9589.68 9497.85 6997.06 107
test_prior294.12 16787.67 10392.63 6696.39 6986.62 3691.50 7198.67 37
MCST-MVS94.45 1894.20 2895.19 1198.46 1987.50 1395.00 11297.12 3987.13 11192.51 7096.30 7089.24 1799.34 3293.46 2698.62 4298.73 16
PHI-MVS93.89 3693.65 4494.62 3896.84 7586.43 3696.69 3297.49 585.15 15893.56 4496.28 7185.60 4599.31 3792.45 4398.79 2398.12 62
新几何193.10 7197.30 6684.35 8495.56 15671.09 34491.26 9996.24 7282.87 7598.86 7979.19 24298.10 6096.07 144
CS-MVS94.12 3094.44 1893.17 6896.55 8483.08 11597.63 396.95 5291.71 993.50 4696.21 7385.61 4498.24 12393.64 2498.17 5698.19 56
TEST997.53 5886.49 3494.07 17396.78 6981.61 23592.77 6196.20 7487.71 2899.12 49
train_agg93.44 4593.08 5094.52 4197.53 5886.49 3494.07 17396.78 6981.86 22892.77 6196.20 7487.63 2999.12 4992.14 5598.69 3397.94 71
test_897.49 6086.30 4294.02 17896.76 7281.86 22892.70 6596.20 7487.63 2999.02 59
QAPM89.51 12088.15 14593.59 6194.92 14584.58 7296.82 2996.70 8078.43 28083.41 25796.19 7773.18 19399.30 3877.11 26296.54 9296.89 117
casdiffmvspermissive92.51 6192.43 6192.74 8894.41 17381.98 14694.54 14096.23 10889.57 4691.96 8196.17 7882.58 7798.01 14890.95 8195.45 10998.23 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test22296.55 8481.70 15292.22 24895.01 18968.36 35090.20 11096.14 7980.26 10297.80 7096.05 146
OMC-MVS91.23 8090.62 8593.08 7296.27 9384.07 8793.52 20095.93 12886.95 11689.51 11996.13 8078.50 12598.35 11585.84 14392.90 15896.83 118
OpenMVScopyleft83.78 1188.74 14887.29 16493.08 7292.70 23085.39 6496.57 3596.43 9478.74 27580.85 28696.07 8169.64 23599.01 6178.01 25396.65 9194.83 188
casdiffmvs_mvgpermissive92.96 5592.83 5593.35 6294.59 16183.40 10595.00 11296.34 9990.30 2892.05 7796.05 8283.43 6998.15 13092.07 5795.67 10298.49 27
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline92.39 6492.29 6392.69 9294.46 17081.77 15194.14 16696.27 10389.22 5491.88 8496.00 8382.35 8097.99 15091.05 7695.27 11498.30 45
IS-MVSNet91.43 7691.09 7892.46 10295.87 11181.38 16396.95 1993.69 24689.72 4489.50 12095.98 8478.57 12497.77 16083.02 17796.50 9498.22 55
LS3D87.89 16886.32 19892.59 9696.07 10282.92 12295.23 9694.92 19675.66 30682.89 26495.98 8472.48 20299.21 4368.43 32195.23 11595.64 162
原ACMM192.01 11797.34 6481.05 17196.81 6778.89 27090.45 10695.92 8682.65 7698.84 8380.68 22298.26 5596.14 138
VNet92.24 6591.91 6693.24 6596.59 8283.43 10394.84 12296.44 9389.19 5694.08 3495.90 8777.85 13498.17 12888.90 10393.38 14998.13 60
CANet93.54 4293.20 4994.55 4095.65 11785.73 6194.94 11596.69 8191.89 690.69 10495.88 8881.99 9099.54 1893.14 3397.95 6698.39 37
MVS_111021_HR93.45 4493.31 4693.84 5596.99 7284.84 6893.24 21697.24 3088.76 6891.60 9395.85 8986.07 4298.66 8991.91 6598.16 5798.03 68
mvsany_test185.42 24585.30 23285.77 31087.95 33975.41 29187.61 32780.97 36376.82 29688.68 13195.83 9077.44 13590.82 35185.90 14186.51 24291.08 325
DP-MVS Recon91.95 6791.28 7393.96 5298.33 2785.92 5494.66 13496.66 8282.69 20990.03 11595.82 9182.30 8299.03 5684.57 15796.48 9596.91 116
DROMVSNet93.44 4593.71 4292.63 9495.21 13182.43 13697.27 996.71 7990.57 2492.88 5695.80 9283.16 7198.16 12993.68 2398.14 5897.31 96
EPNet91.79 6991.02 7994.10 5090.10 31185.25 6696.03 5892.05 28292.83 187.39 15795.78 9379.39 11499.01 6188.13 11197.48 7598.05 66
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS-test94.02 3294.29 2293.24 6596.69 7883.24 10897.49 596.92 5592.14 392.90 5595.77 9485.02 5498.33 11893.03 3498.62 4298.13 60
XVG-OURS89.40 12888.70 12691.52 14494.06 18381.46 16091.27 26996.07 11986.14 13588.89 12995.77 9468.73 25197.26 21187.39 12289.96 18895.83 154
XVG-OURS-SEG-HR89.95 10889.45 10691.47 14894.00 18981.21 16891.87 25696.06 12185.78 14088.55 13395.73 9674.67 17097.27 20988.71 10589.64 19595.91 149
MVS_111021_LR92.47 6292.29 6392.98 7795.99 10684.43 8293.08 22196.09 11788.20 8791.12 10095.72 9781.33 9597.76 16191.74 6897.37 7796.75 120
CSCG93.23 5293.05 5193.76 5998.04 4084.07 8796.22 4797.37 2084.15 17490.05 11495.66 9887.77 2699.15 4889.91 9398.27 5498.07 64
h-mvs3390.80 8690.15 9292.75 8796.01 10482.66 13295.43 8495.53 16089.80 3893.08 5295.64 9975.77 15199.00 6592.07 5778.05 32596.60 124
EPP-MVSNet91.70 7391.56 7092.13 11695.88 10980.50 18797.33 795.25 17886.15 13489.76 11795.60 10083.42 7098.32 12087.37 12393.25 15297.56 90
TSAR-MVS + GP.93.66 4193.41 4594.41 4696.59 8286.78 2394.40 15093.93 23589.77 4294.21 3095.59 10187.35 3298.61 9592.72 4096.15 9897.83 79
test_fmvs1_n87.03 21087.04 17186.97 29289.74 31971.86 32394.55 13994.43 21678.47 27891.95 8295.50 10251.16 34593.81 32593.02 3594.56 12595.26 171
Anonymous20240521187.68 17486.13 20492.31 11096.66 7980.74 18194.87 12091.49 30080.47 25189.46 12195.44 10354.72 33598.23 12482.19 19389.89 19097.97 70
TAPA-MVS84.62 688.16 16287.01 17291.62 14096.64 8080.65 18294.39 15296.21 11276.38 29986.19 18295.44 10379.75 10798.08 14362.75 34795.29 11296.13 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OPM-MVS90.12 10189.56 10491.82 13393.14 21483.90 9194.16 16595.74 14488.96 6487.86 14495.43 10572.48 20297.91 15688.10 11390.18 18593.65 253
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNet (Re-imp)89.59 11889.44 10790.03 21095.74 11375.85 28695.61 8090.80 31787.66 10487.83 14695.40 10676.79 14096.46 26178.37 24696.73 8897.80 80
test_vis1_n86.56 22486.49 19386.78 29988.51 32872.69 31394.68 13293.78 24379.55 26290.70 10395.31 10748.75 35093.28 33393.15 3293.99 13494.38 213
EI-MVSNet89.10 13488.86 12589.80 22291.84 25178.30 24493.70 19595.01 18985.73 14287.15 15995.28 10879.87 10697.21 21683.81 16887.36 23493.88 235
CVMVSNet84.69 26084.79 24484.37 32191.84 25164.92 35793.70 19591.47 30166.19 35386.16 18395.28 10867.18 26093.33 33280.89 21890.42 18294.88 186
114514_t89.51 12088.50 13492.54 9998.11 3681.99 14595.16 10396.36 9870.19 34785.81 18695.25 11076.70 14298.63 9382.07 19596.86 8797.00 112
test_fmvs187.34 19487.56 15786.68 30090.59 30171.80 32594.01 17994.04 23378.30 28291.97 8095.22 11156.28 32893.71 32792.89 3694.71 11994.52 201
RPSCF85.07 25384.27 25087.48 28092.91 22570.62 33791.69 26292.46 26876.20 30382.67 26795.22 11163.94 28797.29 20877.51 25885.80 24694.53 200
Anonymous2024052988.09 16486.59 18892.58 9796.53 8681.92 14895.99 5995.84 13774.11 32389.06 12795.21 11361.44 30398.81 8483.67 17187.47 23197.01 111
LPG-MVS_test89.45 12388.90 12391.12 16194.47 16881.49 15895.30 9096.14 11486.73 12285.45 20295.16 11469.89 23198.10 13387.70 11789.23 20293.77 246
LGP-MVS_train91.12 16194.47 16881.49 15896.14 11486.73 12285.45 20295.16 11469.89 23198.10 13387.70 11789.23 20293.77 246
CNLPA89.07 13887.98 14992.34 10896.87 7484.78 7094.08 17293.24 25181.41 23884.46 22895.13 11675.57 15896.62 24577.21 26093.84 13895.61 163
DELS-MVS93.43 4793.25 4793.97 5195.42 12485.04 6793.06 22397.13 3890.74 1991.84 8695.09 11786.32 3999.21 4391.22 7498.45 4897.65 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DPM-MVS92.58 6091.74 6895.08 1396.19 9589.31 592.66 23396.56 9083.44 19291.68 9295.04 11886.60 3898.99 6785.60 14597.92 6796.93 115
DP-MVS87.25 19985.36 23192.90 8197.65 5583.24 10894.81 12492.00 28474.99 31481.92 27695.00 11972.66 19999.05 5366.92 33292.33 16696.40 130
diffmvspermissive91.37 7891.23 7491.77 13693.09 21680.27 19092.36 24295.52 16187.03 11491.40 9794.93 12080.08 10397.44 18992.13 5694.56 12597.61 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer91.68 7491.30 7292.80 8493.86 19483.88 9295.96 6195.90 13284.66 16991.76 8994.91 12177.92 13197.30 20589.64 9597.11 7897.24 99
jason90.80 8690.10 9392.90 8193.04 21983.53 10193.08 22194.15 22880.22 25291.41 9694.91 12176.87 13897.93 15590.28 9296.90 8497.24 99
jason: jason.
alignmvs93.08 5392.50 6094.81 2995.62 11987.61 1295.99 5996.07 11989.77 4294.12 3294.87 12380.56 9998.66 8992.42 4593.10 15598.15 59
HQP_MVS90.60 9690.19 9091.82 13394.70 15782.73 12895.85 6596.22 10990.81 1586.91 16694.86 12474.23 17498.12 13188.15 10989.99 18694.63 193
plane_prior494.86 124
nrg03091.08 8490.39 8693.17 6893.07 21786.91 1996.41 3796.26 10488.30 8188.37 13794.85 12682.19 8597.64 17291.09 7582.95 27094.96 181
mvsmamba89.96 10789.50 10591.33 15492.90 22681.82 14996.68 3392.37 27089.03 6187.00 16294.85 12673.05 19497.65 16991.03 7788.63 21194.51 203
BH-RMVSNet88.37 15687.48 15991.02 16995.28 12779.45 21792.89 22893.07 25585.45 15186.91 16694.84 12870.35 22697.76 16173.97 29094.59 12495.85 152
PAPM_NR91.22 8190.78 8492.52 10097.60 5681.46 16094.37 15696.24 10786.39 12887.41 15494.80 12982.06 8898.48 10282.80 18395.37 11097.61 86
RRT_MVS89.09 13688.62 13190.49 18792.85 22779.65 21396.41 3794.41 21888.22 8585.50 19894.77 13069.36 23997.31 20489.33 9886.73 24194.51 203
GeoE90.05 10389.43 10891.90 12995.16 13380.37 18995.80 6794.65 21283.90 17987.55 15394.75 13178.18 12997.62 17481.28 21093.63 14097.71 83
test_yl90.69 9090.02 9892.71 8995.72 11482.41 13994.11 16895.12 18485.63 14691.49 9494.70 13274.75 16698.42 11186.13 13892.53 16397.31 96
DCV-MVSNet90.69 9090.02 9892.71 8995.72 11482.41 13994.11 16895.12 18485.63 14691.49 9494.70 13274.75 16698.42 11186.13 13892.53 16397.31 96
FIs90.51 9790.35 8790.99 17293.99 19080.98 17395.73 7197.54 389.15 5786.72 17194.68 13481.83 9297.24 21385.18 14888.31 22094.76 191
FC-MVSNet-test90.27 9990.18 9190.53 18393.71 20079.85 20995.77 6997.59 289.31 5286.27 18094.67 13581.93 9197.01 22884.26 16188.09 22494.71 192
AdaColmapbinary89.89 11189.07 11792.37 10797.41 6283.03 11694.42 14995.92 12982.81 20786.34 17994.65 13673.89 18299.02 5980.69 22195.51 10595.05 176
F-COLMAP87.95 16786.80 17791.40 15096.35 9280.88 17794.73 12995.45 16679.65 26182.04 27494.61 13771.13 21298.50 10176.24 27191.05 17794.80 190
canonicalmvs93.27 5092.75 5694.85 2395.70 11687.66 1196.33 4096.41 9590.00 3594.09 3394.60 13882.33 8198.62 9492.40 4692.86 15998.27 50
tttt051788.61 15187.78 15391.11 16494.96 14277.81 25795.35 8689.69 33585.09 16088.05 14294.59 13966.93 26398.48 10283.27 17492.13 16897.03 110
VPNet88.20 16187.47 16090.39 19493.56 20579.46 21694.04 17695.54 15988.67 7086.96 16394.58 14069.33 24097.15 21884.05 16480.53 30894.56 199
UniMVSNet_ETH3D87.53 18686.37 19591.00 17192.44 23478.96 23094.74 12895.61 15484.07 17685.36 21294.52 14159.78 31697.34 20382.93 17887.88 22796.71 122
PVSNet_Blended_VisFu91.38 7790.91 8192.80 8496.39 9083.17 11194.87 12096.66 8283.29 19689.27 12394.46 14280.29 10199.17 4587.57 11995.37 11096.05 146
bld_raw_dy_0_6487.60 18386.73 17990.21 20091.72 25580.26 19295.09 10788.61 34085.68 14485.55 19294.38 14363.93 28896.66 24287.73 11687.84 22993.72 250
ACMM84.12 989.14 13388.48 13791.12 16194.65 16081.22 16795.31 8896.12 11685.31 15485.92 18594.34 14470.19 22998.06 14585.65 14488.86 20994.08 227
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS84.11 1087.74 17386.08 20892.70 9194.02 18584.43 8289.27 30395.87 13573.62 32884.43 23094.33 14578.48 12698.86 7970.27 30794.45 12994.81 189
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WTY-MVS89.60 11788.92 12191.67 13995.47 12381.15 16992.38 24194.78 20783.11 19989.06 12794.32 14678.67 12296.61 24881.57 20790.89 17997.24 99
ACMP84.23 889.01 14288.35 13890.99 17294.73 15481.27 16495.07 10895.89 13486.48 12583.67 25094.30 14769.33 24097.99 15087.10 13088.55 21293.72 250
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
cdsmvs_eth3d_5k22.14 34329.52 3460.00 3620.00 3850.00 3860.00 37395.76 1420.00 3800.00 38194.29 14875.66 1570.00 3810.00 3790.00 3790.00 377
PS-MVSNAJss89.97 10689.62 10391.02 16991.90 24980.85 17895.26 9595.98 12586.26 13086.21 18194.29 14879.70 10997.65 16988.87 10488.10 22294.57 198
lupinMVS90.92 8590.21 8993.03 7593.86 19483.88 9292.81 23093.86 23979.84 25891.76 8994.29 14877.92 13198.04 14690.48 9197.11 7897.17 103
API-MVS90.66 9290.07 9492.45 10396.36 9184.57 7396.06 5795.22 18182.39 21289.13 12494.27 15180.32 10098.46 10580.16 23096.71 8994.33 214
CANet_DTU90.26 10089.41 10992.81 8393.46 20883.01 11893.48 20194.47 21589.43 4987.76 14994.23 15270.54 22599.03 5684.97 15096.39 9696.38 131
PLCcopyleft84.53 789.06 13988.03 14892.15 11597.27 6882.69 13194.29 15895.44 16879.71 26084.01 24394.18 15376.68 14398.75 8777.28 25993.41 14895.02 177
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
iter_conf_final89.42 12588.69 12791.60 14195.12 13682.93 12195.75 7092.14 27987.32 10987.12 16194.07 15467.09 26197.55 17890.61 8789.01 20694.32 215
iter_conf0588.85 14488.08 14791.17 16094.27 17881.64 15395.18 10092.15 27886.23 13287.28 15894.07 15463.89 28997.55 17890.63 8689.00 20794.32 215
xiu_mvs_v1_base_debu90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
xiu_mvs_v1_base90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
xiu_mvs_v1_base_debi90.64 9390.05 9592.40 10493.97 19184.46 7993.32 20695.46 16385.17 15592.25 7294.03 15670.59 22198.57 9890.97 7894.67 12094.18 219
jajsoiax88.24 16087.50 15890.48 18990.89 29080.14 19595.31 8895.65 15284.97 16284.24 23994.02 15965.31 28097.42 19188.56 10688.52 21493.89 233
XXY-MVS87.65 17686.85 17590.03 21092.14 24180.60 18593.76 19195.23 17982.94 20484.60 22394.02 15974.27 17395.49 30381.04 21383.68 26394.01 231
baseline188.10 16387.28 16590.57 18194.96 14280.07 19894.27 15991.29 30586.74 12187.41 15494.00 16176.77 14196.20 27280.77 21979.31 32195.44 165
NP-MVS94.37 17482.42 13793.98 162
HQP-MVS89.80 11389.28 11491.34 15394.17 18081.56 15494.39 15296.04 12288.81 6585.43 20593.97 16373.83 18497.96 15287.11 12889.77 19394.50 206
mvs_tets88.06 16687.28 16590.38 19690.94 28679.88 20795.22 9795.66 15085.10 15984.21 24093.94 16463.53 29097.40 19888.50 10788.40 21893.87 236
CHOSEN 1792x268888.84 14587.69 15492.30 11196.14 9681.42 16290.01 29395.86 13674.52 31987.41 15493.94 16475.46 15998.36 11380.36 22695.53 10497.12 106
UGNet89.95 10888.95 12092.95 7994.51 16783.31 10795.70 7395.23 17989.37 5187.58 15193.94 16464.00 28698.78 8683.92 16696.31 9796.74 121
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TAMVS89.21 13288.29 14291.96 12393.71 20082.62 13493.30 21094.19 22682.22 21687.78 14893.94 16478.83 11896.95 23177.70 25592.98 15796.32 132
sss88.93 14388.26 14490.94 17594.05 18480.78 18091.71 26095.38 17281.55 23688.63 13293.91 16875.04 16395.47 30482.47 18791.61 17096.57 126
1112_ss88.42 15487.33 16391.72 13794.92 14580.98 17392.97 22694.54 21378.16 28683.82 24693.88 16978.78 12097.91 15679.45 23789.41 19796.26 135
ab-mvs-re7.82 34710.43 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38193.88 1690.00 3850.00 3810.00 3790.00 3790.00 377
TranMVSNet+NR-MVSNet88.84 14587.95 15091.49 14692.68 23183.01 11894.92 11796.31 10089.88 3785.53 19593.85 17176.63 14496.96 23081.91 19979.87 31694.50 206
mvs_anonymous89.37 13089.32 11289.51 23393.47 20774.22 29991.65 26394.83 20382.91 20585.45 20293.79 17281.23 9696.36 26786.47 13594.09 13397.94 71
thisisatest053088.67 14987.61 15691.86 13094.87 14880.07 19894.63 13589.90 33284.00 17788.46 13593.78 17366.88 26598.46 10583.30 17392.65 16197.06 107
MVS_Test91.31 7991.11 7691.93 12594.37 17480.14 19593.46 20395.80 13986.46 12691.35 9893.77 17482.21 8498.09 14187.57 11994.95 11797.55 91
COLMAP_ROBcopyleft80.39 1683.96 26682.04 27389.74 22395.28 12779.75 21094.25 16092.28 27475.17 31278.02 31593.77 17458.60 32197.84 15865.06 34085.92 24591.63 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PAPR90.02 10489.27 11592.29 11295.78 11280.95 17592.68 23296.22 10981.91 22586.66 17293.75 17682.23 8398.44 10979.40 24194.79 11897.48 92
ab-mvs89.41 12688.35 13892.60 9595.15 13582.65 13392.20 24995.60 15583.97 17888.55 13393.70 17774.16 17898.21 12782.46 18889.37 19896.94 114
hse-mvs289.88 11289.34 11191.51 14594.83 15181.12 17093.94 18493.91 23889.80 3893.08 5293.60 17875.77 15197.66 16892.07 5777.07 33295.74 158
test_fmvs283.98 26584.03 25383.83 32687.16 34167.53 35193.93 18592.89 25877.62 28886.89 16993.53 17947.18 35592.02 34490.54 8886.51 24291.93 305
AUN-MVS87.78 17286.54 19091.48 14794.82 15281.05 17193.91 18893.93 23583.00 20286.93 16493.53 17969.50 23797.67 16686.14 13677.12 33195.73 160
BH-untuned88.60 15288.13 14690.01 21395.24 13078.50 23893.29 21194.15 22884.75 16784.46 22893.40 18175.76 15397.40 19877.59 25694.52 12794.12 223
AllTest83.42 27281.39 27889.52 23195.01 13877.79 25893.12 21890.89 31577.41 29076.12 32793.34 18254.08 33897.51 18268.31 32284.27 25793.26 265
TestCases89.52 23195.01 13877.79 25890.89 31577.41 29076.12 32793.34 18254.08 33897.51 18268.31 32284.27 25793.26 265
UniMVSNet_NR-MVSNet89.92 11089.29 11391.81 13593.39 20983.72 9594.43 14897.12 3989.80 3886.46 17493.32 18483.16 7197.23 21484.92 15181.02 29994.49 208
VPA-MVSNet89.62 11688.96 11991.60 14193.86 19482.89 12395.46 8397.33 2387.91 9488.43 13693.31 18574.17 17797.40 19887.32 12482.86 27594.52 201
ITE_SJBPF88.24 26291.88 25077.05 27192.92 25785.54 14980.13 29893.30 18657.29 32596.20 27272.46 29884.71 25391.49 312
DU-MVS89.34 13188.50 13491.85 13293.04 21983.72 9594.47 14596.59 8789.50 4786.46 17493.29 18777.25 13697.23 21484.92 15181.02 29994.59 196
NR-MVSNet88.58 15387.47 16091.93 12593.04 21984.16 8694.77 12796.25 10689.05 5980.04 30093.29 18779.02 11797.05 22681.71 20680.05 31394.59 196
CDS-MVSNet89.45 12388.51 13392.29 11293.62 20383.61 10093.01 22494.68 21181.95 22387.82 14793.24 18978.69 12196.99 22980.34 22793.23 15396.28 134
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM86.68 22085.39 22990.53 18393.05 21879.33 22489.79 29694.77 20878.82 27281.95 27593.24 18976.81 13997.30 20566.94 33093.16 15494.95 184
OurMVSNet-221017-085.35 24784.64 24787.49 27990.77 29472.59 31894.01 17994.40 21984.72 16879.62 30693.17 19161.91 29996.72 23981.99 19781.16 29393.16 272
PEN-MVS86.80 21586.27 20188.40 25692.32 23775.71 28895.18 10096.38 9787.97 9282.82 26593.15 19273.39 19195.92 28376.15 27279.03 32393.59 254
xiu_mvs_v2_base91.13 8390.89 8291.86 13094.97 14182.42 13792.24 24795.64 15386.11 13791.74 9193.14 19379.67 11298.89 7689.06 10295.46 10894.28 218
MVSTER88.84 14588.29 14290.51 18692.95 22480.44 18893.73 19295.01 18984.66 16987.15 15993.12 19472.79 19897.21 21687.86 11487.36 23493.87 236
Effi-MVS+91.59 7591.11 7693.01 7694.35 17783.39 10694.60 13695.10 18687.10 11290.57 10593.10 19581.43 9498.07 14489.29 9994.48 12897.59 88
PS-CasMVS87.32 19686.88 17388.63 25392.99 22276.33 28295.33 8796.61 8688.22 8583.30 26193.07 19673.03 19695.79 29178.36 24781.00 30193.75 248
DTE-MVSNet86.11 23385.48 22787.98 26991.65 26174.92 29394.93 11695.75 14387.36 10882.26 27093.04 19772.85 19795.82 28974.04 28977.46 32993.20 270
CP-MVSNet87.63 17987.26 16788.74 25093.12 21576.59 27795.29 9296.58 8888.43 7783.49 25692.98 19875.28 16095.83 28878.97 24381.15 29593.79 241
test_djsdf89.03 14088.64 12890.21 20090.74 29679.28 22595.96 6195.90 13284.66 16985.33 21392.94 19974.02 18097.30 20589.64 9588.53 21394.05 229
MAR-MVS90.30 9889.37 11093.07 7496.61 8184.48 7895.68 7495.67 14882.36 21487.85 14592.85 20076.63 14498.80 8580.01 23196.68 9095.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi80.94 29880.20 28983.18 32787.96 33866.29 35291.28 26890.70 31983.70 18478.12 31392.84 20151.37 34490.82 35163.34 34482.46 27792.43 294
EU-MVSNet81.32 29380.95 28182.42 33288.50 33063.67 35893.32 20691.33 30364.02 35680.57 29192.83 20261.21 30792.27 34276.34 26980.38 31191.32 315
ACMH+81.04 1485.05 25483.46 26289.82 21994.66 15979.37 21994.44 14794.12 23182.19 21778.04 31492.82 20358.23 32297.54 18073.77 29282.90 27492.54 290
WR-MVS88.38 15587.67 15590.52 18593.30 21180.18 19393.26 21395.96 12788.57 7485.47 20192.81 20476.12 14696.91 23481.24 21182.29 27994.47 211
tt080586.92 21285.74 22490.48 18992.22 23879.98 20595.63 7994.88 19983.83 18284.74 22192.80 20557.61 32497.67 16685.48 14784.42 25593.79 241
HY-MVS83.01 1289.03 14087.94 15192.29 11294.86 14982.77 12492.08 25494.49 21481.52 23786.93 16492.79 20678.32 12898.23 12479.93 23290.55 18095.88 151
LTVRE_ROB82.13 1386.26 23284.90 24190.34 19894.44 17281.50 15692.31 24694.89 19783.03 20179.63 30592.67 20769.69 23497.79 15971.20 30286.26 24491.72 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH80.38 1785.36 24683.68 25990.39 19494.45 17180.63 18394.73 12994.85 20182.09 21877.24 31992.65 20860.01 31497.58 17572.25 29984.87 25292.96 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs186.61 22185.54 22589.82 21991.44 26380.18 19395.28 9494.85 20183.84 18181.66 27792.62 20972.45 20496.48 25879.67 23578.06 32492.82 285
FA-MVS(test-final)89.66 11588.91 12291.93 12594.57 16480.27 19091.36 26794.74 20984.87 16389.82 11692.61 21074.72 16998.47 10483.97 16593.53 14397.04 109
PVSNet_Blended90.73 8990.32 8891.98 12196.12 9781.25 16592.55 23796.83 6482.04 22189.10 12592.56 21181.04 9798.85 8186.72 13395.91 9995.84 153
ET-MVSNet_ETH3D87.51 18785.91 21692.32 10993.70 20283.93 9092.33 24490.94 31384.16 17372.09 34692.52 21269.90 23095.85 28789.20 10088.36 21997.17 103
PS-MVSNAJ91.18 8290.92 8091.96 12395.26 12982.60 13592.09 25395.70 14686.27 12991.84 8692.46 21379.70 10998.99 6789.08 10195.86 10094.29 217
CLD-MVS89.47 12288.90 12391.18 15994.22 17982.07 14492.13 25196.09 11787.90 9585.37 21192.45 21474.38 17297.56 17787.15 12690.43 18193.93 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TR-MVS86.78 21685.76 22289.82 21994.37 17478.41 24092.47 23892.83 26081.11 24686.36 17892.40 21568.73 25197.48 18473.75 29389.85 19293.57 255
Test_1112_low_res87.65 17686.51 19191.08 16594.94 14479.28 22591.77 25894.30 22276.04 30483.51 25592.37 21677.86 13397.73 16578.69 24589.13 20496.22 136
EPNet_dtu86.49 22985.94 21588.14 26590.24 30972.82 31194.11 16892.20 27686.66 12479.42 30792.36 21773.52 18795.81 29071.26 30193.66 13995.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet (Re)89.80 11389.07 11792.01 11793.60 20484.52 7694.78 12697.47 1089.26 5386.44 17792.32 21882.10 8697.39 20184.81 15480.84 30394.12 223
thres600view787.65 17686.67 18390.59 18096.08 10178.72 23194.88 11991.58 29687.06 11388.08 14092.30 21968.91 24898.10 13370.05 31491.10 17394.96 181
thres100view90087.63 17986.71 18190.38 19696.12 9778.55 23595.03 11191.58 29687.15 11088.06 14192.29 22068.91 24898.10 13370.13 31191.10 17394.48 209
PVSNet_BlendedMVS89.98 10589.70 10290.82 17696.12 9781.25 16593.92 18696.83 6483.49 19189.10 12592.26 22181.04 9798.85 8186.72 13387.86 22892.35 298
XVG-ACMP-BASELINE86.00 23484.84 24389.45 23491.20 27378.00 25091.70 26195.55 15785.05 16182.97 26392.25 22254.49 33697.48 18482.93 17887.45 23392.89 282
EIA-MVS91.95 6791.94 6591.98 12195.16 13380.01 20395.36 8596.73 7688.44 7689.34 12292.16 22383.82 6898.45 10889.35 9797.06 8097.48 92
Anonymous2023121186.59 22385.13 23590.98 17496.52 8781.50 15696.14 5196.16 11373.78 32683.65 25192.15 22463.26 29297.37 20282.82 18281.74 28894.06 228
MVS87.44 19086.10 20791.44 14992.61 23283.62 9992.63 23495.66 15067.26 35181.47 27892.15 22477.95 13098.22 12679.71 23495.48 10692.47 293
anonymousdsp87.84 16987.09 16890.12 20689.13 32380.54 18694.67 13395.55 15782.05 21983.82 24692.12 22671.47 21097.15 21887.15 12687.80 23092.67 287
TransMVSNet (Re)84.43 26283.06 26688.54 25491.72 25578.44 23995.18 10092.82 26182.73 20879.67 30492.12 22673.49 18895.96 28271.10 30668.73 35391.21 319
SixPastTwentyTwo83.91 26882.90 26886.92 29490.99 28270.67 33693.48 20191.99 28585.54 14977.62 31892.11 22860.59 31096.87 23676.05 27377.75 32693.20 270
HyFIR lowres test88.09 16486.81 17691.93 12596.00 10580.63 18390.01 29395.79 14073.42 32987.68 15092.10 22973.86 18397.96 15280.75 22091.70 16997.19 102
Baseline_NR-MVSNet87.07 20886.63 18688.40 25691.44 26377.87 25594.23 16392.57 26784.12 17585.74 18892.08 23077.25 13696.04 27782.29 19279.94 31491.30 316
USDC82.76 27581.26 28087.26 28491.17 27574.55 29589.27 30393.39 25078.26 28475.30 33292.08 23054.43 33796.63 24471.64 30085.79 24790.61 328
v2v48287.84 16987.06 16990.17 20290.99 28279.23 22894.00 18195.13 18384.87 16385.53 19592.07 23274.45 17197.45 18784.71 15681.75 28793.85 239
FMVSNet287.19 20585.82 21891.30 15594.01 18683.67 9794.79 12594.94 19283.57 18783.88 24592.05 23366.59 27096.51 25677.56 25785.01 25193.73 249
WR-MVS_H87.80 17187.37 16289.10 24193.23 21278.12 24895.61 8097.30 2787.90 9583.72 24892.01 23479.65 11396.01 28076.36 26880.54 30793.16 272
LCM-MVSNet-Re88.30 15988.32 14188.27 26094.71 15672.41 32193.15 21790.98 31287.77 10079.25 30891.96 23578.35 12795.75 29283.04 17695.62 10396.65 123
MSDG84.86 25783.09 26590.14 20593.80 19780.05 20089.18 30693.09 25478.89 27078.19 31291.91 23665.86 27897.27 20968.47 32088.45 21693.11 274
IterMVS-LS88.36 15787.91 15289.70 22693.80 19778.29 24593.73 19295.08 18885.73 14284.75 22091.90 23779.88 10596.92 23383.83 16782.51 27693.89 233
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet387.40 19286.11 20691.30 15593.79 19983.64 9894.20 16494.81 20583.89 18084.37 23191.87 23868.45 25496.56 25378.23 25085.36 24893.70 252
tfpn200view987.58 18486.64 18490.41 19395.99 10678.64 23394.58 13791.98 28686.94 11788.09 13891.77 23969.18 24598.10 13370.13 31191.10 17394.48 209
thres40087.62 18186.64 18490.57 18195.99 10678.64 23394.58 13791.98 28686.94 11788.09 13891.77 23969.18 24598.10 13370.13 31191.10 17394.96 181
pmmvs485.43 24483.86 25790.16 20390.02 31482.97 12090.27 28392.67 26575.93 30580.73 28791.74 24171.05 21395.73 29478.85 24483.46 26791.78 307
GBi-Net87.26 19785.98 21291.08 16594.01 18683.10 11295.14 10494.94 19283.57 18784.37 23191.64 24266.59 27096.34 26878.23 25085.36 24893.79 241
test187.26 19785.98 21291.08 16594.01 18683.10 11295.14 10494.94 19283.57 18784.37 23191.64 24266.59 27096.34 26878.23 25085.36 24893.79 241
FMVSNet185.85 23884.11 25291.08 16592.81 22883.10 11295.14 10494.94 19281.64 23382.68 26691.64 24259.01 32096.34 26875.37 27883.78 26093.79 241
MVP-Stereo85.97 23584.86 24289.32 23590.92 28882.19 14292.11 25294.19 22678.76 27478.77 31191.63 24568.38 25596.56 25375.01 28393.95 13589.20 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FE-MVS87.40 19286.02 21091.57 14394.56 16579.69 21290.27 28393.72 24580.57 25088.80 13091.62 24665.32 27998.59 9774.97 28494.33 13296.44 129
131487.51 18786.57 18990.34 19892.42 23579.74 21192.63 23495.35 17678.35 28180.14 29791.62 24674.05 17997.15 21881.05 21293.53 14394.12 223
MS-PatchMatch85.05 25484.16 25187.73 27391.42 26678.51 23791.25 27093.53 24777.50 28980.15 29691.58 24861.99 29895.51 30075.69 27594.35 13189.16 342
TDRefinement79.81 30577.34 30987.22 28879.24 36475.48 29093.12 21892.03 28376.45 29875.01 33391.58 24849.19 34996.44 26270.22 31069.18 35089.75 335
PatchMatch-RL86.77 21985.54 22590.47 19295.88 10982.71 13090.54 28092.31 27379.82 25984.32 23691.57 25068.77 25096.39 26473.16 29593.48 14792.32 299
BH-w/o87.57 18587.05 17089.12 24094.90 14777.90 25392.41 23993.51 24882.89 20683.70 24991.34 25175.75 15497.07 22475.49 27693.49 14592.39 296
v887.50 18986.71 18189.89 21691.37 26879.40 21894.50 14195.38 17284.81 16683.60 25391.33 25276.05 14797.42 19182.84 18180.51 31092.84 284
V4287.68 17486.86 17490.15 20490.58 30280.14 19594.24 16295.28 17783.66 18585.67 18991.33 25274.73 16897.41 19684.43 16081.83 28592.89 282
Fast-Effi-MVS+-dtu87.44 19086.72 18089.63 22892.04 24577.68 26294.03 17793.94 23485.81 13982.42 26891.32 25470.33 22797.06 22580.33 22890.23 18494.14 222
v114487.61 18286.79 17890.06 20991.01 28179.34 22193.95 18395.42 17183.36 19585.66 19091.31 25574.98 16497.42 19183.37 17282.06 28193.42 262
tfpnnormal84.72 25983.23 26489.20 23892.79 22980.05 20094.48 14295.81 13882.38 21381.08 28491.21 25669.01 24796.95 23161.69 34980.59 30690.58 331
ETV-MVS92.74 5892.66 5792.97 7895.20 13284.04 8995.07 10896.51 9190.73 2092.96 5491.19 25784.06 6498.34 11691.72 6996.54 9296.54 128
v1087.25 19986.38 19489.85 21791.19 27479.50 21594.48 14295.45 16683.79 18383.62 25291.19 25775.13 16197.42 19181.94 19880.60 30592.63 289
pmmvs584.21 26382.84 27088.34 25988.95 32576.94 27292.41 23991.91 29075.63 30780.28 29491.18 25964.59 28495.57 29677.09 26383.47 26692.53 291
v119287.25 19986.33 19790.00 21490.76 29579.04 22993.80 18995.48 16282.57 21085.48 20091.18 25973.38 19297.42 19182.30 19182.06 28193.53 256
v124086.78 21685.85 21789.56 22990.45 30677.79 25893.61 19795.37 17481.65 23285.43 20591.15 26171.50 20997.43 19081.47 20982.05 28393.47 260
CMPMVSbinary59.16 2180.52 29979.20 30184.48 32083.98 35567.63 35089.95 29593.84 24164.79 35566.81 35691.14 26257.93 32395.17 30776.25 27088.10 22290.65 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres20087.21 20386.24 20290.12 20695.36 12578.53 23693.26 21392.10 28086.42 12788.00 14391.11 26369.24 24498.00 14969.58 31591.04 17893.83 240
pmmvs683.42 27281.60 27688.87 24688.01 33777.87 25594.96 11494.24 22574.67 31878.80 31091.09 26460.17 31396.49 25777.06 26475.40 33792.23 301
v14419287.19 20586.35 19689.74 22390.64 29978.24 24693.92 18695.43 16981.93 22485.51 19791.05 26574.21 17697.45 18782.86 18081.56 28993.53 256
v192192086.97 21186.06 20989.69 22790.53 30578.11 24993.80 18995.43 16981.90 22685.33 21391.05 26572.66 19997.41 19682.05 19681.80 28693.53 256
baseline286.50 22785.39 22989.84 21891.12 27876.70 27591.88 25588.58 34182.35 21579.95 30190.95 26773.42 19097.63 17380.27 22989.95 18995.19 173
thisisatest051587.33 19585.99 21191.37 15293.49 20679.55 21490.63 27989.56 33880.17 25387.56 15290.86 26867.07 26298.28 12281.50 20893.02 15696.29 133
v7n86.81 21485.76 22289.95 21590.72 29779.25 22795.07 10895.92 12984.45 17282.29 26990.86 26872.60 20197.53 18179.42 24080.52 30993.08 276
DIV-MVS_self_test86.53 22585.78 21988.75 24892.02 24776.45 27990.74 27794.30 22281.83 23083.34 25990.82 27075.75 15496.57 25181.73 20581.52 29193.24 268
v14887.04 20986.32 19889.21 23790.94 28677.26 26893.71 19494.43 21684.84 16584.36 23490.80 27176.04 14897.05 22682.12 19479.60 31893.31 264
cl____86.52 22685.78 21988.75 24892.03 24676.46 27890.74 27794.30 22281.83 23083.34 25990.78 27275.74 15696.57 25181.74 20481.54 29093.22 269
PMMVS85.71 24184.96 23987.95 27088.90 32677.09 27088.68 31390.06 32772.32 33886.47 17390.76 27372.15 20594.40 31581.78 20393.49 14592.36 297
Fast-Effi-MVS+89.41 12688.64 12891.71 13894.74 15380.81 17993.54 19995.10 18683.11 19986.82 17090.67 27479.74 10897.75 16480.51 22593.55 14296.57 126
IterMVS-SCA-FT85.45 24384.53 24988.18 26491.71 25776.87 27390.19 29092.65 26685.40 15281.44 27990.54 27566.79 26695.00 31281.04 21381.05 29792.66 288
PVSNet78.82 1885.55 24284.65 24688.23 26394.72 15571.93 32287.12 33092.75 26378.80 27384.95 21890.53 27664.43 28596.71 24174.74 28593.86 13796.06 145
eth_miper_zixun_eth86.50 22785.77 22188.68 25191.94 24875.81 28790.47 28194.89 19782.05 21984.05 24190.46 27775.96 14996.77 23882.76 18479.36 32093.46 261
c3_l87.14 20786.50 19289.04 24392.20 23977.26 26891.22 27194.70 21082.01 22284.34 23590.43 27878.81 11996.61 24883.70 17081.09 29693.25 267
IterMVS84.88 25683.98 25687.60 27591.44 26376.03 28490.18 29192.41 26983.24 19881.06 28590.42 27966.60 26994.28 31979.46 23680.98 30292.48 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_040281.30 29479.17 30287.67 27493.19 21378.17 24792.98 22591.71 29175.25 31176.02 32990.31 28059.23 31896.37 26550.22 36383.63 26488.47 348
TinyColmap79.76 30677.69 30885.97 30691.71 25773.12 30889.55 29790.36 32275.03 31372.03 34790.19 28146.22 35696.19 27463.11 34581.03 29888.59 347
EG-PatchMatch MVS82.37 28080.34 28688.46 25590.27 30879.35 22092.80 23194.33 22177.14 29473.26 34390.18 28247.47 35496.72 23970.25 30887.32 23689.30 339
cl2286.78 21685.98 21289.18 23992.34 23677.62 26390.84 27694.13 23081.33 24083.97 24490.15 28373.96 18196.60 25084.19 16282.94 27193.33 263
lessismore_v086.04 30588.46 33168.78 34580.59 36473.01 34490.11 28455.39 33196.43 26375.06 28265.06 35792.90 281
miper_ehance_all_eth87.22 20286.62 18789.02 24492.13 24277.40 26790.91 27594.81 20581.28 24184.32 23690.08 28579.26 11596.62 24583.81 16882.94 27193.04 277
D2MVS85.90 23685.09 23688.35 25890.79 29377.42 26691.83 25795.70 14680.77 24980.08 29990.02 28666.74 26896.37 26581.88 20087.97 22691.26 317
LF4IMVS80.37 30179.07 30484.27 32386.64 34369.87 34289.39 30291.05 31076.38 29974.97 33490.00 28747.85 35394.25 32074.55 28880.82 30488.69 346
CostFormer85.77 24084.94 24088.26 26191.16 27772.58 31989.47 30191.04 31176.26 30286.45 17689.97 28870.74 21996.86 23782.35 19087.07 23995.34 170
test20.0379.95 30479.08 30382.55 33085.79 34967.74 34991.09 27391.08 30881.23 24474.48 33889.96 28961.63 30090.15 35360.08 35376.38 33389.76 334
tpm84.73 25884.02 25486.87 29790.33 30768.90 34489.06 30889.94 33080.85 24885.75 18789.86 29068.54 25395.97 28177.76 25484.05 25995.75 157
miper_lstm_enhance85.27 25084.59 24887.31 28291.28 27274.63 29487.69 32494.09 23281.20 24581.36 28189.85 29174.97 16594.30 31881.03 21579.84 31793.01 278
test0.0.03 182.41 27981.69 27584.59 31988.23 33472.89 31090.24 28787.83 34483.41 19379.86 30289.78 29267.25 25888.99 35965.18 33883.42 26891.90 306
K. test v381.59 28880.15 29085.91 30989.89 31769.42 34392.57 23687.71 34585.56 14873.44 34289.71 29355.58 32995.52 29977.17 26169.76 34792.78 286
CHOSEN 280x42085.15 25283.99 25588.65 25292.47 23378.40 24179.68 36292.76 26274.90 31681.41 28089.59 29469.85 23395.51 30079.92 23395.29 11292.03 303
GA-MVS86.61 22185.27 23390.66 17991.33 27178.71 23290.40 28293.81 24285.34 15385.12 21589.57 29561.25 30597.11 22280.99 21689.59 19696.15 137
Effi-MVS+-dtu88.65 15088.35 13889.54 23093.33 21076.39 28094.47 14594.36 22087.70 10285.43 20589.56 29673.45 18997.26 21185.57 14691.28 17294.97 178
tpm284.08 26482.94 26787.48 28091.39 26771.27 32989.23 30590.37 32171.95 34084.64 22289.33 29767.30 25796.55 25575.17 28087.09 23894.63 193
Anonymous2023120681.03 29679.77 29484.82 31887.85 34070.26 33991.42 26692.08 28173.67 32777.75 31689.25 29862.43 29693.08 33661.50 35082.00 28491.12 322
miper_enhance_ethall86.90 21386.18 20389.06 24291.66 26077.58 26490.22 28994.82 20479.16 26784.48 22789.10 29979.19 11696.66 24284.06 16382.94 27192.94 280
ppachtmachnet_test81.84 28380.07 29187.15 29088.46 33174.43 29889.04 30992.16 27775.33 31077.75 31688.99 30066.20 27495.37 30565.12 33977.60 32791.65 309
gm-plane-assit89.60 32268.00 34677.28 29388.99 30097.57 17679.44 238
MDTV_nov1_ep1383.56 26191.69 25969.93 34187.75 32391.54 29878.60 27784.86 21988.90 30269.54 23696.03 27870.25 30888.93 208
SCA86.32 23185.18 23489.73 22592.15 24076.60 27691.12 27291.69 29383.53 19085.50 19888.81 30366.79 26696.48 25876.65 26590.35 18396.12 140
Patchmatch-test81.37 29279.30 29887.58 27690.92 28874.16 30180.99 35887.68 34670.52 34676.63 32488.81 30371.21 21192.76 33960.01 35586.93 24095.83 154
tpmrst85.35 24784.99 23786.43 30290.88 29167.88 34888.71 31291.43 30280.13 25486.08 18488.80 30573.05 19496.02 27982.48 18683.40 26995.40 167
DSMNet-mixed76.94 31876.29 31778.89 33783.10 35856.11 37287.78 32279.77 36560.65 35975.64 33088.71 30661.56 30288.34 36060.07 35489.29 20192.21 302
PatchmatchNetpermissive85.85 23884.70 24589.29 23691.76 25475.54 28988.49 31591.30 30481.63 23485.05 21688.70 30771.71 20696.24 27174.61 28789.05 20596.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet82.59 27880.53 28388.76 24791.51 26278.32 24386.57 33390.13 32579.32 26380.70 28888.69 30852.98 34293.07 33766.03 33588.86 20994.90 185
IB-MVS80.51 1585.24 25183.26 26391.19 15892.13 24279.86 20891.75 25991.29 30583.28 19780.66 28988.49 30961.28 30498.46 10580.99 21679.46 31995.25 172
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 23084.98 23890.80 17792.10 24480.92 17690.24 28795.91 13173.10 33283.57 25488.39 31065.15 28197.46 18684.90 15391.43 17194.03 230
EPMVS83.90 26982.70 27187.51 27790.23 31072.67 31488.62 31481.96 36181.37 23985.01 21788.34 31166.31 27394.45 31475.30 27987.12 23795.43 166
MDA-MVSNet-bldmvs78.85 31176.31 31686.46 30189.76 31873.88 30288.79 31190.42 32079.16 26759.18 36088.33 31260.20 31294.04 32162.00 34868.96 35191.48 313
our_test_381.93 28280.46 28586.33 30488.46 33173.48 30688.46 31691.11 30776.46 29776.69 32388.25 31366.89 26494.36 31668.75 31879.08 32291.14 321
OpenMVS_ROBcopyleft74.94 1979.51 30777.03 31486.93 29387.00 34276.23 28392.33 24490.74 31868.93 34974.52 33788.23 31449.58 34896.62 24557.64 35784.29 25687.94 350
MIMVSNet179.38 30877.28 31085.69 31186.35 34473.67 30391.61 26492.75 26378.11 28772.64 34588.12 31548.16 35191.97 34660.32 35277.49 32891.43 314
UnsupCasMVSNet_eth80.07 30378.27 30785.46 31285.24 35372.63 31788.45 31794.87 20082.99 20371.64 34988.07 31656.34 32791.75 34773.48 29463.36 36092.01 304
test-LLR85.87 23785.41 22887.25 28590.95 28471.67 32789.55 29789.88 33383.41 19384.54 22587.95 31767.25 25895.11 30981.82 20193.37 15094.97 178
test-mter84.54 26183.64 26087.25 28590.95 28471.67 32789.55 29789.88 33379.17 26684.54 22587.95 31755.56 33095.11 30981.82 20193.37 15094.97 178
FMVSNet581.52 29079.60 29687.27 28391.17 27577.95 25191.49 26592.26 27576.87 29576.16 32687.91 31951.67 34392.34 34167.74 32681.16 29391.52 311
CR-MVSNet85.35 24783.76 25890.12 20690.58 30279.34 22185.24 34291.96 28878.27 28385.55 19287.87 32071.03 21495.61 29573.96 29189.36 19995.40 167
Patchmtry82.71 27680.93 28288.06 26790.05 31376.37 28184.74 34791.96 28872.28 33981.32 28287.87 32071.03 21495.50 30268.97 31780.15 31292.32 299
YYNet179.22 30977.20 31185.28 31588.20 33672.66 31585.87 33690.05 32974.33 32162.70 35887.61 32266.09 27692.03 34366.94 33072.97 34091.15 320
MDA-MVSNet_test_wron79.21 31077.19 31285.29 31488.22 33572.77 31285.87 33690.06 32774.34 32062.62 35987.56 32366.14 27591.99 34566.90 33373.01 33991.10 324
Anonymous2024052180.44 30079.21 30084.11 32485.75 35067.89 34792.86 22993.23 25275.61 30875.59 33187.47 32450.03 34694.33 31771.14 30581.21 29290.12 333
TESTMET0.1,183.74 27082.85 26986.42 30389.96 31571.21 33189.55 29787.88 34377.41 29083.37 25887.31 32556.71 32693.65 32980.62 22392.85 16094.40 212
CL-MVSNet_self_test81.74 28580.53 28385.36 31385.96 34772.45 32090.25 28593.07 25581.24 24379.85 30387.29 32670.93 21692.52 34066.95 32969.23 34991.11 323
MVS_030483.46 27181.92 27488.10 26690.63 30077.49 26593.26 21393.75 24480.04 25680.44 29387.24 32747.94 35295.55 29775.79 27488.16 22191.26 317
tpmvs83.35 27482.07 27287.20 28991.07 28071.00 33488.31 31891.70 29278.91 26980.49 29287.18 32869.30 24397.08 22368.12 32583.56 26593.51 259
dp81.47 29180.23 28885.17 31689.92 31665.49 35586.74 33190.10 32676.30 30181.10 28387.12 32962.81 29495.92 28368.13 32479.88 31594.09 226
test_fmvs377.67 31677.16 31379.22 33679.52 36361.14 36292.34 24391.64 29573.98 32478.86 30986.59 33027.38 36787.03 36188.12 11275.97 33589.50 336
mvsany_test374.95 32173.26 32480.02 33574.61 36663.16 36085.53 34078.42 36874.16 32274.89 33586.46 33136.02 36289.09 35882.39 18966.91 35487.82 351
PM-MVS78.11 31476.12 31884.09 32583.54 35770.08 34088.97 31085.27 35279.93 25774.73 33686.43 33234.70 36393.48 33079.43 23972.06 34388.72 345
KD-MVS_self_test80.20 30279.24 29983.07 32885.64 35165.29 35691.01 27493.93 23578.71 27676.32 32586.40 33359.20 31992.93 33872.59 29769.35 34891.00 326
tpm cat181.96 28180.27 28787.01 29191.09 27971.02 33387.38 32891.53 29966.25 35280.17 29586.35 33468.22 25696.15 27569.16 31682.29 27993.86 238
pmmvs-eth3d80.97 29778.72 30687.74 27284.99 35479.97 20690.11 29291.65 29475.36 30973.51 34186.03 33559.45 31793.96 32475.17 28072.21 34289.29 340
KD-MVS_2432*160078.50 31276.02 31985.93 30786.22 34574.47 29684.80 34592.33 27179.29 26476.98 32185.92 33653.81 34093.97 32267.39 32757.42 36589.36 337
miper_refine_blended78.50 31276.02 31985.93 30786.22 34574.47 29684.80 34592.33 27179.29 26476.98 32185.92 33653.81 34093.97 32267.39 32757.42 36589.36 337
ADS-MVSNet281.66 28779.71 29587.50 27891.35 26974.19 30083.33 35288.48 34272.90 33482.24 27185.77 33864.98 28293.20 33564.57 34183.74 26195.12 174
ADS-MVSNet81.56 28979.78 29386.90 29591.35 26971.82 32483.33 35289.16 33972.90 33482.24 27185.77 33864.98 28293.76 32664.57 34183.74 26195.12 174
N_pmnet68.89 32768.44 32970.23 34789.07 32428.79 38188.06 31919.50 38269.47 34871.86 34884.93 34061.24 30691.75 34754.70 36077.15 33090.15 332
EGC-MVSNET61.97 33156.37 33578.77 33889.63 32173.50 30589.12 30782.79 3580.21 3791.24 38084.80 34139.48 36090.04 35444.13 36575.94 33672.79 363
APD_test169.04 32666.26 33077.36 34280.51 36162.79 36185.46 34183.51 35754.11 36359.14 36184.79 34223.40 37089.61 35555.22 35970.24 34679.68 361
ambc83.06 32979.99 36263.51 35977.47 36392.86 25974.34 33984.45 34328.74 36495.06 31173.06 29668.89 35290.61 328
GG-mvs-BLEND87.94 27189.73 32077.91 25287.80 32178.23 37080.58 29083.86 34459.88 31595.33 30671.20 30292.22 16790.60 330
patchmatchnet-post83.76 34571.53 20896.48 258
PatchT82.68 27781.27 27986.89 29690.09 31270.94 33584.06 34990.15 32474.91 31585.63 19183.57 34669.37 23894.87 31365.19 33788.50 21594.84 187
new-patchmatchnet76.41 31975.17 32180.13 33482.65 36059.61 36487.66 32591.08 30878.23 28569.85 35283.22 34754.76 33491.63 34964.14 34364.89 35889.16 342
test_f71.95 32470.87 32675.21 34374.21 36859.37 36585.07 34485.82 34965.25 35470.42 35183.13 34823.62 36882.93 36878.32 24871.94 34483.33 355
PVSNet_073.20 2077.22 31774.83 32284.37 32190.70 29871.10 33283.09 35489.67 33672.81 33673.93 34083.13 34860.79 30993.70 32868.54 31950.84 36888.30 349
RPMNet83.95 26781.53 27791.21 15790.58 30279.34 22185.24 34296.76 7271.44 34285.55 19282.97 35070.87 21798.91 7561.01 35189.36 19995.40 167
Patchmatch-RL test81.67 28679.96 29286.81 29885.42 35271.23 33082.17 35687.50 34778.47 27877.19 32082.50 35170.81 21893.48 33082.66 18572.89 34195.71 161
FPMVS64.63 33062.55 33270.88 34670.80 37056.71 36784.42 34884.42 35451.78 36449.57 36481.61 35223.49 36981.48 36940.61 37076.25 33474.46 362
test_vis1_rt77.96 31576.46 31582.48 33185.89 34871.74 32690.25 28578.89 36771.03 34571.30 35081.35 35342.49 35991.05 35084.55 15882.37 27884.65 353
pmmvs371.81 32568.71 32881.11 33375.86 36570.42 33886.74 33183.66 35658.95 36068.64 35580.89 35436.93 36189.52 35663.10 34663.59 35983.39 354
new_pmnet72.15 32370.13 32778.20 33982.95 35965.68 35383.91 35082.40 36062.94 35864.47 35779.82 35542.85 35886.26 36357.41 35874.44 33882.65 358
UnsupCasMVSNet_bld76.23 32073.27 32385.09 31783.79 35672.92 30985.65 33993.47 24971.52 34168.84 35479.08 35649.77 34793.21 33466.81 33460.52 36289.13 344
testf159.54 33356.11 33669.85 34869.28 37156.61 36980.37 36076.55 37242.58 36845.68 36775.61 35711.26 37884.18 36543.20 36760.44 36368.75 364
APD_test259.54 33356.11 33669.85 34869.28 37156.61 36980.37 36076.55 37242.58 36845.68 36775.61 35711.26 37884.18 36543.20 36760.44 36368.75 364
DeepMVS_CXcopyleft56.31 35574.23 36751.81 37456.67 38044.85 36648.54 36675.16 35927.87 36658.74 37640.92 36952.22 36758.39 369
test_method50.52 33848.47 34056.66 35452.26 38018.98 38341.51 37281.40 36210.10 37444.59 36975.01 36028.51 36568.16 37253.54 36149.31 36982.83 357
JIA-IIPM81.04 29578.98 30587.25 28588.64 32773.48 30681.75 35789.61 33773.19 33182.05 27373.71 36166.07 27795.87 28671.18 30484.60 25492.41 295
LCM-MVSNet66.00 32862.16 33377.51 34164.51 37658.29 36683.87 35190.90 31448.17 36554.69 36273.31 36216.83 37686.75 36265.47 33661.67 36187.48 352
PMMVS259.60 33256.40 33469.21 35068.83 37346.58 37673.02 36777.48 37155.07 36249.21 36572.95 36317.43 37580.04 37049.32 36444.33 37080.99 360
gg-mvs-nofinetune81.77 28479.37 29788.99 24590.85 29277.73 26186.29 33479.63 36674.88 31783.19 26269.05 36460.34 31196.11 27675.46 27794.64 12393.11 274
MVS-HIRNet73.70 32272.20 32578.18 34091.81 25356.42 37182.94 35582.58 35955.24 36168.88 35366.48 36555.32 33295.13 30858.12 35688.42 21783.01 356
PMVScopyleft47.18 2252.22 33748.46 34163.48 35245.72 38146.20 37773.41 36678.31 36941.03 37030.06 37365.68 3666.05 38083.43 36730.04 37265.86 35560.80 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_vis3_rt65.12 32962.60 33172.69 34571.44 36960.71 36387.17 32965.55 37563.80 35753.22 36365.65 36714.54 37789.44 35776.65 26565.38 35667.91 366
ANet_high58.88 33554.22 33972.86 34456.50 37956.67 36880.75 35986.00 34873.09 33337.39 37164.63 36822.17 37179.49 37143.51 36623.96 37382.43 359
tmp_tt35.64 34239.24 34424.84 35814.87 38223.90 38262.71 36851.51 3816.58 37636.66 37262.08 36944.37 35730.34 37852.40 36222.00 37520.27 373
MVEpermissive39.65 2343.39 33938.59 34557.77 35356.52 37848.77 37555.38 36958.64 37929.33 37328.96 37452.65 3704.68 38164.62 37528.11 37333.07 37159.93 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft57.99 33654.91 33867.24 35188.51 32865.59 35452.21 37090.33 32343.58 36742.84 37051.18 37120.29 37385.07 36434.77 37170.45 34551.05 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 34042.29 34246.03 35665.58 37537.41 37873.51 36564.62 37633.99 37128.47 37547.87 37219.90 37467.91 37322.23 37424.45 37232.77 371
EMVS42.07 34141.12 34344.92 35763.45 37735.56 38073.65 36463.48 37733.05 37226.88 37645.45 37321.27 37267.14 37419.80 37523.02 37432.06 372
X-MVStestdata88.31 15886.13 20494.85 2398.54 1386.60 3196.93 2297.19 3390.66 2292.85 5723.41 37485.02 5499.49 2491.99 6198.56 4698.47 31
test_post10.29 37570.57 22495.91 285
test_post188.00 3209.81 37669.31 24295.53 29876.65 265
testmvs8.92 34511.52 3481.12 3611.06 3830.46 38586.02 3350.65 3840.62 3772.74 3789.52 3770.31 3840.45 3802.38 3770.39 3772.46 376
test1238.76 34611.22 3491.39 3600.85 3840.97 38485.76 3380.35 3850.54 3782.45 3798.14 3780.60 3830.48 3792.16 3780.17 3782.71 375
wuyk23d21.27 34420.48 34723.63 35968.59 37436.41 37949.57 3716.85 3839.37 3757.89 3774.46 3794.03 38231.37 37717.47 37616.07 3763.12 374
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.64 3488.86 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38079.70 1090.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS198.86 185.54 6398.29 197.49 589.79 4196.29 15
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6199.61 396.03 199.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6199.61 396.03 199.06 999.07 5
eth-test20.00 385
eth-test0.00 385
IU-MVS98.77 586.00 4796.84 6381.26 24297.26 795.50 1099.13 399.03 7
save fliter97.85 4685.63 6295.21 9896.82 6689.44 48
test_0728_SECOND95.01 1598.79 286.43 3697.09 1697.49 599.61 395.62 899.08 798.99 8
GSMVS96.12 140
test_part298.55 1287.22 1696.40 14
sam_mvs171.70 20796.12 140
sam_mvs70.60 220
MTGPAbinary96.97 48
MTMP96.16 4960.64 378
test9_res91.91 6598.71 3098.07 64
agg_prior290.54 8898.68 3598.27 50
agg_prior97.38 6385.92 5496.72 7892.16 7598.97 70
test_prior485.96 5194.11 168
test_prior93.82 5697.29 6784.49 7796.88 5998.87 7798.11 63
旧先验293.36 20571.25 34394.37 2897.13 22186.74 131
新几何293.11 220
无先验93.28 21296.26 10473.95 32599.05 5380.56 22496.59 125
原ACMM292.94 227
testdata298.75 8778.30 249
segment_acmp87.16 34
testdata192.15 25087.94 93
test1294.34 4797.13 7086.15 4596.29 10191.04 10185.08 5299.01 6198.13 5997.86 77
plane_prior794.70 15782.74 127
plane_prior694.52 16682.75 12574.23 174
plane_prior596.22 10998.12 13188.15 10989.99 18694.63 193
plane_prior382.75 12590.26 3186.91 166
plane_prior295.85 6590.81 15
plane_prior194.59 161
plane_prior82.73 12895.21 9889.66 4589.88 191
n20.00 386
nn0.00 386
door-mid85.49 350
test1196.57 89
door85.33 351
HQP5-MVS81.56 154
HQP-NCC94.17 18094.39 15288.81 6585.43 205
ACMP_Plane94.17 18094.39 15288.81 6585.43 205
BP-MVS87.11 128
HQP4-MVS85.43 20597.96 15294.51 203
HQP3-MVS96.04 12289.77 193
HQP2-MVS73.83 184
MDTV_nov1_ep13_2view55.91 37387.62 32673.32 33084.59 22470.33 22774.65 28695.50 164
ACMMP++_ref87.47 231
ACMMP++88.01 225
Test By Simon80.02 104