This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9188.22 1888.53 12997.64 283.45 8394.55 7886.02 4898.60 1296.67 27
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23289.67 6988.38 19988.84 1394.29 1897.57 390.48 1391.26 18472.57 20297.65 6097.34 15
pmmvs686.52 9688.06 7481.90 20992.22 10162.28 26084.66 15589.15 18983.54 5289.85 10397.32 488.08 3686.80 27870.43 21997.30 7696.62 28
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7681.10 7795.32 1097.24 572.94 20994.85 6785.07 5497.78 5397.26 16
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22288.86 8693.02 8487.15 2393.05 4397.10 682.28 10292.02 16576.70 15097.99 4096.88 25
gg-mvs-nofinetune68.96 33169.11 32468.52 35276.12 37145.32 38483.59 18355.88 40286.68 2464.62 39197.01 730.36 40083.97 31844.78 38582.94 35676.26 380
K. test v385.14 11984.73 13286.37 10791.13 14069.63 18285.45 14276.68 32084.06 4592.44 5796.99 862.03 27594.65 7280.58 10593.24 21194.83 72
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6993.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ANet_high83.17 16585.68 11875.65 30281.24 32445.26 38579.94 25292.91 8783.83 4691.33 7496.88 1080.25 12985.92 29468.89 23795.89 12995.76 43
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11270.73 21094.19 2196.67 1176.94 16194.57 7683.07 7496.28 10896.15 33
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15270.00 21994.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17271.54 20194.28 2096.54 1381.57 11494.27 8486.26 4096.49 9997.09 21
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20781.66 7094.64 1496.53 1465.94 25294.75 6983.02 7696.83 8795.41 51
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16669.27 22394.39 1696.38 1586.02 6293.52 12083.96 6695.92 12895.34 53
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 8086.53 2694.29 1896.27 1782.69 9094.08 9586.25 4297.63 6197.82 8
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31288.93 8592.84 9091.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
VDDNet84.35 13585.39 12381.25 22295.13 3159.32 29585.42 14381.11 29186.41 2787.41 15296.21 1973.61 19790.61 20966.33 25796.85 8593.81 115
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30288.95 8493.19 7291.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16969.87 22095.06 1196.14 2184.28 7493.07 13787.68 1596.34 10597.09 21
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30589.04 8392.74 9391.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
EGC-MVSNET74.79 27969.99 31989.19 6394.89 3787.00 1191.89 3486.28 2331.09 4072.23 40995.98 2381.87 11189.48 23779.76 11295.96 12491.10 214
MIMVSNet183.63 15584.59 13780.74 23194.06 5362.77 25082.72 20784.53 26477.57 12190.34 9295.92 2476.88 16785.83 29961.88 29697.42 7293.62 124
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 19177.34 12293.63 3595.83 2565.40 25795.90 1585.01 5798.23 2797.49 13
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16989.44 18688.63 1694.38 1795.77 2686.38 5893.59 11679.84 11195.21 15291.82 197
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3383.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
Baseline_NR-MVSNet84.00 14885.90 11278.29 26891.47 13153.44 34282.29 22187.00 22779.06 10289.55 11495.72 2877.20 15586.14 29272.30 20498.51 1695.28 56
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25789.54 7493.31 6790.21 1095.57 995.66 2981.42 11695.90 1580.94 9998.80 298.84 5
GBi-Net82.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20472.43 18986.00 18495.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
test182.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20472.43 18986.00 18495.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
FMVSNet184.55 13185.45 12281.85 21190.27 15861.05 27386.83 11888.27 20478.57 11089.66 10995.64 3075.43 17590.68 20669.09 23495.33 14793.82 112
TransMVSNet (Re)84.02 14785.74 11778.85 25691.00 14355.20 33382.29 22187.26 21579.65 9388.38 13595.52 3383.00 8786.88 27667.97 24896.60 9494.45 82
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4981.89 6894.70 1395.44 3490.69 888.31 25983.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
wuyk23d75.13 27279.30 22562.63 37275.56 37475.18 12480.89 24273.10 34775.06 15094.76 1295.32 3587.73 4052.85 40234.16 40297.11 8059.85 399
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7386.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7386.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11894.45 82
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 7175.37 14792.84 4895.28 3885.58 6496.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs183.69 15384.95 13079.91 24390.04 16559.66 29282.43 21787.44 21275.52 14487.85 14595.26 3981.25 11885.65 30168.74 24096.04 12094.42 85
Anonymous2024052986.20 10287.13 8883.42 17790.19 15964.55 23084.55 15790.71 14985.85 3189.94 10295.24 4082.13 10490.40 21369.19 23396.40 10495.31 55
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11672.61 18892.16 6095.23 4166.01 25195.59 3786.02 4897.78 5397.24 17
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30888.66 9292.06 10990.78 695.67 795.17 4281.80 11295.54 4179.00 12198.69 998.95 4
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2485.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18488.51 1790.11 9595.12 4490.98 688.92 24977.55 14097.07 8183.13 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5577.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
Gipumacopyleft84.44 13386.33 10278.78 25784.20 28773.57 13289.55 7290.44 15784.24 4384.38 21494.89 4876.35 17280.40 33876.14 15896.80 8982.36 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13867.85 24386.63 17094.84 5079.58 13495.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2773.53 16689.71 10694.82 5185.09 6595.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13979.26 9989.68 10794.81 5482.44 9487.74 26376.54 15388.74 29096.61 29
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2774.04 15892.70 5394.66 5585.88 6391.50 17679.72 11397.32 7596.50 31
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14283.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
FC-MVSNet-test85.93 10787.05 9182.58 19992.25 9956.44 32385.75 13793.09 7877.33 12391.94 6694.65 5674.78 18493.41 12675.11 17098.58 1397.88 7
SSC-MVS77.55 24681.64 18565.29 36690.46 15420.33 41173.56 33768.28 37185.44 3288.18 14094.64 5970.93 22881.33 33171.25 20892.03 23694.20 92
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3685.33 3393.49 3694.64 5981.12 11995.88 1787.41 2295.94 12692.48 168
test_one_060193.85 5873.27 13694.11 3586.57 2593.47 3894.64 5988.42 26
LCM-MVSNet-Re83.48 15985.06 12778.75 25885.94 25955.75 32880.05 25094.27 2176.47 12996.09 594.54 6283.31 8589.75 23659.95 30894.89 16790.75 222
v1086.54 9587.10 8984.84 13688.16 20663.28 24386.64 12492.20 10575.42 14692.81 5094.50 6374.05 19394.06 9683.88 6796.28 10897.17 20
test072694.16 4972.56 14890.63 4593.90 4583.61 5093.75 3094.49 6489.76 18
v886.22 10186.83 9684.36 14987.82 21162.35 25986.42 12791.33 13376.78 12892.73 5294.48 6573.41 20293.72 10883.10 7395.41 14497.01 23
VPA-MVSNet83.47 16084.73 13279.69 24790.29 15757.52 31581.30 23788.69 19576.29 13087.58 15094.44 6680.60 12687.20 27066.60 25696.82 8894.34 89
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
lessismore_v085.95 11791.10 14170.99 17170.91 36291.79 6794.42 6961.76 27692.93 14179.52 11793.03 21693.93 106
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4580.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12184.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 178
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8382.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5383.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_TWO93.71 5283.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 190
VDD-MVS84.23 14184.58 13883.20 18491.17 13965.16 22583.25 19284.97 25979.79 9087.18 15494.27 7474.77 18590.89 19869.24 23096.54 9693.55 130
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3488.89 1188.83 12494.26 7777.55 15195.86 2284.88 5895.87 13095.24 58
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9683.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6881.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
test250674.12 28473.39 28476.28 29791.85 11444.20 38884.06 16848.20 40772.30 19581.90 26094.20 8027.22 40889.77 23464.81 27396.02 12194.87 67
test111178.53 23678.85 22977.56 28092.22 10147.49 37482.61 20969.24 36972.43 18985.28 19694.20 8051.91 33190.07 22665.36 26896.45 10295.11 62
ECVR-MVScopyleft78.44 23778.63 23377.88 27691.85 11448.95 36883.68 18169.91 36672.30 19584.26 22394.20 8051.89 33289.82 23163.58 28296.02 12194.87 67
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 7081.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
tfpnnormal81.79 19082.95 16578.31 26688.93 18655.40 32980.83 24482.85 27876.81 12785.90 18894.14 8474.58 18886.51 28366.82 25495.68 14193.01 148
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2982.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_030486.35 9885.92 11187.66 8889.21 18073.16 13988.40 9583.63 27181.27 7480.87 27894.12 8671.49 22695.71 3287.79 1296.50 9894.11 100
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3884.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10992.09 10878.87 10584.27 22294.05 8878.35 14293.65 10980.54 10691.58 24792.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4888.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 185
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6283.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2680.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
FIs85.35 11586.27 10382.60 19891.86 11357.31 31685.10 14993.05 8075.83 13991.02 8193.97 9273.57 19892.91 14373.97 18198.02 3997.58 12
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 6082.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
ambc82.98 18890.55 15364.86 22688.20 9689.15 18989.40 11793.96 9571.67 22591.38 18378.83 12296.55 9592.71 159
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6981.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 7195.37 5180.87 10095.50 14394.53 79
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11584.26 4290.87 8793.92 9982.18 10389.29 24573.75 18594.81 17193.70 119
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 4079.68 9292.09 6293.89 10083.80 7893.10 13682.67 8298.04 3693.64 123
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23384.38 16291.29 13484.88 3992.06 6393.84 10186.45 5593.73 10773.22 19398.66 1097.69 9
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5180.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22984.54 4183.58 23493.78 10473.36 20596.48 187.98 996.21 11294.41 86
test_241102_ONE94.18 4672.65 14293.69 5383.62 4994.11 2293.78 10490.28 1495.50 46
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3879.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052180.18 21881.25 19676.95 28783.15 30760.84 28082.46 21685.99 24068.76 23086.78 16493.73 10759.13 29477.44 35073.71 18697.55 6792.56 164
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23265.22 22384.16 16494.23 2477.89 11691.28 7793.66 10884.35 7392.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12192.78 9278.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6379.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVS76.06 26480.01 22064.19 36989.96 16720.58 41072.18 34668.19 37283.21 5486.46 17893.49 11170.19 23178.97 34565.96 25990.46 27193.02 147
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13393.60 5880.16 8789.13 12193.44 11283.82 7790.98 19383.86 6895.30 15193.60 125
KD-MVS_self_test81.93 18783.14 16278.30 26784.75 27752.75 34680.37 24789.42 18770.24 21790.26 9493.39 11374.55 18986.77 27968.61 24296.64 9295.38 52
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11793.91 4480.07 8986.75 16693.26 11493.64 290.93 19584.60 6190.75 26593.97 104
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7980.87 8191.13 7893.19 11586.22 5995.97 1282.23 8897.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator80.37 784.80 12684.71 13585.06 13486.36 24774.71 12588.77 8990.00 17475.65 14284.96 20293.17 11674.06 19291.19 18678.28 12891.09 25389.29 257
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25978.30 8586.93 11592.20 10565.94 25589.16 11993.16 11783.10 8689.89 23087.81 1194.43 18293.35 132
ab-mvs79.67 22480.56 20676.99 28688.48 19856.93 31984.70 15486.06 23768.95 22880.78 28093.08 11875.30 17784.62 30956.78 32390.90 26089.43 253
SDMVSNet81.90 18983.17 16178.10 27188.81 18962.45 25676.08 31386.05 23873.67 16383.41 23793.04 11982.35 9780.65 33670.06 22495.03 16091.21 211
sd_testset79.95 22381.39 19475.64 30388.81 18958.07 31076.16 31282.81 27973.67 16383.41 23793.04 11980.96 12177.65 34958.62 31495.03 16091.21 211
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14393.03 12182.66 9191.47 17770.81 21196.14 11594.16 96
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14393.03 12182.66 9191.47 17770.81 21196.14 11594.16 96
ZD-MVS92.22 10180.48 6791.85 11771.22 20690.38 9192.98 12386.06 6196.11 681.99 9196.75 90
FMVSNet281.31 19581.61 18780.41 23786.38 24458.75 30683.93 17386.58 23172.43 18987.65 14892.98 12363.78 26690.22 21766.86 25193.92 19492.27 181
JIA-IIPM69.41 32666.64 34377.70 27973.19 38871.24 16975.67 31665.56 38270.42 21265.18 38692.97 12533.64 39583.06 32153.52 34769.61 39878.79 376
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5679.44 9686.55 17192.95 12674.84 18295.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8687.95 2089.62 11092.87 12984.56 7093.89 10277.65 13896.62 9390.70 225
VPNet80.25 21581.68 18475.94 30092.46 9247.98 37276.70 30181.67 28873.45 16884.87 20592.82 13074.66 18786.51 28361.66 29996.85 8593.33 133
mvs_anonymous78.13 24078.76 23176.23 29979.24 34750.31 36578.69 27384.82 26161.60 29783.09 24492.82 13073.89 19587.01 27168.33 24686.41 32191.37 208
UGNet82.78 16881.64 18586.21 11386.20 25376.24 11786.86 11685.68 24377.07 12673.76 34592.82 13069.64 23291.82 17269.04 23693.69 20290.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchT70.52 31472.76 29263.79 37179.38 34533.53 40577.63 28765.37 38373.61 16571.77 35492.79 13344.38 37275.65 35764.53 27885.37 33182.18 351
FA-MVS(test-final)83.13 16683.02 16483.43 17686.16 25666.08 21688.00 9988.36 20075.55 14385.02 20092.75 13465.12 25892.50 15174.94 17291.30 25191.72 199
LFMVS80.15 21980.56 20678.89 25589.19 18155.93 32585.22 14673.78 34082.96 5884.28 22192.72 13557.38 30690.07 22663.80 28195.75 13890.68 226
casdiffmvspermissive85.21 11785.85 11483.31 18086.17 25462.77 25083.03 19893.93 4374.69 15388.21 13892.68 13682.29 10191.89 16977.87 13793.75 20195.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPMNet78.88 22978.28 23880.68 23479.58 34162.64 25282.58 21194.16 2974.80 15175.72 32992.59 13748.69 34395.56 3973.48 18982.91 35783.85 328
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20991.21 3988.64 19686.30 2889.60 11392.59 13769.22 23594.91 6673.89 18297.89 4996.72 26
QAPM82.59 17182.59 17382.58 19986.44 24266.69 21089.94 6290.36 16067.97 24084.94 20492.58 13972.71 21292.18 16070.63 21787.73 30488.85 266
MG-MVS80.32 21480.94 20278.47 26488.18 20452.62 34982.29 22185.01 25772.01 19979.24 30092.54 14069.36 23493.36 12870.65 21689.19 28489.45 251
MVS_Test82.47 17483.22 15880.22 24082.62 31257.75 31482.54 21491.96 11371.16 20782.89 24692.52 14177.41 15290.50 21180.04 10987.84 30392.40 173
dcpmvs_284.23 14185.14 12681.50 21888.61 19561.98 26482.90 20493.11 7668.66 23292.77 5192.39 14278.50 14087.63 26576.99 14992.30 22894.90 65
CR-MVSNet74.00 28573.04 28876.85 29179.58 34162.64 25282.58 21176.90 31750.50 37375.72 32992.38 14348.07 34684.07 31668.72 24182.91 35783.85 328
Patchmtry76.56 25977.46 24373.83 31279.37 34646.60 37882.41 21876.90 31773.81 16185.56 19392.38 14348.07 34683.98 31763.36 28595.31 15090.92 218
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10379.74 9187.50 15192.38 14381.42 11693.28 12983.07 7497.24 7791.67 202
IterMVS-LS84.73 12784.98 12983.96 16087.35 22363.66 23783.25 19289.88 17676.06 13289.62 11092.37 14673.40 20492.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9485.26 26978.25 8685.82 13691.82 11965.33 26888.55 12892.35 14782.62 9389.80 23286.87 3294.32 18593.18 141
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 5078.90 10492.88 4592.29 14886.11 6090.22 21786.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13578.20 11386.69 16992.28 14980.36 12895.06 6286.17 4496.49 9990.22 237
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4578.43 11189.16 11992.25 15072.03 22296.36 388.21 790.93 25992.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous20240521180.51 20881.19 19978.49 26388.48 19857.26 31776.63 30382.49 28181.21 7684.30 22092.24 15167.99 24186.24 28762.22 29195.13 15591.98 194
TinyColmap81.25 19682.34 17777.99 27485.33 26860.68 28382.32 22088.33 20271.26 20586.97 16292.22 15277.10 15886.98 27462.37 29095.17 15486.31 297
baseline85.20 11885.93 11083.02 18786.30 24962.37 25884.55 15793.96 4174.48 15587.12 15592.03 15382.30 10091.94 16678.39 12494.21 18794.74 73
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20683.16 19692.21 10481.73 6990.92 8291.97 15477.20 15593.99 9774.16 17698.35 2197.61 10
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22982.21 22590.46 15680.99 7888.42 13391.97 15477.56 15093.85 10372.46 20398.65 1197.61 10
OpenMVScopyleft76.72 1381.98 18682.00 18081.93 20884.42 28268.22 19588.50 9489.48 18566.92 25081.80 26591.86 15672.59 21490.16 21971.19 21091.25 25287.40 286
FMVSNet572.10 30171.69 30173.32 31581.57 32053.02 34576.77 30078.37 30663.31 27776.37 31891.85 15736.68 39078.98 34447.87 37592.45 22687.95 278
旧先验191.97 10871.77 16081.78 28791.84 15873.92 19493.65 20383.61 331
EPP-MVSNet85.47 11385.04 12886.77 10191.52 12969.37 18491.63 3687.98 20981.51 7287.05 16191.83 15966.18 25095.29 5370.75 21496.89 8495.64 46
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20682.55 21391.56 12483.08 5790.92 8291.82 16078.25 14393.99 9774.16 17698.35 2197.49 13
test_fmvsmconf_n85.88 10885.51 12186.99 9684.77 27678.21 8785.40 14491.39 13165.32 26987.72 14791.81 16182.33 9889.78 23386.68 3494.20 18892.99 149
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17892.87 8880.37 8389.61 11291.81 16177.72 14894.18 9075.00 17198.53 1596.99 24
MIMVSNet71.09 31071.59 30269.57 34287.23 22550.07 36678.91 26971.83 35560.20 31571.26 35691.76 16355.08 32276.09 35441.06 39187.02 31482.54 347
testdata79.54 25092.87 8172.34 15380.14 29859.91 31785.47 19591.75 16467.96 24285.24 30368.57 24492.18 23581.06 367
CDPH-MVS86.17 10485.54 12088.05 8492.25 9975.45 12283.85 17592.01 11065.91 25786.19 18091.75 16483.77 7994.98 6477.43 14396.71 9193.73 118
fmvsm_s_conf0.1_n_a82.58 17281.93 18184.50 14487.68 21573.35 13386.14 13277.70 30961.64 29685.02 20091.62 16677.75 14786.24 28782.79 8087.07 31193.91 108
test_prior283.37 18875.43 14584.58 20991.57 16781.92 11079.54 11696.97 83
WR-MVS83.56 15784.40 14381.06 22793.43 6754.88 33478.67 27485.02 25681.24 7590.74 8991.56 16872.85 21091.08 19068.00 24798.04 3697.23 18
test20.0373.75 28774.59 27371.22 33281.11 32651.12 36170.15 36272.10 35370.42 21280.28 28991.50 16964.21 26274.72 36046.96 37994.58 17887.82 282
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14591.23 13677.31 12487.07 16091.47 17082.94 8894.71 7084.67 6096.27 11092.62 163
v2v48284.09 14484.24 14683.62 17087.13 22861.40 26782.71 20889.71 17972.19 19789.55 11491.41 17170.70 23093.20 13181.02 9893.76 19896.25 32
FE-MVS79.98 22278.86 22883.36 17886.47 24166.45 21389.73 6584.74 26372.80 18484.22 22591.38 17244.95 36993.60 11563.93 28091.50 24890.04 243
fmvsm_s_conf0.1_n82.17 18081.59 18883.94 16286.87 23871.57 16685.19 14777.42 31262.27 29084.47 21391.33 17376.43 16985.91 29583.14 7187.14 30994.33 90
PC_three_145258.96 32190.06 9691.33 17380.66 12593.03 13875.78 16195.94 12692.48 168
USDC76.63 25776.73 25476.34 29683.46 29757.20 31880.02 25188.04 20852.14 36183.65 23291.25 17563.24 26986.65 28154.66 34094.11 19085.17 309
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11994.68 7174.48 17395.35 14692.29 179
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10893.17 7376.02 13488.64 12791.22 17684.24 7593.37 12777.97 13697.03 8295.52 49
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16481.56 7190.02 9891.20 17882.40 9690.81 20273.58 18894.66 17694.56 76
MVS-HIRNet61.16 36262.92 35955.87 38379.09 34835.34 40471.83 34857.98 40146.56 38059.05 39991.14 17949.95 34176.43 35338.74 39571.92 39355.84 402
test_fmvsm_n_192083.60 15682.89 16685.74 12385.22 27077.74 9584.12 16690.48 15559.87 31886.45 17991.12 18075.65 17385.89 29782.28 8790.87 26193.58 126
tt080588.09 7489.79 5182.98 18893.26 7263.94 23691.10 4189.64 18185.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
新几何182.95 19093.96 5578.56 8480.24 29755.45 34283.93 22991.08 18271.19 22788.33 25865.84 26393.07 21581.95 354
EG-PatchMatch MVS84.08 14584.11 14783.98 15992.22 10172.61 14782.20 22787.02 22472.63 18788.86 12291.02 18378.52 13991.11 18973.41 19091.09 25388.21 271
v114484.54 13284.72 13484.00 15887.67 21662.55 25482.97 20190.93 14570.32 21589.80 10490.99 18473.50 19993.48 12281.69 9594.65 17795.97 39
TEST992.34 9579.70 7483.94 17190.32 16165.41 26784.49 21190.97 18582.03 10693.63 111
train_agg85.98 10685.28 12588.07 8392.34 9579.70 7483.94 17190.32 16165.79 25884.49 21190.97 18581.93 10893.63 11181.21 9696.54 9690.88 219
test_892.09 10578.87 8183.82 17690.31 16365.79 25884.36 21590.96 18781.93 10893.44 124
XXY-MVS74.44 28376.19 25869.21 34484.61 27852.43 35071.70 34977.18 31560.73 30980.60 28190.96 18775.44 17469.35 37256.13 32888.33 29485.86 302
v119284.57 13084.69 13684.21 15587.75 21362.88 24783.02 19991.43 12869.08 22689.98 10190.89 18972.70 21393.62 11482.41 8594.97 16496.13 34
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12591.09 14078.77 10784.85 20690.89 18980.85 12295.29 5381.14 9795.32 14892.34 176
fmvsm_s_conf0.5_n_a82.21 17881.51 19284.32 15286.56 24073.35 13385.46 14177.30 31361.81 29284.51 21090.88 19177.36 15386.21 28982.72 8186.97 31693.38 131
test_fmvsmvis_n_192085.22 11685.36 12484.81 13785.80 26176.13 11985.15 14892.32 10261.40 29891.33 7490.85 19283.76 8086.16 29184.31 6393.28 21092.15 187
test22293.31 7076.54 10979.38 26177.79 30852.59 35682.36 25390.84 19366.83 24791.69 24381.25 362
V4283.47 16083.37 15783.75 16683.16 30663.33 24281.31 23590.23 16869.51 22290.91 8490.81 19474.16 19192.29 15980.06 10890.22 27295.62 47
114514_t83.10 16782.54 17484.77 13992.90 8069.10 19186.65 12390.62 15354.66 34781.46 27090.81 19476.98 16094.38 8372.62 20196.18 11390.82 221
VNet79.31 22580.27 21176.44 29487.92 21053.95 33875.58 31984.35 26574.39 15682.23 25590.72 19672.84 21184.39 31260.38 30793.98 19390.97 216
DeepC-MVS_fast80.27 886.23 10085.65 11987.96 8591.30 13376.92 10687.19 11091.99 11170.56 21184.96 20290.69 19780.01 13195.14 5978.37 12595.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n81.91 18881.30 19583.75 16686.02 25871.56 16784.73 15377.11 31662.44 28784.00 22790.68 19876.42 17085.89 29783.14 7187.11 31093.81 115
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18792.38 10170.25 21689.35 11890.68 19882.85 8994.57 7679.55 11595.95 12592.00 192
原ACMM184.60 14392.81 8674.01 12991.50 12662.59 28282.73 24990.67 20076.53 16894.25 8669.24 23095.69 14085.55 305
v14882.31 17582.48 17581.81 21485.59 26359.66 29281.47 23486.02 23972.85 18288.05 14290.65 20170.73 22990.91 19775.15 16991.79 24194.87 67
v124084.30 13784.51 14083.65 16987.65 21761.26 27082.85 20591.54 12567.94 24190.68 9090.65 20171.71 22493.64 11082.84 7994.78 17296.07 36
h-mvs3384.25 13982.76 16888.72 7191.82 11882.60 5684.00 17084.98 25871.27 20386.70 16790.55 20363.04 27293.92 10078.26 12994.20 18889.63 249
v14419284.24 14084.41 14283.71 16887.59 21961.57 26682.95 20291.03 14167.82 24489.80 10490.49 20473.28 20693.51 12181.88 9494.89 16796.04 38
FMVSNet378.80 23278.55 23479.57 24982.89 31156.89 32181.76 22985.77 24269.04 22786.00 18490.44 20551.75 33390.09 22565.95 26093.34 20791.72 199
fmvsm_l_conf0.5_n82.06 18381.54 19183.60 17183.94 29073.90 13083.35 18986.10 23658.97 32083.80 23090.36 20674.23 19086.94 27582.90 7790.22 27289.94 244
v192192084.23 14184.37 14483.79 16487.64 21861.71 26582.91 20391.20 13767.94 24190.06 9690.34 20772.04 22193.59 11682.32 8694.91 16596.07 36
DSMNet-mixed60.98 36461.61 36459.09 38272.88 39145.05 38674.70 32746.61 40826.20 40465.34 38590.32 20855.46 31863.12 39541.72 39081.30 36969.09 391
pmmvs-eth3d78.42 23877.04 25082.57 20187.44 22274.41 12780.86 24379.67 30055.68 34184.69 20890.31 20960.91 28085.42 30262.20 29291.59 24687.88 280
GeoE85.45 11485.81 11584.37 14790.08 16167.07 20585.86 13591.39 13172.33 19487.59 14990.25 21084.85 6892.37 15578.00 13491.94 24093.66 120
tttt051781.07 19979.58 22285.52 12788.99 18566.45 21387.03 11475.51 32873.76 16288.32 13790.20 21137.96 38894.16 9479.36 11995.13 15595.93 42
IterMVS-SCA-FT80.64 20679.41 22384.34 15183.93 29169.66 18176.28 30981.09 29272.43 18986.47 17790.19 21260.46 28293.15 13477.45 14286.39 32290.22 237
PM-MVS80.20 21779.00 22783.78 16588.17 20586.66 1581.31 23566.81 38069.64 22188.33 13690.19 21264.58 25983.63 32071.99 20690.03 27481.06 367
NP-MVS91.95 10974.55 12690.17 214
HQP-MVS84.61 12984.06 14886.27 11091.19 13670.66 17284.77 15092.68 9473.30 17480.55 28390.17 21472.10 21894.61 7477.30 14594.47 18093.56 128
fmvsm_l_conf0.5_n_a81.46 19380.87 20483.25 18183.73 29573.21 13883.00 20085.59 24558.22 32682.96 24590.09 21672.30 21786.65 28181.97 9289.95 27689.88 245
testgi72.36 29874.61 27165.59 36380.56 33542.82 39368.29 36873.35 34466.87 25181.84 26289.93 21772.08 22066.92 38546.05 38292.54 22587.01 290
PCF-MVS74.62 1582.15 18180.92 20385.84 12189.43 17472.30 15480.53 24591.82 11957.36 33487.81 14689.92 21877.67 14993.63 11158.69 31395.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
patch_mono-278.89 22879.39 22477.41 28384.78 27568.11 19775.60 31783.11 27560.96 30679.36 29789.89 21975.18 17872.97 36173.32 19292.30 22891.15 213
Vis-MVSNet (Re-imp)77.82 24377.79 24277.92 27588.82 18851.29 35983.28 19071.97 35474.04 15882.23 25589.78 22057.38 30689.41 24357.22 32295.41 14493.05 146
MCST-MVS84.36 13483.93 15185.63 12591.59 12171.58 16583.52 18492.13 10761.82 29183.96 22889.75 22179.93 13393.46 12378.33 12794.34 18491.87 196
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19889.67 22284.47 7295.46 4782.56 8396.26 11193.77 117
TAPA-MVS77.73 1285.71 11084.83 13188.37 7888.78 19179.72 7387.15 11293.50 5969.17 22485.80 18989.56 22380.76 12392.13 16173.21 19895.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
iter_conf0578.81 23177.35 24683.21 18382.98 31060.75 28284.09 16788.34 20163.12 27984.25 22489.48 22431.41 39794.51 8176.64 15195.83 13294.38 88
MSLP-MVS++85.00 12486.03 10881.90 20991.84 11671.56 16786.75 12293.02 8475.95 13787.12 15589.39 22577.98 14489.40 24477.46 14194.78 17284.75 314
MVS_111021_HR84.63 12884.34 14585.49 12990.18 16075.86 12079.23 26687.13 21973.35 17185.56 19389.34 22683.60 8290.50 21176.64 15194.05 19290.09 242
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21789.33 22783.87 7694.53 7982.45 8494.89 16794.90 65
DIV-MVS_self_test80.43 20980.23 21281.02 22879.99 33859.25 29677.07 29687.02 22467.38 24586.19 18089.22 22863.09 27090.16 21976.32 15495.80 13593.66 120
cl____80.42 21080.23 21281.02 22879.99 33859.25 29677.07 29687.02 22467.37 24686.18 18289.21 22963.08 27190.16 21976.31 15595.80 13593.65 122
IterMVS76.91 25376.34 25778.64 26080.91 32864.03 23476.30 30879.03 30364.88 27283.11 24289.16 23059.90 28884.46 31068.61 24285.15 33687.42 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP84.97 12583.42 15589.63 5592.39 9383.40 4888.83 8791.92 11473.19 17880.18 29189.15 23177.04 15993.28 12965.82 26492.28 23192.21 184
MVS_111021_LR84.28 13883.76 15385.83 12289.23 17983.07 5180.99 24183.56 27272.71 18686.07 18389.07 23281.75 11386.19 29077.11 14793.36 20688.24 270
MDA-MVSNet-bldmvs77.47 24776.90 25279.16 25479.03 34964.59 22766.58 37675.67 32673.15 17988.86 12288.99 23366.94 24581.23 33264.71 27488.22 29991.64 203
EPNet80.37 21278.41 23786.23 11176.75 36473.28 13587.18 11177.45 31176.24 13168.14 37388.93 23465.41 25693.85 10369.47 22896.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120671.38 30871.88 30069.88 33986.31 24854.37 33570.39 36074.62 33152.57 35776.73 31688.76 23559.94 28772.06 36344.35 38693.23 21283.23 339
EU-MVSNet75.12 27374.43 27577.18 28583.11 30859.48 29485.71 13982.43 28239.76 39985.64 19188.76 23544.71 37187.88 26273.86 18385.88 32884.16 324
MVSTER77.09 25175.70 26381.25 22275.27 37861.08 27277.49 29185.07 25360.78 30886.55 17188.68 23743.14 37890.25 21473.69 18790.67 26792.42 171
CNLPA83.55 15883.10 16384.90 13589.34 17683.87 4684.54 15988.77 19379.09 10183.54 23688.66 23874.87 18181.73 32966.84 25392.29 23089.11 259
BH-RMVSNet80.53 20780.22 21481.49 21987.19 22766.21 21577.79 28586.23 23474.21 15783.69 23188.50 23973.25 20790.75 20363.18 28787.90 30187.52 284
CL-MVSNet_self_test76.81 25577.38 24575.12 30686.90 23651.34 35773.20 34180.63 29668.30 23581.80 26588.40 24066.92 24680.90 33355.35 33594.90 16693.12 144
DP-MVS Recon84.05 14683.22 15886.52 10591.73 11975.27 12383.23 19492.40 9972.04 19882.04 25888.33 24177.91 14693.95 9966.17 25895.12 15790.34 236
miper_lstm_enhance76.45 26176.10 25977.51 28176.72 36560.97 27764.69 38085.04 25563.98 27683.20 24188.22 24256.67 31078.79 34773.22 19393.12 21492.78 155
UnsupCasMVSNet_eth71.63 30572.30 29869.62 34176.47 36752.70 34870.03 36380.97 29359.18 31979.36 29788.21 24360.50 28169.12 37358.33 31777.62 38387.04 289
tpm67.95 33468.08 33567.55 35578.74 35243.53 39175.60 31767.10 37954.92 34572.23 35288.10 24442.87 37975.97 35552.21 35480.95 37183.15 340
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11780.35 8489.54 11688.01 24579.09 13692.13 16175.51 16495.06 15990.41 234
alignmvs83.94 15083.98 15083.80 16387.80 21267.88 20084.54 15991.42 13073.27 17788.41 13487.96 24672.33 21690.83 20176.02 16094.11 19092.69 160
MVP-Stereo75.81 26773.51 28382.71 19689.35 17573.62 13180.06 24985.20 25060.30 31273.96 34387.94 24757.89 30489.45 24052.02 35574.87 38985.06 311
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new-patchmatchnet70.10 31873.37 28560.29 37981.23 32516.95 41259.54 38974.62 33162.93 28080.97 27487.93 24862.83 27471.90 36455.24 33695.01 16392.00 192
PAPM_NR83.23 16383.19 16083.33 17990.90 14565.98 21788.19 9790.78 14878.13 11580.87 27887.92 24973.49 20192.42 15270.07 22388.40 29291.60 204
test_fmvs375.72 26875.20 26877.27 28475.01 38169.47 18378.93 26884.88 26046.67 37987.08 15987.84 25050.44 33971.62 36677.42 14488.53 29190.72 223
MGCFI-Net85.04 12185.95 10982.31 20587.52 22063.59 23986.23 13193.96 4173.46 16788.07 14187.83 25186.46 5490.87 20076.17 15793.89 19692.47 170
LF4IMVS82.75 16981.93 18185.19 13182.08 31380.15 7085.53 14088.76 19468.01 23885.58 19287.75 25271.80 22386.85 27774.02 18093.87 19788.58 268
PHI-MVS86.38 9785.81 11588.08 8288.44 20077.34 10189.35 8093.05 8073.15 17984.76 20787.70 25378.87 13894.18 9080.67 10496.29 10792.73 156
FPMVS72.29 30072.00 29973.14 31788.63 19485.00 3674.65 32867.39 37471.94 20077.80 31187.66 25450.48 33875.83 35649.95 36379.51 37258.58 401
CMPMVSbinary59.41 2075.12 27373.57 28179.77 24475.84 37367.22 20281.21 23882.18 28350.78 37076.50 31787.66 25455.20 32082.99 32362.17 29490.64 27089.09 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sasdasda85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16988.47 13187.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
D2MVS76.84 25475.67 26480.34 23880.48 33662.16 26373.50 33884.80 26257.61 33282.24 25487.54 25651.31 33487.65 26470.40 22093.19 21391.23 210
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16988.47 13187.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
CANet83.79 15282.85 16786.63 10286.17 25472.21 15783.76 17991.43 12877.24 12574.39 34187.45 25975.36 17695.42 4977.03 14892.83 22192.25 183
OpenMVS_ROBcopyleft70.19 1777.77 24577.46 24378.71 25984.39 28361.15 27181.18 23982.52 28062.45 28683.34 23987.37 26066.20 24988.66 25564.69 27585.02 33886.32 296
thisisatest053079.07 22677.33 24784.26 15487.13 22864.58 22883.66 18275.95 32368.86 22985.22 19787.36 26138.10 38693.57 11975.47 16594.28 18694.62 74
diffmvspermissive80.40 21180.48 20980.17 24179.02 35060.04 28777.54 28990.28 16766.65 25382.40 25287.33 26273.50 19987.35 26877.98 13589.62 27993.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26887.25 26382.43 9594.53 7977.65 13896.46 10194.14 98
eth_miper_zixun_eth80.84 20280.22 21482.71 19681.41 32260.98 27677.81 28490.14 17167.31 24886.95 16387.24 26464.26 26192.31 15775.23 16891.61 24594.85 71
PVSNet_Blended_VisFu81.55 19280.49 20884.70 14291.58 12473.24 13784.21 16391.67 12362.86 28180.94 27687.16 26567.27 24492.87 14469.82 22688.94 28787.99 277
AdaColmapbinary83.66 15483.69 15483.57 17490.05 16472.26 15586.29 13090.00 17478.19 11481.65 26787.16 26583.40 8494.24 8761.69 29894.76 17584.21 323
c3_l81.64 19181.59 18881.79 21580.86 33059.15 29978.61 27590.18 17068.36 23387.20 15387.11 26769.39 23391.62 17478.16 13194.43 18294.60 75
PVSNet_BlendedMVS78.80 23277.84 24181.65 21784.43 28063.41 24079.49 26090.44 15761.70 29575.43 33287.07 26869.11 23691.44 17960.68 30592.24 23290.11 241
mvsany_test365.48 35062.97 35873.03 31969.99 39876.17 11864.83 37843.71 40943.68 39080.25 29087.05 26952.83 32763.09 39651.92 35972.44 39179.84 374
TAMVS78.08 24176.36 25683.23 18290.62 15172.87 14079.08 26780.01 29961.72 29481.35 27286.92 27063.96 26588.78 25350.61 36193.01 21788.04 276
BH-untuned80.96 20180.99 20180.84 23088.55 19768.23 19480.33 24888.46 19772.79 18586.55 17186.76 27174.72 18691.77 17361.79 29788.99 28582.52 348
test_yl78.71 23478.51 23579.32 25284.32 28458.84 30378.38 27685.33 24875.99 13582.49 25086.57 27258.01 30090.02 22862.74 28892.73 22389.10 260
DCV-MVSNet78.71 23478.51 23579.32 25284.32 28458.84 30378.38 27685.33 24875.99 13582.49 25086.57 27258.01 30090.02 22862.74 28892.73 22389.10 260
pmmvs474.92 27672.98 28980.73 23284.95 27271.71 16476.23 31077.59 31052.83 35577.73 31386.38 27456.35 31384.97 30657.72 32187.05 31285.51 306
thres100view90075.45 26975.05 26976.66 29387.27 22451.88 35481.07 24073.26 34575.68 14183.25 24086.37 27545.54 36088.80 25051.98 35690.99 25589.31 255
Patchmatch-RL test74.48 28173.68 28076.89 29084.83 27466.54 21172.29 34569.16 37057.70 33086.76 16586.33 27645.79 35982.59 32469.63 22790.65 26981.54 358
PLCcopyleft73.85 1682.09 18280.31 21087.45 9090.86 14780.29 6985.88 13490.65 15168.17 23776.32 32086.33 27673.12 20892.61 14961.40 30190.02 27589.44 252
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres600view775.97 26575.35 26777.85 27887.01 23451.84 35580.45 24673.26 34575.20 14883.10 24386.31 27845.54 36089.05 24655.03 33892.24 23292.66 161
baseline173.26 29073.54 28272.43 32684.92 27347.79 37379.89 25374.00 33665.93 25678.81 30386.28 27956.36 31281.63 33056.63 32479.04 37887.87 281
HY-MVS64.64 1873.03 29372.47 29774.71 30883.36 30154.19 33682.14 22881.96 28556.76 33969.57 36886.21 28060.03 28684.83 30849.58 36782.65 36085.11 310
TSAR-MVS + GP.83.95 14982.69 17087.72 8689.27 17881.45 6383.72 18081.58 29074.73 15285.66 19086.06 28172.56 21592.69 14775.44 16695.21 15289.01 265
hse-mvs283.47 16081.81 18388.47 7591.03 14282.27 5782.61 20983.69 26971.27 20386.70 16786.05 28263.04 27292.41 15378.26 12993.62 20590.71 224
Test_1112_low_res73.90 28673.08 28776.35 29590.35 15655.95 32473.40 34086.17 23550.70 37173.14 34785.94 28358.31 29985.90 29656.51 32583.22 35487.20 288
DPM-MVS80.10 22079.18 22682.88 19490.71 15069.74 17978.87 27190.84 14660.29 31375.64 33185.92 28467.28 24393.11 13571.24 20991.79 24185.77 303
AUN-MVS81.18 19878.78 23088.39 7790.93 14482.14 5882.51 21583.67 27064.69 27380.29 28785.91 28551.07 33592.38 15476.29 15693.63 20490.65 228
Effi-MVS+-dtu85.82 10983.38 15693.14 387.13 22891.15 287.70 10488.42 19874.57 15483.56 23585.65 28678.49 14194.21 8872.04 20592.88 22094.05 102
MDTV_nov1_ep1368.29 33378.03 35343.87 39074.12 33172.22 35252.17 35967.02 37885.54 28745.36 36480.85 33455.73 32984.42 347
EI-MVSNet-Vis-set85.12 12084.53 13986.88 9884.01 28972.76 14183.91 17485.18 25180.44 8288.75 12585.49 28880.08 13091.92 16782.02 9090.85 26395.97 39
CHOSEN 1792x268872.45 29770.56 31078.13 27090.02 16663.08 24568.72 36783.16 27442.99 39375.92 32685.46 28957.22 30885.18 30549.87 36581.67 36486.14 298
EI-MVSNet-UG-set85.04 12184.44 14186.85 9983.87 29372.52 15083.82 17685.15 25280.27 8688.75 12585.45 29079.95 13291.90 16881.92 9390.80 26496.13 34
MDA-MVSNet_test_wron70.05 32070.44 31268.88 34773.84 38453.47 34158.93 39367.28 37558.43 32387.09 15885.40 29159.80 29067.25 38359.66 31083.54 35285.92 301
YYNet170.06 31970.44 31268.90 34673.76 38553.42 34358.99 39267.20 37658.42 32487.10 15785.39 29259.82 28967.32 38259.79 30983.50 35385.96 299
pmmvs570.73 31370.07 31672.72 32177.03 36252.73 34774.14 33075.65 32750.36 37472.17 35385.37 29355.42 31980.67 33552.86 35287.59 30684.77 313
UnsupCasMVSNet_bld69.21 32969.68 32167.82 35479.42 34451.15 36067.82 37275.79 32454.15 34977.47 31585.36 29459.26 29370.64 36848.46 37279.35 37481.66 356
miper_ehance_all_eth80.34 21380.04 21981.24 22479.82 34058.95 30177.66 28689.66 18065.75 26185.99 18785.11 29568.29 24091.42 18176.03 15992.03 23693.33 133
cl2278.97 22778.21 23981.24 22477.74 35459.01 30077.46 29287.13 21965.79 25884.32 21785.10 29658.96 29690.88 19975.36 16792.03 23693.84 110
EI-MVSNet82.61 17082.42 17683.20 18483.25 30363.66 23783.50 18585.07 25376.06 13286.55 17185.10 29673.41 20290.25 21478.15 13390.67 26795.68 45
CVMVSNet72.62 29671.41 30676.28 29783.25 30360.34 28583.50 18579.02 30437.77 40276.33 31985.10 29649.60 34287.41 26770.54 21877.54 38481.08 365
MVSFormer82.23 17781.57 19084.19 15785.54 26669.26 18691.98 3190.08 17271.54 20176.23 32185.07 29958.69 29794.27 8486.26 4088.77 28889.03 263
jason77.42 24875.75 26282.43 20487.10 23169.27 18577.99 28181.94 28651.47 36577.84 30985.07 29960.32 28489.00 24770.74 21589.27 28389.03 263
jason: jason.
PMMVS255.64 37159.27 37044.74 38764.30 40912.32 41340.60 40049.79 40653.19 35365.06 38984.81 30153.60 32549.76 40432.68 40489.41 28072.15 386
CostFormer69.98 32168.68 33173.87 31177.14 36050.72 36379.26 26374.51 33351.94 36370.97 35984.75 30245.16 36887.49 26655.16 33779.23 37583.40 335
PAPM71.77 30370.06 31776.92 28886.39 24353.97 33776.62 30486.62 23053.44 35263.97 39284.73 30357.79 30592.34 15639.65 39381.33 36884.45 318
PAPR78.84 23078.10 24081.07 22685.17 27160.22 28682.21 22590.57 15462.51 28375.32 33584.61 30474.99 18092.30 15859.48 31188.04 30090.68 226
tfpn200view974.86 27774.23 27676.74 29286.24 25152.12 35179.24 26473.87 33873.34 17281.82 26384.60 30546.02 35488.80 25051.98 35690.99 25589.31 255
thres40075.14 27174.23 27677.86 27786.24 25152.12 35179.24 26473.87 33873.34 17281.82 26384.60 30546.02 35488.80 25051.98 35690.99 25592.66 161
HyFIR lowres test75.12 27372.66 29382.50 20291.44 13265.19 22472.47 34487.31 21446.79 37880.29 28784.30 30752.70 32892.10 16451.88 36086.73 31790.22 237
test_fmvs273.57 28872.80 29075.90 30172.74 39368.84 19277.07 29684.32 26645.14 38582.89 24684.22 30848.37 34470.36 36973.40 19187.03 31388.52 269
Effi-MVS+83.90 15184.01 14983.57 17487.22 22665.61 22186.55 12692.40 9978.64 10981.34 27384.18 30983.65 8192.93 14174.22 17587.87 30292.17 186
API-MVS82.28 17682.61 17281.30 22186.29 25069.79 17888.71 9087.67 21178.42 11282.15 25784.15 31077.98 14491.59 17565.39 26792.75 22282.51 349
DELS-MVS81.44 19481.25 19682.03 20784.27 28662.87 24876.47 30792.49 9870.97 20881.64 26883.83 31175.03 17992.70 14674.29 17492.22 23490.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU77.81 24477.05 24980.09 24281.37 32359.90 29083.26 19188.29 20369.16 22567.83 37683.72 31260.93 27989.47 23869.22 23289.70 27890.88 219
tpm268.45 33366.83 34073.30 31678.93 35148.50 36979.76 25471.76 35647.50 37769.92 36683.60 31342.07 38088.40 25748.44 37379.51 37283.01 342
Fast-Effi-MVS+-dtu82.54 17381.41 19385.90 11985.60 26276.53 11183.07 19789.62 18373.02 18179.11 30183.51 31480.74 12490.24 21668.76 23989.29 28190.94 217
CDS-MVSNet77.32 24975.40 26583.06 18689.00 18472.48 15177.90 28382.17 28460.81 30778.94 30283.49 31559.30 29288.76 25454.64 34192.37 22787.93 279
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG80.06 22179.99 22180.25 23983.91 29268.04 19977.51 29089.19 18877.65 11981.94 25983.45 31676.37 17186.31 28663.31 28686.59 31986.41 295
SCA73.32 28972.57 29575.58 30481.62 31955.86 32678.89 27071.37 35961.73 29374.93 33883.42 31760.46 28287.01 27158.11 31982.63 36283.88 325
Patchmatch-test65.91 34767.38 33661.48 37775.51 37543.21 39268.84 36663.79 38662.48 28472.80 35083.42 31744.89 37059.52 39948.27 37486.45 32081.70 355
test_vis3_rt71.42 30770.67 30973.64 31469.66 39970.46 17466.97 37589.73 17742.68 39588.20 13983.04 31943.77 37360.07 39765.35 26986.66 31890.39 235
ADS-MVSNet265.87 34863.64 35672.55 32473.16 38956.92 32067.10 37374.81 33049.74 37566.04 38182.97 32046.71 34977.26 35142.29 38869.96 39683.46 333
ADS-MVSNet61.90 35862.19 36261.03 37873.16 38936.42 40367.10 37361.75 39149.74 37566.04 38182.97 32046.71 34963.21 39442.29 38869.96 39683.46 333
PatchmatchNetpermissive69.71 32468.83 32972.33 32777.66 35653.60 34079.29 26269.99 36557.66 33172.53 35182.93 32246.45 35180.08 34060.91 30472.09 39283.31 338
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test74.73 28074.00 27876.90 28980.71 33356.89 32171.53 35278.42 30558.24 32579.32 29982.92 32357.91 30384.26 31465.60 26691.36 25089.56 250
cdsmvs_eth3d_5k20.81 37427.75 3770.00 3930.00 4160.00 4180.00 40485.44 2460.00 4110.00 41282.82 32481.46 1150.00 4120.00 4110.00 4100.00 408
lupinMVS76.37 26274.46 27482.09 20685.54 26669.26 18676.79 29980.77 29550.68 37276.23 32182.82 32458.69 29788.94 24869.85 22588.77 28888.07 273
xiu_mvs_v1_base_debu80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
xiu_mvs_v1_base80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
xiu_mvs_v1_base_debi80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
bld_raw_dy_0_6481.25 19681.17 20081.49 21985.55 26460.85 27986.36 12895.45 957.08 33690.81 8882.69 32965.85 25493.91 10170.37 22196.34 10589.72 246
N_pmnet70.20 31668.80 33074.38 31080.91 32884.81 3959.12 39176.45 32255.06 34475.31 33682.36 33055.74 31654.82 40147.02 37787.24 30883.52 332
TR-MVS76.77 25675.79 26179.72 24686.10 25765.79 21977.14 29483.02 27665.20 27081.40 27182.10 33166.30 24890.73 20555.57 33285.27 33282.65 343
test_f64.31 35565.85 34559.67 38066.54 40462.24 26257.76 39470.96 36140.13 39784.36 21582.09 33246.93 34851.67 40361.99 29581.89 36365.12 395
testing371.53 30670.79 30873.77 31388.89 18741.86 39576.60 30559.12 39772.83 18380.97 27482.08 33319.80 41387.33 26965.12 27091.68 24492.13 188
Fast-Effi-MVS+81.04 20080.57 20582.46 20387.50 22163.22 24478.37 27889.63 18268.01 23881.87 26182.08 33382.31 9992.65 14867.10 25088.30 29891.51 207
tpmvs70.16 31769.56 32271.96 32874.71 38248.13 37079.63 25575.45 32965.02 27170.26 36481.88 33545.34 36585.68 30058.34 31675.39 38882.08 353
GA-MVS75.83 26674.61 27179.48 25181.87 31559.25 29673.42 33982.88 27768.68 23179.75 29281.80 33650.62 33789.46 23966.85 25285.64 32989.72 246
iter_conf05_1178.40 23977.29 24881.71 21685.55 26460.95 27877.22 29386.90 22860.10 31675.79 32881.73 33764.08 26394.47 8270.37 22193.92 19489.72 246
patchmatchnet-post81.71 33845.93 35787.01 271
WTY-MVS67.91 33568.35 33266.58 36080.82 33148.12 37165.96 37772.60 34853.67 35171.20 35781.68 33958.97 29569.06 37448.57 37181.67 36482.55 346
CLD-MVS83.18 16482.64 17184.79 13889.05 18267.82 20177.93 28292.52 9768.33 23485.07 19981.54 34082.06 10592.96 13969.35 22997.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MS-PatchMatch70.93 31270.22 31573.06 31881.85 31662.50 25573.82 33677.90 30752.44 35875.92 32681.27 34155.67 31781.75 32855.37 33477.70 38274.94 383
PatchMatch-RL74.48 28173.22 28678.27 26987.70 21485.26 3475.92 31570.09 36464.34 27476.09 32481.25 34265.87 25378.07 34853.86 34383.82 35171.48 387
EPNet_dtu72.87 29571.33 30777.49 28277.72 35560.55 28482.35 21975.79 32466.49 25458.39 40281.06 34353.68 32485.98 29353.55 34692.97 21985.95 300
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall77.83 24276.93 25180.51 23576.15 37058.01 31175.47 32188.82 19258.05 32883.59 23380.69 34464.41 26091.20 18573.16 19992.03 23692.33 177
KD-MVS_2432*160066.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30477.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
miper_refine_blended66.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30477.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
thres20072.34 29971.55 30574.70 30983.48 29651.60 35675.02 32473.71 34170.14 21878.56 30580.57 34746.20 35288.20 26046.99 37889.29 28184.32 320
ET-MVSNet_ETH3D75.28 27072.77 29182.81 19583.03 30968.11 19777.09 29576.51 32160.67 31077.60 31480.52 34838.04 38791.15 18870.78 21390.68 26689.17 258
our_test_371.85 30271.59 30272.62 32380.71 33353.78 33969.72 36471.71 35858.80 32278.03 30680.51 34956.61 31178.84 34662.20 29286.04 32785.23 308
tpmrst66.28 34666.69 34265.05 36772.82 39239.33 39778.20 27970.69 36353.16 35467.88 37580.36 35048.18 34574.75 35958.13 31870.79 39481.08 365
sss66.92 33967.26 33765.90 36277.23 35951.10 36264.79 37971.72 35752.12 36270.13 36580.18 35157.96 30265.36 39150.21 36281.01 37081.25 362
EPMVS62.47 35662.63 36062.01 37370.63 39738.74 39974.76 32652.86 40453.91 35067.71 37780.01 35239.40 38466.60 38655.54 33368.81 40080.68 369
BH-w/o76.57 25876.07 26078.10 27186.88 23765.92 21877.63 28786.33 23265.69 26280.89 27779.95 35368.97 23890.74 20453.01 35185.25 33377.62 378
1112_ss74.82 27873.74 27978.04 27389.57 16960.04 28776.49 30687.09 22354.31 34873.66 34679.80 35460.25 28586.76 28058.37 31584.15 34987.32 287
ab-mvs-re6.65 3768.87 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41279.80 3540.00 4160.00 4120.00 4110.00 4100.00 408
EIA-MVS82.19 17981.23 19885.10 13387.95 20969.17 19083.22 19593.33 6470.42 21278.58 30479.77 35677.29 15494.20 8971.51 20788.96 28691.93 195
UWE-MVS66.43 34465.56 34969.05 34584.15 28840.98 39673.06 34364.71 38454.84 34676.18 32379.62 35729.21 40280.50 33738.54 39789.75 27785.66 304
test_fmvs1_n70.94 31170.41 31472.53 32573.92 38366.93 20875.99 31484.21 26843.31 39279.40 29679.39 35843.47 37468.55 37769.05 23584.91 34182.10 352
WB-MVSnew68.72 33269.01 32667.85 35383.22 30543.98 38974.93 32565.98 38155.09 34373.83 34479.11 35965.63 25571.89 36538.21 39885.04 33787.69 283
test_vis1_n_192071.30 30971.58 30470.47 33577.58 35759.99 28974.25 32984.22 26751.06 36774.85 33979.10 36055.10 32168.83 37568.86 23879.20 37782.58 345
tpm cat166.76 34365.21 35171.42 33177.09 36150.62 36478.01 28073.68 34244.89 38668.64 37179.00 36145.51 36282.42 32749.91 36470.15 39581.23 364
test_cas_vis1_n_192069.20 33069.12 32369.43 34373.68 38662.82 24970.38 36177.21 31446.18 38280.46 28678.95 36252.03 33065.53 39065.77 26577.45 38579.95 373
xiu_mvs_v2_base77.19 25076.75 25378.52 26287.01 23461.30 26975.55 32087.12 22261.24 30374.45 34078.79 36377.20 15590.93 19564.62 27784.80 34583.32 337
ETV-MVS84.31 13683.91 15285.52 12788.58 19670.40 17584.50 16193.37 6178.76 10884.07 22678.72 36480.39 12795.13 6073.82 18492.98 21891.04 215
MAR-MVS80.24 21678.74 23284.73 14086.87 23878.18 8885.75 13787.81 21065.67 26377.84 30978.50 36573.79 19690.53 21061.59 30090.87 26185.49 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended76.49 26075.40 26579.76 24584.43 28063.41 24075.14 32390.44 15757.36 33475.43 33278.30 36669.11 23691.44 17960.68 30587.70 30584.42 319
test_fmvs169.57 32569.05 32571.14 33469.15 40065.77 22073.98 33383.32 27342.83 39477.77 31278.27 36743.39 37768.50 37868.39 24584.38 34879.15 375
testing9169.94 32268.99 32772.80 32083.81 29445.89 38171.57 35173.64 34368.24 23670.77 36277.82 36834.37 39384.44 31153.64 34587.00 31588.07 273
thisisatest051573.00 29470.52 31180.46 23681.45 32159.90 29073.16 34274.31 33557.86 32976.08 32577.78 36937.60 38992.12 16365.00 27191.45 24989.35 254
testing9969.27 32868.15 33472.63 32283.29 30245.45 38371.15 35371.08 36067.34 24770.43 36377.77 37032.24 39684.35 31353.72 34486.33 32388.10 272
MVS73.21 29272.59 29475.06 30780.97 32760.81 28181.64 23285.92 24146.03 38371.68 35577.54 37168.47 23989.77 23455.70 33185.39 33074.60 384
test0.0.03 164.66 35364.36 35265.57 36475.03 38046.89 37764.69 38061.58 39462.43 28871.18 35877.54 37143.41 37568.47 37940.75 39282.65 36081.35 359
baseline269.77 32366.89 33978.41 26579.51 34358.09 30976.23 31069.57 36757.50 33364.82 39077.45 37346.02 35488.44 25653.08 34877.83 38088.70 267
dp60.70 36560.29 36861.92 37572.04 39538.67 40070.83 35764.08 38551.28 36660.75 39577.28 37436.59 39171.58 36747.41 37662.34 40275.52 382
test_vis1_n70.29 31569.99 31971.20 33375.97 37266.50 21276.69 30280.81 29444.22 38875.43 33277.23 37550.00 34068.59 37666.71 25582.85 35978.52 377
PS-MVSNAJ77.04 25276.53 25578.56 26187.09 23261.40 26775.26 32287.13 21961.25 30274.38 34277.22 37676.94 16190.94 19464.63 27684.83 34483.35 336
mvsany_test158.48 36856.47 37364.50 36865.90 40768.21 19656.95 39542.11 41038.30 40165.69 38377.19 37756.96 30959.35 40046.16 38058.96 40365.93 394
IB-MVS62.13 1971.64 30468.97 32879.66 24880.80 33262.26 26173.94 33476.90 31763.27 27868.63 37276.79 37833.83 39491.84 17159.28 31287.26 30784.88 312
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing1167.38 33665.93 34471.73 33083.37 30046.60 37870.95 35669.40 36862.47 28566.14 37976.66 37931.22 39884.10 31549.10 36984.10 35084.49 316
131473.22 29172.56 29675.20 30580.41 33757.84 31281.64 23285.36 24751.68 36473.10 34876.65 38061.45 27785.19 30463.54 28379.21 37682.59 344
cascas76.29 26374.81 27080.72 23384.47 27962.94 24673.89 33587.34 21355.94 34075.16 33776.53 38163.97 26491.16 18765.00 27190.97 25888.06 275
testing22266.93 33865.30 35071.81 32983.38 29945.83 38272.06 34767.50 37364.12 27569.68 36776.37 38227.34 40783.00 32238.88 39488.38 29386.62 294
pmmvs362.47 35660.02 36969.80 34071.58 39664.00 23570.52 35958.44 40039.77 39866.05 38075.84 38327.10 40972.28 36246.15 38184.77 34673.11 385
ETVMVS64.67 35263.34 35768.64 34983.44 29841.89 39469.56 36561.70 39361.33 30168.74 37075.76 38428.76 40379.35 34134.65 40186.16 32684.67 315
new_pmnet55.69 37057.66 37149.76 38675.47 37630.59 40659.56 38851.45 40543.62 39162.49 39375.48 38540.96 38249.15 40537.39 39972.52 39069.55 390
PVSNet58.17 2166.41 34565.63 34868.75 34881.96 31449.88 36762.19 38672.51 35051.03 36868.04 37475.34 38650.84 33674.77 35845.82 38382.96 35581.60 357
MVEpermissive40.22 2351.82 37250.47 37555.87 38362.66 41051.91 35331.61 40239.28 41140.65 39650.76 40574.98 38756.24 31444.67 40633.94 40364.11 40171.04 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_re66.81 34266.98 33866.28 36176.87 36358.68 30771.66 35072.24 35160.29 31369.52 36973.53 38852.38 32964.40 39344.90 38481.44 36775.76 381
test-LLR67.21 33766.74 34168.63 35076.45 36855.21 33167.89 36967.14 37762.43 28865.08 38772.39 38943.41 37569.37 37061.00 30284.89 34281.31 360
test-mter65.00 35163.79 35568.63 35076.45 36855.21 33167.89 36967.14 37750.98 36965.08 38772.39 38928.27 40569.37 37061.00 30284.89 34281.31 360
Syy-MVS69.40 32770.03 31867.49 35681.72 31738.94 39871.00 35461.99 38861.38 29970.81 36072.36 39161.37 27879.30 34264.50 27985.18 33484.22 321
myMVS_eth3d64.66 35363.89 35466.97 35881.72 31737.39 40171.00 35461.99 38861.38 29970.81 36072.36 39120.96 41279.30 34249.59 36685.18 33484.22 321
gm-plane-assit75.42 37744.97 38752.17 35972.36 39187.90 26154.10 342
test_vis1_rt65.64 34964.09 35370.31 33666.09 40570.20 17761.16 38781.60 28938.65 40072.87 34969.66 39452.84 32660.04 39856.16 32777.77 38180.68 369
TESTMET0.1,161.29 36160.32 36764.19 36972.06 39451.30 35867.89 36962.09 38745.27 38460.65 39669.01 39527.93 40664.74 39256.31 32681.65 36676.53 379
PMMVS61.65 35960.38 36665.47 36565.40 40869.26 18663.97 38261.73 39236.80 40360.11 39768.43 39659.42 29166.35 38748.97 37078.57 37960.81 398
CHOSEN 280x42059.08 36756.52 37266.76 35976.51 36664.39 23149.62 39959.00 39843.86 38955.66 40468.41 39735.55 39268.21 38143.25 38776.78 38767.69 393
dmvs_testset60.59 36662.54 36154.72 38577.26 35827.74 40874.05 33261.00 39560.48 31165.62 38467.03 39855.93 31568.23 38032.07 40569.46 39968.17 392
E-PMN61.59 36061.62 36361.49 37666.81 40355.40 32953.77 39760.34 39666.80 25258.90 40065.50 39940.48 38366.12 38855.72 33086.25 32462.95 397
EMVS61.10 36360.81 36561.99 37465.96 40655.86 32653.10 39858.97 39967.06 24956.89 40363.33 40040.98 38167.03 38454.79 33986.18 32563.08 396
PVSNet_051.08 2256.10 36954.97 37459.48 38175.12 37953.28 34455.16 39661.89 39044.30 38759.16 39862.48 40154.22 32365.91 38935.40 40047.01 40459.25 400
GG-mvs-BLEND67.16 35773.36 38746.54 38084.15 16555.04 40358.64 40161.95 40229.93 40183.87 31938.71 39676.92 38671.07 388
test_method30.46 37329.60 37633.06 38817.99 4123.84 41513.62 40373.92 3372.79 40618.29 40853.41 40328.53 40443.25 40722.56 40635.27 40652.11 403
DeepMVS_CXcopyleft24.13 38932.95 41129.49 40721.63 41412.07 40537.95 40645.07 40430.84 39919.21 40817.94 40833.06 40723.69 404
tmp_tt20.25 37524.50 3787.49 3904.47 4138.70 41434.17 40125.16 4131.00 40832.43 40718.49 40539.37 3859.21 40921.64 40743.75 4054.57 405
X-MVStestdata85.04 12182.70 16992.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9916.05 40686.57 5295.80 2587.35 2497.62 6294.20 92
test_post178.85 2723.13 40745.19 36780.13 33958.11 319
test_post3.10 40845.43 36377.22 352
testmvs5.91 3797.65 3820.72 3921.20 4140.37 41759.14 3900.67 4160.49 4101.11 4102.76 4090.94 4150.24 4111.02 4101.47 4081.55 407
test1236.27 3788.08 3810.84 3911.11 4150.57 41662.90 3830.82 4150.54 4091.07 4112.75 4101.26 4140.30 4101.04 4091.26 4091.66 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.41 3778.55 3800.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41176.94 1610.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS37.39 40152.61 353
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14296.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12677.99 9091.01 14296.05 887.45 2098.17 3292.40 173
eth-test20.00 416
eth-test0.00 416
IU-MVS94.18 4672.64 14490.82 14756.98 33789.67 10885.78 5097.92 4693.28 135
save fliter93.75 5977.44 9986.31 12989.72 17870.80 209
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3695.88 1786.42 3697.97 4392.02 191
GSMVS83.88 325
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35383.88 325
sam_mvs45.92 358
MTGPAbinary91.81 121
MTMP90.66 4433.14 412
test9_res80.83 10196.45 10290.57 229
agg_prior279.68 11496.16 11490.22 237
agg_prior91.58 12477.69 9690.30 16484.32 21793.18 132
test_prior478.97 8084.59 156
test_prior86.32 10890.59 15271.99 15992.85 8994.17 9292.80 154
旧先验281.73 23056.88 33886.54 17684.90 30772.81 200
新几何281.72 231
无先验82.81 20685.62 24458.09 32791.41 18267.95 24984.48 317
原ACMM282.26 224
testdata286.43 28563.52 284
segment_acmp81.94 107
testdata179.62 25673.95 160
test1286.57 10390.74 14872.63 14690.69 15082.76 24879.20 13594.80 6895.32 14892.27 181
plane_prior793.45 6577.31 102
plane_prior692.61 8776.54 10974.84 182
plane_prior593.61 5695.22 5680.78 10295.83 13294.46 80
plane_prior376.85 10777.79 11886.55 171
plane_prior289.45 7779.44 96
plane_prior192.83 85
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 417
nn0.00 417
door-mid74.45 334
test1191.46 127
door72.57 349
HQP5-MVS70.66 172
HQP-NCC91.19 13684.77 15073.30 17480.55 283
ACMP_Plane91.19 13684.77 15073.30 17480.55 283
BP-MVS77.30 145
HQP4-MVS80.56 28294.61 7493.56 128
HQP3-MVS92.68 9494.47 180
HQP2-MVS72.10 218
MDTV_nov1_ep13_2view27.60 40970.76 35846.47 38161.27 39445.20 36649.18 36883.75 330
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 136